from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts from fn.op import foldr from fn import _ from fn.func import curried import numpy as np from decimal import Decimal seed = { 'z': np.random.RandomState(1), 'a': np.random.RandomState(2), 'b': np.random.RandomState(3), 'c': np.random.RandomState(3) } # # Behaviors per Mechanism # def b1m1(step, sL, s): # return np.array([1, 2]) # def b2m1(step, sL, s): # return np.array([3, 4]) # # Internal States per Mechanism # def s1m1(step, sL, s, _input): # y = 's1' # x = _input['b1'] * s['s1'] + _input['b2'] # return (y, x) # Behaviors per Mechanism # Different return types per mechanism ?? def b1m1(step, sL, s): return {'param1': 1, 'param2': 2} def b2m1(step, sL, s): return {'param1': 3, 'param2': 4} def b1m2(step, sL, s): return {'param1': 1, 'param2': 2} def b2m2(step, sL, s): return {'param1': 3, 'param2': 4} def b1m3(step, sL, s): return {'param1': 1, 'param2': 2} def b2m3(step, sL, s): return {'param1': 3, 'param2': 4} # Internal States per Mechanism def s1m1(step, sL, s, _input): y = 's1' x = s['s1'] + _input['param1'] return (y, x) def s2m1(step, sL, s, _input): y = 's2' x = s['s2'] + _input['param2'] return (y, x) def s1m2(step, sL, s, _input): y = 's1' x = s['s1'] + _input['param1'] return (y, x) def s2m2(step, sL, s, _input): y = 's2' x = s['s2'] + _input['param2'] return (y, x) def s1m3(step, sL, s, _input): y = 's1' x = s['s1'] + _input['param1'] return (y, x) def s2m3(step, sL, s, _input): y = 's2' x = s['s2'] + s['s3'] + _input['param2'] return (y, x) # Exogenous States proc_one_coef_A = 0.7 proc_one_coef_B = 1.3 def es3p1(step, sL, s, _input): y = 's3' x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B) return (y, x) def es4p2(step, sL, s, _input): y = 's4' x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) return (y, x) def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params y = 'timestamp' x = ep_time_step(s, s['timestamp'], seconds=1) return (y, x) # Environment States def env_a(x): return 10 def env_b(x): return 10 # def what_ever(x): # return x + 1 # Genesis States state_dict = { 's1': Decimal(0.0), 's2': Decimal(0.0), 's3': Decimal(1.0), 's4': Decimal(1.0), 'timestamp': '2018-10-01 15:16:24' } # remove `exo_update_per_ts` to update every ts exogenous_states = exo_update_per_ts( { "s3": es3p1, "s4": es4p2, "timestamp": es5p2 } ) # make env proc trigger field agnostic env_processes = { "s3": proc_trigger('2018-10-01 15:16:25', env_a), "s4": proc_trigger('2018-10-01 15:16:25', env_b) } # lambdas # genesis Sites should always be there # [1, 2] # behavior_ops = [ foldr(_ + _), lambda x: x + 0 ] def print_fwd(x): print(x) return x def behavior_to_dict(v): return dict(list(zip(map(lambda n: 'b' + str(n), list(range(len(v)))), v))) @curried def foldr_dict_vals(f, d): return foldr(f)(list(d.values())) def sum_dict_values(f = _ + _): return foldr_dict_vals(f) @curried def dict_op(f, d1, d2): return {k: f(d1[k], d2[k]) for k in d2} def dict_elemwise_sum(f = _ + _): return dict_op(f) # [1, 2] = {'b1': ['a'], 'b2', [1]} = # behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ] behavior_ops = [ print_fwd, foldr(dict_elemwise_sum()) ] # behavior_ops = [] # need at least 1 behaviour and 1 state function for the 1st mech with behaviors # mechanisms = {} mechanisms = { "m1": { "behaviors": { "b1": b1m1, # lambda step, sL, s: s['s1'] + 1, "b2": b2m1 }, "states": { # exclude only. TypeError: reduce() of empty sequence with no initial value "s1": s1m1, "s2": s2m1 } }, "m2": { "behaviors": { "b1": b1m2, "b2": b2m2 }, "states": { "s1": s1m2, "s2": s2m2 } }, "m3": { "behaviors": { "b1": b1m3, "b2": b2m3 }, "states": { "s1": s1m3, "s2": s2m3 } } } sim_config = { "N": 2, "T": range(5) }