Compare commits

...

31 Commits

Author SHA1 Message Date
Michael Zargham 8823959552 describe 2019-01-06 00:48:22 -08:00
Michael Zargham 9d02c0562c first draft
this system runs but definitely needs tuning, with current policies runs out of money and system blows up
2019-01-06 00:45:25 -08:00
Michael Zargham ea7dad9367 added operational budget 2019-01-05 19:15:11 -08:00
Michael Zargham 4315447b66 img in notebook 2019-01-05 18:32:12 -08:00
Michael Zargham c8d8524842 config map draft1 added 2019-01-05 18:03:18 -08:00
Michael Zargham e7eaff2363 img added 2019-01-05 16:10:46 -08:00
Michael Zargham 744d85c5ca 3sided-WIP 2019-01-05 00:46:01 -08:00
Michael Zargham b0de56776b spot check
verified that beta does still go up
2019-01-02 08:12:30 -08:00
Michael Zargham 12f88db31b updates
added degradation terms so the system incurs perpetual costs. Added new target vs budget functions in the spend controllers
2019-01-01 22:35:54 -08:00
zixuanzh fd4ecb3839 add charts 2019-01-01 16:16:43 +08:00
zixuanzh a4f252f85f add interactivity 2019-01-01 16:14:06 +08:00
zixuanzh 73183cf666 sir model first cut 2019-01-01 14:48:52 +08:00
Michael Zargham aee638e309 live updates
played with it while demoing
2018-12-28 12:07:39 -08:00
Markus ee8bc97ce0 not using tabulate, remove import 2018-12-28 14:16:44 -02:00
Michael Zargham 47b326351f retry push 2018-12-27 22:40:01 -08:00
Michael Zargham 7f5bcdebd3 minor tweak 2018-12-27 22:37:47 -08:00
Michael Zargham 5f2389d8b7 tuning + analysis
demonstrate that the system has persistent errors despite good incentives to validate
2018-12-27 22:33:25 -08:00
Michael Zargham 1f524b230b verifiers dilemma
added some analysis
2018-12-27 22:10:13 -08:00
Markus 07917ef2c6 pred-prey-hunter (wip) 2018-12-28 01:32:39 -02:00
Markus c9768a5985 rename simple_tracker_inline -> simple_tracker 2018-12-28 01:06:05 -02:00
Markus 7d206183b6 remove 2-file version of simple_tracker
inline version does the job for now
2018-12-28 01:05:32 -02:00
Markus dbd00c8581 first pass at verifier's dilemma
should refactor to be cleaner and have more comments, like simple_tracker
2018-12-28 01:04:23 -02:00
Markus 5afc9bffbe first pass at public version of simple_tracker 2018-12-28 01:01:28 -02:00
Markus 0d8b97267e standalone version of simple_tracker
This notebook does not require the configuration file
2018-12-27 17:58:50 -02:00
Markus 374590876c predator/prey model 2018-12-26 22:03:46 -02:00
Markus cf525b89d1 rename 2018-12-26 22:03:37 -02:00
Markus d9c1b50de9 cleanup 2018-12-13 14:22:33 -02:00
Markus 437fd81f08 reorg and cleanup 2018-12-13 14:20:57 -02:00
Markus bdbda2685d time workaround 2018-12-11 15:49:13 -02:00
Markus 96187bbdb6 remove unrelated comments 2018-12-06 19:06:57 -02:00
Markus b098a754e4 first commit 2018-12-06 19:06:08 -02:00
39 changed files with 5386 additions and 712396 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 502 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 528 KiB

BIN
demos/3SM-mechsteps.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 578 KiB

2195
demos/ThreeSidedMarket.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

527
demos/simple_tracker.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

BIN
demos/threesidedmarket.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 280 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -1,42 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"assert pd.__version__ == '0.23.4'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,55 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'ui'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-1-a6e895c51fc0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\engine\\run.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mui\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfig\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mstate_dict\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmechanisms\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexogenous_states\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msim_config\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfigProcessor\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mgenerate_config\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmechanismExecutor\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0msimulation\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mutils\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mflatten\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'ui'"
]
}
],
"source": [
"from engine import run\n",
"run.main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 1
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,482 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SimCAD Application Notebook\n",
"## Experiment Type 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Name of Config File or System Description\n",
"#### 20 MonteCarlo Runs \n",
"#### Behaviors: EMHers, Herders, HODLers, EIUers, and Human EIUers"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Simulation Run 1\n",
"single_proc: [<SimCAD.Configuration object at 0x000001EA1AAA6630>]\n"
]
},
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for *: 'float' and 'decimal.Decimal'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-1-0d9ea96d7f5c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 15\u001b[0m \u001b[0msingle_proc_ctx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mExecutionContext\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mexec_mode\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msingle_proc\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 16\u001b[0m \u001b[0mrun1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mExecutor\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msingle_proc_ctx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msingle_config\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 17\u001b[1;33m \u001b[0mrun1_raw_result\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mrun1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 18\u001b[0m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrun1_raw_result\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[1;31m# print(tabulate(result, headers='keys', tablefmt='psql'))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\__init__.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 71\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 72\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexec_context\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mExecutionMode\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msingle_proc\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 73\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0msingle_proc_exec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msimulation_execs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstates_lists\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfigs_structs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mTs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mNs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 74\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexec_context\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mExecutionMode\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmulti_proc\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 75\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconfigs\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\__init__.py\u001b[0m in \u001b[0;36msingle_proc_exec\u001b[1;34m(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)\u001b[0m\n\u001b[0;32m 67\u001b[0m \u001b[0msimulation\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstates_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mT\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mN\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmap\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ml\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 68\u001b[0m \u001b[1;31m# print(states_list)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 69\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msimulation\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstates_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mT\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mN\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 70\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mflatten\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 71\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36msimulation\u001b[1;34m(self, states_list, configs, env_processes, time_seq, runs)\u001b[0m\n\u001b[0;32m 100\u001b[0m \u001b[1;31m# print(\"Run: \"+str(run))\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 101\u001b[0m \u001b[0mstates_list_copy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdeepcopy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstates_list\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# WHY ???\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 102\u001b[1;33m \u001b[0mhead\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mtail\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpipe\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstates_list_copy\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfigs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtime_seq\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 103\u001b[0m \u001b[0mgenesis\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mhead\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 104\u001b[0m \u001b[0mgenesis\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'mech_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgenesis\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mgenesis\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'run'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36mpipe\u001b[1;34m(self, states_list, configs, env_processes, time_seq, run)\u001b[0m\n\u001b[0;32m 86\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mtime_step\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mtime_seq\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[1;31m# print(run)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 88\u001b[1;33m \u001b[0mpipe_run\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mblock_gen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msimulation_list\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfigs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtime_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 89\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0mpipe_run\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpipe_run\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 90\u001b[0m \u001b[0msimulation_list\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpipe_run\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36mblock_gen\u001b[1;34m(self, states_list, configs, env_processes, t_step, run)\u001b[0m\n\u001b[0;32m 72\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mconfig\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mconfigs\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 73\u001b[0m \u001b[0ms_conf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mb_conf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 74\u001b[1;33m \u001b[0mstates_list\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmech_step\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mm_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstates_list\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ms_conf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mb_conf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menv_processes\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mt_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 75\u001b[0m \u001b[0mm_step\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 76\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36mmech_step\u001b[1;34m(self, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;31m# *** add env_proc value here as wrapper function ***\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0mlast_in_copy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexception_handler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mm_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlast_in_obj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_input\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mstate_funcs\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mlast_in_obj\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 42\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[1;31m# *** add env_proc value here as wrapper function ***\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 44\u001b[1;33m \u001b[0mlast_in_copy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mexception_handler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mm_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlast_in_obj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_input\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mstate_funcs\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 45\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 46\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mk\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mlast_in_obj\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\SimCAD\\engine\\simulation.py\u001b[0m in \u001b[0;36mexception_handler\u001b[1;34m(self, f, m_step, sL, last_mut_obj, _input)\u001b[0m\n\u001b[0;32m 28\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mexception_handler\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mm_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlast_mut_obj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_input\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 29\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 30\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mm_step\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0msL\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mlast_mut_obj\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_input\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 31\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 32\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"Exception\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;32m~\\staging\\21f1155\\sandboxUX\\config6b.py\u001b[0m in \u001b[0;36ms2m3\u001b[1;34m(step, sL, s, _input)\u001b[0m\n\u001b[0;32m 179\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'Price'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 180\u001b[0m \u001b[1;31m#var1 = Decimal.from_float(s['Buy_Log'])\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 181\u001b[1;33m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Price'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Buy_Log'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m/\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Z'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m-\u001b[0m \u001b[1;36m0.1\u001b[0m \u001b[1;33m*\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Sell_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Z'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m+\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Buy_Log'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Sell_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 182\u001b[0m \u001b[1;31m#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 183\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mTypeError\u001b[0m: unsupported operand type(s) for *: 'float' and 'decimal.Decimal'"
]
}
],
"source": [
"import pandas as pd\n",
"from tabulate import tabulate\n",
"\n",
"from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n",
"from sandboxUX import config6b #, config2\n",
"from SimCAD import configs\n",
"\n",
"# ToDo: pass ExecutionContext with execution method as ExecutionContext input\n",
"\n",
"exec_mode = ExecutionMode()\n",
"\n",
"print(\"Simulation Run 1\")\n",
"# print()\n",
"single_config = [configs[0]]\n",
"single_proc_ctx = ExecutionContext(exec_mode.single_proc)\n",
"run1 = Executor(single_proc_ctx, single_config)\n",
"run1_raw_result = run1.main()\n",
"df = pd.DataFrame(run1_raw_result)\n",
"# print(tabulate(result, headers='keys', tablefmt='psql'))\n",
"# print()\n",
"\n",
"# print(\"Simulation Run 2: Pairwise Execution\")\n",
"# print()\n",
"# multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)\n",
"# run2 = Executor(multi_proc_ctx, configs)\n",
"# run2_raw_results = run2.main()\n",
"# for raw_result in run2_raw_results:\n",
"# result = pd.DataFrame(raw_result)\n",
"# print(tabulate(result, headers='keys', tablefmt='psql'))\n",
"# print()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#df = pd.DataFrame(run1_raw_result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Standard Library Imports\n",
"#import pandas as pd\n",
"import numpy as np\n",
"import matplotlib as mpl\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"#from tabulate import tabulate\n",
"\n",
"sns.set_style('whitegrid')\n",
"\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# SimCAD Specific\n",
"# from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n",
"# from sandboxUX import config1 , config2\n",
"# from SimCAD import configs"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Convert data type of output to float. MPL works OK with strings, seaborn does not\n",
"names = df.keys()[:-3] # [:-3] only affects state variables\n",
"for n in names:\n",
" df[n]=df[n].apply(float)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Check\n",
"df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.iloc[2995:3005]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.tail(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.corr()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"aggregate_dimension = 'time_step'\n",
"\n",
"mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n",
"median_df = df.groupby(aggregate_dimension).median().reset_index()\n",
"std_df = df.groupby(aggregate_dimension).std().reset_index()\n",
"min_df = df.groupby(aggregate_dimension).min().reset_index()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mean_df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"mean_df.tail(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def dist_plot(x, y,lx=False,ly=False, suppMin=False): \n",
" plt.figure(figsize=(12,8))\n",
" if not(suppMin):\n",
" plt.plot(mean_df[x].values, mean_df[y].values,\n",
" mean_df[x].values,median_df[y].values,\n",
" mean_df[x].values,mean_df[y].values+std_df[y].values,\n",
" mean_df[x].values,min_df[y].values)\n",
" plt.legend(['mean', 'median', 'mean+ 1*std', 'min'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
" \n",
" else:\n",
" plt.plot(mean_df[x].values, mean_df[y].values,\n",
" mean_df[x].values,median_df[y].values,\n",
" mean_df[x].values,mean_df[y].values+std_df[y].values,\n",
" mean_df[x].values,mean_df[y].values-std_df[y].values)\n",
" plt.legend(['mean', 'median', 'mean+ 1*std', 'mean - 1*std'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
"\n",
" plt.xlabel(x)\n",
" plt.ylabel(y)\n",
" if lx:\n",
" plt.xscale('log')\n",
" \n",
" if ly:\n",
" plt.yscale('log')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dist_plot('time_step', 'P_Ext_Markets',suppMin=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dist_plot('time_step', 'Price',suppMin=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(mean_df['time_step'][1:],mean_df['Price'][1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
"plt.plot(mean_df['time_step'][1:],(1/250)*mean_df['P_Ext_Markets'][1:])\n",
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(np.std(mean_df))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(mean_df['time_step'][1:],mean_df['Buy_Log'][1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
"plt.plot(mean_df['time_step'][1:],mean_df['Sell_Log'][1:])\n",
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"buy_delta = mean_df['Buy_Log'].diff()\n",
"sell_delta = mean_df['Sell_Log'].diff()\n",
"ext_delta = mean_df['P_Ext_Markets'].diff()\n",
"# df_delta['Buy_Log'] = buy_delta\n",
"# df_delta['Sell_Log'] = sell_delta\n",
"# df_delta = df_delta.append(ext_delta)\n",
"# df_delta.head()\n",
"sell_delta.head(20)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(mean_df['time_step'][1:],buy_delta[1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
"plt.plot(mean_df['time_step'][1:],sell_delta[1:])\n",
"plt.plot(mean_df['time_step'][1:],ext_delta[1:])\n",
"plt.ylim(-400,400)\n",
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sns.pairplot(mean_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(mean_df['time_step'],mean_df['Z']/mean_df['P_Ext_Markets'])\n",
"plt.title('Z per External Stock Market Price')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plt.figure(figsize=(12,8))\n",
"# plt.plot(df['time_step'],(df['TDR_Int']-df['TDR_Ext'])/df['TDR_Ext'])\n",
"# plt.title('Availability of TDR arbitrage opportunity')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# plt.figure(figsize=(12,8))\n",
"# plt.plot(df['time_step'],(df['Zeus_LT']/df['Zeus_ST']-1))\n",
"# plt.title('Availability of LT vs ST arbitrage opportunity')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# vol_df = df.rolling(window = 21).mean()\n",
"vol_df = pd.DataFrame()\n",
"rolling_days = 63 # days = number * mechanisms\n",
"for n in names:\n",
" vol_df[n] = mean_df[n].rolling(rolling_days).mean().shift()\n",
" \n",
"vol_df = vol_df.dropna() #(vol_df.iloc[0:rolling_days])\n",
"# vol_df[n].iloc[:rolling_days], axis=1)\n",
"vol_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(vol_df['Z'])\n",
"plt.title('Rolling Average of Z')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(vol_df['P_Ext_Markets'])\n",
"plt.title('Rolling Average of External Stock Market Price')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(12,8))\n",
"plt.plot(vol_df['Price'])\n",
"plt.plot(vol_df['P_Ext_Markets']/250)\n",
"plt.legend()\n",
"plt.title('Rolling Average of Zeus Price')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\"Price\"].min()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[\"Price\"].max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,202 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Simulation Run 1\n",
"\n",
"single_proc: [<SimCAD.Configuration object at 0x10fc1a8d0>]\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"| | mech_step | run | s1 | s2 | s3 | s4 | time_step | timestamp |\n",
"|----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------|\n",
"| 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 1 | 1 | 1 | 1 | 4 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 2 | 2 | 1 | ab | 6 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 3 | 3 | 1 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 4 | 1 | 1 | 1 | 4 | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 5 | 2 | 1 | ab | 6 | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 6 | 3 | 1 | ['c', 'd'] | [ 30 300] | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 7 | 1 | 1 | 1 | 4 | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 8 | 2 | 1 | ab | 6 | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 9 | 3 | 1 | ['c', 'd'] | [ 30 300] | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 10 | 1 | 1 | 1 | 4 | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 11 | 2 | 1 | ab | 6 | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 12 | 3 | 1 | ['c', 'd'] | [ 30 300] | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 13 | 1 | 1 | 1 | 4 | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 14 | 2 | 1 | ab | 6 | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 15 | 3 | 1 | ['c', 'd'] | [ 30 300] | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 16 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 17 | 1 | 2 | 1 | 4 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 18 | 2 | 2 | ab | 6 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 19 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 20 | 1 | 2 | 1 | 4 | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 21 | 2 | 2 | ab | 6 | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 22 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 23 | 1 | 2 | 1 | 4 | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 24 | 2 | 2 | ab | 6 | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 25 | 3 | 2 | ['c', 'd'] | [ 30 300] | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 26 | 1 | 2 | 1 | 4 | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 27 | 2 | 2 | ab | 6 | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 28 | 3 | 2 | ['c', 'd'] | [ 30 300] | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 29 | 1 | 2 | 1 | 4 | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"| 30 | 2 | 2 | ab | 6 | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"| 31 | 3 | 2 | ['c', 'd'] | [ 30 300] | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"\n",
"Simulation Run 2: Pairwise Execution\n",
"\n",
"multi_proc: [<SimCAD.Configuration object at 0x10fc1a8d0>, <SimCAD.Configuration object at 0x10fc1aeb8>]\n",
"+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----+\n",
"| | b1 | b2 | s1 | s2 | es1 | es2 | es3 | m |\n",
"|----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----|\n",
"| 0 | <function b1m1 at 0x10faedd08> | <function b2m1 at 0x10fc230d0> | <function s1m1 at 0x10fc23378> | <function s2m1 at 0x10fc23400> | <function curried.<locals>._curried at 0x10fc23ae8> | <function curried.<locals>._curried at 0x10fc23b70> | <function curried.<locals>._curried at 0x10fc23bf8> | 1 |\n",
"| 1 | <function b1m2 at 0x10fc23158> | <function b2m2 at 0x10fc231e0> | <function s1m2 at 0x10fc23488> | <function s2m2 at 0x10fc23510> | <function curried.<locals>._curried at 0x10fc23ae8> | <function curried.<locals>._curried at 0x10fc23b70> | <function curried.<locals>._curried at 0x10fc23bf8> | 2 |\n",
"| 2 | <function b1m3 at 0x10fc23268> | <function b2m3 at 0x10fc232f0> | <function s1m3 at 0x10fc23598> | <function s2m3 at 0x10fc23620> | <function curried.<locals>._curried at 0x10fc23ae8> | <function curried.<locals>._curried at 0x10fc23b70> | <function curried.<locals>._curried at 0x10fc23bf8> | 3 |\n",
"+----+--------------------------------+--------------------------------+--------------------------------+--------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----+\n",
"+----+--------------------------------+--------------------------------+--------------------------------+------------------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----+\n",
"| | b1 | b2 | s1 | s2 | es1 | es2 | es3 | m |\n",
"|----+--------------------------------+--------------------------------+--------------------------------+------------------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----|\n",
"| 0 | <function b1m1 at 0x10fc23d08> | <function b2m1 at 0x10fc23d90> | <function s1m1 at 0x10fc290d0> | <function state_identity.<locals>.<lambda> at 0x10d4f6598> | <function curried.<locals>._curried at 0x10fc29840> | <function curried.<locals>._curried at 0x10fc298c8> | <function curried.<locals>._curried at 0x10fc29950> | 1 |\n",
"| 1 | <function b1m2 at 0x10fc23e18> | <function b2m2 at 0x10fc23ea0> | <function s1m2 at 0x10fc291e0> | <function state_identity.<locals>.<lambda> at 0x10d4f6598> | <function curried.<locals>._curried at 0x10fc29840> | <function curried.<locals>._curried at 0x10fc298c8> | <function curried.<locals>._curried at 0x10fc29950> | 2 |\n",
"| 2 | <function b1m3 at 0x10fc23f28> | <function b2m3 at 0x10fc29048> | <function s1m3 at 0x10fc292f0> | <function s2m3 at 0x10fc29378> | <function curried.<locals>._curried at 0x10fc29840> | <function curried.<locals>._curried at 0x10fc298c8> | <function curried.<locals>._curried at 0x10fc29950> | 3 |\n",
"+----+--------------------------------+--------------------------------+--------------------------------+------------------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----------------------------------------------------+-----+\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"| | mech_step | run | s1 | s2 | s3 | s4 | time_step | timestamp |\n",
"|----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------|\n",
"| 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 1 | 1 | 1 | 1 | 4 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 2 | 2 | 1 | ab | 6 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 3 | 3 | 1 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 4 | 1 | 1 | 1 | 4 | 12.2922 | 10.8846 | 2 | 2018-10-01 15:16:26 |\n",
"| 5 | 2 | 1 | ab | 6 | 12.2922 | 10.8846 | 2 | 2018-10-01 15:16:26 |\n",
"| 6 | 3 | 1 | ['c', 'd'] | [ 30 300] | 12.2922 | 10.8846 | 2 | 2018-10-01 15:16:26 |\n",
"| 7 | 1 | 1 | 1 | 4 | 12.3433 | 11.8439 | 3 | 2018-10-01 15:16:27 |\n",
"| 8 | 2 | 1 | ab | 6 | 12.3433 | 11.8439 | 3 | 2018-10-01 15:16:27 |\n",
"| 9 | 3 | 1 | ['c', 'd'] | [ 30 300] | 12.3433 | 11.8439 | 3 | 2018-10-01 15:16:27 |\n",
"| 10 | 1 | 1 | 1 | 4 | 10.9634 | 13.8687 | 4 | 2018-10-01 15:16:28 |\n",
"| 11 | 2 | 1 | ab | 6 | 10.9634 | 13.8687 | 4 | 2018-10-01 15:16:28 |\n",
"| 12 | 3 | 1 | ['c', 'd'] | [ 30 300] | 10.9634 | 13.8687 | 4 | 2018-10-01 15:16:28 |\n",
"| 13 | 1 | 1 | 1 | 4 | 11.5544 | 13.9381 | 5 | 2018-10-01 15:16:29 |\n",
"| 14 | 2 | 1 | ab | 6 | 11.5544 | 13.9381 | 5 | 2018-10-01 15:16:29 |\n",
"| 15 | 3 | 1 | ['c', 'd'] | [ 30 300] | 11.5544 | 13.9381 | 5 | 2018-10-01 15:16:29 |\n",
"| 16 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 17 | 1 | 2 | 1 | 4 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 18 | 2 | 2 | ab | 6 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 19 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 20 | 1 | 2 | 1 | 4 | 9.98087 | 9.45464 | 2 | 2018-10-01 15:16:26 |\n",
"| 21 | 2 | 2 | ab | 6 | 9.98087 | 9.45464 | 2 | 2018-10-01 15:16:26 |\n",
"| 22 | 3 | 2 | ['c', 'd'] | [ 30 300] | 9.98087 | 9.45464 | 2 | 2018-10-01 15:16:26 |\n",
"| 23 | 1 | 2 | 1 | 4 | 11.1536 | 7.9925 | 3 | 2018-10-01 15:16:27 |\n",
"| 24 | 2 | 2 | ab | 6 | 11.1536 | 7.9925 | 3 | 2018-10-01 15:16:27 |\n",
"| 25 | 3 | 2 | ['c', 'd'] | [ 30 300] | 11.1536 | 7.9925 | 3 | 2018-10-01 15:16:27 |\n",
"| 26 | 1 | 2 | 1 | 4 | 10.3195 | 8.77766 | 4 | 2018-10-01 15:16:28 |\n",
"| 27 | 2 | 2 | ab | 6 | 10.3195 | 8.77766 | 4 | 2018-10-01 15:16:28 |\n",
"| 28 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10.3195 | 8.77766 | 4 | 2018-10-01 15:16:28 |\n",
"| 29 | 1 | 2 | 1 | 4 | 10.3288 | 7.81118 | 5 | 2018-10-01 15:16:29 |\n",
"| 30 | 2 | 2 | ab | 6 | 10.3288 | 7.81118 | 5 | 2018-10-01 15:16:29 |\n",
"| 31 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10.3288 | 7.81118 | 5 | 2018-10-01 15:16:29 |\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"| | mech_step | run | s1 | s2 | s3 | s4 | time_step | timestamp |\n",
"|----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------|\n",
"| 0 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 1 | 1 | 1 | 1 | 0 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 2 | 2 | 1 | ab | 0 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 3 | 3 | 1 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 4 | 1 | 1 | 1 | [ 30 300] | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 5 | 2 | 1 | ab | [ 30 300] | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 6 | 3 | 1 | ['c', 'd'] | [ 30 300] | 9.94373 | 10.4365 | 2 | 2018-10-01 15:16:26 |\n",
"| 7 | 1 | 1 | 1 | [ 30 300] | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 8 | 2 | 1 | ab | [ 30 300] | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 9 | 3 | 1 | ['c', 'd'] | [ 30 300] | 7.81956 | 10.5372 | 3 | 2018-10-01 15:16:27 |\n",
"| 10 | 1 | 1 | 1 | [ 30 300] | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 11 | 2 | 1 | ab | [ 30 300] | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 12 | 3 | 1 | ['c', 'd'] | [ 30 300] | 9.10218 | 8.57362 | 4 | 2018-10-01 15:16:28 |\n",
"| 13 | 1 | 1 | 1 | [ 30 300] | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 14 | 2 | 1 | ab | [ 30 300] | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 15 | 3 | 1 | ['c', 'd'] | [ 30 300] | 7.46976 | 8.33579 | 5 | 2018-10-01 15:16:29 |\n",
"| 16 | 0 | 2 | 0 | 0 | 1 | 1 | 0 | 2018-10-01 15:16:24 |\n",
"| 17 | 1 | 2 | 1 | 0 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 18 | 2 | 2 | ab | 0 | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 19 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10 | 10 | 1 | 2018-10-01 15:16:25 |\n",
"| 20 | 1 | 2 | 1 | [ 30 300] | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 21 | 2 | 2 | ab | [ 30 300] | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 22 | 3 | 2 | ['c', 'd'] | [ 30 300] | 10.5029 | 9.91726 | 2 | 2018-10-01 15:16:26 |\n",
"| 23 | 1 | 2 | 1 | [ 30 300] | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 24 | 2 | 2 | ab | [ 30 300] | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 25 | 3 | 2 | ['c', 'd'] | [ 30 300] | 9.19497 | 9.29545 | 3 | 2018-10-01 15:16:27 |\n",
"| 26 | 1 | 2 | 1 | [ 30 300] | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 27 | 2 | 2 | ab | [ 30 300] | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 28 | 3 | 2 | ['c', 'd'] | [ 30 300] | 8.22219 | 9.25471 | 4 | 2018-10-01 15:16:28 |\n",
"| 29 | 1 | 2 | 1 | [ 30 300] | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"| 30 | 2 | 2 | ab | [ 30 300] | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"| 31 | 3 | 2 | ['c', 'd'] | [ 30 300] | 7.47478 | 8.81306 | 5 | 2018-10-01 15:16:29 |\n",
"+----+-------------+-------+------------+-----------+----------+----------+-------------+---------------------+\n",
"\n"
]
}
],
"source": [
"import pandas as pd\n",
"from tabulate import tabulate\n",
"\n",
"from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n",
"from sandboxUX import config1, config2\n",
"from SimCAD import configs\n",
"\n",
"# ToDo: pass ExecutionContext with execution method as ExecutionContext input\n",
"\n",
"exec_mode = ExecutionMode()\n",
"\n",
"print(\"Simulation Run 1\")\n",
"print()\n",
"single_config = [configs[0]]\n",
"single_proc_ctx = ExecutionContext(exec_mode.single_proc)\n",
"run1 = Executor(single_proc_ctx, single_config)\n",
"run1_raw_result = run1.main()\n",
"result = pd.DataFrame(run1_raw_result)\n",
"print(tabulate(result, headers='keys', tablefmt='psql'))\n",
"print()\n",
"\n",
"print(\"Simulation Run 2: Pairwise Execution\")\n",
"print()\n",
"multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)\n",
"run2 = Executor(multi_proc_ctx, configs)\n",
"run2_raw_results = run2.main()\n",
"for raw_result in run2_raw_results:\n",
" result = pd.DataFrame(raw_result)\n",
" print(tabulate(result, headers='keys', tablefmt='psql'))\n",
"print()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,220 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
alpha = Decimal('0.091') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
def s2m1(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] + _input['sell_order2'] # / Psignal_int
return (y, x)
def s3m3(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log'] + _input # / Psignal_int
return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] * 1/s['Z'] - s['Sell_Log']/s['Z']
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b4": b4m2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,247 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.250')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': sell, 'herd_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': 0, 'herd_buy': buy}
else:
return {'herd_sell': 0, 'herd_buy': 0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] + _input['herd_buy'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] + _input['sell_order2'] + _input['herd_sell'] # / Psignal_int
return (y, x)
def s3m3(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log'] + _input # / Psignal_int
return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] /s['Z'] - s['Sell_Log']/s['Z']
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 20,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,267 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.250')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': sell, 'herd_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': 0, 'herd_buy': buy}
else:
return {'herd_sell': 0, 'herd_buy': 0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
EIU_portion = Decimal('0.250')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
return {'EIU_sell': sell, 'EIU_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
return {'EIU_sell': 0, 'EIU_buy': buy}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] + _input['herd_buy'] + _input['EIU_buy'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] + _input['sell_order2'] + _input['herd_sell'] + _input['EIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] /s['Z'] /(Decimal('0.10') * s['Price']) - s['Sell_Log'] / s['Z'] / (Decimal('0.10')*s['Price'])
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 100,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,300 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': sell, 'herd_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': 0, 'herd_buy': buy}
else:
return {'herd_sell': 0, 'herd_buy': 0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
return {'EIU_sell': sell, 'EIU_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
return {'EIU_sell': 0, 'EIU_buy': buy}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
return {'HEIU_sell': sell, 'HEIU_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
return {'HEIU_sell': 0, 'HEIU_buy': buy}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] + _input['sell_order2'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] /s['Z']/(Decimal('1.25') ) - s['Sell_Log']/s['Z']/(Decimal('1.25') )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 100,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,309 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_buy': buy, 'EMH_buy_P': price}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_buy': 0}
else:
return {'EMH_buy': 0}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_sell': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_sell': sell, 'EMH_sell_P': price}
else:
return {'EMH_sell': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] - (s['Price_Signal'] / s['Price'])
return {'herd_sell': sell, 'herd_buy': 0, 'herd_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] + (s['Price'] / s['Price_Signal'])
return {'herd_sell': 0, 'herd_buy': buy, 'herd_buy_P': price}
else:
return {'herd_sell': 0, 'herd_buy': 0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
price = s['Price']
return {'HODL_sell': sell, 'HODL_sell_P': price}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'HODL_sell': 0}
else:
return {'HODL_sell': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal'] / s['Price'])
return {'EIU_sell': sell, 'EIU_buy': 0, 'EIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal'])
return {'EIU_sell': 0, 'EIU_buy': buy, 'EIU_buy_P': price}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal_2'] / s['Price'])
return {'HEIU_sell': sell, 'HEIU_buy': 0, 'HEIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal_2'])
return {'HEIU_sell': 0, 'HEIU_buy': buy, 'HEIU_buy_P': price}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['EMH_buy']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['EMH_buy'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['EMH_sell'] + _input['HODL_sell'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + (s['Buy_Log'] /s['Z'] ) - (s['Sell_Log']/s['Z'] )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,319 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_buy': buy, 'EMH_buy_P': price}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
else:
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_sell': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_sell': sell, 'EMH_sell_P': price}
else:
return {'EMH_sell': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] - (s['Price_Signal'] / s['Price'])
return {'herd_sell': sell, 'herd_buy': 0, 'herd_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] + (s['Price'] / s['Price_Signal'])
return {'herd_sell': 0, 'herd_buy': buy, 'herd_buy_P': price}
else:
return {'herd_sell': 0, 'herd_buy': 0, 'herd_buy_P':0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
price = s['Price']
return {'HODL_sell': sell, 'HODL_sell_P': price}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'HODL_sell': 0}
else:
return {'HODL_sell': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal'] / s['Price'])
return {'EIU_sell': sell, 'EIU_buy': 0, 'EIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal'])
return {'EIU_sell': 0, 'EIU_buy': buy, 'EIU_buy_P': price}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal_2'] / s['Price'])
return {'HEIU_sell': sell, 'HEIU_buy': 0, 'HEIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal_2'])
return {'HEIU_sell': 0, 'HEIU_buy': buy, 'HEIU_buy_P': price}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['EMH_buy']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = np.zeros(4)
x[0] = _input['EMH_buy']
x[1] = _input['EMH_buy_P']
x[2] = _input['herd_buy']
x[3] = _input['herd_buy_P']
# = _input['EMH_buy'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x) #[0], x[1])
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['EMH_sell'] + _input['HODL_sell'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + (Decimal(s['Buy_Log'][0])) / s['Z'] # - (s['Sell_Log']/s['Z'] ) # for buy log term /s['Z'] )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,319 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_buy': buy, 'EMH_buy_P': price}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
else:
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_sell': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_sell': sell, 'EMH_sell_P': price}
else:
return {'EMH_sell': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] - (s['Price_Signal'] / s['Price'])
return {'herd_sell': sell, 'herd_buy': 0, 'herd_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] + (s['Price'] / s['Price_Signal'])
return {'herd_sell': 0, 'herd_buy': buy, 'herd_buy_P': price}
else:
return {'herd_sell': 0, 'herd_buy': 0, 'herd_buy_P':0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
price = s['Price']
return {'HODL_sell': sell, 'HODL_sell_P': price}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'HODL_sell': 0}
else:
return {'HODL_sell': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal'] / s['Price'])
return {'EIU_sell': sell, 'EIU_buy': 0, 'EIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal'])
return {'EIU_sell': 0, 'EIU_buy': buy, 'EIU_buy_P': price}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal_2'] / s['Price'])
return {'HEIU_sell': sell, 'HEIU_buy': 0, 'HEIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal_2'])
return {'HEIU_sell': 0, 'HEIU_buy': buy, 'HEIU_buy_P': price}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['EMH_buy']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = np.zeros(4)
x[0] = _input['EMH_buy']
x[1] = _input['EMH_buy_P']
x[2] = _input['herd_buy']
x[3] = _input['herd_buy_P']
# = _input['EMH_buy'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x) #[0], x[1])
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['EMH_sell'] + _input['HODL_sell'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + (Decimal(s['Buy_Log'][0] )) /s['Z'] # - (s['Sell_Log']/s['Z'] ) # for buy log term /s['Z'] )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -1,44 +0,0 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact same order
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config1, config2
# from simulations.validation import base_config1, base_config2
# from simulations.barlin import config4
# from simulations.zx import config_zx
# from simulations.barlin import config6atemp #config6aworks,
from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
exec_mode = ExecutionMode()
print("Simulation Execution 1")
print()
first_config = [configs[0]] # from config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',')
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print("Simulation Execution 2: Pairwise Execution")
print()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -1,171 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param1': 1}
def b1m2(step, sL, s):
return {'param1': 1, 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 1, 'param2': 4}
def b1m3(step, sL, s):
return {'param1': 1, 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': 1, 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
# ToDo: Bug - Can't use environments without proc_trigger. TypeError: 'int' object is not callable
# "/Users/jjodesty/Projects/DiffyQ-SimCAD/SimCAD/engine/simulation.py"
env_processes = {
# "s3": env_a,
# "s4": env_b
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,176 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1'] #+ [Coef1 x 5]
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2'] #+ [Coef2 x 5]
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = [foldr(lambda a, b: a + b)]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,156 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
def b1m1(step, sL, s):
return s['s1'] + 1
def b2m1(step, sL, s):
return s['s1'] + 1
def b1m2(step, sL, s):
return s['s1'] + 1
def b2m2(step, sL, s):
return s['s1'] + 1
def b1m3(step, sL, s):
return s['s1'] + 1
def b2m3(step, sL, s):
return s['s2'] + 1
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = s['s2'] + s['s3'] + _input
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
state_dict = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# User Defined Aggregate Function
behavior_udaf = [ foldr(_ + _), lambda x: x + 0 ]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_udaf))