Reafactor Pt. 3: Improved Runtime Env / ui Pt.1
This commit is contained in:
parent
c420dce00d
commit
d29658ecbe
|
|
@ -1,18 +1,67 @@
|
||||||
# from pathos.multiprocessing import ProcessingPool as Pool
|
|
||||||
#
|
|
||||||
# class Multiproc(object):
|
from pathos.multiprocessing import ProcessingPool as Pool
|
||||||
#
|
|
||||||
# def __init__(self, fs, states_list, configs, env_processes, Ts, Ns):
|
import pandas as pd
|
||||||
# self.fs = fs
|
from tabulate import tabulate
|
||||||
# self.states_list = states_list
|
|
||||||
# self.configs = configs
|
from utils import flatten
|
||||||
# self.env_processes = env_processes
|
from utils.ui import create_tensor_field
|
||||||
# self.Ts = Ts
|
from utils.configProcessor import generate_config
|
||||||
# self.Ns = Ns
|
|
||||||
#
|
class ExecutionContext(object):
|
||||||
# def parallelize_simulations(self):
|
|
||||||
# l = list(zip(self.fs, self.states_list, self.configs, self.env_processes, self.Ts, self.Ns))
|
def __init__(self):
|
||||||
# with Pool(len(self.configs)) as p:
|
def parallelize_simulations(fs, states_list, configs, env_processes, Ts, Ns):
|
||||||
# results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)
|
l = list(zip(fs, states_list, configs, env_processes, Ts, Ns))
|
||||||
#
|
with Pool(len(configs)) as p:
|
||||||
# return results
|
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
self.parallelize_simulations = parallelize_simulations
|
||||||
|
|
||||||
|
|
||||||
|
class Executor(object):
|
||||||
|
|
||||||
|
def __init__(self, ExecutionContext, configs):
|
||||||
|
from engine.simulation import Executor
|
||||||
|
|
||||||
|
def execute():
|
||||||
|
ec = ExecutionContext()
|
||||||
|
print(configs)
|
||||||
|
states_lists, Ts, Ns, eps, configs_struct, env_processes, mechanisms, simulation_execs = \
|
||||||
|
[], [], [], [], [], [], [], []
|
||||||
|
config_idx = 0
|
||||||
|
for x in configs:
|
||||||
|
states_lists.append([x.state_dict])
|
||||||
|
Ts.append(x.sim_config['T'])
|
||||||
|
Ns.append(x.sim_config['N'])
|
||||||
|
eps.append(list(x.exogenous_states.values()))
|
||||||
|
configs_struct.append(generate_config(x.state_dict, x.mechanisms, eps[config_idx]))
|
||||||
|
env_processes.append(x.env_processes)
|
||||||
|
mechanisms.append(x.mechanisms)
|
||||||
|
simulation_execs.append(Executor(x.behavior_ops).simulation)
|
||||||
|
|
||||||
|
config_idx += 1
|
||||||
|
|
||||||
|
# Dimensions: N x r x mechs
|
||||||
|
|
||||||
|
if len(configs) > 1:
|
||||||
|
simulations = ec.parallelize_simulations(simulation_execs, states_lists, configs_struct, env_processes, Ts, Ns)
|
||||||
|
|
||||||
|
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
|
||||||
|
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
|
||||||
|
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))
|
||||||
|
else:
|
||||||
|
print('single note')
|
||||||
|
simulation, states_list, config = simulation_execs.pop(), states_lists.pop(), configs_struct.pop()
|
||||||
|
env_process = env_processes.pop()
|
||||||
|
# simulations = [simulation(states_list, config, env_processes, T, N)]
|
||||||
|
|
||||||
|
# behavior_ops, states_list, configs, env_processes, time_seq, runs
|
||||||
|
# result = simulation(states_list1, config1, conf1.env_processes, T, N)
|
||||||
|
# return pd.DataFrame(flatten(result))
|
||||||
|
|
||||||
|
self.ExecutionContext = ExecutionContext
|
||||||
|
self.main = execute
|
||||||
|
|
@ -0,0 +1,7 @@
|
||||||
|
|
||||||
|
from engine import ExecutionContext, Executor
|
||||||
|
from ui import config1, config2
|
||||||
|
|
||||||
|
configs = [config1, config2]
|
||||||
|
run = Executor(ExecutionContext, configs)
|
||||||
|
result = run.main()
|
||||||
|
|
@ -1,10 +1,10 @@
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
from configuration import configs
|
from configuration import configs
|
||||||
from utils.engine import flatten
|
from utils import flatten
|
||||||
from utils.ui import create_tensor_field
|
from utils.ui import create_tensor_field
|
||||||
from engine.configProcessor import generate_config
|
from utils.configProcessor import generate_config
|
||||||
from engine.mechanism import Executor
|
from engine.simulation import Executor
|
||||||
from runtime.multiproc import parallelize_simulations
|
from runtime.multiproc import parallelize_simulations
|
||||||
|
|
||||||
# from ui import config1, config2
|
# from ui import config1, config2
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,4 @@
|
||||||
|
flatten = lambda l: [item for sublist in l for item in sublist]
|
||||||
|
|
||||||
|
def flatmap(f, items):
|
||||||
|
return list(map(f, items))
|
||||||
|
|
@ -1,11 +1,5 @@
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
flatten = lambda l: [item for sublist in l for item in sublist]
|
|
||||||
|
|
||||||
def flatmap(f, items):
|
|
||||||
return list(map(f, items))
|
|
||||||
|
|
||||||
|
|
||||||
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
|
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
|
||||||
reverse_head = end
|
reverse_head = end
|
||||||
[start, end] = [datetime.strptime(x, dt_format) for x in [start, end]]
|
[start, end] = [datetime.strptime(x, dt_format) for x in [start, end]]
|
||||||
|
|
|
||||||
|
|
@ -1,5 +1,5 @@
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from engine.configProcessor import create_matrix_field
|
from utils.configProcessor import create_matrix_field
|
||||||
|
|
||||||
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
|
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
|
||||||
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
|
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue