from decimal import Decimal import numpy as np from datetime import timedelta from SimCAD import configs from SimCAD.configuration import Configuration from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \ ep_time_step seed = { 'z': np.random.RandomState(1) } # Signals # Pr_signal beta = Decimal('0.25') # agent response gain beta_LT = Decimal('0.1') # LT agent response gain alpha = Decimal('0.091') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1) max_withdraw_factor = Decimal('0.9') external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external # Stochastic process factors correction_factor = Decimal('0.01') volatility = Decimal('5.0') # Buy_Log_signal = # Z_signal = # Price_signal = # TDR_draw_signal = # P_Ext_Markets_signal = # Behaviors per Mechanism # BEHAVIOR 1: EMH Trader EMH_portion = Decimal('0.250') EMH_Ext_Hold = Decimal('42000.0') def b1m1(step, sL, s): print('b1m1') theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets']) if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)): buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta)) return {'buy_order1': buy} elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)): return {'buy_order1': 0} else: return {'buy_order1': 0} def b1m2(step, sL, s): print('b1m2') theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets']) if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)): return {'sell_order1': 0} elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)): sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta)) return {'sell_order1': sell} else: return {'sell_order1': 0} # BEHAVIOR 3: Herding # BEHAVIOR 4: HODLers HODL_belief = Decimal('10.0') HODL_portion = Decimal('0.250') HODL_Ext_Hold = Decimal('4200.0') def b4m2(step, sL, s): print('b4m2') theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets']) if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)): sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta)) return {'sell_order2': sell} elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)): return {'sell_order2': 0} else: return {'sell_order2': 0} # STATES # ZEUS Fixed Supply def s1m1(step, sL, s, _input): y = 'Z' x = s['Z'] #+ _input # / Psignal_int return (y, x) def s2m1(step, sL, s, _input): y = 'Price' x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000 #x= alpha * s['Z'] + (1 - alpha)*s['Price'] return (y, x) def s3m1(step, sL, s, _input): y = 'Buy_Log' x = _input['buy_order1'] # / Psignal_int return (y, x) def s4m2(step, sL, s, _input): y = 'Sell_Log' x = _input['sell_order1'] + _input['sell_order2'] # / Psignal_int return (y, x) def s3m3(step, sL, s, _input): y = 'Buy_Log' x = s['Buy_Log'] + _input # / Psignal_int return (y, x) # Price Update def s2m3(step, sL, s, _input): y = 'Price' #var1 = Decimal.from_float(s['Buy_Log']) x = s['Price'] + s['Buy_Log'] * 1/s['Z'] - s['Sell_Log']/s['Z'] #+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int return (y, x) def s6m1(step, sL, s, _input): y = 'P_Ext_Markets' x = s['P_Ext_Markets'] - _input #x= alpha * s['Z'] + (1 - alpha)*s['Price'] return (y, x) def s2m2(step, sL, s, _input): y = 'Price' x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000 #x= alpha * s['Z'] + (1 - alpha)*s['Price'] return (y, x) # Exogenous States proc_one_coef_A = -125 proc_one_coef_B = 125 # A change in belief of actual price, passed onto behaviors to make action def es4p2(step, sL, s, _input): y = 'P_Ext_Markets' x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B) return (y,x) ts_format = '%Y-%m-%d %H:%M:%S' t_delta = timedelta(days=0, minutes=0, seconds=1) def es5p2(step, sL, s, _input): y = 'timestamp' x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta) return (y, x) #Environment States # NONE # Genesis States state_dict = { 'Z': Decimal(21000000.0), 'Price': Decimal(100.0), # Initialize = Z for EMA 'Buy_Log': Decimal(0.0), 'Sell_Log': Decimal(0.0), 'Trans': Decimal(0.0), 'P_Ext_Markets': Decimal(25000.0), 'timestamp': '2018-10-01 15:16:24' } def env_proc_id(x): return x env_processes = { # "P_Ext_Markets": env_proc_id } exogenous_states = exo_update_per_ts( { "P_Ext_Markets": es4p2, "timestamp": es5p2 } ) sim_config = { "N": 1, "T": range(1000) } # test return vs. non-return functions as lambdas # test fully defined functions mechanisms = { "m1": { "behaviors": { "b1": b1m1 }, "states": { "Z": s1m1, "Buy_Log": s3m1 } }, "m2": { "behaviors": { "b1": b1m2, "b4": b4m2 }, "states": { "Sell_Log": s4m2 } }, "m3": { "behaviors": { }, "states": { "Price": s2m3 } } } configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))