e-courage 2

This commit is contained in:
Joshua E. Jodesty 2019-02-18 14:00:39 -05:00
parent 0c234e2f00
commit ef9d73a32c
5 changed files with 94 additions and 86 deletions

View File

@ -1,12 +1,13 @@
from functools import reduce
from fn.op import foldr
import pandas as pd
from copy import deepcopy
from cadCAD import configs
from cadCAD.utils import key_filter
from cadCAD.configuration.utils.policyAggregation import dict_elemwise_sum
from cadCAD.configuration.utils import exo_update_per_ts
from cadCAD.configuration.utils.policyAggregation import dict_elemwise_sum
from cadCAD.configuration.utils.depreciationHandler import sanitize_partial_state_updates, sanitize_config
class Configuration(object):
@ -19,22 +20,10 @@ class Configuration(object):
self.exogenous_states = exogenous_states
self.partial_state_updates = partial_state_update_blocks
self.policy_ops = policy_ops
# for backwards compatibility, we accept old arguments via **kwargs
# TODO: raise specific deprecation warnings for key == 'state_dict', key == 'seed', key == 'mechanisms'
for key, value in kwargs.items():
if key == 'state_dict':
self.initial_state = value
elif key == 'seed':
self.seeds = value
elif key == 'mechanisms':
self.partial_state_updates = value
if self.initial_state == {}:
raise Exception('The initial conditions of the system have not been set')
self.kwargs = kwargs
def append_configs(sim_configs, initial_state, seeds, raw_exogenous_states, env_processes, partial_state_update_blocks, _exo_update_per_ts=True):
def append_configs(sim_configs={}, initial_state={}, seeds={}, raw_exogenous_states={}, env_processes={}, partial_state_update_blocks={}, _exo_update_per_ts=True):
if _exo_update_per_ts is True:
exogenous_states = exo_update_per_ts(raw_exogenous_states)
else:
@ -42,27 +31,27 @@ def append_configs(sim_configs, initial_state, seeds, raw_exogenous_states, env_
if isinstance(sim_configs, list):
for sim_config in sim_configs:
configs.append(
Configuration(
sim_config=sim_config,
initial_state=initial_state,
seeds=seeds,
exogenous_states=exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks
)
)
elif isinstance(sim_configs, dict):
configs.append(
Configuration(
sim_config=sim_configs,
config = Configuration(
sim_config=sim_config,
initial_state=initial_state,
seeds=seeds,
exogenous_states=exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks
)
back_compatable_config = sanitize_config(config)
configs.append(back_compatable_config)
elif isinstance(sim_configs, dict):
config = Configuration(
sim_config=sim_configs,
initial_state=initial_state,
seeds=seeds,
exogenous_states=exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks
)
back_compatable_config = sanitize_config(config)
configs.append(back_compatable_config)
class Identity:
@ -134,35 +123,10 @@ class Processor:
bdf_values = [[self.p_identity] * len(sdf_values)]
return sdf_values, bdf_values
# backwards compatibility
def sanitize_partial_state_updates(partial_state_updates):
new_partial_state_updates = deepcopy(partial_state_updates)
# for backwards compatibility we accept the old keys
# ('behaviors' and 'states') and rename them
def rename_keys(d):
try:
d['policies'] = d.pop('behaviors')
except KeyError:
pass
try:
d['variables'] = d.pop('states')
except KeyError:
pass
# Also for backwards compatibility, we accept partial state update blocks both as list or dict
# No need for a deprecation warning as it's already raised by cadCAD.utils.key_filter
if (type(new_partial_state_updates)==list):
for v in new_partial_state_updates:
rename_keys(v)
elif (type(new_partial_state_updates)==dict):
for k, v in new_partial_state_updates.items():
rename_keys(v)
del partial_state_updates
return new_partial_state_updates
if len(partial_state_updates) != 0:
# backwards compatibility
partial_state_updates = sanitize_partial_state_updates(partial_state_updates)
bdf = self.create_matrix_field(partial_state_updates, 'policies')
sdf = self.create_matrix_field(partial_state_updates, 'variables')
sdf_values, bdf_values = no_update_handler(bdf, sdf)

View File

@ -12,6 +12,7 @@ class TensorFieldReport:
def __init__(self, config_proc):
self.config_proc = config_proc
# ToDo: backwards compatibility
def create_tensor_field(self, partial_state_updates, exo_proc, keys=['policies', 'variables']):
dfs = [self.config_proc.create_matrix_field(partial_state_updates, k) for k in keys]
df = pd.concat(dfs, axis=1)
@ -21,10 +22,6 @@ class TensorFieldReport:
return df
# def s_update(y, x):
# return lambda step, sL, s, _input: (y, x)
#
#
def state_update(y, x):
return lambda var_dict, sub_step, sL, s, _input: (y, x)

View File

@ -0,0 +1,46 @@
from copy import deepcopy
def sanitize_config(config):
new_config = deepcopy(config)
# for backwards compatibility, we accept old arguments via **kwargs
# TODO: raise specific deprecation warnings for key == 'state_dict', key == 'seed', key == 'mechanisms'
for key, value in new_config.kwargs.items():
if key == 'state_dict':
new_config.initial_state = value
elif key == 'seed':
new_config.seeds = value
elif key == 'mechanisms':
new_config.partial_state_updates = value
if new_config.initial_state == {}:
raise Exception('The initial conditions of the system have not been set')
del config
return new_config
def sanitize_partial_state_updates(partial_state_updates):
new_partial_state_updates = deepcopy(partial_state_updates)
# for backwards compatibility we accept the old keys
# ('behaviors' and 'states') and rename them
def rename_keys(d):
if 'behaviors' in d:
d['policies'] = d.pop('behaviors')
if 'states' in d:
d['variables'] = d.pop('states')
# Also for backwards compatibility, we accept partial state update blocks both as list or dict
# No need for a deprecation warning as it's already raised by cadCAD.utils.key_filter
if (type(new_partial_state_updates)==list):
for v in new_partial_state_updates:
rename_keys(v)
elif (type(new_partial_state_updates)==dict):
for k, v in new_partial_state_updates.items():
rename_keys(v)
del partial_state_updates
return new_partial_state_updates

View File

@ -76,6 +76,7 @@ def drop_right(l, n):
return l[:len(l) - n]
# backwards compatibility
# ToDo: Encapsulate in function
def key_filter(l, keyname):
if (type(l) == list):
return [v[keyname] for v in l]

View File

@ -2,33 +2,33 @@ import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import sweep_config, config1, config2, config4
from simulations.validation import config2 #sweep_config, config1, config2, config4
from cadCAD import configs
exec_mode = ExecutionMode()
# print("Simulation Execution 1")
# print()
# first_config = [configs[0]] # from config1
# single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
# run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
# run1_raw_result, tensor_field = run1.main()
# result = pd.DataFrame(run1_raw_result)
# print()
# print("Tensor Field:")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()
print("Simulation Execution 1")
print()
first_config = [configs[0]] # from config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print("Simulation Execution 2: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
# print("Simulation Execution 2: Concurrent Execution")
# multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
# run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
# for raw_result, tensor_field in run2.main():
# result = pd.DataFrame(raw_result)
# print()
# print("Tensor Field:")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()