readme pt. 1

This commit is contained in:
Joshua E. Jodesty 2019-10-03 09:57:41 -04:00
parent 2a8c1d5e8f
commit 0a9b980ad7
7 changed files with 44 additions and 75 deletions

0
distroduce/README.md Normal file
View File

View File

@ -0,0 +1,4 @@
#!/bin/bash
bin/zookeeper-server-start.sh config/zookeeper.properties &
bin/kafka-server-start.sh config/server.properties &
bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic test

0
distroduce/emr/launch.py Normal file
View File

View File

@ -0,0 +1,36 @@
from datetime import datetime
from cadCAD import configs
from cadCAD.configuration.utils import config_sim
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from distroduce.simulation import main, sim_composition
from distroduce.spark.session import sc
from distroduce.executor.spark import distributed_produce
if __name__ == "__main__":
intitial_conditions = {
'record_creation': datetime.now(),
'client_a': {'users': [], 'messages': [], 'msg_count': 0, 'send_time': 0.0},
'client_b': {'users': [], 'messages': [], 'msg_count': 0, 'send_time': 0.0},
'total_msg_count': 0,
'total_send_time': 0.000000
}
# N = 5 = 10000 / (500 x 4)
# T = 500
sim_config = config_sim(
{
"N": 1,
"T": range(10),
# "T": range(5000),
}
)
exec_mode = ExecutionMode()
kafkaConfig = {'send_topic': 'test', 'producer_config': {'bootstrap_servers': f'localhost:9092', 'acks': 'all'}}
# kafkaConfig = {'send_topic': 'test', 'producer_config': {'bootstrap_servers': f'{sys.argv[1]}:9092', 'acks': 'all'}}
dist_proc_ctx = ExecutionContext(context=exec_mode.dist_proc, method=distributed_produce, kafka_config=kafkaConfig)
run = Executor(exec_context=dist_proc_ctx, configs=configs, spark_context=sc)
main(run, sim_config, intitial_conditions, sim_composition)

View File

@ -1,54 +1,14 @@
import sys
import pandas as pd
from datetime import datetime
from tabulate import tabulate
from cadCAD import configs
from cadCAD.utils import arrange_cols
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import config_sim
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from distroduce.simulation import main, sim_composition
from distroduce.spark.session import sc
from distroduce.executor.spark import distributed_produce
from distroduce.action_policies import enter_action, message_actions, exit_action
from distroduce.state_updates import send_message, count_messages, add_send_time, current_time
# State Updates
variables = {
'client_a': send_message('client_a'),
'client_b': send_message('client_b'),
'total_msg_count': count_messages,
'total_send_time': add_send_time,
'record_creation': current_time('record_creation')
}
# Action Policies
policy_group_1 = {
"action_1": enter_action('server', 'room_1', 'A'),
"action_2": enter_action('server', 'room_1', 'B')
}
policy_group_2 = {
"action_1": message_actions('client_A', 'room_1', "Hi B", 'A', 'B'),
"action_2": message_actions('client_B', 'room_1', "Hi A", 'B', 'A')
}
policy_group_3 = {
"action_1": message_actions('client_A', 'room_1', "Bye B", 'A', 'B'),
"action_2": message_actions('client_B', 'room_1', "Bye A", 'B', 'A')
}
policy_group_4 = {
"action_1": exit_action('server', 'room_1', 'A'),
"action_2": exit_action('server', 'room_1', 'B')
}
policy_groups = [policy_group_1, policy_group_2, policy_group_3, policy_group_4]
sim_composition = [{'policies': policy_group, 'variables': variables} for policy_group in policy_groups]
if __name__ == "__main__":
print("Distributed Simulation: Chat Clients")
intitial_conditions = {
'record_creation': datetime.now(),
'client_a': {'users': [], 'messages': [], 'msg_count': 0, 'send_time': 0.0},
@ -56,48 +16,17 @@ if __name__ == "__main__":
'total_msg_count': 0,
'total_send_time': 0.000000
}
exec_mode = ExecutionMode()
# N = 5 = 10000 / (500 x 4)
# T = 500
sim_config = config_sim(
{
"N": 1,
"T": range(10),
# "T": range(5000),
"T": range(5000),
}
)
append_configs(
user_id='Joshua',
sim_configs=sim_config,
initial_state=intitial_conditions,
partial_state_update_blocks=sim_composition,
policy_ops=[lambda a, b: a + b]
)
exec_mode = ExecutionMode()
kafkaConfig = {'send_topic': 'test', 'producer_config': {'bootstrap_servers': f'{sys.argv[1]}:9092', 'acks': 'all'}}
dist_proc_ctx = ExecutionContext(context=exec_mode.dist_proc, method=distributed_produce, kafka_config=kafkaConfig)
run = Executor(exec_context=dist_proc_ctx, configs=configs, spark_context=sc)
i = 0
for raw_result, tensor_field in run.execute():
result = arrange_cols(pd.DataFrame(raw_result), False)[
[
'run_id', 'timestep', 'substep',
'record_creation', 'total_msg_count', 'total_send_time'
]
]
print()
if i == 0:
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
last = result.tail(1)
last['msg_per_sec'] = last['total_msg_count']/last['total_send_time']
print("Output: Head")
print(tabulate(result.head(5), headers='keys', tablefmt='psql'))
print("Output: Tail")
print(tabulate(result.tail(5), headers='keys', tablefmt='psql'))
print(tabulate(last, headers='keys', tablefmt='psql'))
print()
i += 1
main(run, sim_config, intitial_conditions, sim_composition)

0
distroduce/simulation.py Normal file
View File