from functools import reduce from fn.op import foldr import pandas as pd from SimCAD.utils import key_filter from SimCAD.configuration.utils.behaviorAggregation import dict_elemwise_sum class Configuration: def __init__(self, sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_ops=[foldr(dict_elemwise_sum())]): self.sim_config = sim_config self.state_dict = state_dict self.seed = seed self.exogenous_states = exogenous_states self.env_processes = env_processes self.behavior_ops = behavior_ops self.mechanisms = mechanisms class Identity: def __init__(self, behavior_id={'identity': 0}): self.beh_id_return_val = behavior_id def b_identity(self, step, sL, s): return self.beh_id_return_val def behavior_identity(self, k): return self.b_identity def no_state_identity(self, step, sL, s, _input): return None def state_identity(self, k): return lambda step, sL, s, _input: (k, s[k]) def apply_identity_funcs(self, identity, df, cols): def fillna_with_id_func(identity, df, col): return df[[col]].fillna(value=identity(col)) return list(map(lambda col: fillna_with_id_func(identity, df, col), cols)) class Processor: def __init__(self, id=Identity()): self.id = id self.b_identity = id.b_identity self.behavior_identity = id.behavior_identity self.no_state_identity = id.no_state_identity self.state_identity = id.state_identity self.apply_identity_funcs = id.apply_identity_funcs def create_matrix_field(self, mechanisms, key): if key == 'states': identity = self.state_identity elif key == 'behaviors': identity = self.behavior_identity df = pd.DataFrame(key_filter(mechanisms, key)) col_list = self.apply_identity_funcs(identity, df, list(df.columns)) if len(col_list) != 0: return reduce((lambda x, y: pd.concat([x, y], axis=1)), col_list) else: return pd.DataFrame({'empty': []}) def generate_config(self, state_dict, mechanisms, exo_proc): def no_update_handler(bdf, sdf): if (bdf.empty == False) and (sdf.empty == True): bdf_values = bdf.values.tolist() sdf_values = [[self.no_state_identity] * len(bdf_values) for m in range(len(mechanisms))] return sdf_values, bdf_values elif (bdf.empty == True) and (sdf.empty == False): sdf_values = sdf.values.tolist() bdf_values = [[self.b_identity] * len(sdf_values) for m in range(len(mechanisms))] return sdf_values, bdf_values else: sdf_values = sdf.values.tolist() bdf_values = bdf.values.tolist() return sdf_values, bdf_values def only_ep_handler(state_dict): sdf_functions = [ lambda step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values()) ] sdf_values = [sdf_functions] bdf_values = [[self.b_identity] * len(sdf_values)] return sdf_values, bdf_values if len(mechanisms) != 0: bdf = self.create_matrix_field(mechanisms, 'behaviors') sdf = self.create_matrix_field(mechanisms, 'states') sdf_values, bdf_values = no_update_handler(bdf, sdf) zipped_list = list(zip(sdf_values, bdf_values)) else: sdf_values, bdf_values = only_ep_handler(state_dict) zipped_list = list(zip(sdf_values, bdf_values)) return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))