import pandas as pd from tabulate import tabulate from engine.configProcessor import generate_config from engine.mechanismExecutor import Executor from utils.engine import flatten from utils.ui import create_tensor_field from engine.multiproc import parallelize_simulations # from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config import ui.config1 as conf1 import ui.config2 as conf2 def main(): states_list1 = [conf1.state_dict] states_list2 = [conf2.state_dict] states_lists = [states_list1,states_list2] T = conf1.sim_config['T'] N = conf2.sim_config['N'] ep1 = list(conf1.exogenous_states.values()) ep2 = list(conf2.exogenous_states.values()) eps = [ep1, ep2] config1 = generate_config(conf1.state_dict, conf1.mechanisms, ep1) config2 = generate_config(conf2.state_dict, conf2.mechanisms, ep2) configs = [config1, config2] env_processes = [conf1.env_processes, conf2.env_processes] # Dimensions: N x r x mechs simulation1 = Executor(conf1.behavior_ops).simulation simulation2 = Executor(conf2.behavior_ops).simulation simulation_execs = [simulation1,simulation2] if len(configs) > 1: simulations = parallelize_simulations(simulation_execs, states_lists, configs, env_processes, T, N) # else: # simulations = [simulation(states_list1, configs[0], env_processes, T, N)] # behavior_ops, states_list, configs, env_processes, time_seq, runs # result = simulation(states_list1, config1, conf1.env_processes, T, N) # return pd.DataFrame(flatten(result)) mechanisms = [conf1.mechanisms, conf2.mechanisms] for result, mechanism, ep in list(zip(simulations, mechanisms, eps)): print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql')) print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))