param sweep patch
This commit is contained in:
parent
7f28bae21a
commit
f224df3ed4
|
|
@ -17,6 +17,7 @@ class Configuration(object):
|
||||||
def __init__(self, sim_config={}, initial_state={}, seeds={}, env_processes={},
|
def __init__(self, sim_config={}, initial_state={}, seeds={}, env_processes={},
|
||||||
exogenous_states={}, partial_state_update_blocks={}, policy_ops=[lambda a, b: a + b],
|
exogenous_states={}, partial_state_update_blocks={}, policy_ops=[lambda a, b: a + b],
|
||||||
**kwargs) -> None:
|
**kwargs) -> None:
|
||||||
|
# print(exogenous_states)
|
||||||
self.sim_config = sim_config
|
self.sim_config = sim_config
|
||||||
self.initial_state = initial_state
|
self.initial_state = initial_state
|
||||||
self.seeds = seeds
|
self.seeds = seeds
|
||||||
|
|
|
||||||
|
|
@ -2,6 +2,7 @@ from datetime import datetime, timedelta
|
||||||
from decimal import Decimal
|
from decimal import Decimal
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
|
from pprint import pprint
|
||||||
|
|
||||||
from fn.func import curried
|
from fn.func import curried
|
||||||
from funcy import curry
|
from funcy import curry
|
||||||
|
|
@ -38,13 +39,14 @@ def bound_norm_random(rng, low, high):
|
||||||
res = rng.normal((high+low)/2, (high-low)/6)
|
res = rng.normal((high+low)/2, (high-low)/6)
|
||||||
if res < low or res > high:
|
if res < low or res > high:
|
||||||
res = bound_norm_random(rng, low, high)
|
res = bound_norm_random(rng, low, high)
|
||||||
return Decimal(res)
|
# return Decimal(res)
|
||||||
|
return float(res)
|
||||||
|
|
||||||
|
|
||||||
@curried
|
@curried
|
||||||
def env_proc_trigger(trigger_time, update_f, time):
|
def env_proc_trigger(timestep, f, time):
|
||||||
if time == trigger_time:
|
if time == timestep:
|
||||||
return update_f
|
return f
|
||||||
else:
|
else:
|
||||||
return lambda x: x
|
return lambda x: x
|
||||||
|
|
||||||
|
|
@ -130,8 +132,8 @@ def exo_update_per_ts(ep):
|
||||||
|
|
||||||
return {es: ep_decorator(f, es) for es, f in ep.items()}
|
return {es: ep_decorator(f, es) for es, f in ep.items()}
|
||||||
|
|
||||||
def trigger_condition(s, conditions, cond_opp):
|
def trigger_condition(s, pre_conditions, cond_opp):
|
||||||
condition_bools = [s[field] in precondition_values for field, precondition_values in conditions.items()]
|
condition_bools = [s[field] in precondition_values for field, precondition_values in pre_conditions.items()]
|
||||||
return reduce(cond_opp, condition_bools)
|
return reduce(cond_opp, condition_bools)
|
||||||
|
|
||||||
def apply_state_condition(pre_conditions, cond_opp, y, f, _g, step, sL, s, _input):
|
def apply_state_condition(pre_conditions, cond_opp, y, f, _g, step, sL, s, _input):
|
||||||
|
|
@ -149,12 +151,13 @@ def var_substep_trigger(substeps):
|
||||||
pre_conditions = {'substep': substeps}
|
pre_conditions = {'substep': substeps}
|
||||||
cond_opp = lambda a, b: a and b
|
cond_opp = lambda a, b: a and b
|
||||||
return var_trigger(y, f, pre_conditions, cond_opp)
|
return var_trigger(y, f, pre_conditions, cond_opp)
|
||||||
|
|
||||||
return lambda y, f: curry(trigger)(substeps)(y)(f)
|
return lambda y, f: curry(trigger)(substeps)(y)(f)
|
||||||
|
|
||||||
|
|
||||||
def env_trigger(end_substep):
|
def env_trigger(end_substep):
|
||||||
def trigger(end_substep, trigger_field, trigger_vals, funct_list):
|
def trigger(end_substep, trigger_field, trigger_vals, funct_list):
|
||||||
def env_update(state_dict, target_value):
|
def env_update(state_dict, sweep_dict, target_value):
|
||||||
state_dict_copy = deepcopy(state_dict)
|
state_dict_copy = deepcopy(state_dict)
|
||||||
# Use supstep to simulate current sysMetrics
|
# Use supstep to simulate current sysMetrics
|
||||||
if state_dict_copy['substep'] == end_substep:
|
if state_dict_copy['substep'] == end_substep:
|
||||||
|
|
@ -162,7 +165,7 @@ def env_trigger(end_substep):
|
||||||
|
|
||||||
if state_dict_copy[trigger_field] in trigger_vals:
|
if state_dict_copy[trigger_field] in trigger_vals:
|
||||||
for g in funct_list:
|
for g in funct_list:
|
||||||
target_value = g(target_value)
|
target_value = g(sweep_dict, target_value)
|
||||||
|
|
||||||
del state_dict_copy
|
del state_dict_copy
|
||||||
return target_value
|
return target_value
|
||||||
|
|
@ -182,6 +185,7 @@ def config_sim(d):
|
||||||
return flatten_tabulated_dict(tabulate_dict(d))
|
return flatten_tabulated_dict(tabulate_dict(d))
|
||||||
|
|
||||||
if "M" in d:
|
if "M" in d:
|
||||||
|
# print([{"N": d["N"], "T": d["T"], "M": M} for M in process_variables(d["M"])])
|
||||||
return [{"N": d["N"], "T": d["T"], "M": M} for M in process_variables(d["M"])]
|
return [{"N": d["N"], "T": d["T"], "M": M} for M in process_variables(d["M"])]
|
||||||
else:
|
else:
|
||||||
d["M"] = [{}]
|
d["M"] = [{}]
|
||||||
|
|
@ -203,4 +207,21 @@ def genereate_psubs(policy_grid, states_grid, policies, state_updates):
|
||||||
filtered_state_updates = {k: v for (k, v) in state_updates.items() if k in state_list}
|
filtered_state_updates = {k: v for (k, v) in state_updates.items() if k in state_list}
|
||||||
PSUBS.append(psub(filtered_policies, filtered_state_updates))
|
PSUBS.append(psub(filtered_policies, filtered_state_updates))
|
||||||
|
|
||||||
return PSUBS
|
return PSUBS
|
||||||
|
|
||||||
|
def access_block(sH, y, psu_block_offset, exculsion_list=[]):
|
||||||
|
exculsion_list += [y]
|
||||||
|
def filter_history(key_list, sH):
|
||||||
|
filter = lambda key_list: \
|
||||||
|
lambda d: {k: v for k, v in d.items() if k not in key_list}
|
||||||
|
return list(map(filter(key_list), sH))
|
||||||
|
|
||||||
|
if psu_block_offset < -1:
|
||||||
|
if len(sH) >= abs(psu_block_offset):
|
||||||
|
return filter_history(exculsion_list, sH[psu_block_offset])
|
||||||
|
else:
|
||||||
|
return []
|
||||||
|
elif psu_block_offset < 0:
|
||||||
|
return filter_history(exculsion_list, sH[psu_block_offset])
|
||||||
|
else:
|
||||||
|
return []
|
||||||
|
|
@ -27,9 +27,11 @@ def single_proc_exec(
|
||||||
Ts: List[range],
|
Ts: List[range],
|
||||||
Ns: List[int]
|
Ns: List[int]
|
||||||
):
|
):
|
||||||
|
# print(env_processes_list)
|
||||||
|
# print(configs_structs)
|
||||||
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
|
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
|
||||||
simulation_exec, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
|
simulation_exec, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
|
||||||
|
# print(config.env_processes)
|
||||||
result = simulation_exec(var_dict_list, states_list, config, env_processes, T, N)
|
result = simulation_exec(var_dict_list, states_list, config, env_processes, T, N)
|
||||||
return flatten(result)
|
return flatten(result)
|
||||||
|
|
||||||
|
|
@ -66,7 +68,7 @@ class Executor:
|
||||||
self.exec_method = exec_context.method
|
self.exec_method = exec_context.method
|
||||||
self.exec_context = exec_context.name
|
self.exec_context = exec_context.name
|
||||||
self.configs = configs
|
self.configs = configs
|
||||||
self.main = self.execute
|
# self.main = self.execute
|
||||||
|
|
||||||
def execute(self) -> Tuple[List[Dict[str, Any]], DataFrame]:
|
def execute(self) -> Tuple[List[Dict[str, Any]], DataFrame]:
|
||||||
config_proc = Processor()
|
config_proc = Processor()
|
||||||
|
|
@ -76,6 +78,7 @@ class Executor:
|
||||||
var_dict_list, states_lists, Ts, Ns, eps, configs_structs, env_processes_list, partial_state_updates, simulation_execs = \
|
var_dict_list, states_lists, Ts, Ns, eps, configs_structs, env_processes_list, partial_state_updates, simulation_execs = \
|
||||||
[], [], [], [], [], [], [], [], []
|
[], [], [], [], [], [], [], [], []
|
||||||
config_idx = 0
|
config_idx = 0
|
||||||
|
print(self.configs)
|
||||||
for x in self.configs:
|
for x in self.configs:
|
||||||
|
|
||||||
Ts.append(x.sim_config['T'])
|
Ts.append(x.sim_config['T'])
|
||||||
|
|
@ -84,6 +87,7 @@ class Executor:
|
||||||
states_lists.append([x.initial_state])
|
states_lists.append([x.initial_state])
|
||||||
eps.append(list(x.exogenous_states.values()))
|
eps.append(list(x.exogenous_states.values()))
|
||||||
configs_structs.append(config_proc.generate_config(x.initial_state, x.partial_state_updates, eps[config_idx]))
|
configs_structs.append(config_proc.generate_config(x.initial_state, x.partial_state_updates, eps[config_idx]))
|
||||||
|
# print(env_processes_list)
|
||||||
env_processes_list.append(x.env_processes)
|
env_processes_list.append(x.env_processes)
|
||||||
partial_state_updates.append(x.partial_state_updates)
|
partial_state_updates.append(x.partial_state_updates)
|
||||||
simulation_execs.append(SimExecutor(x.policy_ops).simulation)
|
simulation_execs.append(SimExecutor(x.policy_ops).simulation)
|
||||||
|
|
@ -98,12 +102,12 @@ class Executor:
|
||||||
result = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
result = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||||
final_result = result, tensor_field
|
final_result = result, tensor_field
|
||||||
elif self.exec_context == ExecutionMode.multi_proc:
|
elif self.exec_context == ExecutionMode.multi_proc:
|
||||||
if len(self.configs) > 1:
|
# if len(self.configs) > 1:
|
||||||
simulations = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
simulations = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||||
results = []
|
results = []
|
||||||
for result, partial_state_updates, ep in list(zip(simulations, partial_state_updates, eps)):
|
for result, partial_state_updates, ep in list(zip(simulations, partial_state_updates, eps)):
|
||||||
results.append((flatten(result), create_tensor_field(partial_state_updates, ep)))
|
results.append((flatten(result), create_tensor_field(partial_state_updates, ep)))
|
||||||
|
|
||||||
final_result = results
|
final_result = results
|
||||||
|
|
||||||
return final_result
|
return final_result
|
||||||
|
|
|
||||||
|
|
@ -28,7 +28,7 @@ class Executor:
|
||||||
# get_behavior_input # sL: State Window
|
# get_behavior_input # sL: State Window
|
||||||
def get_policy_input(
|
def get_policy_input(
|
||||||
self,
|
self,
|
||||||
var_dict: Dict[str, List[Any]],
|
sweep_dict: Dict[str, List[Any]],
|
||||||
sub_step: int,
|
sub_step: int,
|
||||||
sL: List[Dict[str, Any]],
|
sL: List[Dict[str, Any]],
|
||||||
s: Dict[str, Any],
|
s: Dict[str, Any],
|
||||||
|
|
@ -39,8 +39,8 @@ class Executor:
|
||||||
ops = self.policy_ops
|
ops = self.policy_ops
|
||||||
|
|
||||||
|
|
||||||
def get_col_results(var_dict, sub_step, sL, s, funcs):
|
def get_col_results(sweep_dict, sub_step, sL, s, funcs):
|
||||||
return list(map(lambda f: f(var_dict, sub_step, sL, s), funcs))
|
return list(map(lambda f: f(sweep_dict, sub_step, sL, s), funcs))
|
||||||
|
|
||||||
def compose(init_reduction_funct, funct_list, val_list):
|
def compose(init_reduction_funct, funct_list, val_list):
|
||||||
result, i = None, 0
|
result, i = None, 0
|
||||||
|
|
@ -53,7 +53,7 @@ class Executor:
|
||||||
result = g(result)
|
result = g(result)
|
||||||
return result
|
return result
|
||||||
|
|
||||||
col_results = get_col_results(var_dict, sub_step, sL, s, funcs)
|
col_results = get_col_results(sweep_dict, sub_step, sL, s, funcs)
|
||||||
key_set = list(set(list(reduce(lambda a, b: a + b, list(map(lambda x: list(x.keys()), col_results))))))
|
key_set = list(set(list(reduce(lambda a, b: a + b, list(map(lambda x: list(x.keys()), col_results))))))
|
||||||
new_dict = {k: [] for k in key_set}
|
new_dict = {k: [] for k in key_set}
|
||||||
for d in col_results:
|
for d in col_results:
|
||||||
|
|
@ -73,24 +73,9 @@ class Executor:
|
||||||
# return {k: reduce(f1, val_list) for k, val_list in new_dict.items()}
|
# return {k: reduce(f1, val_list) for k, val_list in new_dict.items()}
|
||||||
# return foldr(call, col_results)(ops)
|
# return foldr(call, col_results)(ops)
|
||||||
|
|
||||||
# def apply_env_proc(
|
|
||||||
# self,
|
|
||||||
# env_processes: Dict[str, Callable],
|
|
||||||
# state_dict: Dict[str, Any],
|
|
||||||
# time_step: int
|
|
||||||
# ) -> Dict[str, Any]:
|
|
||||||
# for state in state_dict.keys():
|
|
||||||
# if state in list(env_processes.keys()):
|
|
||||||
# env_state: Callable = env_processes[state]
|
|
||||||
# if (env_state.__name__ == '_curried') or (env_state.__name__ == 'proc_trigger'):
|
|
||||||
# state_dict[state] = env_state(sub_step)(state_dict[state])
|
|
||||||
# else:
|
|
||||||
# state_dict[state] = env_state(state_dict[state])
|
|
||||||
#
|
|
||||||
# return state_dict
|
|
||||||
|
|
||||||
def apply_env_proc(
|
def apply_env_proc(
|
||||||
self,
|
self,
|
||||||
|
sweep_dict,
|
||||||
env_processes: Dict[str, Callable],
|
env_processes: Dict[str, Callable],
|
||||||
state_dict: Dict[str, Any],
|
state_dict: Dict[str, Any],
|
||||||
) -> Dict[str, Any]:
|
) -> Dict[str, Any]:
|
||||||
|
|
@ -99,9 +84,10 @@ class Executor:
|
||||||
function_type = type(lambda x: x)
|
function_type = type(lambda x: x)
|
||||||
env_update = env_processes[target_field]
|
env_update = env_processes[target_field]
|
||||||
if isinstance(env_update, list):
|
if isinstance(env_update, list):
|
||||||
target_value = compose(*env_update[::-1])(target_value)
|
for f in env_update:
|
||||||
|
target_value = f(sweep_dict, target_value)
|
||||||
elif isinstance(env_update, function_type):
|
elif isinstance(env_update, function_type):
|
||||||
target_value = env_update(state_dict, target_value)
|
target_value = env_update(state_dict, sweep_dict, target_value)
|
||||||
else:
|
else:
|
||||||
target_value = env_update
|
target_value = env_update
|
||||||
|
|
||||||
|
|
@ -122,7 +108,7 @@ class Executor:
|
||||||
# mech_step
|
# mech_step
|
||||||
def partial_state_update(
|
def partial_state_update(
|
||||||
self,
|
self,
|
||||||
var_dict: Dict[str, List[Any]],
|
sweep_dict: Dict[str, List[Any]],
|
||||||
sub_step: int,
|
sub_step: int,
|
||||||
sL: Any,
|
sL: Any,
|
||||||
sH: Any,
|
sH: Any,
|
||||||
|
|
@ -150,13 +136,13 @@ class Executor:
|
||||||
# print(last_in_obj)
|
# print(last_in_obj)
|
||||||
# print(sH[-1])
|
# print(sH[-1])
|
||||||
|
|
||||||
_input: Dict[str, Any] = self.policy_update_exception(self.get_policy_input(var_dict, sub_step, sH, last_in_obj, policy_funcs))
|
_input: Dict[str, Any] = self.policy_update_exception(self.get_policy_input(sweep_dict, sub_step, sH, last_in_obj, policy_funcs))
|
||||||
|
|
||||||
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
|
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
|
||||||
# ToDo: Can be multithreaded ??
|
# ToDo: Can be multithreaded ??
|
||||||
def generate_record(state_funcs):
|
def generate_record(state_funcs):
|
||||||
for f in state_funcs:
|
for f in state_funcs:
|
||||||
yield self.state_update_exception(f(var_dict, sub_step, sH, last_in_obj, _input))
|
yield self.state_update_exception(f(sweep_dict, sub_step, sH, last_in_obj, _input))
|
||||||
|
|
||||||
def transfer_missing_fields(source, destination):
|
def transfer_missing_fields(source, destination):
|
||||||
for k in source:
|
for k in source:
|
||||||
|
|
@ -168,7 +154,9 @@ class Executor:
|
||||||
last_in_copy: Dict[str, Any] = transfer_missing_fields(last_in_obj, dict(generate_record(state_funcs)))
|
last_in_copy: Dict[str, Any] = transfer_missing_fields(last_in_obj, dict(generate_record(state_funcs)))
|
||||||
# ToDo: Remove
|
# ToDo: Remove
|
||||||
# last_in_copy: Dict[str, Any] = self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep'])
|
# last_in_copy: Dict[str, Any] = self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep'])
|
||||||
last_in_copy: Dict[str, Any] = self.apply_env_proc(env_processes, last_in_copy)
|
# print(env_processes)
|
||||||
|
# print()
|
||||||
|
last_in_copy: Dict[str, Any] = self.apply_env_proc(sweep_dict, env_processes, last_in_copy)
|
||||||
|
|
||||||
|
|
||||||
# ToDo: make 'substep' & 'timestep' reserve fields
|
# ToDo: make 'substep' & 'timestep' reserve fields
|
||||||
|
|
@ -185,7 +173,7 @@ class Executor:
|
||||||
# mech_pipeline - state_update_block
|
# mech_pipeline - state_update_block
|
||||||
def state_update_pipeline(
|
def state_update_pipeline(
|
||||||
self,
|
self,
|
||||||
var_dict: Dict[str, List[Any]],
|
sweep_dict: Dict[str, List[Any]],
|
||||||
simulation_list, #states_list: List[Dict[str, Any]],
|
simulation_list, #states_list: List[Dict[str, Any]],
|
||||||
configs: List[Tuple[List[Callable], List[Callable]]],
|
configs: List[Tuple[List[Callable], List[Callable]]],
|
||||||
env_processes: Dict[str, Callable],
|
env_processes: Dict[str, Callable],
|
||||||
|
|
@ -229,7 +217,7 @@ class Executor:
|
||||||
for [s_conf, p_conf] in configs: # tensor field
|
for [s_conf, p_conf] in configs: # tensor field
|
||||||
|
|
||||||
states_list: List[Dict[str, Any]] = self.partial_state_update(
|
states_list: List[Dict[str, Any]] = self.partial_state_update(
|
||||||
var_dict, sub_step, states_list, simulation_list, s_conf, p_conf, env_processes, time_step, run
|
sweep_dict, sub_step, states_list, simulation_list, s_conf, p_conf, env_processes, time_step, run
|
||||||
)
|
)
|
||||||
# print(sub_step)
|
# print(sub_step)
|
||||||
# print(simulation_list)
|
# print(simulation_list)
|
||||||
|
|
@ -244,7 +232,7 @@ class Executor:
|
||||||
# state_update_pipeline
|
# state_update_pipeline
|
||||||
def run_pipeline(
|
def run_pipeline(
|
||||||
self,
|
self,
|
||||||
var_dict: Dict[str, List[Any]],
|
sweep_dict: Dict[str, List[Any]],
|
||||||
states_list: List[Dict[str, Any]],
|
states_list: List[Dict[str, Any]],
|
||||||
configs: List[Tuple[List[Callable], List[Callable]]],
|
configs: List[Tuple[List[Callable], List[Callable]]],
|
||||||
env_processes: Dict[str, Callable],
|
env_processes: Dict[str, Callable],
|
||||||
|
|
@ -262,7 +250,7 @@ class Executor:
|
||||||
# print(simulation_list)
|
# print(simulation_list)
|
||||||
for time_step in time_seq:
|
for time_step in time_seq:
|
||||||
pipe_run: List[Dict[str, Any]] = self.state_update_pipeline(
|
pipe_run: List[Dict[str, Any]] = self.state_update_pipeline(
|
||||||
var_dict, simulation_list, configs, env_processes, time_step, run
|
sweep_dict, simulation_list, configs, env_processes, time_step, run
|
||||||
)
|
)
|
||||||
|
|
||||||
_, *pipe_run = pipe_run
|
_, *pipe_run = pipe_run
|
||||||
|
|
@ -276,7 +264,7 @@ class Executor:
|
||||||
# configs: List[Tuple[List[Callable], List[Callable]]]
|
# configs: List[Tuple[List[Callable], List[Callable]]]
|
||||||
def simulation(
|
def simulation(
|
||||||
self,
|
self,
|
||||||
var_dict: Dict[str, List[Any]],
|
sweep_dict: Dict[str, List[Any]],
|
||||||
states_list: List[Dict[str, Any]],
|
states_list: List[Dict[str, Any]],
|
||||||
configs: List[Tuple[List[Callable], List[Callable]]],
|
configs: List[Tuple[List[Callable], List[Callable]]],
|
||||||
env_processes: Dict[str, Callable],
|
env_processes: Dict[str, Callable],
|
||||||
|
|
@ -284,7 +272,7 @@ class Executor:
|
||||||
runs: int
|
runs: int
|
||||||
) -> List[List[Dict[str, Any]]]:
|
) -> List[List[Dict[str, Any]]]:
|
||||||
|
|
||||||
def execute_run(var_dict, states_list, configs, env_processes, time_seq, run) -> List[Dict[str, Any]]:
|
def execute_run(sweep_dict, states_list, configs, env_processes, time_seq, run) -> List[Dict[str, Any]]:
|
||||||
run += 1
|
run += 1
|
||||||
|
|
||||||
def generate_init_sys_metrics(genesis_states_list):
|
def generate_init_sys_metrics(genesis_states_list):
|
||||||
|
|
@ -294,14 +282,14 @@ class Executor:
|
||||||
|
|
||||||
states_list_copy: List[Dict[str, Any]] = list(generate_init_sys_metrics(deepcopy(states_list)))
|
states_list_copy: List[Dict[str, Any]] = list(generate_init_sys_metrics(deepcopy(states_list)))
|
||||||
|
|
||||||
first_timestep_per_run: List[Dict[str, Any]] = self.run_pipeline(var_dict, states_list_copy, configs, env_processes, time_seq, run)
|
first_timestep_per_run: List[Dict[str, Any]] = self.run_pipeline(sweep_dict, states_list_copy, configs, env_processes, time_seq, run)
|
||||||
del states_list_copy
|
del states_list_copy
|
||||||
|
|
||||||
return first_timestep_per_run
|
return first_timestep_per_run
|
||||||
|
|
||||||
pipe_run: List[List[Dict[str, Any]]] = flatten(
|
pipe_run: List[List[Dict[str, Any]]] = flatten(
|
||||||
TPool().map(
|
TPool().map(
|
||||||
lambda run: execute_run(var_dict, states_list, configs, env_processes, time_seq, run),
|
lambda run: execute_run(sweep_dict, states_list, configs, env_processes, time_seq, run),
|
||||||
list(range(runs))
|
list(range(runs))
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
|
||||||
Binary file not shown.
Binary file not shown.
2
setup.py
2
setup.py
|
|
@ -11,7 +11,7 @@ long_description = "cadCAD is a differential games based simulation software pac
|
||||||
monte carlo analysis and other common numerical methods is provided."
|
monte carlo analysis and other common numerical methods is provided."
|
||||||
|
|
||||||
setup(name='cadCAD',
|
setup(name='cadCAD',
|
||||||
version='0.2.2',
|
version='0.2.3',
|
||||||
description="cadCAD: a differential games based simulation software package for research, validation, and \
|
description="cadCAD: a differential games based simulation software package for research, validation, and \
|
||||||
Computer Aided Design of economic systems",
|
Computer Aided Design of economic systems",
|
||||||
long_description=long_description,
|
long_description=long_description,
|
||||||
|
|
|
||||||
|
|
@ -2,10 +2,8 @@ import pandas as pd
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
# The following imports NEED to be in the exact order
|
# The following imports NEED to be in the exact order
|
||||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
# from simulations.validation import policy_aggregation
|
|
||||||
from simulations.validation import config1
|
from simulations.validation import config1
|
||||||
# from simulations.validation import externalds
|
|
||||||
# from simulations.validation import external_dataset
|
|
||||||
from cadCAD import configs
|
from cadCAD import configs
|
||||||
|
|
||||||
exec_mode = ExecutionMode()
|
exec_mode = ExecutionMode()
|
||||||
|
|
@ -16,7 +14,7 @@ first_config = configs # only contains config1
|
||||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
raw_result, tensor_field = run.main()
|
raw_result, tensor_field = run.execute()
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: config1")
|
print("Tensor Field: config1")
|
||||||
|
|
@ -0,0 +1,25 @@
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
# The following imports NEED to be in the exact order
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from simulations.validation import config2
|
||||||
|
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
|
||||||
|
print("Simulation Execution: Single Configuration")
|
||||||
|
print()
|
||||||
|
first_config = configs # only contains config2
|
||||||
|
# print(configs[0].env_processes)
|
||||||
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
|
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
|
raw_result, tensor_field = run.execute()
|
||||||
|
result = pd.DataFrame(raw_result)
|
||||||
|
print()
|
||||||
|
print("Tensor Field: config1")
|
||||||
|
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||||
|
print("Output:")
|
||||||
|
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||||
|
print()
|
||||||
|
|
@ -5,7 +5,6 @@ from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
# from simulations.validation import config1_test_pipe
|
# from simulations.validation import config1_test_pipe
|
||||||
# from simulations.validation import config1
|
# from simulations.validation import config1
|
||||||
# from simulations.validation import externalds
|
# from simulations.validation import externalds
|
||||||
from simulations.validation import external_dataset
|
|
||||||
from cadCAD import configs
|
from cadCAD import configs
|
||||||
|
|
||||||
exec_mode = ExecutionMode()
|
exec_mode = ExecutionMode()
|
||||||
|
|
@ -16,10 +15,10 @@ first_config = configs # only contains config1
|
||||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
raw_result, tensor_field = run.main()
|
raw_result, tensor_field = run.execute()
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
result = pd.concat([result, result['external_data'].apply(pd.Series)], axis=1)[
|
result = pd.concat([result, result['external_data'].apply(pd.Series)], axis=1)[
|
||||||
['run', 'substep', 'timestep', 'increment', 'external_data', 'ds1', 'ds2', 'ds3', 'policies']
|
['run', 'substep', 'timestep', 'increment', 'external_data', 'policies', 'ds1', 'ds2', 'ds3', ]
|
||||||
]
|
]
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: config1")
|
print("Tensor Field: config1")
|
||||||
|
|
|
||||||
|
|
@ -17,7 +17,7 @@ run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
raw_result, _ = run.main()
|
raw_result, _ = run.main()
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
result.to_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/output.csv', index=False)
|
result.to_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv', index=False)
|
||||||
|
|
||||||
print("Output:")
|
print("Output:")
|
||||||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||||
|
|
@ -13,7 +13,7 @@ run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
config_names = ['config1', 'config2']
|
config_names = ['config1', 'config2']
|
||||||
for raw_result, tensor_field in run.main():
|
for raw_result, tensor_field in run.execute():
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: " + config_names[i])
|
print("Tensor Field: " + config_names[i])
|
||||||
|
|
|
||||||
|
|
@ -13,7 +13,7 @@ run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
config_names = ['sweep_config_A', 'sweep_config_B']
|
config_names = ['sweep_config_A', 'sweep_config_B']
|
||||||
for raw_result, tensor_field in run.main():
|
for raw_result, tensor_field in run.execute():
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: " + config_names[i])
|
print("Tensor Field: " + config_names[i])
|
||||||
|
|
|
||||||
|
|
@ -1,3 +1,5 @@
|
||||||
|
from pprint import pprint
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
# The following imports NEED to be in the exact order
|
# The following imports NEED to be in the exact order
|
||||||
|
|
@ -6,6 +8,8 @@ from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
from simulations.regression_tests import sweep_config
|
from simulations.regression_tests import sweep_config
|
||||||
from cadCAD import configs
|
from cadCAD import configs
|
||||||
|
|
||||||
|
# pprint(configs)
|
||||||
|
|
||||||
exec_mode = ExecutionMode()
|
exec_mode = ExecutionMode()
|
||||||
|
|
||||||
print("Simulation Execution: Concurrent Execution")
|
print("Simulation Execution: Concurrent Execution")
|
||||||
|
|
@ -14,7 +18,7 @@ run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
|
||||||
i = 0
|
i = 0
|
||||||
config_names = ['sweep_config_A', 'sweep_config_B']
|
config_names = ['sweep_config_A', 'sweep_config_B']
|
||||||
for raw_result, tensor_field in run.main():
|
for raw_result, tensor_field in run.execute():
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: " + config_names[i])
|
print("Tensor Field: " + config_names[i])
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,23 @@
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
# The following imports NEED to be in the exact order
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from simulations.regression_tests import policy_aggregation
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
|
||||||
|
print("Simulation Execution: Single Configuration")
|
||||||
|
print()
|
||||||
|
first_config = configs # only contains config1
|
||||||
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
|
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
|
raw_result, tensor_field = run.execute()
|
||||||
|
result = pd.DataFrame(raw_result)
|
||||||
|
print()
|
||||||
|
print("Tensor Field: config1")
|
||||||
|
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||||
|
print("Output:")
|
||||||
|
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||||
|
print()
|
||||||
|
|
@ -5,12 +5,6 @@ from cadCAD.utils import SilentDF
|
||||||
|
|
||||||
df = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
|
df = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
|
||||||
|
|
||||||
external_data = {'ds1': None, 'ds2': None, 'ds3': None}
|
|
||||||
state_dict = {
|
|
||||||
'increment': 0,
|
|
||||||
'external_data': external_data,
|
|
||||||
'policies': external_data,
|
|
||||||
}
|
|
||||||
|
|
||||||
def query(s, df):
|
def query(s, df):
|
||||||
return df[
|
return df[
|
||||||
|
|
@ -22,7 +16,7 @@ def p1(_g, substep, sL, s):
|
||||||
del result_dict["ds3"]
|
del result_dict["ds3"]
|
||||||
return {k: list(v.values()).pop() for k, v in result_dict.items()}
|
return {k: list(v.values()).pop() for k, v in result_dict.items()}
|
||||||
|
|
||||||
def p2(_g, step, sL, s):
|
def p2(_g, substep, sL, s):
|
||||||
result_dict = query(s, df).to_dict()
|
result_dict = query(s, df).to_dict()
|
||||||
del result_dict["ds1"], result_dict["ds2"]
|
del result_dict["ds1"], result_dict["ds2"]
|
||||||
return {k: list(v.values()).pop() for k, v in result_dict.items()}
|
return {k: list(v.values()).pop() for k, v in result_dict.items()}
|
||||||
|
|
@ -41,6 +35,14 @@ def view_policies(_g, step, sL, s, _input):
|
||||||
return 'policies', _input
|
return 'policies', _input
|
||||||
|
|
||||||
|
|
||||||
|
external_data = {'ds1': None, 'ds2': None, 'ds3': None}
|
||||||
|
state_dict = {
|
||||||
|
'increment': 0,
|
||||||
|
'external_data': external_data,
|
||||||
|
'policies': external_data
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
policies = {"p1": p1, "p2": p2}
|
policies = {"p1": p1, "p2": p2}
|
||||||
states = {'increment': increment, 'external_data': integrate_ext_dataset, 'policies': view_policies}
|
states = {'increment': increment, 'external_data': integrate_ext_dataset, 'policies': view_policies}
|
||||||
PSUB = {'policies': policies, 'states': states}
|
PSUB = {'policies': policies, 'states': states}
|
||||||
|
|
@ -0,0 +1,85 @@
|
||||||
|
from cadCAD.configuration import append_configs
|
||||||
|
from cadCAD.configuration.utils import config_sim, access_block
|
||||||
|
|
||||||
|
policies, variables = {}, {}
|
||||||
|
exclusion_list = ['nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x']
|
||||||
|
|
||||||
|
# Policies per Mechanism
|
||||||
|
|
||||||
|
# WARNING: DO NOT delete elements from sH
|
||||||
|
|
||||||
|
def last_update(_g, substep, sH, s):
|
||||||
|
return {"last_x": access_block(sH, "last_x", -1, exclusion_list)}
|
||||||
|
policies["last_x"] = last_update
|
||||||
|
|
||||||
|
def second2last_update(_g, substep, sH, s):
|
||||||
|
return {"2nd_to_last_x": access_block(sH, "2nd_to_last_x", -2, exclusion_list)}
|
||||||
|
policies["2nd_to_last_x"] = second2last_update
|
||||||
|
|
||||||
|
|
||||||
|
# Internal States per Mechanism
|
||||||
|
|
||||||
|
# WARNING: DO NOT delete elements from sH
|
||||||
|
def add(y, x):
|
||||||
|
return lambda _g, substep, sH, s, _input: (y, s[y] + x)
|
||||||
|
variables['x'] = add('x', 1)
|
||||||
|
|
||||||
|
# last_partial_state_update_block
|
||||||
|
def nonexsistant(_g, substep, sH, s, _input):
|
||||||
|
return 'nonexsistant', access_block(sH, "nonexsistant", 0, exclusion_list)
|
||||||
|
variables['nonexsistant'] = nonexsistant
|
||||||
|
|
||||||
|
# last_partial_state_update_block
|
||||||
|
def last_x(_g, substep, sH, s, _input):
|
||||||
|
return 'last_x', _input["last_x"]
|
||||||
|
variables['last_x'] = last_x
|
||||||
|
|
||||||
|
# 2nd to last partial state update block
|
||||||
|
def second_to_last_x(_g, substep, sH, s, _input):
|
||||||
|
return '2nd_to_last_x', _input["2nd_to_last_x"]
|
||||||
|
variables['2nd_to_last_x'] = second_to_last_x
|
||||||
|
|
||||||
|
# 3rd to last partial state update block
|
||||||
|
def third_to_last_x(_g, substep, sH, s, _input):
|
||||||
|
return '3rd_to_last_x', access_block(sH, "3rd_to_last_x", -3, exclusion_list)
|
||||||
|
variables['3rd_to_last_x'] = third_to_last_x
|
||||||
|
|
||||||
|
# 4th to last partial state update block
|
||||||
|
def fourth_to_last_x(_g, substep, sH, s, _input):
|
||||||
|
return '4th_to_last_x', access_block(sH, "4th_to_last_x", -4, exclusion_list)
|
||||||
|
variables['4th_to_last_x'] = fourth_to_last_x
|
||||||
|
|
||||||
|
|
||||||
|
genesis_states = {
|
||||||
|
'x': 0,
|
||||||
|
'nonexsistant': [],
|
||||||
|
'last_x': [],
|
||||||
|
'2nd_to_last_x': [],
|
||||||
|
'3rd_to_last_x': [],
|
||||||
|
'4th_to_last_x': []
|
||||||
|
}
|
||||||
|
|
||||||
|
PSUB = {
|
||||||
|
"policies": policies,
|
||||||
|
"variables": variables
|
||||||
|
}
|
||||||
|
|
||||||
|
partial_state_update_block = {
|
||||||
|
"PSUB1": PSUB,
|
||||||
|
"PSUB2": PSUB,
|
||||||
|
"PSUB3": PSUB
|
||||||
|
}
|
||||||
|
|
||||||
|
sim_config = config_sim(
|
||||||
|
{
|
||||||
|
"N": 1,
|
||||||
|
"T": range(3),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
append_configs(
|
||||||
|
sim_configs=sim_config,
|
||||||
|
initial_state=genesis_states,
|
||||||
|
partial_state_update_blocks=partial_state_update_block
|
||||||
|
)
|
||||||
|
|
@ -2,7 +2,7 @@ import numpy as np
|
||||||
from cadCAD.configuration import append_configs
|
from cadCAD.configuration import append_configs
|
||||||
from cadCAD.configuration.utils import config_sim
|
from cadCAD.configuration.utils import config_sim
|
||||||
|
|
||||||
# ToDo: Use
|
|
||||||
seeds = {
|
seeds = {
|
||||||
'z': np.random.RandomState(1),
|
'z': np.random.RandomState(1),
|
||||||
'a': np.random.RandomState(2),
|
'a': np.random.RandomState(2),
|
||||||
|
|
@ -13,19 +13,19 @@ seeds = {
|
||||||
|
|
||||||
# Policies per Mechanism
|
# Policies per Mechanism
|
||||||
def p1m1(_g, step, sL, s):
|
def p1m1(_g, step, sL, s):
|
||||||
return {'param1': 1}
|
return {'policy1': 1}
|
||||||
def p2m1(_g, step, sL, s):
|
def p2m1(_g, step, sL, s):
|
||||||
return {'param2': 2}
|
return {'policy2': 2}
|
||||||
|
|
||||||
def p1m2(_g, step, sL, s):
|
def p1m2(_g, step, sL, s):
|
||||||
return {'param1': 2, 'param2': 2}
|
return {'policy1': 2, 'policy2': 2}
|
||||||
def p2m2(_g, step, sL, s):
|
def p2m2(_g, step, sL, s):
|
||||||
return {'param1': 2, 'param2': 2}
|
return {'policy1': 2, 'policy2': 2}
|
||||||
|
|
||||||
def p1m3(_g, step, sL, s):
|
def p1m3(_g, step, sL, s):
|
||||||
return {'param1': 1, 'param2': 2, 'param3': 3}
|
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
|
||||||
def p2m3(_g, step, sL, s):
|
def p2m3(_g, step, sL, s):
|
||||||
return {'param1': 1, 'param2': 2, 'param3': 3}
|
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
|
||||||
|
|
||||||
|
|
||||||
# Internal States per Mechanism
|
# Internal States per Mechanism
|
||||||
|
|
@ -37,22 +37,19 @@ def policies(_g, step, sH, s, _input):
|
||||||
x = _input
|
x = _input
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
|
|
||||||
# Genesis States
|
# Genesis States
|
||||||
genesis_states = {
|
genesis_states = {
|
||||||
'policies': {},
|
'policies': {},
|
||||||
's1': 0,
|
's1': 0
|
||||||
's2': 0,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
raw_exogenous_states = {}
|
|
||||||
|
|
||||||
env_processes = {}
|
|
||||||
|
|
||||||
variables = {
|
variables = {
|
||||||
's1': add('s1', 1),
|
's1': add('s1', 1),
|
||||||
's2': add('s2', 1),
|
|
||||||
"policies": policies
|
"policies": policies
|
||||||
}
|
}
|
||||||
|
# test_varablies = deepcopy(variables)
|
||||||
|
# test_varablies['test'] = test
|
||||||
|
|
||||||
partial_state_update_block = {
|
partial_state_update_block = {
|
||||||
"m1": {
|
"m1": {
|
||||||
|
|
@ -87,12 +84,14 @@ sim_config = config_sim(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Aggregation == Reduce Map / Reduce Map Aggregation
|
||||||
|
# ToDo: subsequent functions should accept the entire datastructure
|
||||||
|
# using env functions (include in reg test using / for env proc)
|
||||||
append_configs(
|
append_configs(
|
||||||
sim_configs=sim_config,
|
sim_configs=sim_config,
|
||||||
initial_state=genesis_states,
|
initial_state=genesis_states,
|
||||||
seeds=seeds,
|
seeds=seeds,
|
||||||
raw_exogenous_states=raw_exogenous_states,
|
|
||||||
env_processes=env_processes,
|
|
||||||
partial_state_update_blocks=partial_state_update_block,
|
partial_state_update_blocks=partial_state_update_block,
|
||||||
policy_ops=[lambda a, b: a + b, lambda y: y + 10, lambda y: y + 30]
|
policy_ops=[lambda a, b: a + b, lambda y: y * 2] # Default: lambda a, b: a + b ToDO: reduction function requires high lvl explanation
|
||||||
)
|
)
|
||||||
|
|
@ -1,7 +1,6 @@
|
||||||
from decimal import Decimal
|
from decimal import Decimal
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
from funcy import compose
|
|
||||||
import pprint
|
import pprint
|
||||||
|
|
||||||
from cadCAD.configuration import append_configs
|
from cadCAD.configuration import append_configs
|
||||||
|
|
@ -22,6 +21,8 @@ seeds = {
|
||||||
# Optional
|
# Optional
|
||||||
g: Dict[str, List[int]] = {
|
g: Dict[str, List[int]] = {
|
||||||
'alpha': [1],
|
'alpha': [1],
|
||||||
|
# 'beta': [2],
|
||||||
|
# 'gamma': [3],
|
||||||
'beta': [2, 5],
|
'beta': [2, 5],
|
||||||
'gamma': [3, 4],
|
'gamma': [3, 4],
|
||||||
'omega': [7]
|
'omega': [7]
|
||||||
|
|
@ -29,7 +30,7 @@ g: Dict[str, List[int]] = {
|
||||||
|
|
||||||
psu_steps = ['m1', 'm2', 'm3']
|
psu_steps = ['m1', 'm2', 'm3']
|
||||||
system_substeps = len(psu_steps)
|
system_substeps = len(psu_steps)
|
||||||
var_timestep_trigger = var_substep_trigger(system_substeps)
|
var_timestep_trigger = var_substep_trigger([0, system_substeps])
|
||||||
env_timestep_trigger = env_trigger(system_substeps)
|
env_timestep_trigger = env_trigger(system_substeps)
|
||||||
env_process = {}
|
env_process = {}
|
||||||
psu_block = {k: {"policies": {}, "variables": {}} for k in psu_steps}
|
psu_block = {k: {"policies": {}, "variables": {}} for k in psu_steps}
|
||||||
|
|
@ -67,6 +68,7 @@ def s1m1(_g, step, sL, s, _input):
|
||||||
psu_block['m1']["variables"]['s1'] = s1m1
|
psu_block['m1']["variables"]['s1'] = s1m1
|
||||||
|
|
||||||
def s2m1(_g, step, sL, s, _input):
|
def s2m1(_g, step, sL, s, _input):
|
||||||
|
print(_g)
|
||||||
return 's2', _g['beta']
|
return 's2', _g['beta']
|
||||||
psu_block['m1']["variables"]['s2'] = s2m1
|
psu_block['m1']["variables"]['s2'] = s2m1
|
||||||
|
|
||||||
|
|
@ -94,22 +96,22 @@ def update_timestamp(_g, step, sL, s, _input):
|
||||||
for m in ['m1','m2','m3']:
|
for m in ['m1','m2','m3']:
|
||||||
# psu_block[m]["variables"]['timestamp'] = update_timestamp
|
# psu_block[m]["variables"]['timestamp'] = update_timestamp
|
||||||
psu_block[m]["variables"]['timestamp'] = var_timestep_trigger(y='timestamp', f=update_timestamp)
|
psu_block[m]["variables"]['timestamp'] = var_timestep_trigger(y='timestamp', f=update_timestamp)
|
||||||
psu_block[m]["variables"]['timestamp'] = var_trigger(
|
# psu_block[m]["variables"]['timestamp'] = var_trigger(
|
||||||
y='timestamp', f=update_timestamp, pre_conditions={'substep': [0, system_substeps]}, cond_op=lambda a, b: a and b
|
# y='timestamp', f=update_timestamp, pre_conditions={'substep': [0, system_substeps]}, cond_op=lambda a, b: a and b
|
||||||
)
|
# )
|
||||||
|
|
||||||
proc_one_coef_A = 0.7
|
proc_one_coef = 0.7
|
||||||
def es3p1(_g, step, sL, s, _input):
|
def es3(_g, step, sL, s, _input):
|
||||||
return 's3', s['s3']
|
return 's3', s['s3'] + proc_one_coef
|
||||||
# use `timestep_trigger` to update every ts
|
# use `timestep_trigger` to update every ts
|
||||||
for m in ['m1','m2','m3']:
|
for m in ['m1','m2','m3']:
|
||||||
psu_block[m]["variables"]['s3'] = var_timestep_trigger(y='s3', f=es3p1)
|
psu_block[m]["variables"]['s3'] = var_timestep_trigger(y='s3', f=es3)
|
||||||
|
|
||||||
proc_one_coef_B = 1.3
|
|
||||||
def es4p2(_g, step, sL, s, _input):
|
def es4(_g, step, sL, s, _input):
|
||||||
return 's4', s['s4'] #+ 4 #g['gamma'] + proc_one_coef_B
|
return 's4', s['s4'] + _g['gamma']
|
||||||
for m in ['m1','m2','m3']:
|
for m in ['m1','m2','m3']:
|
||||||
psu_block[m]["variables"]['s4'] = var_timestep_trigger(y='s4', f=es4p2)
|
psu_block[m]["variables"]['s4'] = var_timestep_trigger(y='s4', f=es4)
|
||||||
|
|
||||||
|
|
||||||
# ToDo: The number of values entered in sweep should be the # of config objs created,
|
# ToDo: The number of values entered in sweep should be the # of config objs created,
|
||||||
|
|
@ -119,16 +121,18 @@ for m in ['m1','m2','m3']:
|
||||||
|
|
||||||
# Genesis States
|
# Genesis States
|
||||||
genesis_states = {
|
genesis_states = {
|
||||||
's1': Decimal(0.0),
|
's1': 0.0,
|
||||||
's2': Decimal(0.0),
|
's2': 0.0,
|
||||||
's3': Decimal(1.0),
|
's3': 1.0,
|
||||||
's4': Decimal(1.0),
|
's4': 1.0,
|
||||||
'timestamp': '2018-10-01 15:16:24'
|
'timestamp': '2018-10-01 15:16:24'
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
# Environment Process
|
# Environment Process
|
||||||
# ToDo: Validate - make env proc trigger field agnostic
|
# ToDo: Validate - make env proc trigger field agnostic
|
||||||
env_process["s3"] = [lambda x: x + 1, lambda x: x + 1]
|
env_process["s3"] = [lambda _g, x: _g['beta'], lambda _g, x: x + 1]
|
||||||
env_process["s4"] = env_timestep_trigger(trigger_field='field', trigger_vals=[5], funct_list=[lambda x: 1, lambda x: x + 2])
|
env_process["s4"] = env_timestep_trigger(trigger_field='timestep', trigger_vals=[5], funct_list=[lambda _g, x: _g['beta']])
|
||||||
|
|
||||||
|
|
||||||
# config_sim Necessary
|
# config_sim Necessary
|
||||||
|
|
|
||||||
|
|
@ -21,7 +21,7 @@ cols = [
|
||||||
'udo_policy_tracker_a', 'udo_policies', 'udo_policy_tracker_b',
|
'udo_policy_tracker_a', 'udo_policies', 'udo_policy_tracker_b',
|
||||||
'timestamp'
|
'timestamp'
|
||||||
]
|
]
|
||||||
raw_result, tensor_field = run.main()
|
raw_result, tensor_field = run.execute()
|
||||||
result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
|
result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
|
||||||
# result = pd.concat([result.drop(['c'], axis=1), result['c'].apply(pd.Series)], axis=1)
|
# result = pd.concat([result.drop(['c'], axis=1), result['c'].apply(pd.Series)], axis=1)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -21,7 +21,7 @@ cols = [
|
||||||
'udo_policies', 'udo_policy_tracker',
|
'udo_policies', 'udo_policy_tracker',
|
||||||
'timestamp'
|
'timestamp'
|
||||||
]
|
]
|
||||||
raw_result, tensor_field = run.main()
|
raw_result, tensor_field = run.execute()
|
||||||
result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
|
result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
|
||||||
# result = pd.concat([result.drop(['c'], axis=1), result['c'].apply(pd.Series)], axis=1)
|
# result = pd.concat([result.drop(['c'], axis=1), result['c'].apply(pd.Series)], axis=1)
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -7,9 +7,12 @@ from datetime import timedelta
|
||||||
from cadCAD.configuration.utils.policyAggregation import get_base_value
|
from cadCAD.configuration.utils.policyAggregation import get_base_value
|
||||||
|
|
||||||
from cadCAD.configuration import append_configs
|
from cadCAD.configuration import append_configs
|
||||||
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim
|
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim, time_step, \
|
||||||
|
env_trigger
|
||||||
|
|
||||||
|
# from cadCAD.configuration.utils import timestep_trigger
|
||||||
|
from simulations.regression_tests.sweep_config import var_timestep_trigger
|
||||||
|
|
||||||
from cadCAD.configuration.utils import timestep_trigger
|
|
||||||
|
|
||||||
seeds = {
|
seeds = {
|
||||||
'z': np.random.RandomState(1),
|
'z': np.random.RandomState(1),
|
||||||
|
|
@ -70,59 +73,40 @@ def policies(_g, step, sL, s, _input):
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Exogenous States
|
# Exogenous States
|
||||||
proc_one_coef_A = 0.7
|
proc_one_coef_A = 0.7
|
||||||
proc_one_coef_B = 1.3
|
proc_one_coef_B = 1.3
|
||||||
|
|
||||||
def es3p1(_g, step, sL, s, _input):
|
def es3(_g, step, sL, s, _input):
|
||||||
y = 's3'
|
y = 's3'
|
||||||
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
|
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
def es4p2(_g, step, sL, s, _input):
|
def es4(_g, step, sL, s, _input):
|
||||||
y = 's4'
|
y = 's4'
|
||||||
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
|
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
def update_timestamp(_g, step, sL, s, _input):
|
||||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
y = 'timestamp'
|
||||||
def es5p2(_g, step, sL, s, _input):
|
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
|
||||||
y = 'timestep'
|
|
||||||
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
|
|
||||||
return (y, x)
|
|
||||||
|
|
||||||
|
|
||||||
# Environment States
|
|
||||||
def env_a(x):
|
|
||||||
return 5
|
|
||||||
def env_b(x):
|
|
||||||
return 10
|
|
||||||
# def what_ever(x):
|
|
||||||
# return x + 1
|
|
||||||
|
|
||||||
|
|
||||||
# Genesis States
|
# Genesis States
|
||||||
genesis_states = {
|
genesis_states = {
|
||||||
's1': Decimal(0.0),
|
's1': 0.0,
|
||||||
's2': Decimal(0.0),
|
's2': 0.0,
|
||||||
's3': Decimal(1.0),
|
's3': 1.0,
|
||||||
's4': Decimal(1.0)
|
's4': 1.0,
|
||||||
# 'timestep': '2018-10-01 15:16:24'
|
'timestamp': '2018-10-01 15:16:24'
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
# raw_exogenous_states = {
|
# Environment Process
|
||||||
# "s3": es3p1,
|
# ToDo: Depreciation Waring for env_proc_trigger convention
|
||||||
# "s4": es4p2,
|
|
||||||
# # "timestep": es5p2
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
env_processes = {
|
env_processes = {
|
||||||
"s3": env_a,
|
"s3": [lambda _g, x: 5],
|
||||||
"s4": env_proc_trigger(1, env_b)
|
"s4": env_trigger(3)(trigger_field='timestep', trigger_vals=[1], funct_list=[lambda _g, x: 10])
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -135,8 +119,9 @@ partial_state_update_blocks = {
|
||||||
"variables": {
|
"variables": {
|
||||||
"s1": s1m1,
|
"s1": s1m1,
|
||||||
"s2": s2m1,
|
"s2": s2m1,
|
||||||
"s3": es3p1,
|
"s3": es3,
|
||||||
"s4": es4p2,
|
"s4": es4,
|
||||||
|
"timestamp": update_timestamp
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"m2": {
|
"m2": {
|
||||||
|
|
@ -147,8 +132,8 @@ partial_state_update_blocks = {
|
||||||
"variables": {
|
"variables": {
|
||||||
"s1": s1m2,
|
"s1": s1m2,
|
||||||
"s2": s2m2,
|
"s2": s2m2,
|
||||||
# "s3": timestep_trigger(3, 's3', es3p1),
|
# "s3": es3p1,
|
||||||
# "s4": timestep_trigger(3, 's4', es4p2),
|
# "s4": es4p2,
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"m3": {
|
"m3": {
|
||||||
|
|
@ -159,8 +144,8 @@ partial_state_update_blocks = {
|
||||||
"variables": {
|
"variables": {
|
||||||
"s1": s1m3,
|
"s1": s1m3,
|
||||||
"s2": s2m3,
|
"s2": s2m3,
|
||||||
# "s3": timestep_trigger(3, 's3', es3p1),
|
# "s3": es3p1,
|
||||||
# "s4": timestep_trigger(3, 's4', es4p2),
|
# "s4": es4p2,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -176,9 +161,9 @@ sim_config = config_sim(
|
||||||
append_configs(
|
append_configs(
|
||||||
sim_configs=sim_config,
|
sim_configs=sim_config,
|
||||||
initial_state=genesis_states,
|
initial_state=genesis_states,
|
||||||
seeds=seeds,
|
# seeds=seeds,
|
||||||
raw_exogenous_states={}, #raw_exogenous_states,
|
# raw_exogenous_states=raw_exogenous_states,
|
||||||
env_processes={}, #env_processes,
|
env_processes=env_processes,
|
||||||
partial_state_update_blocks=partial_state_update_blocks,
|
partial_state_update_blocks=partial_state_update_blocks,
|
||||||
policy_ops=[lambda a, b: a + b]
|
policy_ops=[lambda a, b: a + b]
|
||||||
)
|
)
|
||||||
|
|
@ -1,15 +1,15 @@
|
||||||
from decimal import Decimal
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
|
|
||||||
from cadCAD.configuration import append_configs
|
from cadCAD.configuration import append_configs
|
||||||
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim
|
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim, env_trigger, \
|
||||||
|
time_step
|
||||||
|
|
||||||
seeds = {
|
seeds = {
|
||||||
'z': np.random.RandomState(1),
|
'z': np.random.RandomState(1),
|
||||||
'a': np.random.RandomState(2),
|
'a': np.random.RandomState(2),
|
||||||
'b': np.random.RandomState(3),
|
'b': np.random.RandomState(3),
|
||||||
'c': np.random.RandomState(3)
|
'c': np.random.RandomState(4)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -63,56 +63,38 @@ def s2m3(_g, step, sL, s, _input):
|
||||||
proc_one_coef_A = 0.7
|
proc_one_coef_A = 0.7
|
||||||
proc_one_coef_B = 1.3
|
proc_one_coef_B = 1.3
|
||||||
|
|
||||||
def es3p1(_g, step, sL, s, _input):
|
def es3(_g, step, sL, s, _input):
|
||||||
y = 's3'
|
y = 's3'
|
||||||
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
|
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
def es4p2(_g, step, sL, s, _input):
|
def es4(_g, step, sL, s, _input):
|
||||||
y = 's4'
|
y = 's4'
|
||||||
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
|
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
|
||||||
return (y, x)
|
return (y, x)
|
||||||
|
|
||||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
def update_timestamp(_g, step, sL, s, _input):
|
||||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
y = 'timestamp'
|
||||||
def es5p2(_g, step, sL, s, _input):
|
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
|
||||||
y = 'timestep'
|
|
||||||
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
|
|
||||||
return (y, x)
|
|
||||||
|
|
||||||
|
|
||||||
# Environment States
|
|
||||||
def env_a(x):
|
|
||||||
return 10
|
|
||||||
def env_b(x):
|
|
||||||
return 10
|
|
||||||
# def what_ever(x):
|
|
||||||
# return x + 1
|
|
||||||
|
|
||||||
|
|
||||||
# Genesis States
|
# Genesis States
|
||||||
genesis_states = {
|
genesis_states = {
|
||||||
's1': Decimal(0.0),
|
's1': 0,
|
||||||
's2': Decimal(0.0),
|
's2': 0,
|
||||||
's3': Decimal(1.0),
|
's3': 1,
|
||||||
's4': Decimal(1.0),
|
's4': 1,
|
||||||
# 'timestep': '2018-10-01 15:16:24'
|
'timestamp': '2018-10-01 15:16:24'
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
raw_exogenous_states = {
|
|
||||||
"s3": es3p1,
|
|
||||||
"s4": es4p2,
|
|
||||||
# "timestep": es5p2
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# Environment Process
|
||||||
|
# ToDo: Depreciation Waring for env_proc_trigger convention
|
||||||
env_processes = {
|
env_processes = {
|
||||||
"s3": env_proc_trigger(1, env_a),
|
"s3": [lambda _g, x: 5],
|
||||||
"s4": env_proc_trigger(1, env_b)
|
"s4": env_trigger(3)(trigger_field='timestep', trigger_vals=[2], funct_list=[lambda _g, x: 10])
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
partial_state_update_block = {
|
partial_state_update_block = {
|
||||||
"m1": {
|
"m1": {
|
||||||
"policies": {
|
"policies": {
|
||||||
|
|
@ -122,6 +104,9 @@ partial_state_update_block = {
|
||||||
"states": {
|
"states": {
|
||||||
"s1": s1m1,
|
"s1": s1m1,
|
||||||
# "s2": s2m1
|
# "s2": s2m1
|
||||||
|
"s3": es3,
|
||||||
|
"s4": es4,
|
||||||
|
"timestep": update_timestamp
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"m2": {
|
"m2": {
|
||||||
|
|
@ -159,7 +144,6 @@ append_configs(
|
||||||
sim_configs=sim_config,
|
sim_configs=sim_config,
|
||||||
initial_state=genesis_states,
|
initial_state=genesis_states,
|
||||||
seeds=seeds,
|
seeds=seeds,
|
||||||
raw_exogenous_states=raw_exogenous_states,
|
|
||||||
env_processes=env_processes,
|
env_processes=env_processes,
|
||||||
partial_state_update_blocks=partial_state_update_block
|
partial_state_update_blocks=partial_state_update_block
|
||||||
)
|
)
|
||||||
File diff suppressed because one or more lines are too long
|
|
@ -0,0 +1,150 @@
|
||||||
|
import networkx as nx
|
||||||
|
from scipy.stats import expon, gamma
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
#helper functions
|
||||||
|
def get_nodes_by_type(g, node_type_selection):
|
||||||
|
return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection ]
|
||||||
|
|
||||||
|
def get_edges_by_type(g, edge_type_selection):
|
||||||
|
return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection ]
|
||||||
|
|
||||||
|
def total_funds_given_total_supply(total_supply):
|
||||||
|
|
||||||
|
#can put any bonding curve invariant here for initializatio!
|
||||||
|
total_funds = total_supply
|
||||||
|
|
||||||
|
return total_funds
|
||||||
|
|
||||||
|
#maximum share of funds a proposal can take
|
||||||
|
default_beta = .2 #later we should set this to be param so we can sweep it
|
||||||
|
# tuning param for the trigger function
|
||||||
|
default_rho = .001
|
||||||
|
|
||||||
|
def trigger_threshold(requested, funds, supply, beta = default_beta, rho = default_rho):
|
||||||
|
|
||||||
|
share = requested/funds
|
||||||
|
if share < beta:
|
||||||
|
return rho*supply/(beta-share)**2
|
||||||
|
else:
|
||||||
|
return np.inf
|
||||||
|
|
||||||
|
def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_func =trigger_threshold ):
|
||||||
|
network = nx.DiGraph()
|
||||||
|
for i in range(n):
|
||||||
|
network.add_node(i)
|
||||||
|
network.nodes[i]['type']="participant"
|
||||||
|
|
||||||
|
h_rv = expon.rvs(loc=0.0, scale=1000)
|
||||||
|
network.nodes[i]['holdings'] = h_rv
|
||||||
|
|
||||||
|
s_rv = np.random.rand()
|
||||||
|
network.nodes[i]['sentiment'] = s_rv
|
||||||
|
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
initial_supply = np.sum([ network.nodes[i]['holdings'] for i in participants])
|
||||||
|
|
||||||
|
initial_funds = funds_func(initial_supply)
|
||||||
|
|
||||||
|
#generate initial proposals
|
||||||
|
for ind in range(m):
|
||||||
|
j = n+ind
|
||||||
|
network.add_node(j)
|
||||||
|
network.nodes[j]['type']="proposal"
|
||||||
|
network.nodes[j]['conviction']=0
|
||||||
|
network.nodes[j]['status']='candidate'
|
||||||
|
network.nodes[j]['age']=0
|
||||||
|
|
||||||
|
r_rv = gamma.rvs(3,loc=0.001, scale=10000)
|
||||||
|
network.node[j]['funds_requested'] = r_rv
|
||||||
|
|
||||||
|
network.nodes[j]['trigger']= trigger_threshold(r_rv, initial_funds, initial_supply)
|
||||||
|
|
||||||
|
for i in range(n):
|
||||||
|
network.add_edge(i, j)
|
||||||
|
|
||||||
|
rv = np.random.rand()
|
||||||
|
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||||
|
network.edges[(i, j)]['affinity'] = a_rv
|
||||||
|
network.edges[(i,j)]['tokens'] = 0
|
||||||
|
network.edges[(i, j)]['conviction'] = 0
|
||||||
|
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
|
||||||
|
|
||||||
|
return network, initial_funds, initial_supply, total_requested
|
||||||
|
|
||||||
|
def trigger_sweep(field, trigger_func,xmax=.2,default_alpha=.5):
|
||||||
|
|
||||||
|
if field == 'token_supply':
|
||||||
|
alpha = default_alpha
|
||||||
|
share_of_funds = np.arange(.001,xmax,.001)
|
||||||
|
total_supply = np.arange(0,10**9, 10**6)
|
||||||
|
demo_data_XY = np.outer(share_of_funds,total_supply)
|
||||||
|
|
||||||
|
demo_data_Z0=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z1=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z2=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z3=np.empty(demo_data_XY.shape)
|
||||||
|
for sof_ind in range(len(share_of_funds)):
|
||||||
|
sof = share_of_funds[sof_ind]
|
||||||
|
for ts_ind in range(len(total_supply)):
|
||||||
|
ts = total_supply[ts_ind]
|
||||||
|
tc = ts /(1-alpha)
|
||||||
|
trigger = trigger_func(sof, 1, ts)
|
||||||
|
demo_data_Z0[sof_ind,ts_ind] = np.log10(trigger)
|
||||||
|
demo_data_Z1[sof_ind,ts_ind] = trigger
|
||||||
|
demo_data_Z2[sof_ind,ts_ind] = trigger/tc #share of maximum possible conviction
|
||||||
|
demo_data_Z3[sof_ind,ts_ind] = np.log10(trigger/tc)
|
||||||
|
return {'log10_trigger':demo_data_Z0,
|
||||||
|
'trigger':demo_data_Z1,
|
||||||
|
'share_of_max_conv': demo_data_Z2,
|
||||||
|
'log10_share_of_max_conv':demo_data_Z3,
|
||||||
|
'total_supply':total_supply,
|
||||||
|
'share_of_funds':share_of_funds}
|
||||||
|
elif field == 'alpha':
|
||||||
|
alpha = np.arange(.5,1,.01)
|
||||||
|
share_of_funds = np.arange(.001,xmax,.001)
|
||||||
|
total_supply = 10**9
|
||||||
|
demo_data_XY = np.outer(share_of_funds,alpha)
|
||||||
|
|
||||||
|
demo_data_Z4=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z5=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z6=np.empty(demo_data_XY.shape)
|
||||||
|
demo_data_Z7=np.empty(demo_data_XY.shape)
|
||||||
|
for sof_ind in range(len(share_of_funds)):
|
||||||
|
sof = share_of_funds[sof_ind]
|
||||||
|
for a_ind in range(len(alpha)):
|
||||||
|
ts = total_supply
|
||||||
|
a = alpha[a_ind]
|
||||||
|
tc = ts /(1-a)
|
||||||
|
trigger = trigger_func(sof, 1, ts)
|
||||||
|
demo_data_Z4[sof_ind,a_ind] = np.log10(trigger)
|
||||||
|
demo_data_Z5[sof_ind,a_ind] = trigger
|
||||||
|
demo_data_Z6[sof_ind,a_ind] = trigger/tc #share of maximum possible conviction
|
||||||
|
demo_data_Z7[sof_ind,a_ind] = np.log10(trigger/tc)
|
||||||
|
|
||||||
|
return {'log10_trigger':demo_data_Z4,
|
||||||
|
'trigger':demo_data_Z5,
|
||||||
|
'share_of_max_conv': demo_data_Z6,
|
||||||
|
'log10_share_of_max_conv':demo_data_Z7,
|
||||||
|
'alpha':alpha,
|
||||||
|
'share_of_funds':share_of_funds}
|
||||||
|
|
||||||
|
else:
|
||||||
|
return "invalid field"
|
||||||
|
|
||||||
|
def trigger_plotter(share_of_funds,Z, color_label,y, ylabel,cmap='jet'):
|
||||||
|
dims = (10, 5)
|
||||||
|
fig, ax = plt.subplots(figsize=dims)
|
||||||
|
|
||||||
|
cf = plt.contourf(share_of_funds, y, Z.T, 100, cmap=cmap)
|
||||||
|
cbar=plt.colorbar(cf)
|
||||||
|
plt.axis([share_of_funds[0], share_of_funds[-1], y[0], y[-1]])
|
||||||
|
#ax.set_xscale('log')
|
||||||
|
plt.ylabel(ylabel)
|
||||||
|
plt.xlabel('Share of Funds Requested')
|
||||||
|
plt.title('Trigger Function Map')
|
||||||
|
|
||||||
|
cbar.ax.set_ylabel(color_label)
|
||||||
|
|
@ -0,0 +1,548 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from cadCAD.configuration.utils import config_sim
|
||||||
|
from simulations.validation.conviction_helpers import *
|
||||||
|
#import networkx as nx
|
||||||
|
from scipy.stats import expon, gamma
|
||||||
|
|
||||||
|
|
||||||
|
#functions for partial state update block 1
|
||||||
|
|
||||||
|
#Driving processes: arrival of participants, proposals and funds
|
||||||
|
##-----------------------------------------
|
||||||
|
def gen_new_participant(network, new_participant_holdings):
|
||||||
|
|
||||||
|
i = len([node for node in network.nodes])
|
||||||
|
|
||||||
|
network.add_node(i)
|
||||||
|
network.nodes[i]['type']="participant"
|
||||||
|
|
||||||
|
s_rv = np.random.rand()
|
||||||
|
network.nodes[i]['sentiment'] = s_rv
|
||||||
|
network.nodes[i]['holdings']=new_participant_holdings
|
||||||
|
|
||||||
|
for j in get_nodes_by_type(network, 'proposal'):
|
||||||
|
network.add_edge(i, j)
|
||||||
|
|
||||||
|
rv = np.random.rand()
|
||||||
|
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||||
|
network.edges[(i, j)]['affinity'] = a_rv
|
||||||
|
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
|
||||||
|
network.edges[(i, j)]['conviction'] = 0
|
||||||
|
|
||||||
|
return network
|
||||||
|
|
||||||
|
|
||||||
|
scale_factor = 1000
|
||||||
|
|
||||||
|
def gen_new_proposal(network, funds, supply, total_funds, trigger_func):
|
||||||
|
j = len([node for node in network.nodes])
|
||||||
|
network.add_node(j)
|
||||||
|
network.nodes[j]['type']="proposal"
|
||||||
|
|
||||||
|
network.nodes[j]['conviction']=0
|
||||||
|
network.nodes[j]['status']='candidate'
|
||||||
|
network.nodes[j]['age']=0
|
||||||
|
|
||||||
|
rescale = scale_factor*funds/total_funds
|
||||||
|
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
|
||||||
|
network.node[j]['funds_requested'] = r_rv
|
||||||
|
|
||||||
|
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
|
||||||
|
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
proposing_participant = np.random.choice(participants)
|
||||||
|
|
||||||
|
for i in participants:
|
||||||
|
network.add_edge(i, j)
|
||||||
|
if i==proposing_participant:
|
||||||
|
network.edges[(i, j)]['affinity']=1
|
||||||
|
else:
|
||||||
|
rv = np.random.rand()
|
||||||
|
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||||
|
network.edges[(i, j)]['affinity'] = a_rv
|
||||||
|
|
||||||
|
network.edges[(i, j)]['conviction'] = 0
|
||||||
|
network.edges[(i,j)]['tokens'] = 0
|
||||||
|
return network
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def driving_process(params, step, sL, s):
|
||||||
|
|
||||||
|
#placeholder plumbing for random processes
|
||||||
|
arrival_rate = 10/s['sentiment']
|
||||||
|
rv1 = np.random.rand()
|
||||||
|
new_participant = bool(rv1<1/arrival_rate)
|
||||||
|
if new_participant:
|
||||||
|
h_rv = expon.rvs(loc=0.0, scale=1000)
|
||||||
|
new_participant_holdings = h_rv
|
||||||
|
else:
|
||||||
|
new_participant_holdings = 0
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
affinities = [network.edges[e]['affinity'] for e in network.edges ]
|
||||||
|
median_affinity = np.median(affinities)
|
||||||
|
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
|
||||||
|
|
||||||
|
funds = s['funds']
|
||||||
|
total_funds_requested = np.sum(fund_requests)
|
||||||
|
|
||||||
|
proposal_rate = 10/median_affinity * total_funds_requested/funds
|
||||||
|
rv2 = np.random.rand()
|
||||||
|
new_proposal = bool(rv2<1/proposal_rate)
|
||||||
|
|
||||||
|
sentiment = s['sentiment']
|
||||||
|
funds = s['funds']
|
||||||
|
scale_factor = 1+4000*sentiment**2
|
||||||
|
|
||||||
|
#this shouldn't happen but expon is throwing domain errors
|
||||||
|
if scale_factor > 1:
|
||||||
|
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
|
||||||
|
else:
|
||||||
|
funds_arrival = 0
|
||||||
|
|
||||||
|
return({'new_participant':new_participant,
|
||||||
|
'new_participant_holdings':new_participant_holdings,
|
||||||
|
'new_proposal':new_proposal,
|
||||||
|
'funds_arrival':funds_arrival})
|
||||||
|
|
||||||
|
|
||||||
|
#Mechanisms for updating the state based on driving processes
|
||||||
|
##---
|
||||||
|
def update_network(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
print(params)
|
||||||
|
print(type(params))
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
funds = s['funds']
|
||||||
|
supply = s['supply']
|
||||||
|
trigger_func = params['trigger_func']
|
||||||
|
|
||||||
|
new_participant = _input['new_participant'] #T/F
|
||||||
|
new_proposal = _input['new_proposal'] #T/F
|
||||||
|
|
||||||
|
if new_participant:
|
||||||
|
new_participant_holdings = _input['new_participant_holdings']
|
||||||
|
network = gen_new_participant(network, new_participant_holdings)
|
||||||
|
|
||||||
|
if new_proposal:
|
||||||
|
network= gen_new_proposal(network,funds,supply )
|
||||||
|
|
||||||
|
#update age of the existing proposals
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
|
||||||
|
for j in proposals:
|
||||||
|
network.nodes[j]['age'] = network.nodes[j]['age']+1
|
||||||
|
if network.nodes[j]['status'] == 'candidate':
|
||||||
|
requested = network.nodes[j]['funds_requested']
|
||||||
|
network.nodes[j]['trigger'] = trigger_func(requested, funds, supply)
|
||||||
|
else:
|
||||||
|
network.nodes[j]['trigger'] = np.nan
|
||||||
|
|
||||||
|
key = 'network'
|
||||||
|
value = network
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def increment_funds(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
funds = s['funds']
|
||||||
|
funds_arrival = _input['funds_arrival']
|
||||||
|
|
||||||
|
#increment funds
|
||||||
|
funds = funds + funds_arrival
|
||||||
|
|
||||||
|
key = 'funds'
|
||||||
|
value = funds
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def increment_supply(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
supply = s['supply']
|
||||||
|
supply_arrival = _input['new_participant_holdings']
|
||||||
|
|
||||||
|
#increment funds
|
||||||
|
supply = supply + supply_arrival
|
||||||
|
|
||||||
|
key = 'supply'
|
||||||
|
value = supply
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
#functions for partial state update block 2
|
||||||
|
|
||||||
|
#Driving processes: completion of previously funded proposals
|
||||||
|
##-----------------------------------------
|
||||||
|
|
||||||
|
def check_progress(params, step, sL, s):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
|
||||||
|
completed = []
|
||||||
|
for j in proposals:
|
||||||
|
if network.nodes[j]['status'] == 'active':
|
||||||
|
grant_size = network.nodes[j]['funds_requested']
|
||||||
|
base_completion_rate=params['base_completion_rate']
|
||||||
|
likelihood = 1.0/(base_completion_rate+np.log(grant_size))
|
||||||
|
if np.random.rand() < likelihood:
|
||||||
|
completed.append(j)
|
||||||
|
|
||||||
|
return({'completed':completed})
|
||||||
|
|
||||||
|
|
||||||
|
#Mechanisms for updating the state based on check progress
|
||||||
|
##---
|
||||||
|
def complete_proposal(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
|
||||||
|
completed = _input['completed']
|
||||||
|
for j in completed:
|
||||||
|
network.nodes[j]['status']='completed'
|
||||||
|
for i in participants:
|
||||||
|
force = network.edges[(i,j)]['affinity']
|
||||||
|
sentiment = network.node[i]['sentiment']
|
||||||
|
network.node[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
|
||||||
|
|
||||||
|
key = 'network'
|
||||||
|
value = network
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def update_sentiment_on_completion(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
completed = _input['completed']
|
||||||
|
|
||||||
|
grants_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='active'])
|
||||||
|
|
||||||
|
grants_completed = np.sum([network.nodes[j]['funds_requested'] for j in completed])
|
||||||
|
|
||||||
|
sentiment = s['sentiment']
|
||||||
|
|
||||||
|
force = grants_completed/grants_outstanding
|
||||||
|
mu = params['sentiment_decay']
|
||||||
|
if (force >=0) and (force <=1):
|
||||||
|
sentiment = get_sentimental(sentiment, force, mu)
|
||||||
|
else:
|
||||||
|
sentiment = get_sentimental(sentiment, 0, mu)
|
||||||
|
|
||||||
|
|
||||||
|
key = 'sentiment'
|
||||||
|
value = sentiment
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def get_sentimental(sentiment, force, decay=0):
|
||||||
|
mu = decay
|
||||||
|
sentiment = sentiment*(1-mu) + force
|
||||||
|
|
||||||
|
if sentiment > 1:
|
||||||
|
sentiment = 1
|
||||||
|
|
||||||
|
return sentiment
|
||||||
|
|
||||||
|
#functions for partial state update block 3
|
||||||
|
|
||||||
|
#Decision processes: trigger function policy
|
||||||
|
##-----------------------------------------
|
||||||
|
|
||||||
|
def trigger_function(params, step, sL, s):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
funds = s['funds']
|
||||||
|
supply = s['supply']
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
tmin = params['tmin']
|
||||||
|
|
||||||
|
accepted = []
|
||||||
|
triggers = {}
|
||||||
|
for j in proposals:
|
||||||
|
if network.nodes[j]['status'] == 'candidate':
|
||||||
|
requested = network.nodes[j]['funds_requested']
|
||||||
|
age = network.nodes[j]['age']
|
||||||
|
threshold = trigger_threshold(requested, funds, supply)
|
||||||
|
if age > tmin:
|
||||||
|
conviction = network.nodes[j]['conviction']
|
||||||
|
if conviction >threshold:
|
||||||
|
accepted.append(j)
|
||||||
|
else:
|
||||||
|
threshold = np.nan
|
||||||
|
|
||||||
|
triggers[j] = threshold
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
return({'accepted':accepted, 'triggers':triggers})
|
||||||
|
|
||||||
|
def decrement_funds(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
funds = s['funds']
|
||||||
|
network = s['network']
|
||||||
|
accepted = _input['accepted']
|
||||||
|
|
||||||
|
#decrement funds
|
||||||
|
for j in accepted:
|
||||||
|
funds = funds - network.nodes[j]['funds_requested']
|
||||||
|
|
||||||
|
key = 'funds'
|
||||||
|
value = funds
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def update_proposals(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
accepted = _input['accepted']
|
||||||
|
triggers = _input['triggers']
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
proposals = get_nodes_by_type(network, 'proposals')
|
||||||
|
sensitivity = params['sensitivity']
|
||||||
|
|
||||||
|
for j in proposals:
|
||||||
|
network.nodes[j]['trigger'] = triggers[j]
|
||||||
|
|
||||||
|
#bookkeeping conviction and participant sentiment
|
||||||
|
for j in accepted:
|
||||||
|
network.nodes[j]['status']='active'
|
||||||
|
network.nodes[j]['conviction']=np.nan
|
||||||
|
#change status to active
|
||||||
|
for i in participants:
|
||||||
|
|
||||||
|
#operating on edge = (i,j)
|
||||||
|
#reset tokens assigned to other candidates
|
||||||
|
network.edges[(i,j)]['tokens']=0
|
||||||
|
network.edges[(i,j)]['conviction'] = np.nan
|
||||||
|
|
||||||
|
#update participants sentiments (positive or negative)
|
||||||
|
affinities = [network.edges[(i,p)]['affinity'] for p in proposals if not(p in accepted)]
|
||||||
|
if len(affinities)>1:
|
||||||
|
max_affinity = np.max(affinities)
|
||||||
|
force = network.edges[(i,j)]['affinity']-sensitivity*max_affinity
|
||||||
|
else:
|
||||||
|
force = 0
|
||||||
|
|
||||||
|
#based on what their affinities to the accepted proposals
|
||||||
|
network.nodes[i]['sentiment'] = get_sentimental(network.nodes[i]['sentiment'], force, False)
|
||||||
|
|
||||||
|
|
||||||
|
key = 'network'
|
||||||
|
value = network
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def update_sentiment_on_release(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
accepted = _input['accepted']
|
||||||
|
|
||||||
|
proposals_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate'])
|
||||||
|
|
||||||
|
proposals_accepted = np.sum([network.nodes[j]['funds_requested'] for j in accepted])
|
||||||
|
|
||||||
|
sentiment = s['sentiment']
|
||||||
|
force = proposals_accepted/proposals_outstanding
|
||||||
|
if (force >=0) and (force <=1):
|
||||||
|
sentiment = get_sentimental(sentiment, force, False)
|
||||||
|
else:
|
||||||
|
sentiment = get_sentimental(sentiment, 0, False)
|
||||||
|
|
||||||
|
key = 'sentiment'
|
||||||
|
value = sentiment
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def participants_decisions(params, step, sL, s):
|
||||||
|
network = s['network']
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
|
||||||
|
sensitivity = params['sensitivity']
|
||||||
|
|
||||||
|
gain = .01
|
||||||
|
delta_holdings={}
|
||||||
|
proposals_supported ={}
|
||||||
|
for i in participants:
|
||||||
|
force = network.nodes[i]['sentiment']-sensitivity
|
||||||
|
delta_holdings[i] = network.nodes[i]['holdings']*gain*force
|
||||||
|
|
||||||
|
support = []
|
||||||
|
for j in candidates:
|
||||||
|
affinity = network.edges[(i, j)]['affinity']
|
||||||
|
cutoff = sensitivity*np.max([network.edges[(i,p)]['affinity'] for p in candidates])
|
||||||
|
if cutoff <.5:
|
||||||
|
cutoff = .5
|
||||||
|
|
||||||
|
if affinity > cutoff:
|
||||||
|
support.append(j)
|
||||||
|
|
||||||
|
proposals_supported[i] = support
|
||||||
|
|
||||||
|
return({'delta_holdings':delta_holdings, 'proposals_supported':proposals_supported})
|
||||||
|
|
||||||
|
def update_tokens(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
network = s['network']
|
||||||
|
delta_holdings = _input['delta_holdings']
|
||||||
|
proposals = get_nodes_by_type(network, 'proposal')
|
||||||
|
proposals_supported = _input['proposals_supported']
|
||||||
|
participants = get_nodes_by_type(network, 'participant')
|
||||||
|
alpha = params['alpha']
|
||||||
|
|
||||||
|
for i in participants:
|
||||||
|
network.nodes[i]['holdings'] = network.nodes[i]['holdings']+delta_holdings[i]
|
||||||
|
supported = proposals_supported[i]
|
||||||
|
total_affinity = np.sum([ network.edges[(i, j)]['affinity'] for j in supported])
|
||||||
|
for j in proposals:
|
||||||
|
if j in supported:
|
||||||
|
normalized_affinity = network.edges[(i, j)]['affinity']/total_affinity
|
||||||
|
network.edges[(i, j)]['tokens'] = normalized_affinity*network.nodes[i]['holdings']
|
||||||
|
else:
|
||||||
|
network.edges[(i, j)]['tokens'] = 0
|
||||||
|
|
||||||
|
prior_conviction = network.edges[(i, j)]['conviction']
|
||||||
|
current_tokens = network.edges[(i, j)]['tokens']
|
||||||
|
network.edges[(i, j)]['conviction'] =current_tokens+alpha*prior_conviction
|
||||||
|
|
||||||
|
for j in proposals:
|
||||||
|
network.nodes[j]['conviction'] = np.sum([ network.edges[(i, j)]['conviction'] for i in participants])
|
||||||
|
|
||||||
|
key = 'network'
|
||||||
|
value = network
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
def update_supply(params, step, sL, s, _input):
|
||||||
|
|
||||||
|
supply = s['supply']
|
||||||
|
delta_holdings = _input['delta_holdings']
|
||||||
|
delta_supply = np.sum([v for v in delta_holdings.values()])
|
||||||
|
|
||||||
|
supply = supply + delta_supply
|
||||||
|
|
||||||
|
key = 'supply'
|
||||||
|
value = supply
|
||||||
|
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||||
|
# The Partial State Update Blocks
|
||||||
|
partial_state_update_blocks = [
|
||||||
|
{
|
||||||
|
'policies': {
|
||||||
|
#new proposals or new participants
|
||||||
|
'random': driving_process
|
||||||
|
},
|
||||||
|
'variables': {
|
||||||
|
'network': update_network,
|
||||||
|
'funds':increment_funds,
|
||||||
|
'supply':increment_supply
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'policies': {
|
||||||
|
'completion': check_progress #see if any of the funded proposals completes
|
||||||
|
},
|
||||||
|
'variables': { # The following state variables will be updated simultaneously
|
||||||
|
'sentiment': update_sentiment_on_completion, #note completing decays sentiment, completing bumps it
|
||||||
|
'network': complete_proposal #book-keeping
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'policies': {
|
||||||
|
'release': trigger_function #check each proposal to see if it passes
|
||||||
|
},
|
||||||
|
'variables': { # The following state variables will be updated simultaneously
|
||||||
|
'funds': decrement_funds, #funds expended
|
||||||
|
'sentiment': update_sentiment_on_release, #releasing funds can bump sentiment
|
||||||
|
'network': update_proposals #reset convictions, and participants sentiments
|
||||||
|
#update based on affinities
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
'policies': {
|
||||||
|
'participants_act': participants_decisions, #high sentiment, high affinity =>buy
|
||||||
|
#low sentiment, low affinities => burn
|
||||||
|
#assign tokens to top affinities
|
||||||
|
},
|
||||||
|
'variables': {
|
||||||
|
'supply': update_supply,
|
||||||
|
'network': update_tokens #update everyones holdings
|
||||||
|
#and their conviction for each proposal
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
n= 25 #initial participants
|
||||||
|
m= 3 #initial proposals
|
||||||
|
|
||||||
|
initial_sentiment = .5
|
||||||
|
|
||||||
|
network, initial_funds, initial_supply, total_requested = initialize_network(n,m,total_funds_given_total_supply,trigger_threshold)
|
||||||
|
|
||||||
|
initial_conditions = {'network':network,
|
||||||
|
'supply': initial_supply,
|
||||||
|
'funds':initial_funds,
|
||||||
|
'sentiment': initial_sentiment}
|
||||||
|
|
||||||
|
#power of 1 token forever
|
||||||
|
# conviction_capactity = [2]
|
||||||
|
# alpha = [1-1/cc for cc in conviction_capactity]
|
||||||
|
# print(alpha)
|
||||||
|
|
||||||
|
params={
|
||||||
|
'sensitivity': [.75],
|
||||||
|
'tmin': [7], #unit days; minimum periods passed before a proposal can pass
|
||||||
|
'sentiment_decay': [.001], #termed mu in the state update function
|
||||||
|
'alpha': [0.5, 0.9],
|
||||||
|
'base_completion_rate': [10],
|
||||||
|
'trigger_func': [trigger_threshold]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||||
|
# Settings of general simulation parameters, unrelated to the system itself
|
||||||
|
# `T` is a range with the number of discrete units of time the simulation will run for;
|
||||||
|
# `N` is the number of times the simulation will be run (Monte Carlo runs)
|
||||||
|
time_periods_per_run = 250
|
||||||
|
monte_carlo_runs = 1
|
||||||
|
|
||||||
|
simulation_parameters = config_sim({
|
||||||
|
'T': range(time_periods_per_run),
|
||||||
|
'N': monte_carlo_runs,
|
||||||
|
'M': params
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
from cadCAD.configuration import append_configs
|
||||||
|
|
||||||
|
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||||
|
# The configurations above are then packaged into a `Configuration` object
|
||||||
|
append_configs(
|
||||||
|
initial_state=initial_conditions, #dict containing variable names and initial values
|
||||||
|
partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions
|
||||||
|
sim_configs=simulation_parameters #dict containing simulation parameters
|
||||||
|
)
|
||||||
|
|
||||||
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
|
from cadCAD import configs
|
||||||
|
|
||||||
|
exec_mode = ExecutionMode()
|
||||||
|
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||||
|
run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||||
|
raw_result, tensor = run.execute()
|
||||||
|
|
||||||
|
# exec_mode = ExecutionMode()
|
||||||
|
# exec_context = ExecutionContext(context=exec_mode.multi_proc)
|
||||||
|
# # run = Executor(exec_context=exec_context, configs=configs)
|
||||||
|
# executor = Executor(exec_context, configs) # Pass the configuration object inside an array
|
||||||
|
# raw_result, tensor = executor.execute() # The `main()` method returns a tuple; its first elements contains the raw results
|
||||||
|
|
@ -1,62 +0,0 @@
|
||||||
from cadCAD.configuration import append_configs
|
|
||||||
from cadCAD.configuration.utils import config_sim
|
|
||||||
|
|
||||||
# Policies per Mechanism
|
|
||||||
# def p(_g, substep, sH, s):
|
|
||||||
# return {'last_update_block': sH[-1]}
|
|
||||||
|
|
||||||
# def policies(_g, substep, sH, s, _input):
|
|
||||||
# y = 'policies'
|
|
||||||
# x = _input
|
|
||||||
# return (y, x)
|
|
||||||
|
|
||||||
# policies = {"p1": p, "p2": p}
|
|
||||||
|
|
||||||
|
|
||||||
# last_partial_state_update_block
|
|
||||||
def last_update_block(_g, substep, sH, s, _input):
|
|
||||||
return 'sh', sH[-1]
|
|
||||||
|
|
||||||
def add(y, x):
|
|
||||||
return lambda _g, substep, sH, s, _input: (y, s[y] + x)
|
|
||||||
|
|
||||||
genesis_states = {
|
|
||||||
's': 0,
|
|
||||||
'sh': [{}], # {[], {}}
|
|
||||||
# 'policies': {},
|
|
||||||
}
|
|
||||||
|
|
||||||
variables = {
|
|
||||||
's': add('s', 1),
|
|
||||||
'sh': last_update_block,
|
|
||||||
# "policies": policies
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
PSUB = {
|
|
||||||
"policies": {}, #policies,
|
|
||||||
"variables": variables
|
|
||||||
}
|
|
||||||
|
|
||||||
partial_state_update_block = {
|
|
||||||
"PSUB1": PSUB,
|
|
||||||
"PSUB2": PSUB,
|
|
||||||
"PSUB3": PSUB
|
|
||||||
}
|
|
||||||
|
|
||||||
sim_config = config_sim(
|
|
||||||
{
|
|
||||||
"N": 1,
|
|
||||||
"T": range(3),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
append_configs(
|
|
||||||
sim_configs=sim_config,
|
|
||||||
initial_state=genesis_states,
|
|
||||||
seeds={},
|
|
||||||
raw_exogenous_states={},
|
|
||||||
env_processes={},
|
|
||||||
partial_state_update_blocks=partial_state_update_block
|
|
||||||
)
|
|
||||||
|
|
@ -2,7 +2,6 @@ import pandas as pd
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
# The following imports NEED to be in the exact order
|
# The following imports NEED to be in the exact order
|
||||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||||
from simulations.validation import historical_state_access
|
|
||||||
from cadCAD import configs
|
from cadCAD import configs
|
||||||
|
|
||||||
exec_mode = ExecutionMode()
|
exec_mode = ExecutionMode()
|
||||||
|
|
@ -13,13 +12,11 @@ first_config = configs # only contains config1
|
||||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||||
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
run = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||||
|
|
||||||
raw_result, tensor_field = run.main()
|
raw_result, tensor_field = run.execute()
|
||||||
result = pd.DataFrame(raw_result)
|
result = pd.DataFrame(raw_result)
|
||||||
def delSH(d):
|
cols = ['run','substep','timestep','x','nonexsistant','last_x','2nd_to_last_x','3rd_to_last_x','4th_to_last_x']
|
||||||
if 'sh' in d.keys():
|
result = result[cols]
|
||||||
del d['sh']
|
|
||||||
return d
|
|
||||||
result['sh'] = result['sh'].apply(lambda sh: list(map(lambda d: delSH(d), sh)))
|
|
||||||
|
|
||||||
print()
|
print()
|
||||||
print("Tensor Field: config1")
|
print("Tensor Field: config1")
|
||||||
Loading…
Reference in New Issue