Include all param names in config & execution examples

This commit is contained in:
Joshua E. Jodesty 2018-12-03 14:34:45 -05:00
parent a1d83f0a28
commit 932b158672
5 changed files with 40 additions and 22 deletions

View File

@ -36,7 +36,7 @@ from tabulate import tabulate
# The following imports NEED to be in the exact same order # The following imports NEED to be in the exact same order
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from sandbox.validation import config1, config2 from simulations.validation import config1, config2
from SimCAD import configs from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input # ToDo: pass ExecutionContext with execution method as ExecutionContext input
@ -47,17 +47,18 @@ exec_mode = ExecutionMode()
print("Simulation Run 1") print("Simulation Run 1")
print() print()
single_config = [configs[0]] single_config = [configs[0]]
single_proc_ctx = ExecutionContext(exec_mode.single_proc) single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(single_proc_ctx, single_config) run1 = Executor(exec_context=single_proc_ctx, configs=single_config)
run1_raw_result = run1.main() run1_raw_result = run1.main()
result = pd.DataFrame(run1_raw_result) result = pd.DataFrame(run1_raw_result)
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4csv', sep=',')
print(tabulate(result, headers='keys', tablefmt='psql')) print(tabulate(result, headers='keys', tablefmt='psql'))
print() print()
print("Simulation Run 2: Pairwise Execution") print("Simulation Run 2: Pairwise Execution")
print() print()
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc) multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(multi_proc_ctx, configs) run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
run2_raw_results = run2.main() run2_raw_results = run2.main()
for raw_result in run2_raw_results: for raw_result in run2_raw_results:
result = pd.DataFrame(raw_result) result = pd.DataFrame(raw_result)

View File

@ -1226,7 +1226,6 @@
{ {
"ename": "TypeError", "ename": "TypeError",
"evalue": "'decimal.Decimal' object is not subscriptable", "evalue": "'decimal.Decimal' object is not subscriptable",
"output_type": "error",
"traceback": [ "traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
@ -1235,7 +1234,8 @@
"\u001b[1;32mpandas/_libs/src\\inference.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.map_infer\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas/_libs/src\\inference.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.map_infer\u001b[1;34m()\u001b[0m\n",
"\u001b[1;32m<ipython-input-39-5728821497eb>\u001b[0m in \u001b[0;36mweighted_avg\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mweighted_avg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m<ipython-input-39-5728821497eb>\u001b[0m in \u001b[0;36mweighted_avg\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mweighted_avg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mTypeError\u001b[0m: 'decimal.Decimal' object is not subscriptable" "\u001b[1;31mTypeError\u001b[0m: 'decimal.Decimal' object is not subscriptable"
] ],
"output_type": "error"
} }
], ],
"source": [ "source": [
@ -1277,13 +1277,13 @@
{ {
"ename": "AttributeError", "ename": "AttributeError",
"evalue": "'numpy.ndarray' object has no attribute 'reset_index'", "evalue": "'numpy.ndarray' object has no attribute 'reset_index'",
"output_type": "error",
"traceback": [ "traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-51-1853119f9e61>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtest2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'index'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'B'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'C'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m<ipython-input-51-1853119f9e61>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtest2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'index'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'B'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'C'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'reset_index'" "\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'reset_index'"
] ],
"output_type": "error"
} }
], ],
"source": [] "source": []
@ -1860,7 +1860,6 @@
{ {
"ename": "KeyError", "ename": "KeyError",
"evalue": "'Buy_Log'", "evalue": "'Buy_Log'",
"output_type": "error",
"traceback": [ "traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
@ -1883,7 +1882,8 @@
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'" "\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
] ],
"output_type": "error"
}, },
{ {
"data": { "data": {
@ -1911,7 +1911,6 @@
{ {
"ename": "KeyError", "ename": "KeyError",
"evalue": "'Buy_Log'", "evalue": "'Buy_Log'",
"output_type": "error",
"traceback": [ "traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
@ -1934,7 +1933,8 @@
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'" "\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
] ],
"output_type": "error"
} }
], ],
"source": [ "source": [
@ -1956,13 +1956,13 @@
{ {
"ename": "NameError", "ename": "NameError",
"evalue": "name 'buy_delta' is not defined", "evalue": "name 'buy_delta' is not defined",
"output_type": "error",
"traceback": [ "traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-22-0cd1f5cb3736>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m12\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mbuy_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m#, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msell_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mext_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mylim\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m<ipython-input-22-0cd1f5cb3736>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m12\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mbuy_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m#, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msell_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mext_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mylim\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'buy_delta' is not defined" "\u001b[1;31mNameError\u001b[0m: name 'buy_delta' is not defined"
] ],
"output_type": "error"
}, },
{ {
"data": { "data": {

View File

@ -17,8 +17,8 @@ exec_mode = ExecutionMode()
print("Simulation Run 1") print("Simulation Run 1")
print() print()
single_config = [configs[0]] single_config = [configs[0]]
single_proc_ctx = ExecutionContext(exec_mode.single_proc) single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(single_proc_ctx, single_config) run1 = Executor(exec_context=single_proc_ctx, configs=single_config)
run1_raw_result = run1.main() run1_raw_result = run1.main()
result = pd.DataFrame(run1_raw_result) result = pd.DataFrame(run1_raw_result)
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',') # result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',')
@ -27,9 +27,8 @@ print()
print("Simulation Run 2: Pairwise Execution") print("Simulation Run 2: Pairwise Execution")
print() print()
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc) multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
# configs = [config1, config1] run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
run2 = Executor(multi_proc_ctx, configs)
run2_raw_results = run2.main() run2_raw_results = run2.main()
for raw_result in run2_raw_results: for raw_result in run2_raw_results:
result = pd.DataFrame(raw_result) result = pd.DataFrame(raw_result)

View File

@ -164,4 +164,13 @@ sim_config = {
"T": range(5) "T": range(5)
} }
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms)) configs.append(
Configuration(
sim_config=sim_config,
state_dict=state_dict,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -168,4 +168,13 @@ sim_config = {
"T": range(5) "T": range(5)
} }
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms)) configs.append(
Configuration(
sim_config=sim_config,
state_dict=state_dict,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)