from decimal import Decimal import numpy as np from datetime import timedelta from fn.func import curried import pprint from SimCAD import configs from SimCAD.utils import flatMap from SimCAD.configuration import Configuration from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \ ep_time_step, param_sweep from SimCAD.engine.utils import sweep pp = pprint.PrettyPrinter(indent=4) beta =[Decimal(1), Decimal(2)] seed = { 'z': np.random.RandomState(1), 'a': np.random.RandomState(2), 'b': np.random.RandomState(3), 'c': np.random.RandomState(3) } # Behaviors per Mechanism # Different return types per mechanism ?? *** No *** def b1m1(step, sL, s): return {'param1': 1} def b2m1(step, sL, s): return {'param2': 4} # @curried # def b1m2(param, step, sL, s): # return {'param1': 'a', 'param2': param} def b1m2(step, sL, s): return {'param1': 'a', 'param2': 2} def b2m2(step, sL, s): return {'param1': 'b', 'param2': 4} def b1m3(step, sL, s): return {'param1': ['c'], 'param2': np.array([10, 100])} def b2m3(step, sL, s): return {'param1': ['d'], 'param2': np.array([20, 200])} # deff not more than 2 # Internal States per Mechanism def s1m1(step, sL, s, _input): y = 's1' x = _input['param1'] #+ [Coef1 x 5] return (y, x) param = Decimal(11.0) def s2m1(step, sL, s, _input): y = 's2' x = _input['param2'] + param return (y, x) # @curried # def s2m1(param, step, sL, s, _input): # y = 's2' # x = _input['param2'] + param # return (y, x) def s1m2(step, sL, s, _input): y = 's1' x = _input['param1'] return (y, x) def s2m2(step, sL, s, _input): y = 's2' x = _input['param2'] return (y, x) def s1m3(step, sL, s, _input): y = 's1' x = _input['param1'] return (y, x) def s2m3(step, sL, s, _input): y = 's2' x = _input['param2'] return (y, x) # Exogenous States proc_one_coef_A = 0.7 proc_one_coef_B = 1.3 def es3p1(step, sL, s, _input): y = 's3' x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B) return (y, x) # @curried # def es3p1(param, step, sL, s, _input): # y = 's3' # x = s['s3'] + param # return (y, x) def es4p2(step, sL, s, _input): y = 's4' x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) return (y, x) ts_format = '%Y-%m-%d %H:%M:%S' t_delta = timedelta(days=0, minutes=0, seconds=1) def es5p2(step, sL, s, _input): y = 'timestamp' x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta) return (y, x) # Environment States # @curried # def env_a(param, x): # return x + param def env_a(x): return x def env_b(x): return 10 # def what_ever(x): # return x + 1 # Genesis States genesis_states = { 's1': Decimal(0.0), 's2': Decimal(0.0), 's3': Decimal(1.0), 's4': Decimal(1.0), 'timestamp': '2018-10-01 15:16:24' } # remove `exo_update_per_ts` to update every ts raw_exogenous_states = { "s3": es3p1, #sweep(beta, es3p1), "s4": es4p2, "timestamp": es5p2 } exogenous_states = exo_update_per_ts(raw_exogenous_states) # ToDo: make env proc trigger field agnostic # ToDo: input json into function renaming __name__ triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b) env_processes = { "s3": env_a, #sweep(beta, env_a, 'env_a'), "s4": sweep(beta, triggered_env_b, 'triggered_env_b') } # lambdas # genesis Sites should always be there # [1, 2] # behavior_ops = [ foldr(_ + _), lambda x: x + 0 ] # [1, 2] = {'b1': ['a'], 'b2', [1]} = # behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ] # behavior_ops = [foldr(dict_elemwise_sum())] # behavior_ops = [foldr(lambda a, b: a + b)] # need at least 1 behaviour and 1 state function for the 1st mech with behaviors # mechanisms = {} mechanisms = { "m1": { "behaviors": { "b1": b1m1, # lambda step, sL, s: s['s1'] + 1, "b2": b2m1 }, "states": { # exclude only. TypeError: reduce() of empty sequence with no initial value "s1": s1m1, "s2": s2m1 #sweep(beta, s2m1) } }, "m2": { "behaviors": { "b1": b1m2, #sweep(beta, b1m2), "b2": b2m2 }, "states": { "s1": s1m2, "s2": s2m2 } }, "m3": { "behaviors": { "b1": b1m3, "b2": b2m3 }, "states": { "s1": s1m3, "s2": s2m3 } } } sim_config = { "N": 2, "T": range(5) } c = Configuration( sim_config=sim_config, state_dict=genesis_states, seed=seed, env_processes=env_processes, exogenous_states=exogenous_states, mechanisms=mechanisms ) configs = configs + param_sweep(c, raw_exogenous_states) print() print(len(configs)) print() for g in configs: print() print('Configuration') print() pp.pprint(g.env_processes) print() pp.pprint(g.exogenous_states) print() pp.pprint(g.mechanisms) print()