Dirty Parallelize Simulations
This commit is contained in:
parent
026e799c74
commit
7d96a78907
|
|
@ -1,7 +1,7 @@
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from fn import _
|
from fn import _
|
||||||
from fn.op import foldr, call
|
from fn.op import foldr, call
|
||||||
from ui.config import behavior_ops
|
from ui.config2 import behavior_ops
|
||||||
|
|
||||||
|
|
||||||
def getColResults(step, sL, s, funcs):
|
def getColResults(step, sL, s, funcs):
|
||||||
|
|
|
||||||
|
|
@ -2,10 +2,7 @@ from pathos.multiprocessing import ProcessingPool as Pool
|
||||||
|
|
||||||
|
|
||||||
def parallelize_simulations(f, states_list, configs, env_processes, T, N):
|
def parallelize_simulations(f, states_list, configs, env_processes, T, N):
|
||||||
def process(config):
|
|
||||||
return f(states_list, config, env_processes, T, N)
|
|
||||||
|
|
||||||
with Pool(len(configs)) as p:
|
with Pool(len(configs)) as p:
|
||||||
results = p.map(process, configs)
|
results = p.map(lambda x: f(states_list, x[0], x[1], T, N), list(zip(configs, env_processes)))
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
|
@ -4,26 +4,53 @@ from tabulate import tabulate
|
||||||
from engine.configProcessor import generate_config, create_tensor_field
|
from engine.configProcessor import generate_config, create_tensor_field
|
||||||
from engine.mechanismExecutor import simulation
|
from engine.mechanismExecutor import simulation
|
||||||
from engine.utils import flatten
|
from engine.utils import flatten
|
||||||
from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
|
|
||||||
from engine.multiproc import parallelize_simulations
|
from engine.multiproc import parallelize_simulations
|
||||||
|
|
||||||
|
from decimal import Decimal
|
||||||
|
|
||||||
|
# from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
|
||||||
|
|
||||||
|
import ui.config1 as conf1
|
||||||
|
import ui.config2 as conf2
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
states_list = [state_dict]
|
state_dict = {
|
||||||
ep = list(exogenous_states.values())
|
's1': Decimal(0.0),
|
||||||
config = generate_config(state_dict, mechanisms, ep)
|
's2': Decimal(0.0),
|
||||||
|
's3': Decimal(1.0),
|
||||||
|
's4': Decimal(1.0),
|
||||||
|
'timestamp': '2018-10-01 15:16:24'
|
||||||
|
}
|
||||||
|
sim_config = {
|
||||||
|
"N": 2,
|
||||||
|
"T": range(5)
|
||||||
|
}
|
||||||
|
|
||||||
T = sim_config['T']
|
T = sim_config['T']
|
||||||
N = sim_config['N']
|
N = sim_config['N']
|
||||||
configs = [config, config]
|
states_list = [state_dict]
|
||||||
|
|
||||||
|
ep1 = list(conf1.exogenous_states.values())
|
||||||
|
ep2 = list(conf2.exogenous_states.values())
|
||||||
|
eps = [ep1,ep2]
|
||||||
|
|
||||||
|
config1 = generate_config(conf1.state_dict, conf1.mechanisms, ep1)
|
||||||
|
config2 = generate_config(conf2.state_dict, conf2.mechanisms, ep2)
|
||||||
|
|
||||||
|
mechanisms = [conf1.mechanisms, conf2.mechanisms]
|
||||||
|
|
||||||
|
configs = [config1, config2]
|
||||||
|
env_processes = [conf1.env_processes, conf2.env_processes]
|
||||||
|
|
||||||
# Dimensions: N x r x mechs
|
# Dimensions: N x r x mechs
|
||||||
|
|
||||||
if len(configs) > 1:
|
if len(configs) > 1:
|
||||||
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
|
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
|
||||||
else:
|
# else:
|
||||||
simulations = [simulation(states_list, configs[0], env_processes, T, N)]
|
# simulations = [simulation(states_list, configs[0], env_processes, T, N)]
|
||||||
|
|
||||||
for result in simulations:
|
# simulations = [simulation(states_list, config1, conf1.env_processes, T, N)]
|
||||||
print(tabulate(create_tensor_field(mechanisms, ep), headers='keys', tablefmt='psql'))
|
|
||||||
print
|
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
|
||||||
|
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
|
||||||
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))
|
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))
|
||||||
|
|
@ -10,13 +10,13 @@
|
||||||
{
|
{
|
||||||
"ename": "ImportError",
|
"ename": "ImportError",
|
||||||
"evalue": "cannot import name 'run'",
|
"evalue": "cannot import name 'run'",
|
||||||
"output_type": "error",
|
|
||||||
"traceback": [
|
"traceback": [
|
||||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
|
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
|
||||||
"\u001b[1;32m<ipython-input-5-a6e895c51fc0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
"\u001b[1;32m<ipython-input-5-a6e895c51fc0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
||||||
"\u001b[1;31mImportError\u001b[0m: cannot import name 'run'"
|
"\u001b[1;31mImportError\u001b[0m: cannot import name 'run'"
|
||||||
]
|
],
|
||||||
|
"output_type": "error"
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,212 @@
|
||||||
|
from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts
|
||||||
|
from fn.op import foldr
|
||||||
|
from fn import _
|
||||||
|
from fn.func import curried
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from decimal import Decimal
|
||||||
|
|
||||||
|
seed = {
|
||||||
|
'z': np.random.RandomState(1),
|
||||||
|
'a': np.random.RandomState(2),
|
||||||
|
'b': np.random.RandomState(3),
|
||||||
|
'c': np.random.RandomState(3)
|
||||||
|
}
|
||||||
|
|
||||||
|
# # Behaviors per Mechanism
|
||||||
|
# def b1m1(step, sL, s):
|
||||||
|
# return np.array([1, 2])
|
||||||
|
# def b2m1(step, sL, s):
|
||||||
|
# return np.array([3, 4])
|
||||||
|
# # Internal States per Mechanism
|
||||||
|
# def s1m1(step, sL, s, _input):
|
||||||
|
# y = 's1'
|
||||||
|
# x = _input['b1'] * s['s1'] + _input['b2']
|
||||||
|
# return (y, x)
|
||||||
|
|
||||||
|
# Behaviors per Mechanism
|
||||||
|
# Different return types per mechanism ?? *** No ***
|
||||||
|
def b1m1(step, sL, s):
|
||||||
|
return {'param1': 1}
|
||||||
|
def b2m1(step, sL, s):
|
||||||
|
return {'param2': 4}
|
||||||
|
|
||||||
|
def b1m2(step, sL, s):
|
||||||
|
return {'param1': 'a', 'param2': 2}
|
||||||
|
def b2m2(step, sL, s):
|
||||||
|
return {'param1': 'b', 'param2': 4}
|
||||||
|
|
||||||
|
def b1m3(step, sL, s):
|
||||||
|
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||||
|
def b2m3(step, sL, s):
|
||||||
|
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||||
|
|
||||||
|
|
||||||
|
# Internal States per Mechanism
|
||||||
|
def s1m1(step, sL, s, _input):
|
||||||
|
y = 's1'
|
||||||
|
x = _input['param1']
|
||||||
|
return (y, x)
|
||||||
|
def s2m1(step, sL, s, _input):
|
||||||
|
y = 's2'
|
||||||
|
x = _input['param2']
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
def s1m2(step, sL, s, _input):
|
||||||
|
y = 's1'
|
||||||
|
x = _input['param1']
|
||||||
|
return (y, x)
|
||||||
|
def s2m2(step, sL, s, _input):
|
||||||
|
y = 's2'
|
||||||
|
x = _input['param2']
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
def s1m3(step, sL, s, _input):
|
||||||
|
y = 's1'
|
||||||
|
x = _input['param1']
|
||||||
|
return (y, x)
|
||||||
|
def s2m3(step, sL, s, _input):
|
||||||
|
y = 's2'
|
||||||
|
x = _input['param2']
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
# Exogenous States
|
||||||
|
proc_one_coef_A = 0.7
|
||||||
|
proc_one_coef_B = 1.3
|
||||||
|
|
||||||
|
def es3p1(step, sL, s, _input):
|
||||||
|
y = 's3'
|
||||||
|
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
def es4p2(step, sL, s, _input):
|
||||||
|
y = 's4'
|
||||||
|
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||||
|
y = 'timestamp'
|
||||||
|
x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||||
|
return (y, x)
|
||||||
|
|
||||||
|
|
||||||
|
# Environment States
|
||||||
|
def env_a(x):
|
||||||
|
return 10
|
||||||
|
def env_b(x):
|
||||||
|
return 10
|
||||||
|
# def what_ever(x):
|
||||||
|
# return x + 1
|
||||||
|
|
||||||
|
# Genesis States
|
||||||
|
state_dict = {
|
||||||
|
's1': Decimal(0.0),
|
||||||
|
's2': Decimal(0.0),
|
||||||
|
's3': Decimal(1.0),
|
||||||
|
's4': Decimal(1.0),
|
||||||
|
'timestamp': '2018-10-01 15:16:24'
|
||||||
|
}
|
||||||
|
|
||||||
|
# remove `exo_update_per_ts` to update every ts
|
||||||
|
exogenous_states = exo_update_per_ts(
|
||||||
|
{
|
||||||
|
"s3": es3p1,
|
||||||
|
"s4": es4p2,
|
||||||
|
"timestamp": es5p2
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# make env proc trigger field agnostic
|
||||||
|
env_processes = {
|
||||||
|
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||||
|
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||||
|
}
|
||||||
|
|
||||||
|
# lambdas
|
||||||
|
# genesis Sites should always be there
|
||||||
|
# [1, 2]
|
||||||
|
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||||
|
def print_fwd(x):
|
||||||
|
print(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def behavior_to_dict(v):
|
||||||
|
return dict(list(zip(map(lambda n: 'b' + str(n+1), list(range(len(v)))), v)))
|
||||||
|
|
||||||
|
@curried
|
||||||
|
def foldr_dict_vals(f, d):
|
||||||
|
return foldr(f)(list(d.values()))
|
||||||
|
|
||||||
|
def sum_dict_values():
|
||||||
|
return foldr_dict_vals(_ + _)
|
||||||
|
|
||||||
|
def get_base_value(datatype):
|
||||||
|
if datatype is str:
|
||||||
|
return ''
|
||||||
|
elif datatype is int:
|
||||||
|
return 0
|
||||||
|
elif datatype is list:
|
||||||
|
return []
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
|
@curried
|
||||||
|
def dict_op(f, d1, d2):
|
||||||
|
|
||||||
|
def set_base_value(target_dict, source_dict, key):
|
||||||
|
if key not in target_dict:
|
||||||
|
return get_base_value(type(source_dict[key]))
|
||||||
|
else:
|
||||||
|
return target_dict[key]
|
||||||
|
|
||||||
|
key_set = set(list(d1.keys())+list(d2.keys()))
|
||||||
|
|
||||||
|
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
|
||||||
|
|
||||||
|
def dict_elemwise_sum():
|
||||||
|
return dict_op(_ + _)
|
||||||
|
|
||||||
|
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||||
|
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
|
||||||
|
behavior_ops = [ foldr(dict_elemwise_sum()) ]
|
||||||
|
# behavior_ops = []
|
||||||
|
|
||||||
|
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||||
|
# mechanisms = {}
|
||||||
|
mechanisms = {
|
||||||
|
"m1": {
|
||||||
|
"behaviors": {
|
||||||
|
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||||
|
"b2": b2m1
|
||||||
|
},
|
||||||
|
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||||
|
"s1": s1m1,
|
||||||
|
"s2": s2m1
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"m2": {
|
||||||
|
"behaviors": {
|
||||||
|
"b1": b1m2,
|
||||||
|
"b2": b2m2
|
||||||
|
},
|
||||||
|
"states": {
|
||||||
|
"s1": s1m2,
|
||||||
|
"s2": s2m2
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"m3": {
|
||||||
|
"behaviors": {
|
||||||
|
"b1": b1m3,
|
||||||
|
"b2": b2m3
|
||||||
|
},
|
||||||
|
"states": {
|
||||||
|
"s1": s1m3,
|
||||||
|
"s2": s2m3
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
sim_config = {
|
||||||
|
"N": 2,
|
||||||
|
"T": range(5)
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue