Compare commits
No commits in common. "master" and "nix-shell" have entirely different histories.
182
README.md
182
README.md
|
|
@ -5,46 +5,174 @@
|
||||||
/ /__/ /_/ / /_/ / /___/ ___ |/ /_/ /
|
/ /__/ /_/ / /_/ / /___/ ___ |/ /_/ /
|
||||||
\___/\__,_/\__,_/\____/_/ |_/_____/
|
\___/\__,_/\__,_/\____/_/ |_/_____/
|
||||||
by BlockScience
|
by BlockScience
|
||||||
======================================
|
|
||||||
Complex Adaptive Dynamics
|
|
||||||
o i e
|
|
||||||
m d s
|
|
||||||
p e i
|
|
||||||
u d g
|
|
||||||
t n
|
|
||||||
e
|
|
||||||
r
|
|
||||||
```
|
```
|
||||||
***cadCAD*** is a Python package that assists in the processes of designing, testing and validating complex systems through simulation, with support for Monte Carlo methods, A/B testing and parameter sweeping.
|
|
||||||
|
|
||||||
# Getting Started
|
**Introduction:**
|
||||||
## 1. Installation:
|
|
||||||
Requires [Python 3](https://www.python.org/downloads/)
|
|
||||||
|
|
||||||
**Option A: Install Using [pip](https://pypi.org/project/cadCAD/)**
|
***cadCAD*** is a Python library that assists in the processes of designing, testing and validating complex systems through
|
||||||
|
simulation. At its core, cadCAD is a differential games engine that supports parameter sweeping and Monte Carlo analyses
|
||||||
|
and can be easily integrated with other scientific computing Python modules and data science workflows.
|
||||||
|
|
||||||
|
**Description:**
|
||||||
|
|
||||||
|
cadCAD (complex adaptive systems computer-aided design) is a python based, unified modeling framework for stochastic
|
||||||
|
dynamical systems and differential games for research, validation, and Computer Aided Design of economic systems created
|
||||||
|
by BlockScience. It is capable of modeling systems at all levels of abstraction from Agent Based Modeling (ABM) to
|
||||||
|
System Dynamics (SD), and enabling smooth integration of computational social science simulations with empirical data
|
||||||
|
science workflows.
|
||||||
|
|
||||||
|
|
||||||
|
An economic system is treated as a state-based model and defined through a set of endogenous and exogenous state
|
||||||
|
variables which are updated through mechanisms and environmental processes, respectively. Behavioral models, which may
|
||||||
|
be deterministic or stochastic, provide the evolution of the system within the action space of the mechanisms.
|
||||||
|
Mathematical formulations of these economic games treat agent utility as derived from the state rather than direct from
|
||||||
|
an action, creating a rich, dynamic modeling framework. Simulations may be run with a range of initial conditions and
|
||||||
|
parameters for states, behaviors, mechanisms, and environmental processes to understand and visualize network behavior
|
||||||
|
under various conditions. Support for A/B testing policies, Monte Carlo analysis, and other common numerical methods is
|
||||||
|
provided.
|
||||||
|
|
||||||
|
|
||||||
|
For example, cadCAD tool allows us to represent a company’s or community’s current business model along with a desired
|
||||||
|
future state and helps make informed, rigorously tested decisions on how to get from today’s stage to the future state.
|
||||||
|
It allows us to use code to solidify our conceptualized ideas and see if the outcome meets our expectations. We can
|
||||||
|
iteratively refine our work until we have constructed a model that closely reflects reality at the start of the model,
|
||||||
|
and see how it evolves. We can then use these results to inform business decisions.
|
||||||
|
|
||||||
|
#### Documentation:
|
||||||
|
* ##### [Tutorials](tutorials)
|
||||||
|
* ##### [System Model Configuration](documentation/Simulation_Configuration.md)
|
||||||
|
* ##### [System Simulation Execution](documentation/Simulation_Execution.md)
|
||||||
|
* ##### [Policy Aggregation](documentation/Policy_Aggregation.md)
|
||||||
|
* ##### [System Model Parameter Sweep](documentation/System_Model_Parameter_Sweep.md)
|
||||||
|
|
||||||
|
#### 0. Installation:
|
||||||
|
|
||||||
|
**Python 3.6.5** :: Anaconda, Inc.
|
||||||
|
|
||||||
|
**Option A:** [PyPi](https://pypi.org/project/cadCAD/): pip install
|
||||||
```bash
|
```bash
|
||||||
pip3 install cadCAD
|
pip install cadCAD
|
||||||
```
|
```
|
||||||
|
|
||||||
**Option B:** Build From Source
|
**Option B:** Build From Source
|
||||||
```
|
```bash
|
||||||
pip3 install -r requirements.txt
|
pip3 install -r requirements.txt
|
||||||
python3 setup.py sdist bdist_wheel
|
python3 setup.py sdist bdist_wheel
|
||||||
pip3 install dist/*.whl
|
pip3 install dist/*.whl
|
||||||
```
|
```
|
||||||
|
|
||||||
|
**Option C:** Proprietary Build Access
|
||||||
|
|
||||||
## 2. Learn the basics
|
***IMPORTANT NOTE:*** Tokens are issued to those with access to proprietary builds of cadCAD and BlockScience employees **ONLY**.
|
||||||
**Tutorials:** available both as [Jupyter Notebooks](tutorials)
|
Replace \<TOKEN\> with an issued token in the script below.
|
||||||
and [videos](https://www.youtube.com/watch?v=uJEiYHRWA9g&list=PLmWm8ksQq4YKtdRV-SoinhV6LbQMgX1we)
|
```bash
|
||||||
|
pip3 install pandas pathos fn funcy tabulate
|
||||||
|
pip3 install cadCAD --extra-index-url https://<TOKEN>@repo.fury.io/blockscience/
|
||||||
|
```
|
||||||
|
|
||||||
Familiarize yourself with some system modelling concepts and cadCAD terminology.
|
|
||||||
|
|
||||||
## 3. Documentation:
|
#### 1. [Configure System Model](documentation/Simulation_Configuration.md)
|
||||||
* [System Model Configuration](documentation)
|
|
||||||
* [System Simulation Execution](documentation/Simulation_Execution.md)
|
|
||||||
* [Policy Aggregation](documentation/Policy_Aggregation.md)
|
|
||||||
* [System Model Parameter Sweep](documentation/System_Model_Parameter_Sweep.md)
|
|
||||||
|
|
||||||
## 4. Connect
|
#### 2. [Execute Simulations:](documentation/Simulation_Execution.md)
|
||||||
Find other cadCAD users at our [Discourse](https://community.cadcad.org/). We are a small but rapidly growing community.
|
|
||||||
|
##### Single Process Execution:
|
||||||
|
Example System Model Configurations:
|
||||||
|
* [System Model A](documentation/examples/sys_model_A.py):
|
||||||
|
`/documentation/examples/sys_model_A.py`
|
||||||
|
* [System Model B](documentation/examples/sys_model_B.py):
|
||||||
|
`/documentation/examples/sys_model_B.py`
|
||||||
|
|
||||||
|
Example Simulation Executions:
|
||||||
|
* [System Model A](documentation/examples/sys_model_A_exec.py):
|
||||||
|
`/documentation/examples/sys_model_A_exec.py`
|
||||||
|
* [System Model B](documentation/examples/sys_model_B_exec.py):
|
||||||
|
`/documentation/examples/sys_model_B_exec.py`
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from documentation.examples import sys_model_A
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
|
||||||
|
# Single Process Execution using a Single System Model Configuration:
|
||||||
|
# sys_model_A
|
||||||
|
sys_model_A = [configs[0]] # sys_model_A
|
||||||
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
|
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
|
||||||
|
|
||||||
|
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
|
||||||
|
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
|
||||||
|
print()
|
||||||
|
print("Tensor Field: sys_model_A")
|
||||||
|
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
|
||||||
|
print("Result: System Events DataFrame")
|
||||||
|
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
|
||||||
|
print()
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Multiple Simulations (Concurrent):
|
||||||
|
###### Multiple Simulation Execution (Multi Process Execution)
|
||||||
|
System Model Configurations:
|
||||||
|
* [System Model A](documentation/examples/sys_model_A.py):
|
||||||
|
`/documentation/examples/sys_model_A.py`
|
||||||
|
* [System Model B](documentation/examples/sys_model_B.py):
|
||||||
|
`/documentation/examples/sys_model_B.py`
|
||||||
|
|
||||||
|
[Example Simulation Executions:](documentation/examples/sys_model_AB_exec.py)
|
||||||
|
`/documentation/examples/sys_model_AB_exec.py`
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from documentation.examples import sys_model_A, sys_model_B
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
|
||||||
|
# # Multiple Processes Execution using Multiple System Model Configurations:
|
||||||
|
# # sys_model_A & sys_model_B
|
||||||
|
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||||
|
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
config_names = ['sys_model_A', 'sys_model_B']
|
||||||
|
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
|
||||||
|
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
|
||||||
|
print()
|
||||||
|
print(f"Tensor Field: {config_names[i]}")
|
||||||
|
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
|
||||||
|
print("Result: System Events DataFrame:")
|
||||||
|
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
|
||||||
|
print()
|
||||||
|
i += 1
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Parameter Sweep Simulation (Concurrent):
|
||||||
|
[Example:](documentation/examples/param_sweep.py)
|
||||||
|
`/documentation/examples/param_sweep.py`
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
# The following imports NEED to be in the exact order
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from documentation.examples import param_sweep
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||||
|
run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
|
||||||
|
for raw_result, tensor_field in run.execute():
|
||||||
|
result = pd.DataFrame(raw_result)
|
||||||
|
print()
|
||||||
|
print("Tensor Field:")
|
||||||
|
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||||
|
print("Output:")
|
||||||
|
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||||
|
print()
|
||||||
|
```
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue