bug fix: not displaying all mech steps

This commit is contained in:
Joshua E. Jodesty 2018-11-06 15:04:23 -05:00
parent 1d820486ae
commit 098fc04f3d
5 changed files with 101 additions and 52 deletions

View File

@ -31,18 +31,39 @@ def create_matrix_field(mechanisms, key):
return pd.DataFrame({'empty' : []})
def generate_config(mechanisms, env_poc):
def generate_config(state_dict, mechanisms, exo_proc):
def no_behavior_handler(bdf, sdf):
if bdf.empty == False:
sdf_values, bdf_values = sdf.values.tolist(), bdf.values.tolist()
else:
sdf_values = sdf.values.tolist()
bdf_values = [[b_identity] * len(sdf_values)]
# print(sdf_values)
bdf_values = [ [b_identity] * len(sdf_values) for n in range(mechanisms) ]
# print(bdf_values)
return sdf_values, bdf_values
bdf = create_matrix_field(mechanisms, 'behaviors')
sdf = create_matrix_field(mechanisms, 'states')
sdf_values, bdf_values = no_behavior_handler(bdf, sdf)
zipped_list = list(zip(sdf_values, bdf_values))
def only_ep_handler(state_dict):
sdf_functions = [ lambda step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values()) ]
sdf_values = [ sdf_functions ]
bdf_values = [ [b_identity] * len(sdf_values) ]
return sdf_values, bdf_values
return list(map(lambda x: (x[0] + env_poc, x[1]), zipped_list))
zipped_list = []
if len(mechanisms) != 0:
bdf = create_matrix_field(mechanisms, 'behaviors')
sdf = create_matrix_field(mechanisms, 'states')
sdf_values, bdf_values = no_behavior_handler(bdf, sdf)
zipped_list = list(zip(sdf_values, bdf_values))
else:
sdf_values, bdf_values = only_ep_handler(state_dict)
zipped_list = list(zip(sdf_values, bdf_values))
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
df = pd.concat(dfs, axis=1)
for es, i in zip(exo_proc, range(len(exo_proc))):
df['es'+str(i)] = es
df['m'] = df.index + 1
return df

View File

@ -4,11 +4,9 @@ from fn import op, _
def getColResults(step, sL, s, funcs):
return list(map(lambda f: f(step, sL, s), funcs))
def getBehaviorInput(step, sL, s, funcs):
return op.foldr(_ + _)(getColResults(step, sL, s, funcs))
def apply_env_proc(env_processes, state_dict, step):
for state in state_dict.keys():
if state in list(env_processes.keys()):
@ -28,10 +26,12 @@ def mech_step(m_step, sL, state_funcs, behavior_funcs, env_processes, t_step):
_input = exception_handler(getBehaviorInput, m_step, sL, last_in_obj, behavior_funcs)
# print(len(state_funcs))
last_mut_obj = dict([
exception_handler(f, m_step, sL, last_mut_obj, _input) for f in state_funcs
])
print(str(m_step) + ': ' + str(last_mut_obj))
# print(str(m_step) + ': ' + str(last_mut_obj))
apply_env_proc(env_processes, last_mut_obj, last_mut_obj['timestamp'])
@ -45,11 +45,7 @@ def mech_step(m_step, sL, state_funcs, behavior_funcs, env_processes, t_step):
def block_gen(states_list, configs, env_processes, t_step):
m_step = 0
print("states_list")
print(states_list)
states_list_copy = deepcopy(states_list)
print("states_list_copy")
print(states_list_copy)
genesis_states = states_list_copy[-1]
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
states_list = [genesis_states]

View File

@ -1,15 +1,18 @@
from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
from engine.configProcessor import generate_config
from engine.configProcessor import generate_config, create_tensor_field
from engine.mechanismExecutor import simulation
from engine.utils import flatten
from tabulate import tabulate
#from tabulate import tabulate
import pandas as pd
def main():
states_list = [state_dict]
ep = list(exogenous_states.values())
configs = generate_config(mechanisms, ep)
configs = generate_config(state_dict, mechanisms, ep)
print(len(configs))
print(tabulate(create_tensor_field(mechanisms, ep), headers='keys', tablefmt='psql'))
print
# print(configs)
# print(states_list)
# print(configs)

View File

@ -35,14 +35,13 @@ def bound_norm_random(rng, low, high):
res = bound_norm_random(rng, low, high)
return Decimal(res)
def env_proc(trigger_step, update_f):
def env_step_trigger(trigger_step, update_f, step):
def proc_trigger(trigger_step, update_f):
def step_trigger(trigger_step, update_f, step):
if step == trigger_step:
return update_f
else:
return lambda x: x
return partial(env_step_trigger, trigger_step, update_f)
return partial(step_trigger, trigger_step, update_f)
# accept timedelta instead of timedelta params
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=30):
@ -63,4 +62,26 @@ def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', days=0, minutes=0, s
# for es, i in zip(env_poc, range(len(env_poc))):
# df['es'+str(i)] = es
# df['m'] = df.index + 1
# return df
# return df
#################
# def exo_proc_trigger(mech_step, update_f, y):
# if mech_step == 1:
# return update_f
# else:
# return lambda step, sL, s, _input: (y, s[y])
# def apply_exo_proc(s, x, y):
# if s['mech_step'] == 1:
# return x
# else:
# return s[y]
# def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
# y = 'timestamp'
# x = ep_time_step(s, s['timestamp'], seconds=1)
# return (y, x)

View File

@ -1,4 +1,4 @@
from engine.utils import bound_norm_random, ep_time_step, env_proc
from engine.utils import bound_norm_random, ep_time_step, proc_trigger
import numpy as np
from decimal import Decimal
@ -60,12 +60,20 @@ proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
if s['mech_step']+1 == 1: # inside f body to reduce performance costs
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
else:
return (y, s[y])
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
if s['mech_step']+1 == 1: # inside f body to reduce performance costs
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
else:
return (y, s[y])
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
@ -95,8 +103,8 @@ exogenous_states = {
}
env_processes = {
"s3": env_proc('2018-10-01 15:16:25', env_a),
"s4": env_proc('2018-10-01 15:16:25', env_b)
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# test return vs. non-return functions as lambdas
@ -105,34 +113,34 @@ env_processes = {
mechanisms = {
"m1": {
"behaviors": {
# "b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
# "s1": s1m1,
# "s2": s2m1
"s1": s1m1,
"s2": s2m1
}
},
# "m2": {
# "behaviors": {
# "b1": b1m2,
# "b2": b2m2
# },
# "states": {
# "s1": s1m2,
# "s2": s2m2
# }
# },
# "m3": {
# "behaviors": {
# "b1": b1m3,
# "b2": b2m3 #toggle for error
# },
# "states": {
# "s1": s1m3,
# "s2": s2m3
# }
# }
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3 #toggle for error
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {