Include all param names in config & execution examples
This commit is contained in:
parent
a1d83f0a28
commit
932b158672
11
README.md
11
README.md
|
|
@ -36,7 +36,7 @@ from tabulate import tabulate
|
|||
|
||||
# The following imports NEED to be in the exact same order
|
||||
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from sandbox.validation import config1, config2
|
||||
from simulations.validation import config1, config2
|
||||
from SimCAD import configs
|
||||
|
||||
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
|
||||
|
|
@ -47,17 +47,18 @@ exec_mode = ExecutionMode()
|
|||
print("Simulation Run 1")
|
||||
print()
|
||||
single_config = [configs[0]]
|
||||
single_proc_ctx = ExecutionContext(exec_mode.single_proc)
|
||||
run1 = Executor(single_proc_ctx, single_config)
|
||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||
run1 = Executor(exec_context=single_proc_ctx, configs=single_config)
|
||||
run1_raw_result = run1.main()
|
||||
result = pd.DataFrame(run1_raw_result)
|
||||
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4csv', sep=',')
|
||||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
|
||||
print("Simulation Run 2: Pairwise Execution")
|
||||
print()
|
||||
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
|
||||
run2 = Executor(multi_proc_ctx, configs)
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
run2_raw_results = run2.main()
|
||||
for raw_result in run2_raw_results:
|
||||
result = pd.DataFrame(raw_result)
|
||||
|
|
|
|||
|
|
@ -1226,7 +1226,6 @@
|
|||
{
|
||||
"ename": "TypeError",
|
||||
"evalue": "'decimal.Decimal' object is not subscriptable",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
|
|
@ -1235,7 +1234,8 @@
|
|||
"\u001b[1;32mpandas/_libs/src\\inference.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.map_infer\u001b[1;34m()\u001b[0m\n",
|
||||
"\u001b[1;32m<ipython-input-39-5728821497eb>\u001b[0m in \u001b[0;36mweighted_avg\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mweighted_avg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[1;31mTypeError\u001b[0m: 'decimal.Decimal' object is not subscriptable"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
|
|
@ -1277,13 +1277,13 @@
|
|||
{
|
||||
"ename": "AttributeError",
|
||||
"evalue": "'numpy.ndarray' object has no attribute 'reset_index'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[1;32m<ipython-input-51-1853119f9e61>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtest2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'index'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'B'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'C'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'reset_index'"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": []
|
||||
|
|
@ -1860,7 +1860,6 @@
|
|||
{
|
||||
"ename": "KeyError",
|
||||
"evalue": "'Buy_Log'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||
|
|
@ -1883,7 +1882,8 @@
|
|||
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
||||
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
||||
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
|
|
@ -1911,7 +1911,6 @@
|
|||
{
|
||||
"ename": "KeyError",
|
||||
"evalue": "'Buy_Log'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||
|
|
@ -1934,7 +1933,8 @@
|
|||
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
||||
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
||||
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
|
|
@ -1956,13 +1956,13 @@
|
|||
{
|
||||
"ename": "NameError",
|
||||
"evalue": "name 'buy_delta' is not defined",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[1;32m<ipython-input-22-0cd1f5cb3736>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m12\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mbuy_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m#, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msell_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mext_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mylim\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[1;31mNameError\u001b[0m: name 'buy_delta' is not defined"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
|
|
|
|||
|
|
@ -17,8 +17,8 @@ exec_mode = ExecutionMode()
|
|||
print("Simulation Run 1")
|
||||
print()
|
||||
single_config = [configs[0]]
|
||||
single_proc_ctx = ExecutionContext(exec_mode.single_proc)
|
||||
run1 = Executor(single_proc_ctx, single_config)
|
||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||
run1 = Executor(exec_context=single_proc_ctx, configs=single_config)
|
||||
run1_raw_result = run1.main()
|
||||
result = pd.DataFrame(run1_raw_result)
|
||||
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',')
|
||||
|
|
@ -27,9 +27,8 @@ print()
|
|||
|
||||
print("Simulation Run 2: Pairwise Execution")
|
||||
print()
|
||||
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
|
||||
# configs = [config1, config1]
|
||||
run2 = Executor(multi_proc_ctx, configs)
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
run2_raw_results = run2.main()
|
||||
for raw_result in run2_raw_results:
|
||||
result = pd.DataFrame(raw_result)
|
||||
|
|
|
|||
|
|
@ -164,4 +164,13 @@ sim_config = {
|
|||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=state_dict,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
|
@ -168,4 +168,13 @@ sim_config = {
|
|||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=state_dict,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
Loading…
Reference in New Issue