cadCAD/simulations/regression_tests/udo.py

196 lines
6.0 KiB
Python

from copy import deepcopy
from datetime import timedelta
from functools import reduce
from cadCAD.utils import SilentDF #, val_switch
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import time_step, config_sim, proc_trigger, timestep_trigger, genereate_psubs
from cadCAD.configuration.utils.userDefinedObject import udoPipe, UDO
import pandas as pd
from fn.func import curried
import pprint as pp
from cadCAD.utils.sys_config import add
DF = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
class udoExample(object):
def __init__(self, x, dataset=None):
self.x = x
self.mem_id = str(hex(id(self)))
self.ds = dataset # for setting ds initially or querying
self.perception = {}
def anon(self, f):
return f(self)
def updateX(self):
self.x += 1
return self
def perceive(self, s):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def read(self, ds_uri):
self.ds = SilentDF(pd.read_csv(ds_uri))
return self
def write(self, ds_uri):
pd.to_csv(ds_uri)
# ToDo: Generic update function
pass
state_udo = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoA = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoB = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
sim_config = config_sim({
"N": 2,
"T": range(4)
})
# ToDo: DataFrame Column order
state_dict = {
'increment': 0,
'state_udo': state_udo, 'state_udo_tracker': 0,
'state_udo_perception_tracker': {"ds1": None, "ds2": None, "ds3": None, "timestep": None},
'udo_policies': {'udo_A': policy_udoA, 'udo_B': policy_udoB},
'udo_policy_tracker': (0, 0),
'timestamp': '2019-01-01 00:00:00'
}
policies, state_updates = {}, {}
#
# def assign_udo_policy(udo):
# def policy(_g, step, sL, s):
# s['udo_policies'][udo].updateX()
# return {udo: udoPipe(s['udo_policies'][udo])}
# return policy
# policies_updates = {p: assign_udo_policy(udo) for p, udo in zip(['p1', 'p2'], ['udo_A', 'udo_B'])}
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
policies['a'] = udo_policyA
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
policies['b'] = udo_policyB
# policies = {"p1": udo_policyA, "p2": udo_policyB}
# policies = {"A": udo_policyA, "B": udo_policyB}
# def increment_state_by_int(y: str, incr_by: int):
# return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
state_updates['increment'] = add('increment', 1)
@curried
def perceive(s, self):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
x = udoPipe(s['state_udo'])
return y, x
state_updates['state_udo'] = state_udo_update
def track(destination, source):
return lambda _g, step, sL, s, _input: (destination, s[source].x)
state_updates['state_udo_tracker'] = track('state_udo_tracker', 'state_udo')
def track_state_udo_perception(destination, source):
def id(past_perception):
if len(past_perception) == 0:
return state_dict['state_udo_perception_tracker']
else:
return past_perception
return lambda _g, step, sL, s, _input: (destination, id(s[source].perception))
state_updates['state_udo_perception_tracker'] = track_state_udo_perception('state_udo_perception_tracker', 'state_udo')
def view_udo_policy(_g, step, sL, s, _input):
return 'udo_policies', _input
state_updates['udo_policies'] = view_udo_policy
def track_udo_policy(destination, source):
def val_switch(v):
if isinstance(v, pd.DataFrame) is True or isinstance(v, SilentDF) is True:
return SilentDF(v)
else:
return v.x
return lambda _g, step, sL, s, _input: (destination, tuple(val_switch(v) for _, v in s[source].items()))
state_updates['udo_policy_tracker'] = track_udo_policy('udo_policy_tracker', 'udo_policies')
def update_timestamp(_g, step, sL, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
system_substeps = 3
# state_updates['timestamp'] = update_timestamp
state_updates['timestamp'] = timestep_trigger(end_substep=system_substeps, y='timestamp', f=update_timestamp)
# state_updates['timestamp'] = proc_trigger(y='timestamp', f=update_timestamp, conditions={'substep': [0, substeps]}, cond_op=lambda a, b: a and b)
print()
print("State Updates:")
pp.pprint(state_updates)
print()
print("Policies:")
pp.pprint(policies)
print()
filter_out = lambda remove_list, state_list: list(filter(lambda state: state not in remove_list, state_list))
states = list(state_updates.keys())
# states_noTS = filter_out(['timestamp'], states)
# states_grid = [states,states_noTS,states_noTS]
# states_grid = [states] * system_substeps #
states_grid = [states,states,states]
policy_grid = [['a', 'b'], ['a', 'b'], ['a', 'b']]
PSUBS = genereate_psubs(policy_grid, states_grid, policies, state_updates)
pp.pprint(PSUBS)
# ToDo: Bug without specifying parameters
append_configs(
sim_configs=sim_config,
initial_state=state_dict,
seeds={},
raw_exogenous_states={},
env_processes={},
partial_state_update_blocks=PSUBS,
# policy_ops=[lambda a, b: {**a, **b}]
)
# pp.pprint(partial_state_update_blocks)
# PSUB = {
# 'policies': policies,
# 'states': state_updates
# }
# partial_state_update_blocks = [PSUB] * substeps