Update README.md
This commit is contained in:
parent
460b1ff67c
commit
4fe3419b23
174
README.md
174
README.md
|
|
@ -6,173 +6,17 @@
|
|||
\___/\__,_/\__,_/\____/_/ |_/_____/
|
||||
by BlockScience
|
||||
```
|
||||
***cadCAD*** is a Python package that assists in the processes of designing, testing and validating complex systems through simulation, with support for Monte Carlo methods, A/B testing and parameter sweeping.
|
||||
|
||||
**Introduction:**
|
||||
|
||||
***cadCAD*** is a Python library that assists in the processes of designing, testing and validating complex systems through
|
||||
simulation. At its core, cadCAD is a differential games engine that supports parameter sweeping and Monte Carlo analyses
|
||||
and can be easily integrated with other scientific computing Python modules and data science workflows.
|
||||
|
||||
**Description:**
|
||||
|
||||
cadCAD (complex adaptive systems computer-aided design) is a python based, unified modeling framework for stochastic
|
||||
dynamical systems and differential games for research, validation, and Computer Aided Design of economic systems created
|
||||
by BlockScience. It is capable of modeling systems at all levels of abstraction from Agent Based Modeling (ABM) to
|
||||
System Dynamics (SD), and enabling smooth integration of computational social science simulations with empirical data
|
||||
science workflows.
|
||||
|
||||
|
||||
An economic system is treated as a state-based model and defined through a set of endogenous and exogenous state
|
||||
variables which are updated through mechanisms and environmental processes, respectively. Behavioral models, which may
|
||||
be deterministic or stochastic, provide the evolution of the system within the action space of the mechanisms.
|
||||
Mathematical formulations of these economic games treat agent utility as derived from the state rather than direct from
|
||||
an action, creating a rich, dynamic modeling framework. Simulations may be run with a range of initial conditions and
|
||||
parameters for states, behaviors, mechanisms, and environmental processes to understand and visualize network behavior
|
||||
under various conditions. Support for A/B testing policies, Monte Carlo analysis, and other common numerical methods is
|
||||
provided.
|
||||
|
||||
|
||||
For example, cadCAD tool allows us to represent a company’s or community’s current business model along with a desired
|
||||
future state and helps make informed, rigorously tested decisions on how to get from today’s stage to the future state.
|
||||
It allows us to use code to solidify our conceptualized ideas and see if the outcome meets our expectations. We can
|
||||
iteratively refine our work until we have constructed a model that closely reflects reality at the start of the model,
|
||||
and see how it evolves. We can then use these results to inform business decisions.
|
||||
|
||||
#### Documentation:
|
||||
* ##### [Tutorials](tutorials)
|
||||
* ##### [System Model Configuration](documentation/Simulation_Configuration.md)
|
||||
* ##### [System Simulation Execution](documentation/Simulation_Execution.md)
|
||||
* ##### [Policy Aggregation](documentation/Policy_Aggregation.md)
|
||||
* ##### [System Model Parameter Sweep](documentation/System_Model_Parameter_Sweep.md)
|
||||
|
||||
#### 0. Installation:
|
||||
|
||||
**Python 3.6.5** :: Anaconda, Inc.
|
||||
|
||||
**Option A:** [PyPi](https://pypi.org/project/cadCAD/): pip install
|
||||
# Getting Started
|
||||
## 1. Install cadCAD
|
||||
cadCAD requires [Python 3](https://www.python.org/downloads/)
|
||||
cadCAD can be installed using Python’s package manager, [pip](https://pypi.org/project/cadCAD/)
|
||||
```bash
|
||||
pip install cadCAD
|
||||
```
|
||||
## 2. Learn the basics
|
||||
Check out our tutorials (available both as [Jupyter Notebooks](tutorials) and [videos](https://www.youtube.com/watch?v=uJEiYHRWA9g&list=PLmWm8ksQq4YKtdRV-SoinhV6LbQMgX1we)) to familiarize yourself with some system modelling concepts and cadCAD terminology. Alternatively, go straight to the [documentation](documentation/Simulation_Configuration.md).
|
||||
|
||||
**Option B:** Build From Source
|
||||
```bash
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py sdist bdist_wheel
|
||||
pip3 install dist/*.whl
|
||||
```
|
||||
|
||||
**Option C:** Proprietary Build Access
|
||||
|
||||
***IMPORTANT NOTE:*** Tokens are issued to those with access to proprietary builds of cadCAD and BlockScience employees **ONLY**.
|
||||
Replace \<TOKEN\> with an issued token in the script below.
|
||||
```bash
|
||||
pip3 install pandas pathos fn funcy tabulate
|
||||
pip3 install cadCAD --extra-index-url https://<TOKEN>@repo.fury.io/blockscience/
|
||||
```
|
||||
|
||||
|
||||
#### 1. [Configure System Model](documentation/Simulation_Configuration.md)
|
||||
|
||||
#### 2. [Execute Simulations:](documentation/Simulation_Execution.md)
|
||||
|
||||
##### Single Process Execution:
|
||||
Example System Model Configurations:
|
||||
* [System Model A](documentation/examples/sys_model_A.py):
|
||||
`/documentation/examples/sys_model_A.py`
|
||||
* [System Model B](documentation/examples/sys_model_B.py):
|
||||
`/documentation/examples/sys_model_B.py`
|
||||
|
||||
Example Simulation Executions:
|
||||
* [System Model A](documentation/examples/sys_model_A_exec.py):
|
||||
`/documentation/examples/sys_model_A_exec.py`
|
||||
* [System Model B](documentation/examples/sys_model_B_exec.py):
|
||||
`/documentation/examples/sys_model_B_exec.py`
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from documentation.examples import sys_model_A
|
||||
from cadCAD import configs
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
|
||||
# Single Process Execution using a Single System Model Configuration:
|
||||
# sys_model_A
|
||||
sys_model_A = [configs[0]] # sys_model_A
|
||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
|
||||
|
||||
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
|
||||
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
|
||||
print()
|
||||
print("Tensor Field: sys_model_A")
|
||||
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
|
||||
print("Result: System Events DataFrame")
|
||||
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
```
|
||||
|
||||
##### Multiple Simulations (Concurrent):
|
||||
###### Multiple Simulation Execution (Multi Process Execution)
|
||||
System Model Configurations:
|
||||
* [System Model A](documentation/examples/sys_model_A.py):
|
||||
`/documentation/examples/sys_model_A.py`
|
||||
* [System Model B](documentation/examples/sys_model_B.py):
|
||||
`/documentation/examples/sys_model_B.py`
|
||||
|
||||
[Example Simulation Executions:](documentation/examples/sys_model_AB_exec.py)
|
||||
`/documentation/examples/sys_model_AB_exec.py`
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from documentation.examples import sys_model_A, sys_model_B
|
||||
from cadCAD import configs
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
|
||||
# # Multiple Processes Execution using Multiple System Model Configurations:
|
||||
# # sys_model_A & sys_model_B
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
|
||||
i = 0
|
||||
config_names = ['sys_model_A', 'sys_model_B']
|
||||
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
|
||||
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
|
||||
print()
|
||||
print(f"Tensor Field: {config_names[i]}")
|
||||
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
|
||||
print("Result: System Events DataFrame:")
|
||||
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
i += 1
|
||||
```
|
||||
|
||||
##### Parameter Sweep Simulation (Concurrent):
|
||||
[Example:](documentation/examples/param_sweep.py)
|
||||
`/documentation/examples/param_sweep.py`
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
# The following imports NEED to be in the exact order
|
||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from documentation.examples import param_sweep
|
||||
from cadCAD import configs
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
|
||||
for raw_result, tensor_field in run.execute():
|
||||
result = pd.DataFrame(raw_result)
|
||||
print()
|
||||
print("Tensor Field:")
|
||||
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||
print("Output:")
|
||||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
```
|
||||
## 3. Connect
|
||||
Find other cadCAD users at our [Discourse](https://community.cadcad.org/). We are a small but rapidly growing community.
|
||||
|
|
|
|||
Loading…
Reference in New Issue