from decimal import Decimal import numpy as np from datetime import timedelta import pprint from SimCAD import configs from SimCAD.configuration import Configuration from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \ ep_time_step, parameterize_mechanism, parameterize_states, sweep pp = pprint.PrettyPrinter(indent=4) # ToDo: handle single param sweep beta = [Decimal(1), Decimal(2)] seed = { 'z': np.random.RandomState(1), 'a': np.random.RandomState(2), 'b': np.random.RandomState(3), 'c': np.random.RandomState(3) } # Behaviors per Mechanism def b1m1(step, sL, s): return {'param1': 1} def b2m1(step, sL, s): return {'param2': 4} # @curried def b1m2(param, step, sL, s): return {'param1': 'a', 'param2': param} def b2m2(step, sL, s): return {'param1': 'b', 'param2': 0} def b1m3(step, sL, s): return {'param1': np.array([10, 100])} def b2m3(step, sL, s): return {'param1': np.array([20, 200])} # Internal States per Mechanism def s1m1(step, sL, s, _input): y = 's1' x = 0 return (y, x) # @curried def s2m1(param, step, sL, s, _input): y = 's2' x = param return (y, x) def s1m2(step, sL, s, _input): y = 's1' x = _input['param2'] return (y, x) def s2m2(step, sL, s, _input): y = 's2' x = _input['param2'] return (y, x) def s1m3(step, sL, s, _input): y = 's1' x = 0 return (y, x) def s2m3(step, sL, s, _input): y = 's2' x = 0 return (y, x) # Exogenous States proc_one_coef_A = 0.7 proc_one_coef_B = 1.3 # @curried def es3p1(param, step, sL, s, _input): y = 's3' x = s['s3'] + param return (y, x) def es4p2(param, step, sL, s, _input): y = 's4' x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) + param return (y, x) ts_format = '%Y-%m-%d %H:%M:%S' t_delta = timedelta(days=0, minutes=0, seconds=1) def es5p2(step, sL, s, _input): y = 'timestamp' x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta) return (y, x) # Environment States # @curried def env_a(param, x): return x + param def env_b(x): return 10 # Genesis States genesis_states = { 's1': Decimal(0.0), 's2': Decimal(0.0), 's3': Decimal(1.0), 's4': Decimal(1.0), 'timestamp': '2018-10-01 15:16:24' } # remove `exo_update_per_ts` to update every ts raw_exogenous_states = { "s3": sweep(beta, es3p1), #es3p1, #sweep(beta, es3p1), "s4": sweep(beta, es4p2), "timestamp": es5p2 } # exogenous_states_list = list(map(exo_update_per_ts, parameterize_states(raw_exogenous_states))) # ToDo: make env proc trigger field agnostic # ToDo: input json into function renaming __name__ triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b) env_processes = { "s3": sweep(beta, env_a), "s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b) } parameterized_env_processes = parameterize_states(env_processes) pp.pprint(parameterized_env_processes) exit() # ToDo: The number of values enteren in sweep should be the # of config objs created, # not dependent on the # of times the sweep is applied # sweep exo_state func and point to exo-state in every other funtion # param sweep on genesis states # need at least 1 behaviour and 1 state function for the 1st mech with behaviors # mechanisms = {} mechanisms = { "m1": { "behaviors": { "b1": b1m1, "b2": b2m1 }, "states": { "s1": s1m1, "s2": sweep(beta, s2m1) #s2m1(1) #sweep(beta, s2m1) } }, "m2": { "behaviors": { "b1": sweep(beta, b1m2), #b1m2(1) #sweep(beta, b1m2), "b2": b2m2 }, "states": { "s1": s1m2, "s2": s2m2 } }, "m3": { "behaviors": { "b1": b1m3, "b2": b2m3 }, "states": { "s1": s1m3, "s2": s2m3 } } } parameterized_mechanism = parameterize_mechanism(mechanisms) sim_config = { "N": 2, "T": range(5) } for mechanisms, env_processes, exogenous_states in zip(parameterized_mechanism, parameterized_env_processes, exogenous_states_list): configs.append( Configuration( sim_config=sim_config, state_dict=genesis_states, seed=seed, exogenous_states=exogenous_states, #parameterize_states(raw_exogenous_states)[1], env_processes=env_processes, mechanisms=mechanisms #parameterize_mechanism(mechanisms)[1] ) )