from datetime import datetime, timedelta from decimal import Decimal from fn.func import curried import pandas as pd class TensorFieldReport: def __init__(self, config_proc): self.config_proc = config_proc def create_tensor_field(self, mechanisms, exo_proc, keys=['behaviors', 'states']): dfs = [self.config_proc.create_matrix_field(mechanisms, k) for k in keys] df = pd.concat(dfs, axis=1) for es, i in zip(exo_proc, range(len(exo_proc))): df['es' + str(i + 1)] = es df['m'] = df.index + 1 return df def bound_norm_random(rng, low, high): # Add RNG Seed res = rng.normal((high+low)/2,(high-low)/6) if (reshigh): res = bound_norm_random(rng, low, high) return Decimal(res) @curried def proc_trigger(trigger_step, update_f, step): if step == trigger_step: return update_f else: return lambda x: x t_delta = timedelta(days=0, minutes=0, seconds=30) def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = t_delta): dt = datetime.strptime(dt_str, dt_format) t = dt + _timedelta return t.strftime(dt_format) t_delta = timedelta(days=0, minutes=0, seconds=1) def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta): if s['mech_step'] == 0: return time_step(dt_str, fromat_str, _timedelta) else: return dt_str def exo_update_per_ts(ep): @curried def ep_decorator(f, y, step, sL, s, _input): if s['mech_step'] + 1 == 1: return f(step, sL, s, _input) else: return (y, s[y]) return {es: ep_decorator(f, es) for es, f in ep.items()}