included execution in readme

This commit is contained in:
Joshua E. Jodesty 2019-07-30 12:41:13 -04:00
parent 715e6f9a74
commit 176593ae0f
16 changed files with 508 additions and 469 deletions

109
README.md
View File

@ -59,90 +59,95 @@ Examples:
**3. Import cadCAD & Run Simulations:**
Examples: `/simulations/*.py` or `/simulations/*.ipynb`
Single Simulation: `/simulations/single_config_run.py`
```python
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config1
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
print()
print("Tensor Field: config1")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
```
Parameter Sweep Simulation (Concurrent): `/simulations/param_sweep_run.py`
##### Single Process Execution:
Example [System Model Configurations](link):
* [System Model A](link): `/documentation/examples/sys_model_A.py`
* [System Model B](link): `/documentation/examples/sys_model_B.py`
Execution Examples:
* [System Model A](link): `/documentation/examples/sys_model_A_exec.py`
* [System Model B](link): `/documentation/examples/sys_model_B_exec.py`
```python
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import sweep_config
from documentation.examples import sys_model_A
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
# Single Process Execution using a Single System Model Configuration:
# sys_model_A
sys_model_A = [configs[0]] # sys_model_A
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()
```
### Multiple Simulations (Concurrent):
##### Multiple Simulation Execution (Multi Process Execution)
Documentation: [Simulation Execution](link)
Example [System Model Configurations](link):
* [System Model A](link): `/documentation/examples/sys_model_A.py`
* [System Model B](link): `/documentation/examples/sys_model_B.py`
[Execution Example:](link) `/documentation/examples/sys_model_AB_exec.py`
```python
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sweep_config_A', 'sweep_config_B']
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
config_names = ['sys_model_A', 'sys_model_B']
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print("Tensor Field: " + config_names[i])
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print(f"Tensor Field: {config_names[i]}")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame:")
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
print()
i += 1
```
Multiple Simulations (Concurrent): `/simulations/multi_config run.py`
### Parameter Sweep Simulation (Concurrent):
Documentation: [System Model Parameter Sweep](link)
[Example:](link) `/documentation/examples/param_sweep.py`
```python
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config1, config2
from documentation.examples import param_sweep
from cadCAD import configs
exec_mode = ExecutionMode()
print("Simulation Execution: Concurrent Execution")
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['config1', 'config2']
for raw_result, tensor_field in run2.main():
for raw_result, tensor_field in run.execute():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: " + config_names[i])
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
i =+ 1
```
The above can be run in Jupyter.
```bash
jupyter notebook
```

View File

@ -125,41 +125,6 @@ class Executor:
for f in state_funcs:
yield self.state_update_exception(f(sweep_dict, sub_step, sH, last_in_obj, _input))
# def generate_record(state_funcs):
# for f in state_funcs:
# tmp_last_in_copy = deepcopy(last_in_obj)
# new_kv = self.state_update_exception(f(sweep_dict, sub_step, sH, tmp_last_in_copy, _input))
# del tmp_last_in_copy
# yield new_kv
#
# # get `state` from last_in_obj.keys()
# # vals = last_in_obj.values()
# def generate_record(state_funcs):
# for state, v, f in zip(states, vals, state_funcs):
# v_copy = deepcopy(v)
# last_in_obj[state] = v_copy
# new_kv = self.state_update_exception(f(sweep_dict, sub_step, sH, last_in_copy, _input))
# del v
# yield new_kv
# {k: v for k, v in l}
# r() - r(a') -> r(a',b') -> r(a',b',c')
# r(f(a),b,c) -> r(a'f(b),c) -> r(a',b',f(c)) => r(a',b',c')
# r(a',b.update(),c)
# r1(f(a1),b1,c1) -> r2(a2,f(b1),c1) -> r3(a3,b1,f(c1)) => r(a',b',c')
# r1(f(a1),b,c) -> r2(a,f(b1),c) -> r3(a,b,f(c1)) => r(a',b',c')
# r1(f(a1),b1,c1) -> r(a2',b2.update(),c2) -> r3(a3,b1,f(c1)) => r(a',b',c')
# r1(f(a1),b1,c1) -> r2(a2,f(b1),c1) -> r3(a3,b1,f(c1)) => r(a',b',c')
# reduce(lambda r: F(r), [r2(f(a),b,c), r2(a,f(b),c), r3(a,b,f(c))]) => R(a',b',c')
def transfer_missing_fields(source, destination):
for k in source:
if k not in destination:

160
documentation/Execution.md Normal file
View File

@ -0,0 +1,160 @@
Simulation Execution
==
System Simulations are executed with the execution engine executor (`cadCAD.engine.Executor`) given System Model
Configurations. There are multiple simulation Execution Modes and Execution Contexts.
### Steps:
1. #### *Choose Execution Mode*:
* ##### Simulation Execution Modes:
`cadCAD` executes a process per System Model Configuration and a thread per System Simulation.
##### Class: `cadCAD.engine.ExecutionMode`
##### Attributes:
* **Single Process:** A single process Execution Mode for a single System Model Configuration (Example:
`cadCAD.engine.ExecutionMode().single_proc`).
* **Multi-Process:** Multiple process Execution Mode for System Model Simulations which executes on a thread per
given System Model Configuration (Example: `cadCAD.engine.ExecutionMode().multi_proc`).
2. #### *Create Execution Context using Execution Mode:*
```python
from cadCAD.engine import ExecutionMode, ExecutionContext
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
```
3. #### *Create Simulation Executor*
```python
from cadCAD.engine import Executor
from cadCAD import configs
simulation = Executor(exec_context=single_proc_ctx, configs=configs)
```
4. #### *Execute Simulation: Produce System Event Dataset*
A Simulation execution produces a System Event Dataset and the Tensor Field applied to initial states used to create it.
```python
import pandas as pd
raw_system_events, tensor_field = simulation.execute()
# Simulation Result Types:
# raw_system_events: List[dict]
# tensor_field: pd.DataFrame
# Result System Events DataFrame
simulation_result = pd.DataFrame(raw_system_events)
```
##### Example Tensor Field
```
+----+-----+--------------------------------+--------------------------------+
| | m | b1 | s1 |
|----+-----+--------------------------------+--------------------------------|
| 0 | 1 | <function p1m1 at 0x10c458ea0> | <function s1m1 at 0x10c464510> |
| 1 | 2 | <function p1m2 at 0x10c464048> | <function s1m2 at 0x10c464620> |
| 2 | 3 | <function p1m3 at 0x10c464400> | <function s1m3 at 0x10c464730> |
+----+-----+--------------------------------+--------------------------------+
```
##### Example Result: System Events DataFrame
```python
+----+-------+------------+-----------+------+-----------+
| | run | timestep | substep | s1 | s2 |
|----+-------+------------+-----------+------+-----------|
| 0 | 1 | 0 | 0 | 0 | 0.0 |
| 1 | 1 | 1 | 1 | 1 | 4 |
| 2 | 1 | 1 | 2 | 2 | 6 |
| 3 | 1 | 1 | 3 | 3 | [ 30 300] |
| 4 | 2 | 0 | 0 | 0 | 0.0 |
| 5 | 2 | 1 | 1 | 1 | 4 |
| 6 | 2 | 1 | 2 | 2 | 6 |
| 7 | 2 | 1 | 3 | 3 | [ 30 300] |
+----+-------+------------+-----------+------+-----------+
```
### Execution Examples:
##### Single Simulation Execution (Single Process Execution)
Example [System Model Configurations](link):
* [System Model A](link): `/documentation/examples/sys_model_A.py`
* [System Model B](link): `/documentation/examples/sys_model_B.py`
Execution Examples:
* [System Model A](link): `/documentation/examples/sys_model_A_exec.py`
* [System Model B](link): `/documentation/examples/sys_model_B_exec.py`
```python
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A
from cadCAD import configs
exec_mode = ExecutionMode()
# Single Process Execution using a Single System Model Configuration:
# sys_model_A
sys_model_A = [configs[0]] # sys_model_A
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()
```
##### Multiple Simulation Execution
* ##### *Multi Process Execution*
Documentation: [Simulation Execution](link)
[Execution Example:](link) `/documentation/examples/sys_model_AB_exec.py`
Example [System Model Configurations](link):
* [System Model A](link): `/documentation/examples/sys_model_A.py`
* [System Model B](link): `/documentation/examples/sys_model_B.py`
```python
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sys_model_A', 'sys_model_B']
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print(f"Tensor Field: {config_names[i]}")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame:")
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
print()
i += 1
```
* ##### *Parameter Sweep*
Documentation: [System Model Parameter Sweep](link)
[Example:](link) `/documentation/examples/param_sweep.py`
```python
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import param_sweep
from cadCAD import configs
exec_mode = ExecutionMode()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run.execute():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
```

View File

@ -1,24 +1,21 @@
Historical State Access
==
The 3rd parameter of state and policy update functions (labels as `sH` of type `List[List[dict]]`) provides access to
past Partial State Updates (PSU) given a negative offset number. `access_block` is used to access past PSUs
(`List[dict]`) from `sH`.
#### Motivation
The current state (values of state variables) is accessed through the `s` list. When the user requires previous state variable values, they may be accessed through the state history list, `sH`. Accessing the state history should be implemented without creating unintended feedback loops on the current state.
Example: `-2` denotes to second to last PSU
The 3rd parameter of state and policy update functions (labeled as `sH` of type `List[List[dict]]`) provides access to past Partial State Update Block (PSUB) given a negative offset number. `access_block` is used to access past PSUBs (`List[dict]`) from `sH`. For example, an offset of `-2` denotes the second to last PSUB.
##### Exclusion List
#### Exclusion List
Create a list of states to exclude from the reported PSU.
```python
exclusion_list = [
'nonexsistant', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x'
'nonexistent', 'last_x', '2nd_to_last_x', '3rd_to_last_x', '4th_to_last_x'
]
```
##### Example Policy Updates
###### Last partial state update
```python
from cadCAD.configuration.utils import config_sim, access_block
def last_update(_g, substep, sH, s):
def last_update(_params, substep, sH, s):
return {"last_x": access_block(
state_history=sH,
target_field="last_x", # Add a field to the exclusion list
@ -27,30 +24,30 @@ def last_update(_g, substep, sH, s):
)
}
```
* Note: Although `target_field` adding a field to the exclusion may seem redundant, it is useful in the case of
the exclusion list being empty while the `target_field` is assigned to a state or a policy key.
* Note: Although `target_field` adding a field to the exclusion may seem redundant, it is useful in the case of the exclusion list being empty while the `target_field` is assigned to a state or a policy key.
##### Define State Updates
###### 2nd to last partial state update
```python
def second2last_update(_g, substep, sH, s):
def second2last_update(_params, substep, sH, s):
return {"2nd_to_last_x": access_block(sH, "2nd_to_last_x", -2, exclusion_list)}
```
##### Define State Updates
###### 3rd to last partial state update
```python
def third_to_last_x(_g, substep, sH, s, _input):
def third_to_last_x(_params, substep, sH, s, _input):
return '3rd_to_last_x', access_block(sH, "3rd_to_last_x", -3, exclusion_list)
```
###### 4rd to last partial state update
```python
def fourth_to_last_x(_g, substep, sH, s, _input):
def fourth_to_last_x(_params, substep, sH, s, _input):
return '4th_to_last_x', access_block(sH, "4th_to_last_x", -4, exclusion_list)
```
###### Non-exsistant partial state update
* `psu_block_offset >= 0` doesn't exsist
###### Non-exsistent partial state update
* `psu_block_offset >= 0` doesn't exist
```python
def nonexsistant(_g, substep, sH, s, _input):
return 'nonexsistant', access_block(sH, "nonexsistant", 0, exclusion_list)
def nonexistent(_params, substep, sH, s, _input):
return 'nonexistent', access_block(sH, "nonexistent", 0, exclusion_list)
```
#### Example Simulation
@ -91,7 +88,4 @@ Example: `last_x`
| 8 | [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}] |
| 9 | [{'x': 4, 'run': 1, 'substep': 1, 'timestep': 2}, {'x': 5, 'run': 1, 'substep': 2, 'timestep': 2}, {'x': 6, 'run': 1, 'substep': 3, 'timestep': 2}] |
+----+-----------------------------------------------------------------------------------------------------------------------------------------------------+
```
#### [Example Configuration](link)
#### [Example Results](link)
```

View File

@ -15,9 +15,9 @@ policy_ops=[add, mult_by_2]
##### Example Policy Updates per Partial State Update (PSU)
```python
def p1_psu1(_g, step, sL, s):
def p1_psu1(_params, step, sH, s):
return {'policy1': 1}
def p2_psu1(_g, step, sL, s):
def p2_psu1(_params, step, sH, s):
return {'policy2': 2}
```
* `add` not applicable due to lack of redundant policies
@ -25,9 +25,9 @@ def p2_psu1(_g, step, sL, s):
* Result: `{'policy1': 2, 'policy2': 4}`
```python
def p1_psu2(_g, step, sL, s):
def p1_psu2(_params, step, sH, s):
return {'policy1': 2, 'policy2': 2}
def p2_psu2(_g, step, sL, s):
def p2_psu2(_params, step, sH, s):
return {'policy1': 2, 'policy2': 2}
```
* `add` applicable due to redundant policies
@ -35,9 +35,9 @@ def p2_psu2(_g, step, sL, s):
* Result: `{'policy1': 8, 'policy2': 8}`
```python
def p1_psu3(_g, step, sL, s):
def p1_psu3(_params, step, sH, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
def p2_psu3(_g, step, sL, s):
def p2_psu3(_params, step, sH, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
```
* `add` applicable due to redundant policies

View File

@ -0,0 +1,201 @@
Simulation Configuration
==
## Introduction
Given a **Simulation Configuration**, cadCAD produces datasets that represent the evolution of the state of a system over [discrete time](https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time#Discrete_time). The state of the system is described by a set of [State Variables](#State-Variables). The dynamic of the system is described by [Policy Functions](#Policy-Functions) and [State Update Functions](#State-Update-Functions), which are evaluated by cadCAD according to the definitions set by the user in [Partial State Update Blocks](#Partial-State-Update-Blocks).
A Simulation Configuration is comprised of a [System Model](#System-Model) and a set of [Simulation Properties](#Simulation-Properties)
`append_configs`, stores a **Simulation Configuration** to be [Executed](/JS4Q9oayQASihxHBJzz4Ug) by cadCAD
```python
from cadCAD.configuration import append_configs
append_configs(
initial_state = ..., # System Model
partial_state_update_blocks = .., # System Model
policy_ops = ..., # System Model
sim_configs = ... # Simulation Properties
)
```
Parameters:
* **initial_state** : _dict_
[State Variables](#State-Variables) and their initial values
* **partial_state_update_blocks** : List[dict[dict]]
List of [Partial State Update Blocks](#Partial-State-Update-Blocks)
* **policy_ops** : List[functions]
See [Policy Aggregation](/63k2ncjITuqOPCUHzK7Viw)
* **sim_configs** : _???_
See [System Model Parameter Sweep](/4oJ_GT6zRWW8AO3yMhFKrg)
## Simulation Properties
Simulation properties are passed to `append_configs` in the `sim_configs` parameter. To construct this paramenter, we use the `config_sim` function in `cadCAD.configuration.utils`
```python
from cadCAD.configuration.utils import config_sim
c = config_sim({
"N": ...,
"T": range(...),
"M": ...
})
append_configs(
...
sim_configs = c # Simulation Properties
)
```
### T - Simulation Length
Computer simulations run in discrete time:
>Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. (...) This view of time corresponds to a digital clock that gives a fixed reading of 10:37 for a while, and then jumps to a new fixed reading of 10:38, etc. ([source: Wikipedia](https://en.wikipedia.org/wiki/Discrete_time_and_continuous_time#Discrete_time))
As is common in many simulation tools, in cadCAD too we refer to each discrete unit of time as a **timestep**. cadCAD increments a "time counter", and at each step it updates the state variables according to the equations that describe the system.
The main simulation property that the user must set when creating a Simulation Configuration is the number of timesteps in the simulation. In other words, for how long do they want to simulate the system that has been modeled.
### N - Number of Runs
cadCAD facilitates running multiple simulations of the same system sequentially, reporting the results of all those runs in a single dataset. This is especially helpful for running [Monte Carlo Simulations](https://github.com/BlockScience/cadCAD-Tutorials/blob/master/01%20Tutorials/robot-marbles-part-4/robot-marbles-part-4.ipynb).
### M - Parameters of the System
Parameters of the system, passed to the state update functions and the policy functions in the `params` parameter are defined here. See [System Model Parameter Sweep](/4oJ_GT6zRWW8AO3yMhFKrg) for more information.
## System Model
The System Model describes the system that will be simulated in cadCAD. It is comprised of a set of [State Variables](#Sate-Variables) and the [State Update Functions](#State-Update-Functions) that determine the evolution of the state of the system over time. [Policy Functions](#Policy-Functions) (representations of user policies or internal system control policies) may also be part of a System Model.
### State Variables
>A state variable is one of the set of variables that are used to describe the mathematical "state" of a dynamical system. Intuitively, the state of a system describes enough about the system to determine its future behaviour in the absence of any external forces affecting the system. ([source: Wikipedia](https://en.wikipedia.org/wiki/State_variable))
cadCAD can handle state variables of any Python data type, including custom classes. It is up to the user of cadCAD to determine the state variables needed to **sufficiently and accurately** describe the system they are interested in.
State Variables are passed to `append_configs` along with its initial values, as a Python `dict` where the `dict_keys` are the names of the variables and the `dict_values` are their initial values.
```python
from cadCAD.configuration import append_configs
genesis_states = {
'state_variable_1': 0,
'state_variable_2': 0,
'state_variable_3': 1.5,
'timestamp': '2019-01-01 00:00:00'
}
append_configs(
initial_state = genesis_states,
...
)
```
### State Update Functions
State Update Functions represent equations according to which the state variables change over time. Each state update function must return a tuple containing a string with the name of the state variable being updated and its new value. Each state update function can only modify a single state variable. The general structure of a state update function is:
```python
def state_update_function_A(_params, substep, sH, s, _input):
...
return 'state_variable_name', new_value
```
Parameters:
* **_params** : _dict_
[System parameters](/4oJ_GT6zRWW8AO3yMhFKrg)
* **substep** : _int_
Current [substep](#Substep)
* **sH** : _list[list[dict_]]
Historical values of all state variables for the simulation. See [Historical State Access](/smiyQTnATtC9xPwvF8KbBQ) for details
* **s** : _dict_
Current state of the system, where the `dict_keys` are the names of the state variables and the `dict_values` are their current values.
* **_input** : _dict_
Aggregation of the signals of all policy functions in the current [Partial State Update Block](#Partial-State-Update-Block)
Return:
* _tuple_ containing a string with the name of the state variable being updated and its new value.
State update functions should not modify any of the parameters passed to it, as those are mutable Python objects that cadCAD relies on in order to run the simulation according to the specifications.
### Policy Functions
A Policy Function computes one or more signals to be passed to [State Update Functions](#State-Update-Functions) (via the _\_input_ parameter). Read [this article](https://github.com/BlockScience/cadCAD-Tutorials/blob/master/01%20Tutorials/robot-marbles-part-2/robot-marbles-part-2.ipynb) for details on why and when to use policy functions.
<!-- We would then expand the tutorials with these kind of concepts
#### Policies
Policies consist of the potential action made available through mechanisms. The action taken is expected to be the result of a conditional determination of the past state.
While executed the same, the modeller can approach policies dependent on the availability of a mechanism to a population.
- ***Control Policy***
When the controlling or deploying entity has the ability to act in order to affect some aspect of the system, this is a control policy.
- ***User Policy*** model agent behaviors in reaction to state variables and exogenous variables. The resulted user action will become an input to PSUs. Note that user behaviors should not directly update value of state variables.
The action taken, as well as the potential to act, through a mechanism is a behavior. -->
The general structure of a policy function is:
```python
def policy_function_1(_params, substep, sH, s):
...
return {'signal_1': value_1, ..., 'signal_N': value_N}
```
Parameters:
* **_params** : _dict_
[System parameters](/4oJ_GT6zRWW8AO3yMhFKrg)
* **substep** : _int_
Current [substep](#Substep)
* **sH** : _list[list[dict_]]
Historical values of all state variables for the simulation. See [Historical State Access](/smiyQTnATtC9xPwvF8KbBQ) for details
* **s** : _dict_
Current state of the system, where the `dict_keys` are the names of the state variables and the `dict_values` are their current values.
Return:
* _dict_ of signals to be passed to the state update functions in the same [Partial State Update Block](#Partial-State-Update-Blocks)
Policy functions should not modify any of the parameters passed to it, as those are mutable Python objects that cadCAD relies on in order to run the simulation according to the specifications.
At each [Partial State Update Block](#Partial-State-Update-Blocks) (PSUB), the `dicts` returned by all policy functions within that PSUB dictionaries are aggregated into a single `dict` using an initial reduction function (a key-wise operation, default: `dic1['keyA'] + dic2['keyA']`) and optional subsequent map functions. The resulting aggregated `dict` is then passed as the `_input` parameter to the state update functions in that PSUB. For more information on how to modify the aggregation method, see [Policy Aggregation](/63k2ncjITuqOPCUHzK7Viw).
### Partial State Update Blocks
A **Partial State Update Block** (PSUB) is a set of State Update Functions and Policy Functions such that State Update Functions in the set are independent from each other and Policies in the set are independent from each other and from the State Update Functions in the set. In other words, if a state variable is updated in a PSUB, its new value cannnot impact the State Update Functions and Policy Functions in that PSUB - only those in the next PSUB.
![](https://i.imgur.com/9rlX9TG.png)
Partial State Update Blocks are passed to `append_configs` as a List of Python `dicts` where the `dict_keys` are named `"policies"` and `"variables"` and the values are also Python `dicts` where the keys are the names of the policy and state update functions and the values are the functions.
```python
PSUBs = [
{
"policies": {
"b_1": policy_function_1,
...
"b_J": policy_function_J
},
"variables": {
"s_1": state_update_function_1,
...
"s_K": state_update_function_K
}
}, #PSUB_1,
{...}, #PSUB_2,
...
{...} #PSUB_M
]
append_configs(
...
partial_state_update_blocks = PSUBs,
...
)
```
#### Substep
At each timestep, cadCAD iterates over the `partial_state_update_blocks` list. For each Partial State Update Block, cadCAD returns a record containing the state of the system at the end of that PSUB. We refer to that subdivision of a timestep as a `substep`.
## Result Dataset
cadCAD returns a dataset containing the evolution of the state variables defined by the user over time, with three `int` indexes:
* `run` - id of the [run](#N-Number-of-Runs)
* `timestep` - discrete unit of time (the total number of timesteps is defined by the user in the [T Simulation Parameter](#T-Simulation-Length))
* `substep` - subdivision of timestep (the number of [substeps](#Substeps) is the same as the number of Partial State Update Blocks)
Therefore, the total number of records in the resulting dataset is `N` x `T` x `len(partial_state_update_blocks)`
#### [System Simulation Execution](link)

View File

@ -31,7 +31,7 @@ Previous State:
`y = 0`
```python
def state_update(_params, step, sL, s, _input):
def state_update(_params, step, sH, s, _input):
y = 'state'
x = s['state'] + _params['alpha'] + _params['gamma']
return y, x
@ -43,8 +43,8 @@ def state_update(_params, step, sL, s, _input):
##### Example Policy Updates
```python
# Internal States per Mechanism
def policies(_g, step, sL, s):
return {'beta': _g['beta'], 'gamma': _g['gamma']}
def policies(_params, step, sH, s):
return {'beta': _params['beta'], 'gamma': _params['gamma']}
```
* Simulation 1: `{'beta': 2, 'gamma': 3]}`
* Simulation 2: `{'beta': 5, 'gamma': 4}`
@ -53,6 +53,13 @@ def policies(_g, step, sL, s):
```python
from cadCAD.configuration.utils import config_sim
g = {
'alpha': [1],
'beta': [2, 5],
'gamma': [3, 4],
'omega': [7]
}
sim_config = config_sim(
{
"N": 2,
@ -64,5 +71,3 @@ sim_config = config_sim(
#### [Example Configuration](link)
#### [Example Results](link)

View File

@ -75,7 +75,7 @@ PSUB = {
"variables": variables
}
partial_state_update_block = {
psubs = {
"PSUB1": PSUB,
"PSUB2": PSUB,
"PSUB3": PSUB
@ -91,7 +91,7 @@ sim_config = config_sim(
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
partial_state_update_blocks=partial_state_update_block
partial_state_update_blocks=psubs
)
exec_mode = ExecutionMode()

View File

@ -31,31 +31,31 @@ env_process = {}
# Policies
def gamma(_params, step, sL, s):
def gamma(_params, step, sH, s):
return {'gamma': _params['gamma']}
def omega(_params, step, sL, s):
def omega(_params, step, sH, s):
return {'omega': _params['omega'](7)}
# Internal States
def alpha(_params, step, sL, s, _input):
def alpha(_params, step, sH, s, _input):
return 'alpha', _params['alpha']
def alpha_plus_gamma(_params, step, sL, s, _input):
def alpha_plus_gamma(_params, step, sH, s, _input):
return 'alpha_plus_gamma', _params['alpha'] + _params['gamma']
def beta(_params, step, sL, s, _input):
def beta(_params, step, sH, s, _input):
return 'beta', _params['beta']
def policies(_params, step, sL, s, _input):
def policies(_params, step, sH, s, _input):
return 'policies', _input
def sweeped(_params, step, sL, s, _input):
def sweeped(_params, step, sH, s, _input):
return 'sweeped', {'beta': _params['beta'], 'gamma': _params['gamma']}
@ -90,7 +90,7 @@ for m in psu_steps:
psu_block[m]['variables']['policies'] = policies
psu_block[m]["variables"]['sweeped'] = var_timestep_trigger(y='sweeped', f=sweeped)
partial_state_update_blocks = psub_list(psu_block, psu_steps)
psubs = psub_list(psu_block, psu_steps)
print()
pp.pprint(psu_block)
print()
@ -99,7 +99,7 @@ append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_process,
partial_state_update_blocks=partial_state_update_blocks
partial_state_update_blocks=psubs
)
exec_mode = ExecutionMode()

View File

@ -7,19 +7,19 @@ from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from cadCAD import configs
# Policies per Mechanism
def p1m1(_g, step, sL, s):
def p1m1(_g, step, sH, s):
return {'policy1': 1}
def p2m1(_g, step, sL, s):
def p2m1(_g, step, sH, s):
return {'policy2': 2}
def p1m2(_g, step, sL, s):
def p1m2(_g, step, sH, s):
return {'policy1': 2, 'policy2': 2}
def p2m2(_g, step, sL, s):
def p2m2(_g, step, sH, s):
return {'policy1': 2, 'policy2': 2}
def p1m3(_g, step, sL, s):
def p1m3(_g, step, sH, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
def p2m3(_g, step, sL, s):
def p2m3(_g, step, sH, s):
return {'policy1': 1, 'policy2': 2, 'policy3': 3}
@ -44,7 +44,7 @@ variables = {
"policies": policies
}
partial_state_update_block = {
psubs = {
"m1": {
"policies": {
"p1": p1m1,
@ -79,7 +79,7 @@ sim_config = config_sim(
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
partial_state_update_blocks=partial_state_update_block,
partial_state_update_blocks=psubs,
policy_ops=[lambda a, b: a + b, lambda y: y * 2] # Default: lambda a, b: a + b
)

View File

@ -14,51 +14,51 @@ seeds = {
# Policies per Mechanism
def p1m1(_g, step, sL, s):
def p1m1(_g, step, sH, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
def p2m1(_g, step, sH, s):
return {'param1': 1, 'param2': 4}
def p1m2(_g, step, sL, s):
def p1m2(_g, step, sH, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
def p2m2(_g, step, sH, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sL, s):
def p1m3(_g, step, sH, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sL, s):
def p2m3(_g, step, sH, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
def s1m1(_g, step, sH, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m1(_g, step, sL, s, _input):
def s2m1(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sL, s, _input):
def s1m2(_g, step, sH, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m2(_g, step, sL, s, _input):
def s2m2(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
def s1m3(_g, step, sH, s, _input):
y = 's1'
x = s['s1'] + 1
return (y, x)
def s2m3(_g, step, sL, s, _input):
def s2m3(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def policies(_g, step, sL, s, _input):
def policies(_g, step, sH, s, _input):
y = 'policies'
x = _input
return (y, x)
@ -68,17 +68,17 @@ def policies(_g, step, sL, s, _input):
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3(_g, step, sL, s, _input):
def es3(_g, step, sH, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4(_g, step, sL, s, _input):
def es4(_g, step, sH, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def update_timestamp(_g, step, sL, s, _input):
def update_timestamp(_g, step, sH, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
@ -102,7 +102,7 @@ env_processes = {
}
partial_state_update_block = [
psubs = [
{
"policies": {
"b1": p1m1,
@ -154,6 +154,6 @@ append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
partial_state_update_blocks=psubs,
policy_ops=[lambda a, b: a + b]
)

View File

@ -15,7 +15,7 @@ sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_mode
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: config1")
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))

View File

@ -13,46 +13,46 @@ seeds = {
# Policies per Mechanism
def p1m1(_g, step, sL, s):
def p1m1(_g, step, sH, s):
return {'param1': 1}
def p2m1(_g, step, sL, s):
def p2m1(_g, step, sH, s):
return {'param2': 4}
def p1m2(_g, step, sL, s):
def p1m2(_g, step, sH, s):
return {'param1': 'a', 'param2': 2}
def p2m2(_g, step, sL, s):
def p2m2(_g, step, sH, s):
return {'param1': 'b', 'param2': 4}
def p1m3(_g, step, sL, s):
def p1m3(_g, step, sH, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def p2m3(_g, step, sL, s):
def p2m3(_g, step, sH, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(_g, step, sL, s, _input):
def s1m1(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(_g, step, sL, s, _input):
def s2m1(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(_g, step, sL, s, _input):
def s1m2(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(_g, step, sL, s, _input):
def s2m2(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(_g, step, sL, s, _input):
def s1m3(_g, step, sH, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(_g, step, sL, s, _input):
def s2m3(_g, step, sH, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
@ -62,17 +62,17 @@ def s2m3(_g, step, sL, s, _input):
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3(_g, step, sL, s, _input):
def es3(_g, step, sH, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seeds['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4(_g, step, sL, s, _input):
def es4(_g, step, sH, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seeds['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def update_timestamp(_g, step, sL, s, _input):
def update_timestamp(_g, step, sH, s, _input):
y = 'timestamp'
return y, time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
@ -95,7 +95,7 @@ env_processes = {
"s4": env_trigger(3)(trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda _g, x: 10])
}
partial_state_update_block = [
psubs = [
{
"policies": {
"b1": p1m1,
@ -143,5 +143,5 @@ append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block
partial_state_update_blocks=psubs
)

View File

@ -9,14 +9,14 @@ exec_mode = ExecutionMode()
print("Simulation Execution: Single Configuration")
print()
first_config = configs # only contains config2
first_config = configs # only contains sys_model_B
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run = Executor(exec_context=single_proc_ctx, configs=first_config)
raw_result, tensor_field = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field: config1")
print("Tensor Field: sys_model_B")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))

View File

@ -1,71 +0,0 @@
Simulation Execution
==
System Simulations are executed with the execution engine executor (`cadCAD.engine.Executor`) given System Model
Configurations. There are multiple simulation Execution Modes and Execution Contexts.
### Steps:
1. #### *Choose Execution Mode*:
* ##### Simulation Execution Modes:
`cadCAD` executes a process per System Model Configuration and a thread per System Simulation.
##### Class: `cadCAD.engine.ExecutionMode`
##### Attributes:
* **Single Process:** A single process Execution Mode for a single System Model Configuration (Example:
`cadCAD.engine.ExecutionMode().single_proc`).
* **Multi-Process:** Multiple process Execution Mode for System Model Simulations which executes on a thread per
given System Model Configuration (Example: `cadCAD.engine.ExecutionMode().multi_proc`).
2. #### *Create Execution Context using Execution Mode:*
```python
from cadCAD.engine import ExecutionMode, ExecutionContext
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
```
3. #### *Create Simulation Executor*
```python
from cadCAD.engine import Executor
from cadCAD import configs
simulation = Executor(exec_context=single_proc_ctx, configs=configs)
```
4. #### *Execute Simulation: Produce System Event Dataset*
A Simulation execution produces a System Event Dataset and the Tensor Field applied to initial states used to create it.
```python
import pandas as pd
raw_system_events, tensor_field = simulation.execute()
# Simulation Result Types:
# raw_system_events: List[dict]
# tensor_field: pd.DataFrame
# Result System Events DataFrame
simulation_result = pd.DataFrame(raw_system_events)
```
##### Example Tensor Field
```
+----+-----+--------------------------------+--------------------------------+
| | m | b1 | s1 |
|----+-----+--------------------------------+--------------------------------|
| 0 | 1 | <function p1m1 at 0x10c458ea0> | <function s1m1 at 0x10c464510> |
| 1 | 2 | <function p1m2 at 0x10c464048> | <function s1m2 at 0x10c464620> |
| 2 | 3 | <function p1m3 at 0x10c464400> | <function s1m3 at 0x10c464730> |
+----+-----+--------------------------------+--------------------------------+
```
##### Example Result: System Events DataFrame
```python
+----+-------+------------+-----------+------+-----------+
| | run | timestep | substep | s1 | s2 |
|----+-------+------------+-----------+------+-----------|
| 0 | 1 | 0 | 0 | 0 | 0.0 |
| 1 | 1 | 1 | 1 | 1 | 4 |
| 2 | 1 | 1 | 2 | 2 | 6 |
| 3 | 1 | 1 | 3 | 3 | [ 30 300] |
| 4 | 2 | 0 | 0 | 0 | 0.0 |
| 5 | 2 | 1 | 1 | 1 | 4 |
| 6 | 2 | 1 | 2 | 2 | 6 |
| 7 | 2 | 1 | 3 | 3 | [ 30 300] |
+----+-------+------------+-----------+------+-----------+
```
##### [Single Process Example Execution](link)
##### [Multiple Process Example Execution](link)

View File

@ -1,220 +0,0 @@
System Model Configuration
==
#### Introduction
Given System Model Configurations, cadCAD produces system event datasets that conform to specified system metrics. Each
event / record is of [Enogenous State variables](link) produced by user defined [Partial State Updates](link) (PSU /
functions that update state); A sequence of event / record subsets that comprises the resulting system event dataset is
produced by a [Partial State Update Block](link) (PSUB / a Tensor Field for which State, Policy, and Time are dimensions
and PSU functions are values).
A **System Model Configuration** is comprised of a simulation configuration, initial endogenous states, Partial State
Update Blocks, environmental process, and a user defined policy aggregation function.
Execution:
#### Simulation Properties
###### System Metrics
The following system metrics determine the size of resulting system event datasets:
* `run` - the number of simulations in the resulting dataset
* `timestep` - the number of timestamps in the resulting dataset
* `substep` - the number of PSUs per `timestep` / within PSUBS
* Number of events / records: `run` x `timestep` x `substep`
###### Simulation Configuration
For the following dictionary, `T` is assigned a `timestep` range, `N` is assigned the number of simulation runs, and
`params` is assigned the [**Parameter Sweep**](link) dictionary.
```python
from cadCAD.configuration.utils import config_sim
sim_config = config_sim({
"N": 2,
"T": range(5),
"M": params, # Optional
})
```
#### Initial Endogenous States
**Enogenous State variables** are read-only variables defined to capture the shape and property of the network and
represent internal input and signal.
The PSUB tensor field is applied to the following states to produce a resulting system event
dataset.
```python
genesis_states = {
's1': 0.0,
's2': 0.0,
's3': 1.0,
'timestamp': '2018-10-01 15:16:24'
}
```
#### Partial State Update Block:
- ***Partial State Update Block(PSUB)*** ***(Define ?)*** Tensor Field for which State, Policy, Time are dimensions
and Partial State Update functions are values.
- ***Partial State Update (PSU)*** are user defined functions that encodes state updates and are executed in
a specified order PSUBs. PSUs update states given the most recent set of states and PSU policies.
- ***Mechanism*** ***(Define)***
The PSUBs is a list of PSU dictionaries of the structure within the code block below. PSUB elements (PSU dictionaries)
are listed / defined in order of `substeps` and **identity functions** (returning a previous state's value) are assigned
to unreferenced states within PSUs. The number of records produced produced per `timestep` is the number of `substeps`.
```python
partial_state_update_block = [
{
"policies": {
"b1": p1_psu1,
"b2": p2_psu1
},
"variables": {
"s1": s1_psu1,
"s2": s2_psu1
}
},
{
"policies": {
"b1": p1_psu2,
},
"variables": {
"s2": s2_psu2
}
},
{...}
]
```
*Notes:*
1. An identity function (returning the previous state value) is assigned to `s1` in the second PSU.
2. Currently the only names that need not correspond to the convention below are `'b1'` and `'b2'`.
#### Policies
- ***Policies*** ***(Define)*** When are policies behavior ?
- ***Behaviors*** model agent behaviors in reaction to state variables and exogenous variables. The
resulted user action will become an input to PSUs. Note that user behaviors should not directly update value
of state variables.
Policies accept parameter sweep variables [see link] `_g` (`dict`), the most recent
`substep` integer, the state history[see link] (`sH`), the most recent state record `s` (`dict) as inputs and returns a
set of actions (`dict`).
Policy functions return dictionaries as actions. Policy functions provide access to parameter sweep variables [see link]
via dictionary `_g`.
```python
def p1_psu1(_g, substep, sH, s):
return {'policy1': 1}
def p2_psu1(_g, substep, sH, s):
return {'policy1': 1, 'policy2': 4}
```
For each PSU, multiple policy dictionaries are aggregated into a single dictionary to be imputted into
all state functions using an initial reduction function (default: `lambda a, b: a + b`) and optional subsequent map
functions.
Example Result: `{'policy1': 2, 'policy2': 4}`
#### State Updates
State update functions provide access to parameter sweep variables [see link] `_g` (`dict`), the most recent `substep`
integer, the state history[see link] (`sH`), the most recent state record as a dictionary (`s`), the policies of a
PSU (`_input`), and returns a tuple of the state variable's name and the resulting new value of the variable.
```python
def state_update(_g, substep, sH, s, _input):
...
return state, update
```
**Note:** Each state update function updates one state variable at a time. Changes to multiple state variables requires
separate state update functions. A generic example of a PSU is as follows.
* ##### Endogenous State Updates
They are only updated by PSUs and can be used as inputs to a PSUs.
```python
def s1_update(_g, substep, sH, s, _input):
x = _input['policy1'] + 1
return 's1', x
def s2_update(_g, substep, sH, s, _input):
x = _input['policy2']
return 's2', x
```
* ##### Exogenous State Updates
***Exogenous State variables*** ***(Review)*** are read-only variables that represent external input and signal. They
update endogenous states and are only updated by environmental processes. Exgoneous variables can be used
as an input to a PSU that impacts state variables. ***(Expand upon Exogenous state updates)***
```python
from datetime import timedelta
from cadCAD.configuration.utils import time_step
def es3_update(_g, substep, sH, s, _input):
x = ...
return 's3'
def es4_update(_g, substep, sH, s, _input):
x = ...
return 's4', x
def update_timestamp(_g, substep, sH, s, _input):
x = time_step(dt_str=s[y], dt_format='%Y-%m-%d %H:%M:%S', _timedelta=timedelta(days=0, minutes=0, seconds=1))
return 'timestamp', x
```
Exogenous state update functions (`es3_update`, `es4_update` and `es5_update`) update once per timestamp and should be
included as a part of the first PSU in the PSUB.
```python
partial_state_update_block['psu1']['variables']['s3'] = es3_update
partial_state_update_block['psu1']['variables']['s4'] = es4_update
partial_state_update_block['psu1']['variables']['timestamp'] = update_timestamp
```
* #### Environmental Process
- ***Environmental processes*** model external changes that directly impact exogenous states at given specific
conditions such as market shocks at specific timestamps.
Create a dictionary like `env_processes` below for which the keys are exogenous states and the values are lists of user
defined **Environment Update** functions to be composed (e.g. `[f(params, x), g(params, x)]` becomes
`f(params, g(params, x))`).
Environment Updates accept the [**Parameter Sweep**](link) dictionary `params` and a state as a result of a PSU.
```python
def env_update(params, state):
. . .
return updated_state
# OR
env_update = lambda params, state: state + 5
```
The `env_trigger` function is used to apply composed environment update functions to a list of specific exogenous state
update results. `env_trigger` accepts the total number of `substeps` for the simulation / `end_substep` and returns a
function accepting `trigger_field`, `trigger_vals`, and `funct_list`.
In the following example functions are used to add `5` to every `s3` update and assign `10` to `s4` at
`timestamp`s `'2018-10-01 15:16:25'`, `'2018-10-01 15:16:27'`, and `'2018-10-01 15:16:29'`.
```python
from cadCAD.configuration.utils import env_trigger
trigger_timestamps = ['2018-10-01 15:16:25', '2018-10-01 15:16:27', '2018-10-01 15:16:29']
env_processes = {
"s3": [lambda params, x: x + 5],
"s4": env_trigger(end_substep=3)(
trigger_field='timestamp', trigger_vals=trigger_timestamps, funct_list=[lambda params, x: 10]
)
}
```
#### System Model Configuration
`append_configs`, stores a **System Model Configuration** to be (Executed)[url] as
simulations producing system event dataset(s)
```python
from cadCAD.configuration import append_configs
append_configs(
sim_configs=sim_config,
initial_state=genesis_states,
env_processes=env_processes,
partial_state_update_blocks=partial_state_update_block,
policy_ops=[lambda a, b: a + b]
)
```
#### [System Simulation Execution](link)