Merge pull request #38 from BlockScience/refactor_terminology
Refactor terminology
This commit is contained in:
commit
19feab55e0
|
|
@ -17,4 +17,5 @@ dist/*.gz
|
|||
cadCAD.egg-info
|
||||
|
||||
build
|
||||
SimCAD.egg-info
|
||||
cadCAD.egg-info
|
||||
SimCAD.egg-info
|
||||
|
|
|
|||
|
|
@ -9,7 +9,7 @@ Aided Design of economic systems. An economic system is treated as a state based
|
|||
set of endogenous and exogenous state variables which are updated through mechanisms and environmental \
|
||||
processes, respectively. Behavioral models, which may be deterministic or stochastic, provide the evolution of \
|
||||
the system within the action space of the mechanisms. Mathematical formulations of these economic games \
|
||||
treat agent utility as derived from state rather than direct from action, creating a rich dynamic modeling framework.
|
||||
treat agent utility as derived from state rather than direct from action, creating a rich dynamic modeling framework.
|
||||
|
||||
Simulations may be run with a range of initial conditions and parameters for states, behaviors, mechanisms, \
|
||||
and environmental processes to understand and visualize network behavior under various conditions. Support for \
|
||||
|
|
@ -21,7 +21,7 @@ SimCAD is written in Python 3.
|
|||
```bash
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py sdist bdist_wheel
|
||||
pip3 install dist/cadCAD-0.1-py3-none-any.whl
|
||||
pip3 install dist/*.whl
|
||||
```
|
||||
|
||||
**2. Configure Simulation:**
|
||||
|
|
@ -76,7 +76,7 @@ for raw_result, tensor_field in run2.main():
|
|||
print()
|
||||
```
|
||||
|
||||
The above can be run in Jupyter.
|
||||
The above can be run in Jupyter.
|
||||
```bash
|
||||
jupyter notebook
|
||||
```
|
||||
|
|
|
|||
|
|
@ -1,2 +1,2 @@
|
|||
name = "cadCAD"
|
||||
configs = []
|
||||
configs = []
|
||||
|
|
|
|||
|
|
@ -3,24 +3,29 @@ from fn.op import foldr
|
|||
import pandas as pd
|
||||
|
||||
from cadCAD import configs
|
||||
|
||||
from cadCAD.utils import key_filter
|
||||
from cadCAD.configuration.utils.policyAggregation import dict_elemwise_sum
|
||||
from cadCAD.configuration.utils import exo_update_per_ts
|
||||
from cadCAD.configuration.utils.policyAggregation import dict_elemwise_sum
|
||||
from cadCAD.configuration.utils.depreciationHandler import sanitize_partial_state_updates, sanitize_config
|
||||
|
||||
|
||||
class Configuration(object):
|
||||
def __init__(self, sim_config={}, initial_state={}, seeds={}, env_processes={},
|
||||
exogenous_states={}, partial_state_updates={}, policy_ops=[foldr(dict_elemwise_sum())], **kwargs):
|
||||
exogenous_states={}, partial_state_update_blocks={}, policy_ops=[foldr(dict_elemwise_sum())], **kwargs):
|
||||
self.sim_config = sim_config
|
||||
self.initial_state = initial_state
|
||||
self.seeds = seeds
|
||||
self.env_processes = env_processes
|
||||
self.exogenous_states = exogenous_states
|
||||
self.partial_state_updates = partial_state_updates
|
||||
self.partial_state_updates = partial_state_update_blocks
|
||||
self.policy_ops = policy_ops
|
||||
self.kwargs = kwargs
|
||||
|
||||
sanitize_config(self)
|
||||
|
||||
|
||||
def append_configs(sim_configs, initial_state, seeds, raw_exogenous_states, env_processes, partial_state_updates, _exo_update_per_ts=True):
|
||||
def append_configs(sim_configs={}, initial_state={}, seeds={}, raw_exogenous_states={}, env_processes={}, partial_state_update_blocks={}, _exo_update_per_ts=True):
|
||||
if _exo_update_per_ts is True:
|
||||
exogenous_states = exo_update_per_ts(raw_exogenous_states)
|
||||
else:
|
||||
|
|
@ -28,27 +33,25 @@ def append_configs(sim_configs, initial_state, seeds, raw_exogenous_states, env_
|
|||
|
||||
if isinstance(sim_configs, list):
|
||||
for sim_config in sim_configs:
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
initial_state=initial_state,
|
||||
seeds=seeds,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_updates=partial_state_updates
|
||||
)
|
||||
)
|
||||
elif isinstance(sim_configs, dict):
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_configs,
|
||||
config = Configuration(
|
||||
sim_config=sim_config,
|
||||
initial_state=initial_state,
|
||||
seeds=seeds,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_updates=partial_state_updates
|
||||
partial_state_update_blocks=partial_state_update_blocks
|
||||
)
|
||||
configs.append(config)
|
||||
elif isinstance(sim_configs, dict):
|
||||
config = Configuration(
|
||||
sim_config=sim_configs,
|
||||
initial_state=initial_state,
|
||||
seeds=seeds,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_update_blocks=partial_state_update_blocks
|
||||
)
|
||||
configs.append(config)
|
||||
|
||||
|
||||
class Identity:
|
||||
|
|
@ -84,10 +87,11 @@ class Processor:
|
|||
self.apply_identity_funcs = id.apply_identity_funcs
|
||||
|
||||
def create_matrix_field(self, partial_state_updates, key):
|
||||
if key == 'states':
|
||||
if key == 'variables':
|
||||
identity = self.state_identity
|
||||
elif key == 'policies':
|
||||
identity = self.policy_identity
|
||||
|
||||
df = pd.DataFrame(key_filter(partial_state_updates, key))
|
||||
col_list = self.apply_identity_funcs(identity, df, list(df.columns))
|
||||
if len(col_list) != 0:
|
||||
|
|
@ -113,15 +117,18 @@ class Processor:
|
|||
|
||||
def only_ep_handler(state_dict):
|
||||
sdf_functions = [
|
||||
lambda sub_step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
|
||||
lambda var_dict, sub_step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
|
||||
]
|
||||
sdf_values = [sdf_functions]
|
||||
bdf_values = [[self.p_identity] * len(sdf_values)]
|
||||
return sdf_values, bdf_values
|
||||
|
||||
if len(partial_state_updates) != 0:
|
||||
# backwards compatibility # ToDo: Move this
|
||||
partial_state_updates = sanitize_partial_state_updates(partial_state_updates)
|
||||
|
||||
bdf = self.create_matrix_field(partial_state_updates, 'policies')
|
||||
sdf = self.create_matrix_field(partial_state_updates, 'states')
|
||||
sdf = self.create_matrix_field(partial_state_updates, 'variables')
|
||||
sdf_values, bdf_values = no_update_handler(bdf, sdf)
|
||||
zipped_list = list(zip(sdf_values, bdf_values))
|
||||
else:
|
||||
|
|
|
|||
|
|
@ -4,14 +4,21 @@ from copy import deepcopy
|
|||
from fn.func import curried
|
||||
import pandas as pd
|
||||
|
||||
# Temporary
|
||||
from cadCAD.configuration.utils.depreciationHandler import sanitize_partial_state_updates
|
||||
from cadCAD.utils import dict_filter, contains_type
|
||||
|
||||
|
||||
# ToDo: Fix - Returns empty when partial_state_update is missing in Configuration
|
||||
class TensorFieldReport:
|
||||
def __init__(self, config_proc):
|
||||
self.config_proc = config_proc
|
||||
|
||||
def create_tensor_field(self, partial_state_updates, exo_proc, keys=['policies', 'states']):
|
||||
# ToDo: backwards compatibility
|
||||
def create_tensor_field(self, partial_state_updates, exo_proc, keys = ['policies', 'variables']):
|
||||
|
||||
partial_state_updates = sanitize_partial_state_updates(partial_state_updates) # Temporary
|
||||
|
||||
dfs = [self.config_proc.create_matrix_field(partial_state_updates, k) for k in keys]
|
||||
df = pd.concat(dfs, axis=1)
|
||||
for es, i in zip(exo_proc, range(len(exo_proc))):
|
||||
|
|
@ -20,12 +27,8 @@ class TensorFieldReport:
|
|||
return df
|
||||
|
||||
|
||||
# def s_update(y, x):
|
||||
# return lambda step, sL, s, _input: (y, x)
|
||||
#
|
||||
#
|
||||
def state_update(y, x):
|
||||
return lambda sub_step, sL, s, _input: (y, x)
|
||||
return lambda var_dict, sub_step, sL, s, _input: (y, x)
|
||||
|
||||
|
||||
def bound_norm_random(rng, low, high):
|
||||
|
|
@ -52,7 +55,7 @@ def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = tstep_delta):
|
|||
|
||||
ep_t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = ep_t_delta):
|
||||
if s['sub_step'] == 0:
|
||||
if s['substep'] == 0:
|
||||
return time_step(dt_str, fromat_str, _timedelta)
|
||||
else:
|
||||
return dt_str
|
||||
|
|
@ -114,7 +117,7 @@ def sweep_states(state_type, states, in_config):
|
|||
def exo_update_per_ts(ep):
|
||||
@curried
|
||||
def ep_decorator(f, y, var_dict, sub_step, sL, s, _input):
|
||||
if s['sub_step'] + 1 == 1:
|
||||
if s['substep'] + 1 == 1:
|
||||
return f(var_dict, sub_step, sL, s, _input)
|
||||
else:
|
||||
return y, s[y]
|
||||
|
|
|
|||
|
|
@ -0,0 +1,41 @@
|
|||
from copy import deepcopy
|
||||
|
||||
|
||||
def sanitize_config(config):
|
||||
# for backwards compatibility, we accept old arguments via **kwargs
|
||||
# TODO: raise specific deprecation warnings for key == 'state_dict', key == 'seed', key == 'mechanisms'
|
||||
for key, value in config.kwargs.items():
|
||||
if key == 'state_dict':
|
||||
config.initial_state = value
|
||||
elif key == 'seed':
|
||||
config.seeds = value
|
||||
elif key == 'mechanisms':
|
||||
config.partial_state_updates = value
|
||||
|
||||
if config.initial_state == {}:
|
||||
raise Exception('The initial conditions of the system have not been set')
|
||||
|
||||
|
||||
def sanitize_partial_state_updates(partial_state_updates):
|
||||
new_partial_state_updates = deepcopy(partial_state_updates)
|
||||
# for backwards compatibility we accept the old keys
|
||||
# ('behaviors' and 'states') and rename them
|
||||
def rename_keys(d):
|
||||
if 'behaviors' in d:
|
||||
d['policies'] = d.pop('behaviors')
|
||||
|
||||
if 'states' in d:
|
||||
d['variables'] = d.pop('states')
|
||||
|
||||
|
||||
# Also for backwards compatibility, we accept partial state update blocks both as list or dict
|
||||
# No need for a deprecation warning as it's already raised by cadCAD.utils.key_filter
|
||||
if (type(new_partial_state_updates)==list):
|
||||
for v in new_partial_state_updates:
|
||||
rename_keys(v)
|
||||
elif (type(new_partial_state_updates)==dict):
|
||||
for k, v in new_partial_state_updates.items():
|
||||
rename_keys(v)
|
||||
|
||||
del partial_state_updates
|
||||
return new_partial_state_updates
|
||||
|
|
@ -65,6 +65,7 @@ class Executor:
|
|||
config_idx += 1
|
||||
|
||||
if self.exec_context == ExecutionMode.single_proc:
|
||||
# ToDO: Deprication Handler - "sanitize" in appropriate place
|
||||
tensor_field = create_tensor_field(partial_state_updates.pop(), eps.pop())
|
||||
result = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
return result, tensor_field
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@ id_exception = engine_exception(KeyError, KeyError, None)
|
|||
|
||||
|
||||
class Executor:
|
||||
|
||||
def __init__(self, policy_ops, policy_update_exception=id_exception, state_update_exception=id_exception):
|
||||
self.policy_ops = policy_ops # behavior_ops
|
||||
self.state_update_exception = state_update_exception
|
||||
|
|
@ -49,20 +50,21 @@ class Executor:
|
|||
|
||||
del last_in_obj
|
||||
|
||||
self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep']) # not time_step
|
||||
self.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestep'])
|
||||
|
||||
last_in_copy["sub_step"], last_in_copy["time_step"], last_in_copy['run'] = sub_step, time_step, run
|
||||
last_in_copy['substep'], last_in_copy['timestep'], last_in_copy['run'] = sub_step, time_step, run
|
||||
sL.append(last_in_copy)
|
||||
del last_in_copy
|
||||
|
||||
return sL
|
||||
|
||||
|
||||
# mech_pipeline
|
||||
def state_update_pipeline(self, var_dict, states_list, configs, env_processes, time_step, run):
|
||||
sub_step = 0
|
||||
states_list_copy = deepcopy(states_list)
|
||||
genesis_states = states_list_copy[-1]
|
||||
genesis_states['sub_step'], genesis_states['time_step'] = sub_step, time_step
|
||||
genesis_states['substep'], genesis_states['timestep'] = sub_step, time_step
|
||||
states_list = [genesis_states]
|
||||
|
||||
sub_step += 1
|
||||
|
|
@ -93,7 +95,7 @@ class Executor:
|
|||
states_list_copy = deepcopy(states_list)
|
||||
head, *tail = self.run_pipeline(var_dict, states_list_copy, configs, env_processes, time_seq, run)
|
||||
genesis = head.pop()
|
||||
genesis['sub_step'], genesis['time_step'], genesis['run'] = 0, 0, run
|
||||
genesis['substep'], genesis['timestep'], genesis['run'] = 0, 0, run
|
||||
first_timestep_per_run = [genesis] + tail.pop(0)
|
||||
pipe_run += [first_timestep_per_run] + tail
|
||||
del states_list_copy
|
||||
|
|
|
|||
|
|
@ -75,7 +75,8 @@ def contains_type(_collection, type):
|
|||
def drop_right(l, n):
|
||||
return l[:len(l) - n]
|
||||
|
||||
|
||||
# backwards compatibility
|
||||
# ToDo: Encapsulate in function
|
||||
def key_filter(l, keyname):
|
||||
if (type(l) == list):
|
||||
return [v[keyname] for v in l]
|
||||
|
|
@ -132,4 +133,4 @@ def curry_pot(f, *argv):
|
|||
# def decorator(f):
|
||||
# f.__name__ = newname
|
||||
# return f
|
||||
# return decorator
|
||||
# return decorator
|
||||
Binary file not shown.
Binary file not shown.
6
setup.py
6
setup.py
|
|
@ -11,11 +11,11 @@ long_description = "cadCAD is a differential games based simulation software pac
|
|||
monte carlo analysis and other common numerical methods is provided."
|
||||
|
||||
setup(name='cadCAD',
|
||||
version='0.1',
|
||||
version='0.2',
|
||||
description="cadCAD: a differential games based simulation software package for research, validation, and \
|
||||
Computer Aided Design of economic systems",
|
||||
long_description = long_description,
|
||||
url='https://github.com/BlockScience/DiffyQ-cadCAD',
|
||||
long_description=long_description,
|
||||
url='https://github.com/BlockScience/DiffyQ-SimCAD',
|
||||
author='Joshua E. Jodesty',
|
||||
author_email='joshua@block.science',
|
||||
# license='LICENSE',
|
||||
|
|
|
|||
File diff suppressed because one or more lines are too long
|
|
@ -2,7 +2,7 @@ import pandas as pd
|
|||
from tabulate import tabulate
|
||||
# The following imports NEED to be in the exact order
|
||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from simulations.validation import sweep_config, config1, config2
|
||||
from simulations.validation import config2 #sweep_config, config1, config2, config4
|
||||
from cadCAD import configs
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
|
|
@ -21,14 +21,14 @@ print("Output:")
|
|||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
|
||||
print("Simulation Execution 2: Concurrent Execution")
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
for raw_result, tensor_field in run2.main():
|
||||
result = pd.DataFrame(raw_result)
|
||||
print()
|
||||
print("Tensor Field:")
|
||||
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||
print("Output:")
|
||||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
# print("Simulation Execution 2: Concurrent Execution")
|
||||
# multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
# run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
# for raw_result, tensor_field in run2.main():
|
||||
# result = pd.DataFrame(raw_result)
|
||||
# print()
|
||||
# print("Tensor Field:")
|
||||
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||
# print("Output:")
|
||||
# print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
# print()
|
||||
|
|
|
|||
|
|
@ -98,20 +98,20 @@ genesis_states = {
|
|||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestep': '2018-10-01 15:16:24'
|
||||
# 'timestep': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
|
||||
raw_exogenous_states = {
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestep": es5p2
|
||||
# "timestep": es5p2
|
||||
}
|
||||
|
||||
|
||||
env_processes = {
|
||||
"s3": env_a,
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
"s4": proc_trigger(1, env_b)
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -121,7 +121,7 @@ partial_state_update_block = {
|
|||
"b1": p1m1,
|
||||
"b2": p2m1
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
|
|
@ -131,7 +131,7 @@ partial_state_update_block = {
|
|||
"b1": p1m2,
|
||||
"b2": p2m2
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
|
|
@ -141,7 +141,7 @@ partial_state_update_block = {
|
|||
"b1": p1m3,
|
||||
"b2": p2m3
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
|
|
@ -163,5 +163,5 @@ append_configs(
|
|||
seeds=seeds,
|
||||
raw_exogenous_states=raw_exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_updates=partial_state_update_block
|
||||
partial_state_update_blocks=partial_state_update_block
|
||||
)
|
||||
|
|
|
|||
|
|
@ -97,20 +97,20 @@ genesis_states = {
|
|||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestep': '2018-10-01 15:16:24'
|
||||
# 'timestep': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
|
||||
raw_exogenous_states = {
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestep": es5p2
|
||||
# "timestep": es5p2
|
||||
}
|
||||
|
||||
|
||||
env_processes = {
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
"s3": proc_trigger(1, env_a),
|
||||
"s4": proc_trigger(1, env_b)
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -162,5 +162,5 @@ append_configs(
|
|||
seeds=seeds,
|
||||
raw_exogenous_states=raw_exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_updates=partial_state_update_block
|
||||
partial_state_update_blocks=partial_state_update_block
|
||||
)
|
||||
|
|
|
|||
|
|
@ -0,0 +1,142 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from cadCAD.configuration import append_configs
|
||||
from cadCAD.configuration.utils import proc_trigger, bound_norm_random, ep_time_step
|
||||
from cadCAD.configuration.utils.parameterSweep import config_sim
|
||||
|
||||
|
||||
seeds = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
|
||||
# Policies per Mechanism
|
||||
def p1m1(_g, step, sL, s):
|
||||
return {'param1': 1}
|
||||
def p2m1(_g, step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def p1m2(_g, step, sL, s):
|
||||
return {'param1': 'a', 'param2': 2}
|
||||
def p2m2(_g, step, sL, s):
|
||||
return {'param1': 'b', 'param2': 4}
|
||||
|
||||
def p1m3(_g, step, sL, s):
|
||||
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||
def p2m3(_g, step, sL, s):
|
||||
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m1(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m4(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = [1]
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(_g, step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(_g, step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(_g, step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 5
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
|
||||
raw_exogenous_states = {
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
|
||||
|
||||
env_processes = {
|
||||
"s3": env_a,
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
|
||||
partial_state_update_block = [
|
||||
]
|
||||
|
||||
|
||||
sim_config = config_sim(
|
||||
{
|
||||
"N": 2,
|
||||
"T": range(5),
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
append_configs(
|
||||
sim_configs=sim_config,
|
||||
initial_state=genesis_states,
|
||||
seeds={},
|
||||
raw_exogenous_states={},
|
||||
env_processes={},
|
||||
partial_state_update_blocks=partial_state_update_block
|
||||
)
|
||||
|
|
@ -114,7 +114,7 @@ genesis_states = {
|
|||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestep': '2018-10-01 15:16:24'
|
||||
# 'timestep': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -122,13 +122,13 @@ genesis_states = {
|
|||
raw_exogenous_states = {
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestep": es5p2
|
||||
# "timestep": es5p2
|
||||
}
|
||||
|
||||
|
||||
# ToDo: make env proc trigger field agnostic
|
||||
# ToDo: input json into function renaming __name__
|
||||
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
triggered_env_b = proc_trigger(1, env_b)
|
||||
env_processes = {
|
||||
"s3": env_a, #sweep(beta, env_a),
|
||||
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
|
||||
|
|
@ -149,7 +149,7 @@ partial_state_update_block = {
|
|||
"b1": p1m1,
|
||||
"b2": p2m1
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
|
|
@ -159,7 +159,7 @@ partial_state_update_block = {
|
|||
"b1": p1m2,
|
||||
"b2": p2m2,
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
|
|
@ -169,7 +169,7 @@ partial_state_update_block = {
|
|||
"b1": p1m3,
|
||||
"b2": p2m3
|
||||
},
|
||||
"states": {
|
||||
"variables": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
|
|
@ -192,5 +192,5 @@ append_configs(
|
|||
seeds=seeds,
|
||||
raw_exogenous_states=raw_exogenous_states,
|
||||
env_processes=env_processes,
|
||||
partial_state_updates=partial_state_update_block
|
||||
partial_state_update_blocks=partial_state_update_block
|
||||
)
|
||||
Loading…
Reference in New Issue