rename hell pt. 3

This commit is contained in:
Joshua E. Jodesty 2019-02-18 16:24:56 -05:00
commit 2b9ab7cd46
29 changed files with 1318 additions and 2966 deletions

10
.gitignore vendored
View File

@ -1,6 +1,9 @@
.idea
.ipynb_checkpoints
.DS_Store
.idea
notebooks
*.egg-info
__pycache__
Pipfile
Pipfile.lock
@ -9,7 +12,10 @@ results
*.csv
*.txt
simulations/.ipynb_checkpoints
dist/SimCAD-0.1.tar.gz
simulations/validation/config3.py
dist/*.gz
cadCAD.egg-info
build
SimCAD.egg-info
cadCAD.egg-info
SimCAD.egg-info

View File

@ -9,7 +9,7 @@ Aided Design of economic systems. An economic system is treated as a state based
set of endogenous and exogenous state variables which are updated through mechanisms and environmental \
processes, respectively. Behavioral models, which may be deterministic or stochastic, provide the evolution of \
the system within the action space of the mechanisms. Mathematical formulations of these economic games \
treat agent utility as derived from state rather than direct from action, creating a rich dynamic modeling framework.
treat agent utility as derived from state rather than direct from action, creating a rich dynamic modeling framework.
Simulations may be run with a range of initial conditions and parameters for states, behaviors, mechanisms, \
and environmental processes to understand and visualize network behavior under various conditions. Support for \
@ -19,6 +19,7 @@ A/B testing policies, monte carlo analysis and other common numerical methods is
```bash
pip install -r requirements.txt
python3 setup.py sdist bdist_wheel
pip3 install dist/*.whl
```
**2. Configure Simulation:**
@ -73,7 +74,7 @@ for raw_result, tensor_field in run2.main():
print()
```
The above can be run in Jupyter.
The above can be run in Jupyter.
```bash
jupyter notebook
```

View File

@ -1,2 +0,0 @@
name = "SimCAD"
configs = []

View File

@ -1,97 +0,0 @@
from functools import reduce
from fn.op import foldr
import pandas as pd
from SimCAD.utils import key_filter
from SimCAD.configuration.utils.behaviorAggregation import dict_elemwise_sum
class Configuration:
def __init__(self, sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_ops=[foldr(dict_elemwise_sum())]):
self.sim_config = sim_config
self.state_dict = state_dict
self.seed = seed
self.exogenous_states = exogenous_states
self.env_processes = env_processes
self.behavior_ops = behavior_ops
self.mechanisms = mechanisms
class Identity:
def __init__(self, behavior_id={'identity': 0}):
self.beh_id_return_val = behavior_id
def b_identity(self, step, sL, s):
return self.beh_id_return_val
def behavior_identity(self, k):
return self.b_identity
def no_state_identity(self, step, sL, s, _input):
return None
def state_identity(self, k):
return lambda step, sL, s, _input: (k, s[k])
def apply_identity_funcs(self, identity, df, cols):
def fillna_with_id_func(identity, df, col):
return df[[col]].fillna(value=identity(col))
return list(map(lambda col: fillna_with_id_func(identity, df, col), cols))
class Processor:
def __init__(self, id=Identity()):
self.id = id
self.b_identity = id.b_identity
self.behavior_identity = id.behavior_identity
self.no_state_identity = id.no_state_identity
self.state_identity = id.state_identity
self.apply_identity_funcs = id.apply_identity_funcs
def create_matrix_field(self, mechanisms, key):
if key == 'states':
identity = self.state_identity
elif key == 'behaviors':
identity = self.behavior_identity
df = pd.DataFrame(key_filter(mechanisms, key))
col_list = self.apply_identity_funcs(identity, df, list(df.columns))
if len(col_list) != 0:
return reduce((lambda x, y: pd.concat([x, y], axis=1)), col_list)
else:
return pd.DataFrame({'empty': []})
def generate_config(self, state_dict, mechanisms, exo_proc):
def no_update_handler(bdf, sdf):
if (bdf.empty == False) and (sdf.empty == True):
bdf_values = bdf.values.tolist()
sdf_values = [[self.no_state_identity] * len(bdf_values) for m in range(len(mechanisms))]
return sdf_values, bdf_values
elif (bdf.empty == True) and (sdf.empty == False):
sdf_values = sdf.values.tolist()
bdf_values = [[self.b_identity] * len(sdf_values) for m in range(len(mechanisms))]
return sdf_values, bdf_values
else:
sdf_values = sdf.values.tolist()
bdf_values = bdf.values.tolist()
return sdf_values, bdf_values
def only_ep_handler(state_dict):
sdf_functions = [
lambda step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
]
sdf_values = [sdf_functions]
bdf_values = [[self.b_identity] * len(sdf_values)]
return sdf_values, bdf_values
if len(mechanisms) != 0:
bdf = self.create_matrix_field(mechanisms, 'behaviors')
sdf = self.create_matrix_field(mechanisms, 'states')
sdf_values, bdf_values = no_update_handler(bdf, sdf)
zipped_list = list(zip(sdf_values, bdf_values))
else:
sdf_values, bdf_values = only_ep_handler(state_dict)
zipped_list = list(zip(sdf_values, bdf_values))
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))

View File

@ -1,57 +0,0 @@
from datetime import datetime, timedelta
from decimal import Decimal
from fn.func import curried
import pandas as pd
class TensorFieldReport:
def __init__(self, config_proc):
self.config_proc = config_proc
def create_tensor_field(self, mechanisms, exo_proc, keys=['behaviors', 'states']):
dfs = [self.config_proc.create_matrix_field(mechanisms, k) for k in keys]
df = pd.concat(dfs, axis=1)
for es, i in zip(exo_proc, range(len(exo_proc))):
df['es' + str(i + 1)] = es
df['m'] = df.index + 1
return df
def bound_norm_random(rng, low, high):
res = rng.normal((high+low)/2,(high-low)/6)
if (res<low or res>high):
res = bound_norm_random(rng, low, high)
return Decimal(res)
@curried
def proc_trigger(trigger_step, update_f, step):
if step == trigger_step:
return update_f
else:
return lambda x: x
t_delta = timedelta(days=0, minutes=0, seconds=30)
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
dt = datetime.strptime(dt_str, dt_format)
t = dt + _timedelta
return t.strftime(dt_format)
t_delta = timedelta(days=0, minutes=0, seconds=1)
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
if s['mech_step'] == 0:
return time_step(dt_str, fromat_str, _timedelta)
else:
return dt_str
def exo_update_per_ts(ep):
@curried
def ep_decorator(f, y, step, sL, s, _input):
if s['mech_step'] + 1 == 1:
return f(step, sL, s, _input)
else:
return (y, s[y])
return {es: ep_decorator(f, es) for es, f in ep.items()}

View File

@ -1,91 +0,0 @@
from copy import deepcopy
from fn.op import foldr, call
from SimCAD.engine.utils import engine_exception
id_exception = engine_exception(KeyError, KeyError, None)
class Executor:
def __init__(self, behavior_ops, behavior_update_exception=id_exception, state_update_exception=id_exception):
self.behavior_ops = behavior_ops
self.state_update_exception = state_update_exception
self.behavior_update_exception = behavior_update_exception
def get_behavior_input(self, step, sL, s, funcs):
ops = self.behavior_ops[::-1]
def get_col_results(step, sL, s, funcs):
return list(map(lambda f: f(step, sL, s), funcs))
return foldr(call, get_col_results(step, sL, s, funcs))(ops)
def apply_env_proc(self, env_processes, state_dict, step):
for state in state_dict.keys():
if state in list(env_processes.keys()):
env_state = env_processes[state]
if (env_state.__name__ == '_curried') or (env_state.__name__ == 'proc_trigger'):
state_dict[state] = env_state(step)(state_dict[state])
else:
state_dict[state] = env_state(state_dict[state])
def mech_step(self, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
last_in_obj = sL[-1]
_input = self.state_update_exception(self.get_behavior_input(m_step, sL, last_in_obj, behavior_funcs))
last_in_copy = dict([self.behavior_update_exception(f(m_step, sL, last_in_obj, _input)) for f in state_funcs])
for k in last_in_obj:
if k not in last_in_copy:
last_in_copy[k] = last_in_obj[k]
del last_in_obj
self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestamp'])
last_in_copy["mech_step"], last_in_copy["time_step"], last_in_copy['run'] = m_step, t_step, run
sL.append(last_in_copy)
del last_in_copy
return sL
def mech_pipeline(self, states_list, configs, env_processes, t_step, run):
m_step = 0
states_list_copy = deepcopy(states_list)
genesis_states = states_list_copy[-1]
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
states_list = [genesis_states]
m_step += 1
for config in configs:
s_conf, b_conf = config[0], config[1]
states_list = self.mech_step(m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
m_step += 1
t_step += 1
return states_list
def block_pipeline(self, states_list, configs, env_processes, time_seq, run):
time_seq = [x + 1 for x in time_seq]
simulation_list = [states_list]
for time_step in time_seq:
pipe_run = self.mech_pipeline(simulation_list[-1], configs, env_processes, time_step, run)
_, *pipe_run = pipe_run
simulation_list.append(pipe_run)
return simulation_list
def simulation(self, states_list, configs, env_processes, time_seq, runs):
pipe_run = []
for run in range(runs):
run += 1
states_list_copy = deepcopy(states_list)
head, *tail = self.block_pipeline(states_list_copy, configs, env_processes, time_seq, run)
genesis = head.pop()
genesis['mech_step'], genesis['time_step'], genesis['run'] = 0, 0, run
first_timestep_per_run = [genesis] + tail.pop(0)
pipe_run += [first_timestep_per_run] + tail
del states_list_copy
return pipe_run

View File

@ -1,20 +0,0 @@
def pipe(x):
return x
def print_pipe(x):
print(x)
return x
def flatten(l):
return [item for sublist in l for item in sublist]
def key_filter(l, keyname):
return [v[keyname] for k, v in l.items()]
def rename(new_name, f):
f.__name__ = new_name
return f

2
cadCAD/__init__.py Normal file
View File

@ -0,0 +1,2 @@
name = "cadCAD"
configs = []

View File

@ -0,0 +1,138 @@
from functools import reduce
from fn.op import foldr
import pandas as pd
from cadCAD import configs
from cadCAD.utils import key_filter
from cadCAD.configuration.utils import exo_update_per_ts
from cadCAD.configuration.utils.policyAggregation import dict_elemwise_sum
from cadCAD.configuration.utils.depreciationHandler import sanitize_partial_state_updates, sanitize_config
class Configuration(object):
def __init__(self, sim_config={}, initial_state={}, seeds={}, env_processes={},
exogenous_states={}, partial_state_update_blocks={}, policy_ops=[foldr(dict_elemwise_sum())], **kwargs):
self.sim_config = sim_config
self.initial_state = initial_state
self.seeds = seeds
self.env_processes = env_processes
self.exogenous_states = exogenous_states
self.partial_state_updates = partial_state_update_blocks
self.policy_ops = policy_ops
self.kwargs = kwargs
sanitize_config(self)
def append_configs(sim_configs={}, initial_state={}, seeds={}, raw_exogenous_states={}, env_processes={}, partial_state_update_blocks={}, _exo_update_per_ts=True):
if _exo_update_per_ts is True:
exogenous_states = exo_update_per_ts(raw_exogenous_states)
else:
exogenous_states = raw_exogenous_states
if isinstance(sim_configs, list):
for sim_config in sim_configs:
config = Configuration(
sim_config=sim_config,
initial_state=initial_state,
seeds=seeds,
exogenous_states=exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks
)
configs.append(config)
elif isinstance(sim_configs, dict):
config = Configuration(
sim_config=sim_configs,
initial_state=initial_state,
seeds=seeds,
exogenous_states=exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_blocks
)
configs.append(config)
class Identity:
def __init__(self, policy_id={'identity': 0}):
self.beh_id_return_val = policy_id
def p_identity(self, var_dict, sub_step, sL, s):
return self.beh_id_return_val
def policy_identity(self, k):
return self.p_identity
def no_state_identity(self, var_dict, sub_step, sL, s, _input):
return None
def state_identity(self, k):
return lambda var_dict, sub_step, sL, s, _input: (k, s[k])
def apply_identity_funcs(self, identity, df, cols):
def fillna_with_id_func(identity, df, col):
return df[[col]].fillna(value=identity(col))
return list(map(lambda col: fillna_with_id_func(identity, df, col), cols))
class Processor:
def __init__(self, id=Identity()):
self.id = id
self.p_identity = id.p_identity
self.policy_identity = id.policy_identity
self.no_state_identity = id.no_state_identity
self.state_identity = id.state_identity
self.apply_identity_funcs = id.apply_identity_funcs
def create_matrix_field(self, partial_state_updates, key):
if key == 'variables':
identity = self.state_identity
elif key == 'policies':
identity = self.policy_identity
df = pd.DataFrame(key_filter(partial_state_updates, key))
col_list = self.apply_identity_funcs(identity, df, list(df.columns))
if len(col_list) != 0:
return reduce((lambda x, y: pd.concat([x, y], axis=1)), col_list)
else:
return pd.DataFrame({'empty': []})
def generate_config(self, initial_state, partial_state_updates, exo_proc):
def no_update_handler(bdf, sdf):
if (bdf.empty == False) and (sdf.empty == True):
bdf_values = bdf.values.tolist()
sdf_values = [[self.no_state_identity] * len(bdf_values) for m in range(len(partial_state_updates))]
return sdf_values, bdf_values
elif (bdf.empty == True) and (sdf.empty == False):
sdf_values = sdf.values.tolist()
bdf_values = [[self.p_identity] * len(sdf_values) for m in range(len(partial_state_updates))]
return sdf_values, bdf_values
else:
sdf_values = sdf.values.tolist()
bdf_values = bdf.values.tolist()
return sdf_values, bdf_values
def only_ep_handler(state_dict):
sdf_functions = [
lambda var_dict, sub_step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
]
sdf_values = [sdf_functions]
bdf_values = [[self.p_identity] * len(sdf_values)]
return sdf_values, bdf_values
if len(partial_state_updates) != 0:
# backwards compatibility # ToDo: Move this
partial_state_updates = sanitize_partial_state_updates(partial_state_updates)
bdf = self.create_matrix_field(partial_state_updates, 'policies')
sdf = self.create_matrix_field(partial_state_updates, 'variables')
sdf_values, bdf_values = no_update_handler(bdf, sdf)
zipped_list = list(zip(sdf_values, bdf_values))
else:
sdf_values, bdf_values = only_ep_handler(initial_state)
zipped_list = list(zip(sdf_values, bdf_values))
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))

View File

@ -0,0 +1,125 @@
from datetime import datetime, timedelta
from decimal import Decimal
from copy import deepcopy
from fn.func import curried
import pandas as pd
# Temporary
from cadCAD.configuration.utils.depreciationHandler import sanitize_partial_state_updates
from cadCAD.utils import dict_filter, contains_type
# ToDo: Fix - Returns empty when partial_state_update is missing in Configuration
class TensorFieldReport:
def __init__(self, config_proc):
self.config_proc = config_proc
# ToDo: backwards compatibility
def create_tensor_field(self, partial_state_updates, exo_proc, keys = ['policies', 'variables']):
partial_state_updates = sanitize_partial_state_updates(partial_state_updates) # Temporary
dfs = [self.config_proc.create_matrix_field(partial_state_updates, k) for k in keys]
df = pd.concat(dfs, axis=1)
for es, i in zip(exo_proc, range(len(exo_proc))):
df['es' + str(i + 1)] = es
df['m'] = df.index + 1
return df
def state_update(y, x):
return lambda var_dict, sub_step, sL, s, _input: (y, x)
def bound_norm_random(rng, low, high):
res = rng.normal((high+low)/2, (high-low)/6)
if res < low or res > high:
res = bound_norm_random(rng, low, high)
return Decimal(res)
@curried
def proc_trigger(trigger_time, update_f, time):
if time == trigger_time:
return update_f
else:
return lambda x: x
tstep_delta = timedelta(days=0, minutes=0, seconds=30)
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = tstep_delta):
dt = datetime.strptime(dt_str, dt_format)
t = dt + _timedelta
return t.strftime(dt_format)
ep_t_delta = timedelta(days=0, minutes=0, seconds=1)
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = ep_t_delta):
if s['substep'] == 0:
return time_step(dt_str, fromat_str, _timedelta)
else:
return dt_str
# mech_sweep_filter
def partial_state_sweep_filter(state_field, partial_state_updates):
partial_state_dict = dict([(k, v[state_field]) for k, v in partial_state_updates.items()])
return dict([
(k, dict_filter(v, lambda v: isinstance(v, list))) for k, v in partial_state_dict.items()
if contains_type(list(v.values()), list)
])
def state_sweep_filter(raw_exogenous_states):
return dict([(k, v) for k, v in raw_exogenous_states.items() if isinstance(v, list)])
# sweep_mech_states
@curried
def sweep_partial_states(_type, in_config):
configs = []
# filtered_mech_states
filtered_partial_states = partial_state_sweep_filter(_type, in_config.partial_state_updates)
if len(filtered_partial_states) > 0:
for partial_state, state_dict in filtered_partial_states.items():
for state, state_funcs in state_dict.items():
for f in state_funcs:
config = deepcopy(in_config)
config.partial_state_updates[partial_state][_type][state] = f
configs.append(config)
del config
else:
configs = [in_config]
return configs
@curried
def sweep_states(state_type, states, in_config):
configs = []
filtered_states = state_sweep_filter(states)
if len(filtered_states) > 0:
for state, state_funcs in filtered_states.items():
for f in state_funcs:
config = deepcopy(in_config)
exploded_states = deepcopy(states)
exploded_states[state] = f
if state_type == 'exogenous':
config.exogenous_states = exploded_states
elif state_type == 'environmental':
config.env_processes = exploded_states
configs.append(config)
del config, exploded_states
else:
configs = [in_config]
return configs
def exo_update_per_ts(ep):
@curried
def ep_decorator(f, y, var_dict, sub_step, sL, s, _input):
if s['substep'] + 1 == 1:
return f(var_dict, sub_step, sL, s, _input)
else:
return y, s[y]
return {es: ep_decorator(f, es) for es, f in ep.items()}

View File

@ -0,0 +1,41 @@
from copy import deepcopy
def sanitize_config(config):
# for backwards compatibility, we accept old arguments via **kwargs
# TODO: raise specific deprecation warnings for key == 'state_dict', key == 'seed', key == 'mechanisms'
for key, value in config.kwargs.items():
if key == 'state_dict':
config.initial_state = value
elif key == 'seed':
config.seeds = value
elif key == 'mechanisms':
config.partial_state_updates = value
if config.initial_state == {}:
raise Exception('The initial conditions of the system have not been set')
def sanitize_partial_state_updates(partial_state_updates):
new_partial_state_updates = deepcopy(partial_state_updates)
# for backwards compatibility we accept the old keys
# ('behaviors' and 'states') and rename them
def rename_keys(d):
if 'behaviors' in d:
d['policies'] = d.pop('behaviors')
if 'states' in d:
d['variables'] = d.pop('states')
# Also for backwards compatibility, we accept partial state update blocks both as list or dict
# No need for a deprecation warning as it's already raised by cadCAD.utils.key_filter
if (type(new_partial_state_updates)==list):
for v in new_partial_state_updates:
rename_keys(v)
elif (type(new_partial_state_updates)==dict):
for k, v in new_partial_state_updates.items():
rename_keys(v)
del partial_state_updates
return new_partial_state_updates

View File

@ -0,0 +1,20 @@
from cadCAD.utils import flatten_tabulated_dict, tabulate_dict
def process_variables(d):
return flatten_tabulated_dict(tabulate_dict(d))
def config_sim(d):
if "M" in d:
return [
{
"N": d["N"],
"T": d["T"],
"M": M
}
for M in process_variables(d["M"])
]
else:
d["M"] = [{}]
return d

View File

@ -2,17 +2,18 @@ from fn.op import foldr
from fn.func import curried
def get_base_value(datatype):
if datatype is str:
def get_base_value(x):
if isinstance(x, str):
return ''
elif datatype is int:
elif isinstance(x, int):
return 0
elif datatype is list:
elif isinstance(x, list):
return []
return 0
else:
return 0
def behavior_to_dict(v):
def policy_to_dict(v):
return dict(list(zip(map(lambda n: 'b' + str(n + 1), list(range(len(v)))), v)))
@ -32,7 +33,7 @@ def sum_dict_values():
def dict_op(f, d1, d2):
def set_base_value(target_dict, source_dict, key):
if key not in target_dict:
return get_base_value(type(source_dict[key]))
return get_base_value(source_dict[key])
else:
return target_dict[key]

View File

@ -1,9 +1,9 @@
from pathos.multiprocessing import ProcessingPool as Pool
from SimCAD.utils import flatten
from SimCAD.configuration import Processor
from SimCAD.configuration.utils import TensorFieldReport
from SimCAD.engine.simulation import Executor as SimExecutor
from cadCAD.utils import flatten
from cadCAD.configuration import Processor
from cadCAD.configuration.utils import TensorFieldReport
from cadCAD.engine.simulation import Executor as SimExecutor
class ExecutionMode:
@ -16,16 +16,16 @@ class ExecutionContext:
self.name = context
self.method = None
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
def single_proc_exec(simulation_execs, var_dict, states_lists, configs_structs, env_processes_list, Ts, Ns):
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
result = simulation(states_list, config, env_processes, T, N)
result = simulation(var_dict, states_list, config, env_processes, T, N)
return flatten(result)
def parallelize_simulations(fs, states_list, configs, env_processes, Ts, Ns):
l = list(zip(fs, states_list, configs, env_processes, Ts, Ns))
def parallelize_simulations(fs, var_dict_list, states_list, configs, env_processes, Ts, Ns):
l = list(zip(fs, var_dict_list, states_list, configs, env_processes, Ts, Ns))
with Pool(len(configs)) as p:
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5], t[6]), l)
return results
if context == 'single_proc':
@ -47,30 +47,33 @@ class Executor:
create_tensor_field = TensorFieldReport(config_proc).create_tensor_field
print(self.exec_context+": "+str(self.configs))
states_lists, Ts, Ns, eps, configs_structs, env_processes_list, mechanisms, simulation_execs = \
[], [], [], [], [], [], [], []
var_dict_list, states_lists, Ts, Ns, eps, configs_structs, env_processes_list, partial_state_updates, simulation_execs = \
[], [], [], [], [], [], [], [], []
config_idx = 0
for x in self.configs:
states_lists.append([x.state_dict])
Ts.append(x.sim_config['T'])
Ns.append(x.sim_config['N'])
var_dict_list.append(x.sim_config['M'])
states_lists.append([x.initial_state])
eps.append(list(x.exogenous_states.values()))
configs_structs.append(config_proc.generate_config(x.state_dict, x.mechanisms, eps[config_idx]))
configs_structs.append(config_proc.generate_config(x.initial_state, x.partial_state_updates, eps[config_idx]))
env_processes_list.append(x.env_processes)
mechanisms.append(x.mechanisms)
simulation_execs.append(SimExecutor(x.behavior_ops).simulation)
partial_state_updates.append(x.partial_state_updates)
simulation_execs.append(SimExecutor(x.policy_ops).simulation)
config_idx += 1
if self.exec_context == ExecutionMode.single_proc:
tensor_field = create_tensor_field(mechanisms.pop(), eps.pop())
result = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
# ToDO: Deprication Handler - "sanitize" in appropriate place
tensor_field = create_tensor_field(partial_state_updates.pop(), eps.pop())
result = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
return result, tensor_field
elif self.exec_context == ExecutionMode.multi_proc:
if len(self.configs) > 1:
simulations = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
simulations = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
results = []
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
results.append((flatten(result), create_tensor_field(mechanism, ep)))
for result, partial_state_updates, ep in list(zip(simulations, partial_state_updates, eps)):
results.append((flatten(result), create_tensor_field(partial_state_updates, ep)))
return results
return results

103
cadCAD/engine/simulation.py Normal file
View File

@ -0,0 +1,103 @@
from copy import deepcopy
from fn.op import foldr, call
from cadCAD.engine.utils import engine_exception
id_exception = engine_exception(KeyError, KeyError, None)
class Executor:
def __init__(self, policy_ops, policy_update_exception=id_exception, state_update_exception=id_exception):
self.policy_ops = policy_ops # behavior_ops
self.state_update_exception = state_update_exception
self.policy_update_exception = policy_update_exception # behavior_update_exception
# get_behavior_input
def get_policy_input(self, var_dict, sub_step, sL, s, funcs):
ops = self.policy_ops[::-1]
def get_col_results(var_dict, sub_step, sL, s, funcs):
return list(map(lambda f: f(var_dict, sub_step, sL, s), funcs))
return foldr(call, get_col_results(var_dict, sub_step, sL, s, funcs))(ops)
def apply_env_proc(self, env_processes, state_dict, sub_step):
for state in state_dict.keys():
if state in list(env_processes.keys()):
env_state = env_processes[state]
if (env_state.__name__ == '_curried') or (env_state.__name__ == 'proc_trigger'):
state_dict[state] = env_state(sub_step)(state_dict[state])
else:
state_dict[state] = env_state(state_dict[state])
# mech_step
def partial_state_update(self, var_dict, sub_step, sL, state_funcs, policy_funcs, env_processes, time_step, run):
last_in_obj = sL[-1]
_input = self.policy_update_exception(self.get_policy_input(var_dict, sub_step, sL, last_in_obj, policy_funcs))
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
last_in_copy = dict(
[
self.state_update_exception(f(var_dict, sub_step, sL, last_in_obj, _input)) for f in state_funcs
]
)
for k in last_in_obj:
if k not in last_in_copy:
last_in_copy[k] = last_in_obj[k]
del last_in_obj
self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep'])
last_in_copy['substep'], last_in_copy['timestep'], last_in_copy['run'] = sub_step, time_step, run
sL.append(last_in_copy)
del last_in_copy
return sL
# mech_pipeline
def state_update_pipeline(self, var_dict, states_list, configs, env_processes, time_step, run):
sub_step = 0
states_list_copy = deepcopy(states_list)
genesis_states = states_list_copy[-1]
genesis_states['substep'], genesis_states['timestep'] = sub_step, time_step
states_list = [genesis_states]
sub_step += 1
for config in configs:
s_conf, p_conf = config[0], config[1]
states_list = self.partial_state_update(var_dict, sub_step, states_list, s_conf, p_conf, env_processes, time_step, run)
sub_step += 1
time_step += 1
return states_list
def run_pipeline(self, var_dict, states_list, configs, env_processes, time_seq, run):
time_seq = [x + 1 for x in time_seq]
simulation_list = [states_list]
for time_step in time_seq:
pipe_run = self.state_update_pipeline(var_dict, simulation_list[-1], configs, env_processes, time_step, run)
_, *pipe_run = pipe_run
simulation_list.append(pipe_run)
return simulation_list
# ToDo: Muiltithreaded Runs
def simulation(self, var_dict, states_list, configs, env_processes, time_seq, runs):
pipe_run = []
for run in range(runs):
run += 1
states_list_copy = deepcopy(states_list)
head, *tail = self.run_pipeline(var_dict, states_list_copy, configs, env_processes, time_seq, run)
genesis = head.pop()
genesis['substep'], genesis['timestep'], genesis['run'] = 0, 0, run
first_timestep_per_run = [genesis] + tail.pop(0)
pipe_run += [first_timestep_per_run] + tail
del states_list_copy
return pipe_run

View File

@ -24,6 +24,8 @@ def retrieve_state(l, offset):
return l[last_index(l) + offset + 1]
# exception_function = f(sub_step, sL, sL[-2], _input)
# try_function = f(sub_step, sL, last_mut_obj, _input)
@curried
def engine_exception(ErrorType, error_message, exception_function, try_function):
try:
@ -31,3 +33,10 @@ def engine_exception(ErrorType, error_message, exception_function, try_function)
except ErrorType:
print(error_message)
return exception_function
@curried
def fit_param(param, x):
return x + param
# fit_param = lambda param: lambda x: x + param

136
cadCAD/utils/__init__.py Normal file
View File

@ -0,0 +1,136 @@
from collections import defaultdict
from itertools import product
import warnings
def pipe(x):
return x
def print_pipe(x):
print(x)
return x
def flattenDict(l):
def tupalize(k, vs):
l = []
if isinstance(vs, list):
for v in vs:
l.append((k, v))
else:
l.append((k, vs))
return l
flat_list = [tupalize(k, vs) for k, vs in l.items()]
flat_dict = [dict(items) for items in product(*flat_list)]
return flat_dict
def flatten(l):
if isinstance(l, list):
return [item for sublist in l for item in sublist]
elif isinstance(l, dict):
return flattenDict(l)
def flatMap(f, collection):
return flatten(list(map(f, collection)))
def dict_filter(dictionary, condition):
return dict([(k, v) for k, v in dictionary.items() if condition(v)])
def get_max_dict_val_len(g):
return len(max(g.values(), key=len))
def tabulate_dict(d):
max_len = get_max_dict_val_len(d)
_d = {}
for k, vl in d.items():
if len(vl) != max_len:
_d[k] = vl + list([vl[-1]] * (max_len-1))
else:
_d[k] = vl
return _d
def flatten_tabulated_dict(d):
max_len = get_max_dict_val_len(d)
dl = [{} for i in range(max_len)]
for k, vl in d.items():
for v, i in zip(vl, list(range(len(vl)))):
dl[i][k] = v
return dl
def contains_type(_collection, type):
return any(isinstance(x, type) for x in _collection)
def drop_right(l, n):
return l[:len(l) - n]
# backwards compatibility
# ToDo: Encapsulate in function
def key_filter(l, keyname):
if (type(l) == list):
return [v[keyname] for v in l]
# Keeping support to dictionaries for backwards compatibility
# Should be removed in the future
warnings.warn(
"The use of a dictionary to describe Partial State Update Blocks will be deprecated. Use a list instead.",
FutureWarning)
return [v[keyname] for k, v in l.items()]
def groupByKey(l):
d = defaultdict(list)
for key, value in l:
d[key].append(value)
return list(dict(d).items()).pop()
# @curried
def rename(new_name, f):
f.__name__ = new_name
return f
def curry_pot(f, *argv):
sweep_ind = f.__name__[0:5] == 'sweep'
arg_len = len(argv)
if sweep_ind is True and arg_len == 4:
return f(argv[0])(argv[1])(argv[2])(argv[3])
elif sweep_ind is False and arg_len == 4:
return f(argv[0], argv[1], argv[2], argv[3])
elif sweep_ind is True and arg_len == 3:
return f(argv[0])(argv[1])(argv[2])
elif sweep_ind is False and arg_len == 3:
return f(argv[0], argv[1], argv[2])
else:
raise TypeError('curry_pot() needs 3 or 4 positional arguments')
# def curry_pot(f, *argv):
# sweep_ind = f.__name__[0:5] == 'sweep'
# arg_len = len(argv)
# if sweep_ind is True and arg_len == 4:
# return f(argv[0])(argv[1])(argv[2])(argv[3])
# elif sweep_ind is False and arg_len == 4:
# return f(argv[0])(argv[1])(argv[2])(argv[3])
# elif sweep_ind is True and arg_len == 3:
# return f(argv[0])(argv[1])(argv[2])
# elif sweep_ind is False and arg_len == 3:
# return f(argv[0])(argv[1])(argv[2])
# else:
# raise TypeError('curry_pot() needs 3 or 4 positional arguments')
# def rename(newname):
# def decorator(f):
# f.__name__ = newname
# return f
# return decorator

Binary file not shown.

View File

@ -1,6 +1,6 @@
from setuptools import setup, find_packages
long_description = "SimCAD is a differential games based simulation software package for research, validation, and \
long_description = "cadCAD is a differential games based simulation software package for research, validation, and \
Computer Aided Design of economic systems. An economic system is treated as a state based model and defined through \
a set of endogenous and exogenous state variables which are updated through mechanisms and environmental processes, \
respectively. Behavioral models, which may be deterministic or stochastic, provide the evolution of the system \
@ -10,14 +10,14 @@ long_description = "SimCAD is a differential games based simulation software pac
processes to understand and visualize network behavior under various conditions. Support for A/B testing policies, \
monte carlo analysis and other common numerical methods is provided."
setup(name='SimCAD',
version='0.1',
description="SimCAD: a differential games based simulation software package for research, validation, and \
setup(name='cadCAD',
version='0.2',
description="cadCAD: a differential games based simulation software package for research, validation, and \
Computer Aided Design of economic systems",
long_description = long_description,
long_description=long_description,
url='https://github.com/BlockScience/DiffyQ-SimCAD',
author='Joshua E. Jodesty',
author_email='joshua@block.science',
# license='LICENSE',
packages=find_packages() #['SimCAD']
packages=find_packages()
)

File diff suppressed because one or more lines are too long

View File

@ -1,29 +1,27 @@
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from validation import config1, config2
from SimCAD import configs
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import sweep_config, config1, config2, config4
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution 1")
print()
first_config = [configs[0]] # from config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
# print("Simulation Execution 1")
# print()
# first_config = [configs[0]] # FOR non-sweep configs ONLY
# single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
# run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
# run1_raw_result, tensor_field = run1.main()
# result = pd.DataFrame(run1_raw_result)
# print()
# print("Tensor Field:")
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
# print("Output:")
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()
print("Simulation Execution 2: Pairwise Execution")
print()
print("Simulation Execution 2: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
@ -33,4 +31,4 @@ for raw_result, tensor_field in run2.main():
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print()

View File

@ -1,171 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param1': 1}
def b1m2(step, sL, s):
return {'param1': 1, 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 1, 'param2': 4}
def b1m3(step, sL, s):
return {'param1': 1, 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': 1, 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = s['s1'] + _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = s['s2'] + _input['param1']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
# ToDo: Bug - Can't use environments without proc_trigger. TypeError: 'int' object is not callable
# "/Users/jjodesty/Projects/DiffyQ-SimCAD/SimCAD/engine/simulation.py"
env_processes = {
# "s3": env_a,
# "s4": env_b
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -2,13 +2,12 @@ from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step
from cadCAD.configuration.utils.parameterSweep import config_sim
seed = {
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
@ -16,47 +15,47 @@ seed = {
}
# Behaviors per Mechanism
def b1m1(step, sL, s):
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
def p2m1(_g, step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
def p1m3(_g, step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
def p2m3(_g, step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
@ -66,21 +65,21 @@ def s2m3(step, sL, s, _input):
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
def es3p1(_g, step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
def es4p2(_g, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
def es5p2(_g, step, sL, s, _input):
y = 'timestep'
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
@ -99,53 +98,50 @@ genesis_states = {
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
# 'timestep': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# "timestep": es5p2
}
env_processes = {
"s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
"s4": proc_trigger(1, env_b)
}
mechanisms = {
partial_state_update_block = {
"m1": {
"behaviors": {
"b1": b1m1,
"b2": b2m1
"policies": {
"b1": p1m1,
"b2": p2m1
},
"states": {
"variables": {
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
"policies": {
"b1": p1m2,
"b2": p2m2
},
"states": {
"variables": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
"policies": {
"b1": p1m3,
"b2": p2m3
},
"states": {
"variables": {
"s1": s1m3,
"s2": s2m3
}
@ -153,19 +149,19 @@ mechanisms = {
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
sim_config = config_sim(
{
"N": 2,
"T": range(5),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
)

View File

@ -2,13 +2,11 @@ from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step
from cadCAD.configuration.utils.parameterSweep import config_sim
seed = {
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
@ -16,47 +14,47 @@ seed = {
}
# Behaviors per Mechanism
def b1m1(step, sL, s):
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
def p2m1(_g, step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
def p1m3(_g, step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
def p2m3(_g, step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
@ -66,21 +64,21 @@ def s2m3(step, sL, s, _input):
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
def es3p1(_g, step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
def es4p2(_g, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
def es5p2(_g, step, sL, s, _input):
y = 'timestep'
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
@ -99,31 +97,28 @@ genesis_states = {
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
# 'timestep': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# "timestep": es5p2
}
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
"s3": proc_trigger(1, env_a),
"s4": proc_trigger(1, env_b)
}
mechanisms = {
partial_state_update_block = {
"m1": {
"behaviors": {
"b1": b1m1,
# "b2": b2m1
"policies": {
"b1": p1m1,
# "b2": p2m1
},
"states": {
"s1": s1m1,
@ -131,9 +126,9 @@ mechanisms = {
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
"policies": {
"b1": p1m2,
# "b2": p2m2
},
"states": {
"s1": s1m2,
@ -141,9 +136,9 @@ mechanisms = {
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
"policies": {
"b1": p1m3,
"b2": p2m3
},
"states": {
"s1": s1m3,
@ -153,19 +148,19 @@ mechanisms = {
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
sim_config = config_sim(
{
"N": 2,
"T": range(5),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
)

View File

@ -0,0 +1,142 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step
from cadCAD.configuration.utils.parameterSweep import config_sim
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m4(_g, step, sL, s, _input):
y = 's1'
x = [1]
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(_g, step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(_g, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(_g, step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 5
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
env_processes = {
"s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
partial_state_update_block = [
]
sim_config = config_sim(
{
"N": 2,
"T": range(5),
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds={},
raw_exogenous_states={},
env_processes={},
partial_state_update_blocks=partial_state_update_block
)

View File

@ -1,178 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1'] #+ [Coef1 x 5]
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2'] #+ [Coef2 x 5]
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 5
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
env_processes = {
"s3": env_a,
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = [foldr(lambda a, b: a + b)]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -1,180 +0,0 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
from SimCAD import configs
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
# why `exo_update_per_ts` here instead of `env_processes`
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
# "s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
# "b2": b2m2
},
"states": {
"s1": s1m2,
# "s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
configs.append(
Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
exogenous_states=exogenous_states,
env_processes=env_processes,
mechanisms=mechanisms
)
)

View File

@ -0,0 +1,196 @@
from decimal import Decimal
import numpy as np
from datetime import timedelta
import pprint
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import proc_trigger, ep_time_step
from cadCAD.configuration.utils.parameterSweep import config_sim
pp = pprint.PrettyPrinter(indent=4)
seeds = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
g = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [7]
}
# Policies per Mechanism
def p1m1(_g, step, sL, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
return {'param1': 'a', 'param2': _g['beta']}
def p2m2(_g, step, sL, s):
return {'param1': 'b', 'param2': 0}
def p1m3(_g, step, sL, s):
return {'param1': np.array([10, 100])}
def p2m3(_g, step, sL, s):
return {'param1': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
y = 's1'
x = 0
return (y, x)
def s2m1(_g, step, sL, s, _input):
y = 's2'
x = _g['beta']
return (y, x)
def s1m2(_g, step, sL, s, _input):
y = 's1'
x = _input['param2']
return (y, x)
def s2m2(_g, step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
y = 's1'
x = 0
return (y, x)
def s2m3(_g, step, sL, s, _input):
y = 's2'
x = 0
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(_g, step, sL, s, _input):
y = 's3'
x = _g['gamma']
return (y, x)
# @curried
def es4p2(_g, step, sL, s, _input):
y = 's4'
x = _g['gamma']
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(_g, step, sL, s, _input):
y = 'timestep'
x = ep_time_step(s, dt_str=s['timestep'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
# @curried
# def env_a(param, x):
# return x + param
def env_a(x):
return x
def env_b(x):
return 10
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
# 'timestep': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": es3p1,
"s4": es4p2,
# "timestep": es5p2
}
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = proc_trigger(1, env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
}
# parameterized_env_processes = parameterize_states(env_processes)
#
# pp.pprint(parameterized_env_processes)
# exit()
# ToDo: The number of values entered in sweep should be the # of config objs created,
# not dependent on the # of times the sweep is applied
# sweep exo_state func and point to exo-state in every other funtion
# param sweep on genesis states
partial_state_update_block = {
"m1": {
"policies": {
"b1": p1m1,
"b2": p2m1
},
"variables": {
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"policies": {
"b1": p1m2,
"b2": p2m2,
},
"variables": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"policies": {
"b1": p1m3,
"b2": p2m3
},
"variables": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = config_sim(
{
"N": 2,
"T": range(5),
"M": g
}
)
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
seeds=seeds,
raw_exogenous_states=raw_exogenous_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
)