multithreaded mech_step, mech_pipeline in progress

This commit is contained in:
Joshua E. Jodesty 2018-12-10 22:54:29 -05:00
parent 980bba081a
commit f55124fbb0
8 changed files with 170 additions and 43 deletions

1
.gitignore vendored
View File

@ -2,6 +2,7 @@
.DS_Store
.idea
notebooks/.ipynb_checkpoints
notebooks/multithreading.ipynb
SimCAD.egg-info
__pycache__
Pipfile

View File

@ -2,7 +2,9 @@ from datetime import datetime, timedelta
from decimal import Decimal
from fn.func import curried
import pandas as pd
from pathos.threading import ThreadPool
from SimCAD.utils import groupByKey
class TensorFieldReport:
def __init__(self, config_proc):
@ -18,6 +20,14 @@ class TensorFieldReport:
return df
# def s_update(y, x):
# return lambda step, sL, s, _input: (y, x)
#
#
def state_update(y, x):
return lambda step, sL, s, _input: (y, x)
def bound_norm_random(rng, low, high):
# Add RNG Seed
res = rng.normal((high+low)/2,(high-low)/6)
@ -53,9 +63,15 @@ def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta
def exo_update_per_ts(ep):
@curried
def ep_decorator(f, y, step, sL, s, _input):
def ep_decorator(fs, y, step, sL, s, _input):
# print(s)
if s['mech_step'] + 1 == 1: # inside f body to reduce performance costs
return f(step, sL, s, _input)
if isinstance(fs, list):
pool = ThreadPool(nodes=len(fs))
fx = pool.map(lambda f: f(step, sL, s, _input), fs)
return groupByKey(fx)
else:
return fs(step, sL, s, _input)
else:
return (y, s[y])
return {es: ep_decorator(f, es) for es, f in ep.items()}
return {es: ep_decorator(f, es) for es, f in ep.items()}

View File

@ -2,14 +2,15 @@ from fn.op import foldr
from fn.func import curried
def get_base_value(datatype):
if datatype is str:
def get_base_value(x):
if isinstance(x, str):
return ''
elif datatype is int:
elif isinstance(x, int):
return 0
elif datatype is list:
elif isinstance(x, list):
return []
return 0
else:
return 0
def behavior_to_dict(v):
@ -33,7 +34,7 @@ def sum_dict_values():
def dict_op(f, d1, d2):
def set_base_value(target_dict, source_dict, key):
if key not in target_dict:
return get_base_value(type(source_dict[key]))
return get_base_value(source_dict[key])
else:
return target_dict[key]

View File

@ -1,7 +1,11 @@
from pathos.threading import ThreadPool
from copy import deepcopy
from fn.op import foldr, call
import pprint
from SimCAD.utils import rename
pp = pprint.PrettyPrinter(indent=4)
from SimCAD.utils import groupByKey, flatten, drop_right
from SimCAD.engine.utils import engine_exception
@ -23,23 +27,42 @@ class Executor:
return foldr(call, get_col_results(step, sL, s, funcs))(ops)
def xthreaded_env_proc(self, f, s_valx):
if isinstance(s_valx, list):
pool = ThreadPool(nodes=len(s_valx)) # ToDo: Optimize
return pool.map(lambda f: f(s_valx), s_valx)
else:
return f(s_valx)
def apply_env_proc(self, env_processes, state_dict, step):
for state in state_dict.keys():
if state in list(env_processes.keys()):
env_state = env_processes[state]
if (env_state.__name__ == '_curried') or (env_state.__name__ == 'proc_trigger'): # might want to change
state_dict[state] = env_state(step)(state_dict[state])
state_dict[state] = self.xthreaded_env_proc(env_state(step), state_dict[state])
else:
state_dict[state] = env_state(state_dict[state])
state_dict[state] = self.xthreaded_env_proc(env_state, state_dict[state])
def xthreaded_state_update(self, fs, m_step, sL, last_in_obj, _input):
if isinstance(fs, list):
pool = ThreadPool(nodes=len(fs)) # ToDo: Optimize
fx = pool.map(lambda f: f(m_step, sL, last_in_obj, _input), fs)
return groupByKey(fx)
else:
return fs(m_step, sL, last_in_obj, _input)
def mech_step(self, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
last_in_obj = sL[-1]
_input = self.state_update_exception(self.get_behavior_input(m_step, sL, last_in_obj, behavior_funcs))
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
last_in_copy = dict([self.behavior_update_exception(f(m_step, sL, last_in_obj, _input)) for f in state_funcs])
last_in_copy = dict([
self.behavior_update_exception(
self.xthreaded_state_update(f, m_step, sL, last_in_obj, _input)
) for f in state_funcs
])
for k in last_in_obj:
if k not in last_in_copy:
@ -49,11 +72,28 @@ class Executor:
# make env proc trigger field agnostic
self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestamp']) # mutating last_in_copy
# print()
# pp.pprint(last_in_copy)
# exit()
def set_sys_metrics(m_step, t_step, run):
last_in_copy["mech_step"], last_in_copy["time_step"], last_in_copy['run'] = m_step, t_step, run
if any(isinstance(x, list) for x in last_in_copy.values()):
last_in_copies = flatten(last_in_copy)
for last_in_copy in last_in_copies:
set_sys_metrics(m_step, t_step, run)
sL.append(last_in_copies)
else:
set_sys_metrics(m_step, t_step, run)
sL.append(last_in_copy)
last_in_copy["mech_step"], last_in_copy["time_step"], last_in_copy['run'] = m_step, t_step, run
sL.append(last_in_copy)
del last_in_copy
# print()
# pp.pprint(sL)
# exit()
return sL
def mech_pipeline(self, states_list, configs, env_processes, t_step, run):
@ -64,15 +104,28 @@ class Executor:
genesis_states = states_list_copy[-1]
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
states_list = [genesis_states]
# print(genesis_states)
m_step += 1
for config in configs:
s_conf, b_conf = config[0], config[1]
last_states = states_list[-1]
dropped_right_sL = drop_right(states_list, 1)
print()
# print(states_list)
# if isinstance(last_states, list):
# x = list(map(lambda last_state_dict: states_list.pop().append(last_state_dict), last_states))
# pp.pprint(states_list)
states_list = self.mech_step(m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
m_step += 1
t_step += 1
print()
# print(states_list)
exit()
return states_list
# rename pipe

View File

@ -1,5 +1,7 @@
from datetime import datetime
from fn.func import curried
from SimCAD.utils import rename
# from SimCAD.configuration.utils import s_update
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
@ -24,6 +26,8 @@ def retrieve_state(l, offset):
return l[last_index(l) + offset + 1]
# exception_function = f(m_step, sL, sL[-2], _input)
# try_function = f(m_step, sL, last_mut_obj, _input)
@curried
def engine_exception(ErrorType, error_message, exception_function, try_function):
try:
@ -33,9 +37,11 @@ def engine_exception(ErrorType, error_message, exception_function, try_function)
return exception_function
# def exception_handler(f, m_step, sL, last_mut_obj, _input):
# try:
# return f(m_step, sL, last_mut_obj, _input)
# except KeyError:
# print("Exception")
# return f(m_step, sL, sL[-2], _input)
@curried
def fit_param(param, x):
return x + param
# fit_param = lambda param: lambda x: x + param
def sweep(params, sweep_f):
return [rename('sweep', sweep_f(param)) for param in params]

View File

@ -1,3 +1,5 @@
from collections import defaultdict
from itertools import product
# from fn.func import curried
def pipe(x):
@ -9,17 +11,46 @@ def print_pipe(x):
return x
def flattenDict(l):
def tupalize(k, vs):
l = []
if isinstance(vs, list):
for v in vs:
l.append((k, v))
else:
l.append((k, vs))
return l
flat_list = [tupalize(k, vs) for k, vs in l.items()]
flat_dict = [dict(items) for items in product(*flat_list)]
return flat_dict
def flatten(l):
return [item for sublist in l for item in sublist]
if isinstance(l, list):
return [item for sublist in l for item in sublist]
elif isinstance(l, dict):
return flattenDict(l)
def flatmap(f, items):
return list(map(f, items))
def drop_right(l, n=1):
return l[:len(l)-n]
# def flatmap(f, items):
# return list(map(f, items))
def key_filter(l, keyname):
return [v[keyname] for k, v in l.items()]
def groupByKey(l):
d = defaultdict(list)
for key, value in l:
d[key].append(value)
return list(dict(d).items()).pop()
# @curried
def rename(new_name, f):
f.__name__ = new_name

View File

@ -29,16 +29,16 @@ print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print("Simulation Execution 2: Pairwise Execution")
print()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
#
# print("Simulation Execution 2: Pairwise Execution")
# print()
# multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
# run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
# for raw_result, tensor_field in run2.main():
# result = pd.DataFrame(raw_result)
# print()
# print("Tensor Field:")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()

View File

@ -4,8 +4,9 @@ from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
from SimCAD.configuration.utils import state_update, exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
from SimCAD.engine.utils import sweep
seed = {
'z': np.random.RandomState(1),
@ -42,6 +43,14 @@ def s2m1(step, sL, s, _input):
x = _input['param2'] #+ [Coef2 x 5]
return (y, x)
s2m1 = sweep(
params = [Decimal(11.0), Decimal(22.0)],
sweep_f = lambda param: lambda step, sL, s, _input: (
's2',
s['s2'] + param
)
)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
@ -64,10 +73,20 @@ def s2m3(step, sL, s, _input):
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
# def es3p1(step, sL, s, _input):
# y = 's3'
# x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
# return (y, x)
es3p1 = sweep(
params = [Decimal(11.0), Decimal(22.0)],
sweep_f = lambda param: lambda step, sL, s, _input: (
's3',
s['s3'] + param
)
)
def es4p2(step, sL, s, _input):
y = 's4'
@ -111,7 +130,7 @@ exogenous_states = exo_update_per_ts(
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
env_processes = {
"s3": env_a,
# "s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}