diff --git a/demos/predator_prey.ipynb b/demos/predator_prey.ipynb deleted file mode 100644 index f4a588a..0000000 --- a/demos/predator_prey.ipynb +++ /dev/null @@ -1,77 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "multi_proc: [, ]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztvXd4ZMWV9/+pjspZkyMTCTPMDAMMHnLyALaBfcGYJRkw2Ou03rWXH/b72ottvGvvOqx38drGxgZnbMA4gDFhwOQwA5OYnEeTlEZSq6XO9fujuhW7pb63r0bq1vk8jx61WrfvLZXqfu+pc06dUlprBEEQhPzHNdoNEARBEJxBBF0QBKFAEEEXBEEoEETQBUEQCgQRdEEQhAJBBF0QBKFAEEEXBEEoEETQBUEQCgQRdEEQhALBczwvVldXp2fNmnU8LykIgpD3rF27tllrXT/cccdV0GfNmsWaNWuO5yUFQRDyHqXUvmyOG9blopQqUkq9qZRar5R6Vyn15eT7s5VSbyildiqlHlZK+XJttCAIgmCfbHzoYeBCrfWpwBJglVJqBfAN4Dta67nAMeD2kWumIAiCMBzDCro2dCZ/9Ca/NHAh8Ejy/YeAq0akhYIgCEJWZOVDV0q5gbXAXOB7wC6gTWsdSx7SAEy104BoNEpDQwOhUMjOx8ctRUVFTJs2Da/XO9pNEQRhjJCVoGut48ASpVQV8HtgYbYXUErdCdwJMGPGjEG/b2hooLy8nFmzZqGUyva04xqtNS0tLTQ0NDB79uzRbo4gCGMES3noWus24HngLKBKKZV6IEwDDmb4zP1a6+Va6+X19YOzbkKhELW1tSLmFlBKUVtbK7MaQRD6kU2WS33SMkcpVQxcAmzBCPs1ycNuAf5gtxEi5taRPhMEYSDZWOiTgeeVUhuAt4BntNZ/Bv4/4J+VUjuBWuCBkWumIAjjncZAiF+9sZ9EQrbNzMSwPnSt9QZgaZr3dwNnjESjjjdut5tFixYRi8U48cQTeeihhygpKRntZo0IWmtiCY3XLVUfnKa9O8pnf7uej513Astn1Yx2cwqOf3tiC4+vO8SMmhLOnlc32s0Zk8hdDRQXF7Nu3To2bdqEz+fjBz/4Qb/fa61JJBKj1Dpn+fRv1nHpd14kLlaO4/x10xGe3XKU/1m9c7SbUpC8sqsFgPUNbaPckrGLCPoAzjnnHHbu3MnevXtZsGABN998M6eccgoHDhzg6aef5qyzzmLZsmVce+21dHZ2snr1aq66qjcF/5lnnuHqq68exb8gM5FYgj+tP8Se5iA7GgOj3ZyCY11SaI60S7DaaRIJTXtXFIBDbd2j3Jqxy3Gt5TIcX/7Tu2w+1OHoOU+aUsG/vv/krI6NxWL85S9/YdWqVQDs2LGDhx56iBUrVtDc3My9997Ls88+S2lpKd/4xjf49re/zRe/+EU+/vGP09TURH19PT/96U+57bbbHP0bnGJ3c2fP673NXSycVDGKrSk8UkJzpEME3Wmag2EicTNLlgdmZsRCB7q7u1myZAnLly9nxowZ3H67qWIwc+ZMVqxYAcDrr7/O5s2bWblyJUuWLOGhhx5i3759KKW46aab+MUvfkFbWxuvvfYal1122Wj+ORk53OdGECvHeVJ92t4dpSsSG+ZowQqH2nrHbmMgPIotGduMKQs9W0vaaVI+9IGUlpb2vNZac8kll/DrX/960HG33nor73//+ykqKuLaa6/F4xlT3dpDX8vmaECsHKc53Bai2OumOxqnNRihxDc2x0E+knpYzptQRkcoOsqtGbuIhZ4lK1as4JVXXmHnThPwCgaDbN++HYApU6YwZcoU7r33Xm699dbRbOaQHG7rxqWgqsRLR7fcFE7SGY4RCMdYOLkcMFa64Byp/pxZWyp9OwQi6FlSX1/Pgw8+yPXXX8/ixYs566yz2Lp1a8/vb7jhBqZPn86JJ544iq0cmsPtIerL/dSV+WnrkpvCSdq6IgDMrjWzOhEdZwkkrfJp1cV0dEclFz0DMicEOjs7B703a9YsNm3a1O+9Cy+8kLfeeivtOV5++WXuuOOOEWmfU7QGI9SW+inxuUXQHSYQMj7zadXFADIDcpjOUAylYHJlEQkNwUiM8iIpTDcQsdAd4LTTTmPDhg3ceOONo92UIQmEY5QXeagq8dImguMoneGUoJsFaWKhO0tHKEaZz4xdkP7NhFjoDrB27drRbkJWBEIxplYVUVHsZcthyUN3kpRLYEpVykKXLBcn6UwaI2V+b8/PwmDEQh9HdIajlBd5KfV5JK3OYVIulwkVfgC6IvHRbE7BEQhFKSvyUOJzA9K/mRBBH0cEQjHK/B5K/G6CckM4SkrQq4q9+D0uuqLywHQSY6F7KU4KereM37SIoI8TtNZ0hsy0tdTnIRJLEIsXRn2asUDKBZCyIrvCIjhO0mOMiIU+JCLo44RQNEEsoftPW6NyUzhFIBTF7VIUe92U+DwiOA6TMkZ6BV1mQOkQQceUz12yZAmnnHIK1157LV1dXbbP9cILL/C+971vyGPWrVvHk08+afsadgiETdCuvMjbs4JRrEjn6ExakEopSnxuusXl4igdSUEvTo5dcbmkRwSd418+146gx2K5CUTKx1tR5KHUb6ycoFg5jhFICg5Aic9NUB6WjpIK6Jd4xeUyFCLoA7BaPhfgqaeeYuHChSxbtozHHnus51xvvvkmZ511FkuXLuU973kP27ZtIxKJ8KUvfYmHH36YJUuW8PDDD9Pa2spVV13F4sWLWbFiBRs2bADgnnvu4aabbmLlypXcdNNNOf1dnUlBN35IsXKcJhA2FjpAsc8tfesg0XiCUDTRE9AH6BZ3YVrGVh76X+6GIxudPeekRXDZ17M61E753Lvuuos77riD1atXM3fuXK677rqe8y1cuJCXXnoJj8fDs88+yxe+8AUeffRRvvKVr7BmzRruu+8+AD71qU+xdOlSHn/8cVavXs3NN9/cUyxs8+bNvPzyyxQXF+fUDSkLvbzI2xMMDUour2MEQlEqkisXS30eKX7mIJ09Y9eDz+3C7VLiQ8/A2BL0USJVPheMhX777bdz6NChjOVzASKRSE89l9mzZzNv3jwAbrzxRu6//34A2tvbueWWW9ixYwdKKaLR9KvbXn75ZR599FHAlBdoaWmho8PUhf/ABz6Qs5iDmbKCsdBTdaVl2uocneEYE8qLAGOhS986R08GUSpG4ZX+zcTYEvQsLWmnyaV8brrPpfjiF7/IBRdcwO9//3v27t3L+eefb7ltfduQCx19rJzUdFVuCucIhGLMqe/1oUvA2TlS5XJTtVvEpZUZ8aFnSabyuQsXLmTv3r3s2rULoJ/gt7e3M3XqVAAefPDBnvfLy8sJBHqX3p9zzjn88pe/BEyWTF1dHRUVzu4m1Hfa6veYf3s4JjeFU6SyXACKvW5C0reO0XfsQlLQxYeeFhH0LMlUPreoqIj777+fK664gmXLljFhwoSez9x11118/vOfZ+nSpf2yVC644AI2b97cExS95557WLt2LYsXL+buu+/moYcecrz9gT5B0aJkpkAoKguLnMJkuRgL0u91E5a+dYzAAEH3e1xEYtK/6RhbLpdRItfyuatWrepXGz3FWWed1bMJBsC9994LQE1NzaDzPP7444M+f88992TV/mzoDEcp9rrxuF1ioTtMOBYnEk/0E5xwLI7WGqXUKLcu/+nrQwfwe9yERdDTIhb6OKFvnrTfYyx0uSmcIZ0FmdAQk00YHCEwwIeeemAKgxFBHycEwjHK+ggOQEj8kI7QN8cf5IHpNIFw/wemz+MSl1YGhhV0pdR0pdTzSqnNSql3lVL/mHz/HqXUQaXUuuTX5XYbobVYMlax2md9fbwul8LndongOETfHH8Avzfp0pIHpiMEQjE8LtVjiBgLXcZuOrLxoceAz2qt31ZKlQNrlVLPJH/3Ha31N3NpQFFRES0tLdTW1oq/MUu01rS0tFBUVJT1ZzpDUcr9vf9uv1g5jhHok+MP9IlRSP86QaowV0ofjA9dHpbpGFbQtdaHgcPJ1wGl1BZgqlMNmDZtGg0NDTQ1NTl1ynFBUVER06ZNy/r4QCjGxIreB4Df65LUOocY7EMXl4uTpDa3SOH3ioWeCUtZLkqpWcBS4A1gJfBJpdTNwBqMFX/MagO8Xi+zZ8+2+jHBIp19ao1A0soRC90RBuZJSxaRs3SGY5T7ezeElrTFzGQdFFVKlQGPAp/RWncA3wfmAEswFvy3MnzuTqXUGqXUGrHCR4++PnRIWTkiOE4wKAujx4cuouMEHaFYfwtd0hYzkpWgK6W8GDH/pdb6MQCt9VGtdVxrnQB+BJyR7rNa6/u11su11svr6+udardggURCGwtdbooRIV2eNIjLxSk6QzEqigbGf8QYSUc2WS4KeADYorX+dp/3J/c57Gpg08DPCmODzkhvLfQUfo9L0hYdIhCK4fe48PXJwgBxuTjFQHehT7JcMpKND30lcBOwUSmVqkT1BeB6pdQSQAN7gY+OSAuFnBmYJw1QJIElxwiEexdtQR8LXVwujhAIRfu7Cz1uYglNLJ7A45alNH3JJsvlZSBdPuHx3UNNsM3APGkwN0Vbd/pyvoI10sUnQFwuTqB1Gndhsn8jIuiDkN4YB/TUQhc/5IjQGYoOyCASl4tThGMJonE9YAYkQedMiKCPAzoGpNUBFHklKOoUfevkgARFnaRndukf3L+pjVqEXkTQxwGdaW8KsdCdYnCOvyz9d4qBKaEgFvpQiKCPA9L60L0uQmJBOkImH7r0b+4MTAmFvjEKeWAORAR9HJDOh+5zu2W1nUOYLIy+fSsWpFMMLKsAffpXxu8gRNDHAYFQDKWg1Ofuec/rUeKDdIBUFkZfwfG4XXhcSixIB+jZaatflksqRiH9OxAR9HFAILnfZd9qln63qYchpYtzoysSJ6H7uwQAvG4XUXlg5kzKh14hPvSsEEEfBwRCsX43BBjBAdlVJ1fSxScAvG5FNC59myvpfOipsSszzMGIoI8DOsPRQRZkapm6+NFzI118AsDncYvgOEBal0ty7MoDczAi6OOAgXnS0GvliFsgN9Ll+AP43Eoelg7QGY5R5HX1jFeQsTsUIujjgIFBOxAL3SlSOf4VafpXBCd3BtZxAePOAhm76RBBHwcEQjHKBtwUPvFDOkKPS8A/OEYhgpM7gVCs34I4EB/6UIigjwMG5kmDWOhOkfKhp3NpiYWeO+nchb0+dOnfgYigjwOGsnIksJQb6YJ2YB6YEenbnBlYaRH6jF0xRgYhgl7gRGIJwrGEWOgjRI+g+wYGRV1EZOFLznSGYoNz/D3icsmECHqBky6PF/oEluSmyInUoi2Xq/+WAV6P5KE7wVBBUenfwYigFzjpqtWBWOhO0RkeHJ8AY6GLjzd3AuHBFnpPQF/G7iBE0AucjD5eyeV1hEAalwBIlosTpDY3H5gSqpRKrsSV/h2ICHqBk65aHYiF7hTpcvwhFRSVvs2FrmgcrQcbIyAPzEyIoBc4KR96eZo8aRALPVc60uT4QyooKn2bC5nchSBpoZkQQS9wem+KDBa63BQ50Zkmxx9EcJygM5Q+oA+SFpoJEfQCpyfLJYMPXazI3EiX4w+ppf8iOLmQqU4OSNA5EyLoBc6wPnS5KXIi3UpGEB+vE/S4C9P2rxQ/S4cIeoETCMXwuV09O6Wn8Mlqu5yJxRN0R+OD6riA7AjlBOJDt44IeoGTro4LyGo7JxjKgvQnBUd2hLLPcD50EfTBDCvoSqnpSqnnlVKblVLvKqX+Mfl+jVLqGaXUjuT36pFvrmCVdLUwoG8eugiOXTLl+IOxILWWHaFyIZO7EJIuLRm7g8jGQo8Bn9VanwSsAD6hlDoJuBt4Tms9D3gu+bMwxsjs4zXLp2XndPsEMtRCh94YhViR9gmEU5ubpzdIpFbOYIYVdK31Ya3128nXAWALMBW4EngoedhDwFUj1UjBPumKG4FZbSeZArnRWycnvY8XJIsoFwKhKGW+wXVyQGrlZMKSD10pNQtYCrwBTNRaH07+6ggwMcNn7lRKrVFKrWlqasqhqYIdOtIUN0ohmQK5kSnHHyRG4QSdofTuQpC0xUxkLehKqTLgUeAzWuuOvr/TJvKT9nGptb5fa71ca728vr4+p8YK1ukMp8+TBgks5UqmHH8wQVGQGEUuZCqrAJIWmomsBF0p5cWI+S+11o8l3z6qlJqc/P1koHFkmijkQiYfOshNkStDLXzxemTfy1zJVPgMzAxIZj+DySbLRQEPAFu01t/u86s/ArckX98C/MH55gm5oLXOmOUCUkAqV1JpdQPr5IDUynGCQDiW0V0oLpf0ZGOhrwRuAi5USq1Lfl0OfB24RCm1A7g4+bMwhuiOxokn9JA3hViQ9gmEonhciiLv4NtISivkTiAUHdqHHhN31kDS91YftNYvA4PDzIaLnG2O4CRDLcwA8aHnSmr2Yyax/ZGgaO50hgbXQk8hK3HTIytFC5ihfLwgPvRcGSo+4ZfSCjkzpA/d7ZK+TYMIegEz1NJ0kIqAuWIEJ0NKqFjoOZGqk5PRXSjxn7SIoBcwQxU3AslDz5VMdXJAgqK5kmlz8xQSFE2PCHoBM1QtDACfxy1WTg4EhvDx9gZFZQZkh+HGrtftIqGNJS/0IoJewHR0D22h+8RCz4lAOPMqXF8qD10ExxYdw84uZeFWOkTQC5jhLXSZtubCcIu2QIKidhmq8BnIBi2ZEEEvYAKhKEpBWZpqdZAqQSo3hB201kMKulRbzI1eYyTz7BKkfwcigl7AdIRiGavVgSwsyoXhFm31VFsUwbHFUIXPQKpZZkIEvYAZyoIEk1onFo49snFngQiOXbIJioJY6AMRQS9gAkOUzgVjocsGF/YYLiXUJxZ6Tgzbv+LSSosIegEznIXuFwvdNtmswgWk3ohNAqEYfo+rR7gH4pW00LSIoBcwJq1uCJeL+NBtM1wWhtulcLsUkbhsk2aHjlDmSosgaaGZEEEvYALD3hSyOMMuw7kEwKzElTxpe3SEohkfliA+9EyIoBcww7lcev2QIjpWGS5oB5JFlAvDjl3J80+LCHqBYvKkhw6KSuqXfbKx0KW0gn2GHbuysCgtIugFSjiWIBrXWVnoYfHzWiYQiuFSUOpzZzxGSivYJ1sLXfq3PyLoBUqqFsZQfsje1XbicrFKqlZ3us0tUvg84nKxy1CVLEEWbmVCBL1AGW7pNMjil1zo6B7aJQDJTRhEcGyRTUAfJCg6EBH0AiW7oJ1xF4igW6djGJcAiIVul1g8QVcknpW7UPq3PyLoBUq2aXUgVo4dAqEoFcNY6LKrjj16d9oafuxGxF3YDxH0AiUrCz0VFBUrxzLDBe1AFm7ZJZux65fZZVpE0AuU4arVgUxbc2G4VbhgSiuIhW6drAL6MnbTIoJeoGQVFJXVdrYZLmgHsrDILhLQt48IeoGSKh6VaZNdkJvCLsNtbpFCslzskY3Lxe1SuJQYIwMZVtCVUj9RSjUqpTb1ee8epdRBpdS65NflI9tMwSqBUJQyvwd3hs0tQLbxsstwm1ukkCwXe2QT0AcJOqcjGwv9QWBVmve/o7Vekvx60tlmCbmSrQUJYuVYJRsLEkTQ7ZJ1/4pLaxDDCrrW+kWg9Ti0RXCQ9u4olcXD+3hBslys0tGdDNoN079mz1ZJq7NKqn+zemCKMdKPXHzon1RKbUi6ZKoda5HgCO1dUapKhhYcv6y2s0VbUnCqhhF0v8dFJCZ1cqzS1h2lxOfG78lcJwfEQk+HXUH/PjAHWAIcBr6V6UCl1J1KqTVKqTVNTU02LydYJRsLXaot2qO9KynowzwwxYK0RzZjF8SllQ5bgq61Pqq1jmutE8CPgDOGOPZ+rfVyrfXy+vp6u+0ULNLWHaGq2DfkMZLlYo+UhT78A1M2uLBDW1d2gi5ZRIOxJehKqcl9frwa2JTpWGF0aO+OUjmMBSlBUXu097hchnlgut3EE5p4QkTdCh1iodtm6KgDoJT6NXA+UKeUagD+FThfKbUE0MBe4KMj2EbBIqFonFA0kZUFCWKhW6W9K4JS2QXtwPRv8RB104X+tHVHmF1XOuxx4tIazLCCrrW+Ps3bD4xAWwSH6MjSJaCUwudxEZabwhLt3aYwl2uIHH/oW0AqQTEi6NnS3h0ddvYDUisnHbJStADpycIYxuUCJlMgGhOXgBXauofPIILeLCIRHWu0dQ3vLgSplZMOEfQCpD1LCx1S01ZJrbOClSwMkJW4VghF44Rjw7sLQdIW0yGCXoC0dWUXtAO5KexgJQsDZGd6K1g2RqRv+yGCXoBYuSm8Hkmts4qVLAwQC90K7RbchZK2OBgR9AKkrSsCkJUfUix062TrQ5ed6a1jaXYpFvogRNALkPbuqEmrG6J0bgqfxy21XCygtc7ah+4VC90y1uM/0rd9EUEvQFKCM1xaHYDPrWTaaoHOcIx4QmdlQfrFQrdManaZ7QxI+rY/IugFSLZBO5Bpq1VSLgErPnR5YGZPe5aVLEEs9HSIoBcgZmGGBUGXmyJrelwCWQbtQCx0K7R3R3Fl6y4UC30QIugFSFt3NCsLByRTwCpWfbwggm4FK+5Cr9tFQiO1cvoggl6AdHRHqSoZ3scLYuVYxWpaHUhQ1ApW3YUgD8y+iKAXIK3BiLhcRohjqZTQLPpXlv5bpy3LDCIQQU+HCHqBEYsnaO+OUlMqFvpIcCxoBD2b/pWFRdZpDYazH7vJ/g1L6YoeRNALjGPJLIzasuxvChH07GkJRijze4bdHg1k6b8djgWj1JT6szrWl6xmKSudexFBLzBaLViQIEFRq7QGI5YtSLHQs6clGLZkjIC4XPoigl5gWBV0sdCtYUnQJW3REl2RGKFowkL/mlmS9G8vIugFhi1BFwsya1o6I9RmPftJbXAhLoFsaOlMjt0sM7S8PS4XGb8pRNALjNZgGLDqctFoLaKTDa3BCNVZ9q1SSoLOFrBjjABSi6gPIugFRkvypqjO0srxi583a7TWtAazt9BBXFpWaE2mhNaID902IugFxrFghMpib0+GxXCInzd7gpE4kXj2Pl4wbgFxCWRHa9Llku0DMzV2pX97EUEvMFosBO2grx9SXC7DkRIcK/0rFnr22HW5SP/2IoJeYFjJwgBTDx3kpsiGlmR8Itu0OpCgsxVaghG8bkVZFoW5YEBaqMSAgHwT9N0vwN6XR7sVYxrrgm6GgNrzIjz1eeg4PFJNy3taLcYnwASdfeEW+MU18Od/hnhspJqX96RWiSo1fGEu6F24NXXHL+Gr9fDMl0ayeXlB/gj6jmfgZ1fCg1fA9qdHuzVjFqtBO69bUU0H9U/cCq//L/z2JrF2MpAKONdmuZIRjJ/3sqafws5nYM0D5ktIS6uFVaJg+tZPhJPe/RYkovDKd+HAWyPYwrFP/gj6Wz+GklqomgHPfFFEJw1aa451ZZ9WBybL5RL3WlzRTjjjo9Dwlnl4CoPo8fFacLkUuzXLgi/CKdfAzLON6CSk9kg6WoNhS8aI3+NipWsT3ngXXPcLKKqEN74/gi0c+wwr6EqpnyilGpVSm/q8V6OUekYptSP5vXpEWxkLw67nYdG1cN7d0LQV9r06opfMRzpCMaJxbTmt7jzXeiKlU+HSe6G0Htb+dARbmb8cC0bweVyU+oav45LiBN1ARaId5r8XzrwTOg7CzudGsJX5i5UcfzBj93TXNuLKA/MuhVOvh81/hK7WEWzl2CYbC/1BYNWA9+4GntNazwOeS/48cjRthXgYpp8JJ18N/gpY96sRvWQ+0txpgnZ1ZdlPW71uFyerfXTWLQKPD079EOx4GrqPjVQz85amTmNBZuvjBZij95gXk0+F+ZdBURW8+9gItTC/sbIKF8zYXaj2c6z0BPD4YfEHjetl+1Mj2MqxzbCCrrV+ERj4yLsSeCj5+iHgKofb1Y9Iw3rzYtJi8JXA/FWw7UkJMA2gscMI+oTy7AW9KNHFLNdRApULzRsnXQWJGGz/60g0Ma9pCoQt9S3A7PgeInihZo55YC64DLb9BeLREWplftIdiRMIx5hQYcGH7nGx0HWA5pK55o0py6BiKmz58wi1cuxj14c+UWudSoc4Akx0qD1pWfPG3+jGDzWzzRsnvh+6W2G/uF360hgIAVi6KSoCuwBor5hv3piyDMonw5Y/Od6+fKcpEKa+vMjSZ6ZF97PfNR3cyVS8hVdAqA32vTICLcxfesauhf71RDuZrFppLErqglKmf3c9B5HgSDRzzJNzUFSbIiAZI5RKqTuVUmuUUmuamppsXWN77cV8PXELuJK+y7kXgadIRGcATQFjodeXZX9TlHUfBKCteLp5w+UyN8XO5yDS5Xgb85nGQNjSwxKgPn6UQ2pC7xtzLgJPMWx9wuHW5TeNqbFrYQakOszYbfFO6n1zweUQC8GelxxtX75gV9CPKqUmAyS/N2Y6UGt9v9Z6udZ6eX19va2LNdUs5RexC3rf8JXCnAvN1FWyXXpoCoTxeVxUFGe3MAOguNtMtNo8fURnweUQ64Y9LzrdxLwlEkvQGoxYc7loTXWskYO6rvc9XwmccD5se0rGbh9Sxoil/m1vMJ919Rm7M98D3hKTJjoOsSvofwRuSb6+BfiDM81JT5HHTTyh+9dsmL8K2g/A0XdH8tJ5RWPSx2slaOcPHqJdl9BJSe+bs84GXxls/8sItDI/SQWcrbgE6D6GP9FNQ6K2//sLVkH7fmjc4mAL85vGjpTLxYqgHzCfVX361+OH2eea1Ntx+MDMJm3x18BrwAKlVINS6nbg68AlSqkdwMXJn0eMIq9xtXRH++Tvzn+v+b5NRCdFYyBkacoK4Os8yEFdT6hv33r8Zga0/a/j8qZIR5MNl0BKcPbHa/q/Py85duWB2UNjIIzHpSytwqW9gTguGhmQNT33YmjbB627nW1kHpBNlsv1WuvJWmuv1nqa1voBrXWL1voirfU8rfXFWusRTfwsSub99hOd8kkw9TS5KfrQ2GE9C8MdaOCgriUUG7DYZcFlEDgMh9c52ML8pTEHl8C+WE3/evMVk2HyEuN2EQDTv3Vlflyu7GeXtDfQrOroHpjsNvdi830cLpDLi5WiRal3/vyzAAAgAElEQVRC9tEBRY7mXwYH10Lg6Ci0auzR1Bm25hLABJYO61pCA/t23qWgXDIDSmIng4iOQwAc1rWDN2FYcJlZldtpL1Gg0GiyEXCm4xAt7rr+hh6YbLjaubDzWecamCfkh6B701joYHyRADskZzoci9PWFbVmQcYiqFA7x1QV4YF9W1oH084QQU/S2BFGKWuLtggasW6lfPDYnb8K0GYRl9AT/7FEsImAp3qwoQcw9xLY+xJEu51pYJ6QV4LePfCmmHgKVEyTqSs2fbxdzQAEPFWD+xbMA/PIBmg/6EQT85qmzjA1Jb6sNw4BINhMyFtFHPfgGdDkU6F8yrhe1diXJhvxH4LNdHmqBrsLwbhdYqFxl++fF4Je3GOhD7gplDJT112rx92TeCA9Pl4r09agEfROd/VgCxKMSwtEdDAWunXBaSLqNwHRQQ9MpUxgf9dqU6toHBOLJ2gJRqwt2kokoLuVbm813ZE0Y3fWSrNWZcf4crvkhaAXeU0z04rOglWSMw0cbbe+0i7lEgh6Kgc/LAHqF0D1LBF0jA99QoW1+ARdLUSLjKCnf2CugkjnuK/x39QZRmuYaMUY6T4GOkHIV53eQvcWm/TbcebSyhNBz+BDB5h1jsmZHue+3oNtZoYytao4+w91tQDQ7a1J37dKGSt999/G7VLqFIfauplaZVHQg03EikyOdNr+PeE8s2p0nD8wDyXH7hRLY9fMLiO+mvTGCJgHZusuaN6ZaxPzhjwRdNPMtH5ejx/mXGBuinGcM324PUSx101ViTf7DyUt9G5fDaFMW9AtWGUqXe5+IfdG5imhaJzmzghTKi0IDkCwmURJStDT9K+3WFaNAofazOzSUv8m3YURfwZjBHrXqoyj1OY8EXRjoaeNZoNZqj7Oc6YPtXUzuarI0ipRgs3g8hD3psnCSDFzJfgrTXXLccqRpDtrshULMh6D7mPoErPsP61bAPqsGt2cazPzll4L3cIMKGmhx4pqMutC1QyYcPK4qhyaV4Ke8aaYdymgxnW2y6H2kDV3CxgLvaSOIr93cNpiCrfXFEPb/rQJRI1DbAlOdyugocTUL8rYv/OTqbfj2O1yqK2b8iIP5UVWZpdG0BPFdUTiCeKJDDOcBavMZjjjpL5/Xgl62mg2mJzp6WeMq6nVQA61dVt3CXS1QGkdRR53endWigWXQbARDr2dWyPzFFvxiaTguMqSFnomK7J8EkxZOu6NEVtjF9AlQwSdwcSAdHzc7BKVH4LuSWW5DGEhzl8Fh9f3rM4bT4RjcZoCYSbbCNpRWkeR1zV03869GJR73AaeUz7eSZXWM4g8FcZCzyg4YMbuOF41eqit29rsB8wD01+Jz28+l7F/p54GJXXjZuzmhaB73C68bpXZ5QLGjw7jcup6tN3kMVvKEgBzU5TUUeR1Dy04JTUwY8W47FuAw+3d1JX58Xuy30s05eP1lJu9X4YV9HG8atQIulULvRlKa3tTmjMF9V0uExzd+cy42CUqLwQdTAndIW+KVM70OHkS9+VQe9LHayMLg9L64QUdjOgc3QRt+222Mn85aCtl0bgEfBWmVndGwYE+q0bH39jtjsQ51hXNyRiBLB6YofZxsbF83gi6fzjRGcc507aCdtEQRAJJK8c9tOBAnxnQ+MkYSGHLggw2AQp/ufGhZ4z/QJ9Vo8+Pu1WjPcaI1QdmKv6TjaDPvchserH5cbvNzBvyRtCLfcP4eWHc5kwfaLWzMMNYkMbKcRGJJUhkyhQAqJtrKtiNsxmQ1pqDdgS9uxWKq3F5PPg8rqHdhWACz+Nw1WjDsVTAuWSYIwcQbIaSmj6CPoQ2+ErNA3PzHwt+Y/m8EfRhXS7QJ2d6fInOvtYgkyuLegZ3VnQnS9iX1Pbm+Q9npc9fZSrYhQM2W5p/NAbChKIJZtVaFJyuFhN7wAT1M+ZKp5h97rhcNbqvxcymZ1rpX63N+C2p61NaexhtOPnvjN99X2E/MPNH0L3DpNZBn5zpv46rnOl9LV3WbgjoY6HX9NwUw/bvgssgHjEFpcYJe5tTglNq7YNdrZBcJVrscw/tcoFxu2p0X0sXRV6XtdK5kU4zDvtY6MOO3XmXgLcUNj2WQ2vHPnkj6MU+N13D3RRgdqwPNsL+wg+ApNjXEmRmjVXBSQl6LSV+s6l0MDzMdHT6CiiuNlPXccK+li7AogUJ/QS91OchGMliqr/wCrNq9OD4yfff1xJkVm2ptRXOfcducjezYbXBW2wMki1/Kuhsl7wR9DK/Z3jBAfNP85XB+l+PfKPGAJ3hGM2dEWbW2RAcgJJaylKCPpzouD1m6rr1CQh12Ght/rGvNYjHpayvwu1qgWLjcinNduye9AFT8nWcjF2AvS1dzKixOXaLayjN1hgBOPlq46rZ/TeLrcwf8kbQs74pfKVw0lXw7h8g0jXyDRtlUj7IWXZcAgDF1dZuiiV/b8oVj4OMATCCM7W6GI+VjS16fLwpQXcTDGcxuyyqNFb6pkcgFrHZ4vwhkdDsb+1iVp3NsVtS2zN2O7MZu/MugaIqWP8riy3NH/JG0Mv8bjqzuSkATv2QScnb+sTINmoMkHIJWLdyWkwA2e2lzG+mrVn179TTTLbL+t9YbWpesq8laN1/Hu0yu+UkBb3Mn6XLBeDU603dkXGwyOhIR4hILGF97PYE9GsoTbpcsnpgevyw+IOw5c8FW9sljwQ9SwsdTLZL5YxxMXW17ePtZ0FasNCVMqKz7xU4ttfaNfMMrTX7WrpsZLj0WpAAJT4LY/eEC6Bs4rgau9Znl70+dI/bRZHXRVe2D8wlN5jU5o2PWLtmnpA3gl7q99AdjWeuqtYXlwtOvQ52P1/w+2Huae6krsxnrVId9EurK/VZmLaCmQGhYF1hi05rMEIgFLM3+4HeoKjfk/3s0u2BRdeaTK0Cr+2y107KIpgHpnIZFxXG2Mt67E4+FSYugnW/tHbNPCFvBD3rwF2KpTcaX+baB0euUWOA7Uc7mTeh3PoHu1p6BKfMioUOUDkN5lwIbz9U0BkD2492AjBvosX+7e4N2oFxF2bdtwDLboZEFN75mbXr5hnbjwYo9rrtBZyLqsBl3C2WZkBKwdIb4NA7cGSTxRaPffJG0C25BcDUdZl3qRH0Ag0waa3Z2djJvIll1j/cN60u2bdZpYWmOOMOs6lIAccpdjSaBVTzrfbvAJeLpdklmLpEs8+FNT+FhIX/SZ6x42gncyeU4XJZSFmEfsYIWJwBASy+Dtx+WPOAtevmATkJulJqr1Jqo1JqnVJqjVONSodlQQcjOsFG2FKYedOH20N0hmPWLUjoJ+g+j6lmmfW0FczDsmoGvPVj69fOE7YfDVDu9zDJ8ubQvUE76J0BZe3nBTj9Dmg/UNArR7cfDTDfztjtE/8BGzOgkhpYfK0J7BdYcNQJC/0CrfUSrfVyB86VEUuZGCnmXATVswtWdLYfTVqQEyxakNFuiAbNIqEkWaeFpnC5YfntphRA4xZr188Tth81sx9Li14g6UNXxi2AcQlAlpkYKRZcDhVT4c0fWbt2ntDeFaUxELY++4F+xggkx66VhyXAmR8z2Uhv/9z69ccw+eNy8dmw0F0uOP122P+a8ZkVGDvs+ngHuATA9K8lCx2Mr9fthzd+YO1zecLOxk57FmRXCxRXmQAnJg8dLASdwXz2tFtNYL8AH5i97iybs8viXgu91EpQNMWkRTDzbPPALKCCXbkKugaeVkqtVUrdme4ApdSdSqk1Sqk1TU32o/aWFhD0ZdnNJt/65e/YvvZYZfvRAHVlPmpKfdY+2D1Y0C2lhaYoqTELjdb9CgJHrH12jNPcGaY1GLHvEiju6xKwYYyAMUa8JfDyf1lvwxinN+Bs0ULXul+GFkCZlaBoX878qCm1sPVP1j87RslV0M/WWi8DLgM+oZQ6d+ABWuv7tdbLtdbL6+vrbV/I9k1RVAlnfMTUH2neYfv6Y5EtRzpYMMmmBQn9boqsVzMOZOU/QiIGr91n/bNjmK2HjQVpu38HuATAxtgtqYHTPgwbfwfH9llvxxhm65EOyvwe6xku0S6TRz7Q5WJn7C68wiySe/FbBVMQLSdB11ofTH5vBH4PnOFEo9Jh+6YAOPMfTI2MArJ0wrE4244EWDS1yvqHkxsYD84UsNG3NbPhlGvgrZ/0unIKgA0H2wA4ZUql9Q8HWwbNfsDG7BLgrE+anOtX/8f6Z8cwGxraOWVqhfX4RM/YHRAUjcTQVkXZ5YZzPgdHNxZMyW3bgq6UKlVKladeA5cCI5bYWV5kboqOkI2boqzeuF42/KZgVjduOxIgGtcsnmZHcJKur7KJPW9VFHvpCNnMKT/7n0yQ9fXv2/v8GGRjQzsza0uoLLG4YAtMZlXZhJ4fK5KLvmyN3cqpZiHXOz+HjsPWPz8GicYTbD7cwaKpOYzd0t7+LSvyoLXNB+aia02K89++URBWei4W+kTgZaXUeuBN4Amt9YjlWBV53RR73bR12cwpP/sz4PLA8//mbMNGiY0H2wHs3RSdR8Hl7cnCAKgq9tLWZVPQJ54EJ10Jr30POhvtnWOMsfFgu72+TcSN6PR5WKYeCrbH7rmfM+f929ftfX6Msf1ogEgswaJpNmaXqfHV54FZVWxiSLbGr9sD53wWDq8riBRR24Kutd6ttT41+XWy1vprTjYsHVUlXo7ZFZ2KKbDiH2DDb+HwBmcbNgpsbGinqsTLtGqLPkgwN0XZBJMFlKS6xEdbV2TobeiG4sIvmYJUf/sPe58fQ7QGIzQc67Y3++lqAZ0YYKF7cLuU/Qdm9SwTIH3759C03d45xhAbG4wxstiuMQL9HphVyQdme7fN/j31eqiZA8/8a95nvORN2iJAVYnP/k0BsPIzJkj63Jeda9Qosb7BWJCWfZBgboo+ggPmpkhoCNiZtoLZc/S0D8Pan0LLLnvnGCNsaDD+c1vxiR7B6e1fpRSVxV7aunNYsXzuv5iMl9VfsX+OMcKGg+2UF3ms13CBXgu9tDfBojqZ5XXM7gzI7YVLvgLN2+DtB+2dY4yQX4Je7LU/bQWTG3zu52Dns7A9f8uTdoSibD3SwbIZ1cMfnI7Oo/0sHDAPSzALPmxz/t0mL/3pL9o/xxhg7b5juF2KRXYs9DQWJJixa3t2CVBaBys/bXbc2fOi/fOMAdbsbWXJ9Cr7xkhxNXh6U3Wrio2FnlP/LrzCVGl9/t/zevOWvBL06lKv/adwijM+CnXz4cnP5e0GGGv3HkNrOPOEmuEPTkdn42ALveemyKF/yybAeXfBtidg65P2zzPKvLG7lVOmVvZkp1giVSExzQwop4clwHs+BVUz4YnP5m19otZghO1HO1lxQu3wB6cj2DiEMZJDnygFl95rXGbPj7j3eMTIK0HP2eUC5sl+xbehbR+89C1nGnaceWNPK163Yul0GxZ6mqAdmIclQJtdP2SKsz4B9SfCX+6CSDC3c40CoWicdQfaOHO23Ydl0kIvHSjovtyNEW8xXP5NaN4Or/53bucaJd7aa1Jb7ffvYGOk0gkLHWDqMjj9I/DGD6FhREtTjRj5JejFXtq6o9bzTQcy+xxY/CF45btw9F1nGncceWNPC4unVVGc3K3FEj1Bu/6CXtmTKZCj6Li98L7vmMJSq/PP0ll3oI1IPMEZs3IQHG8J+PuvgMwpi6gv8y+FEz8AL/4nNO/M/XzHmTd2t+L3uOy5syCtu9DncVHm9zjTvxd9Cconwx8/nZelofNK0KtLfMQT2n7gri/v/ZrxxT16B0RDuZ/vOBEIRdnY0G7fwulIbvhRPqnf21U9qXUODOKZZ5nCXa//b95tyPvarhaUgtPtCnpHg8moGkBVic9+FsZALvsPY60/dkfeic5ru1tYOqMKv8eGMaK1KTExQNDBWOk5GyMARRVwxbeg8d28zNjKK0FPic6xoAP/uNI6uPJ75h+3+qu5n+848dKOZmIJzfkLJgx/cDraDpjvVTP6vV1V7EUpaHGibwEu/SrUzoHffyyvSpQ+v62RpdOr7C0oAtO/ldMHvV1d4qUzHCMUdaC+ecVkeN9/waG380p0jrSH2HK4g/Pm2xy7wSaTGls1c9CvHImvpVh4udmq7qVvwt6XnTnncSKvBH1Csi710Y6wMyecf6nxmb12X95kvaze2khlsZdlM2yk1IFxhcAg0fG4XdSW+mnscGi24iuFv/uRCWL94ZN5sQqvMRBiQ0M7F5042ALMmvYGqBos6BOTY7cp4NDYPfkqOPXvjejkSdbL6q0m5fCiE3M1Rgb3b32Zn0an+hbMLKh6tpnB51FJi7wS9MmV5qY44pToAFzyVVNK89GPjHmfZCKheWFbI+fOr8fjtvmva9sPvrJ+tdBTTKzwO9u3U5fBxV+GrX+GF7/p3HlHiBe2mgyVC+zOfqIh8wCrnDHoVxNHYuxe/h9QOw9+e0teFO9avbWRadXFzLNavz9F+37zPc0MaFJlEUed7Ft/GVzzE+hqhkduzRvXVl4JesrKOdru4D/OVwIf+pVZAvybvx/TOahr9x+juTPCRQttCg70ugTS5ABPqihybvaT4qxPmC2/nr93zBdA+uu7R5hSWcSJk21UWARjnYPZc3UAEyv8AA6LTrkZu4k4PHzDmM4q6gzHeHlnExctnGAv/xyGtNAnVhTR3BkhEkvk0MoBTFliXFu7X4CnPu/ceUeQvBL0iiIPxV63s1YOGH/ytQ9Cy04j6mM0SPr4Owcp8rq4+KRcXAL7094QYKxIRwUHzIPj/d+FyUvgkdvgwFvOnt8hWoMR/ra9ifefOsW+4KQsyDT9m9rG7oiTxgiYFbrXPGCytX5785jNT3/63SOEognef+rggHHWtO03exsUDc6QSfVvY8Dh/l16A7zn0/DWj/Ki+FxeCbpSikmVRc4LOphNea/+gdlS7ZHbxlxNh0gswRMbD3PJSZPsLXgBSCTMsvzauWl/PamiiNZghHDM4Y2JvcXw97812Qm/vAaObnb2/A7wxMbDxBKaK5dMtX+SlMsuTf9WFnvxe1zO+nlTzLvEWJI7n4XH/8H8n8cYv3/nINOqizltps3VzQCtu0y55jSkXFqOGyQAF98DJ74fnrob3v6Z8+d3kLwSdDBTV0ddLn1Z/EETDNn2BDz2kTFl7azeepS2rihXLcnBwmk/YDYIqF+Q9tc9Vo7TbheA8olw8+NG3H925ZjL/390bQPzJ5bZd7cANG01FmSatDqlFBMrijg8UmP3tFuM8Gx6BP7wiTFlkBxpD/HKzmauXJLD7AegaRvUL0z7q94Z0AiMXZcb/s8DMPdik5++/mHnr+EQeSfo06pL2Nc6gkv2z/yoCZS++3vjfhkj5QEefHUvU6uKOW++/V2faE5W6qtLL+jTakzlxn0tI/Q3V8+Cm/9gyhj/9PIx435Zd6CNdQfa+PszZuQmOM3bzcMywzmm1xSzv2UE/dxn/xNc8H9h/a/gd7dAbATEzQY/f30vAB86fXCwOGtCHWYNRQZjZGqy6uiBYyM0dj1+uO4XMOts+P2dY9b9kneCPqe+jKZAmIDdzRiyYeWnjd9357Pwsw+M+n6ZWw538PruVm4+a6b97BYwFiRkvCnm1Jvsg93NnfavMRz1C+C2p0yWzc+uNMWmRpmfvrKHcr+Ha5anjy1kTdM2qJ+f8dcn1JWxuzmY+0rnoTjvLlj1DZNZ9POre3f4GSVC0Ti/emM/F584kek1NqorpkhtH5lh7FYUeakr87O7aQTHrrcYbvgdLHyfcb888yUTkB5D5J2gn1BfCsDuphGO6J/2YfjgQ8Y18MPzRtWavG/1Tkp87twsHIBD70DF1H7bd/VlQrmfUp975Pu2eibc9leYcCI8fCOsvnfU/L57moP8ecNhrjt9uv3YBED7QZOyOHFRxkNOqC8lEIrR3DnCrrwVHzMugoNr4f7z4dC6kb3eEPzqjf0c64py29npfd9Zc/gd833iyRkPmVNfyq6RHrveYvjgz8xK6Fe+C7/64JjKU887QZ+TFPRdI/kkTnHSlXD7M2a69dPL4KVvH/cn8qaD7Tyx8TAfOXu2/dWLKRregmmnZ/y1UooT6suOT9+WT4Rbn4SlN5q6JD+/sjct7Tjyrae34fe4+Oh5c3I7UcOb5vv0zP17QmoGdDz6d9E1ZiakNTxwqdlN6jg/NDvDMe57ficr59bar66Y4sBbpuBZmlWiKU6oLzs+fetym/IA7/svs6jrh+fCvldH/rpZkHeCPqOmFK9bse1I4PhccNIpcOcLZjnwc182wp6a/o0wiYTmK3/eTFWJl4+ce0JuJwscMWlf04fex3vehDK2HgmMrFsghccPH7gPPvA/cPBt+P574J1fHLdVpWv3tfLnDYe5beVs6sv9uZ3swFtmI/IhLPTUgpqtx2vsTllqxu6cC+GvXzDuw9Y9x+fawPee30lrMMK/vDd9INMSDW+asTtEjGPuhDKOdUWdT11Mh1Kw/FYz03S5TUzoydGvMJp3gu7zuDh5SiXv7G87fhctqYFrH4K/+7HxQ//vWfD0/xvxRUi/fms/b+5p5fOXLezZaNg2O58132edM+RhS2ZU0RQIc7CtO7frZYtSZgPvj70ME08xGRoPXGoEfgQJRePc9cgGplYV87Hzc7TOwfTv9DP7bbwwkMmVRdSX+1l34DiO3bJ6uP7X5sF56B343pnw3FcgPLKW7KaD7dz/4m6uOW0aS6bbLFORonW3+Zq5csjDlkw3+enHVRumLoN/eNUkU7x5P9x3htnmcpRciHkn6ADLZlSzvqHN2VVhw6EULL4WPrnG7ML+6n3w30vhlf8ekZtj25EAX3tiC++ZU8sHcw3WgVmlWTHNlDkYgtQuSG8fz5sCTH7xh58wBdOO7YUfXQiP3A6NW0bkcl97Ygu7moL8298tys13DkZsmrfBgsuGPEwpxbIZVbyz/zgXK1MKlt0En3zL1IB56VvwP6eZTI0RyOLqDMf4zMPrqCn18cUrTsr9hNuSmzcvWDXkYSdPqcTrVrx9vPvXVwqXfcO4uEprTRXMH19oHvLHuYZRXgr66bOqCccSx//GAFNc/8r74I7Vxh3zzBfhvxaZqncOZcO0dIb56M/XUOr38J3rluSWSgdmF50dT5vFEcOca8Gkckp9bl7bNQrZES6X8al/ai2c/RnzEPrfFSZwuu9Vx26OX72xn5+/vo+PnntCbmmgKdb9ClBmG7NhWD6zhr0tXcdvBtSXiinwd/fDbU+bxU9P3Q3fXWwEPrXTUo7E4gn+6eF17GkO8t0PLck97qM1rP+1cWXVDO12LPK6WTS1ktd3teR2TbvMWAF3vABX/9D05y/+D/zwHNj4yHGrBZOXgn7O/Hp8HhdPvTuK6YRTl5mc6tufNYHG578G3zkZHr4Jdjxje1FSS2eYG378BofbQ/zgxmU99Wty4q0fQTwCy28b9lCv28UFCyfwzOajxBOjVCGxqMIskvmnTXDuXbD7RRO7+N6ZxqoMHLV96kfWNvB/H9/I+QvquWuVA77dcCesfRDmv3dQSeJ0pMo2/HXTKI7dGWfCrU/Ah580bq7nvgLfPhF+dyvsWm17UVIsnuCff7ueZzYf5UvvO4n3zKnLva37XoUjG4y/OgsuOnEi6xvaR+eBCcYoOfVD8Ol3zGwzFoZHb4fvnGJqwoz05Uf8CiNAmd/DefPr+dP6w87Ul86F6afDDb+FT70NKz5u6if/8hr45lz4/T+YvTXD2QXB3j3UzpXfe4U9zUEeuOV0Tptpc5OFvrTugVf/x+xyM0SOdF8uO2UyzZ0RXtzujNVmm5IauPD/wme3mJvDX2asym8tgJ9cBq//wJQyyMJyjyc03/zrNj73u/WsnFPHD248Dbcrx5kPwIv/Yep0n/PZrA6fXVfKwknlPPZOw/EJPA/FrJVm9e4n3oQz7oBdz5nc9W/OMyWPtz+ddZCvpTPMzT95kz+uP8Tdly3klvfMyr19sYj5f5dPMSKZBZcvmgyYukejisdnZpsffwOufxgmn5qx5IaTqOM5qJYvX67XrHFmr75XdjZzw4/f4CtXnszNZ81y5JyOEAvDrudh8x9MCYFQOyg3TD0NTjgPpq8wVdxKe62XUDTO91/Yxfdf2EVNqY/v37iMpTNyqHmRInAUfn6VWWH3sZezsiDB1I057z+fZ0pVMY987KzcXT5O0rjF9O3mP0BjsiZM5XSYfZ7ZWnDKUnPjuHp3xNl8qIP/9/hG3t7fxgeXT+MrV55CkdfGjjkDWf8b+P1HYelNxg2XJb9+cz+ff2wjD912hjMuH6eIdsPO52Dz48ZvHQmAywvTlpv+nXGmKbLWZx2D1po/rj/EV/+8hY5QlK9ddQrXOhHzicfgj58yq14/+DOTQpwlNz3wBlsOB3jxrvMp8eUYHxkjKKXWaq2XD3tcLoKulFoFfBdwAz/WWn99qOOdFHStNR+6/3U2H+rgT586m1l1pY6c11FiEdj/Guz5m9mK7dDbZj9PgMrphCcsZkNkMn9qKGF9Vx0LT17Kv1x1JnVlOabQRbpg06NmwU64w2Q5nHC+pVOkROdL7zsp90UhI0XzTtj9vOnfPS9BKBnI9ZWhJy2isXQ+q5sqefJQKa1FM/jI+87mqqXTc39AteyCl79tUixnnQM3PALe7F1j4VicS7/zIgmt+dMnz+7ZtX5MEQ3B/lfNuN39AhxeDyS1omom8clL2JGYyuMNpbzcWknZ5AV86ZoVnDSlIrfram3cLM99GQ68Aed/Hs6/29Ip1u5r5ZofvMaHTp/Ov129aGwZJDYZcUFXSrmB7cAlQAPwFnC91jpjKT0nBR3gQGsX77/vZfweF9/+4BJWznXAZzeChIPH2LvxNY7tfIPEwXVMDm5lhjqKW/X5H/grzX6f5RPNZrVlE025UH+52ZjCX27yndFJV4M26ZNdzdBxyPgbG9ZCNAhTliVL1y623FatNR95aA2rtzXy2Uvmc+e5c1ATyfEAAAh6SURBVPB5xrCHLhGnZd8GDr77Gt371lLSvJETEnspVX3qmbh9pm/LJiX7eBKU1if7tay3f5Uy2qUTkIiZjbWDTaba38F3zLaFLq9ZkXnhF00+vUXW7mvl+h+9wQl1pfzXh5awcFKOQjjCJLqOcXjr6zRvf51EwzvUBbYwlSZcfcducY0Zs+nGburLW9w7brU2xeK6WkwQsfFdk8/f0WD+L5d+DU69zlZ7v/6Xrfzgb7u4/ozpfOHyEynPNe13lDkegn4WcI/W+r3Jnz8PoLX+90yfcVrQAbYe6eCjP1/LvpYuFk2t5PwF9Zw8pZJp1cVMqPBT7vdS5HU5/pTWWhNLaELROKFognDMfO8IRWntjNDaFaE1GKEpEGZvc5A9LUEOtHYRjZv+PqG+lCsWTeZ9J9exwNdiarG37DCbJASOmK/OI8ZtEs+yyJLbDxNPMu6dk64yebsu+yIcisb53O/W8+cNh6kr8/PekyeybEY1M2tLmFJVTHmRh1KfB5cTvugBaK0JxxKEowlCsTjhaIJgJMaxZL8eC0ZoCUZoONbN3uYge1uCPUvqfR4X586r4/JTJrFqlqIksNf0b+vuZN8eNv3aecS4xLKlpNa4HE44DxZdm3YzaCu8tKOJf/zNOlqDEVbOrWXl3DpOnFTBtOpiasv8lPrd9jZTzoJ4QhNO9muqfwOhGK1dpm9bgxGaO8Psa+0y/dscJBgx8araUh+XnjyJ959cw4rKdlytO03/psZu55HeMawtxLiqZhpf84LLTUaW3+bORpjx842ntvHDF3dR6vPw3pMnccbsambVljK1upjKYu+IjV0wiwIj8QShaLxnHNeV+2y7gI6HoF8DrNJafyT5803AmVrrT2b6zEgIOhjhefitAzz2zkE2HWwflJ3hUlDq9+BxKdwuF24XuJXC7Va4lcKlFAmtSWjQaBIJMyB6fta9Pye0JhIz/6hskkCKvC5m1ZYyq7aU2fWlnDqtkmUzq5lQbiF7JRY22RThDoh0JqvoKVCY7/4K45Mvqhw2LdEOL+1o4uev7ePVXS10hgdnQJT63Hg9Ljwu05cel8LlUrhdpn81JPtXo5OG2eD+Ne9F4gnCsUTWawwmlPuZVVfK7NpS5k0sY9nMak6ZUpn9bCIeNX0a7uz9rhOgXKYvXW4j5CV1Zncrh2kNRvjF6/v4w7qDaeuQ+Nwuin1u05fJ/ky99iTFKNW/WtOnj3Wffu/t33DMGB8pw2Io3C7FtOpiM3brSjlpSgWnzazmhLrS7AyklAUeDvSO32h3cowq891TZMZuSZ0lt1W2bGho48FX9rJ6WyNtXYNTB4u9bop9blxK9ehC37GrFD39mk4fEsl+Tv0cjRvxjsQHj99cYiZjRtCVUncCdwLMmDHjtH37Rnbvw85wjL3NQRqOddEUCNMZjhMMxwhGYsQTxqpO9Pke15p4QuN2KRTgUgqlFK7keEv3s8/tosjrpsjrwu9Jfve68XtcVBR7qSnxUVNqvkp87oLw4YGx6vY0BzlwrIsj7SE6QzEC4RjBcIxoPNHbp6mvZN+6evrP3CCKgf2b/B0mbdLvdVHkcePv278eNyU+N9XJvq0u9VJd4sObS/XJMUZrMMKe5Ng9FowQjMQJhGJ0R2I9fTlwDENvH7qSfah6fh7cv/5kv/b2rxnLfo+LUr+H2lIf1aU+akp8VBR7nckEGgMkEpp9rV0caO3iUFs3HaEowXCcrkiM7miceIIePeirC1qDy5UcrwyvD153/zGb+u73uFg5t45JlfYeWuPG5SIIglDoZCvouZg3bwHzlFKzlVI+4EPAH3M4nyAIgpADtpM0tdYxpdQngb9i0hZ/orUeW/uKCYIgjCNyyrrXWj8JPOlQWwRBEIQcKJyIkiAIwjhHBF0QBKFAEEEXBEEoEETQBUEQCgQRdEEQhALhuJbPVUo1AXaXitYBo7CNzqgif/P4QP7m8UEuf/NMrfWwdQOOq6DnglJqTTYrpQoJ+ZvHB/I3jw+Ox98sLhdBEIQCQQRdEAShQMgnQb9/tBswCsjfPD6Qv3l8MOJ/c9740AVBEIShyScLXRAEQRgCEXRBEIQCQQRdEAShQBBBFwRBKBBE0AVBEAoEEXRhTKOUqlJKfTz5eopS6pERvNYSpdTlI3V+QRhpRNCFsU4V8HEArfUhrfU1I3itJYAIupC3SB66MKZRSv0GuBLYBuwATtRan6KU+jBwFVAKzAO+CfiAm4AwcLnWulUpNQf4HlAPdAF3aK23KqWuBf4ViAPtwMXATqAYOAj8O7AH+C5QBHQDt2qtt1m49gvAeuA8zHaPt2mt3xyZnhIEQGstX/I1Zr+AWcCmNK8/jBHgcoxYtwMfS/7uO8Bnkq+fA+YlX58JrE6+3ghMTb6u6nPO+/pcuwLwJF9fDDxq8dovAD9Kvj431Xb5kq+R+sppk2hBGGWe11oHgIBSqh34U/L9jcBipVQZ8B7gd0qp1Gf8ye+vAA8qpX4LPJbh/JXAQ0qpeYAGvNleu89xvwbQWr+olKpQSlVprdts/r2CMCQi6EI+E+7zOtHn5wRmbLuANq31koEf1Fp/TCl1JnAFsFYpdVqa838VI9xXK6VmYSzubK/dc6mBlx7i7xGEnJCgqDDWCWBcG5bRWncAe5L+cpTh1OTrOVrrN7TWXwKagOlprlWJ8aeDcbPY4brk9c4G2rXW7TbPIwjDIoIujGm01i3AK0qpTcB/2jjFDcDtSqn1wLuYACvAfyqlNibP+yomePk8cJJSap1S6jrgP4B/V0q9g/3ZbCj5+R8At9s8hyBkhWS5CMIIkcxy+ZzWes1ot0UYH4iFLgiCUCCIhS4IglAgiIUuCIJQIIigC4IgFAgi6IIgCAWCCLogCEKBIIIuCIJQIIigC4IgFAj/P2V5IrtMgzhnAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJztvXl83FW9//88s2WytmmSpvtCW1qgLS0UaClVQVB2QUVEREUEvSpXvdcF+V0V/eJVv4re64IKgpSvgCirKCggIBSxtIXu0IUuNOmWdZJMJpnt/P44M0mazCSzfCb5fJL38/GYx3zymc9yJmfO6/M+7/M+76O01giCIAjOxzXSBRAEQRCsQQRdEARhlCCCLgiCMEoQQRcEQRgliKALgiCMEkTQBUEQRgki6IIgCKMEEXRBEIRRggi6IAjCKMEznDerrq7Ws2bNGs5bCoIgOJ4NGzY0aq1rhjpuWAV91qxZrF+/fjhvKQiC4HiUUvszOW5Il4tSyq+UelUptUkptU0p9e3E/nuUUnuVUhsTryX5FloQBEHInUws9G7gHK11h1LKC6xRSj2V+OwrWuuHClc8QRAEIVOGFHRt0jF2JP70Jl6SolEQBMFmZORDV0q5gQ3AXOAXWuu1Sql/A76rlPom8HfgJq11d+GKKgiCU4hEItTV1dHV1TXSRXEUfr+fadOm4fV6czo/I0HXWseAJUqp8cCjSqmFwNeBw4APuAP4GvCd/ucqpW4AbgCYMWNGToUUBMFZ1NXVUV5ezqxZs1BKjXRxHIHWmqamJurq6pg9e3ZO18gqDl1r3Qo8D5yvtT6kDd3Ab4HT05xzh9Z6mdZ6WU3NkFE3giCMArq6uqiqqhIxzwKlFFVVVXn1ajKJcqlJWOYopYqB84A3lVKTE/sUcBmwNedSCIIw6hAxz558/2eZWOiTgeeVUpuBdcAzWus/A/cppbYAW4Bq4Na8SiIIgiMIdke5f+3bdIajI10UoR+ZRLlsBpam2H9OQUokjCpicc1XHtrE8tlVfOi06SNdHMEC7nxpD//z7C46w1E+teq4kS5OWtxuN4sWLSIajXLCCSewevVqSkpKRrpYBUVyuQgFZXNdK4+8Vs9XH9480kURLOL1t1sB2FofGOGSDE5xcTEbN25k69at+Hw+fvWrXx3zudaaeDw+QqUrDCLoQkF5LdH4wXTVBefzxqE2APY2Bke4JJmzatUqdu/ezb59+5g/fz4f+9jHWLhwIQcOHODpp59mxYoVnHLKKVxxxRV0dHTw3HPPcdlll/Wc/8wzz3D55ZeP4DfIjGHN5SKMPfY3Bftsd3LilIoRLI2QL+FonKPtZrpJQ3tm006+/cQ2th9ss7QcJ06p4FuXnJTRsdFolKeeeorzzz8fgF27drF69WqWL19OY2Mjt956K88++yylpaX84Ac/4Mc//jHf+MY3+OxnP0tDQwM1NTX89re/5ZOf/KSl36EQiKALBeVga6hnu7FD5p05nSNtJqRuQqmPxo4wWmvbRrOEQiGWLDEpplatWsV1113HwYMHmTlzJsuXLwfgX//6F9u3b2flypUAhMNhVqxYgVKKa665ht/97ndce+21vPLKK9x7770j9l0yRQRdKCj1rV3Mri5lb2OQ5mB4pIsj5MnhhKCfNKWCl3Y10haKMq5k8FmNmVrSVpP0ofentLS0Z1trzXnnnccDDzww4Lhrr72WSy65BL/fzxVXXIHHY3+5FB+6UFAOBUIsnDoOgCYRdMdzOJAUdFOnzZ3OrtPly5fz8ssvs3v3bgCCwSA7d+4EYMqUKUyZMoVbb72Va6+9diSLmTEi6ELB6AxHae2MsGBSOW6XojkoLhenkxT0eRPLAOjocvZAd01NDffccw9XXXUVixcvZsWKFbz55ps9n1999dVMnz6dE044YQRLmTn270MIjiXpYqkpK6LC76Et5OzGL0BDRzdFHheTx/sBaO+OjHCJ0tPR0TFg36xZs9i69dhJ7eeccw7r1q1LeY01a9Zw/fXXF6R8hUAEXSgYgZBp7BXFXkqLPBK2OAoIdEYYV+ylwm/85u0Ot9AH49RTT6W0tJTbbrttpIuSMSLoQsFICvq4Yi9lRR7aRdAdTyBkBL3cb6TD6S6XwdiwYcNIFyFrxIcuFIy2foIuFrrzSQp6WZER9PYu+7pcxiIi6ELB6LHQS4zLpUME3fG0dSUEPWmhS53aChF0oWAc43Lxi6CPBgKhCBXFXoo8bnxul7jRbIYIulAwAqEIbpei1OemzOcZ1f7WsULS5QJQ7HPTFY6NcImEvoigCwUj2fiVUmKhjwJicU17V5SKpKB73YQi9hV0t9vNkiVLWLhwIVdccQWdnZ05X+uFF17g4osvHvSYjRs38uSTT+Z8DysQQRcKRiAU7bHmSnxuOsMxtNYjXCohV5IDoMdY6BH7pp8d7vS5uQh6NGqtkSOCLhSMpL8VwO91A9Adta8ACIOTnBiWFPQij8vWFnpfsk2fC/DXv/6VBQsWcMopp/DII4/0XOvVV19lxYoVLF26lDPPPJMdO3YQDof55je/yYMPPsiSJUt48MEHaW5u5rLLLmPx4sUsX76czZvNmgC33HIL11xzDStXruSaa66x9HtKHLpQMPr6W3sEPRLv2RacRc9EsUSEi7HQMxD0p26Cw1usLcykRXDB9zM6NJf0uV/96le5/vrree6555g7dy5XXnllz/UWLFjASy+9hMfj4dlnn+Xmm2/m4Ycf5jvf+Q7r16/n5z//OQA33ngjS5cu5bHHHuO5557jYx/7WE+ysO3bt7NmzRqKi4st/beIoAsFoy0UYcYEs+SX32s6g13RGOMYPDufYE/6Ri1Bwodu40HRfNLnvvnmm8yePZt58+YB8NGPfpQ77rgDgEAgwMc//nF27dqFUopIJHUs/po1a3j44YcBk16gqamJtjaTF/7SSy+1XMxBBF0oIMZCNz8xv8dY5XYWAGFw+s4rACPoyX2DkqElbTX5pM9NdV6Sb3zjG5x99tk8+uij7Nu3j3e9611Zl61vGaxkSB+6UsqvlHpVKbVJKbVNKfXtxP7ZSqm1SqndSqkHlVK+gpRQcCRa65Qul66oCLpT6W+h+zN1udiYdOlzFyxYwL59+3jrrbcAjhH8QCDA1KlTAbjnnnt69peXl9Pe3t7z96pVq7jvvvsAEyVTXV1NRUVhV+zKZFC0GzhHa30ysAQ4Xym1HPgB8BOt9VygBbiucMUUnEYwHCMW130iIhIuFxtHRQiD09YvysXvsXeUSyakS5/r9/u54447uOiiizjllFOYOHFizzlf/epX+frXv87SpUuPiVI5++yz2b59e8+g6C233MKGDRtYvHgxN910E6tXry749xnS5aJNnFkyD6U38dLAOcBHEvtXA7cAv7S+iIITGWDNJVwuTrfoxjKBUASPS1Gc6G0V++wd5ZJv+tzzzz//mNzoSVasWNGzCAbArbfeCsCECRMGXOexxx4bcP4tt9ySUflzIaOwRaWUWym1ETgKPAO8BbRqrZOPpzpgamGKKDiRQOexgl7kFUF3On0nioH9B0XHIhkJutY6prVeAkwDTgcWZHoDpdQNSqn1Sqn1DQ0NORZTcBp9c6FDnygXEXTH0ndMBHpnispkMfuQ1cQirXUr8DywAhivlEq6bKYB9WnOuUNrvUxrvaympiavwgrOIVWIG4gP3cm09ZkoBmZQFNJPFhOhz558/2eZRLnUKKXGJ7aLgfOANzDC/sHEYR8HHs+rJMKooq2/D11cLo6nrZ+F7nMb+ehO8ZD2+/00NTWJqGeB1pqmpib8fn/O18gkDn0ysFop5cY8AP6gtf6zUmo78Hul1K3A68BdOZdCGHUMGBQVQXc8gVCEGVW98dPJcZHuWAz6TRabNm0adXV1iJs1O/x+P9OmTcv5/EyiXDYDS1Ps34PxpwvCAJKpc5Mr2yR96CFxuTiWvhPFAIoSFno4hcvF6/Uye/bsYSubYJDkXEJBCIQiVPg9PRERErbobLTWtHVFj3W5eNILujAyiKALBaF/RITLpfC6lWRbdCgd3dFjJopBH0GPSZ3aBRF0oSD0F3Qwg2gRafyOpK3r2NS50DsoKha6fRBBFwpCoF+IGxiLThq/M0lOFKvwD7TQpddlH0TQhYLQP8QNRNCdTP+oJTALXIBY6HZCBF0oCGktdHG5OJL+M39BBkXtiAi6YDn9U+cm8bnFQncq/SeKgbhc7IgIumA5neEY0X4REQA+j1sav0PpSZ1bksLlIr0u2yCCLlhOKn8riMvFyQRCEVwKyny9E4t8bjO3QHpd9kEEXbCctILuVoRlxSJHEghFKPd7cblUz75el4vUqV0QQRcsZ1ALXaw5R5JqTESiXOyHCLpgOektdBeRmGTfcyIpB7lF0G2HCLpgOWKhjz7SzSsAEXQ7IYIuWE5biphlMFEuMijqTFJZ6B6XQimJcrETIuiC5QRCEZSC8qJjszNLHLpzCYSiVBQfW59KKalTmyGCLliOSZ17bEQEmC66xKE7D631gOXnkkid2gsRdMFyUnXPwURFSNii8+iKxAnH4mnqVCaL2QkRdMFy0gm6TCxyJj2zRNM+pKVO7YIIumA5aQVd/K2OJF3UEshD2m6IoAuWk07QvW4XcQ1REQBH0ZNp0Z/uIS1uNLswpKArpaYrpZ5XSm1XSm1TSn0hsf8WpVS9Umpj4nVh4YsrOIHBBtBAwtycRnJxi3QWuvjQ7YNn6EOIAv+ptX5NKVUObFBKPZP47Cda6x8VrniC00iXOhd6BT0S1eAb7pIJuTKUy0WWFbQPQwq61voQcCix3a6UegOYWuiCCc4kFIkRiQ1MnQt9kjnFYsDAzwV7MtigqIyL2IusfOhKqVnAUmBtYtfnlVKblVJ3K6UqLS6b4EAGs+aKZFFhR5Ks03L/QPtP0jnYi4wFXSlVBjwMfFFr3Qb8EpgDLMFY8LelOe8GpdR6pdT6hoYGC4os2Jmhuucggu40AqEIZUUePO6BcuF1uwhLwjXbkJGgK6W8GDG/T2v9CIDW+ojWOqa1jgN3AqenOldrfYfWepnWellNTY1V5RZsylADaCCDok4j3ZgIyGQxu5FJlIsC7gLe0Fr/uM/+yX0OuxzYan3xBKcxqIUuLhdHki5qCSQO3W5kEuWyErgG2KKU2pjYdzNwlVJqCaCBfcCnC1JCwVGIy2X0YSz01FLhdSsTtSTYgkyiXNYAKsVHT1pfHMHpDCboXre4XJxIIBRhdnVpys/EQrcXMlNUsJS2ZOrcNBERIBa60xjMh+5zu6U+bYQIumApgVCE8iLPgNS50LsGpSxD5ywGE3SvR4mFbiNE0AVLaQ1FGF+SehqoVwZFHUd3NEZXJJ62TosSE4u0loe0HRBBFyxl0O55j4Uugu4UAmmWE0zik16XrRBBFyyltTPC+JI03XO3ccOIhe4c2gYZ5IbeXpc8pO2BCLpgKUPFLINEuTiJ1kEmioEMdNsNEXTBUloHjYiQxu80BgtDBXlI2w0RdMEykqlzx0vjHzUMJegy0G0vRNAFywiGY8TiqVPnQh9/qzR+xzCUoBfJQ9pWiKALltHaGQZIOyjqcSmUksbvJHqXn0s9qVzcaPZCBF2wjKGsOaVUIt2qNH6nkJwolip1LkiUi90QQRcsozd1bvr15YpkhRtHERgkagkkysVuiKALljGUhQ7glTUoHUWgM33UEoig2w0RdMEyWhOCns6HDrIGpdMYbOYvSAZNuyGCLlhGJha6WSVepok7haEEvUgsdFshgi5YRiAUwetWlPjcaY/xupU0fgcxlKDL3AJ7IYIuWEZrwt9qVi1Mjc/jlsbvIAKh9Ll5QKJc7IYIumAZbUNYcwA+sdAdQ1ckRnc0LlEuDkIEXbCM1lB4aEH3yKCoU8hoTEQmFtkKEXTBMobyt4Lpokv33BlkJegy0G0LhhR0pdR0pdTzSqntSqltSqkvJPZPUEo9o5TalXivLHxxBTtjcqGnn1QEsqiwk8g0agnEQrcLmVjoUeA/tdYnAsuBzymlTgRuAv6utZ4H/D3xtzCGydRCl8bvDAJD5EIHEXS7MaSga60Paa1fS2y3A28AU4H3AasTh60GLitUIQX7E4tr2ruimfnQxUJ3BJlMFHO7FC4lUS52ISsfulJqFrAUWAvUaq0PJT46DNSmOecGpdR6pdT6hoaGPIoq2JmhlipL4hMfumNoCZrsmZWl4kZzChkLulKqDHgY+KLWuq3vZ9os+Z1yVERrfYfWepnWellNTU1ehRXsSybWHMjUfyfR0hnG41KUF6VOnZtE6tQ+ZCToSikvRszv01o/kth9RCk1OfH5ZOBoYYooOIGWzsysOa9HydR/h9DSGaay1DfoRDEQC91OZBLlooC7gDe01j/u89GfgI8ntj8OPG598QSnkOyeTxgqysXtFmvOITQHw1QO0eMCsdDtxOB9KcNK4Bpgi1JqY2LfzcD3gT8opa4D9gMfKkwRBSfQnBR08beOGlo6I1QO8YAGmSxmJ4YUdK31GiBdn+vd1hZHcCqZulySU/+11kN25YWRpSUYZu7EsiGPk8li9kFmigqW0ByM4HO7KB0k0yL0xi1H4+JHtztJH/pQiIVuH0TQBUtoCYapLB080yL0WRBBBMDWaK0TLpcMfOjiRrMNIuiCJTR3hjP2t4IIut1p64oSi+vM6tTtolvq0xaIoAuW0BIMU1U2dOOX/NnOoCXDQW5IrkIl9WkHRNAFS8jWQheLzt70DHJnaKFLj8seiKALltASDGdmzYmF7ggyjVoCGRS1EyLoQt7E4prWUOYxyyBrUNqd5qBJ5TDURDGQsEU7IYIu5E0gFEHrzPytPT70qIQt2pnWHgs9wygXsdBtgQi6kDfNGWblg74WeqygZRLyozloEnOVDZGYCyRs0U6IoAt5k/S3ZtY9N3HqYbHQbU2miblABkXthAi6kDe9FvrQ3fMi8aE7gpZgJKMHNIiFbidE0IW8ySpm2W1SA0TEorM1zZ3hIXPbJxEL3T6IoAt505xFzLLXk3C5iEVnaxo7uqkuK8roWK/bRVybaCdhZBFBF/KmuSNMsdeN3zt4Yi6QOHSn0NjeTXUGM39B0jnYCRF0IW8aO7qpLs+s8SfDFmWmqH0JR+O0dUUzttBF0O2DCLqQN40dYWoybPxF0vhtT1OwG4Dq8gwF3S1uNLsggi7kTUN7dv5WEJeLnWlsN2MiVRkMcoPM/rUTIuhC3hiXi3TPRwuNHVla6FKntkEEXciLaCxOc2dYLPRRRENC0DN1o0md2gcRdCEvmjvDaA01GVpzvTNFpfHblR4LPdNBUVmFyjYMKehKqbuVUkeVUlv77LtFKVWvlNqYeF1Y2GIKdqWhPWnNZeZvVUqZiSgxiVm2K43tYUp9boqHWB82ieS4tw+ZWOj3AOen2P8TrfWSxOtJa4slOIXGDjOAlqk1B5Kdz+5kMyYCMrfATgwp6FrrF4HmYSiL4EAa27PrnoNxu0jjty9Nwe6MI1xABkXtRD4+9M8rpTYnXDKV6Q5SSt2glFqvlFrf0NCQx+0EO9IzgJaNRScWuq1pbM98kBtE0O1EroL+S2AOsAQ4BNyW7kCt9R1a62Va62U1NTU53k6wK43t3RR73ZRmkDc7iSwqbG+ydblIlIt9yEnQtdZHtNYxrXUcuBM43dpiCU4hm2n/SbxuF93S+G1JtmGoIBOL7EROgq6Umtznz8uBremOFUY3jR3ZNX4wg2iSPtee9IShZhi1BL2DohLlMvIM2U9WSj0AvAuoVkrVAd8C3qWUWgJoYB/w6QKWUbAxDe3dzKwqyeocWRDBvhxty21MBMTlYgeGFHSt9VUpdt9VgLIIDqSxo5tTZ6UdE0+JLIhgX460dQFQW+HP+ByZWGQfZKaokDPd0RhNwTC15Zk3fjA+dLHm7MmRhIU+aVwWgi5RLrZBBF3ImWT3fHIWjR8kbNHOHG7rQqnM87iARLnYCRF0IWcOJ7vnWQq6V6b+25YjgS6qy4rwuDOXBsnPYx9E0IWcORwwgj4pC38rmEUuwtFYIYok5Mnhtq6s61Mphc8joah2QARdyJnkAFq2AmCm/ouFbkeOtHVlNSCaxISiSp2ONCLoQs4cDnTh97qoKM58liiID93OHGnrYtK47OYVQDIUVXpdI40IupAzhxLdc6VUVudJlIs96YrEaOmMZB21BBKKahdE0IWcORLoyiq8LYlY6PYkmds+20FuAK9H3Gh2QARdyJlcBtBAZoralcM5jomAWOh2QQRdyIl4XHO0rTsna86sWBRHa7Ho7ERP1FJOvS635HKxASLoQk40d4YJx+I5W3NaQywugm4neqb95+RDl0VL7IAIupATucagA3gl3aotqW8NUepzZx21BDIuYhdE0IWcOJQQ9Mnji7M+V5I52ZP6lhBTK4uzjloCGRexCyLoQk7UtXQCMK0ye0EXC92e1LWEmFaZXSrkJBKKag9E0IWcqGsJ4fe6slpMOEmRWOi2pL41xNQcelwgUS52QQRdyIm6lk6mVZbk1D33esw5ErdsH9q7IgRCEabm0OMC8aHbBRF0ISfqW0M5uVsAfG43IBa6nahvDQHkZ6GLy2XEEUEXcsL4W3Nr/Ml0q+JztQ/1LUbQc35IJy30SAjiktNlpHCOoHc2w6P/Bmv+B2RCyojS3hWhtTOS8wCaz+NCEaf2H1+D28+Eg69bXEIhW3os9DwEfX70TfjhXPjFGRBssrJ4QoY4R9Cf/RZsuj/x/sBIl2ZMk2z8ubtcXLzTtYmanQ/A0W3w0CchFrGyiEKW1LWE8HlcVJdmn2kRTJTLp+MPmnps3gN/v8XaAgoZMaSgK6XuVkodVUpt7bNvglLqGaXUrsR7dqsEZ0ukC7Y8DEs/ClNPhee+C7FoQW8ppKeuOSnouVvol7pfIVJUCVf+zgjA5j9YWUQhS+pbTISLy5X9IDdAGZ2cyRY48/Nw+vXw+n3QdtDiUgpDkYmFfg9wfr99NwF/11rPA/6e+LtwHNoEkSAcfwGs+jK01cHOvxb0lkJ68olBByPoy9QOWmpOhwUXQ/V82PBbK4soZImJWsqtPgFmhN7ApTTxGWfB6TeAjsHG+y0soZAJQwq61vpFoLnf7vcBqxPbq4HLLC7XMby5/lmzMe00mPceKJ8iAjCCHMgjBh3A393EDFcDzZWLQSk49RNQtw6ObLe2oEJGaK3Z2xhkZlVuPS6AqcFtAIQnL4WqOTBrFbz+/2S8a5jJ1Ydeq7U+lNg+DNSmO1ApdYNSar1San1DQ0NON2s5vJ+3qYXyWnB74OQPw1vPQ7Axp+sJ+bG/KcisqtKcYtABStt2A9BUscDsWHQFKBdsfdiqIgpZ0NoZoa0ryqyq0pyvURV6m3pdRcRTZnac/GFo2ScD3sNM3oOi2uRATfsY1lrfobVeprVeVlNTk9M9Xpj9JS6I3ta7Y+H7TZdu++M5XU/Ijz2NQWZX5974i9v3A9BaNN3sKKuB2e+AbY+KRTcC7G0KAuQl6OO6DrAvPql3bsGCi8DlNXUqDBu5CvoRpdRkgMT7UeuKNJBir5tg1NWbbrV2IVTNkx/LCBCNxTnQ3MmsPAS9qG0/Ye0m4OvzgD/pcmh+Cw5vtqCUQjbsa0wIeh51WhE6wH5d2zu5qLgS5pwN2x6Th/Qwkqug/wn4eGL740BBTeVir5lZ2BVJTFhQyljp+1+G9iOFvLXQj/rWEJGYzstC97Xt54CeSFe0j8vmhEvB5YGtj1hQSiEb9jUGcSmYMSFHH3qoFX+4hX26lki0j3ifeBkE3ob616wpqDAkmYQtPgC8AsxXStUppa4Dvg+cp5TaBZyb+LtgFPuMoIcifWagnfR+0HFxuwwzexPWXD6C7g7sY7+uPbY+SybAce8St8sIsK+pk6mVxfg8Odp3gToA6nQN4VifOl1wYcLtIg/p4SKTKJertNaTtdZerfU0rfVdWusmrfW7tdbztNbnaq37R8FYij9hoYfCfX4sExfAxBPlxzLMJAU9H3+r6jjCESqPrU8wbpfW/TKQNszsSwxy50zQeFwb9bhjl6ErroQ55xijSx7Sw4IjZooOcLkkOen98PYrMoFhGNnXGKS8yEN1WW4hi8TjqM5G2lzjj7XQQQbSRoBkyGI+Pa5ktFkj4wZm0DzpcggcgPoNeZRSyBSHCXq/ZE4nXW7etz02zCUau+xpDDKrOveQRULNoOO0uScMFHQZSBt2moNh2ruizMzLQjfhyI26YmAGzfkXgNsnD+lhwhmCnsqHDlA9FyYtErfLMJK/NWcaf4dnPF39XS5gel2Bt8WiGyZ2HukAYN7Estwv0nGUuMtLG6UDBb14PMx5t3lIxyW7ZqFxhKD7vaaYAwQdjADUrYPWt4e5VGOPYHeUupYQx9fm1/gBgt4JdKYSdLHohpVdR9sBOL62PPeLBBuJ+qsAdeygaJKTLjfpOurX534PISMcIugpBkWTiNtl2Nh5xIrGbyz0Lm8KlwuIRTfM7DjcToXfQ21FblkWAQgeJV5SDUAonKLO5l8A7iJ5SA8DjhD0tIOiABNmw5Sl4nYZBpKCPn+SBYLur0ot6CAW3TCy60gHx9eW5z4mAhBsQJeaSWLBcIosqP4KmHuuPKSHAWcIejofepKTLjehbs17h7FUY48dhzso9rqZnmPaXMAIunIT941L/YCGXotOJhkVFK01O4+2My+fHhdARwMqIegpe9Fg2mj7Qah7Nb97CYPiDEEfzOUCfdwu0qUrJDuPtHN8bVnOObMBI+ilNfiLvKl96GAsunnnwXax6ApJQ3s3rZ2R/MZEtIZgA+4Kk58vbZ3OP1/cLsOAIwS9x4eezqIbPwOmLhOLrsDsONKen/8coMMIerHXk/4BDQmL7hC8/c/87iekJRnhMj+fOu1uh1g3nvKJKAWdqVwuAEXlcPx7TEZNWZ2qYDhC0Is8LpRK40NPsvhKOLLFLIYhWE5zMExDe3d+/nNIWOjVFPtcg9fn/AvBV25WvhEKwpuH2wA43oIxEVU2kRKvO72FDrDkanP8rqdzv58wKI4QdKUUxV734AKw6IOmS/f674avYGOI7QdN418wqSK/CwWPQtlEir3u9D0uAF8JLPqAcbt0teV3TyElW+oDTKqKVgfxAAAb4klEQVTwU12WT4RLYo2D0mqKfZ70FjrA3POgdKI8pAuIIwQdjNtlUAEomQAnXGzWpox0DV/Bxgib61sBWDR1XH4XCjYmXC6mPvVgM0KXXgORTolgKhBb6gMszLc+E/MKKK2htGgICz25OM3Ov/aeJ1iKYwS92OtOHePal6XXQFcrvPnn4SnUGGJLXYCZVSWMK/HmfpHuDiPQpTUU+zxozbHJnPoz9VSoWSC9rgLQ0R1lb2PQggd00kI3va5BBR3MQu86BpsfzO++QkocI+h+r4tQZJDuHMDsd8K4GWYtQ8FSNtcFLGz8NRQnZ/8OJgBKGQGoWwdH38zv3sIxbKsPoDUsmpavC63X5VLicw/ucgGomW/WBn5N1hstBI4R9DK/l47uIZ7+LpcRgD0vQOPuYSnXWKCpo5v61hCLp1ngbgHjQx9qbkGSxR82qQDW3ZnfvYVj2FIfAMjf5RJsMEnV3F5KizxDW+gAp14LjTtg7z/yu7cwAMcIenmRh46uDMKdTv2EEYC1vyp4mcYKyca/aOr4/C4UTPpbzQAaDBLmlqSsBhZ+EDY+AKHW/O4v9LA1MSA6sdyf34US8wrAuEU7hzK6ABZ+AEqqYO2v87u3MADHCHpZkYeO7iEaP0B5rfnBbLxfBMAiNh0IoBScNNWq7vlEyv1G0Nu6MqjT5Z+BSFBcaRay4e0WlkzP8wENiXkFEwGMhT6UWxTA6zdW+o6nZHa3xThH0P0eOjJp/ABniABYyfr9zcyvLafCn8eAKJjGD1BaTXmREfSM6nTyyTDjTHj1DohnYAEKg3I40MWB5hCnzZ6Q/8US8wrApOjIyEIHOO06cLlh3W/yL4PQg3MEvchDeyYWOsCUJTBzJay9Q2al5Uk0FmfD/hZOt6rx+8eBp4jyxMOhPdOH9PLPmBTJbzyRfznGOOv3mxUjT5tVmf/Fgkd7XC5DTizqS8UUOPF98Nq90pO2kLwEXSm1Tym1RSm1USlV0NR4FX7jchk0brkvZ95oFkrY/IdCFmvUs+1gG53hmEWC3tv4ky6X9kzGRQAWXAxVc+GlH0l0RJ6s29tMic/NiZPzdKFFw9AVgDLjcikp8hCKxIjFM6yflV+E7jbT8xIswQoL/Wyt9RKt9TILrpWWMr+JWw5magEcfz5MWmwEIJahFSgM4NW9xpo7fZYVgt6YQtAzrBuXG1b9JxzeYiamCDmzbl8LS2eMx+POs/n3CVkEY3RBhm40gMmL4fgL4F+3m5wwQt44yOViuugZ/1iUgnd+DZr3mIRAQk6s3dvMrKoSJlbkGQ0BZnZgQtBLfR6UInM3GsCiK6ByFvzjB2Kl50hrZ5g3D7dxmiUP6N55BQAVxaaNtmXa6wJ451cg1CK+dIvIV9A18LRSaoNS6gYrCpSOsuTTvzuLH8uCi6B2Ebz4f8VKz4FILM7aPU0sP67Kmgsm8rgAuFyKMp8nc5cLgNtrrPSDr8POv1lTpjHGmt2NxDWsmled/8WS0/fLTOrccQlBD4SyqNOpp5oVqv75M+O+EfIiX0E/S2t9CnAB8Dml1Dv6H6CUukEptV4ptb6hoSHnGyWjIjLuopubw9k3Q9NueO2enO89Vnltfwvt3VHeNb8m/4tFw8YSS4S4gXG7ZFWfACdfBRPmwDPflId0Dry4s4Fyv4eTp1kQshjszeMC9ERBtWUj6ADv/gZ0NsGan+RfpjFOXoKuta5PvB8FHgVOT3HMHVrrZVrrZTU1uQtDr4WeZSOefwHMWgXP/7dYAFnyws4GPC7FmXMtsOaS3fOyvoLuzc5CB2Oln/cdM9NQHtJZobXmxZ2NnDW3On//OfSx0E2d5mShg1lCcvGH4ZXbofVA/uUaw+Rcq0qpUqVUeXIbeA+w1aqC9acsFwsdjJX+nluhsxleuq0AJRu9/GNHA6fMrMw//hx6rbk+gl6Wi4UOxpU2cyU8/z15SGfBrqMdHG7r4h3HW9DjAvOQ9paCrxSAiuLkZLEcQoXP+S/TVv/+HWvKNkbJ5zFdC6xRSm0CXgX+orUuWPhBzk9/MHHpSz4C//olNOywuGSjk8OBLrYfarPG3QJ9JhUd63LJuscFpuG/97umm/7cd60p3xjgme1HACys06PHPKDzaqPjp8OKz8GWP8DeF60p3xgkZ0HXWu/RWp+ceJ2ktS5oy5pQ6gPMyjk5ce4t4C2BP/27rFOZAU9tPQTAe06cZM0Feyz0XjEZV+yltTPHiV9TlsJpnzIxzAfWWVDA0c+TWw6xdMZ4Jo8rtuaCwWMFvazIg0tBWyjHsY1VXzZRTE98UdY0yBHHhC36vW5KfW6aOnIU9LKJcP734MC/YP1d1hZuFPKXzYdYMKmcuRPzWEC4Lx3GOuxroU8o9eX+gAZ49zfNjMMn/t0Mugpp2d8UZNvBNi5cONm6i/YJQwWzslhFsTc3Cx3MKlUX/wSa3zLzR4SscYygA1SW+mjpzKPhnnwVHPcuePYWE58upORQIMT6/S1cvNjKxt8AvjLTaBNUlxXR0R0dfGnBwfBXwEW3wdHtJjZdSMtTWw8DcMEii3pcMMDlAqbXlbOgA8w5x7TTNT+Bug15FnDs4ShBryr10ZSPRacUXPozM+vwoevEqkvDE5sOAnDhIgsFPTiw8eftRgMTxbTko2bAW3yvKdFa8+hr9SyZPp5plSVDn5AJsQiEmo/pcQFUluRpdAGc/30onwwPf1LWk80SRwm66aJ353eR8TOMqB98DZ77P9YUbBShteb36w5w6sxKjquxyN0CEKiHiqnH7KpKCHrObrQkF/zA5Hl55IbeRTSEHjYeaGXHkXauPG26dRdtNxY/FVOO2V1TXsTRtjzbaPF4+MBvTDK2v/yHzArOAocJehHN+TZ+MFnell0H//wpbHss/+uNIl7d28yehiBXnT7D2gsH6mDctGN2VZUlBD3fh3RRGXzwbhP18sdPSIbNfjy47gAlPjeXnDxl6IMzJVBn3scd+5CeWF5EQ0ee9QkwYzm88ybY8kdZrCYLHCboXprz7c4lee9/w7TT4dHPQP1r1lxzFHDf2rcp93u4yEp3SywK7QdTWOhFQJ4ulySTF8MlP4V9L8GTXxarLkGgM8KfNh3kokWTe+ZyWHPhpKAfa/XXlBfRHAwTiVkQSfaOr5gsm3+7GXY9m//1xgCOEvSa8iK6IvHcJi70x+uHD99vRukfuMp078Y4B5o7+cuWQ3xo2fSeNT8toeMw6PgAC31CmUUulyRLroKzvgQb7oFXfm7NNR3O79bupzMc49qVs629cCAxo7PfQ7qm3DykG62w0l0uuPzXMPEkeOhak2lTGBRHCfqU8SZ+9mBryJoLltXARx6ESAhWXwJtB625rkO586U9uBR8apXVjT+1NVde5KHY6+ZQwMKY43O+CSdeBk//F6y/27rrOpCuSIzfvryPdx5fw4lT8sx93p9AnVkcuujYcZaaMiPoDe0WCDqY63/k91BUAfdeJhMDh2BsCzpA7YlwzSMQbDKinhzsGWMcaeviwXUHeP/SadZNPEmSxt+qlGJaZTH1rZ3W3cvlgvffCfPeC3/+Erz+O+uu7TDuX/s2jR3dfPqdx1l/8RRjIkBPmuW8B0b7Mm4afOxxUC64933QuNu6a48yHCXoUxOCXt9q8Syyacvg6j9C2yG46z1j8gfzo7/tQGv43Nlzrb94025AmVmA/ZhWWUxdi4UPaACPDz50Lxx3Njz+OZOadYwRCEX46XO7WDm3ihVWpT/uS/NbKetzyngj6HUtFj6kAarnGlGPReDu90C9xKinwlGCXlNWhNetrLXQk8xcAR9/AsId5gczhqaTb60P8NBrdXxi5SxmVFkUp9yXxp0mXNQ70PKfVllivaCDGSP5yINw0uXG/fLXr4+pBaZ/8fxuAqEIN194Akopay8eDUPzXqieP+CjmrIiSnxu9jdbLOhgetPXPW0mqN1zieTET4GjBN3lUkweV8yBQvxYAKadCtc9Y/x191wIr9456qMlIrE4Nz2ymQklvsJY52AEvfr4lB9NrSwmEIpYM9DdH08RfOBuOOPfzDJn/++y3iRho5gtdQHuWrOXD506nZOmjLP+Bi17QcegZqCgK6WYWVXK/qYCtdGqOaaNVs2B+680GTclN1MPjhJ0gDk1pew+2lG4G1TNgeufMykCnvwyPHydWZhhlHL782+xtb6NWy9b2JMtz1LicePCqp6X8uNZiR7Bvsag9fcG41O/4PvwvtvhwKvw61Ww5x+FuZcN6IrE+MpDm6gu83HzRScU5ibJgclB6nRfU4HqE6C8Fj75N5Mi4B/fh/s+MOYDGpI4TtDnT6rgrYYOa+Jc01EyAa56EM75hpl49Isz4I0nCne/EWLNrkZ++twuLj15ChdYGXfel8adEA1B7cKUHy+YZKIv3jhU4CneS6+GTz1rcnffeyk88YVRN61ca803H9/Km4fb+f77FxfmAQ1weDMod0qXC8DMqlIONHcSjhawjfpK4LLbTTKv/a/AL5abAfBR3qMeCscJ+oJJ5URimj0NBbQAwFh27/iysdbLJsKDH4X7PwwNOwt732Fib2OQzz/wGnNqSvnv9y8q3I3q15v3actSfjxjQgmlPjdvHBqGVd8nLYJPvwRn3giv3Qu/ON2IwCjxrd/zz338YX0dN54zl7MXTBz6hFypW2f82b7U4y0Lp1YQiWl2HC5wnSoFyz4J//Yy1J5kBsB/e+GYnijoOEE/YbKx6LbUD9NKNVOWwPXPw7nfhv0vw+3LTTicg5fKerupk4/c+S8UcOfHllk7g7A/devMmERV6u65y6WYP6mcbQeHqT59JWYFq+ueMZNiHv8c/Pod8OaTjvbF/mHdAb79xHbOO7GWL56berzCEuIxqH8dpqZ+QAM965VuqmstXDn6UjUHPvEXuPh/oGkX3Hk2PHz9mIxZd5ygz5tYxoRSH/98axiTMLm9cNYX4d9fh9OuM9bd/55skkEd2jx85bCArfUBrrzjFUKRGPd9ajkzq0oLdzOtYfffYdZZpseThtNmTWDjgVY6w8O46PO0ZcYF88G7obsdfn8V/HIFvH6foxZX0Fpz54t7+Nojm1k1r5qff2QpbpfFUS19qVsP3QFTp2mYVlnMhFIfr709jGNPLhcsuxZufA3O+g/jIv3F6fD7q+Htf40ZV4zjBN3lUqw4rop/7m5CD3cllVbDhT+EL2yCMz4Db/zZDLLd8S5Y9xtbD55qrXnktTqu+NUrANz/qeXWzx7sz5FtZor48ecPethZ86qJxDRr9zQXtjz9UQoWfgBu3GAmI7k88Phn4bb58ORX4NAmWwtBe1eE//zjJr775BtcsHASd35sGUUeC1M2pGLHk+b/NPfctIcopThrbjX/2NFALD7M/z9/BZz7LfjSNnjn12DfGrj7vWYc7J8/G/VRTo4TdIB3nzCRw21drN07zAKQZNw0OP+/4Utb4b3fM3G5f/lP+NHx8LsPwLq7zCQlm3CguZPr793Af/xhEwunVvD451cWXswBXlsNbp9Z1HkQTps1gbIiD09sHqFIBbcXFn8IPrPGTF6Zey5sWG1cMT87FZ7+hrHybOJr11rz7PYjnP8/L/HY6/V84d3z+PlVp+D3FljMo2HY9IBZhKJ4/KCHnndiLU3BMOv2jVAbLa2Cs282wn7JT43QP/1fcNvxxs/+yu3Qsm9kylZA1HBaucuWLdPr16/P+zqhcIzTv/ss7zi+hl9cfYoFJcsTreHQRtjyELz5FxOnC1BzAsw8E2athBlnQkWBIknSsK8xyF1r9vL7dW/jUoqvvHc+166cXdgueZJAPfx8GZxwKbz/10Me/v89uoWHNtTx8k3nUJ3IBzKihFpg6yOmPve+CPEI+MfBzJXmNWulidxxFyiSJAXxuOYfuxq4/fndrNvXwpyaUn54xcmcMqNyeAqw/m4zfnT1QzDvvEEPDXZHOfP7z7HiuCp+dc2pw1O+oTj6Jmx92NTp0W1mX+Vs4z6atcqk7B0/w/TcbIZSaoPWOv3ARfK4fARdKXU+8L+AG/iN1vr7gx1vlaAD3Pb0Dn723G7uv/4MzpxTbck1LUFrMxiz8ynY+xIcWGtmn4JZ3WXSIpPqtXahmWwzYTYUlVt2+6NtXTy/4yh/2nSQl3c34XEprjxtOjeeM49J4/yW3WdQomG474Pmu39ubcop4v15q6GD9/7kRS49eQq3fehk62c35kNXAHY9A3teMAPjyeUL3T6YeAJMWgyTTzYTbSYcB+VTBh0zyAatNdsOtvH09iM8+nodB5pDTCwv4gvnzuNDy6bjdQ9TJ/vomyYtxuTFZkZ1BvXz46d38NPndnP/p87gzLk2aqMATW/BrqdNG92/xtQxmIRjyfqctMgMuE6YM2SPpNAUXNCVUm5gJ3AeUAesA67SWm9Pd46Vgh7sjnLJz9fQHAxz+0dOsd8PJkksCoc3wdtr4chWM4ja8AbE+wwAlk40QlA5y1jxZZPM5InyyVBWa1L8+koHNKLOcJR9jZ1sPRhg04FWNh5oZdtBE1s9rbKYK5dN50OnTae2YpiEHODg6/DU14yYv+92E/+dIUkBuOEdx/GV984fPrHKlraDsP+fxsd+eLOp01Af14LHbyy/CceZhGRlibosn5So04ngHw/uY6OLtNY0tHezpzHIlroArx9oYcP+Fo60deNScMbsKq5ePoP3nDgJn2eY/jexKGx9CP56E7i8ZiC5cmZGp4bCMS766Us0BcP86qOnsmJOAXLKWEE8Ztpm3freOj2yDWJ90jqXVBlhr5zZW4/lk8zDu7zWfO4rH/Ag11rT0NHNW0eDnDi5gnElufXohkPQVwC3aK3fm/j76wBa6++lO8dKQQcTfveJe15lT0OQ5cdN4NwTalkwqYLpE4oZX+yjzO8ZHvdCtkS7oXEnuukt4k17iDW9Bc17cbXuwx08iooPnAYfU2663OUEVRkBXUpjrJiGaDFB7acLHzF3MeMqKphSM4HjptQwqaoS5SsBT7ERDpfHNEhXYrtnX9+XOzEIqM27jvduQ+++SBC6O0zPo7vdDHw27YG3XzFJm/zj4KIfw6IPZvVvicc133h8K/etfZup44u5ePFkTplZycyqEmrKiijzewo/6JcLWkPbQeINu9DNu9FNe9DNe1DNe1Adh3F3pw7J7HaX0Okqp12V0Rov4UjETyBeTKcuIoQPn7+UCePHM6O2innTJlJWVmHy4bi8A+vU3XfbO7A+k+Xsv621Ea5w0NRnOAidzca/3LjTLBgSaoHJS0xEUNWcrP41B5o7ueautexr6mTl3CrOWVDLSVMqmDzOT3VZEcVeNy47ttFYBJreIta0m3jjbnTTW6jmPbgCB3B1HEHFBkZCxXHR7Smnw1VGG2U0x0tpiPhpjRURpJjFl9zIGWecmVNxhkPQPwicr7X+VOLva4AztNafT3eO1YIOxlJf/co+HtpQl3KyUbHXjcet8LgUbpcLr1vhdilcSqXtNab7eaVyA2itiWlNPA5xrYlrTSzed78mrkns16b9JI5L9a9XxBlPB7WqlYmqhVrVwgTaGaeCVHs6qXZ3UeXupNLdSQVB/LoLb7wbVzSU8kEwbJRNgkkLTdrak680op4jL+w4ym9e2svavU1EYsf+k3xuF0VeF25Xsk4VbqVwu817JmT6i9d96i0W1/22Mdt99qWjiLCpS1qoVa3UqFbGEWS8K8hET299VqogJXTh0114Y12oaAGSlmWKcht/8swz4YRLTL3m6EbqDEe5e81e/rihLmWOF5/HRbHXjc/jwqUwbRPT3lwu83eyvSoS9Zd8LmHamnlP7jNtq2/76ntM8vPe8xNnJdpmNKYJx+JEYvE0QU6acQSpTbTPWtXCODoYr4KMV0FqvZ1Uu0NUuoKU00mJDuGLh+j6wL2UnZA+OmgwbCPoSqkbgBsAZsyYcer+/ftzul8mHG3r4q2GIHUtnbR1RWkLRQh2R3sqKRrXxOJxonEjtKlI999I9W/S0PMDNC9wuxRKKdyuvvv7/O1KHKeSxymKvW78Xhd+r7vnldxX5vcwodRHZYlvaBdELGIW64iEINIJ0S7zHosaF088agb34jFzbDw68KVcgEq4d/q+u8y2coG3xCw84Eu8KqYMWOjACjrDUXYf7WB/UyfNwTAd3VHauiJ0R+LEte6px77vmbreM7UJXckHhksdu52s0+SDRfV+7nIpvG5Fsc9DiddNsc+8ktulRR6qSn1U+L2DW6fxeKIOE/WZfE/WVSzSrz4Tddq3vo+pR1Jve4oSdVlq6rZ4PFRMG+ASsoIjbV3sPNLOkbZuGju6CYVjdEVjdIVjhBMCagwj806/v7VOFJteA8tsD9xnjus13HqP67MvcWDyfLdL4XW78LgVPrcLj8uF16PwJoxBj9uFz+3C53FR7vdQ7vdSVuRJbHsoK/LgKYCrcEy4XARBEMYCmQp6Po+SdcA8pdRspZQP+DDwpzyuJwiCIORBzn0qrXVUKfV54G+YsMW7tdbbLCuZIAiCkBV5Ocm01k8CT1pUFkEQBCEPbBroKwiCIGSLCLogCMIoQQRdEARhlCCCLgiCMEoQQRcEQRglDGv6XKVUA5DrVNFqYBiXKbIF8p3HBvKdxwb5fOeZWuuaoQ4aVkHPB6XU+kxmSo0m5DuPDeQ7jw2G4zuLy0UQBGGUIIIuCIIwSnCSoN8x0gUYAeQ7jw3kO48NCv6dHeNDFwRBEAbHSRa6IAiCMAgi6IIgCKMEEXRBEIRRggi6IAjCKEEEXRAEYZQggi7YGqXUeKXUZxPbU5RSDxXwXkuUUhcW6vqCUGhE0AW7Mx74LIDW+qDW+oMFvNcSQARdcCwShy7YGqXU74H3ATuAXcAJWuuFSqlPAJcBpcA84EeAD7gG6AYu1Fo3K6XmAL8AaoBO4Hqt9ZtKqSuAbwExIACcC+wGioF64HvAXuB/AT8QAq7VWu/I4t4vAJuAd2KWe/yk1vrVwvynBAHQWstLXrZ9AbOArSm2P4ER4HKMWAeAzyQ++wnwxcT234F5ie0zgOcS21uAqYnt8X2u+fM+964APIntc4GHs7z3C8Cdie13JMsuL3kV6pXXItGCMMI8r7VuB9qVUgHgicT+LcBipVQZcCbwR6VU8pyixPvLwD1KqT8Aj6S5/jhgtVJqHqABb6b37nPcAwBa6xeVUhVKqfFa69Ycv68gDIoIuuBkuvtsx/v8Hcf8tl1Aq9Z6Sf8TtdafUUqdAVwEbFBKnZri+v8HI9yXK6VmYSzuTO/dc6v+tx7k+whCXsigqGB32jGujazRWrcBexP+cpTh5MT2HK31Wq31N4EGYHqKe43D+NPBuFly4crE/c4CAlrrQI7XEYQhEUEXbI3Wugl4WSm1FfhhDpe4GrhOKbUJ2IYZYAX4oVJqS+K6/8QMXj4PnKiU2qiUuhL4v8D3lFKvk3tvtitx/q+A63K8hiBkhES5CEKBSES5fFlrvX6kyyKMDcRCFwRBGCWIhS4IgjBKEAtdEARhlCCCLgiCMEoQQRcEQRgliKALgiCMEkTQBUEQRgki6IIgCKOE/x9VxCXLJP/SSwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "import pandas as pd\n", - "from tabulate import tabulate\n", - "\n", - "from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n", - "from demos import predator_prey_1, predator_prey_2\n", - "from SimCAD import configs\n", - "\n", - "exec_mode = ExecutionMode()\n", - "\n", - "\n", - "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", - "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", - "for raw_result, tensor_field in run.main():\n", - " result = pd.DataFrame(raw_result)\n", - " result.plot('timestamp', ['Prey','Predator'])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demos/predator_prey_1.py b/demos/predator_prey_1.py deleted file mode 100644 index 04777fa..0000000 --- a/demos/predator_prey_1.py +++ /dev/null @@ -1,79 +0,0 @@ -from decimal import Decimal -import numpy as np -from datetime import timedelta - -from SimCAD import configs -from SimCAD.configuration import Configuration -from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \ - ep_time_step - -seed = { -} - -# Behaviors -# There are no behaviors in this example - -# Mechanisms -# There are no mechanisms in this example - -# Parameters -alfa = 1.1e-3 -beta = 0.4e-3 -gama = 0.4e-3 -delta = 0.1e-3 - -# Exogenous States -def prey_model(step, sL, s, _input): - y = 'Prey' - x = s['Prey'] + alfa*s['Prey'] - beta*s['Prey']*s['Predator'] - return (y, x) - -def predator_model(step, sL, s, _input): - y = 'Predator' - x = s['Predator'] + delta*s['Prey']*s['Predator'] - gama*s['Predator'] - return (y, x) - -ts_format = '%Y-%m-%d %H:%M:%S' -t_delta = timedelta(days=0, minutes=0, seconds=1) -def time_model(step, sL, s, _input): - y = 'timestamp' - x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta) - return (y, x) - -# Genesis States -genesis_states = { - 'Prey': 10, - 'Predator': 10, - 'timestamp': '2018-01-01 00:00:00' -} - -# remove `exo_update_per_ts` to update every ts -exogenous_states = exo_update_per_ts( - { - 'Prey': prey_model, - 'Predator': predator_model, - 'timestamp': time_model - } -) - -env_processes = { -} - -mechanisms = { -} - -sim_config = { - 'N': 1, - 'T': range(50000) -} - -configs.append( - Configuration( - sim_config=sim_config, - state_dict=genesis_states, - seed=seed, - exogenous_states=exogenous_states, - env_processes=env_processes, - mechanisms=mechanisms - ) -) diff --git a/demos/predator_prey_2.py b/demos/predator_prey_2.py deleted file mode 100644 index 0a64768..0000000 --- a/demos/predator_prey_2.py +++ /dev/null @@ -1,79 +0,0 @@ -from decimal import Decimal -import numpy as np -from datetime import timedelta - -from SimCAD import configs -from SimCAD.configuration import Configuration -from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \ - ep_time_step - -seed = { -} - -# Behaviors -# There are no behaviors in this example - -# Mechanisms -# There are no mechanisms in this example - -# Parameters -alfa = 0.8e-3 -beta = 0.4e-3 -gama = 0.4e-3 -delta = 0.1e-3 - -# Exogenous States -def prey_model(step, sL, s, _input): - y = 'Prey' - x = s['Prey'] + alfa*s['Prey'] - beta*s['Prey']*s['Predator'] - return (y, x) - -def predator_model(step, sL, s, _input): - y = 'Predator' - x = s['Predator'] + delta*s['Prey']*s['Predator'] - gama*s['Predator'] - return (y, x) - -ts_format = '%Y-%m-%d %H:%M:%S' -t_delta = timedelta(days=0, minutes=0, seconds=1) -def time_model(step, sL, s, _input): - y = 'timestamp' - x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta) - return (y, x) - -# Genesis States -genesis_states = { - 'Prey': 10, - 'Predator': 10, - 'timestamp': '2018-01-01 00:00:00' -} - -# remove `exo_update_per_ts` to update every ts -exogenous_states = exo_update_per_ts( - { - 'Prey': prey_model, - 'Predator': predator_model, - 'timestamp': time_model - } -) - -env_processes = { -} - -mechanisms = { -} - -sim_config = { - 'N': 1, - 'T': range(50000) -} - -configs.append( - Configuration( - sim_config=sim_config, - state_dict=genesis_states, - seed=seed, - exogenous_states=exogenous_states, - env_processes=env_processes, - mechanisms=mechanisms - ) -) diff --git a/demos/predator_prey_hunter.ipynb b/demos/predator_prey_hunter.ipynb new file mode 100644 index 0000000..9099b75 --- /dev/null +++ b/demos/predator_prey_hunter.ipynb @@ -0,0 +1,323 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from decimal import Decimal\n", + "import numpy as np\n", + "from datetime import timedelta\n", + "\n", + "from SimCAD import configs\n", + "from SimCAD.configuration import Configuration\n", + "from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \\\n", + " ep_time_step" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "sim_config = {\n", + " 'N': 1,\n", + " 'T': range(100000)\n", + "}\n", + "seed = {}\n", + "env_processes = {}\n", + "initial_condition = {\n", + " 'Prey': float(10),\n", + " 'Predator': float(10),\n", + " 'timestamp': '2018-01-01 00:00:00'\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Behaviors\n", + "# There are no behaviors in this example\n", + "\n", + "# Mechanisms\n", + "# There are no mechanisms in this example\n", + "\n", + "# Parameters\n", + "alfa = 1.1e-3\n", + "beta = 0.4e-3\n", + "gama = 0.4e-3\n", + "delta = 0.1e-3\n", + "\n", + "# Exogenous States\n", + "def prey_model(step, sL, s, _input):\n", + " y = 'Prey'\n", + " x = s['Prey'] + alfa*s['Prey'] - beta*s['Prey']*s['Predator']\n", + " return (y, x)\n", + "\n", + "def predator_model(step, sL, s, _input):\n", + " y = 'Predator'\n", + " x = s['Predator'] + delta*s['Prey']*s['Predator'] - gama*s['Predator']\n", + " return (y, x)\n", + "\n", + "ts_format = '%Y-%m-%d %H:%M:%S'\n", + "t_delta = timedelta(days=0, minutes=0, seconds=1)\n", + "def time_model(step, sL, s, _input):\n", + " y = 'timestamp'\n", + " x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)\n", + " return (y, x)\n", + "\n", + "\n", + "exogenous_states = exo_update_per_ts(\n", + " {\n", + " 'Prey': prey_model,\n", + " 'Predator': predator_model,\n", + " 'timestamp': time_model\n", + " }\n", + ")\n", + "\n", + "\n", + "mechanisms = {\n", + "}\n", + "\n", + "\n", + "configs.append(\n", + " Configuration(\n", + " sim_config=sim_config,\n", + " state_dict=initial_condition,\n", + " seed=seed,\n", + " exogenous_states=exogenous_states,\n", + " env_processes=env_processes,\n", + " mechanisms=mechanisms\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Behaviors\n", + "def hunter(step, sL, s):\n", + " kill = 0\n", + " if (s['Predator'] > 2 * s['Prey']):\n", + " kill = s['Predator']*0.5\n", + " return {'value': kill}\n", + "\n", + "def dummy_behavior(step, sL, s):\n", + " return {'value': 0}\n", + "\n", + "# Mechanisms\n", + "def hunt(step, sL, s, _input):\n", + " y = 'Predator'\n", + " x = s['Predator'] - _input['value']\n", + " return (y, x)\n", + "\n", + "\n", + "# Parameters\n", + "alfa = 1.1e-3\n", + "beta = 0.4e-3\n", + "gama = 0.4e-3\n", + "delta = 0.1e-3\n", + "\n", + "# Exogenous States\n", + "def prey_model(step, sL, s, _input):\n", + " y = 'Prey'\n", + " x = s['Prey'] + alfa*s['Prey'] - beta*s['Prey']*s['Predator']\n", + " return (y, x)\n", + "\n", + "def predator_model(step, sL, s, _input):\n", + " y = 'Predator'\n", + " x = s['Predator'] + delta*s['Prey']*s['Predator'] - gama*s['Predator']\n", + " return (y, x)\n", + "\n", + "ts_format = '%Y-%m-%d %H:%M:%S'\n", + "t_delta = timedelta(days=0, minutes=0, seconds=1)\n", + "def time_model(step, sL, s, _input):\n", + " y = 'timestamp'\n", + " x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)\n", + " return (y, x)\n", + "\n", + "\n", + "exogenous_states = exo_update_per_ts(\n", + " {\n", + "# 'Prey': prey_model,\n", + "# 'Predator': predator_model,\n", + " 'timestamp': time_model\n", + " }\n", + ")\n", + "\n", + "\n", + "mechanisms = {\n", + " 'nature': {\n", + " 'behaviors': {\n", + " 'dummy': dummy_behavior\n", + " },\n", + " 'states': { \n", + " 'Prey': prey_model,\n", + " 'Predator': predator_model\n", + " }\n", + " \n", + " },\n", + " 'hunt_season': {\n", + " 'behaviors': {\n", + " 'hunter': hunter\n", + " },\n", + " 'states': { \n", + " 'Predator': hunt\n", + " }\n", + " }\n", + "}\n", + "\n", + "\n", + "configs.append(\n", + " Configuration(\n", + " sim_config=sim_config,\n", + " state_dict=initial_condition,\n", + " seed=seed,\n", + " exogenous_states=exogenous_states,\n", + " env_processes=env_processes,\n", + " mechanisms=mechanisms\n", + " )\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "multi_proc: [, ]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXmcZEWZ7v+Nk2tVdVdvVb2vdDc0W9MNDXQDKuCG4gKOyKACM4MyOqOzOHPnqnf0Mv6Y0ZnfVe9cndHB5YIboqKICiiLqKAsDTR00yy90nt3VXdtWblnxv0jzsk8mXXOqayqXCI0n8+HT3ZmZVU+REY88cQbb7whpJS00UYbbbRhPqxWE2ijjTbaaKM+aAt6G2200cbvCdqC3kYbbbTxe4K2oLfRRhtt/J6gLehttNFGG78naAt6G2200cbvCdqC3kYbbbTxe4K2oLfRRhtt/J6gLehttNFGG78nCDfzw3p6euTy5cub+ZFttNFGG8bjqaee6pdS9o73vqYK+vLly9m8eXMzP7KNNtpow3gIIV6p5X3tkEsbbbTRxu8J2oLeRhtttPF7gnEFXQgRF0I8IYR4VgjxvBDin+zXVwghHhdC7BRC3CGEiDaebhtttNFGG36oxaFngEullGcB64DLhBAbgX8FPi+lXAUMADc0jmYbbbTRRhvjYVxBlwoJ+2nE/k8ClwI/sF+/DbiiIQzbaKONNtqoCTXF0IUQISHEFuAYcD+wCxiUUubttxwAFjWGYhtttNFGG7WgJkGXUhaklOuAxcB5wJpaP0AIcaMQYrMQYnNfX98kabbRRhtttDEeJpTlIqUcBH4JbAJmCiGcPPbFwEGf37lFSrlBSrmht3fcvPg22mijjXHRn8jwk2cPtZqGdqgly6VXCDHT/ncH8HrgBZSwv9N+2/XAjxtFso02TIOUEpPu6334pWPcdPfzraZRM/7pJ9v58O3PcHQ43WoqWqEWh74A+KUQ4jngSeB+KeVPgf8OfEQIsROYA3ytcTTb+ENHIpPnmX0DraZRM/7z4V1s/PSDxoj6h29/hlt/u5eRdK7VVGrCPVsPA7QFvQq1ZLk8J6VcL6VcK6U8Q0r5Kfv13VLK86SUq6SUV0kpM42n20a9cGwkzc0/3U46V2g1lZrwmXtf4Mr//C1DKTME5///+UscHc4wmDSD70ha5TecGM22mEltiIQEYA7fZqF9UrROOJ7IcNn//jWP7OhvNZWa8KWHd/HVR/bw211m8P3WY/sAODJkliM7PmqWzzFlAiraCx9TDEmz0Bb0OuGloyO8eGSE//PgjlZTqQm7+0aBsjMzBaYJ5GjGLMExRSDzhSIAKUP4NgttQa8TBkaVs8kXiy1mUhvCllqymuLIHJgiOA6SWbP4miKQjkNPZc0Yb81CW9DrBMc5RkJmNGneHhGmDGAHJgikeyPUhAmoUDSLrxum9d9Gwwz1MQDO5kzY3qzRHdm8vWQ1QCDdMIFvJl92jSZMQAlX2M0EgXTCLWDeBNRotAW9TkjnVCfLFcxIU0tk1CA2YUC4Ha8JguO0LUAyq/8eRcLF0YQQhrsPmNB/m4m2oNcJjuN1uzOd4eQbmyCQ7jY1waGPugTdhP7gFkUT+kPW1aamGKhmoS3odUImrwZCxoABATBqC6MJAukOWzgrIZ2RqRAc/fm6BTJvAF/T2reZaAt6neAMiqwBjgxcMXQDJiBnsgQzsogyObdA6u8g3QKZL+rP17QJqJloC3qdkDEs5OIMChMExz2AswYM4Gyh4Pq3AXwNc7zuNs0a0H+bibag1wnlGLr+jhfKPE0YwBUO0oAB7HboZrRvuc+awLft0P3RFvQ6oRxD17+D5QvF0sGMnGFLbBMEJ1Mwi2/WtAnTsAmomWgLep1QCrkY0MHcS9acASEi0zbBTI6hmxAiqugPBhiSZqIt6HWCe1NU95KpFYJjwiajy5Fl83q3LVTHePVvX9McesWKzQBD0ky0Bb1OcLuGguauwbRNpQrBMWACMi5EZFgWkdO+QpiRlbPt4BCbPv1gUyqbtgW9TsgalPpVsWlngMMxLuRiC6QQkDNhRWG3byxsGbECcvrDtGjYiP6QzBY4PJSmGXNlW9DrhEqXo/egcKfVmeTIoiEzBCdrmOCUBDIWNqo/dMXMaN9S/w03Xm7bgl4nmJRKlXE5MhOOTjtt2xkLGSE4GbfgaD65QxVfzfsulEOGXbGQGTF/20C1Bd0gVIYF9O5kbkdmwgA2jW/ZQYaMCGmVJsxoSPu+C64VkGH9IdqE0tptQa8TsvkiXdEQoH8Yw7wlq3I402JhI2LSmXyBkCWIR0JGtG8mXyQasoiGLSP4VvZfE/pDO+RiHDL5Ip2xMKB/6pepA6IrFjYmDTAWtgiHLO33U0DxjYYtwpbQvu9Ceb+q05A9CmeMtR26IZBSki24Hbreg6IcwjDDQbonIN1XP1AWyJDQP4UVlEA6E5ApEyZALGJR0PzMB7Q3RY1DphSDdBy63oPCLZAmVIfMFooIoRyO5k0LlEMYYcsyQtDdDr1oAN9MQfGNGMLXCRm2Bd0QOK5mmhNy0byTlZesISMEJ2OHMCIhQcEQhx6LWIQsYVT7hixhjOONhS0sS2g/1qCsD21BNwTOQZ3OmB1y0TwOmXWtKEwZwNGQOQPYceghS5gVIjJsAjJlReGMt0gT7hseV9CFEEuEEL8UQmwXQjwvhPhr+/WbhBAHhRBb7P/e3HC2msJxvF12yCWn+SB2HENnNISUaD8oMvkCsUjImAGsBCdkkEAWiIVV+5rAN1sxYRrAt4mbouEa3pMH/k5K+bQQYjrwlBDifvtnn5dS/q/G0TMD7jxe0N+hOyuKDptvQUosGu8eJouMYQM4ky+UYtJGrIDsmLQlDBJ0e0VRNKF97f4rROPH2LiCLqU8DBy2/z0ihHgBWNRoYibBnVYHBuShOw49ovgWipJIqJWMguHETEMGCo7ukzuoCV5luZjTvrFwiJAwY4J3+kMzMKFPEUIsB9YDj9svfUgI8ZwQ4utCiFk+v3OjEGKzEGJzX1/flMjqCvfJQDDAodt84xH19es+KDJOFoYpglNwbTIawtckh+6sgEKWRUHzsQbq6L92gi6EmAbcCfyNlHIY+BKwEliHcvCf9fo9KeUtUsoNUsoNvb29daCsH8akLWru0EshATump/sgzubNEkjH8ZqSNVJy6IaEtJwJKGRhRPvm8rIpG6JQo6ALISIoMf+2lPKHAFLKo1LKgpSyCHwFOK9xNPVGyaHbMWndT19m80ViITWAQX9BdzbtjFliF4pmbTIWikTDIeV4TeBbmuANOYlb0CjkIlQk/2vAC1LKz7leX+B625XAtvrTMwOlvO5YOSatM5yYnmULuu4rinJM2jIky6VQal/dw28AmVzBFkj9+y64+4P+GVpQ3hRtBmrJcrkQuBbYKoTYYr/2ceAaIcQ6QAJ7gT9vCEMD4K7+BvpfwuDO4wWaUnh/KsgWisy0Y+hGODJ7AEukGQJpO0gpzQhhlLOezHDoag+oOVkHtWS5PAKeOW331J+OmXBi6KU0QM07WbnWiBkO3YnxmrNpp06K5grSDIG02zdXKBrRvu5SBaBcurPa1BFahVzaGB+lPPSIGYJeikkb5NCNyusu1XIxZAIqta8ZMXT3wS3QP0srly8S1WlTtI1guMt5gv6CnnWlAYI5Dt3JcpGai7q7lovuhdqklKW8blNWQOUsFzM29dsO3TCMCbnoLjiuvGMwZ0CYMIALRUm+KImGQvZJxlYzCoZzyMy8g0XlkKH2462Jm6JtQa8DqgVd9513d94xmDIgyktsnfm6a1+HDSjOVaotbtQeRaFygtc8k0jbk6JteKMk6BEzLriodry6p9ap4lxm5M074TenvKvOXKHyejST9ihibkHXnHO2UCTSdujmwF27A/QWHKisVgd68y0WJbmCrOCr84Q51qHryxUqLzC2DNijyBeKFCVV/UH/VVDboRsE5wqvUtaIxgMCnLQ6Q0IYTow34mpfjUUy4wphhCyhfXni6gkI9J7g3ZdFmJSlFWsLujkoXQpcGhAtJjQOTHLoGZeDDBvg0KtDGGDGhBk1JIThlH6uCBlqrujtTVHDkHGlfQHaX5OWyZsTQ6/YtDNgAjKVb8SQCb6clRMqZ7lozBeaG3Kp5eh/G+NgbAy9xYTGQemWd0t1Mp1DROVNxhASxVNnh+52vKaFMIzg614BhfTnC6oUSLM2RduCXgc4AumcPtZ5yQruLAH1XGuBdA1gh6cRMemQql4IZrRvLGTGuQR3SMs5e6kz36JzLqHt0M2B49CFEOowicYdTErpuuXdduga83VvMkrbrZsgkKpWjnpNZ8ExzfE6K7ZoyCpl4+hsoNwroGagHUOvAxyBBLSv2e3UancvsXXmWyGQlnMhh74xrWzBFpywRSjkOHSN+bra1wSHnq3KIgK994Dcm/rNQFvQ6wD3podl6R2TdjsGEzZxvWO8rWQUjKxHVo7Gzevdvjr3Xw9B13q8ufg2A21BrwOcLBdA+4uMM7nyJmN5id1KRsGoOPhiQLnfTMWKQn++1QeLQG/H65VmqfUKsx1yMQ9Zd8hF8+Pe3gPCAMExLAujoniUAXwr6osb4HhNOZnt5tsMtAW9DnCKBYEBgu5yZCYIToXjNWDTriKEEdLfQWZMc7ymCnqoOTcWtQW9DshUO3SNHU4payRiyIAoGOp4Q2aUKiinLYaM6g+mGJK2QzcQ7k1R3dMWvQTHiAERCpmXlSP055sz7GBRRWkFI1Zs5aynZqAt6HVA9aaozgO47NBDRmU1GLfENoxvJCSMSls0Jc2ynbZoICrTFvV26O6DGWYIjiuv2wS+hSJCQNgSZvDNF7EEhEOGOF5XiChs0EnctkM3BMWirCiPqXsM3ctB6pym5pUGqHv7RkPlU8OgOV/XfZeWASGiinMUtnqZMAG1HbohqM4zNSXLJWaK4/WK+Ws+Abn7Aujfvo7YhEsncfXmC07MX//icu08dMNQrjViyMEiL0E3YEBEQuY43phBgq4mINV3TXG8ITucZVpxuWZg3E8RQiwRQvxSCLFdCPG8EOKv7ddnCyHuF0LssB9nNZ6ufqj+wkxx6MbEpKsKn4EBfEPluj6gP19nAjLF8Trt64SIdN6z0k7QgTzwd1LK04CNwF8KIU4DPgo8KKVcDTxoP/+Dg/tSYLDTFjUfEFCZVqez4GQqBEd/vu4NciM2GQvuEJF6TXfHG62agHTmmytoFkOXUh6WUj5t/3sEeAFYBLwduM1+223AFY0iqTOqi++ENL8Y2KnlYkyWiyuEYUKaWkXGkxF8C0Y53ky+shAe6M8X9HLoJQghlgPrgceBeVLKw/aPjgDz6srMEGSqBN3SPIZevnQ5hBACS+guOIZt2hXGOkid+eYK0ijH69kfDFgRa1dtUQgxDbgT+Bsp5bD7Z1JVmvdsVSHEjUKIzUKIzX19fVMiqyOy1ZuiuodcqtKowpal94DwcGQ6C6RbcCzDQhgmtK9zOxiY076gUcgFQAgRQYn5t6WUP7RfPiqEWGD/fAFwzOt3pZS3SCk3SCk39Pb21oOzVqheUpmyKRqx47uWpfcA9oqZmjIBGbHJ6OF4tedb3b6a99+wJUqliRuNWrJcBPA14AUp5edcP7obuN7+9/XAj+tPT3+M2RTVPOTibDIKO14atiyt+VYcfDHAkWVcFwKbsMmYKRSJmLQp6t7ENeEglGsCagZquVP0QuBaYKsQYov92seBzwDfE0LcALwCvKsxFPWGV9piJq9vB8tUdTATY+i6O7LyBrkZfEtplobxNWFT1D0BNQPjCrqU8hHAb73w2vrSMQ/VB4ssS6DxQcaKrBFQNTy0F3SjHFnBOL4xo/gaGIJrUvwc2idFp4xqhx62hN53dFZ1MEv36pCF8klG54IL7R2Z43hN4Rs2k68Jm7jNDrm0BX2KyOQr6x2rtMVWMgpGJl8kFinfnhLWvDqk18lLnScg81YUBravQWmsmSaHXNqCPkU4Dj3u2ljSWyALFQ5d94NQFSEBQ+68HFOcyxC+JcdrCl87EKx3/22HXIyC+8IIMCuvGwzImy+MFUidy/2qAVw+kwBQ0HjJ5nWwSGe+7k19p76P3gaq2LRDRdAW9Cmj+kYSS/M89ExVB9PfobuLManXtN6j8JiANJ5/PENEWvOt2tTX/YawdgzdMGRyBYQoH9QJmZAGWO3QDeHrODJdV0DFoqxwvOVaOXpOQFJK8zZxqzf1Lc1DcO0YulnIFCoP6uju0Ks7mHI4egoOjM2b13lFUV23o1wdsmWUAjHmchZTNkXdabe6H4zLlw+aNQNtQZ8iMrnyBdFgZ43o7BiqHI4JpQqqJyBdHWS2qlRqudqinoruVSkUzHK8Jh2Mawbagj5FmOQgYWzaos6CXixK8kVZMSDCGrdvzuNMAmjs0Et1fczYdC4UJYWiLG06gwEH49ohF7Pgrv4GypXp6iDB26HrKpBe9zFaGsf8q/lamsfQx/B1Np01dehet//ofjCuvSlqGKqzRsIab9qB94pC1yV2da150Nuhe5VK1bk/VPMtbTrrOgF5CLr2B+MK7bRFo6DyTMtLQMsSmt9KXxibtqgp3+oYL9gOXXeBrOKr/QRUtUeha4goU6g8lQ16rzChHUM3DiomXTUgNBUcGHvQISQ0FkiPkEtY4wnI67oxnR2kV/ua4NBjJqUtalg+t6HI5XIcOHCAdDrdaiqTwvvOiAJRXnjhBQBetzDPxjfNLT1vFOLxOIsXLyYSidT8O6W844pqi4K0puV+PR2kziEML4HUOMbr27566rlPyKW9KepGywX9wIEDTJ8+neXLl5dyuU1C5FiCkCVY0dMFwJGhFH2JLKcumtGwz5RScvz4cQ4cOMCKFStq/r18USIlY6otausgSzFeM7JyvBxkKKR/+8ZCZuypeG6Sa5y26JWV02i0POSSTqeZM2eOkWIOarlXyVwgGzwghBDMmTNnwquact0ZwzYZxzhIc/jq3L5e/UHFpPW06N6bzvo6dK/+0Gi0XNABY8UcQMpyuheA87/SDFGfKLwGhM4nW7Nem2AaX/Hnl1anq+OtvpwFzAu5mLbp3GhoIeitRigUYt26dZxxxhlcddVVJJPJmn9XSukprjp2sXIHqzzZqqtAVhc+A70dupdA6ryJm86pCTNevamvu0OvWLHpuynqlZXTaLQFHejo6GDLli1s27aNaDTKl7/85YqfSykp+nTyImVXjvvfGvYxP4ej7SajYSEXL4HUuX1Nc+gZz6wcS1uHnsmNTbttNNqCXoVXvepV7Ny5k71793LKKadw3XXXccYZZ7B//35+8YtfsGnTJs4++2yuuuoqEokEj/3mYd733qtLv/+rhx7kb973Xh31vHS70piDULoOCJ+DRSYJpN7tO7Y/6Jy26AhkxYpN6Fsd0mnfeKR5m6Itz3Jx459+8jzbDw3X9W+etrCb//nW02t6bz6f59577+Wyyy4DYMeOHdx2221s3LiR/v5+br75Zh544AG6urr413/9Vz73uc9x5Z/9Ff/yj/+Nvr4+ent7+e63vsEVV78HZdH12hvwypPWOSZddrxVB7e052vGHkXacZDVtX30pOspkDpviqbbDr01SKVSrFu3jg0bNrB06VJuuOEGAJYtW8bGjRsBeOyxx9i+fTsXXngh69at47bbbmPv3r1I4J1Xv5tvfetbDA4OsvnJx7noktejo4n0P0iiIVkCHLr2fNsOvRFwHHrlhKlv2uIfvEOv1UnXG04MvRpdXV2lf0spef3rX8/tt99eeq0oJdsODvHu917Ln777KuLxOG+74o8Ih8N6hlwcx2DKJqOXQ9f4oI7j0KuLtenavl4OUusVm49DT9mbj7qhHUPXGBs3buTRRx9l586dAIyOjvLSSy8BsGDhIhYuXMjNN9/Mu997XStpBsI0h572cGRhjQ/qZOy6HZYrjzUc0rd9nbo+7iwtrTdFPQRS57RFrwmo0RhX0IUQXxdCHBNCbHO9dpMQ4qAQYov935sbS7P16O3t5dZbb+Waa65h7dq1bNq0iRdefBFQeejvec97WLJkCaecugZAy5CLV0xa56P05ZCAOQ7dfUgH9K7toy5nqeKrccjFs//qvCnaAodeS8jlVuCLwDeqXv+8lPJ/1Z1RC5BIJMa8tnz5crZt21bx2qWXXsqTTz5Zep7NF3nxyDBCCB555BHe//7342yESg2DLp55xxpXh0zniliu+1pB7xuhMlWVN0HvFVAmXxjjHvXeFFX9IWy5VxT6pi22wqGPK+hSyl8LIZY3nop5cE6DXnrRRrqnT+Ozn/0sSSecp2EfKzsGt8PR10Gmc0pwqkMCuh7UyeQKFZMlaC7oueLYFYXmDn1sf2g7dDemsin6ISHEdcBm4O+klAN14mQMnG7/q0cfY0ZnFIBUMgtoqeeejiEU0jeEUX15COhdPMqPr67tm84XjFpRpD1WFGHL0tqQgGYxdB98CVgJrAMOA5/1e6MQ4kYhxGYhxOa+vr5JfpyecBy62zHolXleCb+j3ro6HMeRuaG1QPrw1bV9M7ni2BWFxlkuXjF/nfP8vdJuG41JfZKU8qiUsiClLAJfAc4LeO8tUsoNUsoNvb29k+WpJRxj4C7O5Zz9b3RxrsmgnMdbVWtE0wGRzhc9BNLSVyA9Hbq+MV7TYv5e/UHnPH9jDhYJIRa4nl4JbPN77+8zigEOXcculs4XCFmidMs7lC8y1lEkM7nCWIEUaCuQng5d6Fs8Ku3VvloL5Fi+Ouf5Z/IFwpYg3MQr6MaNoQshbgcuBnqEEAeA/wlcLIRYh9KtvcCfN5CjtnDGaUWxRY0VPZ0rEq8aEE7GQL4oiVp6BYzS+WLFsXRQjlffAVyku6PyBqmQZem7ievJV99N8oxnf9D3pGg6N3ZF0WiMO3VIKa+RUi6QUkaklIullF+TUl4rpTxTSrlWSvk2KeXhZpBtFCZbPtcJq1guRX/k17/iQ39ydaCeb9myhXvuuWcqlCcFLwdZcugaDuJ0rjBmAtJ7AHs5Xj3bFoIceosIjQPv/qBzSGts+zYa7ZOiTL58rtOPJmrQJyPo+Xx+Qu/3gpdjcDt03eDtyPTNash4xnh1FhyPmL/G9dD9HLq+E6aGDv0PDRMpnzs8MgLA/b/4OWvWrOHss8/m7h/fpf6QlDzxxBNs2rSJ9evXc8EFF/DSSy+RzWb55Cc/yR133MG6deu44447OHHiBFdccQVr165l48aNPPfccwDcdNNNXHvttVx44YVce+21U/5/S+fHnmR0Vhc6ut7M74FDt3TOcvE6WKRzqQKP/qBztcVWOHStinNx70fhyNb6/s35Z8KbPlPTWydaPvc/v/DvvPNP/4IPfuDPeeihh1i1ahV/dNW7AOXQ16xZw29+8xvC4TAPPPAAH//4x7nzzjv51Kc+xebNm/niF78IwIc//GHWr1/PXXfdxUMPPcR1111XKha2fft2HnnkETo6OqbcFGpAeDt0HQeFV4hI5wHszVfjLCKvo/8abzJ6hgy15jt2RdFo6CXoLYJTPheUQ7/hhhs4dOiQb/lcgGw2y7pzzmPPrh2sWLGC1atXA3DNNe/mC1/6MhIYGhri+uuvZ8eOHQghyOVynp//yCOPcOeddwKqvMDx48cZHlZ14d/2trfVRczBWQKOjZmCnoLuFRLQeQCbx9d7AtI5pFXdviYUP2sm9BL0Gp10vTHZ8rlHhtL85rEnx/ye+gX4xCc+wSWXXMKPfvQj9u7dy8UXXzxhbm4OU4X3wRfV4XQcFJ6OV9MBLKX0jPHqmictpfR06JbWtX3McuheB7cajXYMvUZ4lc/dseNlVq46mb1797Jr1y4Avv+9OwBKDn3RokUA3HrrraW/NX36dEbs+DuoVcG3v/1tAB5++GF6enro7u6u+/+D19FpJ0VWR1fmtaLQdQD7nQrU9U5Rp5TymE1GjWv7eB/c0rPvguPQ25uiWsKrfO7Ol18i3tHBLbfcwuWXX87ZZ59N79y56hek5B/+4R/42Mc+xvr16yuyVC655BK2b99e2hS96aabeOqpp1i7di0f/ehHue222xry/+AdcrEdumauTDnesQNC15CA1ylc0Neh+01AalO0FYyCoVYU3ivMQlFqeTLba7w1GnqFXFqEyZbP3X8iyWgmz2WXXcaLdm30dK7Ay0dHkMCmTZt4+eWXS++/+eabAZg9e3bF3wG46667xnC46aabJvu/5Im0x6aorg49V5AUJWMdui2QUsqKE7qthtd1bqDvycvS7UpeDl3DtEW//hASzjkKdSpXJ7QdumEoSllxqAi0Pihq77r7OHTNBrFfLemwVR7AOiHt49B1FXS/0q7a8vW47ATUngrougfUjqEbBSmrjv1Tfq6Z4QWc2ihjHRmg3TI7SHAA8ppNQKY5dL8LjHXl63UdIWh+jqLt0M2Cl0PX2aN7b4rqKZC+IYFSMbGmUwqEX2U9XQUymVXt22lI2qKvQ3fSbjXk/Afr0HXc0KgFRUnFhcDQPIc+0TYrFCW5gvTNQ9dNIH0dr9BzAkrZE1BntHJbSteskZKgR8fW9tFxAipNmB57KqDnpr6XgWo0Wi7o8Xic48ePGynqyqE3/3OllBw/fpx4PF7z7/jdnhLW1qErPh2GOPRkVmUxdUS9Qxi69W9nAopHzcjK8eu/zkaobpNmJl9EyrH9odFoeZbL4sWLOXDgACbeZnRkKE00bJE8Fi29VixKjg6lyfRHOBZrXPPG43EWL15c8/tLA8IjTxr0K3BUdpBVjlfTCSjl43hDlp5ZGH58LSEoSrTLIvJbUYRCeh6M8wtpNRotF/RIJMKKFStaTWNS+JN/eYBLTpnLZ/7o1NJrw+kcl9/0C/7x8lN537qTWsiuEum8f540oF3N7iDHC/o5MmcA+60o8sUiIau5gzsIqXH4FoqylEGiA8ohLb9Nfd36g3f/bTRaHnIxGams1w01enYwvyVrKUtAM4Ecz/Hq1r6+gqNriMjma8qEmXIEMlLpQXXdFC1NmNHmeua2oE8B6XzRoAHhLTi65vH6LrF1FfSst0Bqu0cxTkhLt/YN2sQF/TZFSxP8H9qmqKkoFCXZfNG/HK1mHcwvJq3L94UYAAAgAElEQVRrHq+vg9SV7zgCqZme+4aIdC2n7Cfoujp0P76NRlvQJ4l0SXD8Dr7o1cFGfWJ6ug5gZ4ldLZDarihyeaJhq/T9O9B1E9ePr64TvN8KqOTQNWtfh291FlGj0Rb0ScJZUlU7HCEEloY3vTsdrCtmRgjDz0HqKjjpbGEMV9A3BOfHV9sJ028TV9OTzm2Hbhj8TjKCGsS6OfRyGpUZMdNUtuDpIHVeYnsNXp1DRF58dZ0wk7k80ZBFOOS9ItaNbzmG3t4UNQJpH4cOeh73dtKoOn0d+tQvoa4nfAXHEoQoEOp/2eO3WodkruCZohayBHMZIPrCj7Qq8JPy4Ru2BGeJnXQ+/EnIZ1vAzBuprH/7XmxtYdldV8DQgRYw80aqnbY4Dp6/Cx77UqtZlJDKep9kBJhm5bj6xb+GLbeP+VmrEJQ1coG1jcvuPhdevKcV1DyRzBY8MwTCluCvwj9k9Q9eC7sfbj4xH6T9HLol+LfILcy574Ow68EWMPNGyifkYlmCT0VuZdrT/wUv3N18Yj7wm+DDluCG0D10HXsKnvl2C5h5ox1yCUIhD9+/Hu77KBzf1Wo2ACQy3o4X4DXiGVYOPw53fUAbV5bMFhCCsfXQheAt1mOECyl46v+2iN1YpH0cpGUJ3mw9oZ5s+2GTWfkj6RdDF7De2qGe7Higyaz8kcr5TEDASeKwerLrl80lFQA/h25ZglMs25nv+22TWfnDEfQ/uFouNcG9vN7zq9bxcMEJYUzzON5/sthffnJid7MoBSKZydMRCY0pJhayBKda+9ST/Y9rk1+XzObHZLiAcmTzxAn15ODTTWblDxVyGcs3XhhmhkiqJweeaDIrfyQ9DsUBdOVPMF2k1JPDzzaZlT9Uf/CYgGSBHobUk4PPaGOgUjl1QXT1HlCjMa6gCyG+LoQ4JoTY5nptthDifiHEDvtxVkNZDh8s//vA5oZ+VK0Y9ck7BljGkfKTI1ubRSkQST9HZgnmigH1JD0EQ/vHvKcVSPo4smguQbdIUbSicGw75NItYDcWqWzeM0TUmVVtW4jNhL6X9BEcnxBG3Oabm74E+l9Sq2MNoEJwHhNm9gSWkCRnrIbMECSOtoDdWPi1b6NRi0O/Fbis6rWPAg9KKVcDD9rPG4fhQ+px9ko49kJDP6pWjNohl+o0QIDZDHEwvhqEBUefbzY1TyQzPo5XQA9DHJu1Xr3Q92KTmXnDLyTQkVJ9YWDhq0EWtFkB+fGNZ9VqIrHwAsgmtJkwFd+x/aEjpwR9dOEmKGThhB4hTr9N3HhGFfUbnL9JvdD3UjNp+ULF/JtfKmtcQZdS/ho4UfXy2wHnJuPbgCvqzKsChw/sUf846TUq/KKByykL+tgvbSYjDIZ7Yc4q5SI1gG9aXW6YmMhzePZ56gVNJkw/vtHcMABDPeeoF47vaCYtX6SyBc9DJPGcGjojCy5QL2jUvl4hl5gt6In556sXtBJID77pfgBOzN2oXtAk+ymVyzf9cguYfAx9npTS3jnhCDDP741CiBuFEJuFEJsnWyL3wL6dHGcGzDtDuRx3CKZFGM3412qYyTCJ0AyYsxqO72w2NU/4OchISn0nAx3LYPoCfRx6tjCmEBNApKDiu8MzT1MvaDKA/bJyYhkl6MPzzlUvaLKpn/ZdUQwCkJh7tnpBlxWQTwguklcXvCemr4BYt2YTkIYOfTxIVbnf1zJLKW+RUm6QUm7o7e2d1Gc8uOhDXMenoPcU9YIGopPM5omFxx50QEpmyBFGrBkwZyWc2APFQmtIujDqE3IJZdQAToVnQM/JGgmk9yZY2Bb0VGwOdC+C/tZPmFJK3wkzZgtkavoKiM/QIoQhpfRt35gdQ092LYHOHi34QoAhsftD1upUK2JNVmx+e0CNxmQF/agQYgGA/XisfpTGohDrZndhPvTYgt7f+i8tkcl7ZriQSxIjy4jVrQS9kNHiwINvyCWvBkRGxG1B36FFSMs377g0gONqAGswAaVzzu00HnsUhSQZGSFHWO0BaeDQU7kCRekdLozkEyRknCIhmH2SMiQawC/ryem/OSsGPau1aF/wXwE1GpMV9LuB6+1/Xw/8uD50vBEOWaq4UVePcjkaCHoyW/DMQSelHNmImKYEB7RwOb4nL3Mqpa4k6JnhlmcKFIqSjEdpYoBQQfHNWR3lAdziCcg5kzAt7iHo+RQpohSL0hbI1veFEl8PQQ8XFN98USpDooFAFoqSdK7onefvTPDCduhD+yGbbDbFMUhk8p4TZqNRS9ri7cDvgFOEEAeEEDcAnwFeL4TYAbzOft4wRCxBriBVXEeTsMBoJk+XV4wsOwpAWsSVIwMtBoVaAno5HLegr1YvtnjCHA3I8Q87fK0OtUeRGYLR1l5f6AjkdA++oUKKJLGyQA4dgHym2RQrkEj7t2+okCIlY/YEtBJGDrVcIJ3+MN1jwgzlk+SlRZaQVgYqkc579odGo5Ysl2uklAuklBEp5WIp5deklMellK+VUq6WUr5OSlmdBVNXhN33Bmqy0Tia9ZmBc0rQk8Rg+nyIdGkh6Klsni4vh24vWdOOQ4eWT5iO4HgO4EKKohTkRKw8gFvcH2oRyIK0BVIWYeCVZlOsgLOh7z1hpkgSt/naV0MOtDbsMl77JolRhLIh0UAffEOyDYYRJ0Wdkp75ooSeVTByGDIjLeU0mvGJkdluJkUchIA5rV9mF4tSHSzy6GDCHXLpXqgmoBY79JHSAI6M+VkoZ4cEJMrxQssH8EgmB3jHpEN5JTiFgh1ygZb3hyC+ViFFyr2igJYbkqCQViifJEVMlc912rfFG+WFoiSZLXjybTSMEPSIpWhmC0Xl0KHlojPqNwNnHYceV8/nrGq54CSyeaSEbq8OZgt6WtgTUE/rNxoTtuD4DeAkcRUSmLkUQtGW94XAFYXb8eoikAF8w/kUKemK+UPLUxdHAhy6lU+rFVCxCNEu6F7c8kyXoJBho2GEoJccekGWwwItFknfPFMn5CJj6vmcVWqJ3cJSpEFLVrKjZGWIHPZqw8l0aSGCB3CSpLQdpGVnYrRYIIMGsJVP2oIjoXM2xGe23KEH83XF/OMztEhddA7xeU1AltuhgzIkrTZQQeOtwTBE0BXNfKGo4nrCarnoqBh6UMjFEfTV6oj6wN7mkavCSMmRjQ1hkEuSIl6u395zMgzta+lGWGKcAVxyvKBF7rEzgD1DGHaWS6l9NcgcCeRrh1yKRVf7tjiEUc7KGdt/rVxShbSconIO3xZmPgWFiBoNIwQ9YlcsyxUlhGMwc1nLB/GoX1qSHcIYdRx6j7Nx1zq+I2kVwvASSLJJ0iLmEvTWbywFOZzSAC64BvCJPS0tIjUy7gTkal8NcrsT9qaoJ9+cWlGUbtzq0WfC9BJIkU+RlK721SDzKWiF2WgYIegVDh2U6LTQoWfyBXIF6Zk1QlYdRR51h1ygpXxHghxDbtResrocOrQ0jh7kcEROhVwKjgGbswqKObWqaBES6TxhSxALjx1OVj5VKZCzV6pc6RZWiUxkcoQC+CaJle/EnbNaiaN9vqIVGAnIm7dyyfImLrgMVAsNScAE32gYIegRO4aeK7hE5/iultXuHk6pL2xGh0cII5ukiGC0GFXP4zOga26LHbri67kpmk2SoqNScBCtnYCckIDHHoVwQi5F1+QOLQ0LJDJ5psXDCDG29rXIuTZxwZ7gZUs3GkczBabFvPmWBLJgxopN2Cu2ojsEBy3tv6MBIaJGwxBBtx26O06WT8Fwa47UD9shjG4vQc8lyYpY5SXRPatbKjhOyMWzg+VUyKUkOJE4zFrWcofeFQ15Xg4gsqN2CMN+QYNc9ITfIbNi0Y6hu/pDb+tXQCNpnwytQh5RzJbz5kGLrLJEJkenX38ohVzsF2YsgVCspQYqKETUaBgh6M5N72NcQ4sGxXDKFnSvTcZsgqzVQa7gWj20eOMuKE2N7ChpEa+agFqb6ZJI530Hg8gly2lqAJ1zVOZIix2kZ9vah7aSFQLpOMjWCbpvyq29/5N0b4rOWg4i1Nr+G3RIJzdK2r0paoVavvFcChGZWG2xGXAcekkk57R2mT3shDA6vEMYStCrHHryOCQbeqDWFyPpPJbwubA2lyQj4uUlK9ghrR0tC2kFDuDsKKPEy45MiNZPmL5nEpyMp2h5EzfaBTOWtn4F5JWhlStnaJUm+HBUiXqLQ3CeE7yUkE1WrthACXqLDQl4X37TaBgh6BUnRQGmzVW1j1s0iAMdei5JLtShDkE5cCagFrmGkXTON2ZKVgn6mBBRPt2y23VGMnmmebWtlKWYaaFYvQJqnSPzLcTkEkj3/E7P6pbW7R4Zj6+MlhMQoOVVDBMZn7oohSxCFuyQS9V4G9gDhVzzSLqQyOToiITGltZuAswQdKvKoQvR0kyXwBh6NkHeileGXEobS63hO5LJe+egA+RGlaBX8HXivK3hm0jnvAdwLgVIMu48dFCZDcMHS6d0mw1fB+mEMGS8UnB6T1Ft27JN/RwzO6Njf5B1Qi7xyhXmnFXqcFGrVmx+7Wt/31krrlKaHfSshmIeBluT+dSqSotgiKBHQlUxdFCzcKsEPeVkjXhnueRCneTyrs4/cxlYkZbxHfGL8YLNtyrmXzqN26oJM7isQkrEq/qCszHaGhc5lMoxq9O7LwBjQwI9q1u6qT+UyjHDK1zoWlFkqw1JK1dsfv3B5psV8crx1uKN3KFUjple/aEJMELQw9VZLmAX6ToEmUTT+Yykc0RCwvvOwFySfLgqhh4KqxOuLYqbJvwGRLEI+RQ5K07GPSA650DHrJbxHUzmmNXlFc5Sgp6r3qNoYaZLsSgZTGa9U1htvqnqEJFzUUtf89tXSqkEp8PLodt8ZbRqU7+1K8zBVJZZXiuKnF0LvdqQlGrmtFDQvfpDE2CGoFtVeejg6mTNH8TD6Rzd8YhPTDpBwY6hS3dYoHdNy67OG0rlfFMsgbEOXYiWZboowckyw1Nw7MqQoQ6yBde1frNbV3Uxkc1TlHgLZK6c5VK5Sd661MVEJk+hKH0mIPv2quqQYe8a9XisNf13MJljhucKqDzBZ93t2zlbmZIWZT4NJnPe7dsEGCHopTx0r0HRCkFP5b0FEiCXohDuBCifvgR1wfXxXS2pkeK7BLQFvRCqcrxg71E0X3CSWXUK15OvPYDzVge5vItvtFOFtY5tbxLLMoaSaj8lWHBilQLZ1WOvgJq/MToYxDdXvg2qoj90zYFp8+HotmZQrEA6VyCTL/pMmIpv3oqTzVfF9+e07uyH7wTUBBgh6OUsF9eXNvsk1InG5ouOcuh+ebEpiuEO9U/3oJh3OiDh2AuNJ1iFgaTPktURyFCH94BIHG36ke9BO4PIc8nqhFxC8coYL8D8M+FI8wVnKJCvLTjV7SsEzD0NjrZgArL5ep9ydvqDh0DOO70lgu5MQN4TvN2+4aoVJrQ0ldU3pNUEGCHokVKWi0sgnRONLQhjDPuFMKSE7GhJ0CtEZ97p6rHJgyKTL5DMFrw37VyCM2ZAtGgFNJhUZYaDBnAu1DlW0Oedobg2OdOl5Hh9ykCAT/vOPxOOPg/FwtjfayCCJyAVcil48Z13ukq1bHIq4GDK7g8BE3w+FPfov44hGWg0xUpKhSKJTL69KRqEcj10L1e2tel8BlM57wyXQg5kAVly6FWZLtFpahA3EeUltn9MuhjxEMgWxXmHSo7Mf0VR8FpRzD+DVqyASoLjuWnnCI5H+84/U/28yZUXg0MuQe17JhSyLZjgg0JazoTZ6T1hQtP1IXAF1AQYJegVuaYAC85SRY7SQ03lc2I0y+wu/5iejHgIumXZy+zmCvqA7Xi9HboawMVw59gBPMtJtWyuoJdCLkGCE/YYwPPOUI8tGsDefFOAQIarsojAJTjPNZZgFcoO3W+CF8hwzNuhQwsMiePQ/cdbIdwxtn0XnKUeDz/bSHpjENgfmgAjBN0JuYxx6AvWqccmxk7zhSJDqZyPoKslKxG1KVqxcQd2HHJrU4vvD4yqDuYdQ7cdupdAhiIqDtnkOG8pZhqQ5VLwmoBmLlOnh5sc0goOuYxCpJNoODSWb+8asMJNn4CcFYVvlku0i0g4NHaTfM5qNcE3m29QDN0W9KKXQ+/qge5FTRf0wP7QBBgh6GGvg0UA89eqxyZ+aYOpHFJSk0MfG+c9Xa0mhpp3oGQoFRCTLvHtHDuAARaug0PPNHUCGgzimy2vKMYMYMtS7dvkjdGhVI54xCIe8amNEukgGrbG8g3HlKi3YEURDVs+ZyjUBBQJWWP7bjiqTrg2e8IMcrzZ8njz7L8LzoLDzV4BBYTgmgAjBL1UnKv66PH0eSqdqomCPjCqvrAgQReOQ68eFAvXq8dDTzeMXzUGkkEOXQmkjHg4XoCFZ8PoMXWsvkkYSuaIhf0EchRCUUKRqDffeWfYG43NO6Lue6gIlOBEO4mGLW++889sukAOjGaZ2eF3hsLmGxJj+y4ogWz2BJ/MEQ1ZdPj2hxjhcNib7/y1KmTYxI3y8gqz7dB9UTpYVB3CANXJmhiHPB4o6HbIJdqlnnpt1ISicPCpRlKsQDmGHrCiiHaMdWQAi85WjwebOQFl/eOP2aTLQXr0hUXnQHakqXH/44kss7ti3j/MjUKky9vxguoPI4dh5GhjSbpwPJGlZ5of33L7egrkonNU1dAm3o87mMwyozN4AoqEfCbMBWsB2dS4/4nRgPHWBExJ0IUQe4UQW4UQW4QQm+tFqhrhkEXIEpWnAx0sOEulLjZpFq7FoVtRx6FXiU44pgbxgeYJ+qDteDs8r8tTbWZFushVn2wF5XitcFNXFP1BgpMdhWgXsbBFNu/RFxafqx4PPNk4glXoT2TomeYzeEuO1/I2IyW+TzSOYBX6Exl6pgcLejTsx3eDemyiIVHtG8S3i0jYZ8J0NkYPPdM4glXoS2SIhizv0tpNQD0c+iVSynVSyg11+Fu+iIctMjmPL23xBpDFprlIx6HPCXDoIuqR5eJg0TmqgzUp/7g/kfHmCmpAiBBWOIaUVJbQBZXrP+/0pjr0vpGgAawEPRIS3jHTOSvVZRdNFfQsveM43mjYIuMnOKEo7G+moGfp8esPbsfrxXfu6RDugAMN825j0JfI+k+YOcU35rei6F4E0xc0t31HssyZFvVeUTQBRoRcAGKREOkgV7b/sabwcJZUQXnSIb+QC8CiDUqYmpQv3TeSobc77v3D7ChEpxGx45OefBeeDYe2NC0u3Z/I0OvnILNlgfRcYguhJvgmCY6UMtjxZp0JyIdvOKZEvUkT0Lh83ZuiXnxDYbVRfrB5gt4/Mn5/iPitgISAJefD/scbS9KFwBVFEzBVQZfAL4QQTwkhbqwHIT/E/Bx652yVLbCvOV/aidEs0+Nhoh43pjsO3YoFCHqTl619Ixl/B5kdLYUEwGePYvG5kBmCvsZPQCXBGSfk4hvjBcX32HbIjDSOqI1EJk8mXwx2kJFO/xARwOLz1Iotn20cURujWVUXxX/FlrInTJ9NUVArzMPPNYWvlJK+xHj9t4tIWHivKACWblRlf4eas7EfaEiagKkK+kVSyrOBNwF/KYR4dfUbhBA3CiE2CyE29/X1TfqD4pHQ2MMDDpacr+KQTXCRfYExPSXoIVvQs14COfskVQluX3NWFH2BDscZEKobZLz2KJZfqB73PtoghmUMpXLkCtKfb2402KGDPWHKpkyY/Qklav4TUDnLxTNEBLDkXFVrvAnpi/0jGWB8vuNOmIUMHN7SIJZljGTyZPPFGkJwVmU9dDeWnK8em+TSA/dUmoApCbqU8qD9eAz4EXCex3tukVJukFJu6O3tnfRnxcIW6ZyPy1m6UeV3N6Guy7HhNPO6A2KmQDimNkU9XYMQsOxC2Pubhqd/5QpFTiSzzB1vEyzkUZ7Ywcxl0L0YXnmkgUwV+hOO4PjFeEchNo2oX4wXlOAIC/Y2k+94WS7CfwIqCU7jJ/jjo4rvHN8VhT1hhgImoOUXqcc9v24Aw0r02RNQoCFxJni//jD/THXQrwmCXizK4CyiJmDSgi6E6BJCTHf+DbwBaFhSbSxs+Tv0pRvV477fNurjSzgynGa+X0zaFvRoXAl6xm8CWvFqtQxscPrXidEsUo4zIKLTSuEjT5cjhHLpr/y24RPQMWcAj7PEdgbwmKwcgPgMFfdvguDU6ngDBad7oarn3hSBHGdFYYdcfLNGQJ3AnHu6MiQNRm3tO82egHz4hiIqTPRK47VhMJUjX5RmCjowD3hECPEs8ATwMynlffWhNRaxSMjfoc9aATOWwK5fNurjARXTOzqcYV6QoEc6iUdVHrUv3+WvUo8NHsTHhmtwOPYSG3xWFKBc2Whfw/O7nRCGL99MQm3ihiykrKo378ZJr1EhlwbH0fschz7dw/EWclDMlfLQfUMCACddrFYUDa5keGwkDeC9YivkVfGtaJdaAQXxXfEqtWeVzzSIqUJg+wJkE6X+W5QepUEcnPQadVZltL9BTBVKKzYTY+hSyt1SyrPs/06XUv5zPYlVI9ChCwErL1UCWcg3jMNgMkc2XwwQ9BREOko53yk/Qe89BbrmNtzl9CUCBjC48roVX89NZ1AhImjCBOTw9WhfKe0BXF5R+E5AK16tLglusCs7PJQmEhL0eB0scs5FRAPSFh2cdLH6f2tw3P/QoM3Xy0Hahc+IdNhjLSCtdsWr1Z2oDc4mOmobEs/+AHbaYlepP/jqw8pL1WODDd/hIdV/F8zw4dsEmJO2GA7YFAX1pWWGG5pSdcQWnPl+X5idRhW3O1jaTyCFUC5n968aupF7ZMgeEIEriq7SsWrfCWj2STBrOez4RQNYlnFgIMW0WNj7UEY+A7JQOlgEARPQkvMhFFPt20AcGkwxf0Ycy/LIObbDb0RUnnQ27xMiAtUXELD74UZRBeDwUBDfcmG5jmiIdK5I0W8FtOwCtU+xp/Ht2xEJeVcKLeTUiqKW/rtgHXTMhl0PNZAtHB5UbbhwZkdDPycIxgh6PGL5x6RBLauE1dAvzRF0303R7AjEphMOWURDln8HA1j9BlUn5XDjTrEdHEwStgTzfB16AqJdpRVFMuuzuhECTr5MOfQGXqF3aDDFwplx37taAYhOo9Ph69e+kQ5Ytgl2PtAgpgqHBlMsnOEzeJ12inYRswXH15B0zFJ1fhouOOkAvs6KogaB7Jil0i1fbliEFRivP5RXQKUVcdaHrxVSq6BdDzV0H+jQYApL4D/emgBjBH1ch94xSx3aaaCLPDrkCLqP480oQQc1Afl2MFCCLkLw0r31plnCgQHlyMIhn6/Z3rTrHG9AgOKbTzc0THRoKOXvbhxBj02jI6ocfMpvAgI45XJ1Z2cDL7o+NJhmkR/fXFkga2rfk9+oTjQmjtWZZRkHBwPat7Si6CjzDTIkp7xJFcVrYOXQQL5Zj/YN4rvyUkgcaWh66MHBNPO6A8ZbE2COoEfGiesBrHmzOqQxuK8hHPadUI7XN8vFJehq2RrAt3M2LN3UUEE/OJBi8SyfAVHIq3zi6LSSI0sGCc7yiyDSBS//vAFMFQ4OpPwF0j2Aa+G75s3q8cWf1ZFhGYWi5MhwOkBwyiGXLnsCGg2agNa8BZAN5Xt0OO0f33XaN9JVqnQZOAGdYrdvA/vvocGA/luagFwrisAJ8zK1gn/h7jqzLONQ0ATUJBgj6PFwyD8m7eDUt6nHF37SEA77TiRZNKvDfwZ2C3okFOwYQLmco9salr54YCDF4lmd3j8sbYJ11uZwwjFYeYkSnAbUoUlm8wwkcxNyZIGCPmOxOlb/0j11ZqpwbCRNoShr4Dtt/JAAqJo5s1bAiz+tM1OF/kSGfBDf9LB6jM+g01kBBfWH3pPVBSgNat90rkB/IhsQInJCcO6QYQDfab1qc//5uxoWdglcYTYJxgh6TQ59zkp1kGD7jxvCYd+JJEtn+wgkVIVcQsEDGGDN5erx+R/ViWEZ2XyRoyMBIYGMO4RRg+AAnPlOtWxtwKGdQ/aGkj9fOwXRJZC+MX8Ha96iwhjDh+pFs4QDA84GmI/jTQ+qx3h3bROQEHDqW9RGbmqwnlQB1XcBf8ebcQS9m46okoVAvqD6755fNyQd0OkPC8adMDtdE9A4/eG0t8PxHQ05gFgoSrVH4dcfmgRjBL0zoq7FCsyPBfWl7X+8IbG9fSeSLJsznqB3AyrkMq5Dn70ClmyEZ79bd9dwaDCFlAEDuCQ4M0sDYtwBfPJl6qLrrd+vI1OFPf1KcJb3dHm/weV4a+Z7xh8BEp67o04sy9jdpybElb3TvN/g3HPrcryBIReA065Uuevb76oXzRL29Kn2G5dvrJuOiLNHMU77rv1jlR667c560Sxh73HFd0WPz3hzrSjKIZfxVvBvBURDDNTBgRTZQpEVc3z6b5NgjKBPi9uDIjPOoDjzKvX4zLfr+vlDqRyDyZy/Qy8W1DLQFXIJjKE7OOtq5RjqfOvSLltwTqpBcEKWIBoeJysHVPbImrfA9rshl64jWzdfnwHhOMjYtNocL6gV25KNsOX2uk+Yu/tGiYYt/yV2xh3CqHEFtOhsVWjumW/VkanCrv4E0VAtfLtd5yjGGWvzTlMr4me/W0emCruOKUE/qcev/zqGZIarP4zDd/p8le2y5Tt1Dxvu6h9nvDUJ5gh6TAl6YjxBn7VcfWnPfLOuX9reftXBls72c5BOCGMCMXSA069UNbGfvb0eNEvYcUzxWTXXp4M5y/qOmeohEgrOGnFw1tWq+mKd9yl29yXomRajO+5zW1GJ76zaQ0QA696tsl3qfEnH7v5Rls/pJOSV0w1qwrQiEI7TFatxAhIC1r1HldPte6mufPf0jbIskO+wyrpy76mM53hBufRDT8Ox+oYxdvcnmN0VZZZfZciSIZk5/kE+N86+TpXdqPMho932CsjXkDQJxgj6dHugD6drOB599vV1/9JeOqJiuKfMn8S4YckAABw2SURBVO79BleMFyAeDY0/gEGlW576VuUa6nhUfeexBL3TY/73XbocOkBnrXxXXKxqjzxxS32I2tjVN8rKoMGQGlCCE6sxJu3g9CtUcaYnv14npgq7+xKs8AsPgWrf+AwQopRmOa6DBDjrj9X/51O31Ympwp7+0WC+mWGIdyu+kRodL8Daq5UhefIrdWKqsOvYeP2h7NBrynJxsOZyVe306VunTtKF3X0JuuNh/9LETYJBgm479HQNnWzNW6CrFx7/ct0+/8UjI8Qjln/IJXlCPXbOBqA7HmakFq4AG/9CDagt36kDU4WdxxKsClr+uWLooGL+vgd13LAsOO/9qlxxna72klKyuy8RvFxNDajVhBDEw84ArqF94zOU6936vbrd3ZnNF9l3IhnM1xF0qC3N0sG0uWoSevob5Ul3isjmi+w9PjoO3+GK/R+o0fFO61Vhzi3fUd9RnbC7P+EfbgHVNrFusEK1pd06CMfUqu3Fe2DglTqxVSHDk3qnteymIgfGCHrNIReAcBTO/3PYeb8qxl8HvHR0mJPnTfdfsibtnf7OOQB0d0QYSub8j3u7sXiDKvv62JfqEiYqFqUSdL9wC1RsgoFaAdU8Aa17t8pJ/+0Xp8hU4fBQmoFkjlMX+Kx+wBb0WQBYlqAzGmK0lgEMsPGD6qh4nVzky0dHyBUkpy/s9n9Tekg5XqCz1pCLgws+rE4dP3XrFJkq1M5XTUDOWKu5P5z/AZUXXqdVxdHhNP2JrP9qGJQhsflalqArGqpNGwDO/6DKSf9dffqvlJLth4Y5dUFA+zYJxgi649Br7mTnvh+i0+GRz0/5s6WUvHRkhFPmBXSw0ePqsbMHgBkdEbKF4vi58w4u+DAM7KlLBsnu/lESmTxnLp7h/6bUoGqfkGrXmR0RhpI13kITnwHnvU9lN9Qh1rv1oJpczlgUxLcs6KD4DiZrrE44Z6Vaaj9xS11c5POHbL4LA/gmT5T4RkMW0bBVW7gQVBmA5a9SE7xTY2UK2H5IbXgGtu9onyqNi0q57YiEGKy1PyxYCyteA7/9QjkddgrYekC1b2D/TQ+VVpegroSsuT/MWKT2gp7+BiQmf+mOg/0nUgyn85yxqC3oNcPJchmpdRbumKlE5/kfTTmD5OBgiv5ENnhAJG1BtwfFzA4VSxtK1djJ1rwV5q+FX/7LlK/3eu6ACqectXim/5tGj6nlso1ZnREGah0QABf8NUS74OFPT5ZmCVsPDBGyBKcFOZzUgMcAnkA7XfxRFVZ45H9PganC1oNDTI+Hg1NYR/tg2jwAhBCqfUcnyHfkcF3ChtsODTEtFmZZ0BmK0X5VAdTGzM4JTJgAl35CrVIf+9IUmCpsPTiEEAT3h9G+UngTlIGaUH+48G/Uqu3X/zYFpgqOITkzSB+aBGMEfXpMbe6N1OpyQH1pnbPhvo9PKW3tqVeUqztn2Sz/NyX71TLOFh1nM7JmQbcseO3/hMFXYPPXJs0V4Nn9g3RGQ8Ehl5GjMG1+6emEBbJrjlpqP/+jKV+n99zBIVbPnVY6cu6JxDEVX7YxqyvCwET4zj8T1r5LCeQUzyg8d2CI0xd2+8dLpYTE0Uq+ndGJTZjLL1J5/7/5XHn1N0k8u3+Q0xZ2e1dZdPhWTfAzOiY4wS85V9XP+e3/mXI9mq0Hh1jZO42umEfVTQcjR1Uaoo1ZXREGax1rAD2r4Zw/gSe/NuVV5nMHB4mERHCIqEkwRtDjEYt4xJqYy+mYCZd8XF2fNoXDD5v3DtAVDbEm6Asb7VMlOi3VpBMWdIBVr4VVr4OHbp6S6Dy5d4C1i2f4x/tBnficVunIhtN5/0sCvHDR36rr6X76kUlfzpArFHlq7wnOXT7b/03FghLI6QtcfCewxHZwyf8ABPzs7yc9wQ+lcmw7OMR5K+b4vyk9qEq72g4dYHZXdGJ9F+B1/6QOVN3/iUlxBZUVtvXgEBtXBLRvZkQVXusqC/rMzghDqQnyff0/qb9z30cnyVZdUvHknhOcuzzAPJUmzHL7zuyITmyCB6UN0Wlw7z9MyfA9tvsEZy2eWbpXoJUwRtCFEMydHi9dU1Yzzv4TdSXZPX8PI0cm9dmP7T7O2ctmBVdRG9wPM5eUnk5K0IWAyz8LsqhEchKdrD+RYfvhYV61epz7WxPHKhzOzA4nLXQCF4TEpsGbPgPHnp/0XsWz+wcZzRa4YGWAQCaOqVro3WVBVyGiCQ7gWcvg0v8BL9876Qn+iT0nKErG5wsVIQzl0CfId+4aeNVHYMu34eXJVRF90ua7cRJ8Jzxh9qyGV/29attJFu3aenCIkUyeC1b2+L8pPagKy7n674xOlYQwIXT1wGs/oerQb55cWutwOsfWA4PB/aGJMEbQQV1N1jdRQQ+F4cr/UptLd31wwlkk+44n2XEswcWnzA1+49B+dQ2eiyuUr/2qGbOWw2s/CTt+Dr/7j4n9LvDoTpVtc9GqoAExrNIkXY7XOcBxYqIucs1b4Ix3qlj6JG4IemRnP0LApqABMWLXYpm+sPTSrM4oQ6mc/zV0fjj/g+qOyZ9+BI7vmjjfHX3EwhbrlwbsTwztV4/dLr5dEwxhOHj1f4O5p8GP/3JSNWl+s6OfaNji7KUBjnfQTt+bubT00szJTJgAF/2NunP0rr9QJmeCcPpvoEAOH1aPLoc+q1OFXHwv5fDDue+Dky6BX/zjpA5H/W7XcYoSNgVNQE2EUYI+d3ps4g4dVGW4yz6jCtzf/8kJ/eqDL6rc5deuCRB0KW2HXh4QvdNjhC1RKjI0IZz/ASWU939ywte+/fz5I8zpigZv4J6whWzOytJLTkngw0MT5CsEvOXzMHMZfP9PJ1y6+N6tRzhn6SxmdgYcyHCqUbpWQHOnxyjK8j2ONSMUhqtuVZce3PHeCR3mKhYl9z1/hNec3Bu8vD6xRz262ndOV4yBZHb8WkTVCMfgnV9XaYF3vHdCJReKRcl92xTfwP2JAZvv7BWll+Z3d9CfyNZWvqKa77u+oUJw379+whei3LvtCGctmcmcoIuWT+y2+Z5Uemled5xCUU68PwgBV/ynCr3cfvWE9yvu3XqYGR0RNgSFiBLH4IGbGlqb34FRgt47PVa6d3LC2PCncN6NKvd0As73rmcOsmb+dP+iUQDDB9Udi64BEbIE87rjHB6cBF+nk/WshtuvqfmuyeF0jgdeOMZbz1oYHD93nOmcVaWXFtsZEAcHJjEBxbvhmttVG3zzHTVX33v56AgvHR3hrWctDH5j38tqw9mD7/4Tk7hBaeZSeKe9GfadP65ZdDa/MsDR4QyXr10Q/MYTu1WevstBLpndiZRMboKfeypc8SXVD75/fc1ZUE/vG+DIcJrLzxyP7x51ZZ9rk3yRXdTNuSdzQuhZBe/4L3Xw7I731sx3T/8ozx8a5q3jte9xWxjd/cHmu38y/bd7Ifzxd5Tzv/3qmg90pXMF7t9+lMtOn1+6aN0TR55TIclJhnwnAqMEfcmsTobT+YlvLjl446dVNcaffxx+89lxY9TbDw3z7IEhrj53SeD7SoeX5q+teHnhzDgHJzOAQeV6X/sjdVDpm1fCnvFvCvrxMwfJ5ou8fd04Ann0eXW8fFZ5Apo3PUbIEqWysBPG3FPhmu+qcMPXL6vJqX/7sVeIhARvHk9w+l5QoahIubDUErvO+/6BSV6Jt/JSeMct8Mqj8J131ZSf/q3HXmFaLMxrT50X/Majz6vJ2JUF45ww3jeZCQjgtLepldDL98H3rq0p39vh+7rTxuO7TV1cbpXlwBHIA5Nt3zWXw1v/HXY9CLf/cU0roe88/gohS/CWteNN8C+pyTJeTmt06v5Pmu+Sc9Ukf+gZNd5qcOp3bznEaLbA29ePw7ekD2dMjtsEYJSgr5qn0vCcwlMTRigMf/R1dVT5wU/BD99fLsvqgf98eCed0RBXrl8U/HcPPa0c5LzTK15eOruL3f3+f39cdC+EP/mpck7fvFKlWPlMQvlCkVt+s5v1S2eybklAfBdU8acFayFSrt0cDlksnBkvlS2dFJZdoCah0WPw1dcFXtJ8YjTL9zYf4G1nLSrtN3hCStj/pLro1wVHcPYdn8LBmzPfCe/4ikq7/Orr4NgLvm89MJDknq2HufrcJaWTlJ4oFpSTXryh4mVH0F+ZrKADbPgzuPxz6prFr7+xHHrwwMHBFD/bepirNiweh28RDj6j9hVcKLXvVPiefR287Qtq0/HrlwWGHIZSOb77xH4uP3OB/yXsDvY/oa6b9OA7qRWbg1PfCu/6prqm7paL4dAW37cWipKvPrKbNfOns+mkcTZED29RIcmOgLBMnWCUoJ9sn9R8+egUiliFwnDlLXDpP8LWH8CXLvC8nHfL/kF++txh/uzCFcHxXYAd96uj+9HKsMwZi7rpG8lMPkwEKjxww8/VzfA/+wh852rPG45u/e1e9p9I8ZcXrwquJ5EeVoK+dNOYH522oJttB6dYP2TZBfBnP1crjG+8He77mOeFDZ/9xUtkC0U+8JqTPP6IC/071Kbo8osqXo5HQqzo6WLboSnyXXsVXH+34vhfr1ZL4/zYOOyn73mRcEhww0UrPP6ICwc2q8qbVe07d3qM7ni4dGpz0jj3BnjPD9RK6EsXwmNfVtcJVuEz976IJQTve9U47XvoaVU9s4rvopkddMfDbDs4Rb5nXwfv+b4KS37ZPv3qkeL6+ftfJpHN84HXrPT4Iy4MHVB7QEs3VrzcGQ2zdHYnz0+1fde8Gf7sPpVV9dXXwUP/7Llv8b3N+3n5aIK/uGSc8VbIKWOz7IKp8aoRRgn6whlxeqbFeGLPian9IctS2QN/8lOwwsr9fvNKlaUhJcPpHB/53hYWzIhz43iCc2SbmoGd24dccDYmn9k/xRtoOmbBe+6Ey/5VbZJ+8Vy496Ol4kIvHB7mc/e/zCWn9PLaU8fJxtl2p8oVPu2KMT86a8lM9h5PTj6k5WDuqXDjw2rf4rEvwRfOhkf/vSTsv3zxGN95Yh/XbVrG6qByCqDKIItQ+Q5LF9Yvnckz+wZqq5cThGUXwF88pg7yPHATfGEDPP3N0rH7u545yM+2HuaDr1k1/hVjz35HxaNXv6HiZcsSrF86i6demWLfBXVe4YO/VVeq3fff4T/Ph+e+X4pV3/3sIX7y7CH+/DUr/W+AcrDlO6rM78lvrHhZCMFZS1T71ofv79SkfN9H4T/Oh2fvKE2cj+zo5xu/28t7zl/KaUH1ZkDVtgd1u1MV1i2ZyTP7BqfeHxadA3/+GzjjHeok6RfOgSe+UhL2Pf2j/Ms9L3De8tnjx/t33K/SLD30oRGYkqALIS4TQrwkhNgphJj8aYLaP49Xr+7h1zv6Jr777oXlF6mB8fpPqTjX/30ThS+ez0+++A/ETrzEZ69a61+fG9Rm2s/+ThW4Wn/tmB+ftXgm3fEwP99Wh80Qy4KNH4C/elqdeHziFvj3s0h8/Uru/NpnWBIb5dPvWBvsFoYOqPTCRefAkvPG/PhCO/XqF9vrwDfapWK+Nz4M885QGTufO41j37ieH9z+FdbPj/IPb1wT/DeObFX/n6dfUZGD7mDTSXPoT2SnPmGCOiX5rm/Y+xaz4O4PwWfXsO9bH+JHP/w2m5ZN5y8uGcc97ntcXU6x/j0V8V0HG0+aw8tHE7wylbCWgxmLlfO9+tuqfO0P3wefP41Xbv9bvvv973L+0ul8+NJVwX/j4FNqwlx3TakuvhubVs7hxSMjUwtjOOheoPi++3uK749uhM+fzpHvf4SvfvubnNzbwcfedGrw3zi+S9WLWf2GigwXN98jw+mpu3RQJ6HfcQtcd7eq/XLP38NnT2bkBx/i37/yFTpFjs9dfdb4q+EHblKr7JPfNHVONUBMdjYTQoSAl4HXAweAJ4FrpJTb/X5nw4YNcvPmzZP6PAeP7OjnvV97nE+85bTxl78TQC6d4Pn7voJ49rucJe181K655VtkZp+knHK0U8Xd+15WbuzEHvijr6p4rAc+/qOt/GDzAX7xt68OzpSZIEaO7eXln/4fFrxyFwuFvYHTc7I6RNV7sjrB2TUHEGrX/vAW5ToLObWk9NigkVLy+s+rNMmf/dVFdT35dmLXZvbd+3lW9D3EDJFEWmHE/LWqENXsk1Snj3ZBKKJO3e5/QhVP6pgN73vAU9ATmTzn/fMDXLiqh1uuPad+pUul5PjzD3Logf/g5IHfEBM5ZKQTsWAdLFyn+E5foERQSsV33+9UtcHuBfD+X1bUGXFweCjFhZ95iKvPXcqn33FmfbgCFIuceO4ejvzyv1g9+CgRUaAY68ZauF6VPOhZrTYRO2apGH/yuM33VlVM7sZflmoQuXFgIMmr/+2XvPv8pdx8RX35Dj//c44+9B8sO/E7oiJPMToda9F61R9mrVBnOuLdam9qtF+FCZ/8ilqtve+BipRQB0PJHOf+ywO84bR5fPHdZ9ePr5Rkdv6aAw/9FwsP3U+HyFIMxbGWnKvMytw1qj90zlF8MyMqs+XJr6nkgGt/qC7dmQKEEE9JKTeM+74pCPom4CYp5Rvt5x8DkFL6Vmuqh6BLKfnTW5/kkR39fPDilbzpjAWsnNtVs/hIKRnJ5Dk2nOHYSJqdxxI8d2CIh148xonRLKcu6OZ/vWE2p6eeVuGNo9tUHLdYHfcTyule+j9UxoQPjgylecPnf8X0eIS/e8PJbDxpDvO74/51NaqQKxRJZgocHUlzYCDJ7r5RHt9zgkd39pPMFnjdml4+fYGk98iv4eDT6r+Eh8MWlior8IabVUaDDx568Sh/dutmzlsxmw9dsoozF81gZmekZrFM5wokMnmOJ7LsPT7KzmMJHtt9nMd2HydXkLznnPl8/IzjdB16TDnaI1tVDLcaoZhaVr/+/1MOyQdf/tUuPnPvi7x93UKu27ScU+ZPD94E9OA7ks5zfDTD3v5RdhxN8OiufjbvHaAoJTecN4+/P/kIsVd+pTIgjmxVIasxfKPq9qk3/HNFTZRq3PzT7Xz1kT28d+NSrt6wlNXzxqlh48F3OJ1jYDTHnv4EO48leHTncZ7ce4KilLzv3Dn83arDiu/hLXB0uzpVWQ0rrDK+3vgvFScuq/FPP3me//voXq7ftIyrNixh1Xg1d6qQzRft/pDhleNJdvap/vDbXcfJ5otcs3Ym/7jmEF2Hfqfi+Ue2eYw1VP9d+Vp1nqTHf+Xx7w/s4PMPvMy7NizmvRuXsXru9FJ991qQLyi+g8kcr5xIsqcvwZN7B/j1jj5G0nkuXt7Jv20YZm7f79TdxX0vqjMCXlhwlmrfqv2fyaAZgv5O4DIp5fvs59cC50spP+T3O/UQdFD51h/74VZ+9tzh0mud0RBdsTAhIQhZAssCgSBfKJItFMnki2TzRXKFItWHyeZ0Rdm4cg5vP2shrzt13lixLeRU5bvUoPryotOUyNS4a/3s/kH+9ntbStdUhex63p3REJGQNSZxpSglyWyBZDZPrjD2+1k2p5MLV/Vw9YYlnOWV0ZIdVacKnUs3op3KVUZrWyHc+dQBPvXT7aWyBbGwRWc0RCwcIhq2kEiKxTLXolSXd49mCmQ9asGcPG8arzm5l2vOW+p9yULyhNrky6VUDZTOHpWmGA2oDmhDSsn/fmAHX3p4V+mzu6Ih4pEQsbBl81VZCVKqx6KU5Iv/r727DY2ryuM4/v3PTDJpJpNEk1F8aJpWo9tl0YIuBfEBxVf6QoWVLisL7opFxBe+2Ne7oCziA4iwgigrLosoPr2wWPCFDyhq67ZYqW6VXVuitqIxafPQJDOZuf99cW7SsU6yyUymSW5+H7jMSZo5539Oz/3PnTv3znEmpss14916XifXXxri3Xj6NxRGlXDEOH4sXrbNwjzoGfjJVUPzmalE/PWNQ/xzz+DcXa75bIZsHG9LOsy9iocxrkQel52JYplijRuTLj03zw1bz+F3teKtlMML/MT34dLMVCacIiz8YlHjO1OJeGDXv3l+7+DcfpNvy5wa33QqngNhLnj8WCpHjBfLNW+k2lLIce1AgTu29/38M5TZeEePhu+Ej6Iwvr0XL2p/iyLn4Te/4O/vH6E8O76nxeuEGGfnRPV8qLWox7mdWa4ZKLDj1xu5ctNZPz24iaIwd08OhXc+HoUVsnovqfmusl6rJqGb2U5gJ0BfX98Vg4PLt0rIt8cn2T94nK+HJxmdmmGiWI7/o8KOHrmTib+LujWdmtvBuza0UMhnKXRk6e/NcV5XW9NXGoki58C3Jzj03RhHj08xWaowVaowU4nAwosPhPxghBeo9myG9pY0G1rTFPJZLjyrnb6z2xe+zG+ZTJUq7D0yzFdDJ/l+bJqpUoViuUKpHJGKg0yZkYofM2kj39ZCRzZDvi1Dd3sr/T3tbOrJzb8M3jI6frLEnsPDDI5M8sNYkWK5MvciPhtjKhXiTaeMlIV4820ZOufizbG5kFvSEX69fhifZs/hEb4ZmWRovDgXa6kSYZyKMZ06Ve7IZujc0EJnW4aueHy3FDrOTLxj03x0eJhvRib5caIUxncmYibyufG1qjmRSafIt2XIZzN0ZMP4buppp78nN/86ocvox4kiH301zNdV41s9f2vNiVxrJszheE70nd3O5t4chXx2xVciSuwpFxGR9WaxCb2Rq1z+BQyY2WYzawV+C7zeQH0iItKAut+ruXvZzO4D3gTSwLPu/vmyRSYiIkvS0Mk3d98N7F6mWEREpAFr6k5RERGZnxK6iEhCKKGLiCSEErqISEIooYuIJETdNxbV1ZjZEFDvraK9wOLWNksO9Xl9UJ/Xh0b6vMnd5/+SoNgZTeiNMLN9i7lTKknU5/VBfV4fzkSfdcpFRCQhlNBFRBJiLSX0p1c6gBWgPq8P6vP60PQ+r5lz6CIisrC1dIQuIiILUEIXEUkIJXQRkYRQQhcRSQgldBGRhFBCl1XNzLrN7N64fL6ZvdLEtraZ2U3Nql+k2ZTQZbXrBu4FcPdj7v6bJra1DVBClzVL16HLqmZmLwK3AF8C/wG2uvuvzOxO4FYgBwwAjwGtwO+BInCTu4+Y2UXAk0ABmATudvcvzOx24C9ABRgFbgT+C2wAjgIPAUeAJ4A2YAr4g7t/uYS23wU+Ba4jLPf4R3f/uDkjJQK4uzZtq3YD+oHPapTvJCTgPCFZjwL3xP/2OHB/XH4LGIjL24G34/JB4IK43F1V59+q2u4EMnH5RuDVJbb9LvBMXL52NnZt2pq1NbRItMgKe8fdx4FxMxsFdsW/PwhcZmYdwFXAy2Y2+5xs/PgB8JyZvQS8Nk/9XcA/zGwAcKBlsW1X/d0LAO7+npl1mlm3u5+os78iC1JCl7WsWFWOqn6OCHM7BZxw922nP9Hd7zGz7cDNwH4zu6JG/Q8SEvdtZtZPOOJebNtzTZ3e9AL9EWmIPhSV1W6ccGpjydx9DDgSny/Hgsvj8kXuvtfd/wwMARtrtNVFOJ8O4TRLPXbE7V0NjLr7aJ31iPxfSuiyqrn7MPCBmX0GPFpHFXcAd5nZp8DnhA9YAR41s4NxvR8SPrx8B/ilmR0wsx3AI8BDZvYJ9b+bnY6f/xRwV511iCyKrnIRaZL4Kpc/ufu+lY5F1gcdoYuIJISO0EVEEkJH6CIiCaGELiKSEEroIiIJoYQuIpIQSugiIgmhhC4ikhD/A9c21pLyTYxkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXeAW9WZ9/+5KjPS9N5nbI897hg3wMYU050AgRRSgYRkk23ZbHb3ffkl2U3ZJO9mS5JtyW6WTSGEbCABAiF0MAZsirGxjbun96bRNEkzGpX7++NImqZyr3Q1Ruz5/DO2pKvnnqt7v89znvOccxRVVZFIJBJJ5mM63ycgkUgkEmOQgi6RSCTvEqSgSyQSybsEKegSiUTyLkEKukQikbxLkIIukUgk7xKkoEskEsm7BCnoEolE8i5BCrpEIpG8S7AspbGysjJ1+fLlS2lSIpFIMp7Dhw87VFUtT/S5JRX05cuXc+jQoaU0KZFIJBmPoiidWj4nUy4SiUTyLkEKukQikbxLkIIukUgk7xKWNIcukUj+d+Dz+ejp6WF6evp8n0pGYbPZqKurw2q1JnW8FHSJRGI4PT095Ofns3z5chRFOd+nkxGoqsrIyAg9PT2sWLEiqe+QKReJRGI409PTlJaWSjHXgaIolJaWptSrkYIukUjSghRz/aR6zTJH0I8/BFOj5/ssJBKJ5B1LZgj64El4+DPw+BfP95lIJJIMwWw2s3nzZjZu3Mhtt92Gx+M536eUdjJD0F2D4u+U8/yeh0QiyRjsdjtHjx7lxIkTZGVl8aMf/Wje+6qqEgwGz9PZpYfMEHTvpPibXXB+z0MikWQkl19+OS0tLXR0dLBmzRruvPNONm7cSHd3N88++yw7d+5k69at3HbbbbhcLvbu3cutt94aOf65557j/e9//3lsgTYyo2xxekL8tRWe3/OQSCS6+dvHT3Kqb8LQ71xfU8DXb96g6bN+v5+nnnqKPXv2ANDc3MzPf/5zduzYgcPh4Nvf/jbPP/88ubm5/MM//APf//73+epXv8qf/MmfMDw8THl5OT/72c/49Kc/bWgb0kFmCPqMW/zNyj2/5yGRSDKGqakpNm/eDIgI/TOf+Qx9fX0sW7aMHTt2APD6669z6tQpdu3aBcDMzAw7d+5EURTuuOMO7r//fu666y5ee+017rvvvvPWFq1khqD7p8Rfi+38nodEItGN1kjaaMI59IXk5s4Ghqqqct111/GrX/1q0efuuusubr75Zmw2G7fddhsWyztfLjMjh+4LCbo15/yeh0QieVexY8cODhw4QEtLCwBut5tz584BUFNTQ01NDd/+9re56667zudpaibDBF1G6BKJxDjKy8u59957+djHPsamTZvYuXMnZ86cibz/iU98gvr6etatW3cez1I77/w+BIA/NBXWYj+/5yGRSDIGl8u16LXly5dz4sSJea9dffXVvPnmm1G/Y//+/Xz2s59Ny/mlg8wQ9HCEbs6M05VIJJnPtm3byM3N5Xvf+975PhXNZIZCBnzn+wwkEsn/Mg4fPny+T0E3mZFDD3jP9xlIJBLJO54MEXQZoUskEkkiEgq6oig/VRRlSFGUE3NeK1EU5TlFUZpDf4vTepZ+GaFLJBJJIrRE6PcCexa89iXgBVVVm4AXQv9PH4GZtH69RCKRvBtIKOiqqr4MLFzm8Bbg56F//xy4lXQiBV0ikejEyOVz9+3bx0033RT3M0ePHuXJJ59M2oYRJJtDr1RVtT/07wGg0qDzicrg6GQ6v14ikbwLWerlc5MRdL/fb5h9MGBQVFVVFVBjva8oyucURTmkKMqh4eHhpGz0+fOSPT2JRCLRvXwuwNNPP83atWvZunUrjzzySOS7Dh48yM6dO9myZQuXXnopZ8+eZWZmhq997Ws8+OCDbN68mQcffBCn08mtt97Kpk2b2LFjB2+//TYA3/jGN7jjjjvYtWsXd9xxh6HtTLYOfVBRlGpVVfsVRakGhmJ9UFXVe4B7ALZv3x5T+OPx87K/Ykv3bcmdqUQiOb889SUYOG7sd1ZdAO/5e00fTWb53LvvvpvPfvaz7N27l1WrVvGRj3wk8n1r167llVdewWKx8Pzzz/OVr3yFhx9+mG9+85scOnSIH/zgBwD82Z/9GVu2bOHRRx9l79693HnnnZHFwk6dOsX+/fux242d/Z6soP8O+CTw96G/jxl2RlGQW81KJBK9pLJ87pkzZ1ixYgVNTU0A3H777dxzzz0AjI+P88lPfpLm5mYURcHni15WvX//fh5++GFALC8wMjLCxIRYF/5973uf4WIOGgRdUZRfAbuBMkVReoCvI4T814qifAboBD5s+JnNO4d0frtEIkkrGiNpo0ll+dxox4X56le/ylVXXcVvf/tbOjo62L17t+5zm3sORqKlyuVjqqpWq6pqVVW1TlXVn6iqOqKq6jWqqjapqnqtqqpys0+JRJJxxFo+d+3atXR0dNDa2gowT/DHx8epra0F4N577428np+fz+TkbAHH5Zdfzi9/+UtAVMmUlZVRUJDebTQzYqaoDNAlEkk6iLV8rs1m45577uHGG29k69atVFRURI65++67+fKXv8yWLVvmValcddVVnDp1KjIo+o1vfIPDhw+zadMmvvSlL/Hzn/882ikYiiKKVJaG7du3q4cOHdJ93P/52bN8t/M2uPF7cNEfpOHMJBKJkZw+fTpj1hB/pxHt2imKclhV1e2Jjs2QCF3G6BKJRJKIzBB0qecSiUSSkIwQdJNUdIkk41jKdO67hVSvWUYIusy4SCSZhc1mY2RkRIq6DlRVZWRkBJst+b2TM2LHIqnnEklmUVdXR09PD8ku9/G/FZvNRl1dXdLHZ4agy5SLRJJRWK1WVqxYcb5P438dGZFyMUk9l0gkkoRkhKBLJBKJJDEZIegy5SKRSCSJyQxBP98nIJFIJBlAZgi6jNAlEokkIRki6Of7DCQSieSdT2YI+vk+AYlEIskAMkPQpaJLJBJJQjJC0E0yRpdIJJKEZISgywhdIpFIEpMRgi6z6BKJRJKYjBB0GaFLJBJJYqSgSyQSybuEzBB0mXKRSCSShGSGoEs9l0gkkoRkhqCf7xOQSCSSDCAzBF2G6BKJRJKQDBH0830GEolE8s4nMwRdJl0kEokkIZkh6FLPJRKJJCGZIejn+wQkEokkA8gIQTdlxFlKJBLJ+UVKpUQikbxLyAxBlzkXiUQiSUhGCLqscpFIJJLEZISgZ8RJSiQSyXkmI7RSli1KJBJJYjJD0GXKRSKRSBKSGYIu9VwikUgSkpKgK4ryF4qinFQU5YSiKL9SFMVm1IlFQ1XT+e0SiUSS2SQt6Iqi1AJfALarqroRMAMfNerE5jLq8QEg9VwikUhik2rKxQLYFUWxADlAX+qntJjy/Ox0fK1EIpG8q0ha0FVV7QW+C3QB/cC4qqrPGnVicwmn0FWZc5FIJJKYpJJyKQZuAVYANUCuoii3R/nc5xRFOaQoyqHh4eHkTtIkJF3KuUQikcQmlZTLtUC7qqrDqqr6gEeASxd+SFXVe1RV3a6q6vby8vIUzMlBUYlEIolHKoLeBexQFCVHEXvEXQOcNua05iPLFiUSiSQxqeTQ3wAeAt4Cjoe+6x6DzmseppCiywhdIpFIYmNJ5WBVVb8OfN2gc4lJZFBUZtElEokkJhkxUzQSoZ/n85BIJJJ3Mhkh6LJsUSKRSBKTEYIuR0UlEokkMRkh6LMR+nk9DYlEInlHkxGCHppXJAVdIpFI4pARgq5EBkWlokskEkksMkLQTTKFLpFIJAnJCEFHTiySSCSShGSEoMsIXSKRSBKTEYIe1vOgjNAlEokkJpkh6JEIXSq6RCKRxCKjBF3m0CUSiSQ2mSHoyLVcJBKJJBGZIegyQpdIJJKEZIigyzIXiUQiSURGCHr4JOVMUYlEIolNRgi6TLlIJBJJYjJC0E1yLReJRCJJSEYIehgZoUskEklsMkLQ5aCoRCKRJCZDBF38lRG6RCKRxCYjBN0kI3SJRCJJSEYI+uziXDJEl0gkklhkhqDLAF0ikUgSkiGCLtdykUgkkkRkhqCH/yEVXSKRSGKSEYIeHhSVOXSJRCKJTUYIumfGD4AvEDzPZyKRSCTvXDJC0PNsVgAscnNRiUQiiUlGCHok5XKez0MikUjeyWSIoIf+IVPoEolEEpMMEfRQ2aIUdIlEIolJRgh6ZC0XGaJLJBJJTDJD0EN/g1LPJRKJJCaZIeiyuEUikUgSkhGCbjLJHLpEIpEkIjMEXebQJRKJJCEZIeiRxblkiC6RSCQxSUnQFUUpUhTlIUVRziiKclpRlJ1Gndg8O6G/Us8lEokkNpYUj/9X4GlVVT+kKEoWkGPAOS1C7lgkkUgkiUla0BVFKQSuAD4FoKrqDDBjzGnNx0R4tcV0fLtEIpG8O0gl5bICGAZ+pijKEUVRfqwoSu7CDymK8jlFUQ4pinJoeHg4OUtyUFQikUgSkoqgW4CtwH+qqroFcANfWvghVVXvUVV1u6qq28vLy5M7STn1XyKRSBKSiqD3AD2qqr4R+v9DCIE3HEUuziWRSCQJSVrQVVUdALoVRVkTeuka4JQhZ7UAk9xTVCKRSBKSah36nwG/VBTlbWAz8Hepn9JijJhYpKoq/iXe8cgXCDI57VtSm54ZPx0O95LbPDMwsaTzBIYnvTx2tJepmcCS2RyanObXb3Yz4vIumc2+sSn+7snTHO8ZXzKbvWNTfPPxU7x0LskxryRt3v7jN/jB3uYls9k3NsXN/76fLz5wZMm1IV2kJOiqqh4N5cc3qap6q6qqo0ad2FyUFHPonhk/N/37fnZ8Zy/tSyR2074AN//7frZ9+3kOd6blsizC6w9w6w8PsPu7+3jsaO+S2PQFgnzgP15lz7+8wn/sa10Sm8Ggyid/epA/f+Aof/3o8SWxqaoqn73vMHc//DZ//Mu3lsQmwBcfOMo9L7fxx788zIx/aUTny48c56cH2vnj+w8vWUDyrcdPsb/FwXefPcfrbSNLYvO7z5zleO84jx7t49GjfUtiM91kxEzR2Qg9Oe5/vZOTfRM4XF6+/fu0ZIUW8ZtD3ZwZmGTGH+QfnjqzJDYfP9bPuUEXAN979tyS7MH6/KlBzgxMAvCzA+1LIjqvtDg41T9BcY6VR4/0LomTfqtrlGPdY1QX2jjY7uR0/0TabZ4ZmOBgh5PLm8roGZ3id8fSLzrdTg8vnxvm+vWVeGYC/PZI+gODEZeXZ08NcNeu5eTbLPzmUE/abbq9fp443s8dO5bRWJ7LI2+l3+ZSkBGCTopT/x95q5etDUX80ZUr2XdumDFPWsrl5/HY0T7WVuXzNzeu42CHk5YhV9pt/v7tPhpKcvjhx7fS5fRwsN2ZdptPHO+nLC+bn35qOw7XDM+eGki7zadP9JOXbeF3n7+MoApPHu9Pu81nTg6SZTbxmz/aSbbFxINvdqfd5nMnB1EU+P6HN1NXbOeZk+m/tnvPDAHw1zeu44LaQh46nH6he+ncMEEVPrCljt1rKni5eTjt6bvXWkfw+oPs2VjFdesqebPDGdmMPpPJCEGPROhJ/MYD49OcGZjkhg1VXLuugkBQTXuXbmLax1tdo1y3vpIbNlQBcKDFkVabXn+A19tGuHptBbvXlGMxKbzaml6bwaDKgRYHV64uZ/fqCkpys3jxTPrzrvtbHFy6spT6khzWVuUvSRf9QIuDrcuKqCvOYUdjadqvLcCrrSOsry6gPD+bXSvLONjuJJjm2XWvtjqoK7azrDSXq9ZWcKJ3HJc3vUL3etsIhXYrG2oK2NlYyvCkl84RT1ptvtE+QpbZxLZlxVzSWIIvoHKse+nGKdJFhgh68lUub7SLh33XqjI21RWRbTFxsD29Oe3DnaMEVdjZKESnutDGoTTn0U/0jjPtC7KjsZTcbAsbago41JFem63DLkY9PnY0lmAyKWxbVsyR7vTaHJyYpts5xSWNpQBsW1bM0a6xtAqdy+vndP8EF68QNrc2FNM85EprftkfCHK0e4yLlpcIm8uKGJ/y0TGSvvSSqqq81TXGxSGbWxqKCKqkfUD2ra4xti0rxmRS2FxfBMCxnrG02jzSNcYFdYXYrGY21xcDcLw3vTaXgowQ9NnFufQ/tEe6xrBbzaytyifLYmJjbWHaf7gjnaOYFLgwdHNeWFfE8SW4QUE8+ACb6oo42TeRVqE70i1sbmkQD8Sm2kLaht1pFbqjIZvhB39TXSGTXj+dzvRFdCd6xwmqsCVss74QVYVTfenLozcPuZjyBSLt3FhbCMDJNNocmJhmeNLLpjpha2ON+HsqjeMFLq+f1mFXxGZTZR5ZFlNa2xkIqpzsm+CC0DUtyc2iptCWVptLRUYIejhCz5oZ0513Od47zgW1hVjMoqkbago43T+ZVqE73jtOU0U+udmWiM1OpyetXdcTveNUFdioyLcBsL6mAJfXT/do+oTuZO84uVlmGstyIzYBzoYGSdNl06SIawqwvlo8lOkcpDzRKyLUsKiurxa2z6SznSFx2VgrbK2qyMNiUjgzkL52nuwN2xTtLM/PpiwvmzNpvLZn+idQ1VnnYTWbWFmel9Zr2+5wM+ULRO4hgDVV+Wm9b5eKjBD08EzRC879AI7+j+bjgkGV0/0TEaEB8cO5vH56x6aMPs0Ip/onFt0sqgrNg+m7YU73Ty6yCUSqXtLBqf4J1lYXRHaUWl25FDYnaSzPw2Y1A0LoFAWa02jzdP8kZXnZlOdnA1CRn02BzcK5NP6eZ/onyLaYWFGWB0C2xcyy0py0tjPsLNZWz95HqyvzaE7jgH5YuNfVzLfZks5rG2rnujntbKrMp83hJpDhKwBmhKCb5q6e++Z/az6uy+nBMxNgbUjcYFZ00lV1MuqeYXDCy9rqWZtNIZvpejC8/gCtw675NivyQjbT82CoqsqZgUnWzbFZW2THbjWnzSbA2cGJeb+nPctMXbE9rTbPDU7Os6koCqsq8mgdTp/QnR2cpKkyD/Ocm39VRR4tabXpoq7YTl727CKsK8tFO9NVdXJucJL8bAs1hbbIa6vK8+gbn05b1UnzoAuTIq5nmJXlucz4g/SksUe7FGSEoM9bDr3vCIxrq40NR1Cr5zyMq8rFj5iuhzFis3LWZn2xHatZoW04PQNaHQ4P/qA6z2a+zUpFfnbabA5OeJmc9tNUMWvTZFJYUZabNpueGT/dzql5NgEay/LSVoseDKq0DLloqsyb93pjeV7a2glCdFYvbGd5Ht1OT9pmNbYMuSKBwKzNXCan/Thc6Sn1bRlysbIiLzJ5EGBFuUjhpavSpWXIRX1JTqSXB0R6Qks18TBdZISgk1fJF2b+lKc2/4f4f+9hTYeFI+K5N2lxbhZFOda0/XARm3PE1WI20VCSQ7sjPU4kHJ2uWvAwrijLTVs7W6JcWxAPY7oqMcICulBcV5Tl0jniSUsU2Tc+xZQvEPXaDk160xJFurx+BiamWbnQZmkuvoBK39i04TYDQZW2YRcry+fbXF4aFtf03UexbKbr3m2N1s4ysTdPussl001GCHqWxcTvgrtw5q0SL7i11Tq3DrmoKrCRb7POe31ZafqErnXYhd1qprrANu/1FWW5dDjSc7O0DrlRFBbdpMJm+toJRBWdntGptMxSjdhcJAA5uLzpiSJbQ05k1QKby0qFAKTjN22LtHP+9gJhm+1pENe+sSm8/uCi3zNsMx1CNzntY2jSy8qK+e1sCNnsSkPlUjCo0u5wL7q25XnZ2K1mKehLQVaoQmUmoC8Ca3W4F90sIAQgXT9c27CbxvLcyEBhmIaSXLqc6Yki2xwuagrt87qQIB6MEfcM7jRU17Q73ORlW6gIDRTOtRkIqvSnIYpsGxaOKywyc20CdDmNF7r2kLiuWCiuJbkhm8bfR+Fgo3GRExE2u9Ngsy1kc0XZ/HbWFttRFNJSFhp2ho0LbBbYrBTnWNNybfvGheMKp1jCKIpCQ0lOWmwuJRkh6NaQoPsjgp5YFFVVpX3YtegGBVhWkkP/+FRa1h1pd7ij2yzNYcoXYDgNK/W1O4QTWUhDSfqiqzaHm+VlOfNyn/NspkFcO0bc1BZFcVxpFNeOEQ952RbK8xY4rlA70zGI1u4QjitsI0xFfjZZZlNaBD3ck1sortkW0dvsSYfjCvU0lkd5XupLctLUTvGdy0sXb39cV2xPy+857Qss2bICGSHoZpOCSQGfjgh91ONjYtq/yBMD1JXkEFShf9zY0sXwKHk0QQ8/nN1OY22qquhChvOOc6kvTp/odDjc0a9tsT1k0/iy0I4Y7YzYNPjaghDXaI6rMMdKvs2SNnGN1uMymRRqi+3pubYjbnKyzJHSzLnUFeekZT5DZ8iJhHs7c6kvzklbOyG2E+kdnTK8F/3imSHWf+2ZtE5EC5MRgg4ij+4LhiJqDRc83G2N5onDQmd0RNc96iGoEl90DH4wRj0+Jqf9MW9QcV7GO67esSmWlSy+ttWFdiwmJW3Rcnjwai42qxCitIjOiDuq4IAQuvSIjmdRWmnWpj1N7fTQULLYcYVtpmMgtmPEQ2VBNvYs86L3aovt9I5NGT4BsMvpIctiomrBGBeIsttJr5+JKWOj6Y5QD7m+xG7o90YjYwTdajbpyqF3xvHEYXHtNfhhnLW5+GGsTVPkGok4oghAcY6VnCyz4e3sHZsiEFSjio7ZpFBdZDPc5phnhvEpX1RnCeJhNHqymD8QpGd0Kqa41halJ1rucnoi+fKF1BXbDb+2IO7dmNe22E7/uPED3d1OTxxnaWfGH8ThNjZF2TnipqEkZ9EYV9gmQM+YsQ6zy+mmJDdrUXFGOsgYQc8ym+bk0BPTMeJBUWZ/pLlUF9owmxTDH8Zwrjraw5iTZaEkN8twm10Rm4tFR1GUkOgYe4PGc5aQHnENX9uFeeUw6RC6/vFp/DEcV9hmn8HtnJz24XTPxGxnbZGdEfcM0z7jdmoKBlW6R6cig8vRbAZVsTCakXQ63XFtgvFBV5dzKua1rUmbTU9Mm0aTMYKuN0LvGhF5yGzL4u6cxSy6XEY/jJ0jHnKzzJTmZkV9v7bIeAEIC11dcYwHo9hOn8FjBeF0SrSUC4gHo9/odjpjO0sIt3Pa0C76rBOJbrOmyMak18/4lHGLkUWubQyhC4uOkffR4OQ0M/5gJEUXy6aRQjftCzA44U0orkamelRVpTuOuKbj2oL4TWNdW6PJHEG3KLNVKRpy6OIixs5Z1RTZ6DH4h+sO/XDR8pBhm0ZHrl1OD1UFtkUDaLM2jY9cu0Y82KymqANoAHVFdgYmpg3toocHH2P9pjWFxnfRw+IaK4pMhwCE25kwijTQZqSXl0joDAwMwr3GmO0sFDaNLFxwumdwef0xxbU0N4sss4m+ceOciD8QpG9smoYlyJ9DBgl6ltmET4c+xOtaQSiKTEPkmtDmmLGj6N1OT0zBAdErGPX4DN1Mucvpob44nuMyvove7fRQlpdFTpYl6vvVobVAjKx/73J6sJqVqANoMCt0Rt5HXRHHFT8VYXQ749msKRLtNzJa7krgoAvsFnKzzIY6rnBxQKxn1BQa/+k3UND7x6cJBNVIIUa6yRxBt5jnRHzxBdEz48fh8sbsnkNYXI3roquqSvdofEGvLbLjngkY3kWPd7OEhc7I6EqL4wLjBSBetzVd0XJdcc68BbLmEsnzGtjObucUBTYLhfboA2iVBTYUxdgIvXt0CkWZbc9CcrIsFOVYDXVc4fLdWL+poihUF9kZMFBcE/XyQDwvRqYLE/W4jCZzBN2s4PVrE9/wzRJtQDRMTaENf1DFYdBEn+FJL9O+YNxo2Wihm/YFGJiY1iSuRkV0qqrSMzqVQFxD0bLBTiSe45qNlg0UgFFP3HuoLC8bi0kxVAASOa4si4myvGxDha7H6aG6wEaWJbYcVBXYDO0VdDtDabu86Gk7EOJqqIMejT/eBCLVY+Q9FC6CiGfTSDJH0C2m2Qg9QcqiS4NXNDoXGb5ZtETLRgld+NzjjhUUGpv/HPX4cHn9cYWuqtBYx+UPBOkfj++4inOs2KwmwyP0eOJqNilUFtiMjSIT9PJABCNG9ri6Rz3UJbJZZKzQCWcZO20HoWjZ0Ah9ipLcrHnLAy+yWWRjcGLasHXRu0c9mBTxvUtBxgi61WzSPFO0O0FOEMQEGDAuokuUE5xr06hBl0S5T4DKQhEBGRVdaelC5mVbyLdZGDBIdMJ5yHhORFEUqgvt9BuUt3d5/Yx6fAlzn9UGimswqNI7OhW3nQBVhcY6kZ7RKU3tNLLHJWzGb2d1oZ1hl9ewJTp6EvS4QAQjRvbcu50eqgvtkeVL0k3GCHqWxcSMxhx696iHnDjlgzB3oMegCN2ZuGtVnm9sF70nwSAPiLU4yvKyDHsYtXRbQfQMjHJcWvOQRuY/teRbAaoNjFwdLi9ef1BDO42zOeMPMjAxnbidhTZGPT7D6t8T9X7CNlUVhiaNaasmxxUaADfKYXZrcNBGkjGCbjWbGJ/WNiW32zkVtwoDoNAuuuiG/XBODxX52THLB8H4LnpPaBpzvDwkGCsAYccVb6wAjI0itToRQ206tdkMpwWMqFzS2s7qQhsur9+Qzbh7x6ZQVS3XVoiSEZVL41NinSUtPREwRlz19H7AuLRoz+jS1aBDBgn6tC+AKyzoCR4eLRdRURRDB0C05D5B3DBGddHDg3bRpjHPxcjucveoh+Ica9w8JIgekHEPxRRmkxLpVcWiutDG4KTXkPxnuPeTKC1QVWBjxh9k1JO6uEZsJoiWZ0Un9Xs30hNJ0M7wFnFGjDn1aBhvAmPTokOTXmYCwYRjBdUGXluvP8DQpFdG6NHIzbJgjxP9hlFVlS5n4lwZiIEKw8TVqa1rVWNgKVZXqKxOi02jHFeiCpcw1YV2HK4ZvP7Uu+jdoclTlgR5yOpCOwGD8p/htF1JnLSdsGlcRBcW19qixAOUYEzkOutEEvd+wJgIXUt6cq5NY9oZ7v3Ef0ZLcrPIshjTcxcrNyZ2XEaSMYJenGvFq2FQ1OmewTMT0BYtF9gNGSz0BYL0j2sVOgO76M7EA0sgHozJaT8uAza66ElQPjjXJsDguBHiOqVppbpIzb0hUaRw0PHSdjAnWjamNnjzAAAgAElEQVTgPup2TlGWF331wXk2Cwx0IqMeLKFUYFybhcZNLtIqrgU2CzlZZkOCES3jTSB67lUFNgYMcFyzJYsyQl9EltmEz594ULRbY8QBIi0w7PKmvOlu39gUQY2euLrQhteALvrEtI/xKZ9mJwKkXHUSDIoa9DoN4mrk1O1ujU4k3EU3IrqKt+bHXCLRshGR62j85SrCVEYG7gxwlk4PtcX2mJOnwuRkiclORkToPaNT5GWLyUrxUBRFjItMGNn70RYAGeGgtfZ+jCRzBN1i0hSha61OAPHDBYJqyrsIRbqQSxhF6pmBFo7oUo2uBienRR5SR4SeanQ17RN5SD2OK9XqmvDkKS3tLMvLxmxSDHFcWqowYHZykVE2tUaQYqKPMc5SS+8nbNOQsYJRD+UJihbm2jTKQWvp/RhJRgn6jIaJRVom+ISpMWgCjB6bVQYN9ESmTmvMoUPqkWukwkXj4C+k3k6tA4UARaHJRamWLoYnT2lxImaTQmV+dsrtFIs46RRXg3LLWqelGxYt66j8MCotqnWMC2arpVJdFqRndEpT78dIMkfQzWZN1QvdTg+luVnkJqjCgNnZW6lGOt1O4YnDEWI8agxKf0QqBXR00VMVnS6NFREwO7ko5Wurw1mGJxelGl3NVmFoFNei1EUnvPa6ZqErtDGY4u8p1jya0TwtvdqAVERk6QiNNo1Ki/aMaUvbgahFnwkEGfXMpGRTa3GGkWSOoM9bZyJOhO7UNjgJxuVcu0J5yERVGDC7/keq0VWX00N+nEWc5mJUF73bKTYNqdV4kxpRFqp3caOqgtS76Fpm4M6zaUAXPey4tLazxoB1TvTmeKsLxeYaqVQujYSKFrRux1ZZkHpadHYJW62/pzG96N5R7U7EKDJG0LMtJlQSd130LCYfHkVPPeWiPeIwGTS5KDxQqCUPCSLSSdWJdI+K8sFom4ZEo8qA+vdup4dsS+y11xdSXWTEtdUpdKHNUlKpXOrRkUIDITqT3tQql7pGtFWbzNpMvXJptu5de4QOqYlrZAlbjU7EiFp0t1f0fpZyQBQySNDnRegxHhx/IPbmxdFQFIUaA3YRSrQm+UKM2Oii0xl7I+FoGDEtXmu1SZiaotS76GEHrdlxhVIuqUwu6nJ6Ei7iNM9mkT3lyqUupyeyH6s2m+FyyeR/03CvQOvzYsRCb4k2DVlIVUHqq4VqWdtpLkakYs9HhQtkkKBridD7xvR5Ykh9FmV4D0h9Qpfa5hrh8kE9N4sR0/+7dDqucBc9lfU/Em1UsshmUaiLPplaFKnv2qZeudTl9FBdaNO8iJMRsyi7nNomT4UxYlq83tpsI5Zi7tLZKyjLzcZqVlLquWtZ8TUdpCzoiqKYFUU5oijK7404oVhoyaHPXsTYG1ssRGxonPoPpy9atqc0ih7eA1LPzVJbZMeVwv6XifaAjEaqa5SrqkpXaJd2zTYLU18WWe+mvkasxd6VRI8LUnMiyaTtIMV2jngoy8uOufPUQgrtVuzW1NKiXaGihRoNNegwmxY1xolk3qDonwOnDfieuGRbzAnWWBS7iIN+cRWr3CUXRXYl2I0+GrVFNnyB5KeodyZhM9VuZHcSjivVtIDTPYNb46zfMKm206czbTfXZqoRup52VhWKnYtSGRfR60TCOxel3k7tIifSoqmJa6fGyVNzqSlMrXKp2+khL9uiufdjFCkJuqIodcCNwI+NOZ3YZFsT59A7RzxkmU0x94CMRrhiI9mBtM6khE7YTHaT6mR6Banu3B52InpSEeFoOdl2pnJtk21n39gUgaCqS1zLcrNDmwsnZzOcttPTs7SaTVTkZyftLINBVbcTgdSFLimbRaktxax11u98m6mt86R37McoUo3Q/wW4G4hZJKooyucURTmkKMqh4eHhpA1lmxPn0DtH3DSU5iRcfXAu4SgyeaFzU5KbRb4tcflgmLATSfbB6HC4sZgUTdOYIzYjO7en5riWx9mndSGprnMS2Y1eh6AX2KzkZ1uSTgt0JmEzvLlwqs5Sj00IC11yNodCWyYmYzPZdJbXH6BvfCruXr9RbRbak762IK5vMk5kYDz5wfXOEbeuXp5RJC3oiqLcBAypqno43udUVb1HVdXtqqpuLy8vT9bc/Ag9RvKlc8Sj+yLWphgtd47o67bC3O3vPMnZ1FH3HqY8Twz0pOK48rMtFCdYf2MuNquZ8vzspLvoHSNuFEX/fow1RfbI4JteOkfCaTt9olObQrVUsgNoNUXJC124nQ16xTWFCq2e0OqDyTwvyaZFxz1izSM9gUjYpj+oJrW5RiCo0u2c0t1OI0glQt8FvE9RlA7gAeBqRVHuN+SsoiBy6LEjb1VV6Rhxs7xM3w9XXWgXu6gn+WB0ONy6b5YCm5V8myWlh1GvTZNJzKJM9mHsGPGwrEx/F7I2hYiuc8RDTaFd0/ob82wWJy+unSNi8+LKAm1172FSiVzDEbree7c2lIpIZnA9bHNFEo5rctrPRBKba3Q4knSWKfRoO0b0j6vNtZnMfTQwIdY80lMRZhRJC7qqql9WVbVOVdXlwEeBvaqq3m7YmS0gO0Ed+sDENNO+IMt1XsQsi4nKfFtSEd20L0Df+LRucQURdSZjU1VVOhwe3e0UNu2Rae166XC4WVGWp/u42hRstjvcSUU5dcX2SI21XjpCzjIZxzU0mdz+lx0ON2V52Zrr3sPUFduZ8QeTGlxvH3GHKj/0LRyVitB1hB2X7gg9+c01OlLocQmb+p1IZ8hxrdDpoI0gg+rQ40dp7ZGLuHSiMxtZ6Red2iTTAsMuLy6vP6mbpa44uS76jD9Iz2jyTqRvLLkoMpkeF6QWRSbrRGqL7ahqctU17Q43K5K8hyC5dGHniJv6khxdabt5Np1JiKvDTb5Nf+VHuH48mWe0wyGWq9AdoYfbmYTN9iSdiBEYIuiqqu5TVfUmI74rFjZr/FMNC3pjuf6LWF+cnLi2O1zCZhJOJBwt650u3uFIrnsubOaEBsP05SK7nB6CanIRR11xDjOBIEM6J/qMeWYY8/hoTNIm6BcdfyBIl9OTVFAwKzpJ3Ecj7qQe/roUbLYNu5P+PYXNJMR1RNjU2/upKrRhSjIt2u5wUV1g0522yw2NFyX1ew67ybaYIhtOLyUZGqEvFsHwRdRTshimviSH/vEpfDpXdGsL9wqScSIlObhnArqni7cNJ+9EwjNo9d6kEZvlyQidsKk3BdI6nHy3NdxOvTZ7x6bwBdQknUjIplOfzclpH8OT3qQCkWRtBoMqnSOepFKFZXlZ2KymyEYyekjWiVjNJqoLkwy6RjxJPZ8gntFkbIbTdnqq7YwicwTdGr9ssc0hbpZkLmJ9SQ5BVf+gS+uQm4p8/blPmK1o0PswtjncZFlMmlc8nEs4itQrdO0p5ATrk21nyIkkZTPJyLVtOPleXnWhDbNJSfraJuOgc7MtlOZm6Y6WByammfIFkmqnoijUF+fotinGm6aSaieIlFaXzntIVVXahl1J26wrttOj0ybMatH5IGMEPcscf1C0ddjFyorkfriwuIZnmmqlzeFiZRJRK8xGkZ1JCN2K0tykFs1P1om0Drsoy8vWtFTvQmqLRBWR3oexzeHGalaSWtyoKEfUoneN6Ps9W1PoiVjMJmqL7HTpTPOk4kQA6kpy9F/bFG3Wl+Tobme7w42qJtebBXHv6nWWDtcMk9P+lNrZMzqla/zHFwjSNeJJ2maqZIygm0wK1hgDo9O+AN1OD6uSFNeIoI9ov2FUVaVlyMWqFJ2IXtFpGXKxsiK5m0VswWXS1c6IzSRvUJvVTFWBLTJJSCutQy6Wl+ZqXqxqLoqihERHv+MqzrEmPV27oSQnKSdiNilJ1ywvS6KdLUOTACk9L10jbl3jP2Fnmex91FCSw+CEvvGfWZvJt3MmENS11n2X04M/qCZtM1UyRtBhbuni/BupbdhNUCVpca0qsJFlMel6MIYmvUxO+5O2mZNloSI/O1LKpYVpX4Aup4dVFflJ2VQUhWUluZFJJVpQVZXWYXfS7QRRYdCRjONK4aFYVpqTlONKpZ0NpfrFtXnQxbKSHM1rzC9kWWkOvaNTusolW4Zd5NssmteYX0hDaPxnxK19R5+WIReKkpq4gr7eZctQSNBT7bnruI/CNlO5j1IhwwQ9+k3fHIo4miqTu4gmk8KykpxIPlML5wZDNlP44ZaX6hPXdkdqjgtEiaUeJzLs8jI+5TOgnfocV6fTk6ITyaV71KN56zJVVWkeciXtLEHUV496fIzrGOhuSSFVCKKdQVVfjXbzoHBcSa0zEgyyojSULtRx7zYPuagr1j9JDABVjVR16XlGW4Zc5GSZI9s+6sI/w4rQraCnnak6kVTJKEGP3AwLenrNg6LbqnsgIhiAl/8JfnYjt2e9FJnJpoVzg+KHa6rUKQDBILzyfbj/Q3w28ADdw+M6bAonslqv41JVOPBv8F9X8Bn3f9Mz4tK8RsW5gSTbCfD6f8I9u/n00N9hcg9prgtvG3YTCKqsrkrC5ps/gX++gE+2/gV5gXHNQudwiTLJpBzXkfvhnzfy4WOfoU4ZitQhJ2LGH6TD4db/ewIcfwj+cSU3v3gDG5R2Xfdu85CL1ck4rtOPw3dXccVjO7jBdDBSQquFlsEkbTY/D/+0kgvv38SfmB/TFRg0D03SlIzjan8Fvr+W2h818XnrY7oCoObBSWoKbUkVShhBRgl6dgzvfmZgksayXP3d1hf+FvZ+G8a6+KTje1wx+ohmoWsenKQ0N0t/t3X/94TdkRauG76Xu2d+wMSUtq7r2YFJLCZF/6j9G/8Fz30V/F4uHniAbyj30KdxgOlsxInofBiP/g88/SUI+Fk5vJf7sv6ejv4RTYeGHdcavTZPPw5P/CXkV1LpPMQvs75DV1+fPpt6nUjri/DYn0JeBQUTzdxn/Xt6e7s0HdrmcOEPqvqvbc8heORzUNKIRQlyf9Z3cHYc03Sow+XF6Z7R7yyHTsNDn4aiZZiKGvivrH9BbX5e06G+QJA2h0u/zdFO+PWdkFeFUn8xd1sfpOTcg5oPPzfo0h+IuIbh13dAThnK6j38H/ODNLbcl16bBpJRgj7bXZsvumcHJ/Q/iEOn4dV/h62fhC+8RU/l1XzVfC9Dp17RdPjpgUn9D+JYF7z0j7DhA/CFI7Rs+DM+YN6P4/Cjmg4/MzDJyvK8BZt9JMDtgL3fgqbr4U9ep3fTn/FRyz48r2tb8fhM/wRleTodl3cSnv0baLgU/vAlBvbcwzpTF9bX/03T4WcHJ7Gadfa4/DPw9Jeh6gK46ykm338fq5Vuyl//jqbDT/dPADoFPRgUNktWwqeeIPDxh6hRRlj7xlc0HX52QDiRtVUF2m2qKjzzFcirgNsfxnTXkwQUM5cc+xtxPgk405+ks3z+G2DNgU/8BuUzz9Bhqmd3y3fAn3jCWNuwG19A1W9z33dADcLHH4SPP8gJ6wXc0PsD8DgTHup0zzA86dVvc//3YXoCPvIL+Mj9HMm5lFtH/guc7QkP9QWCtAy5WJtMz9IgMkrQo0XoE9M+up1TrKvW8VAAHPhXsNjh2m+A2crwdf/GkFqE7aVvJTw0EFQ5NzCp3+Zr/yEeyOu/BYqCcvlf0RKsoez172h8GCdYW63zZjn43zDjguu/DYqC7bq/4Y3gWuqP/Rv4EqcjTg9M6BMcgCO/BM8IXPdNMJkp3/o+nghcwsrmn4I7cZR+un9Cv+M6+QiMd8M1XwezlYKNe3hQuYGm3kfB2abB5iRledmU5elwXC3PwfBp2P1lsNqxrtjJfdkfZeXoK9D9piabVrOir8St503ofgMu+0uwFaCUrOB/8j9D3dQZOPtkwsPPDAjHpes+cjTDuadh559CbhlY7TxS/qeU+QfgyC8029TlLCcH4PhvYNunoKgeTGaebfhL8lSXSOUlstmfRDunJ+Dwz+GC26B8DZgt7F/9JVRVIfjK9xMe3uFwMxMI6g8uDSSjBH02hz4boZ/uEz/cej3iOjUKJx6BzR+DnBIAGmur+JH/ZoqHDyZ8GNsdLqZ8AdbpuVl80yINsf4WKKwDYFl5IT8MfpACVxuceyru4aPuGfrGp/W1MxiAt+6DVdeKGxQozbfxE8tHyZlxwLEH4p9yIMi5QZe+dqoqHL4XardB/UWAWADt4fzbyQpOwaGfJPyKU30TrK/R6UQO/1xEyquuBURFz4tltxPEBK/9MOHhp/uTsPnWfZBbARtujbx0rPojTJAHrybujZzqn6CpIl9faeZbP4esPNj88chLvfU30UOF6HFqsFmer9NxHfkFmCxCXEN4G67kWHAl6ms/TBiMnOqfIMts0jfIfexXEPTDxZ+NvJTbcCHPBLYTPPjfCYORUyFB1xV0nXoUfG646A8iL1XVNfLrwJUoxx4Q6RijbRpMRgm6PUqEfiIk6Btq9fxwj0HAC1tmF4cstFt5MWcPU6ZceONHcQ8/0Stsbqwt1G6z+RnwjsOWT0ResphNnC29hhFzuchzx7PZJwZPN9TosNmxHyb7YPMn5r08XnEJrZaVInqPU0vcPOhixh/U187BEyJqnSM4AFnVGzho3gKHfgoBf8zDhyanGZr06nNcY93Q9apw0HMGwMprGniKS1GP/kqkgWLg9Qc4NzipMygYg3PPiGjOPDvhqqG6nF8FrkI983sY7415uKqqnOwd1+dE/F449Tisex9kz4rjqqpifua7Hrpfh4Hjcb/iVN8EG/XYDAbh+MOw8hqR5gnRVFXAT/zvQXG2QevehDZXV+Xpc1zHH4a6i6B05azNyjzuDdyAaXoUTv427uEn+yao0Ou4TjwMJY1Qt32OzXzuDdyAEpxJ2Bs52ZeE4zKYDBX0WRE63jNGVYGNinwdpUknHxU/XPXmeS83VFfwrPVqOP27uKmB473j2KwmfRURJx+FnDJYfsW8l5uqi3hIuQ7aX4qbGjjeKwR9o17HZc2B1Xvmvby2uoBf+K6BoZNigC0GJyI2dQj6qcdAMcH6W+e9vKYqnx9PXwWT/cK5JbB5gR6bpx8Xfzd8YL7Nynx+6r0GxecWVSExODswiT+o6rN57mkI+mDjYpv3+69GUYNw9JcxD+8fn2bEPaPPZvvLIijY8P55L6+uyuehwBUETVmipxKDqZkAzUMufb9n3xGY6Flkc01lPk8FL2Ymq1j0GmKgqirHe8fZqCcQcbbD4PFF99DqynxeC65nImeZ6B3F4UTvuL52epyiumX9rfOCgqaKPFrVWnoLtopqpjgB0PGecdZU6exxGUxGCXq2dXEp0NHuMTbV6fjhpsag4xUR5SwoZ1pbnc+PXZdBYEbk72JwrHuMDTWF2pce9Xuh+TlY+14wz2/D2qoCfuq6FFUxidxzHJvLSnMoytE4i1FV4exTsOoayJo/C3FtdQG/8V5C0GKHo7H3JDnWM0a+zaJvE4QzT4rB0NyyeS+vq87nhcAWfPbyBO0cx6TodCJnn4SK9fOiORDtPKquxF2wSqS7YtnsEU5E13105gnIr4aarQts5tOtVjJcdomwGUMA3u4ZA+ACvTaz8qDxynkvr6vKZ5w8OsqvhhMPxRyoPNU/TkCv4zr7JChmWH3DvJebKvMIKBaOl94g7rMYA5XdzinGPD597TwbSj+ufe+8l2uL7ORlW3m9cA90vRYzAHJ5/bQMu/T9ni3PgxqAtTfOezk320JDSQ577deBsxW6D0Y9PBhUOdE3rs9mGsgoQV+YQ3e6Z+gY8bC5oUj7l7TuFbm5Ne9d9NaGmkKOB+qZKt0ocnhRmPEHOd47zuZ6HTY7X4WZSVj9nig2CxikhLGqXfD2r6PmI1VV5UjXGFv02Bx4W6RbYth0Y6e/5jo48VuR34/Cka4xLqwr0r7g2Vi3iPrX7Fn01vrqQgKYaal8DzQ/G1MAjnSPsboyn1ytdbzT4+L6rl5sU+QyFY6Vvhd6DsJIa3SbXaOU5WVFVi9MSMAnyhWbrgfT/EcoPJj7ev51MNoeUwCOdI9hNSts0Jr+UFVx3Rp3g2V+GkHkxLPYm321GB9qfi66zS7hRHTdu83PQv0lkbGmMDarmZXleTyhXCl6KjFSIEe6RwG4sE6nzbLVohc9B0VRWF9dwG98uwAF3o4edL3dM4aqwoV625lTtshBgwhGHnBtFkUUb0cvm2xzuJmc9utrZxrIKEHPWfCQv9UpbpZtDcXav6T5ObAXz8uThQlHLqcr3gP9R2H43KLPnOwbx+sPsm2ZDpstz4M5e1FkNdfmW0XXw3iXyIMuoGd0iqFJL1v0thMig4RzEd1ChVfs14gufPOziz7j8vo5MzDBVj3OsiVks+n6RW/Vl9gptFt5zro7pgAEgipHukb1tbNtn4ismq5b9Fah3UpDSQ6PqyEBiJF2OdI1xpaGYu0TULrfEA46ik2r2cTaqnwentoKFlvMnt5bnaOsrynUPndi+AxM9Ea1qSgKG2oKeWR8NeSWw/FfR7fZNUptkZ0KrUtMu4ZEYLDqmqhvb6wt5InhcihbI/LPUTjSNYbdatZeyjfjEQ561eJ2ghgre2Uwi+CyXeLaRukBhR2X5gAoGBSB3sqrFzloEIHeyREVX9MN4r4NLJ4g91aX0KItep6XNJBRgh7OoQdCUezBDidZZpN2T6yq0PoCNF4FpsUP0vLSHArtVp5SL0UIwOKH8WC7iCy3L9cp6Mt2Qtbi1EVxbhYNJTn8bnqriADi2Lxoecmi92LSuheqNkF+5aK3si1m1lUX8PhEkxCAE4uF7nDnKEEVLlqh02ZBnYiuFqAoCpvqCnkqjgCcHZhkctrPRXqubeteyC4QA2hR2FRXyEv9Vli2S7RzgQAMTU7T7nCzXY+Dbt0r0hArFjtoENHooX4/wdV7ROXEgkFgrz/AsZ5xLtJrE8TgZFSbhZwdnsK39n1isHbBILCqqrzZMarvvm19UfyNIegX1BYyODmDa/Wt0Hkg6iDwwXYnm+uLtKcnu14VBQsrr4769qa6QqZ9QQYbboSRZuFwFvBmh5NVFXna05MDb4sy21jtDKVRWir3wJQT2l5a9JnDHaMU2q3nbVGuMJkl6FlChMMbUbza6mBLQ5H29SGGToFrMObNoigKWxuKeLHPDCsuF6KzQABeaxuhsTxX+yDsRL+IrmLYBNjaUMSrPdOoa/aEKnDmC8BrbSMU5Vi1Rzlel4gi49jcUl/Ekd5JgutvjSoAr7eNYDEpbNUaLQcD0PYyrLxq0dhExGZDMWcHJ/Gue7+Iwibmz+J8rU0MRF/SWKrNJgjRWX75vEqTuWxtKKZvfJrxlTeD45yowpnD623O5GzWXQS26OmSzfVFuLx++mrfC+5h6Hh53vtHusaY8Qf12WzbB6WrRE12FLY0FBMIqpwtux7803D26fmHO9wMT3q5ZIUemy+CvQSqLoz6djjVeThvt3hhQa9r3OPj9MAElzTqCQpeBHMWLLs06ttb6sX9eCDrMlFKeeKRee/7A0EOdYxysZ5ApG2f+Nu4O+rbm0NplH2BC0XwcPKRRZ95vX2Ei5aXnJdNLeaSUYKekyVSLv6AyojLy8m+CXatKktw1BwiUc5VMT9y0YoSWoZcuJpuEYMg/Ucj73n9Ad5oc3KZHpttoSinMbbN7ctLGJ70MrTsJhEptO+LvKeqKvubHexsLNV+s3QeEOMECdrpmQnQWnGDEIAz8yel7G92sLWhWHsuu++ISN/Es7m8mKAKxwqvAdRFAnCgxcHy0pzIfo4JcbbBWGcCm+LBfjV7l4iqFwjAgWYH+TaL9oHCqVHR1sbdCW2+pF4oBjEX2Nzf7MBsUrSLjn8GOg7Etbm1oRhFgb3uFVBQu6gHdKDFAcClKzUKuqqKSHTFFVHTEAAbawrJtpjYN1IoeoMLfs/X2hyoKly6Us/z8pLI2WdFX054WWkOZXlZvNoXFD2kk7+dF3S93TuOy+vX3k4QFWblayG/KurbxblZrCzP5WCXSwyanvm9+E1C9Ix66Bzx6LOZJjJM0MMReoB9Z4dRVbhqTUWCo+bQtg9KmyITe6KxMxQ1vWLZuSgCeL3NyZQvwO415fps5pRB5caYHwnfCM/7NokIYI7N0/2TDExM67dpsUH9jpgf2RFq57OTy0SaZE7UMTQ5zfHeca5YnYTjipGGANi2rBirWeGFoXwxRX9OO6d9AV5tdXDFaj3tfCmhzfU1BeTbLOzrVsUYxslHIgKgqir7zg1xeVOZ9g1D2l8B1LjiWl9ip7bIzivtbiEApx+fJwD7zg2xub5I+4YhvYfEhJc4NgtzrKyrKuDVNqcovWt9QVR0hXjp7DANJTna1113NItB9Tg2sywmti0r5rXWEVHW2HtIrL8StnlumLxsi/a8sntElCvG+T0VReGSFaW81jaCuuH9wqH3vTVr8+wwJgV2aXUifi90vha3nSB6cG92jOJfd4sYiJ9Te//SOTHh6PImHc9Lmsg4QQ+qCr6AylMnBqgutGmvy/Z7RTe/cXfcj22qK6I4x8qz7T6Rsjj520jlydMnBsjJMmuPOFRViGvjlTGjHBDbrNWX2NnbPB4SgN9HSs+eOTmAosDVaxfnwmPStg8adoA1dlqoLC+bDTUF7DvnEDMdW14Q0Sfw3KlBAK5dr8fmS0Kkc2Nfm5wsCxctL+HFs0Ow8YMhAegA4OVzw0z7gly7Tmc782ugrCnmR8wmhV0ry3jp3LAQgNGOiAC83TPO4IRX37VtfwmsuWImbAwUReGyVWUcaHHgW3crTI9FuvW9Y1Oc6J3gmnU6AxHFBMsvi/uxy5vKONw5imf1+0Tp7ZknAHB7/exvcXD12grtA7/tIWcZZSB/Lpc1lXFmYBLHslDVWChKDwZVnj89xBWry7TXZYdTUwls7lpVRv/4NG1lu8FknRcYPHdqkC0NxRRr3aSk503wT8V1IgCXrSrD5fVz1LoFbIXzeiPPnxqkrth+XicUhckoQQ93/yemZnjp3MfTXU8AABYfSURBVBDvvaBaR2XCQfB54nbPQQjA1Wsref70IDPrPiDWB+k5iNcf4KkT/Vy7rlJ7zn74jMjZN+6O+zFFUbh2XSWvtDhwr7lVpC5ankdVVX53rI9LVpRoXxxrclCMFSSwCXDtukoOdY7iXHGzqDwJTdB57EgfjeW52hc2mvGInL0Gm9esq+TcoIuu6lCZYehh/N2xPopzrOzU2m0NBoXoNO6OmbOftVnBwMQ0JwqunCcAvzvWh9WscJ1eJ7J8F1jiC8Y16yqY9Pp5nU1CAEIpkCfeFuMG79lYrcPmS2ISnD3+eMbVayvwBVRemKiHooaIzedPD+L1B3nPxugpheg290FhAxSvSGgT4Ok+uyj5C/X03mh3MjzpZY+udu6DrPyopYNzuWqt6MU93RoaPD35KASDtDvcnOqfYM8GPe18KeQsd8X92GVNZVjNCs+eHYV1Nwtn6Ztm3OPjQMsIezZUJbe+vMFklKDbs8yoiAkvvoDKh7dHHyCKStuLIoe6/PKEH711Sw2T036eC2yLlJ498XY/Yx4ft22Pna5ZRLhbFid/HuZ9F9Yw4w/y2PgqyCmF4w/xausI7Q43H9qms50abd58YQ2qCr/pKxM1v8d/Q/PgJAc7nHxoW532G7TzVRERNu5O+NEbL6hGUeDXLSYxsHjiYRwuL8+eHOSWzbXao7mBY6JHocHm9euryLKYeOjkpCjjPPEI0zM+Hnmrh2vXVVKYozH1MdYNIy2abF6xupz8bAuPvO2ICEDQ6+GBN7vZ2lCkfSVJ76ToyWiwuX15CRX52Tx6tE/Mmm3bB24HDxzspq7Yrr1KKuAXk+8ar0zoLNdU5rOyPJfHjvaKXlf/MXC08JtD3eRlW7hWV0/kJdELMccft6kutLO1oYjHjvaibvyAmMnac5BfH+rGpIj7WrvNfcKB2OKPoRTYrFy2qozfH+sjsP4Domy1+VkeO9bLTCDIrVtqtdtMIxkl6LmhQdG+sSkubyrTt6pZywtxKxPmsmtlGSvKcvnhq4MEV78H9eRv+c8XzrCmMl97bg6EoJc2xaxMmMvm+iI21BTw3wd6CKy/FfXsU9zz7FHK87O5aZOOKKf1ReEQqjYl/OiqijwuWVHCva914l//AdT2V/jZM69ht5r5iF5nac4WM0QTUFVo45q1FfzPwS686z4Agyf47dPP4QsGuWPnMu02wyV1jbsTfrQwx8qNF1Tz0OEeXKvfD5N9PP3Ew4x6fNy5c7l2mzqcpc1q5v1ba3ni7X6cjbfAzCTHXnyQtmG3vnZ27BcD3I27E37UbFK4bXsdL54doqf+JlADdLzyS15rG+ETlyzTPqjed0TkiRP0ZkH0Lj+8vZ43O0Y5U3YdoDDx5v/w+Nt9fHBrbaSQISGjHWIilgabALdtr+fcoIs3bTvBYsd75EF+dbCLa9dVUqV1h6Lpceg9rOnahm32jU+zd3oN5JYTPP4QPzvQwaa6Qu0TxNJMRgl6TpYZFXFT/n971mo/0O0QkUOMOtOFmEwKf3Hdak71T/ALzyUonhHqR1/jS+9Zq/2h8E2JhzFO6eBcFEXhL69bTbvDzT2j21D8U5T3PstfXLtae4onGJxTZ6/tp/3za5voH5/mX4e3oqCSc/ZR/vDKRkp1LSP7QqjOXtuA2+evbsLpnuH/dawjqJgJHHuQD2yp01fD27oXKi+IWmcfjT/evZIpX4Cvn23Ab8nB+9av2LOhih16SupaXhDT/SvWafr4Zy8XMx2/cqQQf04lroO/ZFVFHjdv0hFBtrwg1uNpiD3APZdPXrqcbIuZrxwI4itdy8Qbv6S+xM7tOxq022zdCyiwYremj3/04gYKbBa+9qITf8MuPIcfwKTA565cmfjgMC0viL8anCXA+7fUUp6fzf97rht/0x68xx5menqaL1wTezxlEe0vi0lpGp/R69ZX0lCSwz8934p/3a0EzzyFwzHM569a9Y5It0CGCXpFQTYzpmzeu1zRt9ZHy/OAGnXWZCxu3lTNnTuX8a0zNYyo+Xy5+ghXrdXRfew4IMoBo8zsi8U16yr59K4V/MPJQtqDlfxR4UE+drGOSHngmKh71tHOS1eW8YdXNvLvx+BocCWfznuNL1y1SrvNsW6xuqIOm5vri/jC1au477iHF/2b+KDlAF977xrtNqcnxFoeGh00iIWd/ur6NTx83Mmj3u3cZH6D772/SfuDGPCLCH3lNQnTEGHqS3K4e88anj7l4CcT29kReIt/ualO+yQbVRWzb1dcsWi6fywq8m389Y3reLnZwfcGNrNJPcu97ysl36YxrQTieanZArnaxjMK7Va+fvMGDrY7+Zu2jVT5e/nXXX7t5acgBL2wIe4A91xsVjN/+74NHOsZ589PraYgOM49O0f160JWPtRfrOnjVrOJv71lA+cGXXzmSCMWdYZvNTVznZ7igTSTUYKebTGTc8H7WDm8VwzEaeXcM2Ld6gWrK8ZDURS+ectGXvi/15Kz7WM0jb2iaXOGWZtPi5mfCSoTFvK1m9fz1J9fQeHOO1nlOYISqgLRZvMZQNElrgBffs86HvqjneRccic13jZMg9q2MwNmV05suiH+5xbwl9ev4dd/uJOqK++iXB2hcGC/9oPD6/FEWWIgHn961Sruvesi8i6+g1ymyG17OvFBYXoOii66DgcN8AeXN/KzT11ExeV3YVUCbByJvdLkIkZaRCpC5+95+45l3HPHNmzbPoaqmFjZ+zvtB7tHROWHzmv7wW11/Oj2bVg23krAbGeP/wXtB/u9IpfddK1mZwnw3guq+dHtW7Gtu57prBKucC9ewiImqiqWx2i8MuaktGhctaaCH92+jWD1Vkbsy7mFl94x0TlkmKADsPVOUQVyStu2bfi9whOv2aM5DTGXZaW52C+5Swz6xViwaxHhlQ5XXgVWHVFKiHXVBZRcepcYfdewI0yEs0+KcYI8HbXcIbYvL2H11Z8STijOEqyLOPOkGFDVGFnN5eIVJWzY/VExG1GPzbNPga1ITEDRye41Fey58UNQvFynzSdFhYzG7vlcrlpbwftvuE4Mvh35RdwlWBfZhKgLjyXi+g1VfPEDu1FWXSuW8Y2zBv08mp8B1EWrK2phz8Yqvv3RnZg33irWM5/RuHF1+yuizj6Jdu7ZWM33Prod27aPiyDKNaTtwIHjYm2cpGxW8Ys/2EHprrtQul+PuubT+SLzBH3ZLjHQ+Ka2PTFpewm8E7D2puRtVq4X4nHop5q2iqPvLTHynorNwloRJb31i3mTUmIy2inGCdalYNNeJNb3fvvXIq2RiKkxkYdce6OuyGoelmyxGcbZJ8UyCYnwz4jdnda8J2E1RExMJrGXbOd+GD6b+POqKko6G6/UNKgek22fEiWlXYsXYIvK6cfF4LaGQfWYbP2kWIP+nMbeyOnfi5mmNVuSt7ntU6IKJM4S1PM487io7U9QCx6XrZ8UvTatAdCZ34uAKQlBj7D542Ly4eF7k/8Og8k8QVcUsS1V72FN+zZy4mHILtQ8kh2Tiz4rlgJo0bDT+YlHRDS3dvESvbq4+LPgHoq6dsQiwhMd1t+Sms2L/kBES3E2Z4hw5veifn3BRgS62f5psRbMoZ8m/mzbPpH6SLWdW+8Ua4Yk2CkKEMs/jHaINfRT4YIPifK4gxpsjnWL1Eeq7Vy9R8wE1mJzekLc3+tuTt5Bgwh+Kjcm3BELED2H04+LHkGciXAJKV8txhrejL8jFiDO6eSjoiorid5shLwKcU8cuV+sn/QOIPMEHYRntBXCq/8a/3Nel7hZNtyieVApJutvEbMSE+0VGfCLZVqbrks4ESQhjVeLlQlf/ff4D4aqinWa6y4SqYRUqN0qlgx47T+iLhM6j7cfFBNP4sya1ETpShFxv/njxN30tx8Q1zXGqoOayS2DCz4sNqFwO+J/9tiDQvzXpyjoWbkikjz1WGSGbEzCS+Bu/GBqNs0WuPgPRE+qP8HYSHhrxlRtKgpc8kdiIbRwqWcsWveK9YtStQlwyR+LnnGidGz/MXCcXbTbVFLs+GORAtYSAC0BmSno2flw8eeEWA+ciP25478R0ebm22N/RiuWLLj082LCReersT/X/Ay4Bhbt45kUJhNc9kXxYMTb0b3nTdGVN8ImwGV/IdZmj7GYPyA2i2h/WThXIwaFdn1RLE36ZpxNpD1OkRLY+KGEMzW12fyCqESKt4m0b1pchzXvSd1BgxAAkwX2/3PszwSDIupruBRK4s/U1MT2T4s1gl7+p/ifO/ILsaJjjKWIdbHpw6LE8+XvJbB5n5g3oXMQNiqr94gA6JXvxU+NHvmFmDexYFu9pKi/WARAB/4t5k5RS0lmCjrAjj8RqZTnvxH9/WAQXv9Psb6IxrKkhGy7C/Kq4LmvxY6YX/uh6OKmkpubywUfFrvZv/DN2F3J134orsUFtxljc/UNIof64ndi767+xo9EWmnrncbYbLhEDDju/+fImjKLOPQTEUFe9BljbJavEVHaGz+Knb8//mvhaLYbZLOgRkTpR+4XC2BFo/lZsZKkUe20FQpHcvpxkaqMRt8RsXzD9k8b46At2SIw6NwfO0051iUG1bfcboyDNpngiv8rgpsoa/wDYtzn2ANCzHN0zEGIx5V3i57BoZ9Ffz8YiH3dDSZzBT2nRFzIludEV3EhJx4S3apdXzTmBgUxceaar4qIONrgS9s+sXTtpZ9PfsBuIWYLXPdNsS7M6/+x+P2BE6L9F31m3k7wKaEocP23xU0aLaob7xWb9G76SMwlR5Pi2r8VC1m98K3F702NiTRQ0/WaJ/Zo4uqvisG0Z76y+D3/jIj2qi8U+VmjuPJuUU301N2LAwNVhZf/EQrrU8+fz2Xn50Xp7v/f3v0HWV1WcRx/nw3yVyAxMbaFAw2RWSQwbDIaEwVMOayADiQpIwNSxphGNWgaDjRjiQFJjNYQZgGOYoJOgYIEAvKjZp0FURTbgZnNBtHaIJcFgw04/XEusLvc3b0/vhd2735eM3f4snfv93mWYc/3+Z7nfJ9n9d0RYJra9PMYFAy8Nbk2B02KlNyL96UfvW55OCYmr749uTb7jY2J5HWz0k/sVyyE+sNwzXeTa7PPsJjQ3TQbDtec/f6rT8Bjw1rckD0p7TegAwz+TvyyrZrWeMPY/7wNf74/3vt8AnmyhvrfEuvBrLkX/rn7zNfrj8AL02NRpEGTk23zs+VwRTlseAD2NbjSH6+H538Q1SnX3pVsm72HRApn6/zGO7ScPAGrp8fx0HuSbbP0qsi9Vj5+eqXA09b/JEbuw+5Pts3un4pR3ZvPwc4mZamb50Sue/jM5AYFEJNpI2ZF/rhiYeP3diyJ0dxX7suqPrpVF3aF62bHuV+e0/i9qhejcmjItPyqeJrqdAGUz4uNRdbNbPzeOzviZy2b3OJy1lkrKYHr50fac/XdjS+YB6th24KYyCxtfWmMjJnByLmx+N/KOxunez44CBt+Cj2vzn+uKQPtO6B/qDOMS93mLL4e9qyPUfJvh0dudMyvc6o9b1FJCdz4m8jjLx0TNdH7KmHZzVEFM/rR/Gbr0zGD0Y9ETvLJsRHsaqpgcXk88DJyXnK3jw1d91BsJ/f0hKgKqN0HT90U+fzhs+CjWaxJkqnhsyLds+K2KJ88VhcBaPvv486nNP3uOXkZ8sO4SK+8K8pEjx2GtTPi7qT/LVk/2JORsimxUfnaH0c1yNFDsHslrPlR3A30vzn5NvuNjfO+/BBs/WWk8F5fDs9MjKqUa+5Mvs1Pj4j0aMVC2PhgzEm8tyva7FIKX52RfJs9y2DovTGBvnZGDHz274SloyNN+PUHk2+zxxXwtZ9Feejz0+KO5GA1LBkVd5flv0h2UNAM80wfckhAWVmZV1YW4Lbj3dfhDxMiJwfQrRdMWBGlTIVSU3UmiENMsoxaAAMK8It4ysFqWPbNSL9A7IYz+pFkZuubc2g/PDX+zN6NJZ3iAlKW8F1IQ0f+HT/nvgZlqf3GxYU0qVRWU0dr48L19y1nvjZ4avzyp9l/NhH1R2D5pMabdF/2BZj4p4wfu8/a8Xp47luRpivpFOmmXkPgpqWFa/PEcVj1vcaVIBd1h4l/LMwFGmJkvuYeeGVRTAjXH4n04PgnCjdSdo/R+JZ5MW9x/Fis1jrud1ktU5GOmW1397N3tm/6fbkGdDO7HFgKXAY4sMjdW6wjLFhAh7jy710fk3h9RyRTkdCaU0+huke5X9csFl3Kuc3UgzWH/xWlkfmWKWbixP9iVF73XjzY9fHmd19Krs3jUPVC3K73/GLkKAs9wjl5Iu5+DuyNEetnEqi8aLXNk/Fve2BvpB6uHJV/iW1rTj3J/I+/xl3WwInJTEq21uaedTH5enH3SHtkuLBaXva+FJPBF3ePssZ86s4zVb05Kuw6XxJp4QQqlc5FQC8FSt19h5l1AbYDN7j77uY+U9CALiJSpDIN6DknmN39XXffkTquA94C2sYq7yIiHVAiM4Zm1hsYCFSkee92M6s0s8qamjQlPSIikoi8A7qZfQR4Fvi+u59V+Onui9y9zN3LevQ4B/krEZEOKq+AbmadiWD+pLtnsIKUiIgUSs4B3WJV98eBt9z94eS6JCIiuchnhP4l4FZgmJntTL3yXC9WRERylfNTGu6+FWg7ey+JiHRw7fvRfxEROe2cPvpvZjXA2zl+/GNAKzsRnBfqV3bUr+yoX9kp1n71cvdWywTPaUDPh5lVZvKk1LmmfmVH/cqO+pWdjt4vpVxERIqEArqISJFoTwF90fnuQDPUr+yoX9lRv7LTofvVbnLoIiLSsvY0QhcRkRYooIuIFAkFdBGRIqGALiJSJBTQRUSKhAK6tGlm1s3M7kgdf8LMVhSwrQFaMVTaMwV0aeu6AXcAuPt+dx9XwLYGAAro0m6pDl3aNDN7GhgDVAF7gCvdvZ+ZTQJuAC4B+gLzgA8Ta/QfA0a6+0Ez6wP8CugBfAB8293/ZmbfAGYBJ4BaYASwF7gIeAeYDVQDC4ALgf8Ck929Kou2NwGvAUOJpapvc/dXCvMvJQK4u156tdkX0Bt4I83xJCIAdyGCdS0wNfXefGKPW4CXgL6p48HAhtTxLuCTqeNuDc75aIO2uwKdUscjgGezbHsT8Fjq+Mun+q6XXoV65bzBhUgbsNHd64A6M6sFVqW+vgu4KrWB+bXA8tgxEYALUn9uAxab2TNAc/vhXgosMbO+gAOdM227wfctA3D3zWbW1cy6ufv7Of68Ii1SQJf27FiD45MN/n6S+L9dArzv7gOaftDdp5rZYKAc2G5mg9Kc/wEicN9oZr2JEXembZ9uqmnTLfw8InnRpKi0dXVEaiNr7n4IqE7ly7HQP3Xcx90r3H0mUANcnqatS4l8OkSaJRfjU+0NAWrdvTbH84i0SgFd2jR3PwBsM7M3gLk5nGICMMXMXgPeJCZYAeaa2a7Uef9CTF5uBD6X2vB8PDAHmG1mr5L73ezR1OcXAlNyPIdIRlTlIlIgqSqX6e5eeb77Ih2DRugiIkVCI3QRkSKhEbqISJFQQBcRKRIK6CIiRUIBXUSkSCigi4gUCQV0EZEi8X+TMOaXzLREKAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "from tabulate import tabulate\n", + "\n", + "from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n", + "from SimCAD import configs\n", + "\n", + "exec_mode = ExecutionMode()\n", + "\n", + "\n", + "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", + "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", + "results = run.main()\n", + "for raw_result, tensor_field in results:\n", + " result = pd.DataFrame(raw_result)\n", + " result.plot('timestamp', ['Prey','Predator'])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "a = pd.DataFrame(results[0][0])\n", + "b = pd.DataFrame(results[1][0])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.017634498287318664" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a['Prey'].min()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.6177520081711023" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b['Prey'].min()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}