206 lines
5.6 KiB
Python
206 lines
5.6 KiB
Python
from cadCAD.configuration import append_configs
|
|
import networkx as nx
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
T = 50 #iterations in our simulation
|
|
n = 3 #number of boxes in our network
|
|
m = 2 #for barabasi graph type number of edges is (n-2)*m
|
|
|
|
G = nx.barabasi_albert_graph(n, m)
|
|
k = len(G.edges)
|
|
|
|
balls = np.zeros(n,)
|
|
|
|
for node in G.nodes:
|
|
rv = np.random.randint(1,25)
|
|
G.nodes[node]['initial_balls'] = rv
|
|
balls[node] = rv
|
|
|
|
scale=100
|
|
nx.draw_kamada_kawai(G, node_size=balls*scale,labels=nx.get_node_attributes(G,'initial_balls'))
|
|
|
|
initial_conditions = {'balls': balls, 'network': G}
|
|
|
|
|
|
def update_balls(params, step, sL, s, _input):
|
|
delta_balls = _input['delta']
|
|
new_balls = s['balls']
|
|
for e in G.edges:
|
|
move_ball = delta_balls[e]
|
|
src = e[0]
|
|
dst = e[1]
|
|
if (new_balls[src] >= move_ball) and (new_balls[dst] >= -move_ball):
|
|
new_balls[src] = new_balls[src] - move_ball
|
|
new_balls[dst] = new_balls[dst] + move_ball
|
|
|
|
key = 'balls'
|
|
value = new_balls
|
|
|
|
return (key, value)
|
|
|
|
|
|
def update_network(params, step, sL, s, _input):
|
|
new_nodes = _input['nodes']
|
|
new_edges = _input['edges']
|
|
new_balls = _input['quantity']
|
|
|
|
graph = s['network']
|
|
|
|
for node in new_nodes:
|
|
graph.add_node(node)
|
|
graph.nodes[node]['initial_balls'] = new_balls[node]
|
|
graph.nodes[node]['strat'] = _input['node_strats'][node]
|
|
|
|
for edge in new_edges:
|
|
graph.add_edge(edge[0], edge[1])
|
|
graph.edges[edge]['strat'] = _input['edge_strats'][edge]
|
|
|
|
key = 'network'
|
|
value = graph
|
|
return (key, value)
|
|
|
|
|
|
def update_network_balls(params, step, sL, s, _input):
|
|
new_nodes = _input['nodes']
|
|
new_balls = _input['quantity']
|
|
balls = np.zeros(len(s['balls']) + len(new_nodes))
|
|
|
|
for node in s['network'].nodes:
|
|
balls[node] = s['balls'][node]
|
|
|
|
for node in new_nodes:
|
|
balls[node] = new_balls[node]
|
|
|
|
key = 'balls'
|
|
value = balls
|
|
|
|
return (key, value)
|
|
|
|
|
|
def greedy_robot(src_balls, dst_balls):
|
|
# robot wishes to accumlate balls at its source
|
|
# takes half of its neighbors balls
|
|
if src_balls < dst_balls:
|
|
delta = -np.floor(dst_balls / 2)
|
|
else:
|
|
delta = 0
|
|
|
|
return delta
|
|
|
|
|
|
def fair_robot(src_balls, dst_balls):
|
|
# robot follows the simple balancing rule
|
|
delta = np.sign(src_balls - dst_balls)
|
|
|
|
return delta
|
|
|
|
|
|
def giving_robot(src_balls, dst_balls):
|
|
# robot wishes to gice away balls one at a time
|
|
if src_balls > 0:
|
|
delta = 1
|
|
else:
|
|
delta = 0
|
|
|
|
return delta
|
|
|
|
robot_strategies = [greedy_robot,fair_robot, giving_robot]
|
|
|
|
for node in G.nodes:
|
|
nstrats = len(robot_strategies)
|
|
rv = np.random.randint(0,nstrats)
|
|
G.nodes[node]['strat'] = robot_strategies[rv]
|
|
|
|
for e in G.edges:
|
|
owner_node = e[0]
|
|
G.edges[e]['strat'] = G.nodes[owner_node]['strat']
|
|
|
|
|
|
def robotic_network(params, step, sL, s):
|
|
graph = s['network']
|
|
|
|
delta_balls = {}
|
|
for e in graph.edges:
|
|
src = e[0]
|
|
src_balls = s['balls'][src]
|
|
dst = e[1]
|
|
dst_balls = s['balls'][dst]
|
|
|
|
# transfer balls according to specific robot strat
|
|
strat = graph.edges[e]['strat']
|
|
delta_balls[e] = strat(src_balls, dst_balls)
|
|
|
|
return_dict = {'nodes': [], 'edges': {}, 'quantity': {}, 'node_strats': {}, 'edge_strats': {}, 'delta': delta_balls}
|
|
|
|
return (return_dict)
|
|
|
|
|
|
def agent_arrival(params, step, sL, s):
|
|
node = len(s['network'].nodes)
|
|
edge_list = s['network'].edges
|
|
|
|
# choose a m random edges without replacement
|
|
# new = np.random.choose(edgelist,m)
|
|
new = [0, 1] # tester
|
|
|
|
nodes = [node]
|
|
edges = [(node, new_node) for new_node in new]
|
|
|
|
initial_balls = {node: np.random.randint(1, 25)}
|
|
|
|
rv = np.random.randint(0, nstrats)
|
|
node_strat = {node: robot_strategies[rv]}
|
|
|
|
edge_strats = {e: robot_strategies[rv] for e in edges}
|
|
|
|
return_dict = {'nodes': nodes,
|
|
'edges': edges,
|
|
'quantity': initial_balls,
|
|
'node_strats': node_strat,
|
|
'edge_strats': edge_strats,
|
|
'delta': np.zeros(node + 1)
|
|
}
|
|
return (return_dict)
|
|
|
|
|
|
partial_state_update_blocks = [
|
|
{
|
|
'policies': {
|
|
# The following policy functions will be evaluated and their returns will be passed to the state update functions
|
|
'p1': robotic_network
|
|
},
|
|
'variables': { # The following state variables will be updated simultaneously
|
|
'balls': update_balls
|
|
|
|
}
|
|
},
|
|
{
|
|
'policies': {
|
|
# The following policy functions will be evaluated and their returns will be passed to the state update functions
|
|
'p1': agent_arrival
|
|
},
|
|
'variables': { # The following state variables will be updated simultaneously
|
|
'network': update_network,
|
|
'balls': update_network_balls
|
|
}
|
|
}
|
|
]
|
|
|
|
simulation_parameters = {
|
|
'T': range(T),
|
|
'N': 1,
|
|
'M': {}
|
|
}
|
|
append_configs(
|
|
sim_configs=simulation_parameters, #dict containing state update functions
|
|
initial_state=initial_conditions, #dict containing variable names and initial values
|
|
partial_state_update_blocks= partial_state_update_blocks #, #dict containing state update functions
|
|
# policy_ops=[lambda a, b: {**a, **b}]
|
|
)
|
|
# config = Configuration(initial_state=initial_conditions, #dict containing variable names and initial values
|
|
# partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions
|
|
# sim_config=simulation_parameters #dict containing simulation parameters
|
|
# )
|