from datetime import datetime, timedelta from decimal import Decimal from copy import deepcopy from fn.func import curried import pandas as pd from pathos.threading import ThreadPool from SimCAD.utils import groupByKey, dict_filter, contains_type class TensorFieldReport: def __init__(self, config_proc): self.config_proc = config_proc # ??? dont for-loop to apply exo_procs, use exo_proc struct def create_tensor_field(self, mechanisms, exo_proc, keys=['behaviors', 'states']): dfs = [self.config_proc.create_matrix_field(mechanisms, k) for k in keys] df = pd.concat(dfs, axis=1) for es, i in zip(exo_proc, range(len(exo_proc))): df['es' + str(i + 1)] = es df['m'] = df.index + 1 return df # def s_update(y, x): # return lambda step, sL, s, _input: (y, x) # # def state_update(y, x): return lambda step, sL, s, _input: (y, x) def bound_norm_random(rng, low, high): # Add RNG Seed res = rng.normal((high+low)/2,(high-low)/6) if (reshigh): res = bound_norm_random(rng, low, high) return Decimal(res) @curried def proc_trigger(trigger_step, update_f, step): if step == trigger_step: return update_f else: return lambda x: x # accept timedelta instead of timedelta params t_delta = timedelta(days=0, minutes=0, seconds=30) def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = t_delta): dt = datetime.strptime(dt_str, dt_format) t = dt + _timedelta return t.strftime(dt_format) # accept timedelta instead of timedelta params t_delta = timedelta(days=0, minutes=0, seconds=1) def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta): if s['mech_step'] == 0: return time_step(dt_str, fromat_str, _timedelta) else: return dt_str def exo_update_per_ts(ep): @curried def ep_decorator(fs, y, step, sL, s, _input): # print(s) if s['mech_step'] + 1 == 1: # inside f body to reduce performance costs if isinstance(fs, list): pool = ThreadPool(nodes=len(fs)) fx = pool.map(lambda f: f(step, sL, s, _input), fs) return groupByKey(fx) else: return fs(step, sL, s, _input) else: return (y, s[y]) return {es: ep_decorator(f, es) for es, f in ep.items()} def mech_sweep_filter(mech_field, mechanisms): mech_dict = dict([(k, v[mech_field]) for k, v in mechanisms.items()]) return dict([ (k, dict_filter(v, lambda v: isinstance(v, list))) for k, v in mech_dict.items() if contains_type(list(v.values()), list) ]) def state_sweep_filter(raw_exogenous_states): return dict([(k, v) for k, v in raw_exogenous_states.items() if isinstance(v, list)]) @curried def sweep_mechs(_type, in_config): configs = [] filtered_mech_states = mech_sweep_filter(_type, in_config.mechanisms) if len(filtered_mech_states) > 0: for mech, state_dict in filtered_mech_states.items(): for state, state_funcs in state_dict.items(): for f in state_funcs: config = deepcopy(in_config) config.mechanisms[mech][_type][state] = f configs.append(config) del config else: configs = [in_config] return configs @curried def sweep_states(state_type, states, in_config): configs = [] filtered_states = state_sweep_filter(states) if len(filtered_states) > 0: for state, state_funcs in filtered_states.items(): for f in state_funcs: config = deepcopy(in_config) exploded_states = deepcopy(states) exploded_states[state] = f if state_type == 'exogenous': config.exogenous_states = exploded_states elif state_type == 'environmental': config.env_processes = exploded_states configs.append(config) del config, exploded_states else: configs = [in_config] return configs