param sweep full spec working pre-release

This commit is contained in:
Joshua E. Jodesty 2019-02-13 08:16:58 -05:00
parent ddc67531bd
commit 522d6dd343
9 changed files with 56 additions and 780 deletions

View File

@ -10,7 +10,6 @@ from SimCAD.configuration.utils.behaviorAggregation import dict_elemwise_sum
from SimCAD.configuration.utils import exo_update_per_ts
class Configuration(object):
def __init__(self, sim_config=None, state_dict=None, seed=None, env_processes=None,
exogenous_states=None, mechanisms=None, behavior_ops=[foldr(dict_elemwise_sum())]):
@ -23,30 +22,29 @@ class Configuration(object):
self.behavior_ops = behavior_ops
def append_configs(sim_config, genesis_states, seed, raw_exogenous_states, env_processes, mechanisms, _exo_update_per_ts=True):
if 'M' in sim_config.keys():
def append_configs(sim_configs, state_dict, seed, raw_exogenous_states, env_processes, mechanisms, _exo_update_per_ts=True):
if _exo_update_per_ts is True:
exogenous_states = exo_update_per_ts(raw_exogenous_states)
else:
exogenous_states = raw_exogenous_states
for mechanisms, exogenous_states in sim_config['M']:
if isinstance(sim_configs, list):
for sim_config in sim_configs:
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
state_dict=state_dict,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)
else:
if _exo_update_per_ts is True:
exogenous_states = exo_update_per_ts(raw_exogenous_states)
else:
exogenous_states = raw_exogenous_states
elif isinstance(sim_configs, dict):
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
sim_config=sim_configs,
state_dict=state_dict,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,

View File

@ -113,14 +113,12 @@ def sweep_states(state_type, states, in_config):
def exo_update_per_ts(ep):
@curried
def ep_decorator(f, y, step, sL, s, _input):
def ep_decorator(f, y, var_dict, step, sL, s, _input):
if s['mech_step'] + 1 == 1:
return curry_pot(f, step, sL, s, _input)
return f(var_dict, step, sL, s, _input) # curry_pot
else:
return y, s[y]
return {es: ep_decorator(f, es) for es, f in ep.items()}
def process_variables(d):
return flatten_tabulated_dict(tabulate_dict(d))

View File

@ -2,10 +2,28 @@ import inspect
from copy import deepcopy
from funcy import curry
from SimCAD.utils import rename
from SimCAD.utils import rename, flatten_tabulated_dict, tabulate_dict
from SimCAD.configuration.utils import exo_update_per_ts
def process_variables(d):
return flatten_tabulated_dict(tabulate_dict(d))
def config_sim(d):
if "M" in d:
return [
{
"N": d["N"],
"T": d["T"],
"M": M
}
for M in process_variables(d["M"])
]
else:
return d
class ParamSweep:
def __init__(self, sweep_list, mechs=None, raw_exogenous_states=None, _exo_update_per_ts=True):
self.sweep_list = sweep_list

View File

@ -51,10 +51,12 @@ class Executor:
[], [], [], [], [], [], [], [], []
config_idx = 0
for x in self.configs:
var_dict_list.append(x.sim_config['M'])
states_lists.append([x.state_dict])
Ts.append(x.sim_config['T'])
Ns.append(x.sim_config['N'])
var_dict_list.append(x.sim_config['M'])
states_lists.append([x.state_dict])
eps.append(list(x.exogenous_states.values()))
configs_structs.append(config_proc.generate_config(x.state_dict, x.mechanisms, eps[config_idx]))
env_processes_list.append(x.env_processes)

View File

@ -1,171 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param1': 1}
def b1m2(step, sL, s):
return {'param1': 1, 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 1, 'param2': 4}
def b1m3(step, sL, s):
return {'param1': 1, 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': 1, 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
# ToDo: Bug - Can't use environments without proc_trigger. TypeError: 'int' object is not callable
# "/Users/jjodesty/Projects/DiffyQ-SimCAD/SimCAD/engine/simulation.py"
env_processes = {
# "s3": env_a,
# "s4": env_b
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -3,9 +3,9 @@ import numpy as np
from datetime import timedelta
import pprint
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import proc_trigger, ep_time_step, process_variables, exo_update_per_ts
from SimCAD.configuration import append_configs
from SimCAD.configuration.utils import proc_trigger, ep_time_step
from SimCAD.configuration.utils.parameterSweep import config_sim
pp = pprint.PrettyPrinter(indent=4)
@ -24,11 +24,6 @@ g = {
'omega': [7]
}
# beta = 1
# middleware(f1,f2,f3,f4)
# Behaviors per Mechanism
def b1m1(_g, step, sL, s):
return {'param1': 1}
@ -41,15 +36,14 @@ def b1m2(_g, step, sL, s):
def b2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 0}
# @curried
def b1m3(_g, step, sL, s):
return {'param1': np.array([10, 100])}
# @curried
def b2m3(_g, step, sL, s):
return {'param1': np.array([20, 200])}
# Internal States per Mechanism
# @curried
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = 0
@ -126,7 +120,7 @@ genesis_states = {
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": es3p1, #es3p1, #sweep(beta, es3p1),
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
@ -135,8 +129,6 @@ raw_exogenous_states = {
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
@ -185,43 +177,20 @@ mechanisms = {
}
# process_variables(g)
def gen_sim_configs(N, T, Ms):
return [
{
"N": 2,
"T": range(5),
"M": M
}
for M in process_variables(Ms)
]
sim_configs = gen_sim_configs(
N=2,
T=range(5),
Ms=g
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g
}
)
for sim_config in sim_configs:
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=raw_exogenous_states, # exo_update_per_ts
env_processes=env_processes,
mechanisms=mechanisms
)
)
# append_configs(
# sim_config=sim_config,
# genesis_states=genesis_states,
# seed=seed,
# raw_exogenous_states=raw_exogenous_states,
# env_processes=env_processes,
# mechanisms=mechanisms,
# _exo_update_per_ts=True #Default
# )
append_configs(
sim_configs=sim_config,
state_dict=genesis_states,
seed=seed,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)

View File

@ -1,178 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1'] #+ [Coef1 x 5]
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2'] #+ [Coef2 x 5]
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 5
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
env_processes = {
"s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = [foldr(lambda a, b: a + b)]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)