behavior id bug

This commit is contained in:
Joshua E. Jodesty 2018-11-26 15:04:15 -05:00
parent cfbbb73e31
commit d46e9ad255
9 changed files with 248 additions and 15 deletions

3
.gitignore vendored
View File

@ -8,4 +8,5 @@ ui/__pycache__
SimCAD.egg-info
__pycache__
Pipfile
Pipfile.lock
Pipfile.lock
scrapbox/

View File

@ -34,13 +34,20 @@ Step 2. Import Package & Run:
import pandas as pd
from tabulate import tabulate
from SimCAD.engine import ExecutionContext, Executor
from sandboxUX import config1, config2
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
# from sandboxUX import config1, config2
from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
exec_mode = ExecutionMode()
print("Simulation Run 1")
print()
single_config = [config1]
run1 = Executor(ExecutionContext, single_config)
single_config = [configs[0]]
single_proc_ctx = ExecutionContext(exec_mode.single_proc)
run1 = Executor(single_proc_ctx, single_config)
run1_raw_result = run1.main()
result = pd.DataFrame(run1_raw_result)
print(tabulate(result, headers='keys', tablefmt='psql'))
@ -48,8 +55,8 @@ print()
print("Simulation Run 2: Pairwise Execution")
print()
configs = [config1, config2]
run2 = Executor(ExecutionContext, configs)
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
run2 = Executor(multi_proc_ctx, configs)
run2_raw_results = run2.main()
for raw_result in run2_raw_results:
result = pd.DataFrame(raw_result)

View File

@ -4,7 +4,7 @@ from SimCAD.utils.configuration import dict_elemwise_sum
configs = []
#Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms)
class Configuration:
def __init__(self, sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_ops=[foldr(dict_elemwise_sum())]):
self.sim_config = sim_config

View File

@ -10,8 +10,9 @@ def state_identity(k):
return lambda step, sL, s, _input: (k, s[k])
# fix
def b_identity(step, sL, s):
return 0
return {'identity': 0}
def behavior_identity(k):
@ -19,7 +20,7 @@ def behavior_identity(k):
def key_filter(mechanisms, keyname):
return [ v[keyname] for k, v in mechanisms.items() ]
return [v[keyname] for k, v in mechanisms.items()]
def fillna_with_id_func(identity, df, col):

View File

@ -75,10 +75,15 @@ def foldr_dict_vals(f, d):
def sum_dict_values():
return foldr_dict_vals(add)
# AttributeError: 'int' object has no attribute 'keys'
# config7c
@curried
def dict_op(f, d1, d2):
print('d1')
print(d1)
print('d2')
print(d2)
print()
def set_base_value(target_dict, source_dict, key):
if key not in target_dict:
return get_base_value(type(source_dict[key]))

View File

@ -1,6 +1,5 @@
from decimal import Decimal
import numpy as np
from fn.op import foldr
from SimCAD import Configuration, configs
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
@ -119,7 +118,7 @@ env_processes = {
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# behavior_ops = [foldr(lambda a, b: a + b)]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}

View File

@ -98,6 +98,7 @@ state_dict = {
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,

218
sandboxUX/config3.py Normal file
View File

@ -0,0 +1,218 @@
from decimal import Decimal
import numpy as np
from SimCAD import Configuration, configs
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
alpha = Decimal('0.091') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
def s2m1(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] #+ _input['sell_order2'] # / Psignal_int
return (y, x)
def s3m3(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log'] + _input # / Psignal_int
return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] * 1/s['Z'] - s['Sell_Log']/s['Z']
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
"P_Ext_Markets": env_proc_id,
"timestamp": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
# "m2": {
# "behaviors": {
# "b1": b1m2,
# # "b4": b4m2
# },
# "states": {
# "Sell_Log": s4m2
# }
# },
# "m3": {
# "behaviors": {
# },
# "states": {
# "Price": s2m3
# }
# }
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -2,13 +2,14 @@ import pandas as pd
from tabulate import tabulate
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from sandboxUX import config1, config2
# from sandboxUX import config1, config2
from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
exec_mode = ExecutionMode()
print("Simulation Run 1")
print()
single_config = [configs[0]]