testing fun

This commit is contained in:
Michael Zargham 2018-10-17 21:15:33 -07:00
parent cf00305963
commit 8f35856348
5 changed files with 762 additions and 9 deletions

View File

@ -1,5 +1,6 @@
#from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
from ui.toyConfig import state_dict, mechanisms, exogenous_states, env_processes, sim_config
#from ui.toyConfig import state_dict, mechanisms, exogenous_states, env_processes, sim_config
from ui.simpleBC_Config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
#from ui.<config_filename> import state_dict, mechanisms, exogenous_states, env_processes, sim_config
from engine.configProcessor import generate_config
from engine.mechanismExecutor import simulation

File diff suppressed because one or more lines are too long

168
ui/simpleBC_Config.py Normal file
View File

@ -0,0 +1,168 @@
from engine.utils import bound_norm_random, ep_time_step, env_proc
import numpy as np
from decimal import Decimal
alpha = Decimal('.7') #forgetting param
theta = Decimal('.75') #weight param for rational price
beta = Decimal('0.5') #agant response gain
gamma = Decimal('.03') #action friction param
delta = Decimal('.3') #bounds on price change
omega = Decimal('.5') #bound on burn frac per period
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
#arbit X Bond
def b1m1(step, sL, s):
#returns "delta p"
if s['Price']< s['Pool']/s['Supply']-gamma:
return (s['Pool']/s['Supply']-s['Price'])/s['Price']*s['Pool']*beta
else :
return 0
#invest X Bond
def b2m1(step, sL, s):
#returns "delta p"
if s['Belief']< (alpha*s['Belief']+s['Pool']/s['Supply'])*(1-alpha):
return s['Supply']*((alpha*s['Belief']+s['Pool']/s['Supply'])*(1-alpha)-s['Belief'])*beta
else :
return 0
#arbit X Burn
def b1m2(step, sL, s):
#returns "delta s"
if Decimal('1')/s['Price']< s['Supply']/s['Pool']-gamma:
return (s['Supply']/s['Pool']-Decimal('1')/s['Price'])*s['Price']*s['Supply']*beta
else :
return 0
#invest X Burn
def b2m2(step, sL, s):
#returns "delta s"
if Decimal('1')/s['Belief']< Decimal('1')/s['Price']:
return np.min([ s['Pool']*(Decimal('1')/s['Price']-Decimal('1')/s['Belief'])*beta, omega*s['Supply']])
else :
return 0
#
#def b1m3(step, sL, s):
# return s['s1']
#def b2m3(step, sL, s):
# return s['s2']
# Internal States per Mechanism
#Pool X Bond
def s1m1(step, sL, s, _input):
#_input = "delta p"
s['Pool'] = s['Pool']+_input
#Supply X Bond
def s2m1(step, sL, s, _input):
#_input = "delta p"
s['Supply'] = s['Supply']+_input*s['Supply']/s['Pool']
# Pool X Burn
def s1m2(step, sL, s, _input):
#_input is "delta s"
s['Pool'] = s['Pool']- _input*s['Pool']/s['Supply']
# Supply X Burn
def s2m2(step, sL, s, _input):
s['Supply'] = s['Supply'] - _input
#def s1m3(step, sL, s, _input):
# s['s1'] = s['s1']+Decimal(.25)*(s['s2']-s['s1']) + Decimal(.25)*(_input-s['s1'])
#
#def s2m3(step, sL, s, _input):
# s['s2'] = s['s2']+Decimal(.25)*(s['s1']-s['s2']) + Decimal(.25)*(_input-s['s2'])
# Exogenous States
proc_one_coef_A = -delta
proc_one_coef_B = delta
def es3p1(step, sL, s, _input):
rv = bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
s['Price'] = theta*s['Price'] * (Decimal('1')+rv) +(Decimal('1')-theta)*s['Pool']/s['Supply']
def es4p2(step, sL, s, _input):
s['Belief'] = alpha*s['Belief']+s['Pool']/s['Supply']*(Decimal('1')-alpha)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
s['timestamp'] = ep_time_step(s, s['timestamp'], seconds=1)
# Environment States
#from numpy.random import randn as rn
def env_a(x):
return 3
def env_b(x):
return 7
# def what_ever(x):
# return x + 1
# Genesis States
state_dict = {
'Pool': Decimal(10.0),
'Supply': Decimal(5.0),
'Price': Decimal(.01),
'Belief': Decimal(10.0),
'timestamp': '2018-10-01 15:16:24'
}
exogenous_states = {
"Price": es3p1,
"Belief": es4p2,
"timestamp": es5p2
}
env_processes = {
"Price": env_proc('2018-10-01 15:16:25', env_a),
"Belief": env_proc('2018-10-01 15:16:25', env_b)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"bond": {
"behaviors": {
"arbit": b1m1, # lambda step, sL, s: s['s1'] + 1,
"invest": b2m1
},
"states": {
"Pool": s1m1,
"Supply": s2m1,
}
},
"burn": {
"behaviors": {
"arbit": b1m2,
"invest": b2m2
},
"states": {
"Pool": s1m2,
"Supply": s2m2,
}
},
# "m3": {
# "behaviors": {
# "b1": b1m3,
# "b2": b2m3
# },
# "states": {
# "s1": s1m3,
# "s2": s2m3,
# }
# }
}
sim_config = {
"N": 1,
"R": 1000
}

View File

@ -83,7 +83,7 @@ env_processes = {
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"mech1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1