docs pending review

This commit is contained in:
Joshua E. Jodesty 2019-07-19 10:59:05 -04:00
parent 964e3f7bc1
commit c55e433920
40 changed files with 2180 additions and 107 deletions

View File

@ -4,25 +4,41 @@
**Description:**
cadCAD is a differential games based simulation software package for research, validation, and Computer \
Aided Design of economic systems. An economic system is treated as a state based model and defined through a \
set of endogenous and exogenous state variables which are updated through mechanisms and environmental \
processes, respectively. Behavioral models, which may be deterministic or stochastic, provide the evolution of \
the system within the action space of the mechanisms. Mathematical formulations of these economic games \
treat agent utility as derived from state rather than direct from action, creating a rich dynamic modeling framework.
Simulations may be run with a range of initial conditions and parameters for states, behaviors, mechanisms, \
and environmental processes to understand and visualize network behavior under various conditions. Support for \
A/B testing policies, monte carlo analysis and other common numerical methods is provided.
cadCAD (complex adaptive systems computer-aided design) is a python based, unified modeling framework for stochastic
dynamical systems and differential games for research, validation, and Computer Aided Design of economic systems created
by BlockScience. It is capable of modeling systems at all levels of abstraction from Agent Based Modeling (ABM) to
System Dynamics (SD), and enabling smooth integration of computational social science simulations with empirical data
science workflows.
An economic system is treated as a state-based model and defined through a set of endogenous and exogenous state
variables which are updated through mechanisms and environmental processes, respectively. Behavioral models, which may
be deterministic or stochastic, provide the evolution of the system within the action space of the mechanisms.
Mathematical formulations of these economic games treat agent utility as derived from the state rather than direct from
an action, creating a rich, dynamic modeling framework. Simulations may be run with a range of initial conditions and
parameters for states, behaviors, mechanisms, and environmental processes to understand and visualize network behavior
under various conditions. Support for A/B testing policies, Monte Carlo analysis, and other common numerical methods is
provided.
In essence, cadCAD tool allows us to represent a companys or communitys current business model along with a desired
future state and helps make informed, rigorously tested decisions on how to get from todays stage to the future state.
It allows us to use code to solidify our conceptualized ideas and see if the outcome meets our expectations. We can
iteratively refine our work until we have constructed a model that closely reflects reality at the start of the model,
and see how it evolves. We can then use these results to inform business decisions.
#### Simulation Instructional:
* ##### [System Model Configuration](link)
* ##### [System Simulation Execution](link)
#### Installation:
**1. Install Dependencies:**
**Option A:** Package Repository Access
***IMPORTANT NOTE:*** Tokens are issued to and meant to be used by trial users and BlockScience employees **ONLY**. Replace \<TOKEN\> with an issued token in the script below.
```bash
pip3 install pandas pathos fn tabulate
pip3 install pandas pathos fn funcy tabulate
pip3 install cadCAD --extra-index-url https://<TOKEN>@repo.fury.io/blockscience/
```

View File

@ -5,7 +5,6 @@ from pandas.core.frame import DataFrame
from cadCAD.utils import SilentDF
def val_switch(v):
if isinstance(v, DataFrame) is True:
return SilentDF(v)
@ -18,7 +17,7 @@ class udcView(object):
self.masked_members = masked_members
# returns dict to dataframe
# def __repr__(self):
def __repr__(self):
members = {}
variables = {
@ -26,9 +25,20 @@ class udcView(object):
if str(type(v)) != "<class 'method'>" and k not in self.masked_members # and isinstance(v, DataFrame) is not True
}
members['methods'] = [k for k, v in self.__dict__.items() if str(type(v)) == "<class 'method'>"]
members.update(variables)
return f"{members}" #[1:-1]
# def __repr__(self):
# members = {}
# variables = {
# k: val_switch(v) for k, v in self.__dict__.items()
# if str(type(v)) != "<class 'method'>" and k not in self.masked_members and k == 'x' # and isinstance(v, DataFrame) is not True
# }
#
# members.update(variables)
# return f"{members}" #[1:-1]
class udcBroker(object):
def __init__(self, obj, function_filter=['__init__']):
@ -36,7 +46,8 @@ class udcBroker(object):
funcs = dict(getmembers(obj, ismethod))
filtered_functions = {k: v for k, v in funcs.items() if k not in function_filter}
d['obj'] = obj
d.update(deepcopy(vars(obj))) # somehow is enough
# d.update(deepcopy(vars(obj))) # somehow is enough
d.update(vars(obj)) # somehow is enough
d.update(filtered_functions)
self.members_dict = d
@ -57,4 +68,3 @@ def UDO(udo, masked_members=['obj']):
def udoPipe(obj_view):
return UDO(obj_view.obj, obj_view.masked_members)

View File

@ -115,12 +115,48 @@ class Executor:
last_in_obj: Dict[str, Any] = deepcopy(sL[-1])
_input: Dict[str, Any] = self.policy_update_exception(self.get_policy_input(sweep_dict, sub_step, sH, last_in_obj, policy_funcs))
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
# ToDo: Can be multithreaded ??
def generate_record(state_funcs):
for f in state_funcs:
yield self.state_update_exception(f(sweep_dict, sub_step, sH, last_in_obj, _input))
# def generate_record(state_funcs):
# for f in state_funcs:
# tmp_last_in_copy = deepcopy(last_in_obj)
# new_kv = self.state_update_exception(f(sweep_dict, sub_step, sH, tmp_last_in_copy, _input))
# del tmp_last_in_copy
# yield new_kv
#
# # get `state` from last_in_obj.keys()
# # vals = last_in_obj.values()
# def generate_record(state_funcs):
# for state, v, f in zip(states, vals, state_funcs):
# v_copy = deepcopy(v)
# last_in_obj[state] = v_copy
# new_kv = self.state_update_exception(f(sweep_dict, sub_step, sH, last_in_copy, _input))
# del v
# yield new_kv
# {k: v for k, v in l}
# r() - r(a') -> r(a',b') -> r(a',b',c')
# r(f(a),b,c) -> r(a'f(b),c) -> r(a',b',f(c)) => r(a',b',c')
# r(a',b.update(),c)
# r1(f(a1),b1,c1) -> r2(a2,f(b1),c1) -> r3(a3,b1,f(c1)) => r(a',b',c')
# r1(f(a1),b,c) -> r2(a,f(b1),c) -> r3(a,b,f(c1)) => r(a',b',c')
# r1(f(a1),b1,c1) -> r(a2',b2.update(),c2) -> r3(a3,b1,f(c1)) => r(a',b',c')
# r1(f(a1),b1,c1) -> r2(a2,f(b1),c1) -> r3(a3,b1,f(c1)) => r(a',b',c')
# reduce(lambda r: F(r), [r2(f(a),b,c), r2(a,f(b),c), r3(a,b,f(c))]) => R(a',b',c')
def transfer_missing_fields(source, destination):
for k in source:
if k not in destination:

View File

@ -15,14 +15,12 @@ def append_dict(dict, new_dict):
dict.update(new_dict)
return dict
# def val_switch(v):
# if isinstance(v, DataFrame) is True or isinstance(v, SilentDF) is True:
# return SilentDF(v)
# else:
# return v.x
class IndexCounter:
def __init__(self):
self.i = 0

View File

View File

@ -0,0 +1,45 @@
from pprint import pprint
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
# Single Process Execution using a Single System Model Configuration:
# sys_model_A
sys_model_A = [configs[0]]
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()
# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sys_model_A', 'sys_model_B']
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
print()
pprint(sys_model_AB_raw_result)
# sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print(f"Tensor Field: {config_names[i]}")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
# print("Result: System Events DataFrame:")
# print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
# print()
i += 1

View File

@ -0,0 +1,111 @@
import pandas as pd
from tabulate import tabulate
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim, access_block
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
policies, variables = {}, {}
exclusion_list = ['nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x']
# Policies per Mechanism
# WARNING: DO NOT delete elements from sH
# state_history, target_field, psu_block_offset, exculsion_list
def last_update(_g, substep, sH, s):
return {"last_x": access_block(
state_history=sH,
target_field="last_x",
psu_block_offset=-1,
exculsion_list=exclusion_list
)
}
policies["last_x"] = last_update
def second2last_update(_g, substep, sH, s):
return {"2nd_to_last_x": access_block(sH, "2nd_to_last_x", -2, exclusion_list)}
policies["2nd_to_last_x"] = second2last_update
# Internal States per Mechanism
# WARNING: DO NOT delete elements from sH
def add(y, x):
return lambda _g, substep, sH, s, _input: (y, s[y] + x)
variables['x'] = add('x', 1)
# last_partial_state_update_block
def nonexsistant(_g, substep, sH, s, _input):
return 'nonexsistant', access_block(sH, "nonexsistant", 0, exclusion_list)
variables['nonexsistant'] = nonexsistant
# last_partial_state_update_block
def last_x(_g, substep, sH, s, _input):
return 'last_x', _input["last_x"]
variables['last_x'] = last_x
# 2nd to last partial state update block
def second_to_last_x(_g, substep, sH, s, _input):
return '2nd_to_last_x', _input["2nd_to_last_x"]
variables['2nd_to_last_x'] = second_to_last_x
# 3rd to last partial state update block
def third_to_last_x(_g, substep, sH, s, _input):
return '3rd_to_last_x', access_block(sH, "3rd_to_last_x", -3, exclusion_list)
variables['3rd_to_last_x'] = third_to_last_x
# 4th to last partial state update block
def fourth_to_last_x(_g, substep, sH, s, _input):
return '4th_to_last_x', access_block(sH, "4th_to_last_x", -4, exclusion_list)
variables['4th_to_last_x'] = fourth_to_last_x
genesis_states = {
'x': 0,
'nonexsistant': [],
'last_x': [],
'2nd_to_last_x': [],
'3rd_to_last_x': [],
'4th_to_last_x': []
}
PSUB = {
"policies": policies,
"variables": variables
}
partial_state_update_block = {
"PSUB1": PSUB,
"PSUB2": PSUB,
"PSUB3": PSUB
}
sim_config = config_sim(
{
"N": 1,
"T": range(3),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
partial_state_update_blocks=partial_state_update_block
)
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
cols = ['run','substep','timestep','x','nonexsistant','last_x','2nd_to_last_x','3rd_to_last_x','4th_to_last_x']
result = result[cols]
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,116 @@
import pprint
from typing import Dict, List
import pandas as pd
from tabulate import tabulate
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import env_trigger, var_substep_trigger, config_sim, psub_list
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
pp = pprint.PrettyPrinter(indent=4)
def some_function(x):
return x
g: Dict[str, List[int]] = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [some_function]
}
psu_steps = ['1', '2', '3']
system_substeps = len(psu_steps)
var_timestep_trigger = var_substep_trigger([0, system_substeps])
env_timestep_trigger = env_trigger(system_substeps)
env_process = {}
# Policies
def gamma(_params, step, sL, s):
return {'gamma': _params['gamma']}
def omega(_params, step, sL, s):
return {'omega': _params['omega'](7)}
# Internal States
def alpha(_params, step, sL, s, _input):
return 'alpha', _params['alpha']
def alpha_plus_gamma(_params, step, sL, s, _input):
return 'alpha_plus_gamma', _params['alpha'] + _params['gamma']
def beta(_params, step, sL, s, _input):
return 'beta', _params['beta']
def policies(_params, step, sL, s, _input):
return 'policies', _input
def sweeped(_params, step, sL, s, _input):
return 'sweeped', {'beta': _params['beta'], 'gamma': _params['gamma']}
genesis_states = {
'alpha_plus_gamma': 0,
'alpha': 0,
'beta': 0,
'policies': {},
'sweeped': {}
}
env_process['sweeped'] = env_timestep_trigger(trigger_field='timestep', trigger_vals=[5], funct_list=[lambda _g, x: _g['beta']])
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g,
}
)
psu_block = {k: {"policies": {}, "variables": {}} for k in psu_steps}
for m in psu_steps:
psu_block[m]['policies']['gamma'] = gamma
psu_block[m]['policies']['omega'] = omega
psu_block[m]["variables"]['alpha'] = alpha_plus_gamma
psu_block[m]["variables"]['alpha_plus_gamma'] = alpha
psu_block[m]["variables"]['beta'] = beta
psu_block[m]['variables']['policies'] = policies
psu_block[m]["variables"]['sweeped'] = var_timestep_trigger(y='sweeped', f=sweeped)
partial_state_update_blocks = psub_list(psu_block, psu_steps)
print()
pp.pprint(psu_block)
print()
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_process,
partial_state_update_blocks=partial_state_update_blocks
)
exec_mode = ExecutionMode()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run.execute():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,98 @@
import pandas as pd
from tabulate import tabulate
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'policy1': 1}
def p2m1(_g, step, sL, s):
return {'policy2': 2}
def p1m2(_g, step, sL, s):
return {'policy1': 2, 'policy2': 2}
def p2m2(_g, step, sL, s):
return {'policy1': 2, 'policy2': 2}
def p1m3(_g, step, sL, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
def p2m3(_g, step, sL, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
# Internal States per Mechanism
def add(y, x):
return lambda _g, step, sH, s, _input: (y, s[y] + x)
def policies(_g, step, sH, s, _input):
y = 'policies'
x = _input
return (y, x)
# Genesis States
genesis_states = {
'policies': {},
's1': 0
}
variables = {
's1': add('s1', 1),
"policies": policies
}
partial_state_update_block = {
"m1": {
"policies": {
"p1": p1m1,
"p2": p2m1
},
"variables": variables
},
"m2": {
"policies": {
"p1": p1m2,
"p2": p2m2
},
"variables": variables
},
"m3": {
"policies": {
"p1": p1m3,
"p2": p2m3
},
"variables": variables
}
}
sim_config = config_sim(
{
"N": 1,
"T": range(3),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b, lambda y: y * 2] # Default: lambda a, b: a + b
)
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,159 @@
import numpy as np
from datetime import timedelta
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import bound_norm_random, config_sim, time_step, env_trigger
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(4)
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param1': 1, 'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def policies(_g, step, sL, s, _input):
y = 'policies'
x = _input
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3(_g, step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4(_g, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def update_timestamp(_g, step, sL, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
# Genesis States
genesis_states = {
's1': 0.0,
's2': 0.0,
's3': 1.0,
's4': 1.0,
'timestamp': '2018-10-01 15:16:24'
}
# Environment Process
# ToDo: Depreciation Waring for env_proc_trigger convention
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda _g, x: 5],
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
partial_state_update_block = [
{
"policies": {
"b1": p1m1,
"b2": p2m1
},
"variables": {
"s1": s1m1,
"s2": s2m1,
"s3": es3,
"s4": es4,
"timestamp": update_timestamp
}
},
{
"policies": {
"b1": p1m2,
"b2": p2m2
},
"variables": {
"s1": s1m2,
"s2": s2m2,
# "s3": es3p1,
# "s4": es4p2,
}
},
{
"policies": {
"b1": p1m3,
"b2": p2m3
},
"variables": {
"s1": s1m3,
"s2": s2m3,
# "s3": es3p1,
# "s4": es4p2,
}
}
]
sim_config = config_sim(
{
"N": 2,
"T": range(1),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b]
)

View File

@ -0,0 +1,24 @@
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sys_model_A', 'sys_model_B']
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print(f"Tensor Field: {config_names[i]}")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame:")
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
print()
i += 1

View File

@ -0,0 +1,22 @@
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A
from cadCAD import configs
exec_mode = ExecutionMode()
# Single Process Execution using a Single System Model Configuration:
# sys_model_A
sys_model_A = [configs[0]] # sys_model_A
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: config1")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,147 @@
import numpy as np
from datetime import timedelta
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import bound_norm_random, config_sim, env_trigger, time_step
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3(_g, step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4(_g, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def update_timestamp(_g, step, sL, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
# Genesis States
genesis_states = {
's1': 0,
's2': 0,
's3': 1,
's4': 1,
'timestamp': '2018-10-01 15:16:24'
}
# Environment Process
# ToDo: Depreciation Waring for env_proc_trigger convention
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda _g, x: 5],
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
partial_state_update_block = [
{
"policies": {
"b1": p1m1,
# "b2": p2m1
},
"states": {
"s1": s1m1,
# "s2": s2m1
"s3": es3,
"s4": es4,
"timestep": update_timestamp
}
},
{
"policies": {
"b1": p1m2,
# "b2": p2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
{
"policies": {
"b1": p1m3,
"b2": p2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
]
sim_config = config_sim(
{
"N": 2,
"T": range(5),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
)

View File

@ -0,0 +1,23 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config2
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,71 @@
Simulation Execution
==
System Simulations are executed with the execution engine executor (`cadCAD.engine.Executor`) given System Model
Configurations. There are multiple simulation Execution Modes and Execution Contexts.
### Steps:
1. #### *Choose Execution Mode*:
* ##### Simulation Execution Modes:
`cadCAD` executes a process per System Model Configuration and a thread per System Simulation.
##### Class: `cadCAD.engine.ExecutionMode`
##### Attributes:
* **Single Process:** A single process Execution Mode for a single System Model Configuration (Example:
`cadCAD.engine.ExecutionMode().single_proc`).
* **Multi-Process:** Multiple process Execution Mode for System Model Simulations which executes on a thread per
given System Model Configuration (Example: `cadCAD.engine.ExecutionMode().multi_proc`).
2. #### *Create Execution Context using Execution Mode:*
```python
from cadCAD.engine import ExecutionMode, ExecutionContext
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
```
3. #### *Create Simulation Executor*
```python
from cadCAD.engine import Executor
from cadCAD import configs
simulation = Executor(exec_context=single_proc_ctx, configs=configs)
```
4. #### *Execute Simulation: Produce System Event Dataset*
A Simulation execution produces a System Event Dataset and the Tensor Field applied to initial states used to create it.
```python
import pandas as pd
raw_system_events, tensor_field = simulation.execute()
# Simulation Result Types:
# raw_system_events: List[dict]
# tensor_field: pd.DataFrame
# Result System Events DataFrame
simulation_result = pd.DataFrame(raw_system_events)
```
##### Example Tensor Field
```
+----+-----+--------------------------------+--------------------------------+
| | m | b1 | s1 |
|----+-----+--------------------------------+--------------------------------|
| 0 | 1 | <function p1m1 at 0x10c458ea0> | <function s1m1 at 0x10c464510> |
| 1 | 2 | <function p1m2 at 0x10c464048> | <function s1m2 at 0x10c464620> |
| 2 | 3 | <function p1m3 at 0x10c464400> | <function s1m3 at 0x10c464730> |
+----+-----+--------------------------------+--------------------------------+
```
##### Example Result: System Events DataFrame
```python
+----+-------+------------+-----------+------+-----------+
| | run | timestep | substep | s1 | s2 |
|----+-------+------------+-----------+------+-----------|
| 0 | 1 | 0 | 0 | 0 | 0.0 |
| 1 | 1 | 1 | 1 | 1 | 4 |
| 2 | 1 | 1 | 2 | 2 | 6 |
| 3 | 1 | 1 | 3 | 3 | [ 30 300] |
| 4 | 2 | 0 | 0 | 0 | 0.0 |
| 5 | 2 | 1 | 1 | 1 | 4 |
| 6 | 2 | 1 | 2 | 2 | 6 |
| 7 | 2 | 1 | 3 | 3 | [ 30 300] |
+----+-------+------------+-----------+------+-----------+
```
##### [Single Process Example Execution](link)
##### [Multiple Process Example Execution](link)

View File

@ -0,0 +1,97 @@
Historical State Access
==
The 3rd parameter of state and policy update functions (labels as `sH` of type `List[List[dict]]`) provides access to
past Partial State Updates (PSU) given a negative offset number. `access_block` is used to access past PSUs
(`List[dict]`) from `sH`.
Example: `-2` denotes to second to last PSU
##### Exclusion List
Create a list of states to exclude from the reported PSU.
```python
exclusion_list = [
'nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x'
]
```
##### Example Policy Updates
###### Last partial state update
```python
from cadCAD.configuration.utils import config_sim, access_block
def last_update(_g, substep, sH, s):
return {"last_x": access_block(
state_history=sH,
target_field="last_x", # Add a field to the exclusion list
psu_block_offset=-1,
exculsion_list=exclusion_list
)
}
```
* Note: Although `target_field` adding a field to the exclusion may seem redundant, it is useful in the case of
the exclusion list being empty while the `target_field` is assigned to a state or a policy key.
###### 2nd to last partial state update
```python
def second2last_update(_g, substep, sH, s):
return {"2nd_to_last_x": access_block(sH, "2nd_to_last_x", -2, exclusion_list)}
```
##### Define State Updates
###### 3rd to last partial state update
```python
def third_to_last_x(_g, substep, sH, s, _input):
return '3rd_to_last_x', access_block(sH, "3rd_to_last_x", -3, exclusion_list)
```
###### 4rd to last partial state update
```python
def fourth_to_last_x(_g, substep, sH, s, _input):
return '4th_to_last_x', access_block(sH, "4th_to_last_x", -4, exclusion_list)
```
###### Non-exsistant partial state update
* `psu_block_offset >= 0` doesn't exsist
```python
def nonexsistant(_g, substep, sH, s, _input):
return 'nonexsistant', access_block(sH, "nonexsistant", 0, exclusion_list)
```
#### Example Simulation
link
#### Example Output
###### State History
```
+----+-------+-----------+------------+-----+
| | run | substep | timestep | x |
|----+-------+-----------+------------+-----|
| 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |
| 2 | 1 | 2 | 1 | 2 |
| 3 | 1 | 3 | 1 | 3 |
| 4 | 1 | 1 | 2 | 4 |
| 5 | 1 | 2 | 2 | 5 |
| 6 | 1 | 3 | 2 | 6 |
| 7 | 1 | 1 | 3 | 7 |
| 8 | 1 | 2 | 3 | 8 |
| 9 | 1 | 3 | 3 | 9 |
+----+-------+-----------+------------+-----+
```
###### Accessed State History:
Example: `last_x`
```
+----+-----------------------------------------------------------------------------------------------------------------------------------------------------+
| | last_x |
|----+-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | [] |
| 1 | [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}] |
| 2 | [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}] |
| 3 | [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}] |
| 4 | [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}] |
| 5 | [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}] |
| 6 | [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}] |
| 7 | [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}] |
| 8 | [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}] |
| 9 | [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}] |
+----+-----------------------------------------------------------------------------------------------------------------------------------------------------+
```
#### [Example Configuration](link)
#### [Example Results](link)

View File

@ -0,0 +1,68 @@
System Model Parameter Sweep
==
Parametrization of a System Model configuration that produces multiple configurations.
##### Set Parameters
```python
params = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [7]
}
```
The parameters above produce 2 simulations.
* Simulation 1:
* `alpha = 1`
* `beta = 2`
* `gamma = 3`
* `omega = 7`
* Simulation 2:
* `alpha = 1`
* `beta = 5`
* `gamma = 4`
* `omega = 7`
All parameters can also be set to include a single parameter each, which will result in a single simulation.
##### Example State Updates
Previous State:
`y = 0`
```python
def state_update(_params, step, sL, s, _input):
y = 'state'
x = s['state'] + _params['alpha'] + _params['gamma']
return y, x
```
* Updated State:
* Simulation 1: `y = 4 = 0 + 1 + 3`
* Simulation 2: `y = 5 = 0 + 1 + 4`
##### Example Policy Updates
```python
# Internal States per Mechanism
def policies(_g, step, sL, s):
return {'beta': _g['beta'], 'gamma': _g['gamma']}
```
* Simulation 1: `{'beta': 2, 'gamma': 3]}`
* Simulation 2: `{'beta': 5, 'gamma': 4}`
##### Configure Simulation
```python
from cadCAD.configuration.utils import config_sim
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g,
}
)
```
#### [Example Configuration](link)
#### [Example Results](link)

View File

@ -0,0 +1,60 @@
Policy Aggregation
==
For each Partial State Update, multiple policy dictionaries are aggregated into a single dictionary to be imputted into
all state functions using an initial reduction function and optional subsequent map functions.
#### Aggregate Function Composition:
```python
# Reduce Function
add = lambda a, b: a + b # Used to add policy values of the same key
# Map Function
mult_by_2 = lambda y: y * 2 # Used to multiply all policy values by 2
policy_ops=[add, mult_by_2]
```
##### Example Policy Updates per Partial State Update (PSU)
```python
def p1_psu1(_g, step, sL, s):
return {'policy1': 1}
def p2_psu1(_g, step, sL, s):
return {'policy2': 2}
```
* `add` not applicable due to lack of redundant policies
* `mult_by_2` applied to all policies
* Result: `{'policy1': 2, 'policy2': 4}`
```python
def p1_psu2(_g, step, sL, s):
return {'policy1': 2, 'policy2': 2}
def p2_psu2(_g, step, sL, s):
return {'policy1': 2, 'policy2': 2}
```
* `add` applicable due to redundant policies
* `mult_by_2` applied to all policies
* Result: `{'policy1': 8, 'policy2': 8}`
```python
def p1_psu3(_g, step, sL, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
def p2_psu3(_g, step, sL, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
```
* `add` applicable due to redundant policies
* `mult_by_2` applied to all policies
* Result: `{'policy1': 4, 'policy2': 8, 'policy3': 12}`
#### Aggregate Policies using functions
```python
from cadCAD.configuration import append_configs
append_configs(
sim_configs=???,
initial_state=???,
partial_state_update_blocks=???,
policy_ops=[add, mult_by_2] # Default: [lambda a, b: a + b]
)
```
#### [Example Configuration](link)
#### [Example Results](link)

View File

@ -0,0 +1,220 @@
System Model Configuration
==
#### Introduction
Given System Model Configurations, cadCAD produces system event datasets that conform to specified system metrics. Each
event / record is of [Enogenous State variables](link) produced by user defined [Partial State Updates](link) (PSU /
functions that update state); A sequence of event / record subsets that comprises the resulting system event dataset is
produced by a [Partial State Update Block](link) (PSUB / a Tensor Field for which State, Policy, and Time are dimensions
and PSU functions are values).
A **System Model Configuration** is comprised of a simulation configuration, initial endogenous states, Partial State
Update Blocks, environmental process, and a user defined policy aggregation function.
Execution:
#### Simulation Properties
###### System Metrics
The following system metrics determine the size of resulting system event datasets:
* `run` - the number of simulations in the resulting dataset
* `timestep` - the number of timestamps in the resulting dataset
* `substep` - the number of PSUs per `timestep` / within PSUBS
* Number of events / records: `run` x `timestep` x `substep`
###### Simulation Configuration
For the following dictionary, `T` is assigned a `timestep` range, `N` is assigned the number of simulation runs, and
`params` is assigned the [**Parameter Sweep**](link) dictionary.
```python
from cadCAD.configuration.utils import config_sim
sim_config = config_sim({
"N": 2,
"T": range(5),
"M": params, # Optional
})
```
#### Initial Endogenous States
**Enogenous State variables** are read-only variables defined to capture the shape and property of the network and
represent internal input and signal.
The PSUB tensor field is applied to the following states to produce a resulting system event
dataset.
```python
genesis_states = {
's1': 0.0,
's2': 0.0,
's3': 1.0,
'timestamp': '2018-10-01 15:16:24'
}
```
#### Partial State Update Block:
- ***Partial State Update Block(PSUB)*** ***(Define ?)*** Tensor Field for which State, Policy, Time are dimensions
and Partial State Update functions are values.
- ***Partial State Update (PSU)*** are user defined functions that encodes state updates and are executed in
a specified order PSUBs. PSUs update states given the most recent set of states and PSU policies.
- ***Mechanism*** ***(Define)***
The PSUBs is a list of PSU dictionaries of the structure within the code block below. PSUB elements (PSU dictionaries)
are listed / defined in order of `substeps` and **identity functions** (returning a previous state's value) are assigned
to unreferenced states within PSUs. The number of records produced produced per `timestep` is the number of `substeps`.
```python
partial_state_update_block = [
{
"policies": {
"b1": p1_psu1,
"b2": p2_psu1
},
"variables": {
"s1": s1_psu1,
"s2": s2_psu1
}
},
{
"policies": {
"b1": p1_psu2,
},
"variables": {
"s2": s2_psu2
}
},
{...}
]
```
*Notes:*
1. An identity function (returning the previous state value) is assigned to `s1` in the second PSU.
2. Currently the only names that need not correspond to the convention below are `'b1'` and `'b2'`.
#### Policies
- ***Policies*** ***(Define)*** When are policies behavior ?
- ***Behaviors*** model agent behaviors in reaction to state variables and exogenous variables. The
resulted user action will become an input to PSUs. Note that user behaviors should not directly update value
of state variables.
Policies accept parameter sweep variables [see link] `_g` (`dict`), the most recent
`substep` integer, the state history[see link] (`sH`), the most recent state record `s` (`dict) as inputs and returns a
set of actions (`dict`).
Policy functions return dictionaries as actions. Policy functions provide access to parameter sweep variables [see link]
via dictionary `_g`.
```python
def p1_psu1(_g, substep, sH, s):
return {'policy1': 1}
def p2_psu1(_g, substep, sH, s):
return {'policy1': 1, 'policy2': 4}
```
For each PSU, multiple policy dictionaries are aggregated into a single dictionary to be imputted into
all state functions using an initial reduction function (default: `lambda a, b: a + b`) and optional subsequent map
functions.
Example Result: `{'policy1': 2, 'policy2': 4}`
#### State Updates
State update functions provide access to parameter sweep variables [see link] `_g` (`dict`), the most recent `substep`
integer, the state history[see link] (`sH`), the most recent state record as a dictionary (`s`), the policies of a
PSU (`_input`), and returns a tuple of the state variable's name and the resulting new value of the variable.
```python
def state_update(_g, substep, sH, s, _input):
...
return state, update
```
**Note:** Each state update function updates one state variable at a time. Changes to multiple state variables requires
separate state update functions. A generic example of a PSU is as follows.
* ##### Endogenous State Updates
They are only updated by PSUs and can be used as inputs to a PSUs.
```python
def s1_update(_g, substep, sH, s, _input):
x = _input['policy1'] + 1
return 's1', x
def s2_update(_g, substep, sH, s, _input):
x = _input['policy2']
return 's2', x
```
* ##### Exogenous State Updates
***Exogenous State variables*** ***(Review)*** are read-only variables that represent external input and signal. They
update endogenous states and are only updated by environmental processes. Exgoneous variables can be used
as an input to a PSU that impacts state variables. ***(Expand upon Exogenous state updates)***
```python
from datetime import timedelta
from cadCAD.configuration.utils import time_step
def es3_update(_g, substep, sH, s, _input):
x = ...
return 's3'
def es4_update(_g, substep, sH, s, _input):
x = ...
return 's4', x
def update_timestamp(_g, substep, sH, s, _input):
x = time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
return 'timestamp', x
```
Exogenous state update functions (`es3_update`, `es4_update` and `es5_update`) update once per timestamp and should be
included as a part of the first PSU in the PSUB.
```python
partial_state_update_block['psu1']['variables']['s3'] = es3_update
partial_state_update_block['psu1']['variables']['s4'] = es4_update
partial_state_update_block['psu1']['variables']['timestamp'] = update_timestamp
```
* #### Environmental Process
- ***Environmental processes*** model external changes that directly impact exogenous states at given specific
conditions such as market shocks at specific timestamps.
Create a dictionary like `env_processes` below for which the keys are exogenous states and the values are lists of user
defined **Environment Update** functions to be composed (e.g. `[f(params, x), g(params, x)]` becomes
`f(params, g(params, x))`).
Environment Updates accept the [**Parameter Sweep**](link) dictionary `params` and a state as a result of a PSU.
```python
def env_update(params, state):
. . .
return updated_state
# OR
env_update = lambda params, state: state + 5
```
The `env_trigger` function is used to apply composed environment update functions to a list of specific exogenous state
update results. `env_trigger` accepts the total number of `substeps` for the simulation / `end_substep` and returns a
function accepting `trigger_field`, `trigger_vals`, and `funct_list`.
In the following example functions are used to add `5` to every `s3` update and assign `10` to `s4` at
`timestamp`s `'2018-10-01 15:16:25'`, `'2018-10-01 15:16:27'`, and `'2018-10-01 15:16:29'`.
```python
from cadCAD.configuration.utils import env_trigger
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda params, x: x + 5],
"s4": env_trigger(end_substep=3)(
trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda params, x: 10]
)
}
```
#### System Model Configuration
`append_configs`, stores a **System Model Configuration** to be (Executed)[url] as
simulations producing system event dataset(s)
```python
from cadCAD.configuration import append_configs
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b]
)
```
#### [System Simulation Execution](link)

View File

@ -9,7 +9,7 @@ seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
'c': np.random.RandomState(4)
}
@ -95,14 +95,15 @@ genesis_states = {
# Environment Process
# ToDo: Depreciation Waring for env_proc_trigger convention
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda _g, x: 5],
"s4": env_trigger(3)(trigger_field='timestep', trigger_vals=[1], funct_list=[lambda _g, x: 10])
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
partial_state_update_blocks = {
"m1": {
partial_state_update_block = [
{
"policies": {
"b1": p1m1,
"b2": p2m1
@ -115,7 +116,7 @@ partial_state_update_blocks = {
"timestamp": update_timestamp
}
},
"m2": {
{
"policies": {
"b1": p1m2,
"b2": p2m2
@ -127,7 +128,7 @@ partial_state_update_blocks = {
# "s4": es4p2,
}
},
"m3": {
{
"policies": {
"b1": p1m3,
"b2": p2m3
@ -139,7 +140,7 @@ partial_state_update_blocks = {
# "s4": es4p2,
}
}
}
]
sim_config = config_sim(
@ -153,6 +154,6 @@ append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b]
)

View File

@ -8,7 +8,7 @@ seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(4)
'c': np.random.RandomState(3)
}
@ -89,9 +89,10 @@ genesis_states = {
# Environment Process
# ToDo: Depreciation Waring for env_proc_trigger convention
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda _g, x: 5],
"s4": env_trigger(3)(trigger_field='timestep', trigger_vals=[2], funct_list=[lambda _g, x: 10])
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
partial_state_update_block = {

View File

@ -1,3 +1,5 @@
from copy import deepcopy
import pandas as pd
from fn.func import curried
from datetime import timedelta
@ -26,6 +28,11 @@ class udoExample(object):
self.x += 1
return self
def updateDS(self):
self.ds.iloc[0,0] -= 10
# pp.pprint(self.ds)
return self
def perceive(self, s):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
@ -106,7 +113,7 @@ def perceive(s, self):
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
s['state_udo'].updateX().perceive(s).updateDS()
x = udoPipe(s['state_udo'])
return y, x
for m in psu_steps:

View File

@ -1,4 +1,5 @@
import pandas as pd
from typing import List
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
@ -17,7 +18,8 @@ raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print(raw_result)
print(tabulate(tensor_field[['m', 'b1', 's1', 's2']], headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -15,10 +15,10 @@ run = Executor(exec_context=single_proc_ctx, configs=first_config)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
cols = ['run','substep','timestep','x','nonexsistant','last_x','2nd_to_last_x','3rd_to_last_x','4th_to_last_x']
# cols = ['run','substep','timestep','x','nonexsistant','last_x','2nd_to_last_x','3rd_to_last_x','4th_to_last_x']
cols = ['last_x']
result = result[cols]
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))

View File

@ -2,11 +2,9 @@ from pprint import pprint
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.regression_tests import policy_aggregation
from cadCAD import configs
from testing.utils import generate_assertions
exec_mode = ExecutionMode()

View File

@ -11,9 +11,9 @@ print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
run = Executor(exec_context=single_proc_ctx, configs=configs)
# cols = configs[0].initial_state.keys()
cols = [
'increment',
@ -29,6 +29,10 @@ result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
# print(tabulate(result['c'].apply(pd.Series), headers='keys', tablefmt='psql'))
# print(result.iloc[8,:]['state_udo'].ds)
# ctypes.cast(id(v['state_udo']['mem_id']), ctypes.py_object).value
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))

View File

@ -2,7 +2,6 @@ import unittest
from parameterized import parameterized
from functools import reduce
from tabulate import tabulate
from testing.utils import generate_assertions_df
# ToDo: Exec Debug mode (*) for which state and policy updates are validated during runtime using `expected_results`
# EXAMPLE: ('state_test' T/F, 'policy_test' T/F)
@ -14,26 +13,61 @@ from testing.utils import generate_assertions_df
# ToDo: Use self.assertRaises(AssertionError)
def generate_assertions_df(df, expected_results, target_cols, evaluations):
# cols = ['run', 'timestep', 'substep'] + target_cols
# print(cols)
test_names = []
for eval_f in evaluations:
def wrapped_eval(a, b):
try:
return eval_f(a, b)
except KeyError:
return True
test_name = f"{eval_f.__name__}_test"
test_names.append(test_name)
df[test_name] = df.apply(
lambda x: wrapped_eval(
x.filter(items=target_cols).to_dict(),
expected_results[(x['run'], x['timestep'], x['substep'])]
),
axis=1
)
return df, test_names
def make_generic_test(params):
class TestSequence(unittest.TestCase):
@parameterized.expand(params)
def test_validate_results(self, name, result_df, expected_reults, target_cols):
# alt for (*) Exec Debug mode
tested_df = generate_assertions_df(result_df, expected_reults, target_cols)
erroneous = tested_df[(tested_df['test'] == False)]
if erroneous.empty is False:
def generic_test(self, tested_df, expected_reults, test_name):
erroneous = tested_df[(tested_df[test_name] == False)]
# print(tabulate(tested_df, headers='keys', tablefmt='psql'))
if erroneous.empty is False: # Or Entire df IS NOT erroneous
for index, row in erroneous.iterrows():
expected = expected_reults[(row['run'], row['timestep'], row['substep'])]
unexpected = {k: expected[k] for k in expected if k in row and expected[k] != row[k]}
unexpected = {f"invalid_{k}": expected[k] for k in expected if k in row and expected[k] != row[k]}
for key in unexpected.keys():
erroneous[f"invalid_{key}"] = unexpected[key]
erroneous[key] = None
erroneous.at[index, key] = unexpected[key]
# etc.
print()
print(tabulate(erroneous, headers='keys', tablefmt='psql'))
# print()
# print(f"TEST: {test_name}")
# print(tabulate(erroneous, headers='keys', tablefmt='psql'))
self.assertTrue(reduce(lambda a, b: a and b, tested_df['test']))
# ToDo: Condition that will change false to true
self.assertTrue(reduce(lambda a, b: a and b, tested_df[test_name]))
# def etc.
@parameterized.expand(params)
def test_validation(self, name, result_df, expected_reults, target_cols, evaluations):
# alt for (*) Exec Debug mode
tested_df, test_names = generate_assertions_df(result_df, expected_reults, target_cols, evaluations)
for test_name in test_names:
self.generic_test(tested_df, expected_reults, test_name)
return TestSequence

View File

View File

@ -0,0 +1,67 @@
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim
import pandas as pd
from cadCAD.utils import SilentDF
df = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
def query(s, df):
return df[
(df['run'] == s['run']) & (df['substep'] == s['substep']) & (df['timestep'] == s['timestep'])
].drop(columns=['run', 'substep', "timestep"])
def p1(_g, substep, sL, s):
result_dict = query(s, df).to_dict()
del result_dict["ds3"]
return {k: list(v.values()).pop() for k, v in result_dict.items()}
def p2(_g, substep, sL, s):
result_dict = query(s, df).to_dict()
del result_dict["ds1"], result_dict["ds2"]
return {k: list(v.values()).pop() for k, v in result_dict.items()}
# ToDo: SilentDF(df) wont work
#integrate_ext_dataset
def integrate_ext_dataset(_g, step, sL, s, _input):
result_dict = query(s, df).to_dict()
return 'external_data', {k: list(v.values()).pop() for k, v in result_dict.items()}
def increment(y, incr_by):
return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
increment = increment('increment', 1)
def view_policies(_g, step, sL, s, _input):
return 'policies', _input
external_data = {'ds1': None, 'ds2': None, 'ds3': None}
state_dict = {
'increment': 0,
'external_data': external_data,
'policies': external_data
}
policies = {"p1": p1, "p2": p2}
states = {'increment': increment, 'external_data': integrate_ext_dataset, 'policies': view_policies}
PSUB = {'policies': policies, 'states': states}
# needs M1&2 need behaviors
partial_state_update_blocks = {
'PSUB1': PSUB,
'PSUB2': PSUB,
'PSUB3': PSUB
}
sim_config = config_sim({
"N": 2,
"T": range(4)
})
append_configs(
sim_configs=sim_config,
initial_state=state_dict,
partial_state_update_blocks=partial_state_update_blocks,
policy_ops=[lambda a, b: {**a, **b}]
)

View File

@ -92,6 +92,4 @@ append_configs(
partial_state_update_blocks=partial_state_update_block
)
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)

View File

@ -0,0 +1,110 @@
import pprint
from typing import Dict, List
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import env_trigger, var_substep_trigger, config_sim, psub_list
pp = pprint.PrettyPrinter(indent=4)
def some_function(x):
return x
# Optional
# dict must contain lists opf 2 distinct lengths
g: Dict[str, List[int]] = {
'alpha': [1],
'beta': [2, some_function],
'gamma': [3, 4],
'omega': [7]
}
psu_steps = ['m1', 'm2', 'm3']
system_substeps = len(psu_steps)
var_timestep_trigger = var_substep_trigger([0, system_substeps])
env_timestep_trigger = env_trigger(system_substeps)
env_process = {}
# ['s1', 's2', 's3', 's4']
# Policies per Mechanism
def gamma(_g, step, sL, s):
return {'gamma': _g['gamma']}
def omega(_g, step, sL, s):
return {'omega': _g['omega']}
# Internal States per Mechanism
def alpha(_g, step, sL, s, _input):
return 'alpha', _g['alpha']
def beta(_g, step, sL, s, _input):
return 'beta', _g['beta']
def policies(_g, step, sL, s, _input):
return 'policies', _input
def sweeped(_g, step, sL, s, _input):
return 'sweeped', {'beta': _g['beta'], 'gamma': _g['gamma']}
psu_block = {k: {"policies": {}, "variables": {}} for k in psu_steps}
for m in psu_steps:
psu_block[m]['policies']['gamma'] = gamma
psu_block[m]['policies']['omega'] = omega
psu_block[m]["variables"]['alpha'] = alpha
psu_block[m]["variables"]['beta'] = beta
psu_block[m]['variables']['policies'] = policies
psu_block[m]["variables"]['sweeped'] = var_timestep_trigger(y='sweeped', f=sweeped)
# ToDo: The number of values entered in sweep should be the # of config objs created,
# not dependent on the # of times the sweep is applied
# sweep exo_state func and point to exo-state in every other funtion
# param sweep on genesis states
# Genesis States
genesis_states = {
'alpha': 0,
'beta': 0,
'policies': {},
'sweeped': {}
}
# Environment Process
# ToDo: Validate - make env proc trigger field agnostic
env_process['sweeped'] = env_timestep_trigger(trigger_field='timestep', trigger_vals=[5], funct_list=[lambda _g, x: _g['beta']])
# config_sim Necessary
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g, # Optional
}
)
# print()
# pp.pprint(g)
# print()
# pp.pprint(sim_config)
# New Convention
partial_state_update_blocks = psub_list(psu_block, psu_steps)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_process,
partial_state_update_blocks=partial_state_update_blocks
)
print()
print("Policie State Update Block:")
pp.pprint(partial_state_update_blocks)
print()
print()

View File

@ -1,7 +1,5 @@
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
# Policies per Mechanism
@ -85,6 +83,4 @@ append_configs(
policy_ops=[lambda a, b: a + b, lambda y: y * 2] # Default: lambda a, b: a + b ToDO: reduction function requires high lvl explanation
)
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)

View File

@ -0,0 +1,185 @@
import pandas as pd
from fn.func import curried
from datetime import timedelta
import pprint as pp
from cadCAD.utils import SilentDF #, val_switch
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import time_step, config_sim, var_trigger, var_substep_trigger, env_trigger, psub_list
from cadCAD.configuration.utils.userDefinedObject import udoPipe, UDO
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
DF = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
class udoExample(object):
def __init__(self, x, dataset=None):
self.x = x
self.mem_id = str(hex(id(self)))
self.ds = dataset # for setting ds initially or querying
self.perception = {}
def anon(self, f):
return f(self)
def updateX(self):
self.x += 1
return self
def perceive(self, s):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def read(self, ds_uri):
self.ds = SilentDF(pd.read_csv(ds_uri))
return self
def write(self, ds_uri):
pd.to_csv(ds_uri)
# ToDo: Generic update function
pass
state_udo = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoA = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoB = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
sim_config = config_sim({
"N": 2,
"T": range(4)
})
# ToDo: DataFrame Column order
state_dict = {
'increment': 0,
'state_udo': state_udo, 'state_udo_tracker': 0,
'state_udo_perception_tracker': {"ds1": None, "ds2": None, "ds3": None, "timestep": None},
'udo_policies': {'udo_A': policy_udoA, 'udo_B': policy_udoB},
'udo_policy_tracker': (0, 0),
'timestamp': '2019-01-01 00:00:00'
}
psu_steps = ['m1', 'm2', 'm3']
system_substeps = len(psu_steps)
var_timestep_trigger = var_substep_trigger([0, system_substeps])
env_timestep_trigger = env_trigger(system_substeps)
psu_block = {k: {"policies": {}, "variables": {}} for k in psu_steps}
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
# policies['a'] = udo_policyA
for m in psu_steps:
psu_block[m]['policies']['a'] = udo_policyA
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
# policies['b'] = udo_policyB
for m in psu_steps:
psu_block[m]['policies']['b'] = udo_policyB
# policies = {"p1": udo_policyA, "p2": udo_policyB}
# policies = {"A": udo_policyA, "B": udo_policyB}
def add(y: str, added_val):
return lambda _g, step, sL, s, _input: (y, s[y] + added_val)
# state_updates['increment'] = add('increment', 1)
for m in psu_steps:
psu_block[m]["variables"]['increment'] = add('increment', 1)
@curried
def perceive(s, self):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
x = udoPipe(s['state_udo'])
return y, x
for m in psu_steps:
psu_block[m]["variables"]['state_udo'] = state_udo_update
def track(destination, source):
return lambda _g, step, sL, s, _input: (destination, s[source].x)
state_udo_tracker = track('state_udo_tracker', 'state_udo')
for m in psu_steps:
psu_block[m]["variables"]['state_udo_tracker'] = state_udo_tracker
def track_state_udo_perception(destination, source):
def id(past_perception):
if len(past_perception) == 0:
return state_dict['state_udo_perception_tracker']
else:
return past_perception
return lambda _g, step, sL, s, _input: (destination, id(s[source].perception))
state_udo_perception_tracker = track_state_udo_perception('state_udo_perception_tracker', 'state_udo')
for m in psu_steps:
psu_block[m]["variables"]['state_udo_perception_tracker'] = state_udo_perception_tracker
def view_udo_policy(_g, step, sL, s, _input):
return 'udo_policies', _input
for m in psu_steps:
psu_block[m]["variables"]['udo_policies'] = view_udo_policy
def track_udo_policy(destination, source):
def val_switch(v):
if isinstance(v, pd.DataFrame) is True or isinstance(v, SilentDF) is True:
return SilentDF(v)
else:
return v.x
return lambda _g, step, sL, s, _input: (destination, tuple(val_switch(v) for _, v in s[source].items()))
udo_policy_tracker = track_udo_policy('udo_policy_tracker', 'udo_policies')
for m in psu_steps:
psu_block[m]["variables"]['udo_policy_tracker'] = udo_policy_tracker
def update_timestamp(_g, step, sL, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
for m in psu_steps:
psu_block[m]["variables"]['timestamp'] = var_timestep_trigger(y='timestamp', f=update_timestamp)
# psu_block[m]["variables"]['timestamp'] = var_trigger(
# y='timestamp', f=update_timestamp,
# pre_conditions={'substep': [0, system_substeps]}, cond_op=lambda a, b: a and b
# )
# psu_block[m]["variables"]['timestamp'] = update_timestamp
# ToDo: Bug without specifying parameters
# New Convention
partial_state_update_blocks = psub_list(psu_block, psu_steps)
append_configs(
sim_configs=sim_config,
initial_state=state_dict,
partial_state_update_blocks=partial_state_update_blocks
)
print()
print("State Updates:")
pp.pprint(partial_state_update_blocks)
print()
exec_mode = ExecutionMode()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)

View File

@ -0,0 +1,127 @@
import unittest
from pprint import pprint
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.regression_tests import external_dataset
from cadCAD import configs
from testing.generic_test import make_generic_test
from testing.utils import gen_metric_dict
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
# print(tabulate(result, headers='keys', tablefmt='psql'))
# cols = ['run', 'substep', 'timestep', 'increment', 'external_data', 'policies']
# result = result[cols]
#
# metrics = gen_metric_dict(result, ['increment', 'external_data', 'policies'])
# #
# pprint(metrics)
def get_expected_results(run):
return {
(run, 0, 0): {
'external_data': {'ds1': None, 'ds2': None, 'ds3': None},
'increment': 0,
'policies': {'ds1': None, 'ds2': None, 'ds3': None}
},
(run, 1, 1): {
'external_data': {'ds1': 0, 'ds2': 0, 'ds3': 1},
'increment': 1,
'policies': {'ds1': 0, 'ds2': 0, 'ds3': 1}
},
(run, 1, 2): {
'external_data': {'ds1': 1, 'ds2': 40, 'ds3': 5},
'increment': 2,
'policies': {'ds1': 1, 'ds2': 40, 'ds3': 5}
},
(run, 1, 3): {
'external_data': {'ds1': 2, 'ds2': 40, 'ds3': 5},
'increment': 3,
'policies': {'ds1': 2, 'ds2': 40, 'ds3': 5}
},
(run, 2, 1): {
'external_data': {'ds1': 3, 'ds2': 40, 'ds3': 5},
'increment': 4,
'policies': {'ds1': 3, 'ds2': 40, 'ds3': 5}
},
(run, 2, 2): {
'external_data': {'ds1': 4, 'ds2': 40, 'ds3': 5},
'increment': 5,
'policies': {'ds1': 4, 'ds2': 40, 'ds3': 5}
},
(run, 2, 3): {
'external_data': {'ds1': 5, 'ds2': 40, 'ds3': 5},
'increment': 6,
'policies': {'ds1': 5, 'ds2': 40, 'ds3': 5}
},
(run, 3, 1): {
'external_data': {'ds1': 6, 'ds2': 40, 'ds3': 5},
'increment': 7,
'policies': {'ds1': 6, 'ds2': 40, 'ds3': 5}
},
(run, 3, 2): {
'external_data': {'ds1': 7, 'ds2': 40, 'ds3': 5},
'increment': 8,
'policies': {'ds1': 7, 'ds2': 40, 'ds3': 5}
},
(run, 3, 3): {
'external_data': {'ds1': 8, 'ds2': 40, 'ds3': 5},
'increment': 9,
'policies': {'ds1': 8, 'ds2': 40, 'ds3': 5}
},
(run, 4, 1): {
'external_data': {'ds1': 9, 'ds2': 40, 'ds3': 5},
'increment': 10,
'policies': {'ds1': 9, 'ds2': 40, 'ds3': 5}
},
(run, 4, 2): {
'external_data': {'ds1': 10, 'ds2': 40, 'ds3': 5},
'increment': 11,
'policies': {'ds1': 10, 'ds2': 40, 'ds3': 5}
},
(run, 4, 3): {
'external_data': {'ds1': 11, 'ds2': 40, 'ds3': 5},
'increment': 12,
'policies': {'ds1': 11, 'ds2': 40, 'ds3': 5}
}
}
expected_results = {}
expected_results_1 = get_expected_results(1)
expected_results_2 = get_expected_results(2)
expected_results.update(expected_results_1)
expected_results.update(expected_results_2)
def row(a, b):
return a == b
params = [["external_dataset", result, expected_results, ['increment', 'external_data', 'policies'], [row]]]
class GenericTest(make_generic_test(params)):
pass
if __name__ == '__main__':
unittest.main()
# print()
# print("Tensor Field: config1")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()

View File

@ -1,14 +1,20 @@
import unittest
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from testing.generic_test import make_generic_test
from testing.system_models.historical_state_access import run
from testing.utils import generate_assertions_df
from testing.system_models import historical_state_access
from cadCAD import configs
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
# ToDo: Discrepance not reported fot collection values. Needs custom test for collection values
expected_results = {
(1, 0, 0): {'x': 0, 'nonexsistant': [], 'last_x': [], '2nd_to_last_x': [], '3rd_to_last_x': [], '4th_to_last_x': []},
(1, 1, 1): {'x': 1,
@ -31,49 +37,85 @@ expected_results = {
'4th_to_last_x': []},
(1, 2, 1): {'x': 4,
'nonexsistant': [],
'last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'2nd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'last_x': [
{'x': 4, 'run': 1, 'substep': 1, 'timestep': 1}, # x: 1
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'2nd_to_last_x': [{'x': -1, 'run': 1, 'substep': 0, 'timestep': 0}], # x: 0
'3rd_to_last_x': [],
'4th_to_last_x': []},
(1, 2, 2): {'x': 5,
'nonexsistant': [],
'last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'last_x': [
{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1},
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'2nd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'3rd_to_last_x': [],
'4th_to_last_x': []},
(1, 2, 3): {'x': 6,
'nonexsistant': [],
'last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'last_x': [
{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1},
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'2nd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'3rd_to_last_x': [],
'4th_to_last_x': []},
(1, 3, 1): {'x': 7,
'nonexsistant': [],
'last_x': [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}],
'2nd_to_last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'last_x': [
{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2},
{'x': 5, 'run': 1, 'substep': 2, 'timestep': 2},
{'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}
],
'2nd_to_last_x': [
{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1},
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'3rd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'4th_to_last_x': []},
(1, 3, 2): {'x': 8,
'nonexsistant': [],
'last_x': [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}],
'2nd_to_last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'last_x': [
{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2},
{'x': 5, 'run': 1, 'substep': 2, 'timestep': 2},
{'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}
],
'2nd_to_last_x': [
{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1},
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'3rd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'4th_to_last_x': []},
(1, 3, 3): {'x': 9,
'nonexsistant': [],
'last_x': [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}],
'2nd_to_last_x': [{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1}, {'x': 2, 'run': 1, 'substep': 2, 'timestep': 1}, {'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}],
'last_x': [
{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2},
{'x': 5, 'run': 1, 'substep': 2, 'timestep': 2},
{'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}
],
'2nd_to_last_x': [
{'x': 1, 'run': 1, 'substep': 1, 'timestep': 1},
{'x': 2, 'run': 1, 'substep': 2, 'timestep': 1},
{'x': 3, 'run': 1, 'substep': 3, 'timestep': 1}
],
'3rd_to_last_x': [{'x': 0, 'run': 1, 'substep': 0, 'timestep': 0}],
'4th_to_last_x': []}
}
params = [["historical_state_access", result, expected_results,
['x', 'nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x']]
]
# df = generate_assertions_df(result, expected_results,
# ['x', 'nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x']
# )
# print(tabulate(df, headers='keys', tablefmt='psql'))
def row(a, b):
return a == b
params = [
["historical_state_access", result, expected_results,
['x', 'nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x'], [row]]
]
class GenericTest(make_generic_test(params)):

View File

@ -0,0 +1,56 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.regression_tests import config1, config2
from cadCAD import configs
from testing.utils import gen_metric_dict
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
def get_expected_results_1(run):
return {
(run, 0, 0): {'s1': 0, 's2': 0.0, 's3': 5},
(run, 1, 1): {'s1': 1, 's2': 4, 's3': 5},
(run, 1, 2): {'s1': 2, 's2': 6, 's3': 5},
(run, 1, 3): {'s1': 3, 's2': [30, 300], 's3': 5},
(run, 2, 1): {'s1': 4, 's2': 4, 's3': 5},
(run, 2, 2): {'s1': 5, 's2': 6, 's3': 5},
(run, 2, 3): {'s1': 6, 's2': [30, 300], 's3': 5},
(run, 3, 1): {'s1': 7, 's2': 4, 's3': 5},
(run, 3, 2): {'s1': 8, 's2': 6, 's3': 5},
(run, 3, 3): {'s1': 9, 's2': [30, 300], 's3': 5},
(run, 4, 1): {'s1': 10, 's2': 4, 's3': 5},
(run, 4, 2): {'s1': 11, 's2': 6, 's3': 5},
(run, 4, 3): {'s1': 12, 's2': [30, 300], 's3': 5},
(run, 5, 1): {'s1': 13, 's2': 4, 's3': 5},
(run, 5, 2): {'s1': 14, 's2': 6, 's3': 5},
(run, 5, 3): {'s1': 15, 's2': [30, 300], 's3': 5},
}
expected_results_1 = {}
expected_results_A = get_expected_results_1(1)
expected_results_B = get_expected_results_1(2)
expected_results_1.update(expected_results_A)
expected_results_1.update(expected_results_B)
expected_results_2 = {}
# print(configs)
i = 0
config_names = ['config1', 'config2']
for raw_result, tensor_field in run.execute():
result = pd.DataFrame(raw_result)
print()
print(f"Tensor Field: {config_names[i]}")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print(gen_metric_dict)
i += 1

View File

@ -0,0 +1,85 @@
import unittest
import pandas as pd
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from testing.system_models import param_sweep
from cadCAD import configs
from testing.generic_test import make_generic_test
from testing.system_models.param_sweep import some_function
exec_mode = ExecutionMode()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
def get_expected_results(run, beta, gamma):
return {
(run, 0, 0): {'policies': {}, 'sweeped': {}, 'alpha': 0, 'beta': 0},
(run, 1, 1): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 1, 2): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 1, 3): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 2, 1): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 2, 2): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 2, 3): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 3, 1): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 3, 2): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 3, 3): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 4, 1): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 4, 2): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 4, 3): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': {'beta': beta, 'gamma': gamma}, 'alpha': 1, 'beta': beta},
(run, 5, 1): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': beta, 'alpha': 1, 'beta': beta},
(run, 5, 2): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': beta, 'alpha': 1, 'beta': beta},
(run, 5, 3): {'policies': {'gamma': gamma, 'omega': 7}, 'sweeped': beta, 'alpha': 1, 'beta': beta}
}
expected_results_1 = {}
expected_results_1a = get_expected_results(1, 2, 3)
expected_results_1b = get_expected_results(2, 2, 3)
expected_results_1.update(expected_results_1a)
expected_results_1.update(expected_results_1b)
expected_results_2 = {}
expected_results_2a = get_expected_results(1, some_function, 4)
expected_results_2b = get_expected_results(2, some_function, 4)
expected_results_2.update(expected_results_2a)
expected_results_2.update(expected_results_2b)
i = 0
expected_results = [expected_results_1, expected_results_2]
config_names = ['sweep_config_A', 'sweep_config_B']
def row(a, b):
return a == b
def create_test_params(feature, fields):
i = 0
for raw_result, _ in run.execute():
yield [feature, pd.DataFrame(raw_result), expected_results[i], fields, [row]]
i += 1
params = list(create_test_params("param_sweep", ['alpha', 'beta', 'policies', 'sweeped']))
class GenericTest(make_generic_test(params)):
pass
if __name__ == '__main__':
unittest.main()
# i = 0
# # config_names = ['sweep_config_A', 'sweep_config_B']
# for raw_result, tensor_field in run.execute():
# result = pd.DataFrame(raw_result)
# print()
# # print("Tensor Field: " + config_names[i])
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()
# i += 1

View File

@ -1,14 +1,21 @@
import unittest
import pandas as pd
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from testing.generic_test import make_generic_test
from testing.system_models.policy_aggregation import run
from testing.system_models import policy_aggregation
from cadCAD import configs
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=configs)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
expected_results = {
(1, 0, 0): {'policies': {}, 's1': 0},
(1, 1, 1): {'policies': {'policy1': 2, 'policy2': 4}, 's1': 500},
(1, 1, 1): {'policies': {'policy1': 1, 'policy2': 4}, 's1': 1}, # 'policy1': 2
(1, 1, 2): {'policies': {'policy1': 8, 'policy2': 8}, 's1': 2},
(1, 1, 3): {'policies': {'policy1': 4, 'policy2': 8, 'policy3': 12}, 's1': 3},
(1, 2, 1): {'policies': {'policy1': 2, 'policy2': 4}, 's1': 4},
@ -19,14 +26,14 @@ expected_results = {
(1, 3, 3): {'policies': {'policy1': 4, 'policy2': 8, 'policy3': 12}, 's1': 9}
}
params = [["policy_aggregation", result, expected_results, ['policies', 's1']]]
# df = generate_assertions_df(result, expected_results, ['policies', 's1'])
# print(tabulate(df, headers='keys', tablefmt='psql'))
def row(a, b):
return a == b
params = [["policy_aggregation", result, expected_results, ['policies', 's1'], [row]]]
class GenericTest(make_generic_test(params)):
pass
if __name__ == '__main__':
unittest.main()

39
testing/tests/udo.py Normal file
View File

@ -0,0 +1,39 @@
import unittest
import ctypes
from copy import deepcopy
from pprint import pprint
import pandas as pd
from tabulate import tabulate
from testing.generic_test import make_generic_test
from testing.system_models.udo import run
from testing.utils import generate_assertions_df, gen_metric_dict
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
cols = ['increment', 'state_udo', 'state_udo_perception_tracker',
'state_udo_tracker', 'timestamp', 'udo_policies', 'udo_policy_tracker']
# print(list(result.columns)
# ctypes.cast(id(a), ctypes.py_object).value
# pprint(gen_metric_dict(result, cols))
d = gen_metric_dict(result, cols)
pprint(d)
# for k1, v1 in d:
# print(v1)
# d_copy = deepcopy(d)
# for k, v in d_copy.items():
# # print(d[k]['state_udo']) # =
# print(ctypes.cast(id(v['state_udo']['mem_id']), ctypes.py_object).value)
# pprint(d_copy)
# df = generate_assertions_df(result, d, cols)
#
# print(tabulate(df, headers='keys', tablefmt='psql'))
#

View File

@ -1,28 +1,21 @@
def gen_metric_row(row):
return ((row['run'], row['timestep'], row['substep']), {'s1': row['s1'], 'policies': row['policies']})
#
# def record_generator(row, cols):
# return {col: row[col] for col in cols}
def gen_metric_row(row):
return {
'run': row['run'],
'timestep': row['timestep'],
'substep': row['substep'],
's1': row['s1'],
'policies': row['policies']
}
def gen_metric_row(row, cols):
return ((row['run'], row['timestep'], row['substep']), {col: row[col] for col in cols})
def gen_metric_dict(df):
return [gen_metric_row(row) for index, row in df.iterrows()]
# def gen_metric_row(row):
# return ((row['run'], row['timestep'], row['substep']), {'s1': row['s1'], 'policies': row['policies']})
def generate_assertions_df(df, expected_results, target_cols):
def df_filter(run, timestep, substep):
return df[
(df['run'] == run) & (df['timestep'] == timestep) & (df['substep'] == substep)
][target_cols].to_dict(orient='records')[0]
# def gen_metric_row(row):
# return {
# 'run': row['run'],
# 'timestep': row['timestep'],
# 'substep': row['substep'],
# 's1': row['s1'],
# 'policies': row['policies']
# }
df['test'] = df.apply(
lambda x: \
df_filter(x['run'], x['timestep'], x['substep']) == expected_results[(x['run'], x['timestep'], x['substep'])]
, axis=1
)
return df
def gen_metric_dict(df, cols):
return dict([gen_metric_row(row, cols) for index, row in df.iterrows()])