Barlin 12/03/18

This commit is contained in:
Joshua E. Jodesty 2018-12-03 11:16:54 -05:00
parent 8e699b199d
commit 9139e148fa
7 changed files with 660 additions and 20 deletions

View File

@ -8,7 +8,6 @@ from SimCAD.engine.simulation import Executor as SimExecutor
class ExecutionMode: class ExecutionMode:
single_proc = 'single_proc' single_proc = 'single_proc'
multi_proc = 'multi_proc' multi_proc = 'multi_proc'

View File

@ -74,7 +74,6 @@ class Executor:
return states_list return states_list
# rename pipe # rename pipe
def block_pipeline(self, states_list, configs, env_processes, time_seq, run): def block_pipeline(self, states_list, configs, env_processes, time_seq, run):
time_seq = [x + 1 for x in time_seq] time_seq = [x + 1 for x in time_seq]
@ -89,7 +88,6 @@ class Executor:
return simulation_list return simulation_list
# Del _ / head # Del _ / head
def simulation(self, states_list, configs, env_processes, time_seq, runs): def simulation(self, states_list, configs, env_processes, time_seq, runs):
pipe_run = [] pipe_run = []

View File

@ -1,8 +1,9 @@
from decimal import Decimal from decimal import Decimal
import numpy as np import numpy as np
from datetime import timedelta
from SimCAD import Configuration, configs from SimCAD import Configuration, configs
from SimCAD.configuration import exo_update_per_ts, bound_norm_random, \ from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step ep_time_step
seed = { seed = {
@ -146,9 +147,11 @@ def es4p2(step, sL, s, _input):
return (y,x) return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp' y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1) x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x) return (y, x)
#Environment States #Environment States

View File

@ -1,8 +1,9 @@
from decimal import Decimal from decimal import Decimal
import numpy as np import numpy as np
from datetime import timedelta
from SimCAD import Configuration, configs from SimCAD import Configuration, configs
from SimCAD.configuration import exo_update_per_ts, bound_norm_random, \ from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step ep_time_step
seed = { seed = {
@ -170,9 +171,11 @@ def es4p2(step, sL, s, _input):
return (y,x) return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp' y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1) x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x) return (y, x)
#Environment States #Environment States

View File

@ -0,0 +1,318 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import Configuration, configs
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_buy': buy, 'EMH_buy_P': price}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
else:
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_sell': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_sell': sell, 'EMH_sell_P': price}
else:
return {'EMH_sell': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] - (s['Price_Signal'] / s['Price'])
return {'herd_sell': sell, 'herd_buy': 0, 'herd_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] + (s['Price'] / s['Price_Signal'])
return {'herd_sell': 0, 'herd_buy': buy, 'herd_buy_P': price}
else:
return {'herd_sell': 0, 'herd_buy': 0, 'herd_buy_P':0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
price = s['Price']
return {'HODL_sell': sell, 'HODL_sell_P': price}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'HODL_sell': 0}
else:
return {'HODL_sell': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal'] / s['Price'])
return {'EIU_sell': sell, 'EIU_buy': 0, 'EIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal'])
return {'EIU_sell': 0, 'EIU_buy': buy, 'EIU_buy_P': price}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal_2'] / s['Price'])
return {'HEIU_sell': sell, 'HEIU_buy': 0, 'HEIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal_2'])
return {'HEIU_sell': 0, 'HEIU_buy': buy, 'HEIU_buy_P': price}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['EMH_buy']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = np.zeros(4)
x[0] = _input['EMH_buy']
x[1] = _input['EMH_buy_P']
x[2] = _input['herd_buy']
x[3] = _input['herd_buy_P']
# = _input['EMH_buy'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x) #[0], x[1])
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['EMH_sell'] + _input['HODL_sell'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + (Decimal(s['Buy_Log'][0] )) /s['Z'] # - (s['Sell_Log']/s['Z'] ) # for buy log term /s['Z'] )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -0,0 +1,318 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import Configuration, configs
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67')
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
# 21 * 3 mech steps, 2/64 = 0.03125
alpha_2 = Decimal('0.03125')
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.20')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_buy': buy, 'EMH_buy_P': price}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
else:
price = 0
return {'EMH_buy': 0, 'EMH_buy_P': price}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'EMH_sell': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
price = s['Price']
return {'EMH_sell': sell, 'EMH_sell_P': price}
else:
return {'EMH_sell': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.20')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] - (s['Price_Signal'] / s['Price'])
return {'herd_sell': sell, 'herd_buy': 0, 'herd_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
price = s['Price'] + (s['Price'] / s['Price_Signal'])
return {'herd_sell': 0, 'herd_buy': buy, 'herd_buy_P': price}
else:
return {'herd_sell': 0, 'herd_buy': 0, 'herd_buy_P':0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.20')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
price = s['Price']
return {'HODL_sell': sell, 'HODL_sell_P': price}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'HODL_sell': 0}
else:
return {'HODL_sell': 0}
# BEHAVIOR 7: Endogenous Information Updating (EIU)
# Short Term Price Signal, Lower Threshold = BOT-like
EIU_portion = Decimal('0.20')
EIU_Ext_Hold = Decimal('42000.0')
EIU_UB = Decimal('0.50') # UPPER BOUND
EIU_LB = Decimal('0.50') # LOWER BOUND
def b7m2(step, sL, s):
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal'] / s['Price'])
return {'EIU_sell': sell, 'EIU_buy': 0, 'EIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal'])
return {'EIU_sell': 0, 'EIU_buy': buy, 'EIU_buy_P': price}
else:
return {'EIU_sell': 0, 'EIU_buy': 0}
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
# Longer Term Price Signal, Higher Threshold = Human-Like
HEIU_portion = Decimal('0.20')
HEIU_Ext_Hold = Decimal('42000.0')
HEIU_UB = Decimal('2.0') # UPPER BOUND
HEIU_LB = Decimal('2.0') # LOWER BOUND
def b7hm2(step, sL, s):
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
price = s['Price'] + (s['Price_Signal_2'] / s['Price'])
return {'HEIU_sell': sell, 'HEIU_buy': 0, 'HEIU_sell_P': price}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
price = s['Price'] - (s['Price'] / s['Price_Signal_2'])
return {'HEIU_sell': 0, 'HEIU_buy': buy, 'HEIU_buy_P': price}
else:
return {'HEIU_sell': 0, 'HEIU_buy': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['EMH_buy']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = np.zeros(4)
x[0] = _input['EMH_buy']
x[1] = _input['EMH_buy_P']
x[2] = _input['herd_buy']
x[3] = _input['herd_buy_P']
# = _input['EMH_buy'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
return (y, x) #[0], x[1])
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['EMH_sell'] + _input['HODL_sell'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # / Psignal_int
# return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + (Decimal(s['Buy_Log'][0] )) /s['Z'] # - (s['Sell_Log']/s['Z'] ) # for buy log term /s['Z'] )
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m3(step, sL, s, _input):
y = 'Price_Signal_2'
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Price_Signal_2': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {
# "P_Ext_Markets": env_proc_id
}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 1,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2,
"b7": b7m2,
"b7h": b7hm2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3,
"Price_Signal_2": s6m3,
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -2,9 +2,10 @@ import pandas as pd
from tabulate import tabulate from tabulate import tabulate
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from sandbox.validation import config1, config2 # from sandbox.validation import config1, config2
# from sandbox import config4 # from sandbox import config4
# from sandbox import config_zx # from sandbox import config_zx
from sandbox.barlin import config6atemp #config6aworks,
from SimCAD import configs from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input # ToDo: pass ExecutionContext with execution method as ExecutionContext input
@ -23,13 +24,13 @@ result = pd.DataFrame(run1_raw_result)
print(tabulate(result, headers='keys', tablefmt='psql')) print(tabulate(result, headers='keys', tablefmt='psql'))
print() print()
print("Simulation Run 2: Pairwise Execution") # print("Simulation Run 2: Pairwise Execution")
print() # print()
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc) # multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
# configs = [config1, config1] # # configs = [config1, config1]
run2 = Executor(multi_proc_ctx, configs) # run2 = Executor(multi_proc_ctx, configs)
run2_raw_results = run2.main() # run2_raw_results = run2.main()
for raw_result in run2_raw_results: # for raw_result in run2_raw_results:
result = pd.DataFrame(raw_result) # result = pd.DataFrame(raw_result)
print(tabulate(result, headers='keys', tablefmt='psql')) # print(tabulate(result, headers='keys', tablefmt='psql'))
print() # print()