local merge for renaming

This commit is contained in:
Joshua E. Jodesty 2019-02-20 12:02:24 -05:00
commit 7f4f6ddd77
8 changed files with 83 additions and 45 deletions

View File

@ -77,4 +77,4 @@ for raw_result, tensor_field in run2.main():
The above can be run in Jupyter.
```bash
jupyter notebook
```
```git s

View File

@ -1,4 +1,4 @@
# SimmCAD Documentation
# cadCAD Documentation
## Introduction
@ -31,13 +31,13 @@ from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
from cadCAD import configs
from cadCAD.configuration import Configuration
from cadCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
```
State variables and their initial values can be defined as follows. Note that `timestamp` is a required field for this iteration of SimCAD for `env_proc` to work. Future iterations will strive to make this more generic and timestamp optional.
State variables and their initial values can be defined as follows. Note that `timestamp` is a required field for this iteration of cadCAD for `env_proc` to work. Future iterations will strive to make this more generic and timestamp optional.
```python
genesis_dict = {
's1': Decimal(0.0),
@ -63,7 +63,7 @@ transitions = {
"m2": {...}
}
```
Every behavior per transition should return a dictionary as actions taken by the agents. They will then be aggregated through addition in this version of SimCAD. Some examples of behaviors per transition are as follows. More flexible and user-defined aggregation functions will be introduced in future iterations but no example is provided at this point.
Every behavior per transition should return a dictionary as actions taken by the agents. They will then be aggregated through addition in this version of cadCAD. Some examples of behaviors per transition are as follows. More flexible and user-defined aggregation functions will be introduced in future iterations but no example is provided at this point.
```python
def b1m1(step, sL, s):
return {'param1': 1}
@ -105,7 +105,7 @@ seed = {
'c': np.random.RandomState(3)
}
```
SimCAD currently supports generating random number from a normal distribution through `bound_norm_random` with `min` and `max` values specified. Examples of environmental processes with randomness are as follows. We also define timestamp format with `ts_format` and timestamp changes with `t_delta`. Users can define other distributions to update exogenous variables.
cadCAD currently supports generating random number from a normal distribution through `bound_norm_random` with `min` and `max` values specified. Examples of environmental processes with randomness are as follows. We also define timestamp format with `ts_format` and timestamp changes with `t_delta`. Users can define other distributions to update exogenous variables.
```python
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
@ -127,7 +127,7 @@ def es5p2(step, sL, s, _input):
x = ep_time_step(s, s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
```
User can also define specific external events such as market shocks at specific timestamps through `env_processes` with `proc_trigger`. An environmental process with no `proc_trigger` will be called at every timestamp. In the example below, it will return the value of `s3` at every timestamp. Logical event triggers, such as a big draw down in exogenous variables, will be supported in a later version of SimCAD.
User can also define specific external events such as market shocks at specific timestamps through `env_processes` with `proc_trigger`. An environmental process with no `proc_trigger` will be called at every timestamp. In the example below, it will return the value of `s3` at every timestamp. Logical event triggers, such as a big draw down in exogenous variables, will be supported in a later version of cadCAD.
```python
def env_a(x):
return x
@ -148,4 +148,4 @@ sim_config = {
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))
```
```

View File

@ -1,3 +1,5 @@
pandas
wheel
pathos
fn
tabulate

View File

@ -20,4 +20,4 @@ setup(name='cadCAD',
author_email='joshua@block.science',
# license='LICENSE',
packages=find_packages()
)
)

View File

@ -1,34 +0,0 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import sweep_config, config1, config2, config4
from cadCAD import configs
exec_mode = ExecutionMode()
# print("Simulation Execution 1")
# print()
# first_config = [configs[0]] # FOR non-sweep configs ONLY
# single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
# run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
# run1_raw_result, tensor_field = run1.main()
# result = pd.DataFrame(run1_raw_result)
# print()
# print("Tensor Field:")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()
print("Simulation Execution 2: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,24 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config1, config2
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['config1', 'config2']
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: " + config_names[i])
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
i += 1

View File

@ -0,0 +1,24 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import sweep_config
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sweep_config_A', 'sweep_config_B']
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: " + config_names[i])
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
i += 1

View File

@ -0,0 +1,22 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config1
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()