udo dirty publish to 'side branch'

This commit is contained in:
Joshua E. Jodesty 2019-05-09 13:30:47 -04:00
parent 3c91040401
commit 71264c1c8f
17 changed files with 906 additions and 121 deletions

View File

@ -1,7 +1,10 @@
from datetime import datetime, timedelta
from decimal import Decimal
from copy import deepcopy
from functools import reduce
from fn.func import curried
from funcy import curry
import pandas as pd
# Temporary
@ -39,7 +42,7 @@ def bound_norm_random(rng, low, high):
@curried
def proc_trigger(trigger_time, update_f, time):
def env_proc_trigger(trigger_time, update_f, time):
if time == trigger_time:
return update_f
else:
@ -48,14 +51,17 @@ def proc_trigger(trigger_time, update_f, time):
tstep_delta = timedelta(days=0, minutes=0, seconds=30)
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = tstep_delta):
# print(dt_str)
dt = datetime.strptime(dt_str, dt_format)
t = dt + _timedelta
return t.strftime(dt_format)
# ToDo: Inject in first elem of last PSUB from Historical state
ep_t_delta = timedelta(days=0, minutes=0, seconds=1)
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = ep_t_delta):
if s['substep'] == 0:
def ep_time_step(s_condition, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = ep_t_delta):
# print(dt_str)
if s_condition:
return time_step(dt_str, fromat_str, _timedelta)
else:
return dt_str
@ -124,6 +130,28 @@ def exo_update_per_ts(ep):
return {es: ep_decorator(f, es) for es, f in ep.items()}
def trigger_condition(s, conditions, cond_opp):
condition_bools = [s[field] in precondition_values for field, precondition_values in conditions.items()]
return reduce(cond_opp, condition_bools)
def apply_state_condition(conditions, cond_opp, y, f, _g, step, sL, s, _input):
if trigger_condition(s, conditions, cond_opp):
return f(_g, step, sL, s, _input)
else:
return y, s[y]
def proc_trigger(y, f, conditions, cond_op):
return lambda _g, step, sL, s, _input: apply_state_condition(conditions, cond_op, y, f, _g, step, sL, s, _input)
def timestep_trigger(end_substep, y, f):
conditions = {'substep': [0, end_substep]}
cond_opp = lambda a, b: a and b
return proc_trigger(y, f, conditions, cond_opp)
# trigger = curry(_trigger)
# print(timestep_trigger)
# param sweep enabling middleware
def config_sim(d):
@ -140,4 +168,20 @@ def config_sim(d):
]
else:
d["M"] = [{}]
return d
return d
def psub(policies, state_updates):
return {
'policies': policies,
'states': state_updates
}
def genereate_psubs(policy_grid, states_grid, policies, state_updates):
PSUBS = []
for policy_ids, state_list in zip(policy_grid, states_grid):
filtered_policies = {k: v for (k, v) in policies.items() if k in policy_ids}
filtered_state_updates = {k: v for (k, v) in state_updates.items() if k in state_list}
PSUBS.append(psub(filtered_policies, filtered_state_updates))
return PSUBS

View File

@ -107,7 +107,7 @@ class Executor:
last_in_obj: Dict[str, Any] = sL[-1]
# last_in_obj: Dict[str, Any] = sH[-1]
# print(last_in_obj)
print(sH[-1])
# print(sH[-1])
_input: Dict[str, Any] = self.policy_update_exception(self.get_policy_input(var_dict, sub_step, sH, last_in_obj, policy_funcs))
@ -125,6 +125,7 @@ class Executor:
return destination
last_in_copy: Dict[str, Any] = transfer_missing_fields(last_in_obj, dict(generate_record(state_funcs)))
# ToDo: Remove
last_in_copy: Dict[str, Any] = self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep'])
# ToDo: make 'substep' & 'timestep' reserve fields
last_in_copy['substep'], last_in_copy['timestep'], last_in_copy['run'] = sub_step, time_step, run
@ -152,7 +153,8 @@ class Executor:
# states_list_copy: List[Dict[str, Any]] = deepcopy(states_list)
# states_list_copy: List[Dict[str, Any]] = states_list
# ToDo: flatten first
states_list_copy: List[Dict[str, Any]] = simulation_list[-1]
# states_list_copy: List[Dict[str, Any]] = simulation_list[-1]
states_list_copy: List[Dict[str, Any]] = deepcopy(simulation_list[-1])
# print(states_list_copy)
# ToDo: Causes Substep repeats in sL:
@ -169,7 +171,9 @@ class Executor:
# ToDo: Causes Substep repeats in sL, use for yield
sub_step += 1
for [s_conf, p_conf] in configs: # tensor field
states_list: List[Dict[str, Any]] = self.partial_state_update(
var_dict, sub_step, states_list, simulation_list, s_conf, p_conf, env_processes, time_step, run
)
@ -177,6 +181,7 @@ class Executor:
# print(simulation_list)
# print(flatten(simulation_list))
sub_step += 1
# print(sub_step)
time_step += 1

View File

@ -1,5 +1,7 @@
from cadCAD.configuration.utils import ep_time_step
from cadCAD.configuration.utils import ep_time_step, time_step
from funcy import curry
# from fn import _
from functools import reduce
def increment(y, incr_by):
return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
@ -19,12 +21,106 @@ def update_timestamp(y, timedelta, format):
ep_time_step(s, dt_str=s[y], fromat_str=format, _timedelta=timedelta)
)
def add(y, x):
return lambda _g, step, sH, s, _input: (y, s[y] + x)
def apply(f, y: str, incr_by: int):
return lambda _g, step, sL, s, _input: (y, curry(f)(s[y])(incr_by))
def add(y: str, incr_by: int):
return apply(lambda a, b: a + b, y, incr_by)
def increment_state_by_int(y: str, incr_by: int):
return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
def s(y, x):
return lambda _g, step, sH, s, _input: (y, x)
def time_model(y, substeps, time_delta, ts_format='%Y-%m-%d %H:%M:%S'):
def apply_incriment_condition(s):
if s['substep'] == 0 or s['substep'] == substeps:
return y, time_step(dt_str=s[y], dt_format=ts_format, _timedelta=time_delta)
else:
return y, s[y]
return lambda _g, step, sL, s, _input: apply_incriment_condition(s)
# ToDo: Impliment Matrix reduction
#
# [
# {'conditions': [123], 'opp': lambda a, b: a and b},
# {'conditions': [123], 'opp': lambda a, b: a and b}
# ]
# def trigger_condition2(s, conditions, cond_opp):
# # print(conditions)
# condition_bools = [s[field] in precondition_values for field, precondition_values in conditions.items()]
# return reduce(cond_opp, condition_bools)
#
# def trigger_multi_conditions(s, multi_conditions, multi_cond_opp):
# # print([(d['conditions'], d['reduction_opp']) for d in multi_conditions])
# condition_bools = [
# trigger_condition2(s, conditions, opp) for conditions, opp in [
# (d['conditions'], d['reduction_opp']) for d in multi_conditions
# ]
# ]
# return reduce(multi_cond_opp, condition_bools)
#
# def apply_state_condition2(multi_conditions, multi_cond_opp, y, f, _g, step, sL, s, _input):
# if trigger_multi_conditions(s, multi_conditions, multi_cond_opp):
# return f(_g, step, sL, s, _input)
# else:
# return y, s[y]
#
# def proc_trigger2(y, f, multi_conditions, multi_cond_opp):
# return lambda _g, step, sL, s, _input: apply_state_condition2(multi_conditions, multi_cond_opp, y, f, _g, step, sL, s, _input)
#
# def timestep_trigger2(end_substep, y, f):
# multi_conditions = [
# {
# 'condition': {
# 'substep': [0, end_substep]
# },
# 'reduction_opp': lambda a, b: a and b
# }
# ]
# multi_cond_opp = lambda a, b: a and b
# return proc_trigger2(y, f, multi_conditions, multi_cond_opp)
def env_trigger(trigger_field, trigger_val, input, funct_list):
y, x = input
if trigger_field == trigger_val:
i = 0
for g in funct_list:
x = g(x)
return y, x
# def p1m1(_g, step, sL, s):
# return {'param1': 1}
#
# def apply_policy_condition(policies, policy_id, f, conditions, _g, step, sL, s):
# if trigger_condition(s, conditions):
# policies[policy_id] = f(_g, step, sL, s)
# return policies
# else:
# return policies
#
# def proc_trigger2(policies, conditions, policy_id, f):
# return lambda _g, step, sL, s: apply_policy_condition(policies, policy_id, f, conditions,_g, step, sL, s)
# policies_updates = {"p1": udo_policyA, "p2": udo_policyB}
# @curried
# def proc_trigger(trigger_time, update_f, time):
# if time == trigger_time:
# return update_f
# else:
# return lambda x: x
# def repr(_g, step, sL, s, _input):
# y = 'z'

View File

@ -0,0 +1,30 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import historical_state_access
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
raw_result, tensor_field = run.main()
result = pd.DataFrame(raw_result)
def delSH(d):
print(d)
if 'sh' in d.keys():
del d['sh']
return d
result['sh'] = result['sh'].apply(lambda sh: list(map(lambda d: delSH(d), sh)))
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()

View File

@ -0,0 +1,24 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import new_sweep_config
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sweep_config_A', 'sweep_config_B']
for raw_result, tensor_field in run.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: " + config_names[i])
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
i += 1

View File

@ -0,0 +1,182 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
import pprint
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, ep_time_step, config_sim
from typing import Dict, List
pp = pprint.PrettyPrinter(indent=4)
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Optional
g: Dict[str, List[int]] = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [7]
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': _g['beta']}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 0}
def p1m3(_g, step, sL, s):
return {'param1': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
return 's1', 0
def s2m1(_g, step, sL, s, _input):
return 's2', _g['beta']
def s1m2(_g, step, sL, s, _input):
return 's1', _input['param2']
def s2m2(_g, step, sL, s, _input):
return 's2', _input['param2']
def s1m3(_g, step, sL, s, _input):
return 's1', 0
def s2m3(_g, step, sL, s, _input):
return 's2', 0
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(_g, step, sL, s, _input):
return 's3', _g['gamma']
# @curried
def es4p2(_g, step, sL, s, _input):
return 's4', _g['gamma']
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(_g, step, sL, s, _input):
y = 'timestep'
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
# @curried
# def env_a(param, x):
# return x + param
def env_a(x):
return x
def env_b(x):
return 10
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
# 'timestep': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
# "timestep": es5p2
}
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = proc_trigger(1, env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
}
# parameterized_env_processes = parameterize_states(env_processes)
#
# pp.pprint(parameterized_env_processes)
# exit()
# ToDo: The number of values entered in sweep should be the # of config objs created,
# not dependent on the # of times the sweep is applied
# sweep exo_state func and point to exo-state in every other funtion
# param sweep on genesis states
partial_state_update_block = {
"m1": {
"policies": {
"b1": p1m1,
"b2": p2m1
},
"variables": {
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"policies": {
"b1": p1m2,
"b2": p2m2,
},
"variables": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"policies": {
"b1": p1m3,
"b2": p2m3
},
"variables": {
"s1": s1m3,
"s2": s2m3
}
}
}
# config_sim Necessary
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g # Optional
}
)
# New Convention
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
)

View File

@ -0,0 +1,194 @@
from copy import deepcopy
from datetime import timedelta
from functools import reduce
from cadCAD.utils import SilentDF #, val_switch
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import time_step, config_sim, proc_trigger, timestep_trigger, genereate_psubs
from cadCAD.configuration.utils.userDefinedObject import udoPipe, UDO
import pandas as pd
from fn.func import curried
import pprint as pp
from cadCAD.utils.sys_config import add
DF = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
class udoExample(object):
def __init__(self, x, dataset=None):
self.x = x
self.mem_id = str(hex(id(self)))
self.ds = dataset # for setting ds initially or querying
self.perception = {}
def anon(self, f):
return f(self)
def updateX(self):
self.x += 1
return self
def perceive(self, s):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def read(self, ds_uri):
self.ds = SilentDF(pd.read_csv(ds_uri))
return self
def write(self, ds_uri):
pd.to_csv(ds_uri)
# ToDo: Generic update function
pass
state_udo = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoA = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoB = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
sim_config = config_sim({
"N": 2,
"T": range(4)
})
# ToDo: DataFrame Column order
state_dict = {
'increment': 0,
'state_udo': state_udo, 'state_udo_tracker': 0,
'state_udo_perception_tracker': {"ds1": None, "ds2": None, "ds3": None, "timestep": None},
'udo_policies': {'udo_A': policy_udoA, 'udo_B': policy_udoB},
'udo_policy_tracker': (0, 0),
'timestamp': '2019-01-01 00:00:00'
}
policies, state_updates = {}, {}
#
# def assign_udo_policy(udo):
# def policy(_g, step, sL, s):
# s['udo_policies'][udo].updateX()
# return {udo: udoPipe(s['udo_policies'][udo])}
# return policy
# policies_updates = {p: assign_udo_policy(udo) for p, udo in zip(['p1', 'p2'], ['udo_A', 'udo_B'])}
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
policies['a'] = udo_policyA
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
policies['b'] = udo_policyB
# policies = {"p1": udo_policyA, "p2": udo_policyB}
# policies = {"A": udo_policyA, "B": udo_policyB}
# def increment_state_by_int(y: str, incr_by: int):
# return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
state_updates['increment'] = add('increment', 1)
@curried
def perceive(s, self):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
x = udoPipe(s['state_udo'])
return y, x
state_updates['state_udo'] = state_udo_update
def track(destination, source):
return lambda _g, step, sL, s, _input: (destination, s[source].x)
state_updates['state_udo_tracker'] = track('state_udo_tracker', 'state_udo')
def track_state_udo_perception(destination, source):
def id(past_perception):
if len(past_perception) == 0:
return state_dict['state_udo_perception_tracker']
else:
return past_perception
return lambda _g, step, sL, s, _input: (destination, id(s[source].perception))
state_updates['state_udo_perception_tracker'] = track_state_udo_perception('state_udo_perception_tracker', 'state_udo')
def view_udo_policy(_g, step, sL, s, _input):
return 'udo_policies', _input
state_updates['udo_policies'] = view_udo_policy
def track_udo_policy(destination, source):
def val_switch(v):
if isinstance(v, pd.DataFrame) is True or isinstance(v, SilentDF) is True:
return SilentDF(v)
else:
return v.x
return lambda _g, step, sL, s, _input: (destination, tuple(val_switch(v) for _, v in s[source].items()))
state_updates['udo_policy_tracker'] = track_udo_policy('udo_policy_tracker', 'udo_policies')
def update_timestamp(_g, step, sL, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
system_substeps = 3
# state_updates['timestamp'] = update_timestamp
state_updates['timestamp'] = timestep_trigger(end_substep=system_substeps, y='timestamp', f=update_timestamp)
# state_updates['timestamp'] = proc_trigger(y='timestamp', f=update_timestamp, conditions={'substep': [0, substeps]}, cond_op=lambda a, b: a and b)
print()
print("State Updates:")
pp.pprint(state_updates)
print()
print("Policies:")
pp.pprint(policies)
print()
filter_out = lambda remove_list, state_list: list(filter(lambda state: state not in remove_list, state_list))
states = list(state_updates.keys())
# states_noTS = filter_out(['timestamp'], states)
# states_grid = [states,states_noTS,states_noTS]
states_grid = [states] * system_substeps #[states,states,states]
policy_grid = [['a', 'b'], ['a', 'b'], ['a', 'b']]
PSUBS = genereate_psubs(policy_grid, states_grid, policies, state_updates)
pp.pprint(PSUBS)
# ToDo: Bug without specifying parameters
append_configs(
sim_configs=sim_config,
initial_state=state_dict,
seeds={},
raw_exogenous_states={},
env_processes={},
partial_state_update_blocks=PSUBS,
# policy_ops=[lambda a, b: {**a, **b}]
)
# pp.pprint(partial_state_update_blocks)
# PSUB = {
# 'policies': policies,
# 'states': state_updates
# }
# partial_state_update_blocks = [PSUB] * substeps

View File

@ -3,8 +3,7 @@ from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
# from simulations.validation import policy_aggregation
from simulations.validation import historical_state_access
# from simulations.validation import config1
from simulations.validation import config1
# from simulations.validation import externalds
# from simulations.validation import external_dataset
from cadCAD import configs

45
simulations/udo_test.py Normal file
View File

@ -0,0 +1,45 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.regression_tests import udo
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
# cols = configs[0].initial_state.keys()
cols = [
'increment',
'state_udo_tracker', 'state_udo', 'state_udo_perception_tracker',
'udo_policies', 'udo_policy_tracker',
'timestamp'
]
raw_result, tensor_field = run.main()
result = pd.DataFrame(raw_result)[['run', 'substep', 'timestep'] + cols]
# result = pd.concat([result.drop(['c'], axis=1), result['c'].apply(pd.Series)], axis=1)
# print(list(result['c']))
# print(tabulate(result['c'].apply(pd.Series), headers='keys', tablefmt='psql'))
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print(result.info(verbose=True))
# def f(df, col):
# for k in df[col].iloc[0].keys():
# df[k] = None
# for index, row in df.iterrows():
# # df.apply(lambda row:, axis=1)

View File

@ -7,7 +7,9 @@ from datetime import timedelta
from cadCAD.configuration.utils.policyAggregation import get_base_value
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step, config_sim
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim
from cadCAD.configuration.utils import timestep_trigger
seeds = {
'z': np.random.RandomState(1),
@ -23,8 +25,6 @@ def p1m1(_g, step, sL, s):
def p2m1(_g, step, sL, s):
return {'param1': 1, 'param2': 4}
# []
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
@ -113,20 +113,20 @@ genesis_states = {
}
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
# "timestep": es5p2
}
# raw_exogenous_states = {
# "s3": es3p1,
# "s4": es4p2,
# # "timestep": es5p2
# }
env_processes = {
"s3": env_a,
"s4": proc_trigger(1, env_b)
"s4": env_proc_trigger(1, env_b)
}
partial_state_update_block = {
partial_state_update_blocks = {
"m1": {
"policies": {
"b1": p1m1,
@ -134,7 +134,9 @@ partial_state_update_block = {
},
"variables": {
"s1": s1m1,
"s2": s2m1
"s2": s2m1,
"s3": es3p1,
"s4": es4p2,
}
},
"m2": {
@ -144,7 +146,9 @@ partial_state_update_block = {
},
"variables": {
"s1": s1m2,
"s2": s2m2
"s2": s2m2,
# "s3": timestep_trigger(3, 's3', es3p1),
# "s4": timestep_trigger(3, 's4', es4p2),
}
},
"m3": {
@ -154,7 +158,9 @@ partial_state_update_block = {
},
"variables": {
"s1": s1m3,
"s2": s2m3
"s2": s2m3,
# "s3": timestep_trigger(3, 's3', es3p1),
# "s4": timestep_trigger(3, 's4', es4p2),
}
}
}
@ -171,8 +177,8 @@ append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
raw_exogenous_states={}, #raw_exogenous_states,
env_processes={}, #env_processes,
partial_state_update_blocks=partial_state_update_blocks,
policy_ops=[lambda a, b: a + b]
)

View File

@ -3,7 +3,7 @@ import numpy as np
from datetime import timedelta
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step, config_sim
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim
seeds = {
'z': np.random.RandomState(1),
@ -108,8 +108,8 @@ raw_exogenous_states = {
env_processes = {
"s3": proc_trigger(1, env_a),
"s4": proc_trigger(1, env_b)
"s3": env_proc_trigger(1, env_a),
"s4": env_proc_trigger(1, env_b)
}

View File

@ -3,7 +3,7 @@ import numpy as np
from datetime import timedelta
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step, config_sim
from cadCAD.configuration.utils import env_proc_trigger, bound_norm_random, ep_time_step, config_sim
seeds = {
@ -113,7 +113,7 @@ raw_exogenous_states = {
env_processes = {
"s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
"s4": env_proc_trigger('2018-10-01 15:16:25', env_b)
}

View File

@ -2,18 +2,18 @@ from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim
# last_partial_state_update_block
def last_update_block(_g, step, sH, s, _input):
def last_update_block(_g, substep, sH, s, _input):
return 'sh', sH[-1]
# Policies per Mechanism
def p(_g, step, sH, s):
def p(_g, substep, sH, s):
return {'last_update_block': sH[-1]}
def add(y, x):
return lambda _g, step, sH, s, _input: (y, s[y] + x)
return lambda _g, substep, sH, s, _input: (y, s[y] + x)
def policies(_g, step, sH, s, _input):
def policies(_g, substep, sH, s, _input):
y = 'policies'
x = _input
return (y, x)
@ -22,7 +22,7 @@ policies = {"p1": p, "p2": p}
genesis_states = {
's': 0,
'sh': {}, # {[], {}}
'sh': [{}], # {[], {}}
# 'policies': {},
}

View File

@ -0,0 +1,183 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
import pprint
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import env_proc_trigger, ep_time_step, config_sim
from typing import Dict, List
# from cadCAD.utils.sys_config import exo, exo_check
pp = pprint.PrettyPrinter(indent=4)
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Optional
g: Dict[str, List[int]] = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [7]
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': _g['beta']}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 0}
def p1m3(_g, step, sL, s):
return {'param1': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
return 's1', 0
def s2m1(_g, step, sL, s, _input):
return 's2', _g['beta']
def s1m2(_g, step, sL, s, _input):
return 's1', _input['param2']
def s2m2(_g, step, sL, s, _input):
return 's2', _input['param2']
def s1m3(_g, step, sL, s, _input):
return 's1', 0
def s2m3(_g, step, sL, s, _input):
return 's2', 0
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(_g, step, sL, s, _input):
return 's3', _g['gamma']
# @curried
def es4p2(_g, step, sL, s, _input):
return 's4', _g['gamma']
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(_g, step, sL, s, _input):
y = 'timestep'
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
# @curried
# def env_a(param, x):
# return x + param
def env_a(x):
return x
def env_b(x):
return 10
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
# 'timestep': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
# "timestep": es5p2
}
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = env_proc_trigger(1, env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
}
# parameterized_env_processes = parameterize_states(env_processes)
#
# pp.pprint(parameterized_env_processes)
# exit()
# ToDo: The number of values entered in sweep should be the # of config objs created,
# not dependent on the # of times the sweep is applied
# sweep exo_state func and point to exo-state in every other funtion
# param sweep on genesis states
partial_state_update_block = {
"m1": {
"policies": {
"b1": p1m1,
"b2": p2m1
},
"variables": {
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"policies": {
"b1": p1m2,
"b2": p2m2,
},
"variables": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"policies": {
"b1": p1m3,
"b2": p2m3
},
"variables": {
"s1": s1m3,
"s2": s2m3
}
}
}
# config_sim Necessary
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g # Optional
}
)
# New Convention
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states={}, #raw_exogenous_states,
env_processes={}, #env_processes,
partial_state_update_blocks=partial_state_update_block
)

View File

@ -95,12 +95,4 @@ append_configs(
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b, lambda y: y + 10, lambda y: y + 30]
)
# def p1m3(_g, step, sL, s):
# return {'param1': 1, 'param2': 2, 'param3': 3}
# def p2m3(_g, step, sL, s):
# return {'param1': 1, 'param2': 2, 'param3': 3}
#
# xx = {'param1': [1,1], 'param2': [2,2], 'param3': [3,3]}
)

View File

@ -4,7 +4,7 @@ from datetime import timedelta
import pprint
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, ep_time_step, config_sim
from cadCAD.configuration.utils import env_proc_trigger, ep_time_step, config_sim
from typing import Dict, List
@ -46,34 +46,22 @@ def p2m3(_g, step, sL, s):
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = 0
return (y, x)
return 's1', 0
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _g['beta']
return (y, x)
return 's2', _g['beta']
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param2']
return (y, x)
return 's1', _input['param2']
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
return 's2', _input['param2']
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = 0
return (y, x)
return 's1', 0
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = 0
return (y, x)
return 's2', 0
# Exogenous States
@ -82,14 +70,10 @@ proc_one_coef_B = 1.3
def es3p1(_g, step, sL, s, _input):
y = 's3'
x = _g['gamma']
return (y, x)
return 's3', _g['gamma']
# @curried
def es4p2(_g, step, sL, s, _input):
y = 's4'
x = _g['gamma']
return (y, x)
return 's4', _g['gamma']
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
@ -129,7 +113,7 @@ raw_exogenous_states = {
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = proc_trigger(1, env_b)
triggered_env_b = env_proc_trigger(1, env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)

View File

@ -1,7 +1,8 @@
from copy import deepcopy
from datetime import timedelta
from cadCAD.utils import SilentDF #, val_switch
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import ep_time_step, config_sim
from cadCAD.configuration.utils import time_step, ep_time_step, config_sim
from cadCAD.configuration.utils.userDefinedObject import udoPipe, UDO
import pandas as pd
@ -46,14 +47,25 @@ state_udo = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoA = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoB = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
policies = {"p1": udo_policyA, "p2": udo_policyB}
# ToDo: DataFrame Column order
state_dict = {
'increment': 0,
'state_udo': state_udo, 'state_udo_tracker_a': 0, 'state_udo_tracker_b': 0,
'state_udo_perception_tracker': {"ds1": None, "ds2": None, "ds3": None, "timestep": None},
'udo_policies': {'udo_A': policy_udoA, 'udo_B': policy_udoB},
'udo_policy_tracker_a': (None, None), 'udo_policy_tracker_b': (None, None),
'timestamp': '2019-01-01 00:00:00',
'udo_policy_tracker_a': (0, 0), 'udo_policy_tracker_b': (0, 0),
'timestamp': '2019-01-01 00:00:00'
}
@curried
@ -64,24 +76,14 @@ def perceive(s, self):
return self
def view_udo_policy(_g, step, sL, s, _input):
y = 'udo_policies'
x = _input
return (y, x)
def update_timestamp(y, timedelta, format):
return lambda _g, step, sL, s, _input: (
y,
ep_time_step(s, dt_str=s[y], fromat_str=format, _timedelta=timedelta)
)
time_model = update_timestamp('timestamp', timedelta(minutes=1), '%Y-%m-%d %H:%M:%S')
return 'udo_policies', _input
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
x = udoPipe(s['state_udo'])
return (y, x)
return y, x
def increment(y, incr_by):
return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
@ -105,17 +107,17 @@ def track_state_udo_perception(destination, source):
return past_perception
return lambda _g, step, sL, s, _input: (destination, id(s[source].perception))
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
def time_model(y, substeps, time_delta, ts_format='%Y-%m-%d %H:%M:%S'):
def apply_incriment_condition(s):
if s['substep'] == 0 or s['substep'] == substeps:
return y, time_step(dt_str=s[y], dt_format=ts_format, _timedelta=time_delta)
else:
return y, s[y]
return lambda _g, step, sL, s, _input: apply_incriment_condition(s)
policies = {"p1": udo_policyA, "p2": udo_policyB}
states_with_ts = {
states = {
'increment': increment('increment', 1),
'state_udo_tracker_a': track('state_udo_tracker_a', 'state_udo'),
'state_udo': state_udo_update,
@ -123,39 +125,38 @@ states_with_ts = {
'state_udo_tracker_b': track('state_udo_tracker_b', 'state_udo'),
'udo_policy_tracker_a': track_udo_policy('udo_policy_tracker_a', 'udo_policies'),
'udo_policies': view_udo_policy,
'udo_policy_tracker_b': track_udo_policy('udo_policy_tracker_b', 'udo_policies'),
'timestamp': time_model,
'udo_policy_tracker_b': track_udo_policy('udo_policy_tracker_b', 'udo_policies')
}
substeps=3
update_timestamp = time_model(
'timestamp',
substeps=3,
time_delta=timedelta(days=0, minutes=0, seconds=1),
ts_format='%Y-%m-%d %H:%M:%S'
)
states['timestamp'] = update_timestamp
PSUB = {
'policies': policies,
'states': states
}
del states_with_ts['timestamp']
states_without_ts = states_with_ts
# needs M1&2 need behaviors
partial_state_update_blocks = {
'PSUB1': {
'policies': policies,
'states': states_with_ts
},
'PSUB2': {
'policies': policies,
'states': states_without_ts
},
'PSUB3': {
'policies': policies,
'states': states_without_ts
}
}
partial_state_update_blocks = [PSUB] * substeps
sim_config = config_sim({
"N": 2,
"T": range(4)
})
# ToDo: Bug without specifying parameters
append_configs(
sim_config,
state_dict,
# seeds=seeds,
# raw_exogenous_states=raw_exogenous_states,
# env_processes=env_processes,
partial_state_update_blocks,
policy_ops=[lambda a, b: {**a, **b}]
sim_configs=sim_config,
initial_state=state_dict,
seeds={},
raw_exogenous_states={},
env_processes={},
partial_state_update_blocks=partial_state_update_blocks,
# policy_ops=[lambda a, b: {**a, **b}]
)