From a7246bed268ecc95109f20c0ec2d020c3056ea0a Mon Sep 17 00:00:00 2001 From: Andrew Clark Date: Tue, 12 May 2020 16:38:37 -0400 Subject: [PATCH 1/3] param sweep example --- ...twork_cadCAD_model_params-checkpoint.ipynb | 2565 +++++++++++++++++ Colab/CIC_Network_cadCAD_model_params.ipynb | 2565 +++++++++++++++++ Colab/images/graph.png | Bin 70203 -> 74538 bytes ...twork_cadCAD_model_params-checkpoint.ipynb | 1007 +++++++ .../CIC_Network_cadCAD_model_params.ipynb | 1007 +++++++ Simulation_param/images/agentDistribution.png | Bin 0 -> 67977 bytes Simulation_param/images/dualoperator.png | Bin 0 -> 649615 bytes Simulation_param/images/experiments.png | Bin 0 -> 99738 bytes Simulation_param/images/graph.png | Bin 0 -> 72153 bytes .../images/v3differentialspec.png | Bin 0 -> 246986 bytes .../__pycache__/economyconfig.cpython-36.pyc | Bin 0 -> 907 bytes .../__pycache__/economyconfig.cpython-37.pyc | Bin 0 -> 986 bytes .../__pycache__/genesis_states.cpython-36.pyc | Bin 0 -> 838 bytes .../__pycache__/genesis_states.cpython-37.pyc | Bin 0 -> 638 bytes .../partial_state_update_block.cpython-36.pyc | Bin 0 -> 1464 bytes .../partial_state_update_block.cpython-37.pyc | Bin 0 -> 1610 bytes Simulation_param/model/economyconfig.py | 36 + Simulation_param/model/genesis_states.py | 23 + .../model/partial_state_update_block.py | 89 + .../parts/__pycache__/designed.cpython-36.pyc | Bin 0 -> 4791 bytes .../parts/__pycache__/designed.cpython-37.pyc | Bin 0 -> 4425 bytes .../exogenousProcesses.cpython-36.pyc | Bin 0 -> 3476 bytes .../exogenousProcesses.cpython-37.pyc | Bin 0 -> 2314 bytes .../__pycache__/initialization.cpython-37.pyc | Bin 0 -> 2569 bytes .../parts/__pycache__/kpis.cpython-36.pyc | Bin 0 -> 384 bytes .../parts/__pycache__/kpis.cpython-37.pyc | Bin 0 -> 1961 bytes .../__pycache__/operatorentity.cpython-37.pyc | Bin 0 -> 5283 bytes .../supportingFunctions.cpython-37.pyc | Bin 0 -> 13916 bytes .../parts/__pycache__/system.cpython-37.pyc | Bin 0 -> 5964 bytes .../model/parts/exogenousProcesses.py | 122 + .../model/parts/initialization.py | 118 + Simulation_param/model/parts/kpis.py | 92 + .../model/parts/operatorentity.py | 287 ++ .../model/parts/supportingFunctions.py | 442 +++ Simulation_param/model/parts/system.py | 279 ++ 35 files changed, 8632 insertions(+) create mode 100644 Colab/.ipynb_checkpoints/CIC_Network_cadCAD_model_params-checkpoint.ipynb create mode 100644 Colab/CIC_Network_cadCAD_model_params.ipynb create mode 100644 Simulation_param/.ipynb_checkpoints/CIC_Network_cadCAD_model_params-checkpoint.ipynb create mode 100644 Simulation_param/CIC_Network_cadCAD_model_params.ipynb create mode 100644 Simulation_param/images/agentDistribution.png create mode 100644 Simulation_param/images/dualoperator.png create mode 100644 Simulation_param/images/experiments.png create mode 100644 Simulation_param/images/graph.png create mode 100644 Simulation_param/images/v3differentialspec.png create mode 100644 Simulation_param/model/__pycache__/economyconfig.cpython-36.pyc create mode 100644 Simulation_param/model/__pycache__/economyconfig.cpython-37.pyc create mode 100644 Simulation_param/model/__pycache__/genesis_states.cpython-36.pyc create mode 100644 Simulation_param/model/__pycache__/genesis_states.cpython-37.pyc create mode 100644 Simulation_param/model/__pycache__/partial_state_update_block.cpython-36.pyc create mode 100644 Simulation_param/model/__pycache__/partial_state_update_block.cpython-37.pyc create mode 100644 Simulation_param/model/economyconfig.py create mode 100644 Simulation_param/model/genesis_states.py create mode 100644 Simulation_param/model/partial_state_update_block.py create mode 100644 Simulation_param/model/parts/__pycache__/designed.cpython-36.pyc create mode 100644 Simulation_param/model/parts/__pycache__/designed.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/exogenousProcesses.cpython-36.pyc create mode 100644 Simulation_param/model/parts/__pycache__/exogenousProcesses.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/initialization.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/kpis.cpython-36.pyc create mode 100644 Simulation_param/model/parts/__pycache__/kpis.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/operatorentity.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/supportingFunctions.cpython-37.pyc create mode 100644 Simulation_param/model/parts/__pycache__/system.cpython-37.pyc create mode 100644 Simulation_param/model/parts/exogenousProcesses.py create mode 100644 Simulation_param/model/parts/initialization.py create mode 100644 Simulation_param/model/parts/kpis.py create mode 100644 Simulation_param/model/parts/operatorentity.py create mode 100644 Simulation_param/model/parts/supportingFunctions.py create mode 100644 Simulation_param/model/parts/system.py diff --git a/Colab/.ipynb_checkpoints/CIC_Network_cadCAD_model_params-checkpoint.ipynb b/Colab/.ipynb_checkpoints/CIC_Network_cadCAD_model_params-checkpoint.ipynb new file mode 100644 index 0000000..0aba421 --- /dev/null +++ b/Colab/.ipynb_checkpoints/CIC_Network_cadCAD_model_params-checkpoint.ipynb @@ -0,0 +1,2565 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CIC Current System Network Graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph overview \n", + "\n", + "Modeling as a weighted directed graph with agents as nodes. A network is a set of items (nodes or vertices) connected by edges or links. \n", + "We represent a network by a graph (N, g), which consists of a set of nodes N = {1, . . . , n}.\n", + "\n", + "#### Node types\n", + "* Agent\n", + "\n", + "An agent is a user of the CIC system.\n", + "* Chama\n", + "\n", + "A chama is a savings group consisting of multiple agents. Redemptions of CICs for fiat occur through chamas.\n", + "* Trader\n", + "\n", + "A trader is an agent interacting with the bonding curve for investment/arbitrage opportunities.\n", + "* Cloud\n", + "\n", + "The cloud is a representation of the open boundary to the world external to the model.\n", + "* Contract\n", + "\n", + "The contract is the smart contract of the bonding curve.\n", + "\n", + "### Edges between agents\n", + "The edge weight gij > 0 takes on non-binary values, representing the intensity of the interaction, so we refer to (N, g) as a weighted graph.\n", + "E is the set of “directed” edges, i.e., (i, j) ∈ E\n", + "\n", + "#### Edge types\n", + "* Demand\n", + "* Fraction of demand in CIC\n", + "* Utility - stack ranking. Food/Water is first, shopping, etc farther down\n", + "* Spend\n", + "* Fraction of actual in CIC\n", + "\n", + "![](images/dualoperator.png)\n", + "\n", + "\n", + "![](images/v3differentialspec.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assumptions\n", + "(Defining data structures, not just initialization. Baking in degrees of freedom for future experimentation)\n", + "\n", + "* agents = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p\n", + "* Agent starting native currency is picked from a uniform distribution with a range of 20 to 500. Starting tokens is 400.\n", + "* system = external,cic\n", + "* chama = chama_1,chama_2,chama_3,chama_4\n", + "\n", + "Chamas are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* traders = ta,tb,tc\n", + "\n", + "Traders are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* Utility Types Ordered:\n", + " * Food/Water\n", + " * Fuel/Energy\n", + " * Health\n", + " * Education\n", + " * Savings Group\n", + " * Shop\n", + "* Utility Types Probability \n", + " * 0.6\n", + " * 0.10\n", + " * 0.03\n", + " * 0.015\n", + " * 0.065\n", + " * 0.19\n", + "* R0 = 500\n", + "* S0 = 200000\n", + "* P = 1\n", + "* priceLevel = 100\n", + "* fractionOfDemandInCIC = 0.5\n", + "* fractionOfActualSpendInCIC = 0.5 # if an agent is interacting with the external environment, then the actual spend is 100% shilling.\n", + "* kappa = 4\n", + "\n", + "\n", + "## Initial State Values\n", + "\n", + "# Equations\n", + "\n", + "## Generators\n", + "* Agent generation for each time step: Random choice of all agents minus 2 for both paying and receiving. \n", + "\n", + "* Agent demand each time: Uniform distribution with a low value of 1 and a high of 500. \n", + " \n", + "### Red Cross Drip\n", + "Every 30 days, the Red Cross drips 4000 shilling to the grassroots operator fiat balance. \n", + "\n", + "### Spend Allocation \n", + "\n", + "#### Parameters:\n", + "* Agent to pay: $i$\n", + "* Agent to receive: $j$\n", + "* Rank Order Demand: $\\frac{v_{i,j}}{d_{i,j}}$\n", + "* Amount of currency agent $i$ has to spend, $\\gamma$\n", + "* Amount of cic agent $i$ has to spend, $\\gamma_\\textrm{cic}$\n", + "* Percentage of transaction in cic, $\\phi$\n", + "* Spend, $\\zeta$\n", + "\n", + "\n", + "if $\\frac{v_{i,j}}{d_{i,j}} * 1-\\phi > \\gamma_{i} \\textrm{and} \\frac{v_{i,j}}{d_{i,j}} * \\phi > \\gamma_\\textrm{cic} \\Rightarrow \\zeta = \\frac{v_{i,j}}{d_{i,j}}$ \n", + "\n", + "else $ \\Rightarrow \\zeta = \\gamma$\n", + "\n", + "Allocate utility type by stack ranking in. Allocate remaining fiat and cic until all demand is met or i runs out.\n", + "\n", + "\n", + "### Withdraw calculation\n", + "\n", + "The user is able to withdraw up to 50% of the their CIC balance if they have spent 50% of their balance within the last 30 days at a conversion ratio of 1:1, meaning that for every one token withdraw, they receive 1 in native currency. We are assuming that agents want what to withdraw as much as they can.\n", + "This is one of the most important control points for Grassroots economics. The more people withdraw CIC from the system, the more difficult it is on the system. The more people can withdraw, the better the adoption however. The inverse also holds true: the less individuals can withdraw, the lower the adoption.\n", + "\n", + "## Distribution to agents\n", + "#### Parameters\n", + "FrequencyOfAllocation = 45 # frequency of allocation of drip to agents\n", + "* idealFiat = 5000\n", + "* idealCIC = 200000\n", + "* varianceCIC = 50000\n", + "* varianceFiat = 1000\n", + "* unadjustedPerAgent = 50\n", + "\n", + "```\n", + "# agent:[centrality,allocationValue]\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], \n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "```\n", + "\n", + "Every 15 days, a total of unadjustedPerAgent * agents will be distributed among the agents. Allocation will occur based off of the the agent allocation dictionary allocation value. We can optimize the allocation overtime and make a state variable for adjustment overtime as a result of centrality. We are currently assuming that all agents have the same centrality and allocation.\n", + "\n", + "Internal velocity is better than external velocity of the system. Point of leverage to make more internal cycles. Canbe used for tuning system effiency.\n", + "![](images/agentDistribution.png)\n", + "\n", + "### Inventory Controller\n", + "Heuristic Monetary policy hysteresis conservation allocation between fiat and cic reserves. We've created an inventory control function to test if the current balance is in an acceptable tolarance. For the calculation, we use the following 2 variables, current CIC balance and current fiat balance, along with 2 parameters, desired cic and variance.\n", + "\n", + "Below is \n", + "```\n", + "if idealCIC - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + "else:\n", + " \n", + " if (ideal + variance) > actual :\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + "if decision == 'mint':\n", + " if fiat < (ideal - variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + "if decision == 'none':\n", + " if fiat < (ideal - variance):\n", + " decision = 'mint'\n", + " amount = (ideal-variance)\n", + " else:\n", + " pass\n", + " \n", + "\n", + "```\n", + "\n", + "If the controller wants to mint, the amount decided from the inventory controller, $\\Delta R$ is inserted into the following minting equation:\n", + "\n", + "- Conservation equation, V0: $V(R+ \\Delta R', S+\\Delta S) = \\frac{(S+\\Delta S)^\\kappa}{R+\\Delta R'} =\\frac{S^\\kappa}{R}$\n", + "- Derived Mint equation: $\\Delta S = mint\\big(\\Delta R ; (R,S)\\big)= S\\big(\\sqrt[\\kappa]{(1+\\frac{\\Delta R}{R})}-1\\big)$\n", + " \n", + "\n", + "\n", + "If the controller wants to burn, the amount decided from the inventory controller, $\\Delta S$ is inserted into the following minting equation:\n", + " - Derived Withdraw equation: $\\Delta R = withdraw\\big(\\Delta S ; (R,S)\\big)= R\\big(1-(1-\\frac{\\Delta S}{S})^\\kappa \\big)$\n", + " \n", + "\n", + "There is a built in process lag of 7 days before the newly minted or burned CIC is added to the respective operator accounts.\n", + "\n", + "### Velocity of Money \n", + "\n", + "Indirect measurement of velocity of money per timestep:\n", + "\n", + "$V_t = \\frac{PT}{M}$\n", + "\n", + "Where\n", + "\n", + "* $V_t$ is the velocity of money for all agent transaction in the time period examined\n", + "* $P$ is the price level\n", + "* $T$ is the aggregated real value of all agent transactions in the time period examined\n", + "* $M$ is the average money supply in the economy in the time period examined.\n", + "\n", + "\n", + "\n", + "## Simulation run\n", + "* 5 monte carlo runs with 100 timesteps. Each timestep is equal to 1 day.\n", + "\n", + "\n", + "## Proposed Experiments\n", + "![](images/experiments.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Define cadCAD Model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: cadCAD in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (0.3.1)\r\n", + "Requirement already satisfied: pathos in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.2.5)\r\n", + "Requirement already satisfied: pandas in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (1.0.3)\r\n", + "Requirement already satisfied: fn in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.4.3)\r\n", + "Requirement already satisfied: funcy in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (1.14)\r\n", + "Requirement already satisfied: wheel in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.33.6)\r\n", + "Requirement already satisfied: tabulate in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.8.2)\r\n", + "Requirement already satisfied: pox>=0.2.7 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.2.7)\r\n", + "Requirement already satisfied: dill>=0.3.1 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.3.1.1)\r\n", + "Requirement already satisfied: ppft>=1.6.6.1 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (1.6.6.1)\r\n", + "Requirement already satisfied: multiprocess>=0.70.9 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.70.9)\r\n", + "Requirement already satisfied: pytz>=2017.2 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pandas->cadCAD) (2018.7)\r\n", + "Requirement already satisfied: python-dateutil>=2.6.1 in /home/aclarkdata/.local/lib/python3.7/site-packages (from pandas->cadCAD) (2.8.0)\r\n", + "Requirement already satisfied: numpy>=1.13.3 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pandas->cadCAD) (1.18.2)\r\n", + "Requirement already satisfied: six>=1.7.3 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from ppft>=1.6.6.1->pathos->cadCAD) (1.14.0)\r\n" + ] + } + ], + "source": [ + "!pip install cadCAD" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", + " import pandas.util.testing as tm\n" + ] + } + ], + "source": [ + "# import libraries\n", + "import math\n", + "from decimal import Decimal\n", + "from datetime import timedelta\n", + "import numpy as np\n", + "from typing import Dict, List\n", + "\n", + "from cadCAD.configuration import append_configs\n", + "from cadCAD.configuration.utils import bound_norm_random, ep_time_step, config_sim, access_block\n", + "\n", + "\n", + "# The following imports NEED to be in the exact order\n", + "from cadCAD.engine import ExecutionMode, ExecutionContext, Executor\n", + "from cadCAD import configs\n", + "\n", + "\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from tabulate import tabulate\n", + "import matplotlib.pyplot as plt\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "from IPython.display import clear_output\n", + "import networkx as nx\n", + "from collections import OrderedDict\n", + "pd.options.display.float_format = '{:.2f}'.format\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "default_kappa= 4\n", + "default_exit_tax = .02\n", + "\n", + "#value function for a given state (R,S)\n", + "def invariant(R,S,kappa=default_kappa):\n", + " \n", + " return (S**kappa)/R\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return Supply S as a function of reserve R\n", + "def reserve(S, V0, kappa=default_kappa):\n", + " return (S**kappa)/V0\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return Supply S as a function of reserve R\n", + "def supply(R, V0, kappa=default_kappa):\n", + " return (V0*R)**(1/kappa)\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return a spot price P as a function of reserve R\n", + "def spot_price(R, V0, kappa=default_kappa):\n", + " return kappa*R**((kappa-1)/kappa)/V0**(1/kappa)\n", + "\n", + "#for a given state (R,S)\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#deposit deltaR to Mint deltaS\n", + "#with realized price deltaR/deltaS\n", + "def mint(deltaR, R,S, V0, kappa=default_kappa):\n", + " deltaS = (V0*(R+deltaR))**(1/kappa)-S\n", + " if deltaS ==0:\n", + " realized_price = spot_price(R+deltaR, V0, kappa)\n", + " else:\n", + " realized_price = deltaR/deltaS\n", + " deltaS = round(deltaS,2)\n", + " return deltaS, realized_price\n", + "\n", + "#for a given state (R,S)\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#burn deltaS to Withdraw deltaR\n", + "#with realized price deltaR/deltaS\n", + "def withdraw(deltaS, R,S, V0, kappa=default_kappa):\n", + " deltaR = R-((S-deltaS)**kappa)/V0\n", + " if deltaS ==0:\n", + " realized_price = spot_price(R+deltaR, V0, kappa)\n", + " else:\n", + " realized_price = deltaR/deltaS\n", + " deltaR = round(deltaR,2)\n", + " return deltaR, realized_price\n", + "\n", + "\n", + "\n", + "def iterateEdges(network,edgeToIterate):\n", + " '''\n", + " Description:\n", + " Iterate through a network on a weighted edge and return\n", + " two dictionaries: the inflow and outflow for the given agents\n", + " in the format:\n", + " \n", + " {'Agent':amount}\n", + " '''\n", + " outflows = {}\n", + " inflows = {}\n", + " for i,j in network.edges:\n", + " try:\n", + " amount = network[i][j][edgeToIterate]\n", + " if i in outflows:\n", + " outflows[i] = outflows[i] + amount\n", + " else:\n", + " outflows[i] = amount\n", + " if j in inflows:\n", + " inflows[j] = inflows[j] + amount\n", + " else:\n", + " inflows[j] = amount\n", + " except:\n", + " pass\n", + " return outflows,inflows\n", + "\n", + "\n", + "def inflowAndOutflowDictionaryMerge(inflow,outflow):\n", + " '''\n", + " Description:\n", + " Merge two dictionaries and return one dictionary with zero floor'''\n", + " \n", + " merged = {}\n", + "\n", + " inflowsKeys = [k for k,v in inflow.items() if k not in outflow]\n", + " for i in inflowsKeys:\n", + " merged[i] = inflow[i]\n", + " outflowsKeys = [k for k,v in outflow.items() if k not in inflow]\n", + " for i in outflowsKeys:\n", + " merged[i] = outflow[i]\n", + " overlapKeys = [k for k,v in inflow.items() if k in outflow]\n", + " for i in overlapKeys:\n", + " amt = outflow[i] - inflow[i] \n", + " if amt < 0:\n", + " merged[i] = 0\n", + " else:\n", + " merged[i] = amt\n", + " pass\n", + " \n", + " return merged\n", + "\n", + " \n", + "def spendCalculation(agentToPay,agentToReceive,rankOrderDemand,maxSpendCurrency,maxSpendTokens,cicPercentage):\n", + " '''\n", + " Function to calculate if an agent can pay for demand given token and currency contraints\n", + " '''\n", + " if (rankOrderDemand[agentToReceive] * (1-cicPercentage)) > maxSpendCurrency[agentToPay]:\n", + " verdict_currency = 'No'\n", + " else:\n", + " verdict_currency = 'Enough'\n", + " \n", + " if (rankOrderDemand[agentToReceive] * cicPercentage) > maxSpendTokens[agentToPay]:\n", + " verdict_cic = 'No'\n", + " else:\n", + " verdict_cic = 'Enough'\n", + " \n", + " if verdict_currency == 'Enough'and verdict_cic == 'Enough':\n", + " spend = rankOrderDemand[agentToReceive]\n", + " \n", + " elif maxSpendCurrency[agentToPay] > 0:\n", + " spend = maxSpendCurrency[agentToPay]\n", + " else:\n", + " spend = 0\n", + " \n", + " return spend\n", + "\n", + "\n", + "def spendCalculationExternal(agentToPay,agentToReceive,rankOrderDemand,maxSpendCurrency):\n", + " '''\n", + " '''\n", + " if rankOrderDemand[agentToReceive] > maxSpendCurrency[agentToPay]:\n", + " verdict_currency = 'No'\n", + " else:\n", + " verdict_currency = 'Enough'\n", + " \n", + " if verdict_currency == 'Enough':\n", + " spend = rankOrderDemand[agentToReceive]\n", + " \n", + " elif maxSpendCurrency[agentToPay] > 0:\n", + " spend = maxSpendCurrency[agentToPay]\n", + " else:\n", + " spend = 0\n", + " \n", + " return spend\n", + "\n", + "\n", + "def DictionaryMergeAddition(inflow,outflow):\n", + " '''\n", + " Description:\n", + " Merge two dictionaries and return one dictionary'''\n", + " \n", + " merged = {}\n", + "\n", + " inflowsKeys = [k for k,v in inflow.items() if k not in outflow]\n", + " for i in inflowsKeys:\n", + " merged[i] = inflow[i]\n", + " outflowsKeys = [k for k,v in outflow.items() if k not in inflow]\n", + " for i in outflowsKeys:\n", + " merged[i] = outflow[i]\n", + " overlapKeys = [k for k,v in inflow.items() if k in outflow]\n", + " for i in overlapKeys:\n", + " merged[i] = outflow[i] + inflow[i] \n", + " \n", + " return merged\n", + "\n", + "def mint_burn_logic_control(ideal,actual,variance,fiat,fiat_variance,ideal_fiat):\n", + " '''\n", + " Inventory control function to test if the current balance is in an acceptable range. Tolerance range \n", + " '''\n", + " if ideal - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " if (ideal + variance) > actual:\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + " if decision == 'mint':\n", + " if fiat < (ideal_fiat - fiat_variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + " if decision == 'none':\n", + " if fiat < (ideal_fiat - fiat_variance):\n", + " decision = 'mint'\n", + " amount = (ideal_fiat-fiat_variance)\n", + " else:\n", + " pass\n", + " \n", + " amount = round(amount,2)\n", + " return decision, amount\n", + " \n", + "#NetworkX functions\n", + "def get_nodes_by_type(g, node_type_selection):\n", + " return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection]\n", + "\n", + "def get_edges_by_type(g, edge_type_selection):\n", + " return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection]\n", + "\n", + "def get_edges(g):\n", + " return [edge for edge in g.edges if g.edges[edge]]\n", + "\n", + "def get_nodes(g):\n", + " '''\n", + " df.network.apply(lambda g: np.array([g.nodes[j]['balls'] for j in get_nodes(g)]))\n", + " '''\n", + " return [node for node in g.nodes if g.nodes[node]]\n", + "\n", + "def aggregate_runs(df,aggregate_dimension):\n", + " '''\n", + " Function to aggregate the monte carlo runs along a single dimension.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " Example run:\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,'timestep')\n", + " '''\n", + " df = df[df['substep'] == df.substep.max()]\n", + " mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " std_df = df.groupby(aggregate_dimension).std().reset_index()\n", + " min_df = df.groupby(aggregate_dimension).min().reset_index()\n", + "\n", + " return mean_df,median_df,std_df,min_df\n", + "\n", + "\n", + "\n", + "def plot_averaged_runs(df,aggregate_dimension,x, y,run_count,lx=False,ly=False, suppMin=False):\n", + " '''\n", + " Function to plot the mean, median, etc of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + " run_count = the number of monte carlo simulations\n", + " lx = True/False for if the x axis should be logged\n", + " ly = True/False for if the x axis should be logged\n", + " suppMin: True/False for if the miniumum value should be plotted\n", + " Note: Run aggregate_runs before using this function\n", + " Example run:\n", + " '''\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,aggregate_dimension)\n", + "\n", + " plt.figure(figsize=(10,6))\n", + " if not(suppMin):\n", + " plt.plot(mean_df[x].values, mean_df[y].values,\n", + " mean_df[x].values,median_df[y].values,\n", + " mean_df[x].values,mean_df[y].values+std_df[y].values,\n", + " mean_df[x].values,min_df[y].values)\n", + " plt.legend(['mean', 'median', 'mean+ 1*std', 'min'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + "\n", + " else:\n", + " plt.plot(mean_df[x].values, mean_df[y].values,\n", + " mean_df[x].values,median_df[y].values,\n", + " mean_df[x].values,mean_df[y].values+std_df[y].values,\n", + " mean_df[x].values,mean_df[y].values-std_df[y].values)\n", + " plt.legend(['mean', 'median', 'mean+ 1*std', 'mean - 1*std'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + "\n", + " plt.xlabel(x)\n", + " plt.ylabel(y)\n", + " title_text = 'Performance of ' + y + ' over all of ' + str(run_count) + ' Monte Carlo runs'\n", + " plt.title(title_text)\n", + " if lx:\n", + " plt.xscale('log')\n", + "\n", + " if ly:\n", + " plt.yscale('log')\n", + "\n", + "def plot_median_with_quantiles(df,aggregate_dimension,x, y):\n", + " '''\n", + " Function to plot the median and 1st and 3rd quartiles of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + "\n", + " Example run:\n", + " plot_median_with_quantiles(df,'timestep','timestep','AggregatedAgentSpend')\n", + " '''\n", + " \n", + " df = df[df['substep'] == df.substep.max()]\n", + " firstQuantile = df.groupby(aggregate_dimension).quantile(0.25).reset_index()\n", + " thirdQuantile = df.groupby(aggregate_dimension).quantile(0.75).reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " \n", + " fig, ax = plt.subplots(1,figsize=(10,6))\n", + " ax.plot(median_df[x].values, median_df[y].values, lw=2, label='Median', color='blue')\n", + " ax.fill_between(firstQuantile[x].values, firstQuantile[y].values, thirdQuantile[y].values, facecolor='black', alpha=0.2)\n", + " ax.set_title(y + ' Median')\n", + " ax.legend(loc='upper left')\n", + " ax.set_xlabel('Timestep')\n", + " ax.set_ylabel('Amount')\n", + " ax.grid()\n", + " \n", + "def plot_median_with_quantiles_annotation(df,aggregate_dimension,x, y):\n", + " '''\n", + " Function to plot the median and 1st and 3rd quartiles of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + "\n", + " Example run:\n", + " plot_median_with_quantiles(df,'timestep','timestep','AggregatedAgentSpend')\n", + " '''\n", + " \n", + " df = df[df['substep'] == df.substep.max()]\n", + " firstQuantile = df.groupby(aggregate_dimension).quantile(0.25).reset_index()\n", + " thirdQuantile = df.groupby(aggregate_dimension).quantile(0.75).reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " \n", + " fig, ax = plt.subplots(1,figsize=(10,6))\n", + " ax.axvline(x=30,linewidth=2, color='r')\n", + " ax.annotate('Agents can withdraw and Red Cross Drip occurs', xy=(30,2), xytext=(35, 1),\n", + " arrowprops=dict(facecolor='black', shrink=0.05))\n", + " \n", + " ax.axvline(x=60,linewidth=2, color='r')\n", + " ax.axvline(x=90,linewidth=2, color='r')\n", + " ax.plot(median_df[x].values, median_df[y].values, lw=2, label='Median', color='blue')\n", + " ax.fill_between(firstQuantile[x].values, firstQuantile[y].values, thirdQuantile[y].values, facecolor='black', alpha=0.2)\n", + " ax.set_title(y + ' Median')\n", + " ax.legend(loc='upper left')\n", + " ax.set_xlabel('Timestep')\n", + " ax.set_ylabel('Amount')\n", + " ax.grid()\n", + "\n", + "\n", + "def first_five_plot(df,aggregate_dimension,x,y,run_count):\n", + " '''\n", + " A function that generates timeseries plot of at most the first five Monte Carlo runs.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + " run_count = the number of monte carlo simulations\n", + " Note: Run aggregate_runs before using this function\n", + " Example run:\n", + " first_five_plot(df,'timestep','timestep','revenue',run_count=100)\n", + " '''\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,aggregate_dimension)\n", + " plt.figure(figsize=(10,6))\n", + " if run_count < 5:\n", + " runs = run_count\n", + " else:\n", + " runs = 5\n", + " for r in range(1,runs+1):\n", + " legend_name = 'Run ' + str(r)\n", + " plt.plot(df[df.run==r].timestep, df[df.run==r][y], label = legend_name )\n", + " plt.plot(mean_df[x], mean_df[y], label = 'Mean', color = 'black')\n", + " plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + " plt.xlabel(x)\n", + " plt.ylabel(y)\n", + " title_text = 'Performance of ' + y + ' over the First ' + str(runs) + ' Monte Carlo Runs'\n", + " plt.title(title_text)\n", + " #plt.savefig(y +'_FirstFiveRuns.jpeg')\n", + " \n", + " \n", + "def aggregate_runs_param_mc(df,aggregate_dimension):\n", + " '''\n", + " Function to aggregate the monte carlo runs along a single dimension.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " Example run:\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,'timestep')\n", + " '''\n", + " df = df[df['substep'] == df.substep.max()]\n", + " mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " #min_df = df.groupby(aggregate_dimension).min().reset_index()\n", + " #max_df = df.groupby(aggregate_dimension).max().reset_index()\n", + " return mean_df,median_df\n", + "\n", + "def param_dfs(results,params,swept):\n", + " mean_df,median_df = aggregate_runs_param_mc(results[0]['result'],'timestep')\n", + " mean_df[swept] = params[0]\n", + " median_df[swept] = params[0]\n", + " #max_df[swept] = params[0]\n", + " #min_df[swept] = params[0]\n", + " for i in range(1,len(params)):\n", + " mean_df_intermediate,median_df_intermediate = aggregate_runs_param_mc(results[i]['result'],'timestep')\n", + " mean_df_intermediate[swept] = params[i]\n", + " median_df_intermediate[swept] = params[i]\n", + " #max_df_intermediate[swept] = params[i]\n", + " #min_df_intermediate[swept] = params[i]\n", + " mean_df= pd.concat([mean_df, mean_df_intermediate])\n", + " median_df= pd.concat([median_df, median_df_intermediate])\n", + " #max_df= pd.concat([max_df, max_df_intermediate])\n", + " #min_df= pd.concat([min_df, min_df_intermediate])\n", + " return mean_df,median_df\n", + "\n", + "\n", + "def param_plot(results,state_var_x, state_var_y, parameter, save_plot = False,**kwargs):\n", + " '''\n", + " Results (df) is the dataframe (concatenated list of results dictionaries)\n", + " length = intreger, number of parameter values\n", + " Enter state variable name as a string for x and y. Enter the swept parameter name as a string.\n", + " y_label kwarg for custom y-label and title reference\n", + " x_label kwarg for custom x-axis label\n", + " '''\n", + " sns.scatterplot(x=state_var_x, y = state_var_y, hue = parameter, style= parameter, palette = 'coolwarm',alpha=1, data = results, legend=\"full\")\n", + " title_text = 'Effect of ' + parameter + ' Parameter Sweep on ' + state_var_y\n", + " for key, value in kwargs.items():\n", + " if key == 'y_label':\n", + " plt.ylabel(value)\n", + " title_text = 'Effect of ' + parameter + ' Parameter Sweep on ' + value\n", + " if key == 'x_label':\n", + " plt.xlabel(value)\n", + " plt.title(title_text)\n", + " if save_plot == True:\n", + " filename = state_var_y + state_var_x + parameter + 'plot.png'\n", + "# # plt.savefig('static/images/' + filename)\n", + "# plt.savefig(filename)\n", + " lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + " #title_text = 'Market Volatility versus Normalized Liquid Token Supply for All Runs'\n", + " plt.title(title_text)\n", + " plt.savefig('static/images/' + filename, bbox_extra_artists=(lgd,), bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Initilization \n", + "\n", + "# Assumptions:\n", + "# Amount received in shilling when withdraw occurs\n", + "leverage = 1 \n", + "\n", + "# process time\n", + "process_lag = 7 # timesteps\n", + "\n", + "# red cross drip amount\n", + "drip = 4000\n", + "\n", + "# system initialization\n", + "agents = ['a','b','c','d','e','f','g','h','i','j','k','l','m','o','p']\n", + "\n", + "# system actors\n", + "system = ['external','cic']\n", + "\n", + "# chamas\n", + "chama = ['chama_1','chama_2','chama_3','chama_4']\n", + "\n", + "# traders\n", + "traders = ['ta','tb','tc'] #only trading on the cic. Link to external and cic not to other agents\n", + "\n", + "allAgents = agents + system\n", + "\n", + "mixingAgents = ['a','b','c','d','e','f','g','h','i','j','k','l','m','o','p','external']\n", + "\n", + "UtilityTypesOrdered ={'Food/Water':1,\n", + " 'Fuel/Energy':2,\n", + " 'Health':3,\n", + " 'Education':4,\n", + " 'Savings Group':5,\n", + " 'Shop':6}\n", + "\n", + "utilityTypesProbability = {'Food/Water':0.6,\n", + " 'Fuel/Energy':0.10,\n", + " 'Health':0.03,\n", + " 'Education':0.015,\n", + " 'Savings Group':0.065,\n", + " 'Shop':0.19}\n", + "\n", + "\n", + "R0 = 500 #thousand xDAI\n", + "kappa = 4 #leverage\n", + "P0 = 1/100 #initial price\n", + "S0 = kappa*R0/P0\n", + "V0 = invariant(R0,S0,kappa)\n", + "P = spot_price(R0, V0, kappa)\n", + "\n", + "# Price level\n", + "priceLevel = 100\n", + "\n", + "fractionOfDemandInCIC = 0.5\n", + "fractionOfActualSpendInCIC = 0.5\n", + "\n", + "def create_network():\n", + " # Create network graph\n", + " network = nx.DiGraph()\n", + "\n", + " # Add nodes for n participants plus the external economy and the cic network\n", + " for i in agents:\n", + " network.add_node(i,type='Agent',tokens=400, native_currency = int(np.random.uniform(low=20, high=500, size=1)[0]))\n", + " \n", + " \n", + " network.add_node('external',type='Contract',native_currency = 100000000,tokens = 0,delta_native_currency = 0, pos=(1,50))\n", + " network.add_node('cic',type='Contract',tokens= S0, native_currency = R0,pos=(50,1))\n", + "\n", + " for i in chama:\n", + " network.add_node(i,type='Chama')\n", + " \n", + " for i in traders:\n", + " network.add_node(i,type='Trader',tokens=20, native_currency = 20, \n", + " price_belief = 1, trust_level = 1)\n", + " \n", + " # Create bi-directional edges between all participants\n", + " for i in allAgents:\n", + " for j in allAgents:\n", + " if i!=j:\n", + " network.add_edge(i,j)\n", + "\n", + " # Create bi-directional edges between each trader and the external economy and the cic environment \n", + " for i in traders:\n", + " for j in system:\n", + " if i!=j:\n", + " network.add_edge(i,j)\n", + " \n", + " # Create bi-directional edges between some agent and a chama node representing membershio \n", + " for i in chama:\n", + " for j in agents:\n", + " if np.random.choice(['Member','Non_Member'],1,p=[.50,.50])[0] == 'Member':\n", + " network.add_edge(i,j)\n", + "\n", + " # Type colors \n", + " colors = ['Red','Blue','Green','Orange']\n", + " color_map = []\n", + " for i in network.nodes:\n", + " if network.nodes[i]['type'] == 'Agent':\n", + " color_map.append('Red')\n", + " elif network.nodes[i]['type'] == 'Cloud':\n", + " color_map.append('Blue')\n", + " elif network.nodes[i]['type'] == 'Contract':\n", + " color_map.append('Green')\n", + " elif network.nodes[i]['type'] == 'Trader':\n", + " color_map.append('Yellow')\n", + " elif network.nodes[i]['type'] == 'Chama':\n", + " color_map.append('Orange')\n", + " \n", + " pos = nx.spring_layout(network,pos=nx.get_node_attributes(network,'pos'),fixed=nx.get_node_attributes(network,'pos'),seed=10)\n", + " nx.draw(network,node_color = color_map,pos=pos,with_labels=True,alpha=0.7)\n", + " plt.savefig('images/graph.png')\n", + " plt.show()\n", + " return network" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAFCCAYAAACn2kcMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XdUVNfaBvCHgaE3GyAgMwxtaKJSBIMae49oiBJ7R43YRaPmEyxRMParsRDF2IMtmkDUqNcSQVFBelGadKTXYcr7/cH13HAxHfv+reW6KzozZ8+5Lh/2u9+9jxIRERiGYRiG+cd4r3sADMMwDPOuYKHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlRe9wBeByLC47LHKKkrgVQuhSZfE+ZtzNFes/3rHhrDMAzzFnuvQrW2sRZXM67i8KPDeFr1FMpKyiAQlKAEBRT4UPghPnX4FE6GTlBSUnrdw2UYhmHeMkpERK97EK/C/fz7WHp5KWoba6GpqgkdVZ1mwSlXyFFWXwYFKeBk5ISvBnwFPXW91zhihmEY5m3zXoTqrexbWHp5KTRVNaGtqv27ryUiFNcWo5NuJ3wz8hvoq+u/olEyDMMwb7t3vlEp9Vkq/K/4Q1tN+w8DFQCUlJRgqG2Ip1VPseinRZApZH/rusXFxRgxYgTkcvnfej/DMAzz9nln11SvXr2KS5cuQdZPBgJBk6/5l95voGWAhOIE3M29iw/MPnhJo2QYhmHeJe/0TLW2sRa3c26jnWa7v/5mAlRVVHE07mjrD4xhGIZ5J70VM9WysjLs27cPCQkJUFdXh5eXF0aMGIGAgAB06tQJ06dPBwAEBwdDTU0No0ePxu7du/Hk2RM8vfUUeap56Da/GxQyBXJv56IspQwkJ7SxagOzvmbgqfBQlVOFjPAMGHQ1QNGDIugJ9NDWoS3CQsLQraIbbvx0AzweD5MmTUL//v0BANHR0Th69CgKCgqgpaWFAQMGYNy4ca/zVjEMwzCv0RsfqkSEtWvXwt3dHcuWLcOzZ8+wevVqmJiYYMGCBfDz84OrqyvKysqQlpaGXbt2QUNDA5999hkW/GsBHKc5QldNFwCQeysXDeUNcJjsACVlJTz54Qny7uShU69OAABprRTyBjmcZjkBAGryayCvk+NJ8ROEhoYiNjYWGzduhLu7O7S1taGuro5FixZBIBAgOzsbq1evhkgkgru7+2u7XwzDMMzr88aXf9PS0lBZWQkfHx+oqKjAyMgIgwYNws2bN9GmTRvMnTsX27Ztw/79+7F48WJoaGhw722UN0KF1/RzAxGh+FExzPqYQUVDBcqqymjo0IBHlx/hwYMHTW9QAkw+MAFPhQeeyn9uDQ9wGegCFRUVuLi4QENDA3l5eQAAR0dHCIVCKCkpQSgUonfv3khISHil94dhGIZ5c7zxM9WSkhKUlZXBx8eH+z25XA57e3sAgJubG/bt2wdTU1PY2dk1ey9PiYfnO4Zk9TIopAokHUn67+co5IAUKMgvQEFSAdpQm/+G6X8oqytDja8GoCmYJRIJQkND4eHhARsbGxw+fBjZ2dmQyWSQSqXw9PR8KfeBYRiGefO98aHavn17GBoaYv/+/S/882+//RampqYoKirCzZs30atXL+7PtPhakMgl0IIWVDRUwFPhwWGqA1R1VLnXNEoacfnyZQBAeVk5Ll26BCcnJxgZGgEAlKCEcyfPYdmJZSguLkZVVRUAoG/fvhAIBBg+fDgCAgKgqqqKAwcOcH/OMAzDvH/e+PKvtbU1NDQ0cPr0aTQ2NkKhUCA7Oxvp6elISEjAzz//jMWLF2PRokXYu3cvSktLAQD6+vow5BmisbERQNP+0w6dOyDneg6kdVIAQGN1I+rz65saj/5zuJK0UYr70fdx9dpVFBYXgsfj4UroFaSmpqK8vBxyuRxyuRxVVVXIz8+Huro6VFVVkZaWhhs3bryWe8QwDMO8Gd74UOXxeFizZg0yMzMxffp0jBs3Drt27UJZWRm2bduG2bNno127drC3t8fAgQOxfft2EBGcnJzgYuuCnNAcRO+MBgB06t0J6vrqSDqahAc7HiD1u1Q0lDVAXUMdLi4uXLACQH1dPdKy01CRWQFtdW1oajbf51pVVYXY2FiMGTMGHTt2hK+vLwwMDNDQ0PAqbw/DMAzzBnnnjykMeRiCPdF7YKxj/IeH5JeXlSPqbhTkMnnTjxsaAL4D8IKK7rJly5CZmQkDAwNIJBIUFBQgIyMDCoUCHTt2hLOzM3r37g1nZ2cYG//xtRmGYZi33zsfqg2yBvj+4IukkiQYahn+YbgVFRXhYcxDyDXkwG0AiS1fo6SkhLKyMigpKeHevXuIjIxEQkICrK2tYWxsjIqKCjx69AjJycmQyWTQ0dGBk5MTPD094erqCgsLC6iqqrb8YIZhGOat9s6HKgBUNFRgfsR8JJYkor1me6gqvzjQiAg1jTXIys9C3vk8yKJ/+9xfDQ0NeHl5Yfv27TAwMEB9fT0ePnyIqKgo3L9/HyYmJnB1dYWRkRGePHmCW7duIT4+Ho2NjVBRUYGNjQ169OgBNzc3iMVi6OmxJ+IwDMO87d6LUAWAemk9vr7/Nc4kn0GjrBEafA1o8DXAU+JBppChSlIFIoKJjgn83Pwwtc9U5OTk/O5nqqiogM/nY+jQodi6dSvMzMwAADKZDAkJCYiMjERUVBQ0NTXh4eEBV1dXqKioICYmBjdu3EBMTAy3BmtiYgI3Nzd0794dtra2MDU1ZSVjhmGYt8x7E6rP1TbW4lrmNZxKPIWimqKmLTd8LTgZOcHHwYd7QHl4eDiGDRv2h5/H5/PB4/HA4/HQr18/fPXVV7CxseH+nIiQnp6OqKgoREVFoa6uDt27d4eHhwfs7e2Rl5eHuLg43L59G9HR0aitrYWSkhK0tLTg7OwMNzc32NnZwcrKipWMGYZh3nDvXaj+WeXl5TA3N0dlZWWz3+fz+ZBKpS1er62tzT3mzdPTE8HBwejSpUuL1+Xl5XEz2Ly8PDg7O8Pd3R3Ozs5QV1dHXl4eEhISuBCurKyEiooKiAj29vZcyNrZ2bGSMcMwzBuGherv8PDwQFRUFICmrT18Ph8SiQQaGhqQSCQgIhARlJSUoKSkBCKCgYEBampqQERwdXXFhg0b8MEHL350XFlZGdfolJycDAcHB7i7u6N79+7Q09MDEaGwsBCJiYmIiYnBnTt3UFJSAjU1NUilUq5k/DxkWcmYYRjm9WKh+jsOHDiA06dPIzAwEMOHD0d1dTVUVVVRW1sLVVVVKCsro76+ngtWZWVlAE3dwebm5igoKIBCoYCjoyMCAwMxcODA37xWbW0tHjx4gKioKDx8+BACgQDu7u5wd3dHx44dudeVlJQgISEBcXFxuHfvHnJzc6GhoQGZTAYNDQ04OzvD3t4etra2sLa2ZiVjhmGYV4iF6p/0yy+/YNiwYZBIJNDU1ERFRQVUVFTQvn17FBcXA2g6k5jH40FVVRVSqRQaGhqws7NDcnIyFAoFxGIxVqxYgVGjRoHH++1zN6RSKeLi4rgSsJ6eHjw8PODu7g6RSNRsNlpWVoakpCTEx8fj/v37yMrKgqamJogIUqkU9vb2XMja2dlBX1//pd8rhmGY9xUL1b/gzJkzmDZtGuRyOXR0dFBaWgoigrW1NTIyMgCAOxaRz+dDQ0MDVVVVMDIygqOjI6KiokBEEAgEWLJkCSZOnPi74Qo0NTqlpKQgKioKkZGRkMlk3AzW3t6emx0/V1VVhcTERK5knJ6eDi0tLSgrK6O2thbGxsZwcHDgQrZTp06sZMwwDNNKWKj+Rbt27cKqVaugpKQEPT09lJSUQCqVwtbWFnl5eVz3rlQqBY/Hg4aGBpSVlVFVVQUHBwdYWlri+vXrICJ07NgR8+bNw6xZs6Ci8sfPNiAi5Obmco1OhYWFcHV1hbu7O7p16wY1NbUW76mtrUVSUhISEhIQHx+P5ORkaGtrg8/no6GhASoqKs1mslZWVi/8HIZhGOaPsVD9G5YtW4b9+/dDRUUF+vr6KCkpQX19PQQCAVRVVZGVlQU1NTVUV1dDSUkJfD4fHTp0QFlZGSQSCQYPHgxtbW1cunQJANCmTRv4+vrCz88P6urqf3ocz549w927dxEZGYm0tDR07twZHh4ecHNzg46Ozgvf09DQgOTkZCQkJCAhIQEpKSnQ1NSEuro6GhsbUVtbCwsLCy5kbW1t0aZNm1a5bwzDMO86Fqp/g0KhwMSJExEeHg4+nw99fX2Ul5ejsrISbdq0gbu7O65duwZlZWVIpVJIJBIoKytDVVUVAoEA6enp4PP58PX1RX5+Pn7++Wdub+qUKVOwZMkSaGtr/6Ux1dTUIDo6GlFRUYiNjYWFhQVXJjYwMPjN9zU2NiI1NZUL2eTkZGhqakJLSwsKhQLl5eXQ19fnAtbW1hYCgYCVjBmGYV6AherfJJPJMHjwYMTGxkJNTQ26urqoq6tDQUEBNDQ0MGHCBISFhaGhoQG6urooKiqCsrIyF8L6+vpISUlB+/btERgYiOvXr+Pq1atc+Pr4+GDFihV/a5bY2NiI2NhYREVF4d69e2jXrh3X6PRHgSiTybjH6iUkJCApKQmamprQ1dUF0LRmK5FIIBaLuZC1trb+SzNshmGYdxUL1X+gpqYGvXv3xtOnT7nZnZKSEh4/fgwVFRWMGzcOd+/eRVZWFvT19bnyr4qKClRUVODg4IDCwkLk5ORALBZj69atCAkJwY0bN7itMF5eXvj8889hbGz8t8aoUCiQlJTENTrxeDxuBmtra/uHjVJyuRwZGRlcyCYmJkJDQwNt2rSBsrIy6urqUFRUBDMzMy5k7ezs0LZt2781XoZhmLcZC9V/KD8/H3369EF1dTW0tLSgpqYGfX19PHz4EEpKSujfvz/09PRw8eJF8Pl86OnpITs7G3w+H8rKylBXV0fPnj1x48YNVFZWYuDAgQgMDERQUBBu374NdXV1SKVSDB48GKtXr4ZQKPzbYyUiZGdnc41OpaWlcHNzg4eHB5ycnP7UnlaFQoGsrCwkJiZyQauqqgoDAwOoqqpCIpFwe2efl4zt7OxgZmb2hwHOMAzztmOh2goSEhIwbNgwyOVy6OnpgcfjQSgU4vr16wAAW1tb+Pj4IDg4GDKZDEKhEOnp6ZBIJFBTU4OKigqMjY3h5OSE8+fPg4jw2WefYeLEiQgMDOQO5a+rq0Pv3r2xevVq2NnZ/eNxFxcXczPYjIwMdOnSBR4eHnBxcfnTa7rPO5Lj4+O5oAWATp06QUNDA1KpFPn5+aiqqoKNjQ0XsqxkzDDMu4iFaiu5fv06Jk2aBABo3749pFIp3N3d8d1330GhUKBDhw4ICgrC+vXrUVBQAD09PaipqeHx48fQ0NAA0LS3tXfv3qivr8eVK1ego6ODnTt3wtHREQEBAbh37x50dXVRVVUFV1dXrFq1Ci4uLq0y/qqqKkRHRyMyMhJxcXGwsbHhjkxs3779n/4cIkJBQQESExMRHx+PhIQENDY2wtLSEtra2lAoFCguLkZWVhY6derUrMu4Xbt2rfJdGIZhXhcWqq3o+PHj8Pf3B4/Hg7GxMWpqajBixAjs3bsXMpkMWlpaCAoKwuXLl3HlyhXweDx06dIFv/zyC/fnzxuVJk+ejB9//BHx8fEQCAQ4ffo0lJSUEBgYiPv376Nt27YoLy+Hvb09Pv/8c/Tq1avVvkdDQwNiYmIQFRWF6OhoGBkZwd3dHR4eHn/rfOHi4mKuVJyQkICamhpYW1tzIVpeXo6UlBRoaGg0C1mBQMBKxgzDvFVYqLayzZs3Y9euXVBSUoJAIEBZWRkmTZqE4OBgNDY2Qk1NDX5+fmjfvj3Wr18PIoJIJEJVVRXS09Oho6MDhUIBNTU1mJmZYdKkSdi4cSMKCwvRvXt3XLhwAVlZWQgMDERMTAw6dOiA0tJSiEQiLFu2DEOGDGnV7yOTyZo1OqmpqXGNTjY2Nn9ra01ZWVmzkC0rK4ONjQ2MjY3B5/NRUVGBtLQ0lJeXw8bGhgtZGxsbVjJmGOaNxkL1JViwYAF+/PFHSKVSWFtbIz8/HwsXLsQXX3yB+vp6qKqqYtCgQfjss88wc+ZMVFRUgM/nw9PTE+fPn4dCoYC+vj6e/18zbNgwWFhY4Msvv4REIsH48eOxf/9+xMbGIjAwEHFxcTA2NkZxcTGMjIywYMECeHt7t/osj4jw5MkT7kziqqoqdO/eHe7u7ujcuTP4fP7f+tzKyspmjU8FBQUQi8UwNzeHuro6amtrkZ6ejoyMDJiamjbbM/tXStMMwzAvGwvVl0ChUMDHxwfJycmorq6Gg4MDMjMzsXbtWixatAg1NTXg8/mwtrbG4cOH4e/vj8jISABA79698ejRI2RkZKBNmzZQKBTQ0NCAiooKVqxYgcjISBw9ehSqqqpYu3YtFi5ciOjoaAQEBCAxMRECgQCFhYXQ0dHB3LlzMWXKlJdWQi0oKOBmsDk5OejWrRs8PDzg7OwMTU3Nv/25NTU13NGKCQkJePr0KSwtLSEWi6Grq4uGhgY8efIEycnJUFNTa7aVRygUspIxwzCvDQvVl6SxsRGDBw9GTU0NSkpK0LVrV6SkpGDHjh2YN28eysrKoKysjLZt2+L48eO4cuUKduzYAT6fj/bt26Nbt244fvw4AMDAwAASiQQ8Hg/W1tZYt24dli9fjsjISBgYGODIkSPo27cv7t69i8DAQCQlJcHKygoFBQXg8XiYOXMm5syZ86fOF/67KioquGfDJiYmws7ODu7u7nBzc/vHe1br6+uRlJTEzWYzMzMhFAphb28PQ0NDyGQyZGZmIjk5GaWlpc26jG1sbLhGMIZhmJeNhepLVFFRgX79+kFXVxfZ2dno3r07YmNjceDAASxYsAC5ubncw8937NgBAwMDzJw5EzKZDBKJBBMnTsSZM2eQnZ0NAwMDSKVS6OjooK6uDmPGjMHHH3+MiRMnIjs7Gw4ODvj+++9hZmaGO3fuYN26dUhJSYGdnR0KCgpQX1+PyZMnY+HChS99XbK+vp57Nuz9+/fRqVMnbh3WxMTkH3++RCJBamoqt40nPT0dpqamcHBwgLm5OZSUlJCTk4OkpCQ8efIEJiYmzRqgOnTo0ArfkmEYpiUWqi9ZTk4OBg0aBHNzc6Snp6NHjx64d+8ejh49iqVLlyIlJQUAwOPxMH/+fPj6+mLChAlITEwEEcHFxQWGhob49ttvwePxYGZmhvLycmhra0NFRQXr169HTU0NFixYgOrqagwbNgwnTpyAuro6bt++jXXr1iE9PR1dunRBQUEBnj17Bh8fHyxfvvwvny/8d8hkMsTHx3PrsFpaWtyRiZaWlq1yhrBUKkVaWhq3jSc1NRWGhoZwcHCAWCyGpqYmcnNzkZSUhOTkZPD5/BYl4/99hB7DMMzfwUL1FYiJiYG3tzecnJyQlJSEnj174vbt2zh58iQCAgJw9+5dyOVy8Pl8DBgwAPv27UNwcDD27dsHPT09AICfnx82b96MgoICmJiYoLGxETo6OqiurkbXrl2xfft2/Otf/8Lu3buhpKSEhQsXYt26deDxeLh58ybWr1+PJ0+ewM3NDYWFhcjOzsaoUaPw+eefv7JmHyJCWloaF7D19fXcDNbBwaHVytMymQxPnjzhjlVMSkpCmzZt4ODgAHt7e7Rv3x5FRUVcyD579gzW1tbNSsb/ZE2YYZj3FwvVVyQiIgJz586Fs7MzUlJS0KtXL1y7dg1nzpzBjh078OOPP0Iul0NTUxPm5uYICwtDbGwsZs+eDS0tLW5rTnFxMY4fPw4VFRVYWVkhPz8fRkZGKC0txYwZM+Dn54dx48bh8uXL0NPTw+7duzFmzBgAwL///W+sX78emZmZ6NmzJwoLC5GSkoKhQ4di1apVrVKa/Styc3O5gM3Ly4OLiws8PDzQrVu3Vi1RKxQKZGZmNju/WFtbG/b29lzJ+NmzZ0hOTkZycjKePHmCjh07tigZsyfzMAzzR1iovkIHDx7Ehg0b0KVLFy7YfvrpJ5w9exbHjx9HaGgoiAi6urrg8/k4efIkOnTogAkTJiAnJwcAYGpqilmzZsHf3x+lpaUQCoWQyWTg8/lcKG/ZsgUmJibw8vJCSkoKF9JOTk4AgGvXrmHDhg3Izs5G3759UVxcjJiYGPTt2xerV6+GhYXFK783ZWVl3LNhU1JS4ODgwD0b9vlsvbUQEXJycprtlVVRUYGjoyMcHBxgY2OD+vp6LmSTkpKgoqLSLGTNzc1ZyZhhmBZYqL5i69atw7Fjx2BjY4OioiL07NkT33//Pc6dO4dr164hKCgIPB4POjo6qK+vx65duzBkyBCsXr0ax44dg6mpKYqLi7F27VpcunQJZ8+eBZ/PR+fOnZGeng6RSIScnBz07t0b27ZtQ1RUFKZNm4bS0lL06tULYWFhXDfulStXsHHjRjx9+hSDBg1CaWkp7ty5Aw8PD6xevRoODg6v5R7V1tbiwYMHiIyMRExMDIRCIVcmNjIyavXrERHy8/ObhaxcLoe9vT0cHR1hb28PPp/fLGRLSkpgbW3d7GAKLS2tVh8bwzBvFxaqr8Hs2bMRHR0NQ0ND1NXVwcPDA2fOnMHZs2eRmJiIZcuWQVVVFaqqqqitrcXChQuxaNEihIeHY+HChTAyMsLTp08xZMgQDBgwAAsWLEBFRQXX+NPQ0IC2bduisLAQixcvxsyZM7F582Z8+eWXkMlkmDx5Mv71r39xa5iXLl3Cxo0bkZeXh48++ggVFRW4evUqnJycsGrVKri5ub22e9XY2Ii4uDiuTPz8IfAeHh5cp29rI6IWRyvW1dVx5WIHBwe0a9cOaWlpXNA+fvwYRkZGzRqgDAwMWMmYYd4zLFRfA4VCgVGjRqGqqgo8Hg+qqqpwcXHBqVOncPr0aRQVFWHWrFnQ0NCAXC5HY2MjBg0ahD179iA/Px8TJkxAeXk5+Hw+eDwedu7ciW3btiEiIgJqamrw8PDAo0ePYG1tjby8PBgYGGD79u0Qi8WYPn06Tp8+DQ0NDXz55ZeYO3cuN66IiAhs2rQJBQUFGD16NGpra/HDDz/A2toaK1asQJ8+fV7jXWu6b6mpqdyj6+RyOTeDtbOze6nl2GfPnjU79am8vBx2dnZcyJqZmSE7O7vZbJbH4zULWXNz85e6V5hhmNePhepr0tDQgAEDBsDQ0BCFhYXcFpATJ05wT7bx8fGBuro6qquroaGhgU6dOuHUqVPQ1dXF0qVLce7cOdjb2yMxMRErVqyAvr4+Fi9ejJqaGtja2kJDQwP5+fmwtrZGfHw8PvroI2zatAllZWXw9vbGgwcP0LFjRxw7dgw9e/bkxvbDDz8gKCgIRUVF8PHxQUNDA86ePQtTU1MsWbIEI0aMeI13rsnzddHnM9ji4mK4urrCw8MDXbp0gZqa2ku9fkVFBdf0lJCQgKKiIojFYi5kLS0tUVpa2ixki4uLYWVlxYWsWCxmJWOGecewUH2Nnj17hv79+6NHjx6Ijo6GnZ0dRCIRjh49irCwMOjp6cHLywtKSkooKyuDkZERpFIpTp06BWtra5w5cwb+/v6ws7NDWloanJycsHHjRixatAg3b96Empoa+vXrh7t370IoFKKxsRGlpaUICAjAmDFjcOvWLUyYMAH5+fno2rUrTp8+DTMzM258Fy5cQHBwMEpKSjB+/HjI5XKcOnUKbdq0wfz58zF27Ng35kjAkpISLmAfP36Mzp07w8PDA66urtDR0Xnp16+urkZSUhJ3IEVubi6srKy4kLWxsYFUKkVqaiq3lSc9PR2GhobNGqAMDQ1ZyZhh3mIsVF+zJ0+eYMiQIRg/fjzOnj0LT09PGBsbIzQ0FKdOnYKpqSm8vLxQW1uLiooKiEQiPH36FF9//TUGDBiAzMxMTJgwgXt0XHFxMfbu3YvU1FSsXr0aDQ0NsLe3R7t27ZCQkAB3d3dER0fD2toau3btgrm5Ob7++musXLkSdXV18PLywqFDh5rt0zx37hy++uorbluPiooKDh8+DDU1NcyePRvTp09/Y8IVaAq4+/fvIzIyEo8ePYKlpSVXJn5VpynV1tYiJSUFCQkJiI+PR3Z2NszNzbnGJ1tbW/D5fGRmZnIhm5ycDCJqFrIikYiVjBnmLcJC9Q1w9+5d+Pj4YMmSJdizZw+8vLygo6ODgwcP4sSJExCLxfD29kZeXh5qampgZWWF1NRULF++HHPnzoVMJoOfnx8uX74MT09P3LhxA1OnTsXUqVMxffp0PHjwAKqqqhg5ciRu3bqFdu3awcjICNHR0Zg8eTK++OILAMD8+fNx6NAhKCsrw9/fH6tXr24WlmfOnMFXX32FiooKTJs2DVpaWggJCYFUKsX06dMxd+5cqKqqvq7b+EISiQSxsbGIiorCvXv30KFDBy5gBQLBK5sVNjQ0cCGbmJiIx48fo1OnTnBwcICjoyPs7OygqamJ4uLiZiFbWFgIS0tLLmTFYvErOQmLYZi/h4XqG+L8+fNYtGgRAgMDsX79ekybNg0AEBISgpMnT6JLly6YOHEiYmNjoaSkBAMDAzx9+hTDhw/Htm3bwOPxcPToUfzf//0fPDw8kJCQAAMDAxw+fBhnzpzBhg0b0NjYiM6dO0MgEODGjRvo27cvkpKS0NjYiKCgIAwYMABlZWUYM2YMbt68iTZt2mDv3r0YNWoUN06FQoGzZ89i8+bNqK6uxowZM9ChQwfs2bMH5eXlmDBhAhYvXvxGnkgkl8uRnJzMPVlHWVmZC1ixWPxKZ9uNjY1IS0vjGp9SU1NhbGzMnfrk4OAAXV1dbsb7PGTT0tJgYGDQ7PF3RkZGrGTMMG8IFqpvkD179mDr1q3YtGkTli9fjiVLlqC2thb79u3DiRNKOFR8AAAgAElEQVQn4OzsjIULFyIiIgK6urpQUVFBQ0MDTE1NcerUKWhrayM1NRUTJ06Euro6jIyMEBMTg+DgYHTu3BlTpkxBUlIS1NTUMHbsWNy+fRsKhQI9evTAjz/+CHd3d2zfvh0GBgaIi4vDmDFj8OTJE1hbW+P06dOwtbXlxqpQKBAWFoYtW7agtrYWs2fPhomJCXbu3Inc3FyMGTMG/v7+0NfXf4139LcRETIzM7l12LKyMu7ZsE5OTq98xi2TyfD48WMuZJOTk9GuXTvuQAp7e3u0bdu22RN5njdAKRSKZiFrYWHBSsYM85qwUH3DrFy5EhcuXMD69eu5mWtJSQn27NmD48ePo3v37li/fj0OHjwIU1NTlJeXo127dqipqUFYWBjMzc3R0NCAOXPm4JdffsGIESNw/vx5DBo0CFu3bsX27duxbds2KBQKdO7cGZ07d8a5c+fQq1cv1NbWIjY2Fn5+fpg/fz54PB5OnTqFefPmobKyEn379sWJEyfQpk0bbrwKhQKnTp3Cli1b0NDQgNmzZ0MsFmPz5s1IS0uDl5cXPv/8cxgYGLzGu/rHCgsLcffuXURFRSEzMxNdunSBh4cHXFxcXkuHrlwub3G0oq6uLncghYODAzp06AAiQklJCVcyTkpK4krGz0NWLBa/kmYthmFYqL6RJk+ejNTUVPj7+2PJkiXYunUrMjMzsXv3bi5YQ0JCsGHDhmadv3FxcThw4AB69+4NANxrhgwZgri4OEilUoSGhkKhUGDq1KnIzMyEqqoqpkyZgsjISBQVFeGTTz7B+fPnoaWlhR07dsDFxQUKhQJffPEFduzYAYVCgRkzZmDr1q3NZkMKhQLHjx/H9u3bIZFIMGfOHHTt2hWbNm3Co0ePMGjQIKxatapZd/GbqrKyEtHR0YiMjER8fDxsbGzg4eGB7t27o127dq9lTESE7OzsZgdSqKmpcd3FDg4OXBm4trYWqampXMimpaWhQ4cO3GzWzs6OlYwZ5iVhofoGUigUGDZsGABg6tSpWL58Ofbv34/ExETs2rUL3377LT744AOcO3cOixcvRrdu3fDw4UP06dMH165dwxdffIHp06cDAOLi4jBlyhS0b98elpaWiIiIwIoVKzBz5kysWbMG+/fvBxHB0dERffr0waFDh9CtWzeYmJjg/PnzGDJkCDZv3gxtbW1UV1dj0qRJCA8Ph5aWFjZt2oRZs2a1GPvRo0exY8cOSKVSfPbZZ3B3d8fGjRsRGRmJ3r17Y9WqVbCxsXnl9/XvaGhowMOHD7lnw3bs2JFbh+3UqdNrGxcRIS8vj+suTkhIAIBmIWtqagolJSXI5XJkZWU1a4CSSqXNuowtLS1ZyZhhWgEL1TdUTU0NBgwYAGtra/Tq1QsbNmzAsWPHcP/+fWzfvh2HDx+Gp6cnbt++jSlTpqBr1664f/8++vfvj+vXr8PLywvBwcHg8XioqanBzJkzERsbi6lTp+LgwYPo3LkzQkJCkJaWhlmzZiE/Px8qKirw9fVFbGwsHj16hGnTpuHWrVvIyMjA6tWrMXHiRABAeno6xowZg8TERJiYmODIkSPw9PRsNn6FQoEjR45g+/btkMvlmDdvHvr06YMvv/wS165dg5ubG1atWoUuXbq8jtv7t8hkMiQkJHBl4uenV7m7u8Pa2vq1zvyICIWFhdxhFPHx8ZBIJM2OVhQKhdwYS0pKuJlscnIy8vPzIRKJmq3NspIxw/x1LFTfYIWFhejfvz8++ugjGBoaYteuXTh79ixu3ryJbdu2ITQ0FD179kRiYiI++eQTWFpaIjk5Gd27d0d8fDxEIhGOHTvGdeLu2rULW7Zswbhx4xAbG4unT59i7969cHV1xYoVK3Ds2DEoKSnBwcEB3t7e2LFjB8zMzDBw4ECEhITAzMwMO3fu5GaZERERmDFjBkpKSuDq6oqTJ0+2mL0pFAocOnQIu3btAtD0XNiBAwfiyy+/REREBBwdHfH555+jR48er/bm/kNEhMePH3ONTjU1NVyjU+fOnd+IWV9JSUmzNdnKykrY29tzQSsSibijHevq6pCWlsaFbGpqKtq1a9dsNmtsbMxKxgzzB1iovuGSk5MxYsQILF68GGVlZThy5Ah++OEHXLlyBV999RUOHTqE3r17Izc3F15eXmjXrh2Ki4thbGyMhoYGroHp+VpmdHQ0pk+fDoFAAFdXVxw8eBBTp07FF198gTt37mDOnDkoKysDj8eDn58fHj9+jCtXrmDixIkoKSlBREQEPv30UwQGBkJVVRUKhQJbtmzB+vXrIZFIMGbMGOzdu7fFlhqFQoGDBw9i165d4PF4mD9/PoYNG4agoCCcO3cOFhYW8Pf3x4ABA17Hbf7H8vPzuYDNycmBs7Mz92zYN2V7UVlZGXfqU0JCAp49ewZbW1uuu9jKyor7YUAulyM7O7tZA5RUKoVYLG5WMubz+a0wMgmAOwDyAdQA0AHQCYA7gNb4fIZ5dViovgVu3ryJyZMnY+vWrbhz5w4iIiIQHh6O8PBwBAcH4+DBg/jwww9RUVGBkSNHgoigpKQEmUwGCwsL3L17F4cOHeJmg1VVVZg8eTLS09OxbNkybNu2DR06dMDhw4fRtm1bLFy4EOfPnwePx4OdnR1mzZqFoKAgqKqqYs6cOThw4AAqKyuxceNGbu23oaEBvr6++O6778Dn87Fy5Ur4+/u32PupUChw4MAB7N69G3w+H/Pnz8fIkSOxZcsWnDx5EkZGRli8eDFGjhz5Rp3S9FeUl5fj3r17iIyMRFJSEuzs7ODu7o7u3bs365x+3aqqqpo9JCA/Px82NjZcudja2rrZ1qJnz541C9n8/HyYm5s3Kxnr6ur+hREUADgP4CSAegAyADwABEAZgDaAcQA+AvBmd48zzHMsVN8Sp06dwooVK3DixAmEhobi7t27uHTpEs6dO4egoCCEhISgb9++aGhowNixY5GXlwdTU1NkZGRg6NChOHXqFNauXcutiwJAcHAw9uzZg9mzZyM5ORl37txBcHAwRo0ahYiICCxatAh1dXUAgIULF6KkpAQnTpzAyJEjIRAIsHv3bnTt2hU7d+6EsbExACA3Nxc+Pj64d+8e2rVrh/3797/wAH6FQoF9+/Zhz549UFNTw8KFCzF69Gjs3LkThw8fho6ODvz8/DB+/Pi3NlyBprLqw4cPERkZiQcPHsDMzIxrdHp+z94UtbW1SEpK4kI2JycHFhYWXMiKxWKoq6tzr6+vr2/RZdymTZtmXca/XTK+BWAFgEYAbQC86AEIDQAqAGgC2ALApdW/M8O0Nhaqb5GtW7di7969+PHHHxEQEMCVZk+dOoUvv/wSISEh6NevHxQKBaZPn4579+6hR48euH79OqZPn46QkBD4+Phg3bp1XFDdvn0bs2bNgoODA/r374+goCAMHjwY27Ztg0Qiwbx583D58mUoKytDLBZj6dKl3JNuVq1ahYsXL+LOnTuYPXs2li5dyn3uL7/8gkmTJuHp06ewtbXF8ePHYW9v3+I7KRQK7N27F3v27IG6ujoWLVoEb29v7N+/HwcOHACPx4Ovry9mzZr1Uh/t9ipIpVLEx8cjKioKd+/ehba2Nhewz5+F+yZpaGhAcnIyF7IZGRkQCARcyNra2jbbw6tQKJCVldWsAUoikTR7/J2FhQVUVSMBLEVTmffP7AGuAVAH4F8AXF/GV2WYVsNC9S2zZMkSXLlyBT///DNmzZqFiooK/PTTTzh27BjWr1+P/fv3c+uSy5cvx7lz5+Dl5YWwsDD4+vri+PHjEIvF+Pbbb7lZR1lZGfe0mrVr1yI4OBgymQyHDh2Cra0tzpw5g+XLl0OhUEAul2PhwoUAmhqfevbsidGjR2Pt2rVQUVHB1q1b8cEHH3DjPXDgAJYvX47a2loMGjQIoaGhaNu2bYvvJZPJ8PXXX3PrsUuXLsXHH3+Mw4cP4+uvv0Z9fT2mTp2KefPmNZstva2ICGlpadyRiRKJhAtYe3v7N6LR6X81NjYiNTWVC9m0tDSYmJhwIWtvb9+iY/jZs2fNTn9qbEyFv38c+Hw9aGq2hba29p9cl61BU3n4FIA3a4bPML/GQvUto1AoMH78eDx9+hTh4eHw9vYGj8fDhQsXcPToUaxbtw579+7FoEGDADTNbnft2oWJEyfi6NGj+PTTT7l/xMPCwrgSpEKhwLp16xAaGoply5bhyZMnOHv2LFasWAFfX1+UlZXB19cXd+7cgbKyMqytrREYGIjg4GAkJydj5cqVyM7ORmhoKPr27YstW7ZwRxQ2NjZi6dKl+OabbwAAs2fPRlBQ0AuDQyaTYffu3di3bx+0tbWxdOlSjB49GmfPnsWOHTu4x9AtWbLknTpYPjc3l3v4ekFBAVxcXODu7o5u3bq9sT9EyGQypKencyGbkpICAwODZtt4/veYSqk0EI2NYaioUENNTTX8/XMxfrweXFzaQUdHG9raOlBXV8eLJ+2FACYB8HsF304OIA1AOQAFmtZ3rfDnZtbM+4yF6ltIJpNh8ODB0NLSwrFjxzBkyBC0b98eZ86cwZEjRxAQEIA9e/ZgyJAhAICjR49i9erVmDp1Kk6ePAlPT09IpVLcvXsXR44cgYvLf9eqrly5gnnz5sHNzQ3e3t5Yvnw5nJycEBISAh0dHRw5cgRr1qyBsrIyGhsbsWjRInTo0AGBgYGwsbHBihUruKBdvnw5dwgFABQXF2PSpEm4fv06dHR0sGXLFkyePPk3v+POnTtx4MAB6OvrczPX8PBwfPXVV8jOzoa3tzc+//zzN/Z84b+rtLQUd+/eRWRkJFJTU+Ho6Ah3d3e4ublBT0/vdQ/vN8nlcmRkZHD7ZJOSkqCvr8897s7RUYh27T4FoA+g6QeqadNiMXNmR4hESqipqUZ1dQ0UCjm0tZsCVkdHG1paWv9ZVpCgaZ31MoCX9YNGBYAIAN8CKMN/G6eU/vPLC4A3ANFLuj7ztmOh+paqqqpC37594ezsjKCgIAwcOBA2NjY4fPgwF6y7d+/G0KFDATTtKf3ss8/g4+ODy5cvw8jICG5ubjh06BA2bdqEsWPHcp9dWFiICRMmoKKiAlu3bkVQUBBycnKwd+9efPDBB8jPz8esWbMQFxcHHo8HS0tLbNmyBdu3b8e///1v+Pn5wdTUFIGBgTAyMsLOnTubrafGxMRgwoQJSE9Ph0AgwLfffgsPD48Xfs/Gxkbs2rULISEhaNOmDZYtW4ZRo0bhxo0b2LRpE1JSUjBixAisXLkSRkZGL/emvwa1tbXcs2FjYmIgEom4MrGhoeHrHt7ver7G+rzDWF09Al5eySAygI6OLg4dKsPt25Xg85XA4ynBx8cY6em1iI+vRF1dI4yMePj4Y3Xo60uhqakJbW0dtG0rgZLSRmhpeb2EEf8IYD2ayswvWu+VoiloCcAwACsBvFmPOmTeAMS8tXJyckgsFlNgYCAVFRWRk5MTzZkzh4iIjhw5QkKhkC5evMi9Pjo6mqysrMjPz48GDBhA7u7uFBISQubm5hQYGNjss+VyOfn7+5NQKKSDBw9ScHAwCQQCCggIILlcTkREe/bsIYFAQGKxmAQCAW3bto1++ukncnJyIk9PT7p37x4tXLiQBAIBLV68mOrr65td4+TJk2RoaEiqqqrUq1cvys7O/s3vKpFIKCgoiKytralHjx70/fffc9/Jy8uLBAIBTZ8+nbKyslrl3r6JJBIJ3bt3j3bu3Enjx48nPz8/OnbsGD158oQUCsXrHt4fUijWUUNDFyosdKP0dFt6+NCERo7UpAsXzKmoyI3q6vrTpUvdqa5uCDU2DqX9+x3Jz09IMtlQqqzsRbm53Sg3tyOFhHSjmTNncn/fcnJyWuH7nyCibkTUn4iG/8GvoUTkTETziEjyD6/LvGtYqL7lYmNjSSQSUUhICGVnZ5OtrS0tX76ciIiOHj3aIljT0tLI0dGRxo8fTxMnTiQ7OzsKCwsjOzs7Gj9+PEkkzf+RuHjxIllaWtKMGTPozp075OTkRP3796e8vDwiIsrKyqJ+/fqRUCgkc3Nz6tevHyUlJdHixYtJIBDQihUr6MGDB/Thhx+Svb09nT17ttnny+VyWr16NWlra5O6ujpNmTKFampqfvP71tfX08aNG8nKyoo8PT2575aQkECffvopmZmZ0bhx4ygpKalV7u+bSi6XU2JiIn3zzTc0Y8YMmjZtGh04cIDi4+NJJpO97uH9Bn8i6kHPw0mhGE6TJxvT1asO9PixHcXEdKJbt/RJIhlERMOppmYwDR9uQDU1g+m/gdadFIoNlJmZSeHh4bRlyxaaPn06ffrppxQYGEjfffcdxcfHt/h7/PtuUFNIDqRfh2dR0QAaPtyAZLJh1DJYh1FTCK9tnVvDvDNYqL4DLl++TEKhkMLDwyklJYWsrKxow4YNRER0/PhxEgqFdP78ee71BQUF1L17dxo6dCitWLGCRCIRfffdd9SzZ0/q2bMnFRUVNfv87Oxs6tmzJ7m7u1NcXBxNmjSJLC0tuYCUy+X01VdfkZmZGTk6OnKz1gcPHlCPHj2oa9eudPXqVdq3bx9ZWlrSyJEjW8xKy8vLydvbm9TV1UlXV5eCgoK4GfGL1NfX0/r168nKyop69uxJ4eHhRESUkZFB06ZNI4FAQKNGjaL79++3yj1+kykUCsrMzKQTJ07QggULaNy4cbRt2zaKior6i+HysgUQkTv9OpymTetEMTE9iWg4yeXDaMuWTvTJJ7r0yScdaexYYxo+3IDy8389e3Qhoh0tPrm0tJRu375NBw4coEWLFtHHH39MS5YsoZCQEPrll1+ovLz8N8akIKKPiKh3i/H8fqg+n7G6ENFvV1iY9w8L1XdEaGgomZub0/379+nhw4ckEolo586dRNRUZhUKhc1midXV1dS/f3/y9PSk7du3k0AgoL1799K4cePIzs6OYmJimn2+XC6n+fPnk0gkopMnT9Lhw4dJJBLR3LlzuX+4U1JSyNPTkywsLMjCwoL69etHjx8/po0bN5JQKKQZM2bQ06dPacqUKSQUCmndunUtgjM1NZVcXFxIVVWVTExMms2yX6S+vp7WrVtHlpaW1Lt3b/rpp5+IiCgvL4/mzZtHAoGAhgwZQrdu3frH9/htUVRURBcuXKCVK1fSmDFjaMOGDXT16lWqqqp6zSMLpaYQenGoXrvmTr6+ZvTvf5tRfr4LN1NtHqrORHTmD6/U0NBAcXFxdOrUKVqzZg2NHTuWZs6cSVu3bqWIiAjKzs7+T8n4wX/GNKzFeP44VJ+H/LZWvUvM242F6jvkyy+/JBsbG8rKyqJbt26RUCik0NBQIiI6depUi2CVSCTk7e1NXbt2pW+//ZZEIhGtWbOGAgICyNzcvEWplogoLCyMRCIRzZs3j1JSUuiDDz6g7t27c+VWuVxOAQEB1KlTJ+rSpQsJhULatm0bPX78mAYPHkxisZjCwsLo1q1b5OrqSs7OznT9+vUW1wkPD6dOnTqRqqoqdevWjRITE3/3u9fW1lJAQABZWlrShx9+SJcvXyaiphmMv78/iUQi6tOnDzejfV9UVVXR1atXacOGDTRmzBhauXIlXbhwgYqLi1/DaPKJyJWaZnhNobRkiYgiItyIaDj9+KMr+fkJqbS0D92505G2b7f5n1AdTETdiajsL19ZoVBQVlYWRURE0JYtW2jGjBnk4+NDt2/3oGfPLKmysjdt3iymESMMafRoI/L27kinTzvT8OEGFBHhRpMmmdLEiSZ09qwzNQ/VgUTkSUR1rXGDmHcAC9V3zJw5c6hbt25UXl5OERERJBQK6cyZpp/sw8LCSCgUUlhYGPd6uVxOc+bM4cLO1taWpkyZwpWNN23a1OIajx8/Jnd3d/L09KTMzExavHgxCYVC2rt3L/eamJgYcnV1JbFYTJaWltSvXz/KyMiggwcPkqWlJY0ePZpyc3O5WezEiROppKSk2XXkcjlt3ryZ9PT0SE1Njby8vFq85n/V1tbSmjVryMLCgvr06UM///wzETXNzAMCAsjKyop69OhBYWFhv1tefhc1NDRQVFQUbdu2jT799FNauHAhnTx5krKysl5ho9NC+nUJOCrqA5oyxZTGjjWmkye70bp1NuTt3ZE+/bQDHThgSMOG/TpUXYno/1ptJGVlZVRR0YVycuwpMVFE0dFGNGqUDoWHW1Fp6Qf09OmHNHy4AQUH21J9/RDKzOxL48YZczPZX6/zEr3ba/jMn8dC9R0jl8tp1KhR9OGHH5JEIqHTp0+TUCikS5cuERFx//3rYCUiCggIIJFIRGFhYdS9e3caPHgwXb9+ncRiMU2ZMoWkUmmz10skEpo5cyZZWlrS999/T+Hh4WRtbU1jx46l6upqIiKSSqXk7+9PnTp1IhcXF27WWlRUROPGjSORSES7d++m7OxsGj16NFlYWNDu3btbhF11dTVNnz6dNDQ0SFtbm5YtW/aHa4XV1dW0evVqEolE1K9fP242XF9fT8HBwWRra0vOzs506NCh9y5ciYhkMhnFxcXR/v37adq0aTRz5kz65ptvKCkp6SXfj+fl1qZmpN/6pVAMp7Q0G8rOdqL/zghdqXXDS0FN5eSm8q5cPpQmTDCiS5fElJpqTZcvG1LPnmp086YFN66DB51oxw77/xmvOxHda8VxMW8zFqrvoPr6eurVqxd5e3uTXC6nQ4cOkbm5Od2+fZuIiM6ePUtCoZBOnjzZ7H179uwhoVBIR44coaFDh5Krqyvdv3+fPDw8qE+fPlRaWtriWocPHyahUEjLli2jgoICGjp0KDk4OHDXIiK6c+cOdenShRwdHcnKyoqbtV68eJHs7e2pb9++lJKSQhcvXiRHR0fq2bNnizVdoqaGqd69e5Oamhq1b9+eDh069If3orq6mlauXEkikYj69+9PN27cIKKmwN+9ezd17tyZHB0dadeuXS1+cHhfKBQKevLkCR09epTmzZtH48ePp507d1J0dPRLanT6hpo6Z38/WKXSwRQTY0qVlR7/ef2plzAWNyIawl3z12uqhYUDaPDgtnT7tiFJJE2dwT/84Epr1lhRy1Bt+feVeT+xUH1HlZWVUZcuXcjPz4+IiHbu3EkWFhZcWH3//fcvDNbnJeLdu3fTjBkzSCwWU1RUFHl7e5OjoyMlJCS0uFZSUhI5OztT3759KTc394V7Wuvr6+mzzz4jMzMz8vDw4Gat1dXVXEPRmjVrqLa2lvz9/UkgENC8efO4We+v3bhxg6ysrEhVVZWsra3pl19++cP7UV1dTZ9//jmJRCIaOHAg17gkl8spNDSUXFxcyNbWljZt2tRiP+37pqCggM6dO0fLly+nsWPH0qZNm+jf//737251+msURHSAmmaJPejXa6z/211bXd2ZMjLaUV3dN/95X2sbSkT96EWh+rxR6e5dW8rIcCCi4XTo0P/OVIdR0ww68yWMjXkbsVB9h2VkZJC1tTUFBQUREdG6devI2tqaUlJSiIjowoULJBQK6ejRo83ed/36dRKJRBQQEEDr1q0jc3NzunjxIhdKP/zwQ4tr1dfX06RJk8jKyoouX75M0dHR5OTkRAMGDOD2tBIR/fzzz2Rvb0/dunUja2trbtYaFRVFrq6u5OrqSlFRUZSSkkIDBgwgsVjcIviJmsJw//791L59e1JTU6O+ffv+7uERz1VWVpK/vz+Zm5vToEGDuBm1XC6n06dPk6enJ1lZWdEXX3zxwkB/31RUVNDly5cpMDCQPvnkE/riiy/oxx9/pGfPnrXCp0cR0SxqKge7ENEHRNTrP//7/Pc+o7NnV9PGjRtf0rrvAfp1R/KvG6eeh2pQkA1FRnak1FRPGj/ehB4+/PWaai8i8qaXE/jM24iF6jsuOjqazM3NueD09/cnOzs7LoAuXrzIlXx/7dGjRyQWi2nOnDl06NAhbstNaGgoCYVC2rp16wuvt3fvXhIKhfR///d/VF1dze1pPXfuHPea6upqmjp1KgmFQurVqxc3a5VKpRQQEEACgYDmzp1LtbW1FBoaSlZWVjRkyBB6/Phxi+vV19fTwoULSUtLizQ0NGjGjBl/KgzLy8tp2bJlJBQKafDgwRQVFcX9WUREBPXr149EIhEtWbLkD5uj3hf19fX0yy+/0JYtW8jHx4eWLFlCYWFh9PTp03/4yVlE9C8iWkBE06mpmWkPEeUSUdP6/bx587ims9ZVRE0zzaYS8K8bp86e/W/3r7d3Wxo5Uo9On/7f7l9XImr5Qybz/mKh+h54HpxXr14lIiJfX19ycnLiDnkIDw8noVBIhw8fbva+rKws6tKlC33yySf0008/kYWFBa1YsYJu3bpFVlZW5Ovr+8KmlpiYGHJycqLBgwdTSUkJt4f2s88+a7ZG9/3335NYLCYPDw8Si8XcrDUlJYX69u1L9vb2dPHiRaqsrCRfX18SCAS0evXqF659Pl/PVVdXJ319fdq8efOfargpLy/nupeHDh3aLFxv3bpFQ4cOJYFAQHPmzGk2437fSaVSiomJoa+//pomT55Mvr6+FBoaSikpKS9lRpmZmUnjxo2j/Pz8Vv9soiXUFI6/vb4rkw2hBw9MqLa2369+vw8R9SSi2pcwJuZtxUL1PbFv3z4SiUQUHx9Pcrmcxo8fT66urtxJM8+D9fm+1udKS0vJ09OT+vfvT/fv3ycHBwcaP348ZWRkkKurKw0cOPCFp9VU/z975x0V1dnt4WdmaEPvvQqIWFGxYRQbIqCAEqJGgxijsSQmRsUae4mJRjR2YxJji8aoiUHFci1o7L0jCoiCNOlthpn3/oFOQiT59MYvN2WetWaxOOU9Zc6affa79/7tkhIRHR0tfH19xbFjx0RKSoqmpvXmzZua7QoKCkS/fv00Wbq/9FqXL18u6tWrJ/r16ydyc3PFqVOnRLt27USzZs00Ig+/5vz586JJkyZCT09PuLi4iISEhOe6P/n5+d/UQPoAACAASURBVGLMmDHC3d1dhIWFibNnz2rWXbhwQURFRQlXV1cRGxtbp8f8b0atVovk5GTx9ddfixEjRoiYmBixfPlyceHChZea/LVr1y4xduzY/4IMY46oqYFtJ37PsGZm+ovkZJ8n/3cTNdPGx+scUcu/F61R/Rfx4YcfCl9fX/Hw4UOhUqlEZGSk6NChgygrq3nT3rdvn0ZA/5dUVFSI0NBQ0aZNG3Ht2jUREBAgunbtKjIzM0VERITw8/MTt2/frvOYixcvFm5ubmL+/PlCqVRqvMLVq1fX2m7z5s0a4QZfX1+N15qVlSWioqKEl5eX+Pzzz4VKpRKLFi0S9erVE3379hVZWVl1Hnfr1q3CwcFB6Ovri1atWtWZYFUXubm5miYA4eHh4vz585p1t27dEgMGDBCurq6iX79+zz3mv40HDx6I7du3i3Hjxom+ffuKjz/+WCQlJYny8j8mkKBWq8XUqVPFpk2bXtKZ/pJUUWNYf54K/vVHpQoVFy86ibKyFqIma7juFzst/260RvVfxptvvilatWolSkpKRFVVlejevbvo3r27Zlr2qY7w559/Xmu/p97t0wzg8PBw0aJFC434g6enp0bF6NecOnVKNGrUSERERIiCgoI6a1qFqJHXi4iIEPXr1xfBwcEar/VpElGDBg1Ejx49NMb2qYe7aNGiOqd6lUqlmDZtmjA1NRVyuVy8+uqrzx0fzc7OFu+++65wc3MTERERtUp80tPTxdChQzXrzpzR1ij+Fvn5+WLv3r1i+vTpIjo6WsyYMUPs27fvd7R4//N4AwcOrDXb8fLIFUJMEjUG018I0UnUlP30EDWeaStRUOAtLl1qLIS48F84vpZ/Alqj+i9DpVKJ0NBQERQUJJRKpSgrKxMdOnQQkZGRGsN04MCBOr1JlUolPvjgA+Ht7S3OnDkjRowYIerXry/OnDkj1q5dqynFqYuCggIRHh4uGjduLE6fPi2ys7PrrGkVQoi1a9dqSl8aNmyo8VpLSkrE0KFDhbu7u5g/f75QqVRi3759ws/PT7Rr165WPPSX5Ofni379+gm5XC5MTEzE5MmTn7v+Mjs7W1PyExkZKS5fvlxr3ejRo4W7u7sIDg6uU25Ry8+UlZWJY8eOiY8//lj07dtXjB8/XuzYseOF46Q//fSTeOutt/6w5/vb5Akh1gsheosaof32osawzhFK5XUxZMib4urVq/+lY2v5u6M1qv9CysrKREBAgBgwYIBQqVSioKBAtGrVSvO/EEIcOnToGenBpyxYsEB4eHiIffv2iQULFgh3d3exc+dOcfjwYeHl5SXefffdOj1HlUol5s2bJ9zc3MSSJUuESqUSH3+8QAQ0cxJrPnpbqLJPCPH4shBVhSI9PV10795d+Pr6irCwsFpe69GjR0WLFi1EQECAOH/+vFAqlWLq1KnCzc1NDB06VBQVFdV53Tdu3BBt27YV+vr6ws7OTnz99dfPfc+ysrLEiBEjhJubm+jTp0+tH9WCggJNuVFgYOB/bAKgRQiFQiHOnTsnli1bJt544w0xcuRIsWHDBnHnzp3nSnRasmSJWLz4/0fI/tChQyIuLu5v0cNWy5+P1qj+S8nOzhZNmjQR48eP1/zfrFkzMXz4cM02hw8fFh4eHmLFihXP7P/FF18INzc3sWHDBk0XnKVLl4qUlBTRsmVLERoa+pulLUePHhVNG9UXc9/pKBRHokXJ9obi0seG4vpiM1G5u4UQ+9oIcWWmUD2+JuLjFwt3d3cRHh5ey2tVKBRi0qRJtRqgp6SkiNDQUFG/fv1nEq5+SUJCgnBzcxP6+vqiYcOGzyUe8ZSHDx9qMpGjoqJqxVXLyso0tcBt27YV33zzzb9SAvFFUavV4ubNm+LLL78Uw4YNE7GxsWLVqlXi8uXLv5noVFFRIYYOHfrMLMefwVO97H9DW0EtL47WqP6LuXXrlvDy8hJLltT0p0xPTxcNGzYUcXFxmm2OHDkiPDw86pzWfVqqs2jRIpGUlCS8vLzEBx98IIqKikRoaKho2bKluHv37rMHfnxJVO3tIG7Fm4pz841E4a4OovpgiLiw2FkcmmYoHm1uLsTeVkLs9Rfi7GiRcuuyCAwMFE2bNhURERG1vNarV6+Kjh07iqZNm2piut98841o0KCBCAoK0ghd/JqnCU8WFhbCwMBABAUFibS0tOe+dw8fPtTEVaOjo2s1Ra+qqhKLFi3SiFw8TbDS8p9Rq9Xi/v37YuvWrWLMmDGif//+YtGiReLEiRPPKF09TRz7/6gjPnHihHjvvfe03qqWZ9Aa1X85T1vEPRXYf9rkfPbs2bW2qVevnvjss8+e2f/UqVPCy8tLxMXFieTkZNG0aVMRHR0tKioqxDvvvCO8vLzEkSNHft4h96QQ+1oLsb+jUB8OEzdXeYuDH8pF2vomQhzuKe5vaCYOfigXVz5zF6pDITWG9Xh/oaosFHPnztUYsUaNGmm81qcG0t3dXcTExIiCggJRUlKiSTSKi4v7TenBkpIS8dZbbwkjIyNhZGQkhg8f/kJKShkZGeKtt94Srq6uom/fvrWMuEqlEqtWrRJ+fn6icePGIj4+/i/WNPyvT25urkhISBBTp04V0dHRYvbs2eLAgQOaKf4tW7aIKVOm/OnGTa1Wi/fee++FZjm0/DvQGlUtGr3fp3q4Fy9eFJ6enpom50L8bFh/uewpt27dEo0aNRKxsbEiOztbdOzYUQQGBorHjx+LZcuW/ZxNXHxHiMR2QhzoLMThnppP9rY24tA0I3FhsbOoPhQqShM6i+NzLUTSHHNR8mOnGsN6ergQqmpx9epV0bZtW9GiRQsRFRVVy2tNT08X4eHhwtvbW6MgdfHiRdGhQwfRpEmT34113rt3T3Tp0kXI5XJhaWn5mxnFv0V6eroYPHiwptzmlyVGKpVKbNy4UbRp00Y0aNBAzJkzR1PGpOX5KSkpEYcPHxbz588Xffv2FRMnThQ7duwQI0eOrLP373+bc+fOiREjRmhnIbTUQmtUtQghagT3vby8NJ7W8ePHhYeHR63Y5PHjx0W9evVEfHy8EKJGx/dpTPbhw4fC399fhIeHi4KCAhEVFSWaNWsmUlJSxP79+4Wnp6c4/GlLod7bqpZBffqp2NdN/DTfShybbSZKdncS6sNh4tryek+82MZC7G0pRG5Ndq9KpdLEU994441aXqsQQmzcuFF4e3uL8PBwkZGRIVQqlVi+fLnw9PQUffr0+V1ZvSNHjggfHx9hYGAg3N3d69Q5/j3S09NFbGyscHV1FQMGDHhGKGLXrl2iY8eOwsvLS0yePPk3k6q0/D5VVVXizJkzYsmSJSIqKkrUr19fLF68WNy7d+9P81rVarWIi4vTKJVp0SKEEBIhhECLFmDChAns3buXgwcPYmtry4EDBxg2bBiffPIJr776KgAnT55k4MCBjBo1imbNmpGYmMjHH38MQHFxMZGRkajVanbs2MHs2bNJSEjgq6++wtYUKhO7USlMaN68JTKZ7JnjCwQ3b94kKysLHx8fnJ2cycnN4dq16zjbGODeMhq9dis12589e5bhw4ejp6eHm5sbp0+f5r333mP06NEUFxczYsQIEhMT8fT0xMPDAzs7O+7fv8+VK1d4++23iYuLQyqVPnMearWaL774gilTplBcXIyfnx9r166lcePGz30vU1NTmTFjBkeOHCEwMJDp06fj6empWX/gwAEWLlxIcnIykZGRTJo0CVtb2+ceX8vPqNVqvvrqKzZs2ICHhwcSiYR27drRtm1bGjZsWOd3/McoAQ4AeygqSuXu3RT8/AKRSrsDoYDlSz6elr8TWqOqRYNarSYmJoZ79+5x8OBBDA0N+e677xg3bhwrVqwgJCQEgNOnT/P6668TFBSEqampxqgCVFZW0r9/fzIyMti1axfbt29nyZIlbJvfneYmZzl3LQOlshr/li2Ry+V1nsejR4+4cfMG1tbWNG7cGKVSyeVLl5BLS6ho9Q2tAyM02yoUCuLi4vj+++/p1q0bJ0+exN7enrVr1yKXy1m1ahXbtm3D2tqaAQMGcPToUWJjY5k8eTJSqZRPP/2UV155pc7zqKysZMqUKaxduxaVSkV4eDhLlix5IeN39+5dZs6cydGjR+nUqROzZs3Czc1Ns/706dPMmzePy5cv06NHD6ZOnYqzs/Nzj6+lBiEEn3zyCWZmZgQHB3Pq1ClOnjxJXl4erVu3pm3btjRv3hw9Pb0/cJR8YA2wG6gGDABd7t69h7m5MVZWBoAU6A4MB5z+6GVp+RuiNapaalFdXU1YWBg6Ojrs3r0bqVTK+vXrmTZtGsHBwZSVlSGEwNXVla+//pr69esTExPD/v37MTIyYuTIkTRv3pzhw4eTmJhI27ZtuX//Poal54gNsmJguD9Xr17lzPVcDiWb8GqgCzuPP0IqgZGR7ujIJKz98T4FJVU0diilS2M9mjf340G+msWbzrP3ohILhwYMGzaMYcOGoaOjA8CRI0cYPXo0lpaWODk58dNPP2m8VoVCweTJk9mxYwdyuZydO3dSv3595s2bx7p16+jUqROLFy/G3Ny8znuSmZnJiBEjOHjwILq6uowaNYrp06e/0A/03bt3mT59OklJSXTp0oWZM2fi6uqqWX/lyhXmzJnD6dOn6dSpE1OnTsXb2/uPfZn/MkpLSxk9ejSjRo2iZcuWAOTk5HD69GlOnjzJ3bt38fPzo23btvj7+2NiYvICo6cDI4AcwBrQ/cVxy0hJuUPTpk2RStVAHmAMLAMavaSr0/K34f9v5lnLX5WSkhLRqlUrMXjwYCFETQyzY8eOwtraWpw6dUpUVVWJ69evi+XLlwtDQ0Px5ptvCpVKJRISEkRMTIwmphUbGyvc3d3FsWPHxPH4liKwoVTsme4k1IfDRMLMeqJdfalYNspNKA+Gim8m+4hAX8ToMBNxa20jcWWtv4h8xVYcnusiDn5oKI5/2kjcWttY3Dq4QDRs2FA4Ozs/o1FcVlYmhg4dKjw8PMTo0aNF48aNa8Vad+7cKSwtLUWzZs3E0aNHhRA1MdCIiAjh5eUlVq1a9btJJ2fOnBHNmzcXcrlcODg4iPXr179w/C45OVn0799fuLq6isGDBz/TAzY5OVnExMQIV1dXER0dXUseUct/5sqVKyImJkYUFhY+s66oqEgcPHhQzJkzR7z22mtiypQpYvfu3c9RkpMthOgufk9wPznZR2Rm+v9iWYcnnzpKyrT8o5HNmDFjxv+3Ydfy10JPT4+wsDDmzZvHo0ePcHJy4tKlS4SFhTFjxgxCQkLw9fWluLiY/Px8zp49S0VFBa+//jrr168nJCQEuVxOZGQkMpmMuLg4Poi0IL9EkJefj4HIx9zGnZM3iglrXISqWomfrwtf7EklqKECibKQsqI8ziWXYqJXhb2FLqWFjzDTK0Vh0Z7X357BiRMn2LRpEz4+PjRo0AAAXV1devXqRf369Vm5ciUuLi7Y2dkxe/ZsFAoFFy5cYOTIkTg7OzN16lRu3LhBZGQkMTExuLi48NFHH7F9+3ZatmyJnZ3dM/fFycmJt99+m3r16nHw4EG2bdvG1q1badq0aS2v8/ewsrIiKiqK0NBQDh48yKxZs7hx4wYtWrTA1NQUKysrevfuTXR0NOfOnWPOnDkcOnQIDw8PXFxcXur3/E/Ezs6OoqIiDh48SIcOHZBIJJp1+vr61KtXj44dOxIeHo6pqSlXrlzh888/5/jx4xQXF2NiYoKpqWmt/WA8kArY/OZxDQ0NSU1Nw9bW9kkM1wAoB04CrwGS39xXyz+Llx3B1/IPwdHRkW3btrF582bWrVuHra0tH374Ib1796Z3797cv38fAG9vb7Zu3cq6detYuHAhUBOLBDh//jzp6ek4OjoS9eEZztx8jIOLF9XV1Vy5cgULMzlt27QmOzub5Ns3sLaywspUF7VajaGhIUaG+siNzbG3twd9S+J3lxH8+oe0atWKS5cuIYRg4MCBtG/fnu+++47z58+TlZVF9+7dOXXqFNbW1pw8eZKoqCg++eQTDh48SOvWrZk4cSKHDh0iIyODVq1a8d1339G7d2/OnTtHixYt6NWrF2PGjKGioqLOe9O/f3/u3bvHhAkTePDgAcHBwYSGhpKWlvbc99fHx4ctW7awb98+ioqKeOWVVxg2bBiZmZkAODs7s3LlSs6cOYO3tzcDBgyge/fuHDp06A98q/8OBg4cSG5uLomJib+5jb6+Pm3btuX9999nw4YNDB48mMLCQmbMmMHbb7/NF198wc2bNxEiFThLzZRvDUOGXObSpaJa48nlcszMzHj0KPsXSy2A+8CFl3l5Wv7iaI2qlt+kcePGrF27ls2bN3Pp0iVUKhULFiygU6dOhIeHU1BQAECLFi349ttv+eqrr7hz5w4ASqWSefPm0bt3b44ePcryxbPxtKokNzeXNm3aoK+vT25uzpNMzQAUCgVFRcU0bNgQPT19ysvLEUIgkUgoKytl91kFTXycCI3oi5WVFWFhYTRt2pSQkBCuXr3KoEGDGDp0KNHR0QQGBjJ8+HC8vb3p2rUrq1evxszMjObNm9O5c2fi4+Nxd3dn7969jBs3jokTJ/Lqq69SWFjIokWLSEhI4MqVK/j7+7N9+/Y6742enh4zZszgzp07REZGcuzYMZo2bcqoUaMoLS197nvs6+vLtm3bSEhIoKCggICAAIYPH64xrra2tnz66adcunSJNm3aMHz4cAIDA9m5c+cf/Hb/uejo6DBu3Di+/vprHj58+B+3l8lkNG3alGHDhrFu3TomTpyIvr4+K1asYNOmaLKzcygsLEatVv/uOE5OjmRnP6K6uvrJEgkgA7b84WvS8vdBO/2r5Xfx8PDA1taWdevWUVFRQUBAAMHBwSQmJrJ9+3bc3NwICQnB3t6ejh07Eh8fT3V1NYGBgWzdupWwsDDs7OzIKtRh9/ffYqZbgp1xJVb2nhy/ko+zwQPMzS3w9PRm4/50vC0L8HR3RKGo4tTtKpytpDRwt+TUrVJKhTUVeu64urry/fffY25uzr59+4iLiyMrK4tz587RsWNH2rZty+PHj7l48SKXLl3CxMSEsrIyrl69iqWlJfv27ePzzz9HpVLh6+tLdHQ0J0+eZO7cuejp6dGjRw9iY2MxMDBg1qxZ7N+/n/bt29eZyGRoaEhUVBTh4eGcOXOGvXv3smLFCvT09GjduvWvphF/G1tbW1577TW6detGQkICc+bMITk5mZYtW2JsbIy+vj5dunRh4MCBFBUV8emnn7JhwwbkcjmNGzf++TglJfDjj7BsGWzaBDt2wLFjIJGAszM8Sez6p2NmZoZcLmfjxo1069btuctqJBIJFhYWNG3alNDQEHx81lFZqU9OTj4ZGQ9YtiyD5ORKfvqpkO3bHyGT1dz3jz++y9dfZ3H0aDlClNOkydOpYgPgJtAP0P9vXKqWvxja7F8tz8X06dNZvnw5AQEBGBsb07FjRzZu3EhaWhrJyckYGhoCEBgYSEZGBjExMbRq1YotW7ZQXV1N69atqc46hrXyHJ6WRTwqkbPnqj4z+5tz9+5dvLx9eGdlJlOjTSl5/BBTUxM+SyilpYegeytr0jOLWXu5FeVKGUqlkry8PO7du0fjxo3ZtWsXdnZ27N27l/fff58WLVqwdu1aUlJSGDt2LEqlkoqKCjIzM8nOzsbCwgITExNyc3Np1KgRPj4+lJaWkpeXx/Xr17G0tGTUqFH4+/tjbGxMfHw8R44cITY2lilTpmgyjuvihx9+YMyYMWRlZeHk5MTixYvp2bPnC9/vK1euMGPGDC5cuEBYWBjTp09HrVYzYMAAFi5cSKNGjVi5ciWff/45Ojo6jOnfn4EKBdKEBKiuBgODnw2oQgFKZc2y6GgYNAhMTf9Pz8HfCSEEs2fPxt3dnZiYmP/DCOVAR8ABqJl9KSwsZMSIm/Tpo0fLlhYolUZMn57Fe+/VIyDAgqKiSk6cuEaPHs3R03uaIZwLfAtoY+L/BrRGVctzM3r0aJKSkjh06BCWlpYoFAp69eqFEIIff/xRU2Jy7do1+vTpQ79+/Zg1a9bPA1SXwem3UBTc5szlNHR0dGjl709efh7Xrl3D1dUNby8vsh494vr1a+jq6mJlYYasOp9bhHDgjh1OTk6MHDkSHR0dEhISmDp1Kvn5+UyaNIn33nuPoqIiYmNjycjIYPXq1QQEBNS6hszMTGJjY0lJSaF9+/YcPHgQHR0dGjZsiIODA4aGhpw+fZqUlBSaNm1K48aNyc7OpqqqikuXLiGTyXjrrbcICQnB0dEROzu7Z4ysWq1m8eLFzJ8/n4qKClq0aMHy5ctp2rTpC9/zS5cuMXPmTC5evIijoyN5eXm4u7vzzTffYGlpWSO0MX8+LgsWYKRUYujmhpunJ7K6PLOqKsjPBzc3WL4cHBxe+Hz+bhQWFjJ69Gji4uJeSLyjhiIgCKidtDZkyGVGjnTFw0Pw5Zd3uHevimXLOvJ0suD+/fsIIX5Rj5wHbAC8/tC1aPl7oDWqWp4btVpN3759ycnJITExEQMDA8rLywkJCcHCwoIdO3ZoptmuX79Onz59iI6OZs6cOT8PUpkH50ahKrrD+ev3USjVtGrlT0VFBRcvXsTKyoomTZpQXFzC9cunMTEQ3CWQj3eW0KNHCC4uLhw6dIghQ4bQqVMnACZOnMjq1atxcXFh9OjRhIaGsmnTJlasWMGQIUOYMmXKM9N/K1as4JNPPqFLly5IJBIOHjzIoEGD6Ny5M+np6Rw7dozvv/8etVpNSEgITZs2RS6Xc+TIEY4ePYqTkxNNmjShvLwcAwMDDA0NadeuHU5OTjg5OeHo6Iiuri5xcXFs2bIFI5WKNzt0YNyIEVhYW4OFBTRoAM85LZmYmEi/fv2orKzE1NSUXr16sWbNGqQZGTBoEKK6msyKClJTU1EoFDg7OVGvXr26veq8PLC2hq+/rjmPfzhnz55l1apVLF26FCMjoxfYUwm0pcZT/Xkaf8iQy7z7rjt+fmasWJFGbm4W773nqwkPKJVKrl69SqNGjdDX16emtnUXTz1eLf9stEZVywuhUCjo0aMHZmZmfPfdd0ilUoqLiwkKCsLLy4sNGzY8Y1ijoqKYN2/ez4MoS+F2POoHP3Lv7h0eF1fRuFlLJMi4ePE8FsZS6nt7Ui0zZ9TSm+y/KmPw4MEkJSXh5+dHTEwM69atw8bGhq5duxIfH09BQQFnzpxBIpFgYmKCmZkZcXFxfPrpp9jb2/Pll1/i6OhY61pSU1MZMmQI+fn5DBo0iC+//BI7OzvWrl2Lh4cHarWaKVOmsH79elq0aEHnzp158OABycnJ3Lx5k8LCQkJCQkhNTeXx48fExcVRVlZGZmYmDx8+pLysDD+5HP/UVBwuXqSishKpRIKdvT0uTk5Ira0hJgZCQsDM7Hfv+/z58/nqq6+QyWRkZmZSVlZG78hINldXo5OdDVZWmm2zs7O5e+8eHxUVMcTentBGjdDV1a09YHY2tG8Pixf/sQfib8LKlSspKytj3LhxL7jna0A28PN0+S+N6rffZnL5cj59+1Irtv3gwQMUCiX16tkDamA/8O+IZ//b0RpVLS9MYWEhXbt2pU2bNqxYsQKoUa4JDg6mTZs2rFq1SrPtzZs3NWU48+fPrz2Qogj1w71c+XEq1aWZ+PrUQ9/Iih+OpZJw3Yy5KxMxM7fA39+fwsJC+vfvz61bt7Czs2PGjBkkJSWxZ88eYmNj6dq1K2VlZcTGxnL9+nXefvtt7t+/T35+PmlpaTx48IBPP/2UiIiIWqegVqtZuHAhK1eupGfPnlRWVnLw4EGNGpNUKuX27duMGDGCnJwcPv74Y4KDg8nKymLz5s189NFHlJaWYmhoiK2tLeHh4Xh4eODp5ITfrl2YnjtHtUpFqb4+eQUFZGZlUa1UIpVKcTQ3x87QEB1DQx4NH45RRASOjo4YGBjUOkchBJ06dcLV1ZXw8HAMDAxITk6mLCmJAUlJyN3dsbO3f2bKNy8/n7spKZSWlmJnZ4e3t/cTzwlQqyE3F3btgl+9bPwTqaqq4v3336dfv34EBga+wJ4JwEx+OQU8btwNunWzpkcPW3Jzqxg58hoREVK6dnXE2NiK3NwqXF0NuHLlMo0a2aCv/y4w5CVfkZa/KlqjquX/xP379wkODmbgwIFMmTJFsywkJISwsLBaesC3b98mMjKS8PBwFixYUOd4c+bM4csvv2TNmjUEBgYyZMgQzp8/z9atW3FwcKBLly7k5OQQGhpKUVERurq6TJ8+HV1dXZYsWYKFhQXvvPMO1tbWLFq0iM8++4xRo0YRGRlJQkICW7ZsISUlhZCQEL788stnPLcbN24wdOhQqqqqiI2NZfXq1c94ratWrWLRokW0adOGpUuXolKp6NWrF9nZ2eTk5GBkZMS8efNwsrLCfeFCTO/dI1sqRVdXF7mhIYaGhhjK5eTn53MvNZXq6moMDAxws7XFSKHgxyZN2GdkhLGxca1pZDMzM95//3309PRwcHBg/vz5NfHBuDiqDh4ko7KS4uJiHOztsbWze8a4FhYWcufOHYqKi7Gxtsa7fn0M5XJ49AjefBNGjHjJT8dfk6dSkZ9++ukL6DeXU6PlawTU5AycPl3AqlXpVFSo6dvXgfr1jVm9+h63buXh6GjJG2+40LWrNZmZD4A8HB3PA9pmCf8WtCU1Wv5PmJmZERAQwKRJkzA3N8fPzw8zMzO6d+/O9OnTKSoqomPHjgBYW1sTFBTEzJkzSU9Pp3v37s+M17FjR4yMjBg/fjxOTk5MnTqVrKwsJk+eTMuWLXnjjTc4deoU586dw9bWFrlczqFDh2jSpAmDBw8mNzeXJUuWYGxszMCBA2nbti2zZs3i4sWLzJw5k0GDBmFlZcUXX3xBfHw8lpaWNGrUSNMtx8bGhsGDB5OZmcnKlSvp3bs3crmc6dOnSXEGaAAAIABJREFUA9CmTRtat25NdHQ0u3fvZt68eSgUCiorK9HT08PAwIDHjx9z8MAB5kml1Hv0CDMfHxwcHTEzN0dPVxelUklRcTHl5eXo6+sjlUopLy8nv6gIpVRKN2DARx/xSr9+uLq6oqOjQ3Z2NocPH+bs2bOUlpby4MEDvv76a5SPH9PhyBF0bG2xtLLCzNycx/n5ZNy/DxIJhoaGDL1yBTe5HHdzc5ycnLCxsSE3L487yckUFhVhamWF3q1bEBv7Yl9+eTkcOQLHj9d8kpOhsLAm8amO7kN/FSwtLRFC8N1332li6f8ZXWrK+Y9QY1glODvLiYy059VXHfD1NcHWVp+QEHsCAgTdu5vh52cPCAwNS9m3zxBDw95Y/Ati11pq0BpVLf9nHBwcqF+/PuPHj6dRo0Z4enpiZWVFhw4dmDx5MhKJhDZt2gA1hjU4OJiZM2eSmppKcHDwM+O1aNECNzc3xo8fj0wmY+LEiRpD26BBAwICAmo61ly+TEVFBY6Ojpw4cQIDAwP69OlDy5Yt2bRpEydOnKBHjx4MGzaMb7/9lsWLF/PKK68QERHB+++/z+XLl1m+fDk//PADMpkMe3t7TExMkEgkdO7cmY4dO/LZZ5/x+PFj3n33XVatWsXOnTvp0KEDrq6u9O3bF0dHRz777DOMjIxYt24dEyZMYOTIkXRycMB49WrydXQwNjFBR0cHXR0d5HK5RobQ3t4eOzs7rK2sMDMzo6ysjMKSEvJzcri5bRvbAZVKhb29Pa1bt6asrIykpCScnJwwMTGhbdu2hPr54XnxIhgbAzUSjZaWlpiZmZH/xLgmFhbSzNAQ9yfxWn19fRwdHLCzs6OgoIDku3cReXlkdO2KvVNNR5UDBw5QUVFRtyd3/z6sWweTJ8OBA3DyJFy5UvP34EHYtq2mdMfZGV4oIejPo0GDBhw+fJiCggIaNXpesftmQBY1ykhyfkszx8jIiLS0VKysLJDJcpFK25OWFkti4sEXnHLW8ndGa1S1/CG8vb0xMTFhwoQJBAYGYm9vj729Pa1atWL8+PGYmprSvHlzoEb3NiQkhFmzZpGSkkKPHj2eGc/X1xd/f38mTZpEbm4u48aNw8fHhwkTJuDo6Ii5uTkdOnTgxo0bJCcn4+bmRkpKCjk5OXTu3JmgoCAKCgqIj4/HwsKCqVOnUlBQwMSJE9HR0aFdu3ZERUXRrFkztm/fzs2bNzl16hTXr1/HyMgIBwcHHB0defPNN7l9+zarV69m4MCByGQyjdfaunVrGjVqRGxsLCdPnmTatGkolUq6dOlCvf37MXv0iAqZjNTUVCQSCUZGRs94RVKpFH19fczMzHB3d8faxoacwkLMS0tZcekSj2UySkpKWL58OatWraKwsBCJREJAQABRUVF0qF8f2e7dlAMlJSUUFhaSl5fH44ICyp7U3B6uqMAsOxsjhQIhBLq6uujo6KCnp4e9vT2Ojo6U5+YStWMHew4exMbGhlmzZnHgwAHCwsI0tccAJCbCO+/A1as1Na5mZjV/jY3BxKTmr0oFJ07A999Ds2Z/yZIdiURCs2bNWLJkCU2aNMHqFwlev7MXNfWqVcApoIwaIYfaXrmODshkhVRU5GJsHA3MxcPDhw0bNtCgQQOsra1/PbCWfyDamKqWl8KsWbPYsmULiYmJGnH5upqcQ01sq1evXgQFBbFkyZI6x7t+/TrR0dG0b9+e1atXc+3aNfr160fz5s3R1dXlrbfeIj4+nlOnTtGhQwccHR2xtrZm7Nix6OnpkZGRQXx8PAYGBrz77rvcuHFD05Zu3bp1GBoakpOTQ2xsLPfv3+ftt98mNTWVoqIiQkJC6N69O6amphw/fpx33nkHS0tLBg0axMKFC2vFWqGm7dwHH3yAlZ4eu8rLMXJyAh0dKiorSU9Lo7q6mo8rK+nl6Mjh/HweK5W0NTdnpLs7er9OLrpxg425uUyurkZHRwcjIyOkUim5ubkYGRlRXl5OdXU19fT02CYEZXI5crkcQ0NDZDIZxSUlPM7PR6FUskQIwiUSvHV0cHZyQqFUoqujg7m5OWbm5pgYGSF59IjHe/cy/5NPWL16NSqVCgcHBwIDA1m1alVN7DkhAaZNqym/+Y0euLUoKYHKSli5Ep68UP3VSEpKYtOmTZpn5Pm5A3wH/ACogKc/nzUvTQpFJ6ZNu87w4Z/h7l7zfBw4cIAjR44wd+7cl3cBWv6yaD1VLS+FwMBArly5Qnx8PP369UNfXx9PT0/c3Nw03ubT/qCWlpaEhoYyZ84cbt26RWho6DPj2draEhERQXx8PImJiQwfPpxXX32VlStXUlxczK1bt1i6dCkVFRVs374duVyOo6Mje/bsoU2bNtja2tKtWzeKi4tZvHgxPj4+TJ06lc2bN7Ns2TLat2+Ph4cH/fv3p7S0lKVLl9K+fXuGDRvGhQsXWLlyJRkZGfj5+TF27FguXLjA559/zrBhwwCYNm0aUOO1enh4MHjwYIpPnsToyBEeK5VYWVmhp6uLlbU1OjIZ396/T1ppKXMbNiTK0ZGE7GweVVZSX1eX0tJSioqKyM/Pp0KpxF1PjxXFxVRUVFBaWkpZWRkqlQpra2tMTU2JiIjgq2++od7Jk5iZm6NQqcjLyyMvL4+SkhKQSBBqNWckEvzNzLAASoqLcXdzw8HRkaqqKrKzs3mclkaegQELnjQCOHHiBAqFgoKCAm7dukVqaioRPj5I3n//GYM65PJl3ORy7OsySPr6NdnF+/ZBWNhfcirYzc2N5ORkrly5QuvWrV9gTyvgFWpKbZoA7ajxYsOAschk4VRUmLBnzx46d+4MgLu7O99++y2urq41zSG0/KPRGlUtL42wsDD27NnDxo0bef3115FKpfj6+mJpacn48ePx9/fXeLEWFhb07NmTuXPncv36dUJDQ5+ZIjU1NeW1117jiy++YPPmzcTExBAbG8sPP/zAtWvXuH//PgsXLtTUoRYVFdG5c2fWr1+Pv78/pqam+Pr60qZNG7Zt28aZM2eYO3cuhYWFTJ48GRMTE1q2bMkrr7xC+/btWbBgAUlJSUydOpVXX32V/Px81q9fz/Hjx4mIiKBHjx6arOYxY8awdOlSTazV2tqattbWmJ4+TVpODmnp6RgZGWH0JOs3saiITvr6FF66RHpKCjpVVXyfnU2DkhJKS0tRVlcje+KZ2hoY0DcxEV1dXa5evYpCoQBq4qzvvPMOUVFRpKSmkn//PnoXLlAuk6FUKJDp6GBtbU1FZSVIJJwWAj+5XDP9m52dTVl5OTY2Ntja2mKto0NKWBjTN27k8OHDGsF4iUSCra0t169fp+XRo9iUl6NnY1OredkP2dm0MTev26hCjWEtKKiZGm7R4uU+aC+JZs2aaWqTnZ2dX3BvfcANqA/4AO7UxFvB09OTrVu34uLigr29PVKpFDMzM7Zt20b37t2fWw9ay98TbZcaLS8NqVTK1q1bqaqq4o033tD8SMfExDBu3DgGDRrEhQs/t8Fyc3MjISGBY8eOMWrUqDq7gJibm5OYmIiJiQldu3aluLiYH3/8kY4dO/Ldd98xa9YsYmNj2blzJykpKSxdupTu3bszYcIEbt26BdS0UVuwYAFt27Zl/PjxtG7dmmXLlrFgwQIGDx5MZWUlrVq14sSJE9jZ2REYGMjhw4fp06cPa9euZcCAAfz0009s2rSJUaNGYWJiwocffsjIkSPx8vKiS5cuxMfHo5ZKMTIyIiAgAGcnJ65cvsylS5dQKpWoVSrURTXtwgSgW15OsRAYGhpiYmKiyQTOyckhPTOT9u3bs3z5coQQyJ94iGVlZUyfPp2OHTsSFRXF3OvXqVYqKXz8GD09PVxdXCguLkZPVxcXZ2ckEgmeXl44Ojjg6uqKhYUFhYWF3Lhxg3s3b3L3/n12FRUxevRozTGgpi42JyeHqMBAmubmkl5czPVr13j8+DEvFC0yN4fNm2u0h/+CGBoaMnbsWJYvX67puPQy0NHRITY2lnXr1mme6Q4dOqBQKDhz5sxLO46WvyZaT1XLS0VHR4fw8HAWLVpESkqKJsu3devWlJeXM3XqVIKCgjRJG+bm5vTs2ZOPPvqIK1eu1Omx6ujo0LdvX06dOsWCBQvo1q0bb775JkVFRSxduhQ9PT369etHdHQ069atY8+ePUyYMIEVK1Zgb2+Pi4sLEomEBg0a0K5dO7777jvS0tKYPn06W7duZc2aNXTs2BEHBwd69+6NqakpkyZN4u7du3Tv3h1nZ2cCAwNp3749aWlppKenY29vzzfffIOJiQljx44lPj6es0eO0KOiAl1TUywtLXFwcCArK4vbycn8T1kZlkoljhIJ+np6PFSrSReCZgoFpaWlGJuY4OHujpO5OTa+vsTu2UN1dTX5+fmYmJhoYqm/5F5uLg5qNU3VavIrK8nKzkahVFKlUKBQKGihUCCvrKSyspLikhIADORyqsrLMamsRDFoEC6vvoq1tTXbtm3TjC+TyTA1NeU9Fxcc0tMpFgKpVEpeXh65ubnIdHQ4UFyMrb4+K9LTWZ+Rwb3yclqbmyP75Xeno1Pjrfr6grv7f+mJ+2PY2NhQVlbG3r17CQwMfGlepLOzM0eOHEEmk1GvXj0kEglWVlZs3LiRkJAQrbf6D0ZrVLW8dAwNDTX1qkqlknbt2gE1b+uZmZnMmjWLnj17arRSzczMCAsLY8GCBVy+fJmwsLBnfnQkEgmRkZGkp6czbdo0WrduTUxMDFKplJkzZ6Krq0toaChDhw7V9HadOHEimzZt0hhUQOPxVlVVsWbNGmKf1Gh++OGH2Nra0qRJE/z8/OjZsycrVqzgiy++0EzvGhsb07x5c3r16oWNjQ3V1dWcOHGC3bt3ExcXR55ajfHhw+hWVWFqbY1EKqVKoUCpUPA/5eVkqlQ00tXFzsGB78rLqS+VUk8iwdrGhuLiYlLv3UOVl0dqly5UeXtjZWXF9evXuXr1KlKpFLVa/YynmGpnx5vNmmH46BHFKhW6urqYm5vjWa8eefn5uLu7o6+vT3FxMXK5nLLiYuwkEn5UKnnt1Cm++eYbvv/+e8rLyzX3XCKRIJPJGGFhga1CgZGVFVKZDCEEpaWlZGdnc6CoiKyKCmY3akQfR0e+zcpCTyrF+9fx0+Ji8PEBP7+X/Zi9NBo2bEhCQgIKhQIfH5+XMqZEItE0mg8JCUFHRwcnJycOHTqEXC7/hdi+ln8aWqOq5b+CpaUlrVu3Ji4uDgcHB02HkG7dunHjxg0WLFhA7969MX5SZ2lmZkavXr1YsGABFy9epGfPnnW+zQcFBaFUKomLi8PLy4s333wTIQTz58+nsLCQ0NBQ3nrrLZKSkliyZAnDhw8nKSmJhw8f0rx5cyQSCRKJBB8fH9q3b8+uXbsQQhAREcHs2bO5ffs2wcHBWFtbM2jQIG7dusXUqVMxMjKiZcuWABrvIywsjNDQUDIyMli6dClVVVV0CgpC76efuPPoEfl5eUglEkpLSzkjkdBUCPZWV3NYqcRNJiPa0hIpUFRYiKWFBV4eHihLSuh05AiLli9n8+bNpKWlIYTA29ubqqoqKisrgZqpdldXV7Jyc1l97x5eQGOpFJlCgUIiobyiArUQNPfzw8rKCgOZDDOlkvqOjiQYGrLa0pLc/HxUKhXV1dWo1WpkMhmurq64urrStWtXQhUK9AsLqZJIUKlUSCQSpFIpFRUVHKmsxK+8HOW9e3i4uFAkBDkKBa1/3XO2vBzq14e2bf9rz9ofRSqV0qRJExYvXkyrVq0w+w86zM+LjY0Nt27dIicnh0aNGiGRSLC3t+eLL74gNDT0uXu8avl7oTWqWv5rODs7a8QcmjdvjvuTKcCQkBBOnTrF0qVLee211zQlDU8zWz/55BPOnTtHr1696jSs7dq1w9ramnHjxmnkCXNzc9m8eTMXL14kIiKCgQMHkp6ezscff0yPHj3Iy8vj9OnTtGnTRtO5xdjYmC5duqBSqdi9ezf9+vVj//79fPXVV3Tt2hVLS0uCg4Px8fFh2rRp/PTTT/To0UPT4g5qam/79OnDa6+9xo4dO9iclER/oKqykuLKSqqrqykvLydJoaC9vj7dgUAdHbxVKozkcuzs7BBqNY8fP4acHA7IZOyFWlO9QgiKi4tp2LAh2dnZSKVSLCwsMDY2Ji8vD6UQJKrVnFersZJKaayjg5VcjkFlJdYGBlBejlwqZa9KhfPKlazNzeV/jh6tNf7Tv0874PTr14+GubmQlkaRQkFhYSG5ubkUFhZSWVXFaaAxYAmUlJaSa2BAqRAEWFrW/rKKi+GVV/6ypTVPMTExwcTEhC+//JKgoCCN0tYfxdPTk6VLl9K1a1cMDAywt7fn1KlTCCHw9PR8KcfQ8tdC+6qk5b9K7969GT9+PEOGDOHmzZtAjWfw1Vdf4eLiQq9evSgtLdVs/7Qs5vz58wwZMqTO5CWAgQMHsnLlSmbOnMknn3zCnDlz6Nq1K5cuXSIkJITi4mJWrVrF+PHj+eSTT3j06BEGBgZMmTKFoicJQ1AzTRcaGsrixYvJzMykdevW1KtXj27durFz506g5iUgKSmJoqIiAgICOHnypGb/3NxcfvrpJ06dOlUj/K9SEVdVhaVMhpFMRlFxMSqVCqhJUFKr1fj7+2NhYUFOdjZpaWno6OpiUlXFvcpKphcWUl5ejpeXV622bUqlkvPnz9OwYUNkMhmVlZXcvXsX8STeaWJmxlngfSHoa2DAEktLlpuakhIdDXPnorN/P3P19Xll+HDeiIlBLpfXmXSUkZHBp59+SmBgIHErVpB+5w6ZWVkUFRWhFgI9PT1NFrCEGmOkp6dH1qNHNVnHv0Yq/dsI9gcFBWFvb8+GDRte2pgODg507tyZLVu2aJa98cYbbN68GaVS+dKOo+UvhNCi5U9g0qRJolGjRiIrK0uzTKlUih49eohu3bqJqqqqWts/fPhQ+Pn5iZiYGKFSqX5z3LNnzwpvb2/xwQcfiJSUFNG3b18RFBQkWrZsKdLT04UQQqxcuVJYW1uLLl26iM8//1wMHTpUPHjw4Jmx1Gq12Ldvn3j99dfFO++8I9zd3cWYMWM0x8/LyxOzZ88Wbm5uYvbs2UKlUokBAwaIxo0bCw8PD6GnpydsbGzE+fPnxRgvL3FOKhU3rKzEbhDdQKzU0xMH5HKhDAkRhR07iv0GBmIPiLMgbjVoIBqamwtqbG+tj4GBgejUqZOIbtFCfKinJ3ZIpWIviO9BrAbRQyoV+k+2HT58uHBwcNDs6+zsLJRKpRBCiIiICCGTyYSTk5OQSCR1HuuXH387O3Hd0FAkmZmJi87O4n+MjMRhExPxo0QigkCs1NUV+w0MxCkbG7HS01O8b2oq8gMChOjZs+bTvbsQ7doJUVr6h5+fP4uioiIRExMjLl269NLGLC4uFv379xcZGRmaZTNnzhQ//PDDSzuGlr8OWkUlLX8agwYNIjk5mQMHDmhiqZWVlZr+rDt37qwVZ3r06BGhoaE0btyYr7766jdjUHfu3CEqKgo/Pz9ef/11fvjhB1QqFUePHmXjxo34+/uzdetWxo0bh6WlJWPHjuXAgQNMnjwZX1/fZ8bLzc1l2bJlpKamcvnyZSwsLFiwYAGjR48mOjqawMBA3nrrLezt7fnggw944403NO3VRowYwf30dD5ft44ZPXtSPyEB58pKDAwMyFMqUahUGBoaolNdjaW+PgZGRhw2MGB8RgaP60hEAtj0wQe8np8P169TUVnJhTt3KKuqQkJNtaQBUAHskMmI3L2bY2fO8MuojpWVFS4uLiQnJ1NeXv7M+E/lCysqKoAapVtPwNbAgGmenlRnZHCvuhorW1uys7OprKxkKTDAzIxXnrSq25adTYVcTo/KSpycnLC1sanp2RodDePHP98D8hfh4sWLLF26lKVLl2JiYvJSxtyxYwc3btxg6tSpANy7d48ZM2awZs2aF1R00vJXR2tUtfxpqNVqwsLCAEhISNAYyeLiYrp3746HhwebNm2qZTxzcnIICQnB19eXr7/++jcN66NHj4iMjMTS0pLAwED09fWprKxkzZo1LF68mIiICH744QcmTZpERUUFkyZN4ujRowwfPpxXXnnlmfGEEBw6dIh169bx4MEDzpw5gxACX19fDh06hIGBAQMGDGD//v1YmZkRIJXSs6iIRoCkogKhq0vzHj0Yc/IkpwsK6COX07yqCn2FApVEgsLEhHR/f6YkJfHBzJlMnjy5zusa7uDAO4WFuHh7Y+riwvUbN8jLz8fI0JCCwkKqKisR1DQlswLSjYx4u7KS/CdTzr+FlZUVnp6epKWlkZOTg7VcTvuKCgYBTtTEhXSkUuRC4CqRIDMwIEOlotTEhKyiIpo0boxCocDIyAgLCwuuXL1Ks6ZNqa6u5vbt29hZWNQIQ3zzDTyRc/w7sXbtWvLz85kwYcJLKX9RKBSMGDGCMWPGaJL2FixYgKenZy0JTy1/f7RGVcufSmlpKUFBQdSvX5/169drlufm5hIcHIy/vz9r1qyptc/TPqo+PjXi5L9lWEtLS+nduzfl5eX4+PhgY2NDfn4+hw4dYuzYsbzzzjvs2bOH2bNn8+DBA0aNGsXt27cJDw8nMjKyzh/P/Px8+vTpw/Hjx1Gr1RgYGDB37lysrKyYOWMGb5ia0jU5GWOlEqVEQglQDTja26MoKkKUlKCWSDhuZsbs0lKKVSp27dpFXFwcDx8+rBVP/jXdgOUmJkhtbEjLzMTQ0JCy8nKsrazIycnR1FgW/iJGbAfcBN6mRv4dQC6Xo1QqNclPT8s91Go1pqamyDIyWFhZibVKRbEQ/PKM9HR1ecXVFZGailQmQ0dXl3wLCxyaN+d2cjJ2traYm5tz9+5djIyMsLe3R1FSQtaNGxwPCiJyzRqM/oIyhf8JhULBBx98QO/evenatetLGfPo0aN8//33LFq0CIlEwsOHD4mLi2PN3/Qeaakbbfavlj8VPT09evbsyYIFC3jw4IHmB8vIyIiwsDDmz5/P3bt3a7WGMzIyIjIykqVLl3LkyBH69OlTpwF8KgJx4MABkpKSOHHiBEqlkqVLl/Lhhx+Snp7OyJEjcXFx4e7duyQmJtKwYUPS0tJ48OABLVq0eGbc8vJyZsyYoSllqa6u5sCBA5w/d44fu3alb24uNs7O3C8uprCqiuon3WAKCgspqaqiFDAwM6O3mxvejx5xSAiOnz9PcHAw58+ff0bQ4SkN7exYAzwqK+NxeTm6uroUFhUhhKCkuJh4ITAsLUVeWYkE0JHJ0NfXp0IqxUOlQgDnnoylq6uLvr6+Ru4QamYHdHR0aG1vz2Z9fSz19akwNib/iUgE1CQiqdRqUgsKMDY2xlpHh6qqKsxVKiS6umSVlWFtbY2eri56eno8yMjAViZDR6FAb/ZsQpYtY+HChaQ9aSpgamr60qZT/9vIZDIaNmzIokWLCAgIeCnn7ebmRmJiIoaGhri5uWFqasqDBw9IT0+nadOmL+GstfwV0BpVLX86xsbGdO7cmalTp6Kjo0OrVq2AmpKa4OBgZsyYQX5+Pp06ddLsY2RkRJ8+ffjss880EoJ1GVaZTIadnR1btmyhvLyc0tJSevXq9b/snXl4VOXZ/z/nzL5nkkx2CCQhgYDsq1o2UUBBRASK4mvFhV+tWGWxtq6vWq0LbmBRq1ItilIXWlkUcWOrIDtCEkJWErJNkslMZp9zzu+PmYwgVIu4YN98risXIZPz5DkzZ+Z7nue+7+/NvHnz+NOf/sSmTZuYf911DKyuZuyBA/Tcvp0BZWVkFBXxr82byR01CvVxLc9qamo4cuQI1dXVKIoSj3nek57OhLo61JmZaEwmZFmmsakJRZaJRCLx3xMEAa1ej1uSMLndDAfWShIfbdoEcMoYqlqt5nd5efRqbaVFUeIOSaIgRA0ggO3AAJMJczhMbm4uQ4YMIS8vj9zcXKzJySQdPco/DAYCkQiRSOQEQe1AI0k84/GQZbPh0+upiNXEdtAC/A34EPBEIiRqNCQYjegVBZqaCIRCJNjtqAIBNH4/wdZWAkOH8lJWFq29ezNixAjWrl1LUVERe/fuZdWqVYwYMYLU1NTTul5+KhISElCr1bz55ptccMEFZ1xXKggCmZmZPP/880ycODFe77xkyRLGjRvXGVv9L6FTVDv5SXA4HPTv359FixaRnZ0dTxhKTExk5MiR3HXXXUQikbgbE0SdmqZNm8bSpUvZuHEj06ZNO0lYJUni17/+NRD9EGtpaWHnzp3ce++9zBw5kvAjj2B69FF6Op0ka7UowSBiIIDG6aRXXR1ty5ah93jQnHMOGI0kJSXxxRdfUFFRgdfrxeFw8O6jjzJ5+3ZKW1uRRJGyI0coKy/HaDSSkZERX9XKihI3m/B4PHhkme6AJxikLj0dSZJOELsO4/Wgz8ftzc34ZZmwoiAdV1ak0WjI79GDD1wuesgyqTodQ4cORRTFaD2rx0N1bS2Ky4U/M5OKmBAcvyJWqVQYjUZmJiYyyu3mQH09TU1NaLVaEmy2eJx2I5AMXANkKAptoRApffrgMRjQq1S0eb0kXnQRQo8eCBdfzOt5efxq9Wr21Nby0ksvkZycjNfrxev10tjYyNVXX83MmTN/VhZ9BQUFbN68mcbGRs4555wzHi81NZX9+/fT1tZGr169MJlMOJ1OioqKGHiWNh7o5PToFNVOfjKys7NJT09n0aJFjBgxIt4pJDU1lWHDhvG73/0Os9l8wodNh7A+++yzbNiwgSuuuOKED2lRFJk0aRL9+/cnMTGRo0ePUlZWRpLTyei//Y3+okiNz8eRpia65OWht1jwBAIoOh21bjcWux3f5s0YPvsM9ahR7Cor49Zbb8XtduNwOHA6nYwtLaVQFGnw+SgvL8fj8ZCVmRlfhWVkZMQblFssFiKRCOGYeIaIZtd+mJyM2+s9oVZRr9cTCAToK8sxcI8iAAAgAElEQVRcAWgdDgKBAFlZWWR16UJTYyMAKampfCGKpLa1kSyKaLVaXC5XXPgBvG1tpAHvShL9+/dHURTMZjPhcBiHw0Gi3c711dVoJIkg0dVxvKG6KBIMBvmCaO+V41uNNzQ0UNfcTMhiwdvcTNIrr6C+8kp2SRJLly9nz5498Tpgl8tFS0sLgiDgcDiorq5m8uTJP5stYIjemPXv358lS5bQu3fv76XReE5OTrzxQ0eLxGeffZZRo0ad2Bi+k58lnaLayU9Knz59kGWZO++8k4svvpjEmCNPVlYWffr0YeHChWRkZNC7d+/4MQaDgenTp/PnP/+Z9evXM3369BOEVa/X0717d8aMGcO8efPI02rp88QTaFUqzN26kZaRQXt7O4dLS0nPyMBmteJ2u0m026k5dgyDw4Gnuho2bOCa11+nNRTioosuor6+niStluurqqhyuzHbbMiyHBckT3s7dceOUVVdTcDvx2az4fV6UalU6LRaIpEIEpCsUrHT46FMkk4wt4hEIjz99NPkBAJ0r6igJRjE4XDQs2dPDhw4QI8ePfD5/RyrreUjj4cCIMNkora2FkmWyS8owO/3U3P0KJFIhNSEBELTpuFwONixYweyLJOamsrw4cNp3b6dX8kyrYJAekYGOq0WURRpi/Vx/RtQBZQBW4FegD12DrKi4PV6Mca2ppMmT+btt99m9erV+P3+r8wuFAWbzRZ3Edq1axePPvoo48ePj7/OPwcMBgPp6en8+c9/Zty4cdHG7WeAzWajoaGB4uJiBg4ciMFgwOPxsGfPntPs7drJ2Uhn9m8nZwXz58/no48+4qOPPjphNfDuu+8yf/58nn322ZOambtcLiZOnEhaWhp///vfT3AgiqMoMGsWTbt3c6C2ll69epGeHl17lZWXU1lRQa/CQnQ6HdVVVSQlJVF65AgmoxGt24160CBsK1cybtw4jh49yihZ5oFIBL/ZjCRJhMNhunbtiqIotLS0EDEaebWhgfKYV25vYKIgoFar46tVh0qFq6CAB+x2/vWvf50grIIg8Nv8fK4qLaVOltGo1fE4p1qjQZZlwqEQTwOTgN4GAwLgDwRQFAWtRhM1vw8ESE1LY6TPh8fjOSFWKooik9Rq7hcEakIhtFotdrsdWZZpampCVhREQeBvgsA5QN/Y/FQqFXqdDm+s1tUKtFgsZHz4IUOHDmXu3Lm8+uqrBINBRFHEYDAwbdo0li9fHm8IsGjRItasWcObb75J/7PYZP9UPPPMMyiKwm9/+9szHsvlcnHTTTexePFi0tPT8Xg8zJ07N/7/Tn6+dNoUdnJW8Pjjj9OrVy+mTp0aj0lC1ObwgQce4De/+Q2bYsk9HSQkJLB+/XoaGhq44oorTp1Je+AAlJfjyM+na3Y2R44coaamBgXIzcmhV2EhRYcO4XK5yM7OpsnpJDHWd9SlUiHv3Mmk3r2prKxEo9FgVRTEWOwyEomQmpaGq62Nuvp6vD4fT9bXY5IkbgEWajQM1GoxGo1IkUjcqkhSq/GUlbF169aTbBgVRWFXSQkRWUYlikQiESKShFqjQRQEhNgYHfj9fvyBAKIoIooi4XCYUDCICqhrbz8haaoDWZaxqtXxN38kEqG+oYGGxkbk2O/KikJElpFkGbVKhV6vR1EUwuEwYmxXIAzg8fDkk08iCAJ9+vTB4XAgCAKpqans3LkTi8nEvz78EAIBREFg8eLFzJ49myuuuIItW7ac3kXyE3PjjTdy8OBBtm7desZjJSQkMGXKFF599VUgavd46aWXnmBn2MnPk05R7eSsQBRFVqxYgU6nY+bMmSeIzezZs1m0aBHXXnstO3fuPOG4hIQE3n//fZqampg2bdrJwvrmmyAIIAjkdO9OQkICx44do7KyEllRot1h8vIoO3KEA7FG3A0NDRiMRnx+P8FwmMnhMAUFBVGT9ePGF2IdaATAaDDQpNXiVhQuADSAHAqREgzS3t5+QrJRIBhEkCR0Ot1Jz4MgCNQaDBg0GlAUFEAlioSCQQLB4CmzeFEUBECjVqNSqZAVBQvwcXv7KR2U9Ho95wweTFJyMimpqQiiiComyqfKcBVEEVmSsFosIAjY7fboawb4iLoFffLJJ4wePZpXXnmFJx97jDl5efRcvJjHNm0i/aqrkEaMgPPOg4cf5u5Zs7j11lu5+uqrWbNmzcnnc5ai1+tZsGABy5Ytw+l0nvF4l112GUVFRRQXFwNw6aWXsnv3bqqrq8947E5+OjpFtZOzBrVazTvvvENtbS033XTTCY/ddNNN3HDDDVx55ZVxY/4OrFYr69evp7m5malTp36V/OPzwcaNkJSEJMv4fD7+2N7OhvZ2FpSUMOb997nniy9o8vl4R6fjTreb5eEwGqsVRZbR6fW0AheHQhw6eJC2tjY8QIdXkSRJeNvbaXW5cLvd1Pt8WBUFNcRN55XY93q9HoGoQGqAFkkiGAzydRRF4Zii8LkokhBbNUqyjCa29dux5tTrdOg0GtLT0lCpVGg0GswWC7379MFkMCAKAhvM5lM2fB8+fDiq9HSEmFiHw+Holq8ootfr0Wg0GGNjCERjinqDAZ/fTyQcxhOrZTUCDVotkiRx+eWXU1NTw9hAgFvWrWNOURG+3bsxZGejysigKhQCqxXefRdmzeLmnTt54re/Zd68ebz22mune6n8ZBQUFDBp0iSeeuqpU5ZDnQ46nY7Zs2fz8ssvoyhKPAlvxYoV39NsO/kp6BTVTs4qrFYr77zzDp999hn333//CY/dcccdXHHFFVx++eVUVVWddNz69etpbW3lkksuYdu2bbz36qvU1tWx/+BB9uzeTWVVFbIkUanX85uEBP7UtSv7/H4erKhgiMfDQkEgIkmsb2mhvb2dQCBAmKi/boffzUGiIikA4djWrKIoRCQJs6LgBkS1GlEU46tHQRAIhUIIgoDBYCC/a1dazzmH5ORkevTogUqliq8QBUEgEAjwaiSClqhVIEAwFIrGS2PxWVmW0ep0ZGVlMWjQIGRZJhQK0dzcjD4Q4CBQHUuosdvt8cbjgiDw2Wefce/q1RysrSXQ2gqAIss4HA4UWaZLVhZJycmIokhiYiJms5mA348syxgMBkKxmxYR2Bnrv+r3+fj4yitpuPHG6E1Edjb1gQCIIllduuD2eGjz+SA1NfpVUsLU1atZvnAhd911F88+++z3eh39kEyfPp1QKMTq1avPeKyxY8fi9/vjnY8uueQSDh8+TGlp6RmP3clPQ2f2bydnHTabjfPPP58//OEPJ5XUXHDBBZSUlPDwww8zefJkmpub2bNnD0uWLOGWW25BURSKi4v54IMPOK9nT/qUlJDcpQuOlBSMRiPrW1qYYLGQGgoRdLsp9ftJVBT6ExWJkCBQQ7RXqEqliq4ggH/odHgkCTcwgGipiSkpiV6FhaAoZGRkILa3U6RW4xZFMiIRCvv04agsM2bQIFytrQQCAQRFIUGvZ/fkyXTJz2f37t3R5KOYUHUkDDWq1Zyv0dBdEAiqVCix+KaiKJiMRgaGwxiCQerr63G1tqJWq/F6vQTcbkzA3UBFIBBvE9dhXKFWq7Hb7YQlCSkcZqQg4I+dZ3t7OxqNBq/Xi9/vp0irJUur5dIhQ+jSpQvH6uriSUomwAXc2dLClClTuK9vX8YdOECZx4MnHKZbdjbX7d9PD5uNLKMRg8FARWUljpSU6A2E0QiBAN2Kihhx110sfOABPB4PI0eO/LEus++MKIr07duXJ598koEDB8a3w78LgiCQnp7Oiy++yMSJE9HE3KnWr1/PmDFjvsdZd/Jj0Smq/5fwN0Dz59C6HzyHwV8PumRQab/92B+ZtLQ0CgsLWbhwIQUFBaSlpVFSUhK/o//iiy947LHHaGpqIhwOo9Pp2Lt3b3xFWFdXx+7PP+eKYJDq5mZcLhftXi8ftbczQKsl02DAHwhQFA5jJSqSoiDgFATqBYEhWi1KzOvXodPxcX4+9bE4mlsQmAi4JYn6ujr8gQAtLS2EQiG6RyLslSQ+UBTWt7YSDocx1dUhxJKOkhWF9wIB7ty2jZ07d+Lz+eJx4I6tV6/Xiy0hgYquXTkvGKQwMZH03FyO1dVFt5EFgeSkJPw+H3LMwQlBQB2JkAQ8AHwaex6Pd4GC6Ja1z+cjHA7TYjRypUZDemoqLq8XR0oKyUlJtHu9+AMB+gO2WPZwKBxGiW2hoyg4gGeI+gxX79vHTQcP4larCUQiBAMBnM3N7AB6azTkJiai1+vx+nx429ux2WzEThja2siKRBj1pz9x9913U1lZyUUXXXTWG0SYzWbsdjsvvvjiGTc1T09Pj18LBQUFdO/enZUrV5KTk0NKSsr3OOtOfgw6RfW/HUWGll1QvBgO/QnqP4amTdC4CRo2QuVrEHCCIR10P33toCzLHDt2jP3791NTU0NbWxuPPPII27Zto6mpKV4DmZeXx+HDh9m7dy/V1dV8+umn1NfXEwqFCAaDGI1GgsBErxejVouiUqHRavksEGCE3U6P5GTS0tL4qLYWh9lM/5glXVUohEur5YKUFMKhECq/n3rgsZihvaIoVEsSA4E8oEvPngwcMICKigoUWaZfr15M7t6dnq2tXNW9O8OSkwmHQvh8PkyyjFqr5T61GucpGlRHIpF45rPP56O6sZFPdTrON5lQVVWhCocJiyJhSaLN7Y43KNcpCjZJQg38AXg/Nl6Hy9K/o12SKAFGt7VhttlwtrUhSxJSJEJ+jx70798fV1sboijSUF8fbVQuy6QDHwDLAI1Wy2WSxHBFoTkcxmw2Y7PZ8Pv9fOLzkSfL9MnMRBAErBYLlZWV8cbmABgMcPgwaXPmMHHGDB566CF27tzJ5MmTz3ph7datGwcPHqSkpIRBgwad0Vjdu3dnyZIljB8/Hr1ej9ls5p133mHcuHFn/fPQyYl01qn+NxPxwd4/gHMrCGrQJoLwtTC6HIZQS/T7nGuhx/+LZsv+CAQCASorKykvL6eiooKKigqqqqowm80kJiYiyzJer5dt27ZRVlZGWloaPp8Po9GI1WrFYDBw+PBhAAYNGsTevXtRq9X06dOHa665hszMTLZcfz3Tm5ro8YtfoBJFrtu3j5uzs1EfPYooiiypqcEOzO3Zk3aPh92Kwvs1NdxoMJCcnIzN72deQwP/+NrcLcArWi09dTpqYkJ+zjnnkJ2dTTgcZsuWLaSmphIMhZAiEUJOJ4IksVCnI1BYSG1tLQ0NDfHxOuo4v87NN9+MyWBg85NPciUwNGYg0VFaIwBtRD161wMtgnDaCTR/nj6d8Z9+irO5mWZFQSbanKAjOcpgMCDLMkZJQna7WQ/cT7SkRgWsEwRUioKfqI2iSq3GZDTyR4+HfpEI1QkJhPV6hickMNNiwdnQQO/eveOlOdTXw7XXwk03cezYMS699FKys7N54403ztho4Yemvb2defPmcfPNN5+xsD7zzDPYbDauueYaZFnm5ptv5rrrrjvjcTv5cekU1f9WpADs+DW0fQm61G8XSjkCwUboOgMKb/9ehVVRFJqbm08Qz/LychobG+NlJYFAALfbTXNzc9SAQJYxm82YTKaoMUN1NT6fjxkzZpCTk0N6ejppaWkkJiZy2223kZycTP/+/Rk+fDgXX3xx/O7eV11NVZ8+uLVaBg8bxo0HDjCvWzfCpaW0t7ez0ufDpihcarOR4nCwU5LYJ0lMbW8n5PWiD4eZajRSd1z3lg5MwEPACABRpM/IkUjA3r178bS3oxZFrIAqEqFZlrkVOCyKZGZm4nK58Hq9cSHtmO/XTRoOHDjAhRdeyLFjx9BqtaRIEjmShEUU0ZhMHPV62SvLjL3wQp588klGjx59ynIPs9l8yjZzKpWKpKQkCoBJTiejZBmDTgc6HRIQDoXQSBKyJFEtCPxFknifr2plz9FoeCEcpik2X4fDgc/nw+/z8ZQso1epmKUonFNQwCuBAH2sVob7fJjMZjIzMqKD+P2g1cK6dUDUGGHy5MkYjUbefffds966b//+/SxevDguit+V5uZm5s2bx1NPPUVKSgrbtm1j1apV8TrgTn4edIrqfyt7fw/1H4Iu7T8XSEWCQAMU3gHZ07/Tnw2Hwxw9ejQunmVlZRw8eBC3240Y85Rta2ujra0Nr9eLXq/HYDCg0+m++oAvKKBHjx6kp6fHv1JSUrj++utxuVx88MEHX20fEm1jNn78eLp168Zrr72GJEk0NjaSmZkJQOiPf6TikUdo0WoZOmwYKlGk+uhRjhw5AjFDg7S0NBLsdpxOJ4IgUJCXR9X27TwTDPICJ3eTsVgs0Q86RSHN42EGcAlR1yOVKBIMh1ErCl8Cq3Q6NsYyiSHaccdqtTJt2rS49d3mzZvx+/3f+Nz+7//+Ly+99BJHY6vsju1dayTCWIMBm6KgBVplmUOCwP6Ys1HHatNgMNDS0hIfTxAEBg8ejMfjoampiUgkgjkQ4LHRo+kdCkFbG872dnY3NrIpIYEdPh8NMf/hjuNHqFQsliSaYi5M6ljmsyTLPBEOcy4wiGgpjzslhQ9VKv7cqxdffvklvXr1wmAwRGt/29pg27b42D6fj6lTp+L1elmzZg0JCQmnfS3+mCxfvpza2lruvPPOMxLA1157jYaGBubPn4+iKNx2223MmDGDc88993ucbSc/JJ2i+jPgo48+4oMPPuDRRx/9zw5or4Qt00GXcvJ277ch+aNx2DHvf2sCU1tbW1w8S0pK2L17N0eOHInHBn0+X9zg3WAwoNVqUavVpKWlkZ+fzznnnEPXrl3jq860tLRvXJUEAgHGjx9PSkoKb7755glGBU6nk/Hjx9O3b18sFgtHjhxh7dq10Q+4SITIvHmUv/YaLRoNQ4YNwx8IsH37dlAUrDYbubm5VFVVYTQYqCovJ00U+USrxbVgAfd9rbQHIDk5mTfeeINrr72Wo0ePYjKZMMsyGZKEKhQiCDQDdYKAXq/H7/fHy1okSSIvLw9ZlgkEAtTW1gLRzF+XyxUX8K9vCWu1Ws4991zq6uooPXyYIQYDl/r9jIuZP+g0GqRIBElRUKnVHDObWerxsFkU8Z4ihisIAv369aOyshKXy4VWq+WGG26gqKiIjz76CICPP/6Y8ePH88gjj7B8+XK+/PLLaHzUauWGG24gv7WVoa+/jiYjg9qaGoLBYNyA4ilZZiLQA9BptbSo1TwvSXw4ZgzNLS00NzfTq1cvBEmC1laIJaF1EA6H+eUvf0lVVRX//Oc/yehY2Z6FhMNhFi5cyMSJE5kwYcJ3Hsfv9zN37lzuuece8vLy2LVrFy+99BJLly4949Zznfw4dIrqz4DTFtWixVD1Jui/Y9/KQAMMeARSoyn9HclD5eXl7N69m88//5xDhw7R0tJCOBwmGAzi9XoRBAEx1jWla9eu9OvXj379+lFYWHjCivOUHr3/IS0tLVxwwQWMHDmSp59++oTHSktLGTp0KFqtluzsbFasWEF+fn70wVCI8L33Uv7nPyMpCvkjRrB561asNhs2m40Emw2tSsXRvXsJBgK8IUk8AeTm51NTU3OCM5E65scrCEI8c3fOnDmsXLkyLirHd59Rq9UnOD11rLJzc3M5fPhwPPlKEASWLl1KSkoKN910E06n86QVsiiKdOvaldtEkWHl5UhE+56qNJp4yY2iKJgMBrLtdlpra6kyGpnr9+OMjTVq1Kj4OTU1NcXPQ6fTMXjwYMrLy3nrrbewWCwsWbKEF154gdTU1GjG8HErXYB+ajUvCQLNoogiy9FsZElCrVLxDDBSreb6AQPQqNWsKS7mzbY2bjcaGTR4MJWVlSQlJpJqs0V3UzZsOOn1lmWZ66+/nh07drB69Wry8vL+42vlx+bo0aPccccdPProo/Fdku/C+vXr2bJlCw8++CAQrc8eP348Y8eO/b6m2skPSKeo/gw4LVGN+OHjC0FtAvH0S2UkWcLfVkdls5Z712dRVFREY2MjwWAw7iOr1WoxmUxkZGTQrVs3+vTpQ7du3Rg0aBBZWVk0NjZy99138/zzz/8g3UgqKiqYMGEC1113HbfffjsQzZy99tpr2bFjBzU1NdhsNh566CF+9atffXWgy0X45ZfZ+fDDdPN4sCQkoLfZcIVCoFaTnJTEc0ePsqSujkPHvS0MBsMJW7MdWcDH/8xgMOBwOOIiFQgE6CLL9Fep6O5wUFNfTyvR5uInRzajYpmeno7FYmHz5s1AtNTi67aLep2OhaEQlykKjcDxj1rMZkxmM263G7VKhae9HYNejwOo9Pu5TqWilWim6fbt21m5ciUPPvgg9fX1QDTuKopi9Hi1mvT09Phr/++wG418ptcTAkSjkXAsaautrY2lokhaYiKPDxyIThS599Ah7O3tjBME/IEAvXr2pK6ujnNSUtDMmAG///2//TsLFiz4WRjxr1u3jo0bN/Loo49+55tHSZK4+eabmTNnDkOGDOHLL7/kqaee4rnnnjujG9JOfhw6X6GzDKfTyQsvvMDBgwdRFIWRI0fSo0cPAF5++WU2bNiAyWTipptuimcFbty4kbfffhun04nNKHBFfjMTzosWpB8od7N4VTmTR6Ty7pZ6RAFuuqwbKpXAs+8coamlnRH5AufmRRtmVzdFeH8feALwWckeEhISGDhwIH379mX48OH069ePjIwMTCbTN56DJEk4nc4fRFS7d+/OihUrmDFjBpmZmVx11VWIosiECRNobW1Fo9Fw+PBhnn766aioFhdHPYDXr0cjSQzr0oXy0lICzc10jZ3HVpOJC//2Nxb07w8GA2IgEN969fv9cdejzZs3M3v27Gg89jj8fj+FhYW8/uqrPDhxIr127aIvgCShqq+PGukDMrAvK4uV4TCbjsv+FQSB1tZW2tra+J//+R+KiopO2SBgllrNNXo9rVotSnMzyDJibDu2T58+1NTU0BwK8RbQLSWFwoYGqoDuBgMvWyxMd7k4cuQISUlJdO/eHZfLBURFPRAIYLVaMRqN+Hw+jh49+q2vhc5qpWbwYAq2bSOk12PQ6wkGg5jNZuTaWnJ8Pu4qKsIlSQxLSOCGnj05WlaG6HZz8OBBUlNSaGxsJGPaNL4pErl48WLsdjvTpk3jr3/9K7/4xS++dW4/BRMnTmTnzp2sXLmSq6+++juNoVKpuPbaa1m+fDkDBw6kT58+ZGRk8OGHHzJx4sTvecadfN901qmeRciyzB133EFubi533303U6dOxWKx0N7ezvr16xk7diy33347Wq2Wl19+mcsuuwxBEGhubmby5Mlce+215KaoWLzsDQYXJJJo1dLYGmTd540UdjPzh9l5mA1q7n9xB6VlVUzq006uI8SqbSH6dhFIspvQmZMYPTib+VOT+Z/7PqbV5ebKK6/klltuobCwkKSkpBOShI7n/vvv5+mnn2b9+vX079+fadOm/WBZi5mZmeTl5bFo0SL69u1LTk4Offv2ZdasWYwZMwZZlvn0k0+4vL2d5MWLobQUEhPBakWwWmmJRChqaqIptl1qrKggsHYt7f36oXE4TrJBVBSFt99+m1WrVrF169aTBE8URayyTOoDDzCmpgabouAEvIAH8IsiisGA0WYjx+3mgrY2bBYL20IhHA4HJpOJtrY2QqEQR44ciWcGdzx/WVlZmHQ6/ujz4VcUWtrb0ev1UdN9RSEQDMbreiVZpgQIt7fTjahVojsSoYdKReGcOZS63TidTlwuV/w8cnJy0Gq1NDc3n2TaL8QSkHQ63QnnrdFo8Pv9hBwOZigK1U1NGM1mEux2QqEQ1/fti6qmht6BAHN792Z0ejpalYqk5ORob1lJQnI6KRVFjk2cSPfu3b/xNR85ciRqtZpFixaRl5f31db+WURHnPrZZ58lPz//O5s3ZGRksG3btnj8PSsri2XLlnHxxRefkdFEJz88naJ6FlFSUsIHH3zA/fffj1arRaVS4XA4qKiooLKykttuuw1BEOjatSuvvPIKEydOxGAwkJmZGc9GTbEJlG5/A1GlpaCrmcbWIJv2t/C/vypApRLJTNbz901NXDXGSpdUE2a9QFGNQlqihhSbiIYAEX8zQV8Ll9/+AV9++SVr165l/fr1rFmzhk8++YQdO3ZQXFxMRUUF1dXVNDY24nK5GDp0KFOnTqVv376YzWZ69er1gz5f+fn5GI1Gfve73zFu3DhSUlIQBAGHw8HFF1/MdZKEvHQpYmoqeocDYokebo+HkpKSaAcYlQpnWxtuWUYfCDAJ+LvTSc0pSmjefvttDh8+HDW2j8VUOzJwzYrCkx4PPQSBelkmHLP+A1CrVNgSEpAkCZVGQ0N7O/qEBM6XZc7p3p01TicIAsFgMH7M12tWPR4PU5KSOK+lhabYNnxHO7kOa7uOBuIAhwEtUGgwYLfbkRQFyeOhePduSjIzaW9vP0E8LRYLGo2GSy+9lIqKipNaxsmyzKxZs3A6nXFDfb1eT79+/Ujo0oX6ykoKW1poDYXw+v0U9u6NyWgkNTWV+vp6qqur0Wq12Gw2BEEgISEBnSQh+Xzcq9Xy8po1XHXVVd+4AwIwdOhQHA4HixYtIjk5mb59+57GFfPjoNfrycrKYsmSJYwbN+7f3oR+E4IgkJ2dzdKlS5kwYQKpqakcOnSI1tbWH/x91cmZ0bn9exbhdDpJSUk55Z3o8SUFx9d2AuzatYuVK1dSW1uLEgkQrG2nW+ZXiTIWoxpRjK54tOpoItF5Q/qRYtehoLB6/z6SHDoSE2WqG3xs2BvkaLNARkYmkiRhtVoZPXo09fX1NDQ0UFlZGU9Y0el08TIKiK7oJEmipqaG559/nvz8fGw2GxaLJf6vxWLBarVitVrj31ssFnQ63WmvbG+88UZqamqYPn06Gzdu/CpD9JNPSFm9Gk9hIaWVleRrtZjNZiKRCEVFRVExUqujTbe9XhSgSZJQ1dTwhNnMS//zP7z65psn9HaVZZkbb7wRh8PBHXfcgd1uR9u1o2gAACAASURBVKvVIksSf3S5yIpEiKSkcFH//lRXVfHlwYOIsYxfj9tNRJJAUdDp9YQkCWNuLpe7XGxSqVgRM7Y/nuOzhRVF4fzqaiSVCkdiIsFAAH9si1pWFOolibcUhRaiTk8oCiaiRvwK0ZW9KMtMqKnh0X37+HpDuObmZoKxNnXZ2dmUlJREbwJUKgoLCzlw4ABr1qyJC7FGo0GlUlFcXMzevXtJveEGtq5axYiWlqhHcltbfAU+aNAg9u/fT3FJCW1tbfTu3RvB48Gh11N7331svv12ZFkmLy+Pxx57jFGjRtGzZ89/+5pfddVV2Gw25s2bR2trK/PmzTuta+bHYMiQIezcuZNly5axcOHC7zRGXl4e/fr145133uGqq65i9uzZ/OEPf2D8+PFnfe3u/2U6RfUsIjk5OW7F959u8YTDYR566CHmz5/PsGHDUKvVPPj/hqKET/6QPhUCAlqNFkeyg96FyfxtyyHyMgRGjTqXVTt1tMb8a8eOHUvv3r3jDjeKouDxeHA6nTQ3N5/w1dTUxNq1a2lpaaG4uBiTyRSvRdVoNNEOLjHnn0gkQigUihsTfJPonupnTqeTBQsWUFNTw2WXXcbHH3+M2WSCZcvAZMJis5EjihwuLaVnQQEtra0E/H4kSUIUBFxtbRBbkYVCIRoFgUEWC6Zdu04QVIiKakdpg1qt5u9//zujR49GPHSI4FVXsbu2ltb6ej799FMsFguiKMaTnI6PzyII+BWFLw8eRK8o3KBWs5JozFWn08UTg/R6Pd26daOpqQmr1Uq/mhqCKhXelhaE2HxkRSEkSbwKDAeGAMXABqORLEVB9vtxNjXR3t5OeloaOT168OpVVzH1nnuQJIkRI0awZcuWeOnTpk2bePbZZxk/fjyDBw+mrKyM1mPHGAmkeb3oRJGw1coev5+qcBi9Xs/VV19NUUkJz7W08PvERK7wevGWlZFsMiEYjZjNZvr06UNxcTGhxkZKmpvpPmAAuueeo/+AAczas4fXX38dn8/HzTffTO/evfnss8++0Uhh0qRJJCQkcM011+Byubj77rv/o+v9x2TOnDnceuutfPbZZ4waNeo7jXH11Vdz6623MnHiRLp27crAgQP55z//yS9/+cvvebadfF90iupZRH5+Pna7nVdeeYUrr7wSURQpKyv7xmMikQjhcBibzYZKpWLXrl3sqTGS3eu7NVEOhWWSbCam/HoZA5sC3H777Xi9XlasWEF1dTV9+vRh8ODBDBw4kLS0NKxWK1qtFlEUGTt2bDyZ58svv+Txxx8nMzPzBME9lQi73e5oWUtCAiaTCaPRiFarRavVxsXb7XZTWloa/97tduPxeNixYwd+v58hQ4bgdDoZMGAAd19+ORd/8QXhpCTU4TBqtZqUlBQOFRWR36MHAwcNovTwYYxGI0drahA0GuRQCLVKRSQS4UhNDZPsdt7KyqKmtvaEbdCcnByKioqYNm0aeXl5bNy4EftTT5HS2IhWq40bx/t8PgRBIBwKRT16BQFZUZAVBX3s3IRY+ZGhrY2pGRl8odGQkJDAvn37gKgAFxcXo1arcblcqCIRghpN1DZQkohI0eSyGqIJUEOJ2haeI4qU6nRkJCaSEUuyamxq4tixY0gqFR+99x6SJCEIAlu2bDnh9Xc6nRw5coRhw4bRFZgM/LK9HUQRu8lEOBjE43YjAEdUKv6p03Fw71527NkDwD8yMnCdcw5PjR+PsGIFNDaCKGJVFHonJ/O52cybKSmsa2zkxVCIYcCiRYvYs2cP5eXleL1eamtref/995k5c+Y3Xqvnn38+b7/9NjNnzqSlpYXFixefVbWcOp2OhQsXcu+999KrV6/vFF9NSUnhoosuYsWKFdxyyy3MmjWLBQsWcMkll2CxWH6AWXdypnSK6lmEKIrcc889PP/888yZMweA0aNHk5ub+2+PMRgMzJ07lz/96U9EIhGGDh3KsF9MgLY3IOTidFvmzrnAxNKNGt7+n9+Qk5PD5MmT2bdvH48++igej4c9e/awa9cuXn/99XhbtszMTD788ENqa2tRqVRkZGRw++23x+edmZn5jXV7kUgEl8t1guB2fF9XVxf/mU6nIzk5maSkJHJyckhKSqKyshKv10tpaSn9+/fn0KFDSKtWIYgi4XAYv99PJBKJJ8as3b6d90WR6lAIqyAwWpbppVLFV36CIOAMhcgPBJgydCgfGAzxGCPAoUOHAFi9ejVbt24lNzmZF6qqaI3ZKZpMJkKhUNQ9KhSiJRzmfUHgmFoN4TAjgCHBIIFgMO7IlCyKTGxp4Z1Q6JQJUuFwGFEUiYgiSiRCSBCi3ryx+lKPLGPlq8bokiwjejy0CAJhtZpu3bqRnp5OSUkJ7W1tfLR1K7IgMGrUKDZt2hQ/744a13vuvpsDd9/NY6JIekYGfqOREFBZXR09N7UaURDoEgiwMBjkmN/PTTodJCVRVlYWNcOfPRtmzYKGBmhvB7UaU0ICxpIS6pYtY1JmJjNnzuT3v/89N954I3379o3XO7e3tzN//nyKi4u59957v/F67d+/P+vWreOyyy7juuuu46WXXjqrhDU3N5fLLruMJ554goceeug7zW369OnMnTuXyspKunXrxnnnncc777zDNddc8wPMuJMzpbNO9b8Vdwl8PgcEDWj+wzvaYBPo02DEK6D9Zg9TRVEoLy9n165d7Nq1i/LycgoLCxk0aBCDBg0iIyPje8387VixHi+4TqeTu+66C7Vajc/nw+12Y7fbecHtJi8hgR5fS2KJyDK/+uIL+koSfb1eSoNB3gTmiiKJRBOK9AYDPq+XRFnmAZ2OtV/bAu6g49zONZt5KhCgVRSRYwJoNBhQqVS0eTy8CBQA5xM1vn9dEJisUtE1JtICYDMa0SoKw09hU6jVasnMzGThwoVMef11ju7aRcGgQXz55Ze43e5o+VAoxBqNhuX9+lFcVITP5+NlRSEbGCsICERv2BJsNlIEgbFtbXhtNpqbmyH22PGGFdcCC3Q66iMRsvPzaXO5sFgslFdURBu0CwI5OTk0NDbS2tKCA3CKIguSkmjXarn//vvjN4Wn4rPPPmP58uVMmDCBe+65hzFjxnD11Vfz4YcfcttttzF69GiOHTuGTqdj5MiRLF++/FuTfY434l+5cuV3Sg76oZBlmTvvvJOBAwcyffp3s/9877332LVrF/fddx9Op5NbbrmFpUuX/iAla52cGWfPLV0n3y/WAhjyLKBEHZJk6d//rhQC/zEwZsHQ575VUCH6wZqbm8uMGTN45JFH+Otf/8pFF11EZWUld955JzfccAPLli1jx44dJ8Umvwsd1njdu3dnyJAhTJgwgSlTppCQkEBiYiLDhg3jL3/5C7t27eIX/fvT0NRERUXFCWOUeL0IWi0jZJlwMEg3ohZ6+2UZYvHdYCCAWqNBDai/VlpyPB2rOp0kYbNasdlsyJJEUmIiVqsVv9+PU6vFLwiMJPpGswMDBYF9kUi0d6pajQK4fT5UwSB2ux2LxYLD4Yj/nZEjR/LSSy8xaNAgKkeMQBeJsDMW783q0gVJksgWRbQaDa8WFxMMhylVq6k77oZGrVZH62w9Hj5pbqY6Ejkhu7ijSbrBYGBGair3ORzUSRLmpCRqjh7F6XRSVl6OxWzmFaMRqWvX6LY5YLFaaQKSZJl7WltJstu/NYlm1KhRXHnllWzYsIE33niDAwcOcOeddzJ37lwSEhJYunQpAwYMAGDLli1ceOGFNB7nOXwqMjIy2LhxI42NjUyePDkeIz4bEEWR+fPn849//IPS0tLvNMbEiRM5duwYe/fuJTk5mbFjx/L3v//9e55pJ98HnSvV/3a8VVD6QrR3qiKDyhhtA4cCcgjkIKgM0GUa5M75t6vagwcP8u+qr77+5lYUhaqqKnbv3s2uXbs4fPgw+fn58Vhs165dv5dVbDgc5vXXX2f48OHk5+d/NeYVV+CqqGBXUVHcIhFgc3Mz79bXs7iwkE8+/ZRwKMSHskxQpWKmyUTA74978ura2pjv87HqFFm5EC3FSU1Npa8k8UBLC42ShNlsxmAw0NzcjM1mo0Sl4rnGRgyx8hpZlpGAXkYjd3TtyrG6Otra2lABNkHg/FiZjslkimYkKwpJSUkEg0H8fj/n9evHksOHqfN6SUpLo6mpidycHI7V1VEnCKzyemmSJApUKnQ6HdlmMwPdbmRJwmA0khSJcLPfzxcGwylFJ8FmY43BgNbtpiUcjpcMRWJdaowmE4l2O7l5eQjAv/71L2RFIT8/n+KiIhLDYX5vNnPTK69w+eWXf+vr989//pM1a9Zw//33c8cdd/D555/zl7/8hfPPP58//vGPqFQqXn31Vfx+PyaTiddee+1b3ZR8Ph+XX345Ho+H995776xayW3atInXX3+dp556KlpjfJps27aNlStX8vTTT+PxePj1r38d72jTydlDp6j+XyHYDLVrofEzCLuiwqpLgozJkDYGVKf/Jv9P8fv97N+/P75VLMsyAwcOZNCgQfTr1+9baxNPmwULYNs2joXDFB06xIABA0hMTOSgx8Ofjhzh1f79qa+vp729neebmjAGAowG/IEAFrMZs8lErsXCc4MHc+ebb8ZXdYqioI7FKN1uNw888ADaxkb63HsvbVotVpsNp9OJ0WRCFARKvF7eikT4rUoVLafhqz6oEN1uNpnNKB4PDbLMTKKlKh1JRB2ewCqVCrPZjKIo3OB280ugjq88iBVZRqPRYLVa8Xq9pKSm0qNHD1ytrRw5cgRJltH5fDRHIlwGWOx2Wk9xszAhM5Olfj/1sozH6yUSE9a0tDREUaS+vh5RFBk2fDi1NTXY7XYURaGoqAhBEOjlcLD62DEe79KFdevWfWNZTAerVq3i008/5eGHH+avf/0rTz75JAsWLIgbjixYsID58+dTXl6OIAg89dRTTJ069RvHjEQi/PKXv6SiooL33nvvrDLif+KJJ9DpdPzmN7857WMVReF3v/sd48eP54ILLmDFihU0Nzfz29/+9geYaSfflU7zh/8rqI1g7wdZUyB7JnSdDpmXgLUHiD9svppGoyErK4shQ4Zw6aWXMnjwYHw+H5s3b+bFF19k9+7dtLa2YjAYSEhIOPNVrM0G69ZhSUtDEASKi4txOBykmUy839REWJbpm5zMh4cPsyEYZEwggF6Wow4/kQiacJiA0cj1Bw7g+1qcc/Dgwdjtdurq6ti6dSvbi4oYpVaTBjS53RQWFmK1WhEEgSE9e7K2poaQSsXAtDQi4TBtWi1tioKF6Iek0WgkXafjqUCAElGMi+rx27MdZUxer5ddwGAgF/AqCkpsnIgk4fP5CMeSvirKy2lyOgkFg1gVBVmSmBtzefr6dnxOTg6TJk3i+kAAY309jV4vkiRFS6C0WlwuF6FwGK1Wy+OhEMHaWhxqNQUFBVitVgKBAMFQiGavlwuysthqt3Pnww/j8/kYM2bMN76evXv3pqWlhddee41FixYxfPhw7rnnHg4dOsSMGTNYs2ZNvDtOaWkp69atQ5IkzjvvvH87piiKXHHFFezcuZOHH36YCy+8kKSkpNO6hH4o+vbty8svv0xaWhpZWVmndawgCHTp0oVly5YxceJECgoKeO655xg+fDhWq/UHmnEnp0unqHbyo9IRG+3ZsydjxoxhypQpJCcnU1FRwapVq3jrrbeoqqoiHA6TmJgYN7o4LdLTYfVq8Puxp6TgDwQ4cuQImRkZDEpM5I2KCpYUF3M4EGCiIJCj1aLVaAiHQqjVanLtdlZnZPBJQ8MJ3WYgKmAPPvggmZmZbNy4EUmSSMnLI7+8HL8o0uZ2E4lEUKlUlJWVUSAIlBoMvNHayifhMG6rlUsHDGBA9+643W68ra1E/H7uA1QGA5FIBIfDwcMxUaqtrSUcDsfnIQFtAwaQ2tBAL5WKiCyjqNUnOTCp1WoMGg3WYBBvJMKvFYXDsTZ0X7dYbG1t5dChQ8yLRPB4vYRkOe58FIrVzIbDYcKhENuBgSYTxnCY+oYGtFot7rY2hgweDIJAfUUF4ogRjJo9m8cff5w33niDiy666Bu3Yfv27UtNTQ1vvfUWs2fPZubMmfzlL39h06ZNJCcnA9FOLeFwmM8//5zt27dz8OBBLrnkkn+bTSsIApdeeillZWXcd999nH/++fEwwE+JVqulR48ePPHEE4wZMybaT/Y0SE5Opri4mMbGRgYMGIAsy2zatOkbbzI6+XHpFNVOflLUajUZGRkMGjSIyZMnM3z4cEKhENu2bePFF19kx44dtLS0oNPpSExM/M9WsaIIWi1s3AhmM8kOBy2trdF+qbJMVksLY3U6hqvV2GUZrUaD3W7H7fFgE0UErZYto0cTEgSOHTt2Qp1qR6zuX//6F5IkEQ6HKQsE+G12NtpQCL+iEAwE8LS3Y7FYiHi95ASDnCsIjFKrmdqtG9lWK6Ig4PV6MXo8vKUofEJUuMxmMy6Xi3Xr1uFyuQiHwyf1VA0JAh9rNHi1WoaaTNjDYXSShJqoNWGCSkXPjAwIh3kjGOReoJxov9a77rqL4cOHs2nTphOeMo1Gw0yPB0WtRhFFdDpd1PJQUZBiJhMAnwPD7HYyjUYkSaKivBxbQgKpKSnY7XYSNBrebmpiXVERS5Ys4eOPP+axxx5DkiTOPffcU4qgIAgMHDiQ0tJS1q5dy8UXX8yvfvUrdu7cyQcffEBxcTETJ05k/Pjx5ObmsmHDBkpLS3n//feZMmXKN8Ynx48fj9vt5ve//z39+/enW7du3379/MA4HA58Ph/r169n1KhRp70zk5ubyzPPPMO4ceMoLCzkpZdeol+/ftjt9h9oxp2cDp2i2slZhcViIT8/n1GjRjFlyhTS09OpqqrinXfeYeXKlVRWVhIMBklMTPzmZI9evaCyEvbvRzCbcaSmUnbkCE1OJ1qNhtzc3KjVn8+HSq2mX9++OCsrSTIaMS9fznUPPBAX1A5RU6lUqNVqAoEA4XCY5OTkqBGF18unHg+XiyJhv5+ISoXFYqG5uTkuyEpMnJqdTqqqqigvL8fgdlOh03GPIBCM/Y2v+/+aTKaTtmuNRiNag4HNra2Yrr+e+tRUioqLkbRamiWJaq2WVRoNR+fMYfHu3bgikXjLsJycHGbPns0LL7yAVqvFYrEQCASQJImrVCq0sdWvIIqIgoAYc/ZSq9VYrVZ2AL01GvKSk5FlGX8gQLvHQ31DA8lJSRiBi554ghqViocffphZs2YxYMAAnn76aVavXs3IkSPjq8/jEQSBwYMHs2/fPj766CN+8YtfxAXzjTfeYNu2bVx99dX06tWLCy+8kLVr11JbW8vKlSsZM2bMCRnTX2fkyJFoNJp47XRBQcF/cin+oBQWFrJ27VrC4fBpNwawWCy0tLSwb98+RowYgVqtZsOGDd/ZtamT7xmlk05+JjQ0NCjr169XHnzwQWXGjBnKbbfdpvztb39TDh06pEQikZMPCAYV5c47FWXgQOVwerrykdGorFOrlfc1GqUkP18JT5ig7EhNVT4zmRRlyBClIilJeWvyZEXZsUNZ/8QTSheHQyGaV6RYLBblueeeUwwGQ/xngKJWqxVA0Wg0yiBRVDaB8gUo74ui8rHJpKxVqZR/QvxrrSgqxV27KoeMRmU5KAmgCIKgGAwGRRCE+LgajeaEv9PxZbPZlLy8PMVutyuiKCqTJk1SmpubFb1er2i12vjvNDU1KX6/XxHF/8/eeUdFdW5h/5mhzcDA0DsMbahSFQWUIti7WJForEG82BPFrrHGaGzXgpUoRuyKiMZGbGhQbKigKCi9t2EYmLa/P5D5wrVE7xdv7v2c31qz4sq87zn7HM6affZ+9/tsJgEgIyMjio2NpbVr15KdnR0xmUzFdwBIRUWF9jIYdA2gc2pqdFVHhy6y2XSRxaKHPB4JQkKI+vWj8VZW9LufHz11cKBUDocKfXwor107uqypSedUVSnfzIxkmZlERJSenk7e3t4UHBxMJ0+eJD6fT8bGxrR69WoSiUTv/BtLpVJatWoVrVy5UvE3vXHjBunp6VHXrl0V86qqqigkJITMzc2Jx+NRSkrKnz4/Bw8eJBsbGzpw4MC/+QT+tRQVFdGoUaMoPz//k+fW19fTqFGjqKCggMRiMY0bN46ysrI+g5VKPhVlpKrkfwYtLS04ODggKCgIgwcPhqWlJYqKipCUlISEhAS8fPkSTU1N0NXVbVmrUlEBunYFrK0he/4c7OpqsOVyUHMzJEIhLPX0YMZiwQSAmlwOpqoqzMrKwLl+HfaZmehZXQ1VsRgFRLB0cUFlZSUeP37cxqbWKFYul6OECKlMJgLc3WEjEEClsREMuRyqADQA6ACw0tVFg0SCfwqFWEkEIVqiQCMjI1haWqK+vv6tQqU/0lpAdOnSJaSkpKDi3j00bN2K6c3NmCCXI4IIPSQSXEhJwe7z55GZkwMmkwltbW2UlJQgJycHpaWlaGxsVHTaaW2IYOfqCq+KCjTI5ZBIpbAwN1dU8BYVFaGquhpXGhrgb2AA4zcFVQ1v0tyurq5Ql0jwpLQU3ZOSYGBgADc3N/Ts2RP37t3Dnj17MG3aNHC5XOzduxfnz59X9Ob9I0wmE/7+/khNTcW9e/fg5+cHHo+HkJAQbNmyBUeOHEH37t1hbm6Or776Cs+fP8fTp0+RlJQEDQ0NdOrU6b3Pj7u7OxwdHfHtt99CRUXlg2P/E7TqXMfHx6Nbt26f1NKttfnExYsX0bVrV2hqaiIpKQlhYWGf0WIlH4PSqSr5n4TJZMLExAReXl7o06cPunbtCgC4d+8e9u7di2vXrqG8vByqqqrQ79QJ2mPHQr9/f6iw2ShvbMTTkhKY8XjQqa1FvVyOl3V14NjYoKqpCYbW1mBoaaFZIoFdeTnmWFvDQksLa3/7DXjT6u19yDgc6IWHY1d1NQpEImjI5WiSy1EDIAvAHhYLmX374rWhIXLy8qCiogI7OzsEBgYiNTUVcrkcKioq73Wqrftgn50+jX+UliJGKoWzWNyi5kQEBgAdIrSrqkJgQQFs1dUx/PvvkXD8OIYOHYq9e/eiuLhYUaykpqYGTU1NtGvXDnliMfq+UaUSNjcr9JVtbGxgbW0NNouF06WlMKqthbi0FBaWlrCytERNbS1KSkrA09aG2syZWHvmDE6cOIFdu3bh/PnzaGpqwtKlS/Hjjz+CzWZj1qxZOHHiBI4fPw6BQABPT882qXwmk4mAgACcO3cOWVlZ6NixIywtLaGnp4cnT55g+/btcHBwgJOTEwYMGAAGg4G0tDRcu3YNubm56N2793vXKfl8Pjp06IB58+ahtrb2b0+Z2tnZKXSPWwUvPhZ7e3skJCTA3t4eHTt2xNGjR2FtbQ1TU9PPZK2Sj0HpVJX8f4Gmpibs7e3RpUsXDB48GHZ2digpKUFKSgr279+P5zk5EGpqwmzIELjOnAlTLhdNR49CzcoK9SoqeJGfj6bmZsjlcpi9+VF6kZsL0tKCjYsLdJ89gw+XiySBAO92dy2IxWI8e/YMTl5eKNTVxS9VVbgsFuMWAKmvL+y7d0favXtIT08HEcHDwwPJyclYvnw5ampqFGu4Q4YMQV1dnaJ3aSsSiQQBANYIBDBXUYGQxUKzujqapFLI0FIdLAYgVlODQCxGZ21t6KWnY2piImZ//z3y8/MBQOG4W6PV0tJSWNvZIdjXF34yGcz4fNTX16O2rg4FBQWQiMUwMzfH+ZoadORwYMHhgMlgoLCoCCpMJnSYTJRXV2NRUxPatW+PwsJCCAQC1NTUgMFgICgoCAsWLMC1a9eQmJiI+fPno6qqCklJSUhNTYWFhQVsbW0VzlBFRQUBAQE4efIkXr9+DR8fH7i5ueHu3bsICAjA6tWrIRAIEBgYiM6dO8PV1RXnzp3DkydPcPnyZQwYMOC9lePW1tYICQnB4sWL8fLlS/To0eMvldT8FBgMBry8vLBjxw7Y2tp+kkNUUVGBrq4uEhMT0atXL3C5XBw9ehTdu3f/265HiVL8QckXQF1dnULd6d69e/BpbMTYBw8g0dFBSVUVdHR0kJeXh5+kUgxgMDAmMBBMJhM3b96En78/XuXlQSAQQL+5Gac1NTH3TyTzAMBCQwPjTUww3cAAeY8eQSqTwcTEBLY8HuTBwQjevh15Ojqw5vGQnZ39lhgDk8lURKutYvcA4MNkYp+GBgRyORrkctg7OKC8vBwyqRT1AsFbES6TwYCxigpIRwejiSDR1YWhoSFyc3NRVVUFBoMBS0tL9OvXDzo6Ohjavz867NsHPHwImJigpLQUT7OyIBaLIVZTww41NXzLZiPIywtqamqQy+UQlJWhsbwcG+ztsSMjA0KhENra2i1z3mxTsrCwgLm5OQYMGAA1NTX885//ROfOndGuXTts2rQJxsbG6N27N2JiYtpsfREKhZg/fz46dOiA0aNH49GjR9iwYQMmTpyIqKgoODk54eeffwaHw0FWVhaGDx+OiooKmJqa4vjx4x9sRvHy5UsMHjwYPj4+2Lt3798qxH///n1s3rwZmzdv/qTuM0SE2bNnY9CgQQgMDMS0adPw1Vdf/e2p7S8ZpVNV8kUhl8nQ2KMHhMXFqBKLUVtbC6FQCAaDgXViMfoB8Dc1hYaGBkQiETgcDirKyyGXy8EEYMxgYKadHS4+fqxQPGqFwWDAwcYG/xCLMYHLRWVFBfLr61EvFgNEUFVTg6OdHZpLS9EoEKBKWxuLWSzcrax857H09PTAYrEgk8nAYrGgKpdjX1kZtFkskLa2QuiB5HJosFhobGxsOY+qKiRvxBpUVFXBZrGgL5Gg2sUFE+rrkZ2dDRUVFbDZbDQ2NsLOzg6JiYlYtWoVEhISwJJIgG+/Be7eBfT0INPQwIXMTKwpLIQ3gMHa2ujQoQO0NDSAqqqWLUw//IDmTp1w+PBhzJw5E3V1dSCilgYHO3di7ty5kMlk0NPTD1HscAAAIABJREFUg5qaGjw8PPDkyRPU1tZizpw52L59O2pqasDn8zFu3DgMGjRIscZYX1+P2NhYhISEYPjw4di8eTPU1NQQERGBkSNHoqKiAr/88gucnJxQW1uLoUOH4vHjx2CxWNi7dy9CQ0Pf+zyUlJRgwIABsLKyQmJi4t8qxL9r1y5UVVVh7ty5nxRpPn78GBs2bMD27dtx//59JCQkYPPmzcpo9W9Cmf5V8kXBePAA6sePg2NlBSNjY5iZmaGsvByNjY24JZfDVVUVDoaGKC4qgo6ODkrLyiCVSsFkMqHBZoPLZKKmuRlX6uvfOnaPkBAsFgjQVSTCi9paSNlsNIhEkLxZv5TL5aitq0O9VAoNfX24m5piEIOB8zU1qEBLm7/OnTuj4k1TcZFIBIFAACaTiWnTpuFoTAxM7t5FQWMjqqur0fxmK4xcLkfzm76tXC4XYDCgq6eHDm/SsA0NDZCoqcG4qgrPHR3h36MH+vXrB3t7e9TX16Ndu3a4cuUKnj17hsLCQrwsKEB1hw7QMjaGZm4uVGpqwOdyMUBfH8Y1NWA2NaH+9WtIBQJo9e4N5ooVQPv2UFVVhaenJxoaGlBZWalou/f06VOEh4dDLpfj5cuX8PLyQkFBgeJl5uTJk+jevTucnZ2RmpqKgoICZGRkgM/nKwRA/P39sXPnTkVqfOfOnfD09MT06dPx4sUL7PwpFnb6QjiZyvBVeAhEDdW4mfEMJ0+egvabl4B3oa2tjeHDh2PPnj04fPgwwsPD/zbH6u7ujqNHj4LFYsHOzu6j5xkbG+PRo0eoq6tDWFgYLl++DDabDR6P9xmtVfI+lJGqki+L774Drl0D/iBCXlNTg5KSEswvLcVAFRU4a2jgRU0NDshkCAPg9UZxSUVFBZoqKtAA0FddHSKZDLW1tZDJZCAirFRVRR8ilL2RG+RwOBA1NUEsFqO5qQkaLBbEzc0gAPZ2dlBRVUXly5fQ1tWFU3o6MkpLMXToUFRWVkIsFoPBYCjk9aRSKeIBmDc1oUYuB5PJhFgiadEP1tKCuoYGKisrFWINxsbGUHkjhi9ubgaTyQRHIMAdT090PXz4rbTotm3boKenB3d3d+Tm5iI3NxenT59GXk4OYjp0QGBNDRpzc2FlYgK5lhb2PnmCI01NUDU3x08//YR+/fopjlVZWYnBgwdjzJgxsLS0xOzZs8FisdClSxc8evQI2dnZsLCwwLRp03Dx4kVkZGSguLgY+vr6mD59OuLi4qCnpwcLCwv06tULkZGRYLFYqKioQGxsLIYPHw5tbW0cPLAPG+cPgVphIqryruN1fiGMDA1gaWkFBggvS5rxfcJrXH2mhvDho7Fu3br3pngbGxsxZMgQ1NfX/61C/K1dntatW/dJClAFBQWIjY3Fjh07kJubi23btmHbtm2fVFGs5K9BGakq+bJYsQLQ0WnZbvMGNpsNQ0NDHCssBK+5GTVCIRLkcvQG4KaiAmZrGo3BAFRUIK+rw/nmZhQ0NoLFYoHBYKAdgEVsNuTGxjA1M4OKigoIgIe7O4wMDVtk5by8WiJPBgP19fUoLSuDCpsNd0tL5GdmImjJEohEIjDfNFgHWrbbGBgYwILJxKSmJtCb9nDqGhowMTaGWCyGQCDAJZEIJ2UyXCbCEyYTDIEAnOZmsDQ0YGZmBk9PT3ANDaGVn4+eCQnIyspCp06doKWlBalUip07d2L06NHg8/mwt7fHzZs3cerUKdjz+VgQF4dUVVXElZejIjgYJ2UyCPh8yFgs5OTk4OjRo0hNTUVQUBB0dXWhqamJsLAwBAUFwcnJCePGjUNWVhbOnj2L/v37Y9KkSbh69Sr2798PS0tLTJs2DVZWVrhz5w6SkpLg7OwMPT09ZGZmQkVFBSkpKbCysoKDgwM6duyIjRs3or2LMULZ+8EsPgNNVQk0uVbQ0jVBVk4+yquFMDa3haGOGkLdCIG8chw8+wQnz6dh4MCBCi3lP6KmpoaRI0fiwoUL2Lx5M/r37/9Ja5t/Fbq6ulBVVcXhw4cRFhb20eu8XC4XZWVlyM7ORp8+fXD79m0Q0QfXlJV8HpSRqpIvB7kc8PVt0QZ+x3rT+AcPoF9UhPtEGATAQUUFLBarRcFIXR0MBqNl3bK6GtMYDNx7M09VVRWLJRL0V1dHs64uGhoawGQyIZPJwGQyocPlorS0FHq6uqirr4eGujoaGxvB4XAglUohbWqCoYoKlnTsiIzcXFRUVCgKjphMJgwNDbElOhq9jh2D9E16VyaVQtDQAEF9Paqrq5EuFMIKAAdAroYGThNhtYUF6ouLoaqqCnd3dxgZGAClpcg+cADzFyzA77//Djs7OzQ3N8PS0hLHjx9XrF/evHkT5eXl6NChA06dOoUpU6YgOjoa3t7eICJUVlYiNzcXaWlp2Lp1K/Lz88FgMNC+fXtERESAz+fD1tYWNjY2iircGzduYPr06WCxWNi6dStyc3Mxc+ZMMBgMeHh4ICAgADk5OUhMTATQIrZfVFQEPz8/aGtrw93dHRMnTkRD2RPU/RoOM2M95BUL4OzsBE12Sw9XiVSK+/fvQSRqgre3N3S0tdFYX4acZ08w+5A6apn2OHHiBKytrd/ziMgRFRWFW7du4fjx43+L+hIRYfHixXB1dUVERMRHz6utrcWUKVOwfv161NXVYe3atYiLi3vnS4SSz4cyUlXyZbF7N6Cl9U6nmlRWhgK5HOZSKbq9caStFa4kl7cIzIvFUGluRjKTidI376NcuRyLATRpaUHnjfCERCJpcZhSKQplMsQ3N+NMUxNKATwQi1GlqgpLiQRq6upQ09AASyLB/YIC/P5GlKEVImqRKSwuhn9VFcrq61FZVYWqqirU19VBJBJBTgQzVVUwpVIwGQwE8Pm4IxTCn88HX08PoqYmFBQUoKysDLoqKkg2NsadjAw0NDQgNzcXhYWFMDY2xqhRo/DLL78gMTERjY2N4HK50NTUhL6+Purr6zFq1CgAUPR8tbS0hL+/P6ZNmwYXFxekpaUhNzcX9+61vG7cv38f+/btw2+//YasrCyoqalh1KhRqKmpwdKlS6Grq4uDBw/i1atXuH79OnR1dcHlcmFubg6pVIrs7GwwGAy8evUK5eXl4PP5OJ4Yj166R2BsoImc/Bro6emhoqIcRkZGYIABFSYT5hbmaGpqQnZ2NjQ0WDAwNIOBgR58zStw9EYN4vYegq+v7zsda6sQf15eHpYsWYLOnTv/x4X4W7fZbN68GW5ubu+UdXwXrc0Srl69ikGDBuHhw4cQCoX/FbKMXxJKp6rky4HBAI4dA2QyQPXtdndJZWWY7uiIV6qqYJqYINTaGgwAciLo6+nB0NAQTU1NUBGJcFhDA1VvCpACmEyEEUFVTw8mJiYw0NeHtbU19PT1UVNfj60NDWgPYBgRmES4paoKPpsN/hslIzMzMxjq68PPyQmJIlFLNPwHmEwmtAGMYrOhaWAAfX19mJiYwMLSEjY8Huzt7fFaRwcpqqq4qaGB5OpqlAiFcFBVhS2bDRaLBQ93d4gaGlBeWIiYR49QVFQEBoMBDocDoVCIsrIy/PjjjygpKQGfz0dWVhakUikaGxvx+PFj9OnTBzKZTKFDrKam1iY16erqiujoaAiFQty+fRsPHz6EgYEBNm7ciM6dO0NTUxOlpaW4ffs2CgsLweVycenSJWzatAlqamr47rvvkJiYCKFQiIULF8Lb2xtCoRAvXryAmpoaBAIBUlNT0d9bDlf9QlQ1MGFubo7S0lIABBDA4XBa/sxgwNDQEGw2G1lZ2WhqEsHEzBLGeuqwNDfGkd9KcOzYMRgbG8PT0/Odj0qPHj3Q0NCAefPmwdPT8z8uxM9ms2Fqaort27ejW7duHx1t8vl87Nu3Dy4uLvD29sa2bdvQu3dvhfazks+P0qkq+bKorwdu3wbe/AD/kaSyMnTW08MQMzMklpSgnsFAmJ0dDA0MIJFIUF5eDnldHUqYTNzx8EBwSAjEYjE8mUz4NzdD19ISRIS6+nqUl5ejqroaRQwGMpqaMEguBwOAmaoq8phM6DEYaMfhgN5U7mqy2VBTUUFh584QCASoq6sD0BK1DB06FFbOzugvEMDY2BgcLhdsNrtly4yKCirEYix69gxzHRww2cYGkTY2uFhQAHsWCyoVFZBIJDA2NoaJmhr0Q0NR4uOD7OxsMJlMsNlsiMVi5OXlwdbWFleuXMHz58/h4+ODmJgYlJSUQF9fH5qamsjIyMDly5dx4sQJHDhwAMnJybh8+TJu3LiBjIwMZGdnw8bGBsHBwXj16hVu376NXbt2gcViYcyYMWjfvj3CwsIQHh6Onj17olu3bnj06BHS0tLw6NEjODg4oLi4GNu3bweLxcLChQsxevRopKWlobKyEkZGBpjkmwuhsBEyYqCurhb6+npoaBCirq4WBoaGbZyHNkcbxsZGePnyJcrKymBiZg0XUykM20/BxSvX8Ouvv6K2tva9PV8DAwOhrq6OOXPmwM7ODhKJBBMmTIBMJnuvM/4rsbKyQl5eHjIyMuDn5/dRc1RVVcHhcHDs2DEMGzYMOTk5qKyshKur62e2VkkryjVVJV8WRUXAoEEt1b//UgQy4eFDTLWxgReXC4FUivnZ2eikq4uv3jSTJgA1WVnYa2WFBWlpigKnThUVmCkQwKNHD6j/IaKQE+FKaSlOlpSgT0kJ2Gw2dHR0cJLBgIOBAcbZ2EAulyP72TNw1dVh4eQEnDyJiooK9OrVCxYWFqipqQGXy8Xdu3cRLZfjW2NjaNnatrG7QCTC9CdPsMXNDWYsFq5UVmLlo0eY6egIXzU1RVRqpa4O1vbt0OnVC5WVlVi2bBkSEhIAtKx3urm5QSwWIygoCBUVFTA0NISWlhaOHj36VpNvuVwOgUCA2tpa1NXVKf7b+qmtrUV6ejquXLmCpqYmsNls+Pv7w8nJCVwuF1wuF7q6usjPz8fdu3dRWVmJqqoqfPPNN2hsbMTOnTuhpqYGV1dX2NjYoKamBlXPf8WGSDFKamQQi8VgMlXAYmmAzdaEVCqBrq4u2rVzx7+6R6lMigcPHqChQQjfdlbQ8v0ev+UaYMyYMWhsbERISEjL/tz3dD06fPgw5s6dC0dHR3h4eMDT0xOjR4/+Nx6+T6epqQnTpk3D2LFjERAQ8FFz5HI5pk+fjoiICPB4PMyZMwc7d+6ElpbWZ7ZWCaB0qkq+RKZOBdLT22yr+SgaGwGJBOPMzPA4NxdZWVktsoEyGTapq4MfEPBW0+nH9fX4MTcX8Z6eAIMBQX09Zj9+DCu5HGMsLWFiYgI1NTXkPngAVrt2sL54EUBL0Ymurq7iOM+fP8eUgQPx44sXkOjqwsbODsZ/sP9AYSFSysvBABBqaIg7BQXoYWaGEC4XNbW1sDY0RHlVFfyqqiCWy2FpaQkWi4WiN/txBQIB/P390bdvX2RnZ2PhwoUIDw/H3bt34ePjgxUrVrx3r+eHaGpqwuLFixEXFwepVApLS0tYvnlJ4fP50NHRQUZGBjgcDm7fvo2amhro6+ujffv2ePnyJfLz8xUNEow1BRjjWwWeEQPq6up4VtiEk3cIHe2BWy9a1KOmDrGHpbkpdiXno75RisFdTDG8qzkIhAs3niDh13xUSExg7NgNjo6OOHr0KAoLC+Hg4ICTJ0++JfDfyoIFCxAXF6do5vCfcqoA8OzZMyxfvhybNm166+Xmfdy/fx/bt2/Htm3bsHXrVhgYGOCrr776zJYqAYC/T5dLiZK/i/nzAW1t4F+kAT9IUxNQVwesWAErJyfk5OQours8ZDBADAZu37jRsmZYVKRo6u3M4YAJILm8HHIiZMlkqFRTg5WlJVTV1JCdnY0XL17AiMPBqTfN2YGWrRUSiUShtOTo6IgtJ07ghYsLzFVU8PjxY1y/cQP5+fmQE2G0pSUO+fjgFx8fTLS2xjwLC3ThcFrSmlIp1IVCWK5dix27d0Mmk+Hp06fIeyO/uGHDBly/fh0sFgtTpkzB/fv38fvvv8PAwACPHj2Cm5sbhg4diqFDh+LZs2efdKtZLBbWrl2L9PR06Ovr4/Xr13j48CF69OiBmJgY9OzZE9ra2pgyZQpKSkqwZ88eqKurIzs7GzNmzMDs2bOhpqYGbW1tfDPEG2czWWhi6EIiEUNdXQPCZgakcmBmbwaCnAkbj7zApYwKbIxxww/fuOBwajHKqpvBAAP2trb4R7gdRvk2QF1dHYWFhZg3bx78/f2Rk5ODwMBA3L17961rKC8vR2VlJY4cOYJr167h5MmTn3QP/l9xcnJCv379sGHDhg82c/gj3t7eMDMzw7lz5xAREYGUlBTFkoKSz4tyTVXJl4e2NuDvD/z6a4tjZbPfWQ0MACBqWYdtaACWLgW6d0fnzp1x7949iEQi1NfXQ43Dwarp02FTXY1mVVUUFBQgNy8PQqEQHC0teOvr41BxMeILC9Esl8OcxYIxi4UACwuYmJpCRS6HoLoa3woE+OfOnTh+/Dji4+Oxfft2SKVShY6rkZERTpWWwpUIXiwWoKWF1/n5yMvLg1giAZfLhcqblHZjYyOkEglYTCYYlZXQnjULGDUKjo6OMDY2xvPnz1FXV4f6+no0NDTA398fAQEBKC8vB4vFwrJly8DlctG/f38MGzYMI0eOxK1bt7B06VJkZmbC19f3k/ZxVr5pzh4bG4urV6/i/PnzuHLlCqytrSEUChVba5ydnXHt2jWMHz8e69evBwAkJCQgPz8fDa8uw4QLWNs4ILijA56/qsCjfBliR1hBLG5CO74pLj6S4LsIZ5gasMDlqOHWkxpYGrFgacSGvo46LA1UwHMLxLqDmXj16hV0dHSwe/duVFRU4Pbt2zh8+DCsrKzQrl07he0bNmzAgAEDEBISgsrKSpw9exaFhYX/USF+FxcXXLhwAY2NjYp2fH+Gra0ttmzZgvDwcNTX1yMrKws+Pj6f2VIlykhVyZcJnw8cOAAEBAAVFUBpKSAStVQGy+WAWAyUlbV8TE2BbduAN6pB6urqWLlyJXR0dODk5ITx48dj0aNHaGxsBN/eHkFBQfDw8ECzWIzbv/+OisxMzNbWRqK3N2IdHFAlkcDwjRQek8GAvlwO3j/+gRmLFgEAHjx4gOfPn6OhoeGtApWvxo/HMi4X0h49YMNmI9DJCa6Ojqiursa1q1eRmZmJRpEILABqVVVQFQpxMyAAiIpSHOPrr79GcHAwOBwOvvnmGxgaGqJfv34YMWIEAgICMGvWLPTu3Rt6enoIDAzE5MmTAbRo016+fBkNDQ0ICAjAzJkzUVtb+1G3u7KyEsbGxhgxYgSePXuG6OhovH79GnPmzMGNGzcUDQVa97T2798f6enpaGpqQocOHZCRkYEH5aa487wB9x61aBd7e3tCX4eN8vJymJiYQthQB6lUCg01qeK86qoMiJpbov2iChG+P5CHqRsfwsrKCtXV1di1axfu3LmD9evXY+3atZDJZJgyZQq+//57AEB6ejpEIhECAwMBAObm5pg9ezauXLmCcePGvbdF31+NiooKZs2ahaNHjyIvL++j5tjY2KBjx444duwYhg8fjitXrrSobin5rCgjVSVfLtraQK9eLc5SUxN48aIlcm1oaNlyExoKLFwITJkCWFi0mdq6d9DJyQlLliyBbfv2uPvbb9B69AhMbW3o6enB3MwMVtbWyGpoQEVJCV69fInLFRW43dSEaFtbsFVUgOpqkL4+aPlytA8MhLu7O27duqVo+3b9+nVUV1fDw8MDLBYLurq6eF1YiDweDx5Tp4Ihk4GTmwsrPT0Ya2mhqaoKxS9eoE4oxA17e2j98AMuNTQg9A/NqxkMBgICAvDo0SN8/fXXiImJQXBwMA4fPoyrV6/i+PHjmDBhAlauXInu3bvj7NmzWL58OXJzc9GzZ098/fXXCAwMxNGjR7Fq1SrU1tbCz8/vg9s2Ghsbcf78eQwcOBDq6uro0aMHhgwZgtTUVDx79gy7d+8Gm81Ghw4dkJiYiP79+0NXVxenT59GREQE7ty5AzMTI/haN0JDDaCGV6gVEl6Uq2Fsf2e8fv0KKqqqSH0sg5VmCTiaauByubh4twJ8Sy3Ymmnih0MvYGPExPwfEhA5YQbs7e2Rm5uLPXv2gM1mY9KkSQgICMCZM2dw9c0LipqaGjIyMpCUlISTJ0/i5cuXKC4uRseOHZGeno7z588jPDz8PyIHyOFwoKenhz179qB79+4fdU4HBwds2bIFPXv2hFwux/3799GxY8fPbusXDSlRouQvQS6RUN6YMZSnr0+5jo7U3KMHUb9+dK5jR4q0sKCBBgY0QkuL/qmhQdd1damYxyNJaCjtW7KErK2tadq0aZScnEwrVqwgU1NT6tu3L+3bt49CQ0OJx+PRmDFjKCMjg8rKyigiIoKqq6tbTlxbS3T7NtGlS0SpqfTjqFE0bOBA4nA45OvrS4MHDyaZTNbGVolEQsOHD6e6ujoiItq2bRslJCTQkSNHyMfHh6ytralfv370+++/ExHR/fv3acCAAWRjY0OzZs2impoaIiK6dOkSBQYGkpOTE23atOmt87Qik8koJiaG9uzZQyKRiJqbm+np06d06dIlGjBgAFlZWZGmpiZ5eXlRly5dqLi4mBobG6l///6UmZlJDQ0NNHToUPK0UaVNE/So7Egn2hOtSX18NEiYEkrSy30oY4MV+fGZ9NtqK7q8WIvurjejWcNt6MpPfkSp/WhmuAUdWuJPcpmMCgoKKCoqir777ju6cOEC8fl8mjRpEkkkEnr9+jV5eXmRrq4u+fn50bNnz6i6upqqq6tpzZo1tGvXLqqvr6eamhoKDAykbt26kUAg+ExPVVvkcjmtWbOG4uLiPnpOQkICrV+/nurr6ykiIoKKi4s/o4VKlOlfJUr+IhiqqrCJj4f5ypXQIkLB3bsof/kSPQwMkODtjVP+/kjs3BnR7drBUUcH6c3N8Hv+HMmPH6O5uRmHDh3CggULcOzYMXTu3BkhISF49eoVfv31V5w9exbq6uoYMmQIhg0bBg0NDRw8eLDlxFwu0KkTEBYGcUAAtty4gYq6OgQHB8PPzw9Xr15F+/btsXnzZoV4w9OnT2Fpaamo/L127RpCQ0ORnJyMQ4cOISMjAw4ODhgxYgT69u0LkUiE06dPIzExUbE2N2/ePHTq1AnXrl3DihUrsH//fnh7eyMhIeHtvq5MJhYvXozi4mKMHz8eY8eOxfXr1wG0RPvPnz/H5MmTkZubi1u3bmHGjBmQSCSIiorCmjVrMGHCBPj7+yO4+xAIG4V4mfMMTk6OUFVVxa1bt/D69St4uLtDW1sbVVVV0NLSgkQiRVFhEWrr6gCSY3w3Hfz2UhfDR4zAli1bFCnd7t2749KlS3jy5AnCwsKgqqqKtLQ0BAcHIysrC3369EFBQQH09PSgoaEBDQ0NaGtrQ1dXFxcuXICqqip69uyJ6urqz/+MMRj4xz/+gVu3biEjI+Oj5oSHh+PBgwcoLy/HgAEDcOjQoc9s5RfO3+3VlSj5/5KGBqr++Wd66upKeQYGVO/iQvL27YkCAoh+/JEoN5eIiB4/fkzR0dHE5XJJQ0ODOBwOtWvXjjIzM0kqldLSpUtp48aNJJfLiYhIIBDQjz/+SJ6ensThcCgqKooKCgoUp71//z45ODgQj8cjDw8Punv3Ls2YMYPi4+PJz8+PHBwcaO7cubR582ZKSEggIqIjR47Qxo0b6dChQ7R27do2l1FVVUWzZ88mGxsb6tWrF12/fp2IiK5fv07dunUjOzs7WrRoEQmFQpLJZBQXF0eurq7k5+dHycnJn3zbsrOzKSgoiDQ1NcnY2Jh27dqluPZWJFnbqGCXCV1exKKn2+2p7EhHSl2qTWmrDUmYEkrNF3rSnXVmdHmxFj3YZEWXF7Eof6cxSTNiieTvjqSJiJqbm2ns2LHk5OREV69eJZlMRrGxsaSrq0smJiZ06tSpd86TSCQ0bNgw8vHxafO3+Jw8fPiQxowZQ7W1tR81/ty5czR//nxqaGigyMhIev369We28MtF6VSVKPnMPEhPp9njxtHS776j169evXPMrVu3yNramjQ1NUldXZ1CQ0MpJSWFhEIhzZw5kw4ePPjWnPnz55ObmxtZWVnRwIED6cKFC7R9+3ZycXEhOzs7MjIyojVr1tDUqVMVcy5cuEB9+vQhbW1tGjRoED1+/JjGjBlDDx48oIiICCotLX2nfTU1NTRnzhyys7Oj7t27U2pqKhG1pH9DQkLIwcGBli9frkjtrl69mhwcHCgsLIxu3rz5yffsyJEjZGlpSZqamtShQwd6+PDh//1SLifK3kzCY86U8YMOXf1eh8qP+tHDzdZ0aRGbXu51JXlqX3q935NufM+iF//k0s8zTKlLQEd6+vTpn55706ZNxOPxaPPmzUREtH//fjIyMiI9Pb23XjpakclkNGnSJHJzc6Ps7OxPvt5/h71799Ly5cvfeul4F1KplKKjoyk9PZ1OnDhBK1eu/A9Y+GWidKpKlPwHkEqllJSURJGRkRQXF/fWGpxMJqMRI0bQ0aNH6cKFC+Ti4kJWVlbk7u5O3377LY0aNYp+/fXXNnNEIhGNGTOGrl27RrNnzyY+n0+6urpkZGRE+vr6ZGZmRn369KHo6Og286qqqqh379701VdfkbGxMfH5fJo2bRrt3r37T6+jrq6O5s+fT3Z2dhQaGkoXL14kIqKzZ89Sly5dyNHRkdauXUvNzc0kEAho7ty5ZGNjo3Dgn4JIJKKZM2eStrY2cTgc+uabb9ret+ILJP9tEBXusaB7q9Upa6sFlR3yorQVWvT4Jy6JTnlQ49lAWjGpHbm3c6MRI0aQjY2Nwlm28vjxYxo6dGibT3BwMHE4HPr666+pubmZbt++TTwej3R0dGjs2LHvXTueM2cO8fl8unPnzidd67+DWCymadOm0blz5z5qfHp6OkVHR1OxYeNcAAAgAElEQVRjYyN9/fXX9Pz5889s4ZeJ0qkqUfIfpK6ujrZu3UqRkZGUkpLS5sdZKpUq/l1YWEjjx4+nGTNmUJ8+fcjMzIwsLCxozZo1beacPXuWFi5cSEQtacixY8eSs7MzsVgs8vb2plWrVtE333zTxoaLFy/SmjVrSC6X08SJEyk8PJw4HA516tSJ4uPj3+sw/ohAIKBFixaRvb09hYSEKH7YT5w4QX5+fuTi4kIbN24kiURCZWVlNHnyZOLxeDR69OhPTj1mZ2dTYGAgsdlsMjU1pZ9//vn/fimXE1U/pMor0XRtpRHd+F6Lig51pEtr21F4kClt3LCOJBIJrV27lng8Hg0bNoycnZ2pf//+VFZW9sHzFhUVUVBQEAUEBNDr16+pqKiI2rdvTzo6OhQUFKQo1vpXVq1aRXZ2dopo/nOSn59PERERVFhY+Kdj5XI5zZs3j86dO0dnz56lxYsXf3b7vkSUTlWJkr+Bly9fUmxsLE2dOpUyMzPfOaa6upqmT59OW7Zsofz8fJo8eTJxuVyys7OjWbNm0cuXL0kikdCkSZPowYMHbeZGRUWRl5cX6enpkZmZGR08eFDhLNesWUMXL16khw8fUnR0NC1btowSExPpp59+Ik9PT3Jzc6NVq1Z9VEVrQ0MDLV26lBwcHCgoKIiSk5NJJpNRYmIitW/fntzc3Gj79u0kk8koLy+PRo0aRTwej2JiYqiqquqT7tnhw4fJwsKC2Gw2+fn5vZXKlclktHXrVrKzs6MxY8bQiRMnqF27dhQWFka5ubn0+PFj8vPzo/bt21PPnj2Jz+fT6dOnP3hOiURCUVFRxOfz6eLFiyQSiSg8PJy0tbXJ0dGRsrKy3jlvx44dZGNj89512L+S5ORkmjlzJkkkkj8dm5OTQ6NHj6b6+nqaMGHCe589Jf8+SqeqRMnfhFwup+vXr9O4ceNozZo174ycGhsbafHixbRs2TISiUSUlpZGYWFh1LdvX7KysqJu3brRvHnzaPr06W3W1g4cOECxsbE0b9488vb2Jg8PD3J2dqa5c+fSoEGDqKqqipYtW0bbt2+nCRMmkFgsJqIWx3T48GEKDg4mW1tbmjZt2kdFQSKRiFasWEF8Pp86d+5Mp06dIplMRj///DN5eXmRp6cn7d69m2QyGT18+JD69+9PNjY2NH/+fBIKhR99z0QiEU2fPp04HA5xOByKiYkhkUjUZkxRURENGDCAHB0dKT4+nqKiosjGxoY2bNhAzc3NNGfOHOLxeDRkyBCytbWlqKiot47xr7Q6ybVr15JMJqOFCxcSl8slExOT96ZfExMTycbGhuLj4z/6+v4d5HI5LV26lPbv3/9R49etW0cJCQl0+fJlmjNnzketySr5eJROVYmSv5mmpiY6ePAgRURE0MGDB6mpqanN9xKJhDZs2EAzZ86k2tpaOnv2LH3zzTeUl5dHq1atIh8fH+JyuW3WLW/evEmTJ0+mmTNnUmRkJMlkMjpz5gwFBQURh8Ohvn37Urdu3Wjq1Kl09erVd9qVlpZG4eHhZG1tTSNHjqR79+796bWIRCJavXo1OTo6kr+/Px07dowkEgnt2rWL3N3dycfHhw4cOEAymYyuXbtGXbt2JT6fTz/++ONHRVqtZGdnU+fOnYnNZpOZmRkdPnz4rTEHDhwgPp9PgwcPpsTExDZR6/Xr18nd3Z0CAgKoU6dO5OPjQxkZGR885+3bt8nFxYVGjhxJIpGIEhMTycDAgHR1dd9ap20lJSWFbG1taePGjR99bf8ONTU1NHr06I9at27d51xRUUHR0dF09+7dz2rbl4bSqSpR8l9CeXk5rVmzhsaNG0fXr19vE0HI5XJKSEigSZMmUXFxMcXHx9Ps2bMVDnjv3r3k4OBA1tbWFBgYSKtXr6bBgwfT2LFjaeTIkYrjJCQk0Nq1ayk4OFixVWTTpk0fjNRyc3MpKiqKeDwedevWjc6cOfOn664ikYjWrl1Lzs7O1KlTJ0pMTCSJREJbt24lV1dX8vX1paNHjxIR0alTp8jX15fatWuniGY/lkOHDpGZmRmx2Wzq0qULvXjxos33VVVVNGrUKLKzs6PNmze3iVoFAgFNnDiRbG1tqV+/fsTj8WjVqlUfPH9ZWRmFhoaSr68vvXjxgu7cuUM8Ho+0tbXpm2++eefcmzdvkr29PS1ZsuSjr+vfIT09ncaPH08NDQ1/Onbfvn20adMmunnz5ltZDiX/byidqhIl/2VkZmbS1KlTKTY2lnLf7Gdt5dy5czR69GjKysqidevW0YoVKxQ/5AsWLKATJ07Qxo0byc/Pj9hsNllYWFBoaKhi/syZM+nmzZs0bNgwioiIoIULF1JAQADZ2dlRdHT0BytCa2pqaMmSJeTk5ETt27enbdu2/Wl02dzcTD/99BO5uLiQr68vJSQkUHNzM61fv56cnZ0pICCAkpKSSCaT0b59+8jd3Z18fX3p5MmTH32/RCIRTZs2TZESnjlz5lvR/pkzZ8jFxYV69OhBP//8c5uo9dSpU8Tn8yk4OJhcXV2pe/fuVFRU9N7zyWQymjp1Ktnb21NycjKVlJRQhw4diMPhUGho6DvXojMzM8nZ2ZmmTZv2SS8Nn8rWrVtp3bp1fzqudb9qbm4uTZ8+/d/a9qTk3SidqhIl/4XIZDJKSUmhyMhI2rp1q0JOkKglIomMjKS0tDRasGABbdu2jeRyOT1//pzGjBmjcCjjx48nc3NzYrPZ1LFjR1q+fDkNHjyYfvnlF5owYQItX75cccy0tDQaOXIkWVtbU8+ePenYsWPv/fGXSCQUFxdHvr6+5OjoSAsXLnxvJewf52zevJnc3Nyoffv2FB8fr0gV8/l8CgwMpPPnz5NEIqH169crnNxvv/320fcsOzubAgICiMVikYWFxVuOWSAQKCLV5cuX06RJkxRRa1lZGYWHhxOfz6fQ0FCyt7enxMTED54vPj6ebGxs6PvvvyeRSETDhw8nLS0tcnJyeitiJmqJ+N3d3WnMmDGfzbE2NTVRVFTUe1P6fyQpKYmWLFlCd+/epejo6M/q7L8klE5ViZL/Yurr6ykuLo4iIyMpKSlJse3m2bNnNGbMGDp58iTFxMQoUqlr1qyhI0eOEIkq6Ld94+jYfGtKXmRKj+O70k+TzKiDoxZZW1tRQEDAO9V/KioqaPHixeTq6kpubm60dOnSD1bpJicnU48ePYjH49GkSZPe6Uz+SGuFrru7O3l7e9Pu3btJKBTSsmXLyMHBgbp27UqpqakkFApp4cKFZGtrS3379qX79+9/9D07dOgQmZqaEovFopCQEHr1L4IbqampCo3huLi4NlHr7t27yc7Ojrp27aqoIv5QFXRGRga5ublReHg4CQQCWrZsGWlra5OJick7t9SUlJSQr68vDRo0iJqbmz/6mj6FnJwcioyM/NMtQ62V4/fu3aM5c+bQ5cuXP4s9XxpKp6pEyf8Ar169ogULFtCUKVMUDqa4uJgmTZpE27Zto7Fjx1JqaiqVPr9Kp5e5kDTZh+oOO9Kj9Tp0b602yX/tQsX7rOj1ThNKmqtJw7rokJeXJy1btuydP74ymYyOHj1KPXr0IGtraxo1ahTdvn37vfbdv3+fRo0aRdbW1jRo0CCFnOH7kMlktGPHDvLw8CBPT0+Ki4ujuro6WrBgAdnZ2VGPHj3o5s2bVFVVRVOnTiUej0cjR458Kx3+PkQiEcXExJCWlhZpa2tTbGxsm1R1c3Mzffvtt8Tj8ei7776jiRMnKqLWvLw8CgsLU6Ss3d3d6caNG+89V01NDfXs2ZN8fHwoOzubjh07RgYGBsTlcmnXrl3vHB8cHExhYWGfTYj/6NGjFBsb+6fR582bN2nq1Kn08OFDmjBhwicViyl5N0qnqkTJ/whyuZxu3bpFEyZMoBUrVlBJSQnV1tbSrFmzaPHixbQ8pis1nHCnkngevd7vTo0pYXR9hR5dX6FHsit9KOMnc7q73owertcjcZIHPUgIpz69upOVlRUNGjTovQVI2dnZNHnyZLK1taWAgADasWPHe6OsoqIimjFjBtnZ2VFgYCAlJiZ+8IddJpPR7t27ycvLi9zd3Wnbtm0KSUQbGxvq06cP3blzh/Lz82nMmDFkbW1NUVFRfxqF/dH2Tp06EYvFIisrK0pJSWnzfUZGhmLv6saNGxVR64sXL2j16tVkbW1NQUFBxOPxaMGCBR/swvPtt9+SnZ0dnThxgu7fv0/W1takpaX1znVUkUhEvXv3poCAAKqoqPioa/kUWnWLWzMY70Mul9N3331Hly5dokWLFr11f5R8OkqnqkTJ/xjNzc10+PBhioiIoP3791NNTQ3t/WEc5W03pIcbTKj2dBBl/GROTb92p2vLdenq91yqPxNMd9aZ0fUVulR40IfoSh+iFB+ih0vp9atXNGfOHHJxcSE3NzeKjY19Z2q4sbGRNm3aRL6+vuTg4EDTp09/K7XailAopDVr1pCbmxu5u7vTunXrPlhhLJPJKD4+nnx8fMjNzY02b95MZWVlNGPGDOLxeDRw4EB68OABPXnyhAYNGkQ2NjY0Z86cj470Dh06RCYmJsRisahbt25tCpFkMhktX76ceDweRUVF0YQJExRR6/3796ljx47k4eFBrq6uFBQU9MEUd+ve1Pnz51NpaSn5+vqSpqYm9ejR4639uJ9biL+8vJwiIyMpJyfng+OysrJo7Nix9PjxY4Uso5J/H6VTVaLkf5TKykpat24dxUwaTjVH3Ch/nyPdWWdKGT+ZU+6+dpS7z43urDOlK0u0KP+AF6WtNqBbawxJerkPUWq/N47Vm6jwDBG1OJdTp04p+pv26tXrvZFmamoqDRkyhKysrKhv377vjXJlMhkdOHCAOnfuTPb29jRr1qz3iva3jk9ISKAOHTqQq6srbdiwgQoKCmjKlCnE4/Fo6NCh9PTpU7p16xZ169aNHBwcaNWqVR/lCEQiEUVHR5OmpiZpa2vTokWL2ticnZ1NXbt2JXd3d1q1apUian3+/DnNmjWLrK2tyd/fn2xsbD6ok5yZmUmenp7Ur18/xZYeLS0tcnV1fUuiUSaTUVRUFLm6un4WIf6rV69SVFTUW9XQ/8rq1avp8OHDtHLlSjpx4sRfbseXhNKpKlHyX8alS5fou+++++jxRdeW06s4Y3qyzY5e7nWjtNUGb1K95vRoC48uLmTR/Y1WdGmRJpUd6djiUFs/F4KJrg5u0dD9A2VlZbR06VLy9PQkR0dHmj59+ju325SUlFBsbCw5OzuTp6cnrVq1qk2l8h9JTU2lAQMGkLW19Z8KFbRKHXbs2JGcnZ3pxx9/pLy8PJo0aZJifTUnJ4dSUlLI39+fXFxcFHKIf0Z2djb5+vqShoYG8Xi8NgU6MpmMNm/eTLa2thQZGUljx45VRK2pqank7u5OXl5eZGtrS8OGDXtv1XNdXR3179+fPD09KTMzk1avXk0cDodMTU0pLS3trfGfU4h/3bp1tHXr1g+OKS4upoiICMrMzKTIyMhPUrlS0hZlk3IlSv6XkUtgLv4N1vbuMDIyQl1dLTgcDhoahJBIxGhqaoZMJkNVVRU0NTVhZGTUdr4qB2gsBGoz2/xvY2NjLFmyBPfu3cO2bdtQXFyMbt26ITQ0FHv27EF8fDxiYmIQFRUFd3d3PHnyBN9++y0uXrwIDw8PjB07Fg8ePGhzzJCQEJw+fRoXLlyAmpoa+vbti969e+PChQtvXRaTycSIESNw69YtLF++HCdOnEDv3r1hb2+PixcvgsViISwsDImJifjll1+wYMEC7NixA76+vjhy5MgHb5mTkxPS09Oxb98+NDY2ok+fPujduzfKy8vBZDIxdepUXLt2DXV1dbh16xYiIyOxZ88erFixAgcPHoSXlxfkcjlycnIQEBCAixcvvnUOHR0dnDp1Cv369UP//v1hY2ODgwcPQiwWo3fv3ti/f3+b8T/88APGjx+PESNG4MqVKx+0/1OZPHkyMjIykJ6e/t4xZmZm6Nq1K65fvw4fHx8kJSX9pTZ8SSidqhIl/8tU3QWkAjBU2DAyNIK7uwe4XF2oq6ujoUGI+vo6SKVSSCRiODrywQCj7XwGo+VTcOKdh2cymQgLC8ORI0fw8OFD9OrVC3FxcZg/fz5KSkpgaWmpGPfVV1/hypUrSE5OhoqKCgYNGoSQkBD8/PPPkEqlimM6OTlhz549yMjIgLe3N2JiYuDn54c9e/ZALpe/df6hQ4ciLS0Nq1atwpkzZ9C3b184ODggJSUFMpkMwcHBSE1NRXJyMsaOHYslS5YgMDAQly5d+uCti4iIQH5+Pr7++mtcvXoVDg4OWLlyJeRyOSwtLXHmzBnMmzcPhw8fhr29PSwsLDBgwAB4enpi/fr1EAqFYLFYmDhxImbNmtXmGlttX7FiBX766ScsWLAA165dw2+//QZdXV1MmTIFc+fObXO9sbGxmDNnDiZMmICTJ0/+6Z/+Y9HS0sKsWbOwZcsW1NTUvHfcyJEjcePGDQQHByMpKQkCgeAvs+FLgkFE9HcboUTJl0plZSV27tyJJ0+egIgQFBQEPp+PX3/9Fc7Ozrhw4QK0tLQwZcoUtG/fHgBw6dIlHD9+HJWVleCq1mKo22v06uIEAMjMrcf6I7no2UEPB3/NhUjUiF4eBG0OC/dLjFHfKMXgLqYY3tUcAPC8oAE7k16gsEYV6uaBCAgIwMSJE6GqqvpBu3///Xds27YNZ86cgZGREWJiYjB+/HhoaWkpxjQ0NGD79u04dOgQhEIhBg4ciBkzZsDc3LzNscRiMeLi4hAfHw+RSISRI0di5syZ0NbWfue5k5OTsXbtWpSWluKrr75C//79sXr1aqSnp6NPnz6IjY1F/P9p776jorracIE/gzCMiDQNFmBmGEC6oIBRPkRUomKsqBQFBJWgWInGJAqWqNGYD7EA9lhIbESxJKBBEnvBhgqKil1EgShIZ8p7//A69/KhKYZIou9vrazlmnPmnH0OK+uZs8/e7964EZs2bUK7du0wb948uLq6/ub1XLt2DUFBQbh8+TLatm2LTZs2oWvXruq/0cSJE3HmzBn0798fBw8eRKtWrfDVV19h/vz5uHjxIrS1tWFgYIB169bB3t7+pccfPnw4jI2NkZiYiMDAQFy6dAk9e/ZEcnIyRCKRet/t27fj008/xdy5czFy5MjfbPefkZSUhJs3b2L27NkQCAQv3WfXrl24cuUKDA0Noaur26Dnf2c0cvczY+8spVJJEyZMoLVr11JVVRXV1NRQTk4OHTx4kAYOHEj79+8npVJJP/74I4WEhKjrs2ZmZtLDhw9JpVLR5QNfk6+7AeV9253ol350ab0nDXBvRVtjOpD8YF/67lNL6mYD+sS3JVXu96G723qSb9fW9GjnB0S/9KMb33an3G/eJ8Whoep1T//McmVffvkljRw5kjw8PEgikVBISEi9d4YqlYrS0tLUA6AGDRqkXtz8f+/Hrl27qEePHiSVSikyMvI3115NTU2lbt26kaWlJcXExNDJkydp0KBBJJFIaNKkSXTz5k36+OOP1euo/pFFub/99ltq2bIliUQi6tevHxUXF6u3paSkkK2tLX3wwQcUGBiofte6atUqkkgk1L59e5JIJK8srl9WVka+vr5kb29PZ86coaCgIGratCk5ODjUK4v4ohB/XFzc77b5j5LL5RQVFUX79u175T41NTU0atQoOnLkCAUGBv7p5fkYv1NlrNFcv34dT548QVhYGEQiEYRCIezs7AA8f6fZu3dvdffrkydPUFJSAgBwc3NDmzZtIBAI4GBnjQ6WOsi58/+66jSbCODn1RaaTTQwuLsVmhsaY/RABzTVbgJxq6YwM26K248qAQCWJs1gbaqNJtr6MDY2Rp8+fZCdnf2Hr0EoFKJXr144evQo9u7di6ZNmyIoKAhubm5YtGgRSkpKIBAI0KdPH+zZswfHjh2DTCZDZGQkXF1dsWTJEpSXlwN43l06ePBgZGRkYMeOHSgqKoKHhweGDRuGM2fO1Du3j48PDh06hMTERBw/fhwjRoyAnZ0dkpKScOvWLfTs2RMaGhpIS0uDnp4evL29MXr0aDx8+PCV1zNixAjcv38fQUFByMjIgEwmw9dffw2VSoVBgwYhMzMTUqkUJ0+ehLe3N9atW4fk5GRs3rwZLVq0QJMmTbBkyRL0798fhYWFdY6tq6uL5ORkBAQEYNiwYfD29sbcuXNx+/ZtuLq64uzZs3Wu7bvvvkNCQgJmzZr1h/8ev0VTUxNTp07Fli1bcP/+/ZfuIxQKERISgpSUFHTv3h3JyckNcu53CYcqY42kuLgYxsbGaNKkSb1tBgYG6n9ra2sDAKqrqwEA586dw7Rp0xAYGIiASQk4d6MSzyrk6v2b62hCQ+N5955Q8/n/4obNtdTbhZoCVNUoAQD5RVX4YnMegr/Mgp+fHzZv3oxnz5691vW0b98eq1atwtWrVxEZGYn09HQ4OTnBz88P6enpUKlUEIvFiI2NxZUrVzBu3DikpKTA0dER4eHhyMnJUR/rxYCjY8eOoVWrVvDz80OPHj2wa9eueu9dP/jgA2RkZGDdunXIzMxEaGgo7O3tsWbNGmRnZ6Nfv34wNjbG7t27UVZWBnd3d3z88cfqHyn/SyQSYe3atbhw4QIsLS0RHR0Na2trnDlzBrq6ulizZg02bNiAM2fOQE9PD0ZGRhg5ciT69++PsLAwKJVK3Lx5Ex4eHvUG/GhoaCA6OhoJCQmYN28e7t27hx07dqC6ulr97vqFLl26ICUlBcnJyZg0aVK9634dJiYmGDlyJL7++mvI5fKX7uPp6QkigomJCQ4fPlzvxwH7bRyqjDWSli1boqioCEql8g9/Ry6X48svv8TgwYORlJSEbTvT4GLXBqSsea02JO65A9OWQqxZ/y127NiBkJAQ0F8cZiEUChEWFoaMjAxkZGTAxMQEEyZMQIcOHTBr1iw8evQImpqaGD16NI4ePYrk5GTU1NTgww8/hLe3N7Zv364OELFYjPj4eFy+fBk9evRAdHQ0XF1dsWLFCtTU1L3m7t27Iz09HRs2bEBWVhYiIiLg4OCAZcuWITMzE8OGDYO9vT2SkpJw9epVuLi44IsvvlD/WPlf1tbWOHfuHNavX4+nT5+ia9eu8PX1RUlJCby8vHDq1Cl06dIFmZmZcHd3x/r163Ho0CGsXLkSurq6ICKMHz8eY8eOrXeOvn374sCBAzh9+jRiY2Pxww8/wNDQEKGhoXWeTB0cHJCamopDhw4hNDS0QYK1V69eMDY2RlJS0ku3CwQCjBo1Cjt37kSvXr2wdevWv3zOdwmHKmONpF27djA0NMSmTZtQXV2N2tpaXL169Te/83wkrxz6+vpo0qQJzp0/jwsP9QHV64VqVVUldFrIIGppjQcPHiAtLe0PfU+hUKC2thYqlQpKpVL97/9laWmJuLg4XL16FTNnzsS5c+fQqVMnDBw4ECkpKVCpVHB1dcXmzZuRlZUFLy8vLFiwAA4ODpg5c6b6KUlXVxfR0dHIzs7G+PHjsWXLFjg6OuLzzz/Hr7/+Wuecnp6e2L9/P5KSkpCTk4OJEyeiffv2WLRoEX755ReMHj0anp6eWLZsGdLT09GhQwesWLHilYEVFBSEBw8eYMSIEUhLS4NUKsWKFSsgFAoRGxuL77//Hjdv3oS2tjaaN2+OCRMmwN/fHx9++CEAID09He7u7jh//nyd41pYWODIkSNo1aoVxowZg3Xr1sHJyQlff/01fH191aOJzc3NcfDgQeTm5sLX1xe1tbV/6G/0KgKBAJMmTcLhw4dx6dKll+7j6OgIqVQKbW1tZGZmIj8//y+d813CocpYI9HQ0MCsWbPw8OFDjBo1CqGhoTh69Ohvfqdp06aIiIjAokWLEBgYiMOHD+N9zw+fzzetffV0iZdS1WLUB4Y4lGcAPz8/rFixQj3i9ffEx8djyJAhOHLkCHbs2IEhQ4bgl19+eeX+Ghoa8PPzw48//ogTJ07A3t4eMTExcHBwwPTp03H37l0YGBggOjoaWVlZWLhwIS5cuABXV1f4+fnh2LFj6uOMHj0aJ0+eREJCAi5evAgXFxeMGjUK165dq3PO//znP0hNTcW2bdtw48YNfPLJJ3BycsKsWbPwww8/4JNPPsGgQYMwa9YsbNy4ER07dsR333330nAViURYv349srKyIJVKMW3aNNjZ2SErKwuurq44ceIEBgwYgAsXLsDZ2RnffPMNsrOzsXjxYmhra+PZs2cYOHAgvvzyyzrHF4lE2LJlC8LCwjBmzBiEhIQgICAAaWlpcHV1RXFxMYDn79gPHjyIkpIS9O3bV/0e+nXp6elh8uTJiIuLe+XUmdDQUPzwww/o3bs3vvvuu790vncJT6lh7G1Qfgs4NQpQKQCh4e/vr6wBan8FbD8BpAF/f/teQqVSYf/+/Vi3bh3Onj0LW1tbBAcHIyAgQD2l5+bNm1i6dClSU1Px3nvvITg4GKNHj64zBSUnJweLFy/GoUOH4OTkhI8//hheXl71znf27FnMnz8fWVlZ6NevHzp06IA1a9agrKwMY8eOhZaWFlasWAEDAwPExMTAx8fnlW3fvHkzoqKi1FOF1q9fD11dXeTm5mLcuHEoKiqCRCLBlStXMHbsWOTk5CAjIwNNmjSBtbU1Nm7cCBMTkzrHTE9Px/jx4+Hl5QUrKyvMmTMH+vr6+Omnn+Dg4ADg+Xv1IUOG4OnTp9i7dy9atmz5l/4Ga9aswdOnTzF9+vSXTrNJTEyEQCDAyZMnMWfOHMhksr90vndCo449Zow1nGc3iDJ6E6W5EqV71S1H+OK/jF5EaW5E+zsR3fvn1HgtKiqiefPmUceOHcnKyoomTJhAV65cUW+vqqqihIQE6ty5M8lkMoqMjKxX2P7x48c0bdo0srCwIHd3d0pKSnpp2cILFy7Q4MGDSSKR0EcffZd9aXUAACAASURBVEQJCQnk4uJCjo6OFB8fTwsWLCALCwvy9vamkydPvrLNlZWVFBoaSiKRiAwMDGjVqlVE9HxqUFxcHJmbm1OvXr3I1taWevbsSfHx8WRhYUFSqZSkUilt3bq13jHv3r1L7u7u5OnpSd999x0ZGhqSnp5enWlOcrmc/P39qUOHDr855eiPqKmpocjISDp48OBLtz99+pQCAwNp48aNNHfu3L90rncFP6ky9jaRPwMepgG3k4DqQoBeDIIiQKAJaGgBpoMA8VBA1/yVh8nJycGcOXNeuu3vnmZx6NAhrFmzBidOnIBUKkVgYCBGjhypfjo9fvw4VqxYgZMnT8LOzg4fffQRBg4cCA2N52+zqqurkZiYiE2bNkGpVCIoKAgTJ06sU5gCAC5fvowvvvgCZ86cgbe3N+zs7LB582YIBAKMHTsWN2/eRHJyMpydnbFgwQL1dKf/de3aNfj5+SE3NxcWFhZITk6Gvb097t27h8jISNy4cQNisRh5eXkYPXo0MjMz1dNnPvjgAyQkJEBXV1d9vNraWkRERODEiROYM2cOPv/8cxQWFmLmzJmYOXMmgOdP+ZGRkThy5AhSUlJgbW392vf7zp07mDlzJmJjY9G6det627dv346bN28iLy8P06dPh42NzWuf653Q2KnOGPsbqJRExWeI7mwnurGW6NZ3RA9/IpKXN3bL/rBnz55RbGwsde7cmczNzWn06NF07tw59fbCwkKKiYkhOzs7cnR0pLlz59YpcP+iKL+npyfJZDKaPHlyvSILRETZ2dnk7+9PYrGYQkND1SvUuLi40KpVqyg8PJzEYjGFhITQvXv3XtnejRs3kqGhIWlra9cpSr9hwwaytLQkT09PsrGxoZ49e9LcuXPJ1NSUTE1NycHB4aWLui9fvpwkEgl99dVX5O7uTtra2uTn51fn6fuzzz5rkEL8KSkpNG3aNFIoFPW2VVdX08iRI2n9+vU0Y8aMv3SedwGHKmPsH+/MmTMUFhZGUqmUOnfuTLGxseq1VJVKJW3fvp28vb1JLBbTiBEjKDMzs873jx49SoMGDSKxWEwBAQF04cKFeufIzc2lwMBA9So6s2fPJltbW3r//fdp5cqVFBAQQBKJhCZOnEhPnjx5aTsrKipo5MiRpK2tTYaGhrRhwwYiev4DwM/Pj8zNzcnT05OkUinNnDmTPDw8qG3bttS6dWuaMWNGve7qI0eOkLW1NQUHB1NoaChpa2tTx44d6/x4WLRoEclksjqr7fxZKpWKoqOjX9olTUSUnp5OU6dOpfDwcMrKynrt87wLOFQZY/8aVVVVtGrVKvL09CSJRELDhw+v85R35coVioiIIKlUSh4eHrR27do6a63m5eXRRx99RBKJhHr16vXSkn3Xr1+noKAgEovFFBgYSJ999hlZW1uTu7s7LV++nD788EMyNzen6OjoVy6RduXKFXJwcCAtLS1ycHCga9euERHRrl27yMbGhtzc3Mja2pp69OhBUVFR1KZNG2rdujV5eHjUe1ecn59Pnp6e5O7uTnPnzqWmTZuSiYlJnfVXV69eTVKp9C+thVpcXEwjRox46bquL0pqJiQk0NSpU9UlM1l9HKqMsX+l7OxsioyMJEtLS+rYsSPNnz9fXau2oqKClixZQq6urmRpaUlTpkypM6jn6dOnFBMTQ+3atSNXV1datWoVyeXyOse/efMmjRw5ksRiMQ0bNoyioqLIysqKunXrRosXL6Zu3bqRlZUVxcbG1vvuC+vXrycDAwPS1tam0NBQqqqqorKyMho9ejSJxWLq3LkzSaVSmjp1Kjk7O1Pr1q3J1NS03iLocrmcIiIiyMrKir766isyMDAgPT09Sk1NVe+zfft2kkgk6qfj13H8+HEKDw+nysrKetvOnz9PY8aMocjISDp16tRrn+Ntx6HKGPtXk8vltHnzZvrggw/IzMyMfH19KTU1Vd2VmpGRQb6+vmRmZkYDBgyos00ul9PKlSvJ1dWVrK2tKSYmpt7C43fu3KGwsDASi8Xk6+tL48ePJwsLC+rZsyfNnz+f3NzcyNHRkTZs2PDS0cYVFRU0fPhw0tbWJiMjI9qyZQsRPV+M3snJiRwdHcnS0pK6d+9OoaGhZGxsTO+99x4NHTq0XlteFO//7LPPSCqVkkgkoq+++kq9ff/+/WRubk5Llix57fu5dOlSWrZs2Uu3zZo1i77++muaMGECP62+AocqY+ytcevWLZo6dSrZ2NiQo6MjzZgxQz04KT8/n6ZPn07W1tbk7OxMCxcuVL+XJSLat28f9erViyQSCUVERNTrhr179y6Fh4eTRCKhgQMH0pgxY9TTZmbMmEEODg7k5uZGe/bseWnbsrOzydbWlrS0tMjZ2Zlu3bpFVVVVNGXKFDIzM6OOHTuSVCqlcePGkZWVFRkbG5OVlRX99NNPdY5z6tQpsrW1paFDh9L7779PQqGQRowYoQ70U6dOkaWlJUVHR7/WPaysrKTw8HA6fvx4vW23b9+mESNG0MSJE+nw4cOvdfy3HYcqY+yto1QqaefOndSvXz8yMzOjvn37UnJyMimVSlIqlbR582by8vIiiURCoaGhdPHiRfV3L1y4QAEBASQWi2nQoEH1wiU/P5/Gjh1LEomE+vXrR8HBwSSVSqlv3740efJksrKyIi8vr5eO6CUiWrNmDenr65NIJKLw8HCqqamhzMxMcnNzo3bt2pFMJiMvLy8aNGgQtWjRglq2bElTpkyp08X8+PFj6tmzJ7m6upKfnx8JhUJyc3NT/0jIzs4mGxsbmjBhwkufnn9Pbm4ujRgxos7Sdy8sXbqUvvjiC/roo49eOlr4Xcehyhh7qz18+JCio6PJ0dGRbGxsKCoqSv0UmpWVRaGhoSSRSMjLy4s2bdqkDqH8/HyaPHkyyWQy8vT0pG3bttUJqIKCAoqMjCSJREJ9+vQhf39/kkgk1L9/fwoPDyepVEr9+/evE9gvVFRUUGBgIAmFQmrRogV9//33pFQqafbs2WRmZkYODg7q9WlNTU2pRYsW5OrqStnZ2epjKJVKmjhxIllYWFBkZCQ1bdqUTE1N6datW0T0vNvaycmpzlPsn7FlyxaaOXNmvW7e4uJiCgwMpMmTJ9d7imYcqoyxd4RSqaT9+/fT0KFDyczMjHr27EkbN26kmpoaevbsGS1atIicnZ3J2tqapk+fru42Lisro4ULF5K9vT21b9+eYmNjqaqqSn3cx48f06RJk0gikZC3t7e6WtPAgQNpxIgR6lHKd+7cqdem7Oxssra2Ji0tLXJxcaF79+5RTk4OdevWjczNzUkqlVLXrl3Jy8uLjIyMyNjYmJYuXVrnGBs3biSpVEphYWGkr69Penp69Msvv6jb1qlTJxowYECdNv8RCoWCpk2bRikpKfW2JSUl0aeffkphYWFUW1v7p477tuNQZYy9c548eUILFy4kFxcXsrCwoLFjx1J2djYplUpKTU2lAQMGqAc9vZj/+aLb2N3dnSwsLGjatGn0+PFj9TGLioooKiqKpFIpde/enfr166fuQh40aBBJJBIaO3Zsne+8sGrVKnWX8Pjx46m2tpZiY2NJLBaTjY0NicViGjJkCBkbG5OhoSH5+PjUOc65c+fIwcGBfHx8SCwWk0gkUg82Ki0tpW7dulGPHj3qvEP+IwoKCmj48OHqp98XKisrKTg4mCZPnkx79+79U8d823GoMsbeaUePHqWgoCCSSCTk4eFBCQkJVFFRQXfv3qUpU6aQpaUlubi4UFxcnHpe6i+//EL9+/dXV1r6/7tlnzx5QtOmTSNzc3Pq2rUr9e7dWx2uvXr1IqlUSp9++mm9gKuoqKBhw4aRUCikli1b0u7du+nu3bvk4+NDZmZmZGZmRu7u7tShQwcyNDQkMzOzOjWBnz59Sn369CFnZ2fq2LEjaWlpUWhoKCmVSqqqqqK+fftS586dqaio6E/dn4MHD1JkZGSd+b5ERKmpqTRu3DgKCgr600/BbzMOVcYYo+fdvMuWLSN3d3eSSqU0cuRIOnXqFNXU1NDatWvJw8ODzM3NKSIiQl0gITc3l8LCwkgikZCPj0+dd4xPnz6l6dOnk0wmI3d3d+rRoweJxWLq378/eXh4kKWlJS1cuLBeWGVnZ5OVlRVpaWlRp06dqKCggNatW0cymYxkMhmZmZlR7969ycjIiAwMDCg8PFwdakqlkqZNm0YymYx69epFQqGQ3n//faqoqCCFQkEBAQHk7Oz8pwrxq1QqWrRoEa1evbrO5wqFgsaOHUvjx4+n5OTk173tbx0OVcYY+x/nz5+n8PBwkslk5ObmRosXL6bS0lLKzMykESNGkFgsJm9vb9q+fTsplUoqKipS1+Ht3LkzrV+/Xj04qLS0lGbMmEEymYw6depEHh4eJJFI6MMPPyQXFxeys7OjVatW1RtMFB8fT3p6eiQSiSgqKooKCgpo2LBh1KZNGzIxMSE3NzeysrIifX19srOzq1P/d9u2bSSVSqlPnz6kra1NZmZmdP/+fVIqlTR27FiytbWtswrQ73n27BmFhobWqb1MRHT69GkKCQmhgIAAKi//99SV/jtxqDLG2CtUVVXRunXrqHv37uq6wRkZGfT06VOaO3cuOTo6kp2dHUVHR1NRURFVV1fT8uXLydnZmWxtbWnevHnqbt6ysjKKiYkhCwsLcnFxoc6dO5NYLKbevXuTvb09ubi41Hviq6ioIF9fX9LS0iJjY2NKS0uj5ORkateuHZmZmZGJiQl5eHiQnp4eGRkZ0fz589XhfPnyZXJyciJ3d3fS09MjPT09OnbsGBERff7552RlZVWvRvJvuXjxIoWEhFBJSYn6M5VKRZ9//jlFRERQUlLSX73dbwUOVcYY+wNyc3Np4sSJZGVlRc7OzjRnzhwqKCigXbt2UZ8+fdShe+LECfU82e7du5NUKqXx48eru1wrKipozpw5ZGlpSc7OzuTq6koSiYR69uxJlpaW1LVr13rrm16+fJksLCxIU1OT3N3dKS8vj8LCwqhVq1bUunVrcnZ2JlNTU2revDl5enrS/fv3iej5U/KAAQPIzs6O2rRpQ9ra2hQfH09ERIsXLyaZTPbKtVRfZv369TRv3rw602xu3LhBfn5+5OfnVydw31Uajb30HGOM/RtYW1tj+fLlyM3NxfTp03Hq1Cl06tQJmzdvRmRkJA4ePAgjIyMEBQXhP//5Dx49eoTU1FRs374djx8/hoeHB/z8/HDlyhXMnj0bly9fxtChQ1FaWgo9PT0UFxdDqXy+/u2YMWPQt29fnDt3DgDg4OCAvLw8xMbG4vLly3BwcMB7772HTZs2oUWLFnj8+DGUSiUsLCxw7tw5uLi4YOvWrdDT00NKSgp8fX0hFAohlUoRFRWF8PBwTJ06FZ9//jnGjBmDlJSUP3QPgoODUVRUhJ9++kn9maWlJTp16oRmzZr97Wvt/is0dqozxti/1d27d2n69OlkZ2dHdnZ2NH36dLp+/TrFx8dT586dSSaT0YQJEygvL4/u3LlDkZGRJJVKqUePHrRr1y71yNyFCxeStbU12dnZkb29vXqJuxfF/P//kokVFRU0cOBA0tLSotatW1NaWhpNmjSJjI2NydjYmBwcHKhly5akq6tL/v7+6u7nXbt2kUwmIycnJ9LS0iJ3d3eqqqqiHTt2kFQqrVfE/1Xu3btHgYGB9ODBA/Vnjx8/piFDhpCvr++fHl38tuFQZYyxv0ipVNKePXto4MCBZGZmRn369KFt27bR4cOHadiwYWRmZkY+Pj60e/duKikpoS+++IJsbGyoY8eOtHz5cqqpqaGamhpavHgx2djYULt27cjGxobMzc3JxcWFzMzMaMyYMVRQUKA+58WLF8nc3Jw0NTWpa9eulJ6eTh07dlSHq6WlJeno6JBUKlWXTMzNzSUXFxeyt7cnoVBIYrGYCgoK6KeffiJzc3OKjY39Q9e7b98+ioqKqlM6ccOGDTR8+HB19/K7SkBE1NhPy4wx9rYoLCzEypUrkZKSgsrKSvj4+MDf3x9paWnYuXMnNDU14efnh8jISKSkpGDt2rV48uQJhg4dimnTpkFXVxeJiYlYs2YNamtrIRAIoFQqoauri2fPnmHIkCGYPXs29PT0AABLly5FTEwMlEoloqKiAADr1q2DUqmEoaEhCgsLQUQYN24cFi5ciMrKSoSGhuL8+fMoLCxEkyZN1N25QUFBCAgIwLx5837zGokIc+fOhYWFBYKDgwEAFRUVGDVqFKqqqrB69Wq0adPmb7zL/2CNm+mMMfb2OnjwIPn7+5NYLKbu3bvT2rVradOmTdSzZ0+SSCQUHBxMZ86cof3791OfPn1IIpHQqFGjKDc3l+RyOS1fvpzs7e3J3NxcXbbQ1taWZDIZzZs3Tz0/taKigvr160daWlrUtm1b2rRpE3Xp0oWMjIyoZcuWZGJiQiKRiJydnSkvL49UKhXNmzePzMzMqEWLFqStrU1r1qxRF+KPjIz83XrBT548oeDgYMrJyVF/tnfvXhoyZMgffuJ9G3GoMsbY3+zp06e0ePFicnNzI5lMRuHh4fT999+rC+97eHjQunXr6MKFCxQcHExisZgGDBhAhw4dIqVSSYmJieTg4EBisZjEYjFJpVKysLAga2trio+PVwfguXPnSCqVkqamJnl5edG8efOoVatWZGBgQGKxmHR0dMjAwEBdyOHHH38kmUxGbdu2JU1NTRo3btyfKsR/+vRpGjVqlHqOqlwup7CwMPLx8flTBSbeJtz9yxhjb9Dp06excuVKHD58GG3btsXgwYNRW1uLXbt24dmzZ+jfvz+GDx+OrVu3Yvfu3WjdujXGjh2LgIAAfPPNN0hISMCTJ09ARNDU1AQAGBgY4NNPP4W/vz80NDTw9ddfY+7cuSAiREREIDs7G2fOnIFAIICGhgbKy8vRvXt3bN26Fb/++isCAwORn5+PwsJCdOnSBdu2bcPgwYPRunVrbN++HSKR6JXXk5CQgJqaGnz88ccAgOPHj+PLL79Ely5dEB0d/Ubu6T8JhypjjDWCyspKbNy4EVu3bsX9+/fh6ekJFxcXHD58GGfPnkWHDh0wZswYXL9+HZs2bQIRITg4GJGRkdi+fTtWrFiBoqIiKJVKCIVCqFQqiMVixMTEwMfHB5WVlRg6dCjS09PRqlUrBAcHY+PGjaisrIRIJEJpaSkMDAyQlJSErl27YtSoUTh06BCKi4vRtm1bZGRkYMyYMRAIBNi7dy90dXVfeh3V1dWYMmUKhg8fDk9PTxARpk6dipycHMTHx8PKyuoN39nGxaHKGGONLDs7GwkJCUhPT4eBgQF69eqF8vJyHDhwALq6uvDz80OrVq3wzTffID8/HwMGDMDUqVORkZGBZcuWoaCgAEqlEtra2pDL5Wjfvj3mzZuH999/H2fPnsWQIUPw8OFDuLu7o3nz5jh69CgAQKVSQaFQICQkBAkJCYiLi8OSJUtQUlICbW1tpKWlYcGCBfj111+xZ88eGBsbv7T9eXl5mD17NuLi4mBsbIyrV69i0qRJ6NSpExYsWPAmb2Wj41BljLF/iNraWmzduhVJSUm4fv06OnXqBHNzc5w+fRr37t1Djx490K1bN+zevRvnz5+Hh4cHpk6diqtXr2LJkiV48OCBOlwVCgU8PDywYMEC2NjYYNGiRepRvQMHDsTRo0dRUlICLS0tVFRUQCwWY/fu3SgoKEB4eDiKioogl8uxevVqHDhwAFevXsXevXshFotf2vbk5GScP38eCxYsgIaGBr788kscPHgQy5cvh4ODw5u8jY2KQ5Uxxv6Bbt68ifj4eKSmpkJbWxudO3dGSUkJMjMzIZPJ8OGHH+Lq1as4ePAgrK2tMXHiRFRUVOC///0v7ty5ow5XlUoFHx8fLFiwAIaGhhg8eDB+/vlntGrVCo6Ojjh+/DhUKhWUSiU0NDQQExOD4cOHIyAgADk5OaisrMS4ceMgl8tx+PBh7Ny5E7a2tvXaq1KpMHPmTLi4uGDo0KEoKChAUFAQHB0dERcXB4FA0Ah38c3jUGWMsX8wlUqFnTt3YuPGjeoShUZGRrh8+TJqa2vRp08fAEBqair09fURFhYGQ0NDxMXFIS8vDwqFAiKRCAKBAP7+/pg7dy5u3LgBX19fPHr0CM7OzigsLERRURE0NDRQW1sLFxcXJCcnIyYmBikpKSgvL4eHhwc6d+6MnTt3YsuWLXBzc6vX1sLCQkRFRWHu3LmwtLTE6tWr8d133yEuLg4uLi5v+tY1Cg5Vxhj7l8jPz0diYiL27NkDpVIJW1tblJSUIC8vD66urhCLxTh27BgqKirg7+8PCwsLJCYm4tq1a1AoFNDW1oZQKMTo0aMxY8YMxMbGYsGCBRAIBGjfvj0uX74MpVIJpVIJHR0drFmzBo8fP8acOXNQWloKMzMzjBw5EklJSVi9ejW8vb3rtfHw4cPYunUrli1bhtraWgwZMgRisRhr1659J55WuaA+Y4z9S5iYmGDBggW4dOkSlixZAoFAgLy8PEilUlRWVmLfvn0QCATo2rUrjh49ipiYGDg5OWHx4sVwcHCAQqFAaWkp4uPjYWNjAx0dHRQUFKBLly44e/Ysmjdvjvfeew8aGhqorq5GUFAQDh8+jB07dsDU1BT5+fmIi4tDUFAQwsPDsXPnznpt7NatGywtLbF+/Xo0b94cERERuHLlCk6ePNkId+zN4ydVxhj7FysuLsaqVauQkpKC0tJSmJqaorS0FM+ePUOHDh1QVVWF7OxsuLq64j//+Q927tyJnJwc1NbWQigUwtjYGDNnzoSlpSX8/f3x6NEjSKVSFBQUQC6XQ6VS4b333sP69esxf/589co5ERER2LdvH6KjozF69Og6baqoqMCkSZMQEREBZ2dnDBs2DCKRCFu3boWGxtv9LNdkzpw5cxq7EYwxxl6Pjo4OPD09ERERAScnJ9y4cQPXr1+HoaEhysrKcPPmTZibm0MgECA1NRVGRkYYOnQoqqqq8OjRI5SUlOCnn37C8ePHERcXBysrK+zfvx8AYGRkhKqqKlRWVmLHjh0YNGgQ7OzscPnyZZw+fRpeXl5ITk6GQqGAu7u7uk1CoRCWlpaIi4uDt7c3zM3NsWPHDlhaWkImkzXWrXojOFQZY+wtIZVKMWTIEIwZMwZyuRxXr15FeXk5NDQ0kJ+fD5FIBH19fZw+fRpEhP79+0NDQwMFBQUoKipCSkoKysrKkJiYiNu3b+PKlSto3rw5iAgKhQKnT59GWVkZoqKicOrUKVy6dAkymQxHjx5FYWEhevbsqW6LsbExysvLsX//foSEhODYsWP4+eef1VWf3lbc/csYY2+xs2fPYuXKlfj5558hFAohEAhQXl4OU1NTVFZWoqqqCq6urrh9+zYuXboEpVIJLS0tuLu7IygoCJ999hkKCwuhq6uL8vJyEBGEQiEmTpyIb7/9Fo8ePUKbNm3QrFkzeHt7Iz4+Xh2aCoUC06dPR8+ePSEWixESEoIvvvgC/fv3b+S78vfhUGWMsXdAdXU1Nm3ahK1bt+LGjRvQ0dFBRUUFjIyMoKGhgZKSEtjb26OoqAg5OTnq8oe9e/dG27Zt1cvJCQQCKBQKAICrqysUCgWysrLQtGlTmJiYwNXVFUlJSepgzc/PxyeffIKvvvoKsbGxuHjxIg4cOAChUNiYt+Nvw6HKGGPvmCtXriAxMRFpaWmora0FPV+xDHp6eigrK4NEIkFZWRlu3LihnoozaNAg5OXl4cyZM9DS0oJcLgcRoXnz5nB3d0d6ejoEAgEkEglsbW2RnJysLsS/f/9+pKWlYfLkyfD19cX06dMxfPjwRr4Lfw8OVcYYe0cpFAps27YNSUlJyMrKgpaWFqqrq6Gnp4fq6mq0aNECtbW16gpNTZs2hY+PDw4fPqwuFvGiEpOrqyuysrIgl8thYmICKysrdSF+IsKCBQtgYmKC/Px87Nu3D+PGjcPWrVuxcePGt2pBcw5VxhhjuHPnDhISErB7926UlJSou38FAgG0tbUhEAiQn58PlUoFXV1dtG/fHqdOnYJCocCLGDE0NIRCoUBZWRmMjIxgaWmJffv2wdjYGKWlpZg0aRIkEom64IRQKMSpU6fQvn37Rr76hsOhyhhjTE2lUmHPnj345ptvcPLkSfVKNjo6OlCpVNDS0kJhYSFUKhX09fWhr6+PO3fuqL+voaEBIyMjFBcXo2nTprCwsMAPP/wAU1NT9OjRA0eOHFHvq6Ojg6NHj6Jjx46NcKV/Dw5VxhhjL/Xo0SMkJiZi27ZtePz4MeRyOUQiEVQqFTQ1NfH06VMAgJ6eHhQKBcrLy9XffTFaWFNTE6ampnj48CFqa2shEolQU1MDIoKWlhYOHTpUZ47rvx2HKmOMsd+kUqmQkZGBxMREHDp0SD24SUNDAxoaGuqpNi+C9AUNDQ2oVKo6xzIyMkJtbS0qKipARNi1axcGDRqE2yW3UVxZjBpFDXS0dCA1kKKFTos3fal/GYcqY4yxP6ykpASrVq3CN998gwcPHkChUKBJkyYgInXYvhgd/DI6Ojrw8fHBwYMHYfieIaKWReFE5QncenoLTQRNQCAIIIAKKvSQ9oC/gz+cWjn9a4rxc6gyxhh7LceOHcPSpUtx4MABVFdXAwCICEql8je/N2HCBHTo0wHfFn2Lcnk5RJoi6Gnr1QlOpUqJJ1VPoCIVnFo54b+9/gt9kf7fej0NgUOVMcbYX1JeXo5169YhPj4e9+7dg1KpVM99fRktcy1YTbRCS8OW0NPW+81jExGKKotg0twE6wesh2FTw7/jEhrM21uAkTHG2Buhq6uLKVOmIC8vD5mZmRg4cOCrKyYZAvLucuRm56LiSUWdTcVXinFtx7U6nwkEAhg3M0b+s3xEHYiCQqX4uy6jQfCTKmOMsQbXq1cvpKen19/QA4AMQAUAAWBrawsLC4vfPR4R4XH5lTEqrQAABDlJREFUY8T2joWnxLOhm9tg+EmVMcZYg2vevDmaNWsGfX19GBkZQSQSQUtfCwILAVD5f3ci4OqVq7iYdRH4ncc7gUAAoaYQ31769m9v+1/BT6qMMcYaXHV1NeRyOXR1ddUDkDZmbcSinxeh+E4xfn34K3ADQOnz/bVNtdHBswMKLxfCbrgdAKCquAr3fr6HiscVEGgIYNzRGE0cmyB5WDKkBtLGubDfodnYDWCMMfb2EYlE6oL6L5y8fxLGhsawbGWJSxsuodK0Er/a/QqogJryGpw6dQrmTc0BAMpaJXJ35KK1W2tY+VqBVISq4ipUoAJXiq5wqDLGGHu3ldaUoolGE1QUVEBZpUTnsM4QCAR48OABsi5mAVXA7Vu3YQ97lNwsgVYzLbRx+3/F9nXb6uJZ2TOU15b/xlkaF4cqY4yxN0KriRaICPIyObT1tSHQeN4tbGpmClMzU+QeysWd4jsAgNqyWogMRPWOIYAAWhpab7LZfwoPVGKMMfZGtGrWCjXKGgibC1H7rBakqjukp2XLlhBLxAAAYXMhqkuq6x2jiaAJDEQGb6S9r4NDlTHG2BsxwHoAlColmrVpBq1mWrh/5D6UtUqoFCqU5ZfV2dfAwgDyCjkenX0ElUIFZa0STx88haaGJjqZdGqkK/h93P3LGGPsjehi2gV62nqoVlbDytcK9zLu4eKaiwCAFrYt0KxVM/W+TYRNYD3MGvd+voeHJx5CoCmAyF6ECPcINBM2e9UpGh1PqWGMMfbGbLiwAfGZ8WjTvM2fKpIvV8rxpOoJtg3dBpmh7G9s4V/D3b+MMcbemEDHQLRv1R6FFYWvrA38vxQqBYoqijDebfw/OlABDlXGGGNvkEhThKV9lsKmpQ0KygtQq6z9zf3La8vxuPwxRnUYhRCnkDfUytfH3b+MMcbeuGpFNRIyE7Dr6i7UKmuhI9RBU82m0BBoQElKlFaXQkUqGDczRqRbJPpa9W3sJv8hHKqMMcYaTUVtBTJuZWBbzjYUlBegRlEDXaEuHI0dEeAQAJe2LtAQ/Hs6VTlUGWOMsQby74l/xhhj7B+OQ5UxxhhrIByqjDHGWAPhUGWMMcYaCIcqY4wx1kA4VBljjLEGwqHKGGOMNRAOVcYYY6yBcKgyxhhjDYRDlTHGGGsgHKqMMcZYA+FQZYwxxhoIhypjjDHWQDhUGWOMsQbCocoYY4w1EA5VxhhjrIFwqDLGGGMNhEOVMcYYayAcqowxxlgD4VBljDHGGgiHKmOMMdZAOFQZY4yxBsKhyhhjjDUQDlXGGGOsgXCoMsYYYw2EQ5UxxhhrIByqjDHGWAPhUGWMMcYaCIcqY4wx1kA4VBljjLEGwqHKGGOMNRAOVcYYY6yBcKgyxhhjDYRDlTHGGGsgHKqMMcZYA+FQZYwxxhoIhypjjDHWQDhUGWOMsQbCocoYY4w1kP8DPa2mUta8grsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "genesis_states = { \n", + " # initial states of the economy\n", + " 'network': create_network(),# networkx market\n", + " 'KPIDemand': {},\n", + " 'KPISpend': {},\n", + " 'KPISpendOverDemand': {},\n", + " 'VelocityOfMoney':0,\n", + " 'startingBalance': {},\n", + " '30_day_spend': {},\n", + " 'withdraw':{},\n", + " 'outboundAgents':[],\n", + " 'inboundAgents':[],\n", + " 'operatorFiatBalance': R0,\n", + " 'operatorCICBalance': S0,\n", + " 'fundsInProcess': {'timestep':[],'decision':[],'cic':[],'shilling':[]},\n", + " 'totalDistributedToAgents':0,\n", + " 'totalMinted':0,\n", + " 'totalBurned':0\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Exogenous \n", + "def startingBalance(params, step, sL, s, _input):\n", + " '''\n", + " Calculate agent starting balance every 30 days\n", + " '''\n", + " y = 'startingBalance'\n", + " network = s['network']\n", + "\n", + " startingBalance = {}\n", + "\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 31 == 0\n", + "\n", + " if timestep == 1:\n", + " for i in agents:\n", + " startingBalance[i] = network.nodes[i]['tokens']\n", + " elif division == True:\n", + " for i in agents:\n", + " startingBalance[i] = network.nodes[i]['tokens']\n", + " else:\n", + " startingBalance = s['startingBalance']\n", + " x = startingBalance\n", + "\n", + " return (y, x)\n", + "\n", + "def update_30_day_spend(params, step, sL, s,_input):\n", + " '''\n", + " Aggregate agent spend. Refresh every 30 days.\n", + " '''\n", + " y = '30_day_spend'\n", + " network = s['network']\n", + "\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 31 == 0\n", + "\n", + " if division == True:\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + " spend = outflowSpend \n", + " else:\n", + " spendOld = s['30_day_spend']\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + " spend = DictionaryMergeAddition(spendOld,outflowSpend) \n", + "\n", + " x = spend\n", + " return (y, x)\n", + "\n", + "def redCrossDrop(params, step, sL, s, _input):\n", + " '''\n", + " Every 30 days, the red cross drips to the grassroots operator node\n", + " '''\n", + " y = 'operatorFiatBalance'\n", + " fiatBalance = s['operatorFiatBalance']\n", + " \n", + " timestep = s['timestep']\n", + " \n", + " division = timestep % params['drip_frequency'] == 0\n", + "\n", + " if division == True:\n", + " fiatBalance = fiatBalance + drip\n", + " else:\n", + " pass\n", + "\n", + " x = fiatBalance\n", + " return (y, x)\n", + "\n", + "\n", + "def clear_agent_activity(params,step,sL,s,_input):\n", + " '''\n", + " Clear agent activity from the previous timestep\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " if s['timestep'] > 0:\n", + " outboundAgents = s['outboundAgents']\n", + " inboundAgents = s['inboundAgents']\n", + " \n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['demand'] = 0\n", + " except:\n", + " pass\n", + "\n", + " # Clear cic % demand edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['fractionOfDemandInCIC'] = 0\n", + " except:\n", + " pass\n", + "\n", + "\n", + " # Clear utility edge types\n", + " try: \n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['utility'] = 0\n", + " except:\n", + " pass\n", + " \n", + " # Clear cic % spend edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 0\n", + " except:\n", + " pass\n", + " # Clear spend edge types\n", + " try: \n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['spend'] = 0\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + " x = network\n", + " return (y,x)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# System\n", + "\n", + "# Parameters\n", + "agentsMinus = 2\n", + "# percentage of balance a user can redeem\n", + "redeemPercentage = 0.5\n", + "\n", + "# Behaviors\n", + "def choose_agents(params, step, sL, s):\n", + " '''\n", + " Choose agents to interact during the given timestep and create their demand from a uniform distribution. \n", + " Based on probability, choose utility. \n", + " '''\n", + " outboundAgents = np.random.choice(mixingAgents,size=len(mixingAgents)-agentsMinus).tolist()\n", + " inboundAgents = np.random.choice(mixingAgents,size=len(mixingAgents)-agentsMinus).tolist()\n", + " stepDemands = np.random.uniform(low=1, high=500, size=len(mixingAgents)-agentsMinus).astype(int)\n", + " \n", + "\n", + " stepUtilities = np.random.choice(list(UtilityTypesOrdered.keys()),size=len(mixingAgents)-agentsMinus,p=list(utilityTypesProbability.values())).tolist()\n", + "\n", + " return {'outboundAgents':outboundAgents,'inboundAgents':inboundAgents,'stepDemands':stepDemands,'stepUtilities':stepUtilities}\n", + "\n", + "\n", + "def spend_allocation(params, step, sL, s):\n", + " '''\n", + " Take mixing agents, demand, and utilities and allocate agent shillings and tokens based on utility and scarcity. \n", + " '''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " spendI = []\n", + " spendJ = []\n", + " spendAmount = []\n", + "\n", + " # calculate max about of spend available to each agent\n", + " maxSpendShilling = {}\n", + " for i in mixingAgents:\n", + " maxSpendShilling[i] = network.nodes[i]['native_currency']\n", + " \n", + " maxSpendCIC = {}\n", + " for i in mixingAgents:\n", + " maxSpendCIC[i] = network.nodes[i]['tokens']\n", + "\n", + "\n", + " for i in mixingAgents: \n", + " rankOrder = {}\n", + " rankOrderDemand = {}\n", + " for j in network.adj[i]:\n", + " try:\n", + " rankOrder[j] = UtilityTypesOrdered[network.adj[i][j]['utility']]\n", + " rankOrderDemand[j] = network.adj[i][j]['demand']\n", + " rankOrder = dict(OrderedDict(sorted(rankOrder.items(), key=lambda v: v, reverse=False)))\n", + " for k in rankOrder:\n", + " # if i or j is external, we transact 100% in shilling\n", + " if i == 'external':\n", + " amt = spendCalculationExternal(i,j,rankOrderDemand,maxSpendShilling)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt \n", + " elif j == 'external':\n", + " amt = spendCalculationExternal(i,j,rankOrderDemand,maxSpendShilling)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt \n", + " else:\n", + " amt = spendCalculation(i,j,rankOrderDemand,maxSpendShilling,maxSpendCIC,fractionOfDemandInCIC)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt * (1- fractionOfDemandInCIC)\n", + " maxSpendCIC[i] = maxSpendCIC[i] - (amt * fractionOfDemandInCIC)\n", + " except:\n", + " pass\n", + " return {'spendI':spendI,'spendJ':spendJ,'spendAmount':spendAmount}\n", + "\n", + "\n", + "def withdraw_calculation(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " # Assumptions:\n", + " # * user is only able to withdraw up to 50% of balance, assuming they have spent 50% of balance\n", + " # * Agents will withdraw as much as they can.\n", + " withdraw = {}\n", + "\n", + " fiftyThreshold = {}\n", + "\n", + " startingBalance = s['startingBalance']\n", + "\n", + " spend = s['30_day_spend']\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 30 == 0\n", + "\n", + " if division == True:\n", + " for i,j in startingBalance.items():\n", + " fiftyThreshold[i] = j * 0.5\n", + " if s['timestep'] > 7:\n", + " for i,j in fiftyThreshold.items():\n", + " if spend[i] > 0 and fiftyThreshold[i] > 0:\n", + " if spend[i] * fractionOfActualSpendInCIC >= fiftyThreshold[i]:\n", + " spent = spend[i]\n", + " amount = spent * redeemPercentage\n", + " if network.nodes[i]['tokens'] > amount:\n", + " withdraw[i] = amount\n", + " elif network.nodes[i]['tokens'] < amount:\n", + " withdraw[i] = network.nodes[i]['tokens']\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + "\n", + " return {'withdraw':withdraw}\n", + "\n", + "# Mechanisms \n", + "def update_agent_activity(params,step,sL,s,_input):\n", + " '''\n", + " Update the network for interacting agent, their demand, and utility.\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " outboundAgents = _input['outboundAgents']\n", + " inboundAgents = _input['inboundAgents']\n", + " stepDemands = _input['stepDemands']\n", + " stepUtilities = _input['stepUtilities']\n", + " \n", + " # create demand edge weights\n", + " try:\n", + " for i,j,l in zip(outboundAgents,inboundAgents,stepDemands):\n", + " network[i][j]['demand'] = l\n", + " except:\n", + " pass\n", + "\n", + " # Create cic % edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " # if one of the agents is external, we will transact in 100% shilling\n", + " if i == 'external':\n", + " network[i][j]['fractionOfDemandInCIC'] = 1\n", + " elif j == 'external':\n", + " network[i][j]['fractionOfDemandInCIC'] = 1\n", + " else:\n", + " network[i][j]['fractionOfDemandInCIC'] = fractionOfDemandInCIC\n", + " except:\n", + " pass\n", + "\n", + " # Create utility edge types\n", + " try: \n", + " for i,j,l in zip(outboundAgents,inboundAgents,stepUtilities):\n", + " network[i][j]['utility'] = l\n", + " except:\n", + " pass\n", + "\n", + " x = network\n", + " return (y,x)\n", + "\n", + "\n", + "def update_outboundAgents(params,step,sL,s,_input):\n", + " '''\n", + " Update outBoundAgents state variable\n", + " '''\n", + " y = 'outboundAgents'\n", + "\n", + " x = _input['outboundAgents']\n", + "\n", + " return (y,x)\n", + "\n", + "def update_inboundAgents(params,step,sL,s,_input):\n", + " '''\n", + " Update inBoundAgents state variable\n", + " '''\n", + " y = 'inboundAgents'\n", + "\n", + " x = _input['inboundAgents']\n", + " return (y,x)\n", + "\n", + "\n", + "def update_node_spend(params, step, sL, s,_input):\n", + " '''\n", + " Update network with actual spend of agents.\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + " \n", + " spendI = _input['spendI']\n", + " spendJ = _input['spendJ']\n", + " spendAmount = _input['spendAmount']\n", + "\n", + " for i,j,l in zip(spendI,spendJ,spendAmount): \n", + " network[i][j]['spend'] = l\n", + " if i == 'external':\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 1\n", + " elif j == 'external':\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 1\n", + " else:\n", + " network[i][j]['fractionOfActualSpendInCIC'] = fractionOfActualSpendInCIC\n", + "\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + "\n", + " for i, j in inflowSpend.items():\n", + " if i == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i]\n", + " elif j == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i]\n", + " else:\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i] * (1- fractionOfDemandInCIC)\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] + (inflowSpend[i] * fractionOfDemandInCIC)\n", + " \n", + " for i, j in outflowSpend.items():\n", + " if i == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]\n", + " elif j == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]\n", + " else:\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]* (1- fractionOfDemandInCIC)\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] - (outflowSpend[i] * fractionOfDemandInCIC)\n", + "\n", + " # Store the net of the inflow and outflow per step\n", + " network.nodes['external']['delta_native_currency'] = sum(inflowSpend.values()) - sum(outflowSpend.values())\n", + "\n", + " x = network\n", + " return (y,x)\n", + "\n", + "\n", + "def update_withdraw(params, step, sL, s,_input):\n", + " '''\n", + " Update flow sstate variable with the aggregated amount of shillings withdrawn\n", + " '''\n", + " y = 'withdraw'\n", + " x = s['withdraw']\n", + " if _input['withdraw']:\n", + " x = _input['withdraw']\n", + " else:\n", + " x = 0\n", + "\n", + " return (y,x)\n", + "\n", + "def update_network_withraw(params, step, sL, s,_input):\n", + " '''\n", + " Update network for agents withdrawing \n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + " withdraw = _input['withdraw']\n", + "\n", + " if withdraw:\n", + " for i,j in withdraw.items():\n", + " # update agent nodes\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] - j\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + (j * leverage)\n", + "\n", + " withdrawnCICSum = []\n", + " for i,j in withdraw.items():\n", + " withdrawnCICSum.append(j)\n", + " \n", + " # update cic node\n", + " network.nodes['cic']['native_currency'] = network.nodes[i]['native_currency'] - (sum(withdrawnCICSum) * leverage)\n", + " network.nodes['cic']['tokens'] = network.nodes[i]['tokens'] + (sum(withdrawnCICSum) * leverage)\n", + "\n", + " else:\n", + " pass\n", + " x = network\n", + " return (y,x)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Operating Entity\n", + "\n", + "# Parameters\n", + "FrequencyOfAllocation = 45 # every two weeks\n", + "idealFiat = 5000\n", + "idealCIC = 200000\n", + "varianceCIC = 50000\n", + "varianceFiat = 1000\n", + "unadjustedPerAgent = 50\n", + "\n", + "\n", + "\n", + "\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], # agent:[centrality,allocationValue]\n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "\n", + "# Behaviors\n", + "def disbursement_to_agents(params, step, sL, s):\n", + " '''\n", + " Distribute every FrequencyOfAllocation days to agents based off of centrality allocation metric\n", + " '''\n", + " fiatBalance = s['operatorFiatBalance']\n", + " cicBalance = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % FrequencyOfAllocation == 0\n", + "\n", + " if division == True:\n", + " agentDistribution ={} # agent: amount distributed\n", + " for i,j in agentAllocation.items():\n", + " agentDistribution[i] = unadjustedPerAgent * agentAllocation[i][1]\n", + " distribute = 'Yes'\n", + " \n", + " else:\n", + " agentDistribution = 0\n", + " distribute = 'No'\n", + "\n", + "\n", + " return {'distribute':distribute,'amount':agentDistribution}\n", + "\n", + "\n", + "def inventory_controller(params, step, sL, s):\n", + " '''\n", + " Monetary policy hysteresis conservation allocation between fiat and cic reserves.\n", + " \n", + " '''\n", + " fiatBalance = s['operatorFiatBalance']\n", + " cicBalance = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + " fundsInProcess = s['fundsInProcess']\n", + "\n", + "\n", + " updatedCIC = cicBalance\n", + " updatedFiat = fiatBalance\n", + "\n", + " #decision,amt = mint_burn_logic_control(idealCIC,updatedCIC,variance,updatedFiat)\n", + " decision,amt = mint_burn_logic_control(idealCIC,updatedCIC,varianceCIC,updatedFiat,varianceFiat,idealFiat)\n", + "\n", + " if decision == 'burn':\n", + " try:\n", + " deltaR, realized_price = withdraw(amt,updatedFiat,updatedCIC, V0, kappa)\n", + " # update state\n", + " # fiatBalance = fiatBalance - deltaR\n", + " # cicBalance = cicBalance - amt\n", + " fiatChange = abs(deltaR)\n", + " cicChange = amt\n", + "\n", + " except:\n", + " print('Not enough to burn')\n", + "\n", + " fiatChange = 0\n", + " cicChange = 0\n", + " \n", + " elif decision == 'mint':\n", + " try:\n", + " deltaS, realized_price = mint(amt,updatedFiat,updatedCIC, V0, kappa)\n", + " # update state\n", + " # fiatBalance = fiatBalance + amt\n", + " # cicBalance = cicBalance + deltaS\n", + " fiatChange = amt\n", + " cicChange = abs(deltaS)\n", + "\n", + " except:\n", + " print('Not enough to mint')\n", + " fiatChange = 0\n", + " cicChange = 0\n", + "\n", + " else:\n", + " fiatChange = 0\n", + " cicChange = 0\n", + " decision = 'none'\n", + " pass\n", + "\n", + " if decision == 'mint':\n", + " fundsInProcess['timestep'].append(timestep + process_lag)\n", + " fundsInProcess['decision'].append(decision)\n", + " fundsInProcess['cic'].append(fiatChange)\n", + " fundsInProcess['shilling'].append(cicChange)\n", + " elif decision == 'burn':\n", + " fundsInProcess['timestep'].append(timestep +process_lag)\n", + " fundsInProcess['decision'].append(decision)\n", + " fundsInProcess['cic'].append(fiatChange)\n", + " fundsInProcess['shilling'].append(cicChange)\n", + " else:\n", + " pass\n", + " \n", + " return {'decision':decision,'fiatChange':fiatChange,'cicChange':cicChange,'fundsInProcess':fundsInProcess}\n", + "\n", + "\n", + "\n", + "# Mechanisms \n", + "def update_agent_tokens(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " distribute = _input['distribute']\n", + " amount = _input['amount']\n", + "\n", + " if distribute == 'Yes':\n", + " for i in agents:\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] + amount[i]\n", + " else:\n", + " pass\n", + "\n", + " return (y,network)\n", + "\n", + "def update_operator_FromDisbursements(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorCICBalance'\n", + " x = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + " \n", + " distribute = _input['distribute']\n", + " amount = _input['amount'] \n", + "\n", + " if distribute == 'Yes':\n", + " totalDistribution = []\n", + " for i,j in amount.items():\n", + " totalDistribution.append(j)\n", + " \n", + " totalDistribution = sum(totalDistribution)\n", + " x = x - totalDistribution\n", + "\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalDistributedToAgents(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalDistributedToAgents'\n", + " x = s['totalDistributedToAgents']\n", + " timestep = s['timestep']\n", + " \n", + " distribute = _input['distribute']\n", + " amount = _input['amount'] \n", + "\n", + " if distribute == 'Yes':\n", + " totalDistribution = []\n", + " for i,j in amount.items():\n", + " totalDistribution.append(j)\n", + " \n", + " totalDistribution = sum(totalDistribution)\n", + " x = x + totalDistribution\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_operator_fiatBalance(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorFiatBalance'\n", + " x = s['operatorFiatBalance']\n", + " fundsInProcess = s['fundsInProcess']\n", + " timestep = s['timestep']\n", + " if _input['fiatChange']:\n", + " try:\n", + " if fundsInProcess['timestep'][0] == timestep + 1:\n", + " if fundsInProcess['decision'][0] == 'mint':\n", + " x = x - abs(fundsInProcess['shilling'][0])\n", + " elif fundsInProcess['decision'][0] == 'burn':\n", + " x = x + abs(fundsInProcess['shilling'][0])\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + "\n", + " return (y,x)\n", + "\n", + "def update_operator_cicBalance(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorCICBalance'\n", + " x = s['operatorCICBalance']\n", + " fundsInProcess = s['fundsInProcess']\n", + " timestep = s['timestep']\n", + "\n", + " if _input['cicChange']:\n", + " try:\n", + " if fundsInProcess['timestep'][0] == timestep + 1:\n", + " if fundsInProcess['decision'][0] == 'mint':\n", + " x = x + abs(fundsInProcess['cic'][0])\n", + " elif fundsInProcess['decision'][0] == 'burn':\n", + " x = x - abs(fundsInProcess['cic'][0])\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalMinted(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalMinted'\n", + " x = s['totalMinted']\n", + " timestep = s['timestep']\n", + " try:\n", + " if _input['fundsInProcess']['decision'][0] == 'mint':\n", + " x = x + abs(_input['fundsInProcess']['cic'][0])\n", + " elif _input['fundsInProcess']['decision'][0] == 'burn':\n", + " pass\n", + " except:\n", + " pass\n", + "\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalBurned(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalBurned'\n", + " x = s['totalBurned']\n", + " timestep = s['timestep']\n", + " try:\n", + " if _input['fundsInProcess']['decision'][0] == 'burn':\n", + " x = x + abs(_input['fundsInProcess']['cic'][0])\n", + " elif _input['fundsInProcess']['decision'][0] == 'mint':\n", + " pass\n", + " except:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_fundsInProcess(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'fundsInProcess'\n", + " x = _input['fundsInProcess']\n", + " timestep = s['timestep']\n", + "\n", + " if _input['fundsInProcess']:\n", + " try:\n", + " if x['timestep'][0] == timestep:\n", + " del x['timestep'][0]\n", + " del x['decision'][0]\n", + " del x['cic'][0]\n", + " del x['shilling'][0]\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# KPI\n", + "\n", + "# Behaviors\n", + "def kpis(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " KPIDemand = {}\n", + " KPISpend = {}\n", + " KPISpendOverDemand = {}\n", + " for i in mixingAgents:\n", + " demand = []\n", + " for j in network.adj[i]:\n", + " try:\n", + " demand.append(network.adj[i][j]['demand'])\n", + " except:\n", + " pass\n", + "\n", + " spend = []\n", + " for j in network.adj[i]:\n", + " try:\n", + " spend.append(network.adj[i][j]['spend'])\n", + " except:\n", + " pass\n", + "\n", + " sumDemand = sum(demand)\n", + " sumSpend = sum(spend)\n", + " try:\n", + " spendOverDemand = sumSpend/sumDemand\n", + " except:\n", + " spendOverDemand = 0\n", + "\n", + " KPIDemand[i] = sumDemand\n", + " KPISpend[i] = sumSpend\n", + " KPISpendOverDemand[i] = spendOverDemand\n", + "\n", + " #print(nx.katz_centrality_numpy(G=network,weight='spend'))\n", + " return {'KPIDemand':KPIDemand,'KPISpend':KPISpend,'KPISpendOverDemand':KPISpendOverDemand}\n", + "\n", + "def velocity_of_money(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " KPISpend = s['KPISpend']\n", + "\n", + " # TODO: Moving average for state variable\n", + " T = []\n", + " for i,j in KPISpend.items():\n", + " T.append(j)\n", + " \n", + " T = sum(T)\n", + " \n", + " # TODO Moving average for state variable \n", + " M = []\n", + " for i in agents:\n", + " M.append(network.nodes[i]['tokens'] + network.nodes[i]['native_currency'])\n", + " \n", + " M = sum(M)\n", + " \n", + " V_t = (priceLevel *T)/M\n", + "\n", + " return {'V_t':V_t,'T':T,'M':M}\n", + "\n", + "\n", + "# Mechanisms\n", + "def update_KPIDemand(params, step, sL, s,_input):\n", + " y = 'KPIDemand'\n", + " x = _input['KPIDemand']\n", + " return (y,x)\n", + "\n", + "def update_KPISpend(params, step, sL, s,_input):\n", + " y = 'KPISpend'\n", + " x = _input['KPISpend']\n", + " return (y,x)\n", + "\n", + "def update_KPISpendOverDemand(params, step, sL, s,_input):\n", + " y = 'KPISpendOverDemand'\n", + " x = _input['KPISpendOverDemand']\n", + " return (y,x)\n", + "\n", + "\n", + "def update_velocity_of_money(params, step, sL, s,_input):\n", + " y = 'VelocityOfMoney'\n", + " x = _input['V_t']\n", + " return (y,x)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# partial state update block\n", + "partial_state_update_block = {\n", + " # Exogenous\n", + " 'Exogenous': {\n", + " 'policies': {\n", + " },\n", + " 'variables': {\n", + " 'startingBalance': startingBalance,\n", + " 'operatorFiatBalance': redCrossDrop,\n", + " '30_day_spend': update_30_day_spend,\n", + " 'network':clear_agent_activity\n", + " }\n", + " },\n", + " # Users\n", + " 'Behaviors': {\n", + " 'policies': {\n", + " 'action': choose_agents\n", + " },\n", + " 'variables': {\n", + " 'network': update_agent_activity,\n", + " 'outboundAgents': update_outboundAgents,\n", + " 'inboundAgents':update_inboundAgents\n", + " }\n", + " },\n", + " 'Spend allocation': {\n", + " 'policies': {\n", + " 'action': spend_allocation\n", + " },\n", + " 'variables': {\n", + " 'network': update_node_spend\n", + " }\n", + " },\n", + " 'Withdraw behavior': {\n", + " 'policies': {\n", + " 'action': withdraw_calculation\n", + " },\n", + " 'variables': {\n", + " 'withdraw': update_withdraw,\n", + " 'network':update_network_withraw\n", + " }\n", + " },\n", + " # Operator\n", + " 'Operator Disburse to Agents': {\n", + " 'policies': {\n", + " 'action': disbursement_to_agents\n", + " },\n", + " 'variables': {\n", + " 'network':update_agent_tokens,\n", + " 'operatorCICBalance':update_operator_FromDisbursements,\n", + " 'totalDistributedToAgents':update_totalDistributedToAgents\n", + " }\n", + " },\n", + " 'Operator Inventory Control': {\n", + " 'policies': {\n", + " 'action': inventory_controller\n", + " },\n", + " 'variables': {\n", + " 'operatorFiatBalance':update_operator_fiatBalance,\n", + " 'operatorCICBalance':update_operator_cicBalance, \n", + " 'totalMinted': update_totalMinted,\n", + " 'totalBurned':update_totalBurned,\n", + " 'fundsInProcess':update_fundsInProcess\n", + " }\n", + " },\n", + " # KPIs\n", + " 'KPIs': {\n", + " 'policies': {\n", + " 'action':kpis\n", + " },\n", + " 'variables':{\n", + " 'KPIDemand': update_KPIDemand,\n", + " 'KPISpend': update_KPISpend,\n", + " 'KPISpendOverDemand': update_KPISpendOverDemand \n", + " }\n", + " },\n", + " 'Velocity': {\n", + " 'policies': {\n", + " 'action':velocity_of_money\n", + " },\n", + " 'variables':{\n", + "\n", + " 'VelocityOfMoney': update_velocity_of_money\n", + " }\n", + " }\n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n" + ] + } + ], + "source": [ + "# config\n", + "params: Dict[str, List[int]] = {\n", + " 'drip_frequency': [30,60,90] # in days\n", + "}\n", + "\n", + "\n", + "sim_config = config_sim({\n", + " 'N': 5,\n", + " 'T': range(100), #day \n", + " 'M': params,\n", + "})\n", + "\n", + "seeds = {\n", + " 'p': np.random.RandomState(26042019),\n", + "}\n", + "env_processes = {}\n", + "\n", + "\n", + "append_configs(\n", + " sim_configs=sim_config,\n", + " initial_state=genesis_states,\n", + " seeds=seeds,\n", + " env_processes=env_processes,\n", + " partial_state_update_blocks=partial_state_update_block\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run cadCAD model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "exec_mode = ExecutionMode()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " __________ ____ \n", + " ________ __ _____/ ____/ | / __ \\\n", + " / ___/ __` / __ / / / /| | / / / /\n", + " / /__/ /_/ / /_/ / /___/ ___ |/ /_/ / \n", + " \\___/\\__,_/\\__,_/\\____/_/ |_/_____/ \n", + " by BlockScience\n", + " \n", + "Execution Mode: multi_proc: [, , ]\n", + "Configurations: [, , ]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/cadCAD/utils/__init__.py:113: FutureWarning: The use of a dictionary to describe Partial State Update Blocks will be deprecated. Use a list instead.\n", + " FutureWarning)\n" + ] + } + ], + "source": [ + "exec_mode = ExecutionMode()\n", + "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", + "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", + "\n", + "i = 0\n", + "results = {}\n", + "for raw_result, tensor_field in run.execute():\n", + " result = pd.DataFrame(raw_result)\n", + " results[i] = {}\n", + " results[i]['result'] = result\n", + " i += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networkKPIDemandKPISpendKPISpendOverDemandVelocityOfMoneystartingBalance30_day_spendwithdrawoutboundAgentsinboundAgentsoperatorFiatBalanceoperatorCICBalancefundsInProcesstotalDistributedToAgentstotalMintedtotalBurnedrunsubsteptimestep
4000(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000054100
4001(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000055100
4002(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000056100
4003(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,...{'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd...{'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000057100
4004(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,...{'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd...{'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,...20.19{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000058100
\n", + "
" + ], + "text/plain": [ + " network \\\n", + "4000 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4001 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4002 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4003 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4004 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "\n", + " KPIDemand \\\n", + "4000 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4001 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4002 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4003 {'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,... \n", + "4004 {'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,... \n", + "\n", + " KPISpend \\\n", + "4000 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4001 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4002 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4003 {'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd... \n", + "4004 {'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd... \n", + "\n", + " KPISpendOverDemand VelocityOfMoney \\\n", + "4000 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4001 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4002 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4003 {'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,... 9.77 \n", + "4004 {'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,... 20.19 \n", + "\n", + " startingBalance \\\n", + "4000 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4001 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4002 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4003 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4004 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "\n", + " 30_day_spend withdraw \\\n", + "4000 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4001 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4002 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4003 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4004 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "\n", + " outboundAgents \\\n", + "4000 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4001 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4002 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4003 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4004 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "\n", + " inboundAgents operatorFiatBalance \\\n", + "4000 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4001 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4002 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4003 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4004 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "\n", + " operatorCICBalance fundsInProcess \\\n", + "4000 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4001 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4002 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4003 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4004 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "4000 1500 0 0 5 4 \n", + "4001 1500 0 0 5 5 \n", + "4002 1500 0 0 5 6 \n", + "4003 1500 0 0 5 7 \n", + "4004 1500 0 0 5 8 \n", + "\n", + " timestep \n", + "4000 100 \n", + "4001 100 \n", + "4002 100 \n", + "4003 100 \n", + "4004 100 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[0]['result'].tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(0,len(results)):\n", + " results[i]['result']['agents'] = results[i]['result'].network.apply(lambda g: np.array([get_nodes_by_type(g,'Agent')][0]))\n", + " results[i]['result']['agent_tokens'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['tokens'] for j in get_nodes_by_type(g,'Agent')]))\n", + " results[i]['result']['agent_native_currency'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['native_currency'] for j in get_nodes_by_type(g,'Agent')]))\n", + " # Create dataframe variables \n", + " tokens = []\n", + " for j in results[i]['result'].index:\n", + " tokens.append(sum(results[i]['result']['agent_tokens'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCICHolding'] = tokens \n", + "\n", + " currency = []\n", + " for j in results[i]['result'].index:\n", + " currency.append(sum(results[i]['result']['agent_native_currency'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCurrencyHolding'] = currency \n", + "\n", + " AggregatedSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedSpend.append(sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentSpend'] = AggregatedSpend \n", + "\n", + " AggregatedDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedDemand.append(sum(results[i]['result']['KPIDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentDemand'] = AggregatedDemand \n", + "\n", + "\n", + " AggregatedKPISpendOverDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedKPISpendOverDemand.append(sum(results[i]['result']['KPISpendOverDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedKPISpendOverDemand'] = AggregatedKPISpendOverDemand \n", + "\n", + "\n", + " AggregatedGapOfDemandMinusSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedGapOfDemandMinusSpend.append(sum(results[i]['result']['KPIDemand'][j].values())- sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedGapOfDemandMinusSpend'] = AggregatedGapOfDemandMinusSpend " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestepVelocityOfMoneyoperatorFiatBalanceoperatorCICBalancetotalDistributedToAgentstotalMintedtotalBurnedrunsubstepAggregatedAgentCICHoldingAggregatedAgentCurrencyHoldingAggregatedAgentSpendAggregatedAgentDemandAggregatedKPISpendOverDemandAggregatedGapOfDemandMinusSpendRed Cross Drip Frequency
0114.044500200000.00000386000.002912.001255.2525344.961325.0030
1218.484500200000.00000386040.002952.001693.6233705.591292.7530
2316.274500200000.00000386049.502961.501466.3424415.46381.5030
3418.754500200000.00000386124.943036.941672.0028676.481195.0030
4515.174500200000.00000386385.503297.501568.0019145.49734.8930
\n", + "
" + ], + "text/plain": [ + " timestep VelocityOfMoney operatorFiatBalance operatorCICBalance \\\n", + "0 1 14.04 4500 200000.00 \n", + "1 2 18.48 4500 200000.00 \n", + "2 3 16.27 4500 200000.00 \n", + "3 4 18.75 4500 200000.00 \n", + "4 5 15.17 4500 200000.00 \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "0 0 0 0 3 8 \n", + "1 0 0 0 3 8 \n", + "2 0 0 0 3 8 \n", + "3 0 0 0 3 8 \n", + "4 0 0 0 3 8 \n", + "\n", + " AggregatedAgentCICHolding AggregatedAgentCurrencyHolding \\\n", + "0 6000.00 2912.00 \n", + "1 6040.00 2952.00 \n", + "2 6049.50 2961.50 \n", + "3 6124.94 3036.94 \n", + "4 6385.50 3297.50 \n", + "\n", + " AggregatedAgentSpend AggregatedAgentDemand AggregatedKPISpendOverDemand \\\n", + "0 1255.25 2534 4.96 \n", + "1 1693.62 3370 5.59 \n", + "2 1466.34 2441 5.46 \n", + "3 1672.00 2867 6.48 \n", + "4 1568.00 1914 5.49 \n", + "\n", + " AggregatedGapOfDemandMinusSpend Red Cross Drip Frequency \n", + "0 1325.00 30 \n", + "1 1292.75 30 \n", + "2 381.50 30 \n", + "3 1195.00 30 \n", + "4 734.89 30 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "params = [30,60,90]\n", + "swept = 'Red Cross Drip Frequency'\n", + "mean_df,median_df = param_dfs(results,params,swept)\n", + "median_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEWCAYAAACUr7U+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXd4XMW1wH9nd7XqVrMkF7lgMLjhhsE4NBvHQGimk4SA6YTAI6TQAgFCIEAgCQ4hEILphPpoIQmYGEjygh3HjWZjbFywqm3VVVmtdve8P+auvOprS7JW8vy+b7+dO/femXPnzp0zc6aJqmKxWCwWi2Vg4OprASwWi8VisfQcVrFbLBaLxTKAsIrdYrFYLJYBhFXsFovFYrEMIKxit1gsFotlAGEVu8VisVgsA4huK3YRuVNEdopIqXN8uohsE5FaEZnWfRH3WK69JoeIjBYRFRFPb8YTD4jIeSKyuK/lsFgsAwsReVJE7uxrOeIZEZktIoVdXdelYheRLSLS4CjIyO93zrmRwI+ACao6xLnlfuBqVU1T1dXdeAAVkQP29P6u5HDCr3Oep0hEfi0i7m7E1yki8m0RWeHEVyIifxORI3srvhjkeVJEAiLic36fisjdIpLR2X2q+pyqHreHcd4uIk2t8tL1e/YE/Zuo9K8VkQoReVdExvW1XF0hIheKyP/1cJheEfmViBQ66bFFRB7oyTjiGTFsEpG1fS1Ld+iBMru9MPcTkbCIPNyT4XYRZ5s8LiIFIvK/TiO22ikvL9xbMu0usbbYT3EUZOR3teM/EihX1e1R144CPutRKfeMWOSYoqppwDHAucDFvSGIiPwQeAD4BZCPSbffA/M7uH5vtfx/qarpQC5wEXA48G8RSe1FuV5slZd+2U48IiL7QjfRL538VwBsB57c3QD6m5WoA3lvAmYAhwHpwGxg1V4Uq685GsgDxojIob0VSX/LKw4XAJXAuSKS2IdyPANsw+iVHOB8oKwP5ekcVe30B2wBvt6O/9eBBiAM1ALPO/8K1AFfOtcNA/4X2AFsBq6JCsMN/AT4EvABK4ERwD+jwqkFzm0nfhdwC7AVUyg+DWQAie3J0c79ChwQdfwS8FDUcQawCCgBioA7AXeU3PcDO4FNwFVOeJ524slw5Dm7kzS+HXgFeBaoAS51nuMBoNj5PQAkOtcPBt4CqoAK4F+Ayzl3gyOvD1gPzO0gzieBO1v5pTvPe7VzfCHwb+A3QLmTBhcC/9cqHa9x0mEncF9Elg6e89kOzn0A3OXE1wAc0J13QKt82zpuTCXmQycNPwJmt5Ll544sPmAxMDjq/JFR925z0uRQzIfujrruDOCjWNIfOAmoddyHAUud8EuA3wHeVml+FbAB2Oz4LXRkqcF8R0e1evaXMfnLB3wCHIhRqNud+47rKu8D4wE/EMLk6Srn+kTnXXzlpMEjQLJzbjZQiMmXpcAz7aTFW8C1HaTTRcCfo443AC9HHW8DpjruccC7mG9iPXBO1HWxyPgTTH7aApzXyfc6DHjTiWcjcFmrtH4JUx75MI2LGV2UsY8DzwGvAr9rdW4/THnoA/4OPETLfHwBpgwsB35KVL6n/XLFBdyIKXPLHVmzYwyvw3xJB2U2cDKwxrnnQ2ByVFzTMBU4H/Ai8AItvwlx5LzSeWdntUqb45z3XI1pKP0DuDTq/MXAOkzF4B1gVKtv6LuY/FTlpKvQcR6vxcln7by/0U54l2PK6hLgx1HnO0zzqHsXYPLmTuDmqHuTMWVFJbAWuA4o7Cw/qeqeK/boD6KVX7PCdB5oJXAr4AXGYArh453z12EKmYOcRJ0C5LQOp4O4L8Z8VGOANMxH8Ux7cnRwf7Sc45yX8YOo868BfwBSMbXp5cAVzrnvAp9jKiHZwPt0rNhPAILtnWtVGDQBpzlplgzcASxz4s7FfBQ/d66/G1MwJTi/o5z0OwhT0A2LyjT7dxDnk7RS7I7/05hWNRiFFQT+B/A4cl1IW8X+vpMOI4EviPq42nnOzhT7V8BEJ66E7rwDOlHswHDMB3aik97znOPcKFm+xCi/ZOf4HufcKExB9C1Hxhx2KZa1wDda5aEfdZX+mPz7J+BfzvEhmIqHx3mH64hSfM5zvus8d0Q5fceRxYPpHisFkqKe3Q8c75x/GlPJvtl5hstwKggx5P0W79/x+w1G0WVjKod/Bu6OKiOCwL0Y5ZrcTlrc4rz77wEHAxJ1bgym4HVhFOpWnDLHOVfpnEvF5P2LnGechikkJ+yGjL92ZDwGo6AO6uDd/ROjSJKAqZhGy7Gt0vpETGXobmBZJ99+Ckbpngic6cgcXYlbiqmQeDEVyhp25eMJGIVzpHP+fkw5Eq3YW5cr38eUKwXOs/4BeD7G8GLJl9GNpWmYiuNMJy0WYL7LRCf8rcAPMHnwLCeuaMV+FNAIZAEP0rKCN9hJizMceb7v3H+pc34+Rj+Md87fAnzYSta3gExMubUDOKGTPP53TEX/m8DIVudGO+E9j8mHBzvhRdKtszSP3PtH5/1McZ55vHP+HkzDLRtT1n1KDyr2WszHFfldFvVBdKbYZwJftTp/E/CE414PzO8g3q4U8xLge1HHBzkv1hPj/epkjLqolxJpEec7iZscdf23gPcd93vAd6POHUfHiv08oLSLNL4d+Gcrvy+BE6OOjwe2OO47gDdaPx+mlbsdY01J6CLOJ2lfsd8DvBuVwVu/vwtpq9hPiDr+HrCkk+cMtMpLkUrIB8AdUdd26x3QuWK/gVYtR0yNfkGULLe0eqa3o/Lvax083w3Ac447G6gHhnaS/n4nDUoxSqejSti10XE6z3lsF++3EtPVFHn2d6POnYL5piPWj3QnzMwY0r31+xfMN7R/lN8sdlkSZjvvPKkTWd0YC8S/nbiLI+/COb8NmI4pVB/FVDTGYZT4m8415+JUjKLu+wNwW4wyBoHUqPMvAT9tR9YRmNZcepTf3cCTUWn996hzE4CGTp79Oxgl4MFUFKqB051zIx25UqKuf5Zd+fhWHAXhHKc4aR2t2FuXK+uIsuIBQ3HKza7CizFfRiv2h3EaI1F+6zEVp6Od9xxdifuQlor9MeD1qPfVBOQ5xxcAS1vlw23sUux/Ay6JOu/CfI+jomQ9stX7vrG9PO74ZWHKxs+c978GONQ5N9oJb1zU9b8EFsWQ5pF7C6LOLwe+6bg30bJ8vZwYFHusfS6nqerfY7w2mlHAMBGpivJzY2ogYD6SL/cgXNhVe4+wFZNQ+RjzYSxMd+I/G/PSUjEFyyhMLbJERCLXujAZJxL3tqhwouVoTTkwWEQ8qhrs5LptrY7be75hjvs+zEe72JHvUVW9R1U3isi1zrmJIvIO8ENVLe4k3tYMx5gYO5KrK9mj5WyPl1T1OzGE05PvoDWjgLNF5JQovwRMqz9CaZS7HtOqhs7z7LPAOmeMwjkYRVPSiRz3q+otrT1F5EBM63EGpnD1YCxf0Wxrdc+PgUsw6aLAIEyrJkJ0f2ADsFNVQ1HHYJ5xGJ2ne2tyHRlXRl0vmO88wg5V9XdwP44cDwEPiUgyxhr3uIgsV9V1GBPrbEzF9R+YytAxmML+H04wo4CZrcoaD6ZvNBYZK1W1Luq4o3w8DKhQVV+ra2dEHbfOO0mdfP8LMN9EEAiKyP86fq9FxVUfdf02TB6MyNL8XlS1XkTKW4Xf+r2NAl4TkXCUXwhTbnYaXoz5snVcC0Tkf6L8vOzKo0XqaCuH5m/YyQdnY7oPUNWlIvIV8G1Mt2RrWbXVaPFRwEIR+VWUn2DKt0g8HX3jbVDVSow5/UYRGYyxZrwuIgVRl7Uujw6OkqWjNI/QkSx7VM719gClbZhacWbUL11VT4w6v/8ehl2MSbAIkdrtbg1oUMNLGJPXrVFyNWL6VSNyD1LVic75EnZ9XJG4O2KpE9ZpXYnS6ri95yt2ZPap6o9UdQxwKvBDEZnrnPuTqh7p3KsYE2hMiEgaprX/ryjv1nK1R+u02J2KRDTRcXX3HdRhCp8IQ6Lc2zAt9uh8maqq98QgY4d5VlWLMO/7DMzgmmdiCK89HsZ0M4xV1UGYvl9pdU1zWonIUcD1mMpElqpmYlp+re+Jha7SvXV+2ImpGEyMuj5DzaDANrJ2hao2qOpDGIvDBMc7otiPctz/wCj2Y9il2LcB/2j1TtNU9coYZcxqNWi0o3xcDGSLSHqra2NtTDTjKIVjge+ISKmYKcNnASc6yqPEiSs6H0fn+RKMeTcSXjKmOyaa1mm/DdNdFJ1OSU7e7Sq8WPJl67juahVXiqo+78Q1XKJqWrT8hk/HVE5/H5U2wzGVnvaeXaKPnbivaBV3sqp+2Im8ETrNr6q6E6PYh2EscxE6Kgc7S/Ou2B1d00xvK/blgE9EbhCRZBFxi8ikqJGfjwE/F5GxzkjoySISyUhlmD60jnge+IEzHSINM+L8xS5axZ1xD3CZiAxxWlmLgV+JyCARcYnI/iJyjHPtS8A1zhSILExNrl1UtRpTYXhIRE4TkRQRSRCRb4hImxHhrZ7vFhHJdT7yWzEtQkTkZBE5wMnM1ZjaX1hEDhKRY53Ro352DW7sFBFJFJFDgNcxBeoTXd3TiutEJEtERmD6k17czfvb0APvYA3wTSetZ2AKzAjPAqeIyPFOnkwSMz+0gK55Dvi6iJwjIh4RyRGRqVHnn8Yo2YMx4z72hHRMN1GtmClwV8ZwfRDHpCsit2IKxd0mhnQvAwpExOtcH8b0D/5GRPIARGS4iBwfa5wicq2T/slOmi5wnikyTfUfwBxM90AhpuJ5AkbpRK55CzhQRM533nmCiBwqIuN3Q8afiZl6dxRm0NfL7aTPNozJ+G4n30zGWEqejfV5ozgfMyblIExf/VTMuI5C4FuquhVYAdzuyDUL040S4RVMPv6a8z5up+vK3CPAXSIyCsApXyKzc7oKr6t82brM/iPwXRGZ6ZTvqSJyklMpWorJs9c47+oMzOC8CAswgwoPjkqbI4ApInIw8BfgYKdM9WC6cqIr748AN4nIROc5M0Tk7C7SJvo5mvO4c/+9ju7yOPJfCWxU1WgLyU+d8n0ippsoUg52luZd8ZLzHFlO+fQ/Xd0AsSv2P0vLucevxXKTY2I7GfNSNmNqzo9hRt2CMeu8hClIajAjcZOdc7cDT4lIlYic007wj2NaRP90wvYT40N3IOsnTljXOV4XYMxGazHK7hVM3wiYDPsOZjT1KroowFX1V8APMQM4dmBqcFdjFGlH3In5qD/GDDBc5fgBjMUM5qjFfCC/V9X3MQMz7sGkcylm4NNNncRxvYj4MN0FT2PMal9rZZKMhTece9dgPrhFu3l/R3TnHfwU07KuBH6GGZwGNBfO8zEtjsj7uI4YvgdV/Qoz0OlHmC6LNZgBLxFewzG9tTKh7g4/xpgcfZjn7Kqi9A7wNkZJbMV8C7F0oXREZ+n+HqafsVREdjp+N2AGKi0TkRpM3jxoN+KrB36FybM7MYX0maq6CUBVv8Dk9X85xzWYvsd/R7oTHNP4cZh++GInrMiAvVhkLHWetRhTefuuqn7egbzfwvSNFmPe92172FW5APPtlkb/MIog0jI9D9PlEJmV8iLGooKqfoYp817AtOxqMWNsGjuJcyFmPMdi59tfhhkLFUt4XeXL24kqs1V1BWZg5u8wabsR03+NqgYwlq0LMd/RuTjfsIgMB+YCD7RKm5WYfL7AaTWfjenLLsdYd1ZEpc1rmPf/gvO+PwW+0Um6RNNeHk/BvOsqTN4bhbGWRvMP5xmXYLrZIgt5dZjmMfAzzDe9GaMnY7ICSssuDotl9xARxZjmNvaxHKMxmT+hG1abnpLlS4wZcE8Ke8teRkRmYwakxWKx6VNE5EXgc1W9rZ1zaRjFM1ZVN/dAXD0aXm8iZt2LQsw0xfe7ur6H4x5NnJQ9EfaFRUAslr2GiJyJ6aN7r69lsfR/nO6E/Z0ukRMwlqbXo86f4ph/UzH9vp9gZoTsaXw9Gl5v4nSlZYrpeoz09y/rY7Higv64EpHFEpeIyAcYk+D5Tr+uxdJdhmBM1DmYFumV2nKJ7PkY86xgTNHf1O6ZYXs6vN5kFqaLLdJtdJqqNnR+y76BNcVbLBaLxTKAsKZ4i8VisVgGENYU38MMHjxYR48e3ddiWCwWS79i5cqVO1U1t6/lGAhYxd7DjB49mhUrVvS1GBaLxdKvEJHdWT3S0gnWFG+xWCwWywDCKnaLxWKxWAYQVrFbLBaLxTKAsH3se4GmpiYKCwvx+zvc4Mpi2askJSVRUFBAQkJCX4tisVh6GKvY9wKFhYWkp6czevRoRPZkwy2LpedQVcrLyyksLGS//fbra3EsFksPY03xewG/309OTo5V6nFAOBgk1Bho8wsH42KJ572CiJCTk2MtSBbLAMW22PcSVqnHBxoK4/v0izb+6ZMO3Ke+BpsfLZaBi22xWywWi8UygLCKfR/B7XYzdepUJk2axCmnnEJVVdVu3X/77bdz//33t3vu6aefZtKkSRx88MFMmzatw+t6mtGjR3PwwQdz8MEHM2HCBG655ZZOzctf+9rXdiv82bNnc9BBBzF16lSmTp3KK6+80l2RLRaLpdexin0fITk5mTVr1vDpp5+SnZ3NQw891CPh/u1vf+OBBx5g8eLFfPLJJyxbtoyMjIw21wV7qQ/7/fff55NPPmH58uVs2rSJK664osO4P/zww90O/7nnnmPNmjWsWbOGs846q8U5VSUctpu4WSyW+MIq9n2QWbNmUVRU1Hx83333ceihhzJ58mRuu+22Zv+77rqLAw88kCOPPJL169e3G9bdd9/N/fffz7BhwwBITEzksssuA0yL99prr2XGjBksXLiQLVu2cOyxxzJ58mTmzp3LV199BcDLL7/MpEmTmDJlCkcffTQAn332GYcddhhTp05l8uTJbNiwodNnSktL45FHHuH111+noqKCDz74gKOOOopTTz2VCRMmNF8D8H8r/suJly3gnO9/j0PPOIUf/OKOmBX0li1bOOigg7jggguYNGkS27ZtY/HixcyaNYvp06dz9tlnU1tbC8Dbb7/NuHHjmD59Otdccw0nn3wy0Nb6MWnSJLZs2QLAs88+2/zcV1xxBaFQqFn2m2++mSlTpnD44YdTVlYGQFlZGaeffjpTpkxhypQpfPjhh9x666088MADzeHffPPNLFy4MKbns1gsAwBVtb8e/B1yyCHamrVr17bx29ukpqaqqmowGNSzzjpL//a3v6mq6jvvvKOXXXaZhsNhDYVCetJJJ+k//vEPXbFihU6aNEnr6uq0urpa999/f73vvvvahJuVlaVVVVXtxnnMMcfolVde2Xx88skn65NPPqmqqosWLdL58+erquqkSZO0sLBQVVUrKytVVfXqq6/WZ599VlVVGxsbtb6+vk34o0aN0h07drTwmzJlii5btkzff/99TUlJ0U2bNrVIg1BTk/79ncWamJioX6xdp4119Tr32GP1xRdeaFf+Aw88UKdMmaJTpkzRnTt36ubNm1VEdOnSpaqqumPHDj3qqKO0trZWVVXvuece/dnPfqYNDQ1aUFCgX3zxhYbDYT377LP1pJNOUlXV2267rUVaTpw4UTdv3qxr167Vk08+WQOBgKqqXnnllfrUU0+pqiqgb775pqqqXnfddfrzn/9cVVXPOecc/c1vfqOq5t1WVVXp5s2bddq0aaqqGgqFdMyYMbpz5842zxcP+dJiiQCs0DgowwfCbx8aB7xv09DQwNSpUykqKmL8+PHMmzcPgMWLF7N48WKmTZsGQG1tLRs2bMDn83H66aeTkpICwKmnnrpH8Z577rnN7qVLl/Lqq68CcP7553P99dcDcMQRR3DhhRdyzjnncMYZZwDGqnDXXXdRWFjIGWecwdixY2OKz5QPhsMOO6zNPG2Xx4Pbm8Bhhx3G2PHjAPj2eefx4dKlnBMla4TnnnuOGTNmNB/7fD5GjRrF4YcfDsCyZctYu3YtRxxxBACBQIBZs2bx+eefs99++zXL/Z3vfIdHH320U9mXLFnCypUrOfTQQwHzzvLy8gDwer3NLf5DDjmEd999F4D33nuPp59+GjDjKDIyMsjIyCAnJ4fVq1dTVlbGtGnTyMnJiSX5LBbLAMCa4vcRIn3sW7duRVWb+9hVlZtuuqm5H3njxo1ccsklMYc7ceJEVq5c2eH51NTULsN45JFHuPPOO9m2bRuHHHII5eXlfPvb3+bNN98kOTmZE088kffee6/LcHw+H1u2bOHAAw/sMu7W0712Z/pXdLiqyrx585rTb+3atSxatKjT+z0eTwvTf2TAn6qyYMGC5rDWr1/P7bffDkBCQkKzjG63u8sxC5deeilPPvkkTzzxBBdffHHMz2axWPo/VrHvY6SkpPDb3/6WX/3qVwSDQY4//ngef/zx5n7hoqIitm/fztFHH83rr79OQ0MDPp+PP//5z+2Gd9NNN3HddddRWloKmBbrY4891u61X/va13jhhRcA0xI+6qijAPjyyy+ZOXMmd9xxB7m5uWzbto1NmzYxZswYrrnmGubPn8/HH3/c6XPV1tbyve99j9NOO42srKwu02H58uVs3ryZcDjMiy++yJFHHtnlPe1x+OGH8+9//5uNGzcCUFdXxxdffMG4cePYsmULX375JQDPP/988z2jR49m1apVAKxatYrNmzcDMHfuXF555RW2b98OQEVFBVu3dr6T5dy5c3n44YcBCIVCVFdXA3D66afz9ttv89///pfjjz9+j57NYrH0T6wpfh9k2rRpTJ48meeff57zzz+fdevWMWvWLMAM0nr22WeZPn065557LlOmTCEvL6/ZPNyaE088kbKyMr7+9a+jqohIhy3EBx98kIsuuoj77ruP3NxcnnjiCQCuu+46NmzYgKoyd+5cpkyZwr333sszzzxDQkICQ4YM4Sc/+Um7Yc6ZMwdVMzr99NNP56c//WlMaXDooYdy9dVXs3HjRubMmcPpp58e032tyc3N5cknn+Rb3/oWjY2NANx5550ceOCBPProo5x00kmkpKRw1FFH4fP5ADjzzDN5+umnmThxIjNnzmy2MEyYMIE777yT4447jnA4TEJCAg899BCjRo3qMP6FCxdy+eWXs2jRItxuNw8//DCzZs3C6/UyZ84cMjMzcbvde/RsFoulfyLRfZKW7jNjxgxdsWJFC79169Yxfvz4PpLI0poPPviA+++/n7feemvAxhkOh5k+fTovv/xyh+MTbL60xBMislJVZ3R9paUrrCneYhlgrF27lgMOOIC5c+fGPOjQYrEMHGyLvYexLXZLf8HmS0s8YVvsPYdtsVssFovFMoAYkIpdRDJF5BUR+VxE1onILBHJFpF3RWSD85/lXCsi8lsR2SgiH4vI9KhwFjjXbxCRBX33RBaLxWKxxMaAVOzAQuBtVR0HTAHWATcCS1R1LLDEOQb4BjDW+V0OPAwgItnAbcBM4DDgtkhlwGKxWCyWeGXAKXYRyQCOBhYBqGpAVauA+cBTzmVPAac57vnA086qhsuATBEZChwPvKuqFapaCbwLnLAXH8VisVgslt1mwCl2YD9gB/CEiKwWkcdEJBXIV9US55pSIN9xDwe2Rd1f6Ph15N8GEblcRFaIyIodO3b04KP0HH6/n8MOO4wpU6YwceLE5s1eNm/ezMyZMznggAM499xzCQQCfSypxWKxWLrDQFTsHmA68LCqTgPq2GV2B8DZcKDHpgOo6qOqOkNVZ+Tm5vZUsD1KYmIi7733Hh999BFr1qzh7bffZtmyZdxwww384Ac/YOPGjWRlZXW5HKrFsruEQqHmXeqi3RaLpXcYiIq9EChU1f84x69gFH2ZY2LH+d/unC8CRkTdX+D4deTf6yz+oIwzL17GUaf+gzMvXsbiD8q6HaaING9b2tTURFNTEyLCe++917zP+IIFC3j99de7HZfFEiEUClFXW0t9fT3hcLjZbZW7xdJ7DDjFrqqlwDYROcjxmgusBd4EIiPbFwBvOO43gQuc0fGHA9WOyf4d4DgRyXIGzR3n+PUqiz8o497ffUHZjkZUoWxHI/f+7oseUe6hUIipU6eSl5fHvHnz2H///cnMzMTjMSsLFxQUtNin3WLpCcLhMDu2b6estJSdO3e22ADHYrH0PAN1rfj/AZ4TES+wCbgIU4l5SUQuAbYC5zjX/hU4EdgI1DvXoqoVIvJz4L/OdXeoakVvC/6HpzfT2Niy4GtsDPOHpzdz3Oz8Du6KDbfbzZo1a6iqquL000/n888/71Z4FktXuN1uBmVkUFdXR0NDA0nJyaSnpeGy69dbLL3GgFTsqroGaG8Fo7ntXKvAVR2E8zjweM9K1znbdzbulv+ekJmZyZw5c1i6dClVVVUEg0E8Hg+FhYUMH97u+ECLZY+ImOIbGxtJTEzE39BAXX09KSkpdnMai6WXGHCm+P5O3uDE3fKPlR07dlBVVQVAQ0MD7777LuPHj2fOnDm88sorADz11FPMnz+/W/FYLK0Jh8PkDB7M0GHDyM7OtqZ4i6WXsYo9zrjigv1ITGz5WhITXVxxwX7dCrekpIQ5c+YwefJkDj30UObNm8fJJ5/Mvffey69//WsOOOAAysvLueSSS7oVj8USjdvtJn3QINLS0nC5XM1u21q3WHqPAWmK789E+tH/8PRmtu9sJG9wIldcsF+3+9cnT57M6tWr2/iPGTOG5cuXdytsi6UzopW4VegWS+9jFXscctzs/G4rcovFYrHsm1hTvMVisVgsAwir2C0Wi8ViGUBYxW6xWCwWywDCKnaLxWKxWAYQVrFbLBaLxTKAsIp9H6KqqoqzzjqLcePGMX78eJYuXUpFRQXz5s1j7NixzJs3j8rKyr4W02KxWCzdwCr2fYjvf//7nHDCCXz++ed89NFHjB8/nnvuuYe5c+eyYcMG5s6dyz333NPXYlosFoulG1jFHmeoKiXFxZQUFxMOh5vdZkn7Pae6upp//vOfzSvLeb1eMjMzeeONN1iwwGx6Z7dttVgslv6PVexxRmlJCX6/H7/fz1dbtza7S0tKuhXu5s2byc3N5aKLLmLatGlceuml1NXVUVZWxtChQwEYMmQIZWXd3x7WYrFYLH2HVexxiqoSDoe73VLPaA6yAAAgAElEQVSPEAwGWbVqFVdeeSWrV68mNTW1jdldRBCRHonPYmmPUChEMBhs47ZYLD2HVexxRv6QIW2Uq4iQP2RIt8ItKCigoKCAmTNnAnDWWWexatUq8vPzKXGsASUlJeTl5XUrHoulI0KhEOU7d1JaWkooFGJ7WRnby8oIhUJ9LZrFMqCwij3OKCstbdNKV1XKSku7Fe6QIUMYMWIE69evB2DJkiVMmDCBU089laeeegqw27ZaeheXy0VWdjahYJCtW7bg9/vJGTwYl8sWQxZLT2I3gYlTImbxnjLFAzz44IOcd955BAIBxowZwxNPPEE4HOacc85h0aJFjBo1ipdeeqnH4rNYohERXC4XHo+HUCiE2+3G7Xbb7h+LpYexij3OGDJ0aPNAufwhQ5pb6kOcAW7dYerUqaxYsaKN/5IlS7odtsXSFRFTfCAQIDcvj4rycraXlZE/ZIjdztVi6UGsYo8zRIShw4Y1H0e7LZb+TMQUn5GZidfrJSkpiXA4bE3xFksPYxW7xWLZK4gIHo+nXbdl7xIoryLoq23j70lPw5uT2QcSWXoSq9gtFsteI1qJW4XedwR9tbw/dm4b/zkblljFPgAYkDYwEdkiIp+IyBoRWeH4ZYvIuyKywfnPcvxFRH4rIhtF5GMRmR4VzgLn+g0isqCvnsdisVgslliJyxa7iHwCdDgcXFUnxxDMHFXdGXV8I7BEVe8RkRud4xuAbwBjnd9M4GFgpohkA7cBMxxZVorIm6pqd0mxWCwWS9wSl4odONn5v8r5f8b5P68bYc4HZjvup4APMIp9PvC0mnlly0QkU0SGOte+q6oVACLyLnAC8Hw3ZLBYLBaLpVeJS1O8qm5V1a3APFW9XlU/cX43AsfFEgSwWERWisjljl++qkYWXC8F8h33cGBb1L2Fjl9H/m0QkctFZIWIrNixY0dMz7i3WbhwIZMmTWLixIk88MADAHbLVovFYhmAxKVij0JE5Iiog68Rm8xHqup0jJn9KhE5Ovqk0zrvsZVfVPVRVZ2hqjNyc3N7Ktge49NPP+WPf/wjy5cv56OPPuKtt95i48aNdstWi2UfxZOexpwNS9r8POlpfS2apQeIV1N8hEuAx0UkAxCgEri4q5tUtcj53y4irwGHAWUiMlRVSxxT+3bn8iJgRNTtBY5fEbtM9xH/D7r1NDHwdvZ0Qr66Nv7u9FROqFi1R2GuW7eOmTNnkpKSAsAxxxzDq6++yhtvvMEHH3wAmC1bZ8+ezb333rvHslsslv6BNyezR0a/22lz8UlcK3ZVXQlMcRQ7qlrd1T0ikgq4VNXnuI8D7gDeBBYA9zj/bzi3vAlcLSIvYAbPVTvK/x3gF5HR8044N/Xc07VPe0q9M/9YmDRpEjfffDPl5eUkJyfz17/+lRkzZtgtWy0WS7ew0+bik7hW7CKSCJwJjAY8kXmvqnpHJ7flA68513qAP6nq2yLyX+AlEbkE2Aqc41z/V+BEYCNQD1zkxFEhIj8H/utcd0dkIF1/Y/z48dxwww0cd9xxpKamMnXq1DZLeNotWy0Wi2VgENeKHdOqrgZWAo2x3KCqm4Ap7fiXA22qlk5/+1Wt/Z1zjwOP74a8ccsll1zCJZdcAsBPfvITCgoKmrdsHTp0qN2y1WKxWAYI8a7YC1T1hL4WYiCwfft28vLy+Oqrr3j11VdZtmwZmzdv5qmnnuLGG2+0W7ZaLBbLACHeFfuHInKwqn7S14L0d84880zKy8tJSEjgoYceIjMzkxtvvNFu2WqxWNpFVQmFQs3b7Ubcdie++CfeFfuRwIUishljiheM9TyWlef6Je701A5HxXeHf/3rX238cnJy7JatFoulXcLhMNu++oqsrCySU1IoLioiLy+PlNTU5vE4kWlzrbHT5vqWeFfs3+hrAfY2ezqlzWKxWHqawbm57Ni+HSoqSElJISk5ucUg256aNmfpWeJ6gRpn9bkRwLGOu544l9lisVgGAi6XC6/X23zsTUzsQ2ksu0NcK0kRuQ2znntk/ngC8GzfSbTnmMH3Fkt8YPOjpSvC4TDFRUWkpKSQM3gwVZWV+BsabN7pB8S7Kf50YBqwCkBVi0UkvW9F2n2SkpIoLy8nJyfHzhW39DmqSnl5OUlJSX0tiiXOGTJ0KN6EBMRpvXu9XluG9QPiXbEHVFVFRKF5Vbl+R0FBAYWFhcTrBjGWfY+kpCQKCgr6WgxLHON2u0lKSmpW5NFuS3wT74r9JRH5A5ApIpdh1on/Yx/LtNskJCSw33779bUYFovFsltEK3Kr1PsPca3YVfV+EZkH1AAHAreq6rt9LJbFYrH0O5qCYSqrmlj1cSUZgxI46IB0sjO9Xd9o6XfEtWJ3+ARIxmyzaheqsex1gsEwVTVNNDSESE5yMyg9Aa83rsedWixtKC3zc/G1K2nwhwHYb2QKC++aYpX7ACSuSycRuRRYDpwBnAUsE5Eut221WHqKcFj54stazr9qBd/67n/51neXs/rTKpqawn0tmsUSM/7GEI8/v7VZqQNs/qqeL7709aFUlt4irhU7cB0wTVUvVNUFwCGY6W8Wy16hsrqJ2+5bh682CECDP8ztv1xHta+pjyWzWGInFNLmPBxNja+tn6X/E++KvRyIrlL6HD+LZa8QCiklZf4Wfr66IIF2WuxNwTDllY1W6VvijtQUD986fdcsCJcLjp41mGkH21XjBiLx3se+EfiPiLyB6WOfD3wsIj8EUNVf96VwloGPN0EYPzaddRt21S+H5ieR5G25EUZVdYDX/1rMX5aUkZvj5QdXjGX0iBQSEuK97mzZVzjogHQW3jWZF18v5OJvj2TU8EQSEjyEQiGamprwer24XDa/DgQknlcRclae6xBV/dnekiVWZsyYoStWrOhrMSx7SHVNE8FgmMREN2mppt5bst3Pnb/+nI/XVnPg/mnc+qPxjBy+a83sYDDMi28U8vCTm5vDSUx08cIfDiM3xy7DaYkv/I1BNNxESXExOYMHE2xqorq6mpGjRuHx9F1bT0RWquqMPhNgABHXLfZoxS0iWUCVxnNNxNJvCYeVbUX1/GLhejZuqeOwaVn86LtjGZyTyNC8JH7xk4kEQ4rbBZkZLUcR+2qDvPP+9hZ+jY1hNm+ts4rdEnckJXoIhYTs7GzKd+4EID8/37bWBxBx+SZF5FYRGee4E0XkPeBLoExEvt630lkGIpVVAa655WM+W++jsTHMv5aVc8+DX+CrNf3lGYMSyMnytlHqAF6vi+FD2y7POtgqdUscEwqF2nVb+j9xqdiBc4H1jnsBRs5c4BjgF30llGXgUu8PUV4RaOH3n1UVBJq6NhClpnj43kVjyBi0ywD2jWPzycmy84Mt8Yeq0hQIUF1dTX5+Ptk5OezcuZNw2E7hHCjEqyk+EGVyPx54XlVDwDoRiVeZLf2YpEQ3Xq+LQGBX4TaqIIVYV9Eclp/M0w/OoGxHI+npHgalJ5CRntBL0lose46IkOD1MmLkSLMevCqpqaldmuIb/CFq64IEg2GSEt1k2YVt4pZ4VZKNIjIJKAPmAD+OOpfSNyJZBjLpqR5uuPpA7v7teoJBJS3VzS0/GBfzqlxut5CTnUhOtjW/W+Ift9uN2+1ucdwZtXVB/vJuKY88tYmmoDJ2TBq/vHWSHUMSp8SrYv8+8ArG/P4bVd0MICInAqv7UjDLwCQpyc3RswYzfXIm9fUh0lLdZAyyLW6LBcxskQcXfdl8vGFTLY89t4UfXH4ASUmdVwose5+4VOyq+h9gnIiMUdVNUf5/FZF1sYQhIm5gBVCkqieLyH7AC0AOsBI4X1UDIpIIPI1Z1a4cOFdVtzhh3ARcAoSAa1T1nR57SEufEQ6Hm82O0e7kJDfJSW6TQywWSzPbihva+H32eQ31/pBV7HFIvA6ei/BKjH7t8X0guhJwL6b1fwBQiVHYOP+Vjv9vnOsQkQnAN4GJwAnA753KgqUfEwqFqK2tJdjURDgcbnZ3dU8wGGzjtuwdogd12QFefcPokSm07oKfOT2LtJS4bBvu88SlYheRcSJyJpAhImdE/S4E2s4rant/AXAS8JhzLMCx7KoUPAWc5rjnO8c45+c6188HXlDVRqcrYCNwWI88oKVPqa6qori4mIrycnbu2IHf7+9QYYRCIXbu3ElpSQmhUIiysjK2l5XZ6UF7iWAwSF1tbXOFKuK27F0GpSVw540TyMpMMMvRHp7DeWeOtLscxinxWt06CDgZyAROifL3AZfFcP8DwPVAunOcg1ncJtLUKgSGO+7hwDYAVQ2KSLVz/XBgWVSY0fe0QEQuBy4HGDlyZAziWfoKt9vNsOHD+WrrVmpqasjMzCSlkxHBLpeL7OxsiouK2LplC+JyMXz4cLuYx15AVQkEAuzYsYOMQAC/309TUxMpKR2Pnw2UVxH01bbx96Sn4c2x66LvKSnJbo44LIeJ4zLQsJKUtGtlRkv8EZdvRlXfAN4QkVmqunR37hWRk4HtqrpSRGb3ioCtUNVHgUfBLCm7N+K07BmhUAifz4eqIiLU1tYyaNCgDhW1iOByuXB7zJrabpcLl8vVvJyspfcQEZKSksjOyaGi3Oz9NGLkSFydjOAO+mp5f+zcNv5zNiyJSbFHrAFut7uFuz+hqoTDYdxudwt3d3G7Xe2uzRAOhxERRKSF29J3xKVij2KjiPwEGE2UrKra2Z7sRwCnOiPok4BBwEIgU0Q8Tqu9AChyri8CRgCFzhz5DMwguoh/hOh7LP0YX00Ng3NzSU1NpbioCL/fT4rb3a5yj5jig01N5OXlUV5ezvayMvKHDOl3BX5/JBwOU1e7qwVe6/MxKCOjV9I+FApRX1+PhsOkpafvcqeldVqZiCdUlaamJurr6kgfNMg8k+PujTQLh8P4GxrwJCTg8Xia3QkJCVa59yHxrtjfAP4F/B0zMr1LVPUm4CYAp8X+Y1U9T0ReBs7CjIxf4IQN8KZzvNQ5/56qqoi8CfxJRH4NDAPGAst76LksfUTEFB9piUe72yNiitesLBISEkhMSkJVrSl+LxAxxTcFg4wYOZJGv5+d5eUMGjSo1+IMh8OU79xJXV0dDQ0NZGVn059McJFV5SoqKmhsbKShoQGv10t6L6WZqlJVVUUgEGBQRgZVlZVkZWX1WuXLEhvxrthTVPWGHgrrBuAFEbkTMxd+keO/CHhGRDYCFZiR8KjqZyLyErAWCAJXOavfWfo50QVOjS/E0hUVrN/o47g5+Ywcnkx62q756yKC1tQS9NURPRY+iO237W1EhMTEREaMGIHL5cKVksKIlJReq1S53W7S09KalXpiYiIZGRn9qhLncrlITkkhIyOD6upqXC4XQ4YO7dU0yx8yhMLCQqoqK0lJSbFKPQ6Id8X+loicqKp/3ZObVfUD4APHvYl2RrWrqh84u4P77wLu2pO4LfFPZXWAm+76jE8/rwHgf/9SzM3XHsRxs/Nxu3eZEYO+unb7bWd/EVu/raUlVdUBgiHF5ZIuV/bbndXRukvEFO93lHpjYyO1Pl+/M8UHg0F8Pl/zOIHqqqpeU7bhcBi/308oGEREjDsUsuNQ+ph4V+zfB34iIgEgAAigqtp7tjjLPkNtbZB5xwwmLdXNf1ZVcu3lY1j9SRUzp2eTHcMGLtU1Tfi2+xmS13IGph2Z3THFZQ3cdu861m3wsd/IFH52/QRGj0jB5eoZJeBJT2POhiXt+sdCOBwmOzubQRkZ+Hw+QuFwvzTFe71e8ocMoaGhgZrqagZlZPRafNVVVWRkZJCVnU1JcTF1tbW21d7HiN3evGeZMWOGrlixoq/FsMSAr7YRX40PtyeJwpIAQ3PDJHiT8Hq9ZAzapdjrtxS222If/++/cOOj5Txy37QWFYGOrp+zYQkpowt652H6AVXVAX502yes/3JXpSc3x8tjvzkkbnbCGwij4sOhEIqRO9odK6GQUlVjFm1KT/PgTejcjN9TaSYiK1V1xm7faGlDXLfYnYVizgP2U9Wfi8gIYKiq2kFslm6T6HVTEw5QX1vD0Nxk/A31JCd7SU2JvVAqLvNT3xAiO6sXBR0gNAW1hVIH2FEewN8YP0NX9qbpv7dwud2EQkpldYBEr4uU5NiL+dq6IB/+t5yHn9xEYyDMOacO57QTh5PZyb4JAyHNBhrxPirk98As4NvOcS3wUN+JYxlIeL0ehgzNR1wu/A31pKcPIiU1BY8n9sLJ5YJEu/pWTLjdQsHQ5BZ+6Wkem349THVNgFf+XMSPbvuEex/8guLSBsLh2CyzZTv83PGrz9lRHqDGF+Sx57ay+pOqXpbY0tPEdYsdmKmq00VkNYCqVopIfNjsLP2eUChETU0N4VAIj8dDba2PQRmDUHW3GPgT3W8bCISpqGoClJqglwXnjiJlN1r4+zJZGQncccN4fnz7J1RUNZGe6uHnN06w+9b3IE3BMK/9pZjH/rQVgC++rGX1J1U8sfCQmLYUXrqioo3fux+UMWtGNkmJNp/3F+JdsTc5G68ogIjkAnYXCEuP4ff7ycvLIzklhe3bt9PU1NRmcQ1vTmbzoDd3Y4i07CBbt9UxtCCJcyYnkGo3wogJEWHM6DSeWHgI/sYwiYkuMtITSOiiD9cSOzW+Jt76e2kLv4qqJnaUB2JS7Afu33aQ4YSDBpHgse+oPxHvJdJvgdeAPBG5C7OAzC19K5JloOB2u8nLy2vj7mzOb2Kim7xEN3mDOy4kuzsyeyDjcUtMCsayZ3jcQk6Wl9LtjS3801Jja22PHZPG7K8N5oMPdwJw0AFpnDh3SIvpn5b4J+5HxYvIOGAuZqrbElWNaT/2vsKOirdYLH3Jug01XHXDGgJNpmw/fnYe11x2ABmdDICLptrXRENDiFBYSUl2k5Wxd3o/7aj4niOuFbuIZLfj7VPVzjfQ7kOsYrdYBh79aRpcIBCmqqaJDZtqyc9NZHBOYqej2uMFq9h7jng3xa/CbMRSiWmxZwKlIlIGXKaqK/tSOIvFMvAJh0I01Nfj8/nIy8+nvr6eWscdj8rd63WRNzix0+4iy8Am3kdEvAucqKqDVTUH+AbwFvA9zFQ4i8Vi6VXE5SLB68Xv91NUWMiO7dtJTk7u+sZ+RCiklFcGKK8MEArFrxXXEhvxrtgPV9V3IgequhiYparLAFsdtVgsvY6IkJCQQHp6OsFgELfbPaCWTPXVNvHO+2V897rVXPHjVfxtSSk1vrjt7bTEQLwr9hIRuUFERjm/64HtzhQ4O+3NYtmLVFUHqNgHW3RhZ0/zmpoaUlNTCYfDlJWWNve193e+KmrgFwvXU1Lmp3R7I/c8+AVbttX3tViWbhDvfezfBm4DXneO/43ZVtUNnNNXQlksfU04HEZEEJEW7t6gwR/i8w0+fvf4lzT4Q5x7agGzj8yN24VlVLU5LaLde0rEFJ+Tk0P6oEE0NTXhb2joCVHjgsXvl7Xxe+e9UiZP6J2NYyy9T1wrdlXdCfxP5FhEkoBTVPVlYGOfCWax9CHhcJjGxkbcLheehIRmd4LX2yvKvbwywPdv+YiwYyO77/cbyM7yctThg3s8ru4SCoVo9PtJTDI77kXc3TGbiwherxePx4PL5Wp297UpvqdG6h90QHobv3Fj7Qaa/Zl4N8UjIm4ROVFEngG2AOf2sUgWS5+iqlRVVlJUXEx1dTUlxcVmadxw7/RO/WdlBa2D/vPiEuobgr0SX3cpKytje1kZNTU1lJaW4vf76e60XhFpVprR7r4iFArhq6mhvLyccDhMTU0NFeXle9Q9MGtGNgeP36XIJ45L54iZOT0prmUvE7ctdhE5BmOKPxFYDhwBjFFV2/lj2adxu93k5edTXFREZUUFSUlJZGVn95qyGTG87QjwUSNSutzOsy9wuVwMHz6cwsJCGhoayMrOJikpqde6KfoKESExKYmKigr8DQ0Eg8HmlRPbo8bXhDfBRVJS2zySmZHA7+6ezM6KACgMzvE2r75YXhngw+XlVFQF+PrReQzO9pJo14yPe+JSsYtIIfAV8DDwY1X1ichmq9QtFmOKDwQCNDU1ISI0BgKEgkFcLlevKLCx+6UxfXIGqz6uBiA/N5FzTinAE4frh4fDYRr8/uZjf0MDgwZ136ysqlRUNdHgD5HodZGe6mlXSe4tXC4XiV4vySkpNNTXk+C4W1fuanxNLF9dyWt/LSY3J5HLvjOaIXlJLZaIDQaDlBQXM2ToUACKCgsZOnQo9X7hyutWU1xm0vPx57ey6DfTOWA/uzRyvBOXih14BTgNY3YPicgbOBvBWCz7OqpKVVUVaWlpDM7NpbS0lJqaml5rtWdlernj+glUVjfR2Bgmd3AiOVnxu8liRXk5OYMHk5SURHFREX6/n5SUlG5VegpLGrj2lo8p29GI1+vix1eOZfYRuaQk941yj5jiG+rrSUtLo7a2lorycrJzcprzgKry7+Xl3PXA+ub7/rOygmd+P4PBUev1u1wuPB4PRYWFACQmJiIuF+s31jQrdROnsuhPW7j1h+NI3o093i17n7h8O6p6rYj8AJgNfAv4JZAhIucAf1XV2r6Uz2LpS9xuN3m5uSCCy+UiPy8POuj39dU2EWhSRCA7c8+VcWaGl8y9tGZ4d3C5XIwcNaqNuztKvcbXxC8f/IKyHWZjlUAgzL2/+4JDp2btsWKvqg4QDkPGoIQ92mAlYorPy8sjJSWF9EGDCAVbjnmormnilbeKWvj56oJs2lrXRrFn5+RQXGSujVQOGhrb9tc3NSkxbu1u6UPiUrEDqBnt8j7wvogkACdgprr9Hoi/4biWfZJwONzcHxnt7m3cHk+77mh2VjTyy999wdIVFRQMS+anPxzH2P3SBvQ2qa0HtrVX2VFVmpqacLlcuN3uZreng3QMNIXZuLmuhV8opNTUNpHbwbKtTcEw5RUB3nm/DI9HmHdMPtlZXpqawny+wcdDT2yirj7IufMLOPbIXAbt5tRBl8tFYmIi6vXicrub3dHP6/G4yMxoG27ruILBIKUlJSQmmmcpLSlh+PDhTJ6QQWZGAlXVZrEaEVhw7ki7TXE/oF984arapKp/VtXzMGvHd4qIJInIchH5SEQ+E5GfOf77ich/RGSjiLwoIl7HP9E53uicHx0V1k2O/3oROb6XHtHSDwkGg/j9fsLhcAt3PFBXH2ThH7/kw/9WoArbiowpudquKIaqUlZaSmlJCX6/3wxCrKzs8N0lJ7mZMS2rlZ+r093SdpY38p3v/Zc/PruFh5/czIKrV1BZaRb4ufaWj/h8g49tRQ3c//sNrP60ao+eI1Ixae2OkJbq4aqLxpCYuKuYn3ZwBvm5iW3CSU9PJ3/IEIYMHUp6ejricpE5KIHHHziEC84ZyYlfz+fxBw5h/1GpeySrZe8Sl1UvEfmEjvvUFZjSRRCNwLGqWuu09v9PRP4G/BD4jaq+ICKPAJdgBuhdAlSq6gEi8k3gXuBcEZmAsRJMBIYBfxeRA1V1YCw5ZdljwuFwi37NmpoaBBg+fHhfiwaA3x9m+aqKFn71DSFqfMEWZth9ERFhyNChFBUWUlJcTGJiItlZWR1aW1JTPHz/sv1paAjxn1UVDBuSxE9/OI6M9PaLz3BY+d+3ivE37qoo+OqCrPmsGl9dE6FW9Ye3Fpdy6JQsUnqhJTxiWArPP3IYn35eTW5OIgVDk9tsw+p2u8nKzm5+/mh33uBELj1vNKqK290v2oEW4lSxAyc7/1c5/884/98hhkF0jhk/0g+f4PwUOBYzhQ7gKeB2jGKf77jBDNz7nZhOufnAC6raCGwWkY3AYcDSPXkoy8Ah0soJNDZSUV6Oy+WiYMQIXK1aTaFQiHA4jNvtRlWb3cHKGoK+tkNFPOlpeHMyuy2fJ0HYf3QaH6+tbvZzu4X0tJaffGTes8vlam6x9tbo+nhCVZvntqtql4XK4OxEbvvxOAIBs8pfVmZCp2kUbGfZ3br6JkYMazt1cGRBCgne3lGaCQlmp7djj+x4KhzQolLTuoLjcglmc832qa8PUlcforYuSHq6h8xBCXE5Y2JfIi4Vu6puBRCReao6LerUDSKyCrixqzCc9eRXAgcADwFfAlWqGhlhUghEmlfDgW1O3EERqQZyHP9lUcFG3xMd1+XA5QAjR46M8Skt/R1Vxd9oBlRFVoNzuVzNBaOqEggEKCkuJn/IEJoCASoqKhg5ahRBXy3vj53bJsw5G5b0iGLPSE/gpmsO5JqbP2JHeQBvgvCjK8e26B+NyFdaUsKw4cMJBALs3LGDESNHdtjfvCdU1QTYsq2e1R9XMWNqFiMLUshITyBQXtWrlZuOiJjiExMTGTx4MCUlJVRWVpKTk9PpGIn0tNj6wV0u4ayTh/Pm28UEmoyCT05yMWtGDt4EFzOmZLLiI2N+z89N5JunFZDQTxVhQ0OIv/9rO7/6/QZCYUhLdbPwzintrmZn2XvEpWKPQkTkCFX9t3PwNWIcF+CYy6eKSCbwGjCut4RU1UeBRwFmzJhhx4z2E7qjWCKmeFQZOWoU1VVVVJSXtzDFR5YiHTRoEGWlpQAMzs3dawPshg9N5rFfT6fBHyYx0UVaqofkqLnXEfmSkpObpzplZ2f3aGu9viHIMy9v48XXTfiL/rSVC785iu+cOYJwL1duOiJiineJ4HK7GTZ8uHH34HvJHezlmYcO5ZW3ikjwCGecNJycLC8ej4vbrxtvpg4GwuTlJJIdx1MHu6K2PsivH9nY3L1QWxfiFwvX88Cdk9uY/C17j3hX7JcAj4tIZDeCKuDi3QlAVatE5H1gFpApIh6n1V4AROaCFGEG5RWKiAfIAMqj/CNE32Pp53Sn1RwxxaelpVFbFyZtUCaZmZltTPHQagR7O+cPffNR3ClmbXMNhqjfYpRgd1uuLpeQ00V/uoiQ4ixyApCcktKjCq6uPsQrf275yfzp1W2cdsJQUmIMQ1Wp9jXhcZvKSXeJbMMaIdrdUyR63Qwfmsw1l+7fHGeE/tg+0boAACAASURBVDJ1MBb8/hDBYMu2zNbCesJ2TlyfEteKXVVXAlMiil1Vq7u4BQARyQWaHKWeDMzDDIh7HzgLeAFYALzh3PKmc7zUOf+eqqqIvAn8SUR+jRk8NxazvK1lH6CiymxRmuCRdgvimtoQby0u5a9/L2XEcFOID813N89Ljpi6KysqyM7OoampibLS0ua51RHcKUks+/oFbcLv7ZarqtLY2Ej5zp1kZmXR6IwQ70lTvCptCvlQMBzzalM1viaWrqzg5TeLGJTm4XsXjWHk8GS83r5b9W13LD17av2orArw4YoK1n1Rw3Gz8xk9ImW3p8SBGUNhBr65CYfDze6essqkpHjIzkygomrXbIsjDs0msQ/fjyXOFbuI5AO/AIap6jecUeqzVHVRF7cOBZ5y+tldwEuq+paIrAVeEJE7gdVAJJxFwDPO4LgKzEh4VPUzEXkJWAsEgavsiPh9gy3b6rj13nVs2lrHQfun8bMbJlAwdNfAp0AgzPOvbuNPr5rW9bbiBtau9/HUg4c0t5LNVqoesnOG8Pb75YwsSGbigUOb+137mogpPj8/n6TkZMjIwN/Q0KOm+OQkF3OOyOW9/9vR7HfC3CFmYRdf1/ev/qSKn//q8+bjNZ+u4vk/HEZ+bt8pjj2x9FRUBti4pZZgUDlo/zSyszreia+qOsDNd3/Gx2trAHj9byVcf/VYTvr6kN0amR4Oh6n7f/bOO06Sss7/76eqOueeHHfJu+SwIIISVAwHJyoKGNEznfEMP0REVBAU9EA4Myp3mBOY8RQ40ZMTJagEYYkbJvaEzrHC8/ujunt6Qs90z87s9i79fr32tU/XdHVXdVfX93m+4fPNZpmZmaG/v59MOk06nWZ4w4Y1+47DQQf/8amjuOo/HuOp7VmevSXKe95ywJp4Vtqsnlb/9P8L+E/gkvLjx4AfMGeQl0RK+QBwzBLbn8LOal+4vQC8qs5rXQlc2cxBt9m7sSz40BUPVeU0tz6Z4SNXPsz1VxxJpKzels7o/PbO2Lz9Eimd6XipathNU3LLrePc/0CSu++bRVXg2cd38MqzBjhyyM/pj98B2O73PYWqqnh9vuqNvna8FgT8Dt7/rwdy/NER/nz/LCed0MFJW6L4vBrLNX6wLEk8qfOTW8fmbS/pkr89lORFp7vX7BjXm5l4iXde9FdGx+3rqSPq5OvXHktXx9JhkkzWrBr1Cjf9YAcnn9BBR6TxUkVFUfB5vWQymWoORW9v7yrPYmlUVbBxyMfVlx6Gbkg8brUtYNMCtPo30Cml/KEQ4mKoZqy3V8xt1hUp5TyNbICntmcp6XMFyJom6Oly2R2xagjUrFR0w+KhR1LcfZ9dT/7cEzv48HsP4Z6/xdEinWiRIEII8tv3bNpGrSFvxqg36pKOhJyc9cJeXnR6D86asi4tMDe5mXc8Xi+/un2CdFqnM7o4BFJP7a1VuesvM1WjDjAzW+IXvxnnTa9eu5VzXcr5BIV8HgDNsXyZ3moJBfeNnIF9hVY37FkhRAfl2nUhxIlAQ3H2Nm1Wop5hweOdJ6UJ0NvtQtPmboihoJMPvuMg3nnR36pCJOec1T/PBel2qbzglG7+cPcMmw4K8P637890bIRnHdM7r8xsb6UZl7Tt9p9vUJwd4UXPsyzJL347zme/+DjhoIOrLj2c/7t3llTarlJ92Uv6GOr3kM7oDZef7WmmZoqLtk1OF7AkLCUT7/OpHHlocN6q/YLzhgkvo3S3FBVXfDqVoqu7m0w6zdjo6Jq64tu0Jq1u2D+Andh2gBDiLqCLOi7zNm2aZSnDAmCaFld8+FAuvvJh0hmDcMjBFR8+bFH5zn7DPr7/1RPYOZanI+okHHQsSnA67qgIbzxvAz//zRgzcR2/x83EuO1e9vl8dpZ8nQmGFnjmtcdMpnV++utxwA5tfPHGJ7nqo4eTyRoM9rvZMZLnY1f/g6Bf491vPgBNUxACPB6V0CqSy3YHLzy1m2/+YPs8xblXnDmAqixtXCMhJ1defBh/uneWfzyW5kWndbNhyNu08lvFFe8cGMDpdOL1eNAXNIpps28iKupLrYgQwgWYwCHY0kdbAaWsBNeSbNmyRd577717+jDa7CK6YZFM2W1K3S6VcEhbtaRmqWSSzpo4HAJN0ZkYtw1XX38/brd7r1095baN1F2xu4YGSCR1DNPC4VBW7CxXcetLCYmkTrFkR9xShpN3f/ppvv/V45lN6Lzzor8BcM1lR3DzL0f5v3vsMMdzntXBRe85eLfUTjerf5AvGGzbmeMb39mOYVi88fwNHLS/f7fFoqWU1WusdtxqCCHuk1Ju2dPHsS/Q6iv2P0kpjwUermwoK88du+cOqc0zAYemrKip3ugN3ulU6XCqlEolRkcm8HrtCu6J8XEGBgdxOlvDGNU+R3E6MXN2XBZFIMq17Y3U1gunk/RTO0kndSxLoqkKjrADVzhQd996bv3Nd/2KZx0XJeDXuOFb2wA4fFOQkbF81agD/PHPM7zglAQvOGV56dS1oJ6npx4et8bmg4Jc9qHNSMmKGeNrrcjXTA5FpaFRpSSuMl5Kf6FN69KShl0I0Yst3eoRQhzDnFBxEBrWtWjTZl1ptuxJVRSi0Sj+QACkJJPJVG+Y693+tfZYawVx3AO9VSMiLYs7DzkDgBNv/+aqa+utXJ67Dn3hou2nbm2sLr/2+FwRB5e9wY0yG+NtL4vyP3+cYqDPzRNPLzZ8f3to9xj21dLoCn295YaXw7IsRnbuJByJ4HQ4iMVie71n6ZlISxp24EXAG7GV3q6t2Z4GPrInDqhNG2CeyEezqJpGIBisGu3K2DRNcrkcHo8HIUR1vJZ67fOOo44gzmmP/Lap16mXfCgXti+b+0tDr1vv+E7ZejsdUSePPp7hTa/ewC9+OzHv76ef3NXQ6+8u1nuyth4IIejq7mYqZpdyhkIhnM76NfdtWpOWNOxSypuwBWbOkVLevKePp82+QTZnoBuSUEBb1Y3Ksizy+TyFfJ5wJMJq8lOW6qIlpWRmehqH04nb5SKZTNLb11dVC6t0WzNNs6U6r9VzSWee2llnj107blUR3HjdcTy9PUtPt4u3vX4j3/6x/V6vf9UwB+7fOsmGhmGQiMeJRCJIqI5r5YXrudxlnb7wuwNbVKnGdV9nMlLpCqiq6rxxm9agJQ17BSnlzUKIM7H7obtrtl++546qzd6GrluMjOf58n89RTyhc84/D3DSluiqJDoFkEwmKRQKBMz6kgqV2GQjMp5quRHJyM6dFAsFoh0duN1uLMsimUjg8/vRNK06XmkFtdbJUs1q2dd7v7VYsHZEnHSUm6ac//IhzjyjD4CAX8PpaJ0VcaVJULFYREqJaZqEwmFqTV89l3uznpO1xLIsYpOThMJhnE4nU7EYHo9nniveNE3Gxsbw+/0Eg0HGxsYIBoP4/f62cW8RWtqwCyG+gh1TPx34OraOe1urvU1TJFI6b/3A/dV68yuufZRPXLi56Xisoii4PR678UsmQ4Clb2JSSnbu2EF/fz+5fJ5EPM7whg11b3qVeuMK2WwWv9+PEIJisUgymcTtdpPP53F7PMsaa13XsUwTh9Np94Ivj3eFZrXsVzOPqHXrN6rE53QoVSPfLKWSRSpjd1hzu1SiK/RXbxaHw0FPby/jY3Zp48Dg4LqFVmoxDKtuL/RGkvKEEAwODlY9C5Xxws8mEg4Ti8VIxOMoqorX620b9RaipQ07cJKU8kghxANSysuEENcAv97TB9VmMbOJEo88lmJyqsizt3QQDTtwuVrjh/7wo6mqUa9wy6/GOOGYSFOr9oorPpPJlFcwKqduvW1R7FT1+/DoBUZHbUW5ru7lJxBSSpKJBN3d3ThdLsZGRymVSng8Hnp6e9mxfTv5fJ5QOIzb7a4bqzVNk2QiQTqdpqOzk/jsLJqm0dPbi+r3Vo+1nuFUvZ6qcVWczlWvHOvF3pery69161c8ArtKPUOm+H3c84TJJ699lFzepK/HzbWXHcHQwNrl5Zqmycz0tP15l0MtPT0981zx9aj9HmrRAn6Mch26pmnzxsmUzj8eS/HbO2McvinI6c/pWlRi2EhS3sIM+KWMtaqq1S6AlmXh9Xj2ivyBZxKtbtjL9TbkhBD92K1U+/bg8bRZgniixIWfeJCtT9o3UU17kq9+9hgOOTCwh4/MpmMJWdLuTieOOiub5RBAKBwmEolQyOfJuwqEw+F5N0DTNHEmLHK5HF0eH8p0gqKYL5hYu0pSVZWh4WHA9gpUxpZlEY/HsSwLh8NBKpnEv4wrXlVVItEopVKJ6ampqlFXFIWSx0UsGcfr8uJzapzy6G8X3bQVlxN3/+JJSLOGttlysIWsZmKwFPUM2albb+fjn91GqWRP9sYnC1zxua1c/bHDCK+RNGolBDMwOIiUksmJCSwp6/h4FuxbKuHdOLhou2maxCYnMQyDnt5eJicmcDgcdHZ188vbx/nyfz4NwG2/j3H7H2J8+pLDGmoP22yqSMUVLxSFcChEIh7H6XK1XfEtRKsb9l8KIcLAZ4H7sdNqv75nD6nNQkYn8lWjDmAYki/f9DSfvOhQAv49f4kN9ns45vAQf33INq5+n8pbXrsfHk9zN6GKK95VXjVXxrU3MyklhXyeRCJBR2cnTCe4c9Pi0q/aVZIQovoaUsq5DGopMXSd3t5eXG43yUSiajAq+y3Esix03ZbCNU0TwzBwOp24PR7CkQiJeJy8EAxvrB8a2NM0MjHYlVpvS1I16hW2PpnGNJpPhiwWTabjJX531xTdHS62HBUhGnHicDgYGBysfke149WiqiqdXV2MjY4ysnMnqqbR2dlJOmvy3ZvnEha/cPF+BLUS6vQkufjce9ZLykuldWbH8vR2uXDUyVNY+HlHJYCKJgWunh6cLlfLXk/PRPb8XXcZpJSfLA9vFkL8EnA32pO9ze4jn1/s2s3nzUV9uPcUkZCTyy86lIlYgWTa4MD9fKtWKFsqq70WIQRut5u+/n5cLheFeP3epNmcQS5vIi2J260SDDiQUjI6MoLf7ycQDBIMhapLKq/XW3XlFotFNFVFc8yFEiqueFVVGRwaYnpqynYB9/ZiWRapZBJV0zDLGdvhSGSvvRkv51ZWwyESKR1XnetPEeDzqmRzc9ftMUeE5zWoaZRtO3N88tpH2bYzxxc+sh/57aNk4o55iYL1Jhur8UzUZq0LQCIwDJOr/20YL7YgZ2fI4n8PP5NHFuxbL7SSL5i89b338t0vH09P19Jd85b7vD2R/rYrvsVoacMuhHjFEtuSwINSytgSu7TZA+y/wUck7CCemGua8ppzBgk12bRiPYmEndWWq0uxlmpfqqbhXiYLHsC0JF/75tP89NdjWJbd+e1D7zqYUFCju6eHifFxUqkUHo+H7p4eAKanp7Esi3Akwsz0NMFQaF4YoOKKr2Thd3Z1IaW0XfHFIg6nk97eXgqFAolEouHzWSvX+O5ASvjD3dNcd8MTfO5dS+c2CEVw7WVH8Il/f5TxyQJHbA7y4fcc3HRTmWzOoFg0+PynDuezX3yS4Sj86fAXL3pevSTDZkMWpmlW68v7+/uJxWLMTE9hiiC9fos/H3UmYIsLNUuxaHHnXdOc97LFIYCVaBv11qOlDTvwZuDZwO/Kj08D7gP2E0JcLqX81p46sDZzRCN2f+nv/2Qn47EirzxrgEMObL2b/nKstdrXSm5XvSS55Vdzvcb/9+4ZnnXsNC99Ue/85KXyCl1VVXr7+hgdGWF6agqPx7Motl953lJjt8dDbzlsUClfqrda1w0LAdXs6l2Nme9OTEty6VX/KD9aesUugEMPCfLVzx6Dq5RBZnMo2Wlyc4UJDU3oFAUGehUSs+O8720bcKTia3MSdahM1gSgGwJ/sJtiyeLCTzzM9e/pWXn/mqS8VNogl7eT71KGPeH1+fZO702bxbS6YdeAzVLKSQAhRA/wTeBZwB+AtmFvAYQQ9HS5eeebDsAwJR73M+8GUVuv3og6nW4sjnc++EiSf35hD+NjY3g8HgKBALFYDLfLhc/vx9D1qhiIrut2zLRBV/pKIQSw48XjsQLf/8kIDk1w/suH6O6sH3dtRfSa2HnKcLL5rl/hdCiEw04qzdS0gF1KGI04yW3Lcechq5vQedwahu5Gc7jJpGK45dLfheJ0LpmAuBpvkKMcekmki7zn4gcxLcnYRIF0Rl9hz/lJeanJAu94773VcER3p4tnHxdt6ljatC6tbtiHKka9TKy8bVYIsfKV3Ga34nAoOFrH+75qmhVksSyLYrFIPB6np6eHUqlkj7u757mxkymdfMFEVQRawLfodU44JooQgt6+PhwOu666f2CgejOfnp7G7/fT0dnJ2OgoyVRqyVV7hWbDCxNTRS54z32Ypr3SvfV/JvnOl46nt3vpuGsrotVMQt79aTtL/DWvGOStr+tflwmKy6XicjnQS/m6zzFzee7cvHwC5aJ9alQGl1IcFEKQy5vMxEurOu6uTiff/tLx/OneGdwuleOOiqxaE6BN69Hqhv3OctLcj8qPX1ne5gMaDxK22SVM06waj9rxvkrzgix2VnupWGR0ZATDMOxGL0LMc2P/7Z4ZPvTJhwD44DsO4g3nDvPDn41gmJKzzujlWcdGUBQFl8tVvYnXjnv7+qrv1dffPy+bfimaCS9YluTHPx+pGnWw466/vXOSN5y7Yd5zE8kS07MlUmmd4UEvkZATVd29Mrf14v7C6+UVZ/bzk1vHkBIO3M/HeWcProtRtyd0eTLplO0in1obV7xpmmSzWdxuN5qmVceksxhpO17gAf7rkgHiyVLZlT5n4M1coRpndw/0IjT7GqnNiVBVha4OFy99UX9Dx6T6fTz3kd+UJxgKpmmgKCqW28v0TJFQ0LFXeXb2dVrdsL8LeAXwnPLjm4CbpV3vc/oeO6pnEIZhMD09TWdnJ0B1vDtUtBqh4poWQswrA9udCT1CCByaRjgcZnbWbiXa2dm56BgOPSTAq18+yM2/HOWLNz7BJe/bxHe/cgKKAl6PitejVV+v9rUr1H7m6/H5u5cIoSwMq8STJa649lH+fL9txAJ+ja9feywDfZ41P57lWC7u/7bXBXndOUPVsNBySZO7gqIoeD0e+gcGcDqd6CWT0x67fVF+xWq03zPpNLMzM3h9PjLpNJ1dXWjp7JITtZMfvg1HMErPY3csUv1bbavXhTg7wqjhAEII8gULBcmf7pnl8msfxOVU+NLVR3PwAa2hW9GmxQ27lFIKIe4FklLK24UQXsCP3eWtzW5ASkmpWGRsbGxOyaJG0SKbMzAMuccy4A1dZ3R0lN6+PizTJBaLMTQ83LRhX42kaYWKK352dha3x0OpWGR8fJzeBUpj4aCTf3n1Rs49exAhwO/VljSm642U8MTTGX7663H6ul286Hk9dEZdnHPWAD/773FyeROnQ/D2C/bjec/pqp6joiiMTxaqRh0gnTH42ref5sNv7MOqkcWtsFaGpRn8fg3/OuonZLIGI2N5fnnbOPtv9PH853bjdiu4OiM4O8KLDHuzAj+qqtLT28vIzp1k0mn8gQB+v5/CbGrJ5zudCt7eKLB+MXIhRHUymUqXePuFfyWR1JESCkWLa778BJ/52GGE1kjgp82u0dKGXQjxVuBt2FfsAdg92r8CLJ62tsE0TQSglDsuVca7gsPhoKenpyqPOjA4iOZwUCqZ7BzL85WbniadMTjv7AG2HB1pumRoV9EcDgLBIBPj4wBEIpFVrdYblTStF7dW/V6CoRCRSATTNEmlUkuKpns8atPCOGuNbli86YP3Vednt9w6xg3XHEtXhx13/eOfp3juiR1oSoFAwL6W0uk0gUCA2XgJVYFKZ1ZVgYlYESOd5ferTELbk6xUypfJGhSLFppG1Wj99aEEF1/xcPW5N/9ijM9/+iii4bVpb2qaJplMphr2ymWzGOHW+Qx9Vo7r3zO/lFBRBI5CBoLtBLxWoKUNO7Yr/gTgzwBSyseFEMsKbwshhrAz53uw611ukFJeL4SIAj8ANgLbgHOllHFh/xKvB/4JyAFvlFLeX36tC4CPll/6inI72ZbEsiyymUy1IUN17PHsknE3DINYLFaN5cYmJ+nr7yeZNnjrB+6npNvW4aFHU3zmY4dz0vEda3I+zeB2uaouHFdNF6r1YLm4dWTIbrWqKIrdonPB575cMlve4bObkhQtomEn0XVMZMpkjHkyopNTRZ7cluGEY6J0d7p4xZmD6LrOyM44+XweRVHI53J4PR6O2BzkJzedyHdu3sH//SXOF686kompIoqydzrRlnPpT80UufYrj3PPX+McsNHPR953CAG/xn9+b/u8520fyRGbKi7SZq/QjA7AbKKE36uQzWTo6OzE7/czOTFBoVBomZu1WsjxyMlnLtre9dgdrKfXoE3jtMq1Uo+ilLJUVVoSQqNeceocBvBBKeX9QogAcJ8Q4jbgjcAdUsqrhBAfBj4MXAS8BDio/O9ZwJeBZ5UnAh8HtpTf8z4hxM+llOtbrLpKpJQYpkliehqP10s+l6Ojs3PFD6uR11VVlb6+PiTYAhlS8tAj6apRr3DzL0c56rAQPu/uu6wMXWdqaopwOIxhmkyMj6/KFV9L5UZcabIBAk1T7SYcSxjmChVDXi+prb52+R1c9b0R/vfuGQB6ulx8+TNH0905l43eaIZ7NmeQSOo8vDXFiQd7OHXrHfNU0KSEiYzKK8/q58e/HCMSdvD853Qtjs1qGn39/YyVPTW9vb1oDgc+1WJ8bIzzz+7hdecMkUnF2DDQCVN1P5a9klRG56r/2FoNOzy8NcX7Pvp3vvLZY5bsKr/cXLIRHYBiyeSxJzNc/fnHyGQNbrjmaBxOreqWByjWccXvbhRl6ZNdx/l0myZpdcP+eyHERwCPEOIM4J3AL5bbQUo5DoyXx2khxCPYLvyzsQVuwE7CuxPbsJ8NfLOckHe3ECIshOgrP/c2KeUsQHly8GLge2t5gmuFqqqEw2HyuRz5XK5aB72rSWSV9pMVQ1UZ+5cQs+jqcOHQ1ufXXd8F7qtqqQP4fb5dPmdnRxgR9DE1OoppmmiaRv9Ar91RaxnDvloM06oadbBX0N+5eSfv+pcDqj3Gl/MUVP4OdiZ7MVniQC+MTXiY0l0ce0QEr0etqtD15Uu8ptfDIQf6OPTgID6Pidc7v7OZZVkkk3PqzclksuoN8Xq9JJNTKIqCqqq4XE5WV3S1/pimJJEqIaWdCNjopFMvWfzlr/Pn8FMzJYQQvPm1G/nQ5XZ1wxcu3o+oyyCqJMltm/u8ms0tSKUN/u2Sv1cny694018472WDvP31++F0zmW176oCYG3L3+Xa/7bZu2l1w/5hbPW5B4G3A7fSRBMYIcRG4BhsV35P2egDTGC76sE2+jtrdhspb6u3fan3eRt2LgDD5c5cuxvLssik0xSLRZxOJ/l8nlzZfbqrcfal1MwO3M/PoQcH+Mdjtgs2GNC44LwN1ZvQWrOsVnVNwpLH693lm5VpmkxNTVXLyiYnJpiemlqx/erq32+xX2XbjhylklU17MvtayUzS8a3T3n0dsJ+ByAxDINSsYjL7cYyS2RSMxx7WAhdT5DNGEQi841DpUVt/8AAQgjGx8cxDQOny0UoHCaZTGJZ1qpzGpaiWDLJZAwcDoWAf3EP8GbJ503ueyDOZ7/0OIlEiVNP6uJ9bz+wrsu8FqEIhgY87BiZq093OhWEgCMPDfGf1x/HrXdMMBiR/PnIlyzav9ncgtHx/CIP2P/ePc1rXjFIh9Nlv/8uKgCapkmhULBL56A63tfLV5+JtKxhF0Ko2Cvp1wJfW8X+fuBm4H1SylTtTaKcbb9mHUqklDcANwBs2bJlj3Q+qbjiox0dBINBEokEpmnusiu+HpGwk6svPZzRiTzpjMHB+/sbahG5HtQrD1stqqrSXTbiFZd0Zft64HQo8xLSAF7y/B78vpV/nlMzRVS1nmGV5DIzOFST6UwaTdPo7evD6/USiUaJl0vzlgpdaJpWnaQKIapjwzAYGx3F4XDgcrmYmZnB4XSi+n2c9tjtgEAIyqWHouHVZKmkU8jr3HLrBGed0YOmmjidDjRt9Z95MqPzkU89TKXa7H/+OEVfj5u3vHbjijXX0bCTS9+/ifd/7AEyWRNNE1z07oMJ+DXcLpWD9vfzb/sfuGa947s7XYu27b/Bh9u1NteclJJiocDkxITdcrhQoFAoMLxhvkbBWvZMaLPnaFnDLqU0hRAbhBBOKWVTnj4hhAPbqH9HSnlLefOkEKJPSjledrVXmsiMAkM1uw+Wt40y57qvbL+z+TPZPaiqSigUAuz62sp4PWfjKzVW2ZupVzO+Hg1RFEXwuSuO4vNff5J0RuecMwd49pbGkxBNc+k6acMET8BHMpmoas2rqophGGRrStOy2SyBQGDetVLbRazyGGwDEQwG8Qfsmman04nT6UTzenFEQ9UJQrX1bAPoul1FkE4l+eczoujFWaYKFoODyzckqX2Ppd7v6e1ZFpaQ/989M5z/ssGGrtsD9/fz7S8dTyZr4PNq+H3amhnahUTUPLdctYFM1s7rUBRBR8SJI58B78oG1TQMLCnRNA3LNKvjmvwk3G430Wi0qrUwMDi46DNrRNRob2oK9EylZQ17maeAu4QQPweqdyIp5bX1dihnuX8DeGTB834OXABcVf7/ZzXb3y2E+D528lyybPx/A3xKCBEpP++FwMVrc1rrQ70GIG3Wjl1xhy53Qzx2vzDXXn4ElgWhgFZtwLIrODRBqlioypLmczncHg/FQgHTMBgaHiafyxGPxwkEGhMXUVWVYGjOgPsDgerER9ak2tcz6kutCC1L4nB50BxucpkZhBD4Aj3sGM2z3/DSxsI0DJKpFKFgEKA6rtUNGOxfLJpz6CHBhnsZODSFzqiLzuji1fRaI7M57jn6RYu2N+LStyyLeDxONpult6+PmelpTNNccsclcgAAIABJREFU1ANeAvn8XGihUCigaVrT94q9qSnQM5VWN+xPlv8pQKOyRicDrwceFEL8rbztI9gG/YdCiDcD24Fzy3+7FbvU7Qnscrc3AZT16D8J3FN+3uWVRLo2q3PZmaZZVYWrHT9TWOmGuFyP+NpJgWVJpmdKWFKSMpwEtXoOLYmqaQz29ZFKpUgmk3i8XjxeL4NDQyiKgj8QwOf3N/U9VJ5bkT71er0oikImk8Hr9Va17Zei3orwlEdvh/JuUkqktJYVOzHLyX2FsqEqlkr4/X5qTVQ46ODtF+zHN76zDcOQ7L/Bx1tes3GPiAKtJ4qiEC6710dHRhBCLDbqZVd8oVBgcHCQQqHAzMwMfn97lb0v0tKGXUp52Sr2+SMsWZECSwjblLPh31XntW4Ebmz2GFqZigSrWhaxqYybpdk2pxXRDU3TcLvd1bHH42nIqFQMm2UBgnmdup4J1E4KTNMiq2e45FMPk0jp3HzdZk566DaKJQuXU8HhUFAUu2KgLxK0V9nBIMFgcNF33WhOwlJNSQDSqRSJeByv10s6nUbr6anW8sPiCWA9VT8hpN1rPtpHLpukkJ+ls6O+K97hcNDX11ctx6ttllMh4Hdwzpn9vPj0HnTdwu1WG0qcq9DI5LVZt7RlWRiGgaqqCCGq411FwDy3e+VbXXgOPYoTY3wKl9/H8IYNz6iJ9TOJljbsQohfsLhuPQncC3xVSlnY/Ue1vswmSuwYyZEvmBy0v59o2FmtGy2WTHRdNpRUtRSVzPlUKkX/wACpZJJMJkP/wMC6uO4X3lRUy8K0LAp+LzNZW/+61n27HHmHj9sfyvLTX48RDTt5z1sOYOOQd01c1nsbqqqw6cAA37juOExT8p2f7OSHPx+t/v1lL+njHW/cH1dNadeufL+VfgEdHR0IIarjSmLhju3bSafThMNhPOXVe3XfBRPASnOShSiKQl9/HxNTOl2dnWjqnGdgqbIsyzSJz85Wt8dnZ+nu7p7nigfwerSqBn+pZDE9W8QwJC6nsmKcvZHJa7NuaWlZjOzcSSgcxu12MzkxQW9f37L7rOTpqrjidV2nr7+f2ZkZJiYmGBgcXPYcXJ2RRdvb7Bu0tGHHjrF3MVc7fh62TvzB2Jnyr99Dx7UuzCZKvP/SB3hym51OEA45+MbnjqW708XkVJGbfrCdsYkCL31xH8cfHSEYaE6+VVEUvD4fyWSS7du2AdDd01PXvbGQWkPdiJ56vZvKcx/5DV6fF3+DLmDLkvz+T9N87qtP2Mfc6aKkW/z6fyYJBRwcvim4rkptrYiq2slVUzNFto/kOPG4CHffF2fLUWFiUwVyeXNNhYIMXWdsdNSWKzYMpLRX2KlUqlofn06nCQSDq14FOp0OhgccmKaJXipVe9vrpRJOlwsjnpq7/iT4TIOg6kAN+JjMpDAti3rTl3ze5E/3znD1Fx4jm7MnzVd99DB6unZvS1qhKHT39BCbnCQJBINBXC4XxWX2SadSOJxOPB7PvHHlc6644kOhEFpZd0Ja1qoqRNqJcfsGrW7YT5JSHl/z+BdCiHuklMcLIR6uu9deyoOPpKpGHSCR1Pn+T0d47TlDvPWD9xNP2C3o73sgwUXvOZgzX9BbVwWqHoqi4PZ4yKTT9tjtbrjOvdZQ11t5NYJAkMvlyOfzeDyeeTfsWiouz1TG4Je/LWvBhx1ccN4G/u2Sv5Mv2CnPQwMevvjpo58xxr12guWx4BNvsFde6df2oIZ8gERbQ6GgSpncju3bMU2Tnt5eHA5HVca4q7sbr9fL+NgYpWJxniu+WSzLIpvNMj01RWdXF5l0mlKpxPDw8LKrz6Hh4WUNWTprcNm/P1ItKXz8qQzX3/AEl7x/025VSgRQlqg2qGdQVb8P0zSZnZjA4/GQz+fp6u5e5Onalc5/7RK3fY9WN+x+IcSwlHIHgBBiGLu7G9CyYlerZmp68bw9lzcZGctXjXqFvz6Y4PSTO/H7Gl+1V1zxmXSaSCRCOp1mfGxsWVe8lJLZeIm//yPJ0V3Nt59cCkVV6fX6sCZnKSgCaZjcufmFi55XcXk6HYKeLhf/eCzN857Txc/+e6xq1AF2juZ5aGuKU07sXJPj29PkcgbZvImuW0u2Ha2fgHYb05ksLrcHX2Tt2qgahsHkxASKotDp9mKOT5FTNYSAKAJmkpglk77+fnRdEk8a+H0aLudi417pFV7bJxzmVoSKouDz+SgVi0xP2Tq1g0NDiBUmCitNJKZniiysCnx4a5pCYW09GyshLYuJiQl7pe52MxWL2QmN0VBdI+qwrOpE2Ofz4fN6d1l0qpZm82XatD6tbtg/CPxRCPEkdn7IfsA7hRA+bFnYfYqTT+jgCzc+iWHMzcbPekHvvG5g4ZCDyy7czM7RPDf9YAcvOKWb/l53Q13VKq54zeHA4/FUa5EFttGv6MLXMj1b4s3vu4/ZhM43L50T3qvcoIF5N+lGXHaTUwUiYYv/O+wMYOXVv9ej8fYL9ufevydwu1QmpxZPgDIZY4k99z7SaZ1bfj3Gjd/djmnamdzXfOIIupYQMFmIlBYOp4Ouri4cjrX9aSuKQv/AAMZYjN9vXrosa7Lo5LqvPsGO0TynPruT154zxMKjvuelb6s+37uxfnJcqTQ3b9d1fcVV6Eo17V2dLjRNzPttHX14aLdnyAtFsTsklmvMnTXjpTBNk3Qqha7rOJ1Ostks/kCg4aTTNs9MWtqwSylvFUIcBGwqb9pakzB33R46rHUjGnbwtWuO5YZvPU0ub/Lac4bYOOzFNCXHHRnivgeSvO+tB/L172zjwUfshhB/uHuayy7cTGeHhaIIZmZLPPJYisM3h+jqcC4y+A6Ho2q8dV0nPjtLb18fxUKhOq417rfePsHsAm8BzN2gwb5JG9EgXq+3YTdgPLGyw0VxOqvKXlHgR1cOY5pgeXr545/ntNU9HpUtR0f2CZdiPKXztW9tqz5+anuWr393G+9/+4ENiaPouo5lmUiprpkOuKZpdPf0oCgK9aZPpil550V/q3qWvv/TEUq6xTtf2dl01ng2m6VUKjE4NEQ6lWIqFltRqnl2ZoZwJIIA4vE44Uhk3rXo92lcefFhfPr6rSRSOkceGuTdbz5g2dV6rXtccToxc3ZpnbSs6nXZ7LWlKAou19x0p3ZcD9M06eruxuf1Eo/Hq5PwRmjHzJ+ZtLRhF0K8YsGmA4QQSeBBKWVsqX32ZlxlqcpPXLgZ05TzkuM+ceGh7BjN4fVoVaO+6aAA733LAXzxxqe46I29OPQCas7g8CgwmaOYdeDoDuJekP2qKApSShwOB4ZhMLJzJ6ZpEiyr1dUST84Z4HqGwjItpqem6Ovvr5bxwPybimlKpmbslfbytddzmLn8ki760x67gy9dfTTfvWUnoYDGG87dQDTsoDQyVXUpHv/zG1C9dmKUe6C3avBb3ciPjOUXbXv08TT5vLmiYdc0DY9bIx6P09XVtaaVDiu9lmnKReGi2/8Q44Jzh+nY2Hj2dcUV7/V67cZGkQihcHhFV3y27KpWVJVSsUgwFJqXTa9m0xzTnef7nxzCFrsVKOkpStS/Hmoz3nPbRpYNF60Xlc8A7BBWZdzod9sWk3lm0tKGHbsBzLOB/8F2xZ8G3AfsJ4S4XEr5rT14bOtGZRUxmyjx2JMZZuMlthwd5tCDg4xNzlX4vfk1G/j4Z/7B1EwJvxLlrmMWu0hP3Xo7dEaW7OpUURGrlA0t1UP8ZS/p55ZfjeH1qHQMhDnl0d+iKGpVD9w0TaTHSYcvhMvlmmf8a28qM7NF3vOxe0mmDFRVcMtV8zWqm6HSiOOg/fyoqsBZjuXWThVUr5u7X/CGRfu2etxw/w0+FIV5UqgnHR9tuMQxorkwM1mKO8fnbV/vCc1Sk76+bjeq2rzXoPYaNBPp6qRMcTo57ZHf2n9QRNXYawE//QEvO3fuBF2nt5zcV3tMrRhHtixrSX2Ahb/BtqJkm2ZpdcOuAZullJMAQoge4JvY0q9/APZJww62Uf/Axx7giaftLHmXS+EbnzuWUMDBwQf4eezJDB63ytTMSitfWwTDNE2cTiemaWKaJg6Hg0LZ/e71eikWi4yPj9O3wBXf0+Xma9ccy89+PYbh9ZLRMwhhEYlGKRQKpJJJyGdxWQa+BS1TTdOqNigJBR1cdcnhfPSqf/Ci03vQazpZ1YvXy4VC3wuozT0AuwRqbycYcPCpjxxW7Uh2+nO6Ofelg/OaliznXt0VA1Zx8S6cADYSyy2WTM49e4Af/syup3e7FC5818G73BhoufOpxOhNwyAWi1X17WdmZ+lzuZrODt/tSMnIzp0EgkH8Ph/j4+N0dnUt+h2tN213/b5Hi1/5DFWMeplYedusEGJx4HcvZamb6bYd2apRB7vP9te/vY1L3n8I//7xI/jdXVP4fVo1Iag2KagWISARj5NOp+nq6mJ2dtYWA+nrw+FwVOtfLcsinU4v2t/jVjnkwADvfssBqIog4O1jbGwMp9PJzPQ03T09uJxOxsbG0HUdVVWZTej85s5Jnno6y1kv7OWAjT4CfgeHHhLkxuuORTckk0/G2HzXrwDIAJqqEI04cYT889yfzX6OS1HrlpeGuer46O7A61F59pYObrwuABLcS/QQX869uiv94vVyrXpfXx+WlExOTFSlZyvUC6+MpRSiYSffuO5YCgWT/l4P4WBzOgurRWJn7vcPDKAoChPj44smKS2JEPT09jIxPk4qmcRbDkHs7qS4trt+36PVDfudQohfAj8qPz6nvM0HJPbcYa0dpmlSLBarSTSVcXqJLO9UxsAwJNGIk3POGiCXM3j/2w7k2q88XjcrXAiIRKOUSiVisdhcly9NQ5GSUChUrTuujJfC69EwDYPJySksKZmZnmag3H3LSqbpQkNOzpC1IBsvceKAxaE9Xt598d+59IObOOOUbltUJepiaqbIe696GtMCRYEL33UwPq/KA/eleMFz/ezv1fF66huF2qS6eedax7DvbW55W3xm/RuPLETTNHw+H2NjYwDzmr1UqDUC+YLB+EySqz+/lXhS58Tjorzk+b107GY9AU3TGBgYQJRd2rXjXcHWrJe7bGgrrwN2yKJes5y2m73NWtHqhv1dwCuA55Qf3wv0SCmzwOl77KjWENM0mRgfJxgMIoQgmUwyMDjI0YeF8PtUMtk5hbfzXzaIq5glNz23KnvBJnje5/ava9Sg3KvdsA1/Ja5XSXKr3Exqx4ZhMZso8ad7ZvF6VY49MkJHxIks7z8wMIAQgsmJCbq6uzHS2SXdpZvvupXrrziCp3dkSaR0QgH79b0elRc/v5df3TbBWWf0MTFZ4KYf7uC5J0bp6lBJp1JoagjF7+XUrbcturGahQJ3HnLGovd73vY/8NxHfmvHLFdw47dZjBACr9dLJmNfXz6vd1nj6HFrnHhchP+8fguWlLhdSkNll+tBbV13szXeqbTOQ48m+eOfZ3jhaT3sv8FHwK/NC2Gpfi+nPXb7os+jEXe1YRiMjozQ09uLoiiMj43R19+PQ9MYHxuza9N9PmKxGG63e7e74tvse7S0YZdSSiHEU8CJwKuAp7H7rO8zaJpGT08Pk5N2xKGruxuHw4GmCb5x3XF88wfbmYnrnPvSATYfHMCYnlzSiD5/+//WVa5KxOMIIRjesIHp6WmmYjH6+/sRdW6AsekiF7z3PvJ5e1LR0+XihmuOoSPisvcrr4b6+voQy5RARcMOXN4ig30BAj6Vmelp293o8fCOC/bjuCPDDPV7eO9HHwBgeMCLZRnkswmkVSKfz+P1eumsyfCWUtZ10Rv5EnpHDx+7+lE+/vZ+Tt16m13TvOw30KaCruvEYjGCwSBmWUhloSt+Iaqq0BFtfcW/uqVrpoUyNcERUeg9NYiv24FlmRiGPclOp1JEOzpIZFJoTge9vb1Nr6wVRakq8wF4PB47/i8E/QMD1Tr2Sn17o0Z9XyjvbLM+tKRhF0IcDLy6/G8a+AEgpJT7xCq9FiklxeKc4EqxUCyX+ij0dbv4wDsOwjAkHreCoijkppd+HatUqiv4oRlGta63q7MTydKrGiklhin58S9HOeXEDn7zO7uicHKqyL1/S/Ci03uaWhmZlgRFI5ueoVRMY+g6wWAQhCAccvLC03qYni1Ws96+c/MImw8KsOmAALlsGlVV6erunnejqyRILUUypZMySxx7ZIitk3DM4R1MT07QKZc+TsOQzMSLRMPO1o7FNsGuJEJpmkZ3dzcerxeA/C7Ee9eqRe9aJXY1Urp2yqO3M5ubQppu3O4OIpEIpVKJmelpW1a33LmuWRRFIRgKVT0hwVCo+nk0W9NeSytm+rdpDVp1MfMo8DzgLCnlc6SUnwdW7jqyF2KaJolEAo8visfXQSqVRNdtF2AqlUJVJG6XIJVKVd3pjZDL60zPFLjt95NMzeoUS7bxVDVtyWxh0zDI5/MgJa88q493vGGA97x5v+rfs7nmld2kBT3dUVRVRS+V8Pr8CMUx7wYf8Guc97IhAJ57YpTNB3nI5zI4HHYzkGQyWW0vuxIlXfLej/ydTQcGefaWKLHJiWWbkkzPFvmX993P2MSeaRJYe16NnuNKODvCeDcOLvrXyI1eVVV8fj+qqs4bN4tpmuRyOUql0ryxtYrwyK6cT7NIaaKoKrrlp1Cwqg1owD4nW/yn+XMwDIPxsTE8Hg8+n4/JiQl0fZ/J/W3TgrTkih07rn4+8DshxH8D36d+j/W9mokpna6eQb53yyiFosmbXj1MbEanv0clVXYFulwuMpkMLmdjLk9dNzEMHcPQKRZNBAalkommClyuxV+5lJJCocDk5CTRaBSsPOl0kZc8v5/v3jJKLm9w8gkdTZ+bx2O73y3Lwu32kM2k0TQ3QnhxOu3jcDlVXvXP/Ry+KUg2p+N0SKTHQ1d3N3qpVPUKVLKcK+I6S6EoUChapNI6ouzmdDgcGEqqGh81TMl0jVDOzGyJL9z4JJe8b9Oq2+GuBsMwmJqaorOzEyFEdbywp3gqrZNK68wmdPp73YSDjnVtVVvrudgVL0YulyOXzeLz+chkMnR0dCw6t9WwlHTsWrqkpWURDGr4vCrJZAJVVRkcGmJmepqZ2Vl6e3ubPmZFUYh2dOD3214Gd8UV36bNOtGSV5eU8qfAT8vZ72cD7wO6hRBfBn4ipfztHj3ANeSnt47zx7/MVFeNf/zLLEcdFuIj/3YI/QMD7Ni+HV3X6ejowOV208ja0jAsMukMhXyaLUcGyWWmsNxe3C4X6bROYEG7VyEEbo+HSCTC7OwsAH39A/zoFxOcdHyU171yeNnOaQvdpbbrVUELeHEISU9PL4k0uD1OTEtQKJpVww4QCjo58bhotRUoQZ8t2GFZzM7OEgx3YRhF8tk03T09aMG596ssoGYTJWYLGhsGvTzr2Gg1018IgdoRwRkNI4Tgvgfi/Nsnn5p3/Nt25iiVLPA18OGuIaZh2K1QFWXJlWAqrXPjd7fx419WYrMqX/nM0RywsbXri1VVpbOzk7FikUwmg9fnwx8I7HLWt2EYpFOpqqpcZbxWLml7EmlRzCcI+LuIRCLIcBhVVeno7Fyyl0I9Fk42HEAxnkYL+AlEVt/atk2bRmhJw16hnP3+XeC7QogIdgLdRcA+Y9iPPjzED38+Wn08NlHgX169AcuySCbsir4ujw85naSQyCyrvlUhk7PwoRJAQ2ay+FARBZ3YwzsoOTwkuyIM9LnnK3PFU2jJdDUebY7HOOd4FS3Qjatz+U5htfHLSgghPjuLmjEJRyKUdIXLr/kH//T8HrbtjPP6V22ohhU0TZs3rk2SE0KzY5xTYwRDITq7utF1C0c4iBYOVg33bLzEVDqLFhJ8/lO91UnIUqvP4QEvTqdiG/Iyp53URcC/e38KmqbR09vLzh07ME2T3r6+Rau4TNaoGnWwe4pf8+UnuOqjh82TG14v4skSs/ESlgUdUSfRcGMeI9M0yWaz1eYt+VwOXddXHWeHOZXDRCJBsVi0XeOGQSAQWNXrLYVS9vLA4tKzZiclzUw20hkdw7AlpFej1LdetJPz9l5a2rDXIqWMAzeU/+0zHH+Ayg+vGKZQtGOsLpdKKGBgxFNks1l6ensRU3F+V0eneqmEOb9XxUzm+P2mxftsvutXvPeSHXzt2mOr9cZSSox0hj8s8fzTH78DOhvX+lZVlWAwSDKRwDRNCoUS9z+U46FH0zy8Nc1VHz2cYEAlFoth6Do9vb1MTk6iqSrdNclJiZTO3x9Osml/P6oi0TSNsdERevv6yWYyxONxBoeGUFWVaMTZcC/2UEDj8586in//0uNMThU449Ruzj17YJ6y2+6g0gpVVVWEotiVCuXQQYVkenEcdnKqgK6vfynfbKLEhZc9yNYn7Bv7xiEv1195VMM16vl8nmhHB8FgkKmpKYqFwi654oUQOBwOunt6mJyYAOx2ruoqXNrLJeTtThe5rpvsGM3z+a8/STyp86bzhznmiAihBoV91lsxrp2ct/ey1xj2fRWZy/HXLS9etP30x+9gcNhOKisQr7v/UtnHTqcgT/269th0kVzeqN6kl8s0h6XbYC53PBPj4yAEfr+fTCbFSVu6+eq/H0046CQScsy5akdHGdm50368oIxIU+Gwg9ykU1N4ff5qV7rRkZ0AdHSurve606ly2CFBrr3sCCxL4vNpDXVNWw/U8qq9EmNfSFeHi4BfmydWdMap3YtCKevBPX+NV4062OGK2+6c5PyXD624b+X7BTu+XBnvqivesqxq6aaUkng8Xn3tZlhJaS2ZKmGYoCrssiTuciSSBm/7f3+lWLQ47aQOjtjsx7JMLEvFMIxqEmM92opxberRNuwtTCPGNJfN4nA6cTocc2Ons+6+Xb1+vnnpIOHCDLlts9Xty+myp9Np/E1kSPv9fjzl7lwulwuPx8WhBzsWucaFokB5MlL5WzKts/WJNPFEkZOPj2AYIUYnFQIBgcfrrfbp3lXpzUiDbuVGadZtWSktq3ymtePqMYacfOUzR3Pd155kdDzPC07p5lUvHcC5G7wLT+/ILtr25PYspiVRlZXdxWvduKTiijdMk8GhIUzTZHJycsV+As0yNpHnk9c+yoOPpDj04ACXfnATQ/3eNX2PCo88nqJYtHA6BB9+7yHMTI2iaU6cjjCxyQki0SjBZao62rSpxz5p2IUQNwJnATEp5eHlbVHseviNwDbgXCllXNgW5Xrgn4Ac8EYp5f3lfS4APlp+2SuklDftzvNohFwuR256uuHsY5kv8MjJ/8QjC7ZX4/YLME2T+OwsPl9jmWWqqhIoq+gJIeaNa19zamoKKSV9/f1MxWJMxWJ0dffwm99N8h9fexKAT1y4iU0H+pmIpThwo4NkIkE4HCaXyzE2Olp1xbcCq3FbrmT8VFWwYcjH5R/aTEmXaKoglzd5cCxJX7ebYEDD6Vyf83/BKd18+8c752375xf2NWTU14OKK35oaKiqklgZV1zSFRtfsYPNuqTjiRIfufJhnthmT2r+8ViaD132EF+8+uiG8gssSxJPlHhyW5aDAytPOLo67Lr1ki657LOP8P/euT/Z9CSTE7YwUyAQaBv1NqtinzTswH8BX8DuBFfhw8AdUsqrhBAfLj++CHgJcFD537OALwPPKk8EPg5swe4zcZ8Q4uflWH/LEO3ooFjOPvb5fPbNYBljp9Qk59Q2R6GO675ifJsxoLU3o6VuTLWuWofDQV9/PwCZrMl3bp4zJp/47KNsHPJy3RVH4vOpqGoPHo+HYChEoWDXByy3UnZEQ8STOlLasfX1LBNbK2rPp6KQpgBuIcgVJfmMjmk4Oe/SB7j+iqM4fFNwXY6jr8fN1Zcexte+tQ3DlFxw3jD7Da/PyrVRFgoVVSi5/fz1cYMv3/QUxaLFq18+yBmn9eBtMmRR0q2qUa+wcyxPsdiYV2Bqpsib338/iaTOFy7ejyP+/GuiYSe1P4HayUZfj5tnb4nyp3tncbkUaqNh1r7QqrDNHmOfNOxSyj8IITYu2Hw2dj93gJuAO7EN+9nAN6VdHH23ECIshOgrP/c2KeUsgBDiNuDFwPfW+fAXsTBJxjItLGkhvG6y2awdj9M0WwhE13HWrGIWUuu6rG2OcvzPb5jXOtUq91sXXjfpVIpINLqmq+Nar0JlbFpFtAVZwZVSNE1zzXO/V8bFOivl0x67g/ueNvnSfz5FLm9y7tmDvPj0noYTk/YUtSv/E2//5pLNazbf9SuKRYurP7+V/7jyqDUPKwD4vBonHd/BoQfbE4dQ0IGyxqt1wzCQ0k6MNE2zOm62fn5qpsjFVz5cfXzdDU/S3+vhpOOb017QVEFXh3NeK+Rw0IHDsfLx6LrFd2/ZSSJpJzy++9NPA3D1pYdx8glL5wGEQ04ued8hzCRKDA94GBvZic/nIxQOMz42RjqdXtIVb1mSYsnC7dr1RjfL0W7nuveyTxr2OvRIKcfL4wmgpzweAGp9jiPlbfW2L0II8TbgbQDDw8NNHVQjP56FSTKWZbFj+3a6fR4K6fRc9nEsVs0+rpdYU09n/Z6Xvq06Pu2x25nBboNpGAaZyUnCkcYz41dLOOjkLa/byJWf21rddvzR4Wrb0pU8AbWYluRDlz9U7dH++a8/SW+Xi1NP6lr7A99DjE0Wdnllt1JuwHpMGsC+huPxONlMht6+vqqQ0cDgYNPG6o9/nlm07dbbJ9hyVLipUEU45OTyDx3KhZc/SCZr4vWofOJDmxtqP2sYkolYcdH22PTibQvfMxxyIqWstp1VFKWq0b/wOo8nS/zP/07xl/vjnLglyuknd65bgl87OW/v5Zlk2KuUm8usma9LSlktw9uyZUtTr1v746m9yRrpTHVcm4BlmiYz09N2K8h0lkBeh7xOIZEhAFDIYJqg7sIPUgjB8PAGO36paQxv2LBbtNRVVfCcEzr4xueO5Xd3TbHpwABHHRZa1Sq7WLRYaPPCzKaLAAAUv0lEQVRuvX2SE46J4vG0Rlx+V3neyV143bso+rKHSpoURSESiVAsFqsiPZWugc2y/8bF+R8H7e9HVZsLvaiqYNPBAb7zpePJ5U08HrXhEI7Ho/LKswa46y9zkwxNE5x4XGNeg0oOQYWl8mTSGZ1rvvQ4d/6f3TDirntmePCRJB/414N2q2pim9bnmXQ1TAoh+qSU42VXe6y8fRSoreEZLG8bZc51X9l+53oeYKM3WVVV6evrw5qc4XcHv2DF59dS6yGQRn198spKYXc3R3EVswxpGd5wqhMoQiJGLtG8KIamLT7u/Tf6GnKrrobd6bZUFcErzuznjedvwOPZy3/CNbOv1c60Dz0owPFHh7nnb7ag037DXs56YR+qKjBNsypkVDuuh0NT6Ii6aF5AGTYd5OfKjxzK924ZwetR+dcL9mtYX6ER8gWL3/9pfheo2/8Q4x0X7N827G3m8Uy6Gn4OXABcVf7/ZzXb3y2E+D528lyybPx/A3yqrHgH8ELg4t18zItQVZVwJIIQoiF52YUs7HLVClimicQ+t7VaQTo0hROPi3L3fXZJ39CAh3PO6l929WWr3YlF40bYnW7LjqiTd72pH9ceqr9fCyo16YZpMjAwwPT0NJMTE6tyxUfCTj5+4WbSGQPTtBXcomEnZlmPPxKJoDkczExPEwqFcLpc6zJhDfgdnPrsLo4+LIyqijU3tkLYXgXDmJsCadr8pLs2bWAfNexCiO9hr7Y7hRAj2NntVwE/FEK8GdgOnFt++q3YpW5PYJe7vQlASjkrhPgkcE/5eZdXEun2NLuSxKbrFsm0zshYngM7vZy69Q4Whqt3Z3KMZZrk8nn0UolQOFy3wUs9llspX/qBHlIZHV2XhEOOZUuWpJSUSqWqKEhlvLubdSzsG15PPti5Fxt1sD1C4UiEUDhclddtdjJVSzjoJBxc8P2WyyzHyp3VItFo1RNlGEa1bG6tqPQ6CAUd1br7tXx9n1fl1S8f4ls/2lHd9oZXDuHfzXLIbVqfffKKkFK+us6fFi0Fy9nw76rzOjcCN67hoe1xnt6R5Z0X/Y1CuYTnvLMHeOP5Gwj492y2eDweJ5fPE2iyfelyK2UnNByftyyLqVgMy7KIdnQwFYvh9/uJdnTs1lr5Z1LCUu2kaT0mUKqq0tXdzbann6ajs5PxsTG8Ph/hcJix0VGCwSDBUGhNasWllOi6zvT0NN3d3ViWxfTUlN20aI3OzevROP/lgzznhA7+/o8ExxweZqDPs8eUE9u0LvukYd8XWSpW2CyJVIlrvvx41agD/OBno7zynwebMuylkoUl5bwbSrOxzAqKquIt96nOZrME9tAlqaoqvX19jI6MEJucxOV273ajvifYl0uaTMMgFoshhCCTThONRonFYqSSSRwOB/41FICpiDDppRJjo6NYloWjwTbLzRAKOAhtcnDYOukXtNk3aBv2FqLeTVb1+5idmSEYCqFp2tw44GvoplzJttcsycXnh7As+6aQMpy8+9NPk8kai15jKXTdZCJW5Js/2kGxaPG6Vw4x2O/F5bRX3MFgEFVVq2OHw7Gica+44rPZLC63G/KLG5/sDiqu00r7VLNcY72vkckaOB2iWgbm7Ahj+QJk8wYg9hohn4YQAlXT6B8YqNbKC0VBWhaudYiza5pGZ2cnk5OTAPSs4Wp9NlHCsiQOTWl5LYY2e562YW8h1HAAw+PE5bKlJovFYnVsTE4yNjqK0+mkVCoRCAZxREI4/397dx4dV3necfz7zKbRalmysLUYzFZjh8VgQ1yak+SkkLI1Tk9IICWFJiQ0h5KSpBBo6IGQnCRNIWQBQssBCrRpgAJNCOSQUkJCaoqxDbEBg4NrbPAuy5K8SB5JM0//uFdC8iZszWhGd36fczi6950ZzXt5rXnmXe77NI5+f/n+FqTNWvgE9XXJA67cHX4LXjbr9Hf08cnTE2wfSPHZL7/IvT+cyxGtaTK7d7Nhxw5SFRVkdu+mpqbmoOZMJ4fzrZmOTj6w8qm9elJj7UGONqIwOBSfTqdpOuwwNm7YQOe2bZHptXfv6GfR0m08/tQm2porufgThzO1qYLuHQPc/+BafvrkRqrScS7/zFG8f/6USKyyjsfjNDY2EovFcHc2bdxIIh6nrqGBjq1bSaVSeR+Kb29vJ5VKDSVD2lc63oORzTqr1+7ihptW8Na6Xk6YVccNV81i2mHp0V8sZWvi//VGiLuzedMmqqqrSSWTdHZ20tzSQjqdZuq0aaxds4ZMJsPkhgYqUqmhxVSHqiIV545/nHPADTgO9KUgl4MH/nMdV1/xBzQ3N7NmzRp2h+k6322PaHAo3isricViVDTU4w31eQ2m2WyWrVu3MnnyZOLx+NDx8BGFwaH4wQVVzS0teV9cVSzZrPP0s1u45Z9WAfDi8i4WvtDB/bfN5X+e7+Chx9YDwRTLt76/klm310YisMM7C03dnabDDiOZTBKLxUilUkPH+TA4FF9ZWcmUpiZyuRzbOvbeOOdgdXX38+UbltPZFYxkvfzadr7+3df59nXvUc9d9isiY27REIvFmNbcPJRvvDEMkIO9SYBUKkVXZyd9/f1jHiqun5RkemsV8fihD0lOqk1g5Ni6Nbi/NpFI0NXVRf9B1C82LD3l8ON8cXcGBgbYsH49GzdupGfXrn3WLZFIDL338OOJrntHP488vmFEWUdnH13d/TyzcO90sUuXdY1X1cZNLBYjnU6TSCRGHOdTMplkSlMT8Xh86His79G7OzsU1ActX9FN/0B+s9pJtCiwlxB3J5N5ZwvK3ZnMUAByoLmlheaWFiqrqoKd58YY2M2gq7uPTVt2s7UjQyZzcCvSa6rjnP+RNozg9qHmlhZa29pIJZPkcrmSmaNOJBJMmzaNXC5HXyZD45Qp72r+PyriMaOudu8Ak0rF9plEZuYxE3/h3L7smTa4EPKdrjadju21U+JRR1Tnfd9+iRYF9hLi7nRu28aUKVNoaWmhZ9cu+vr6iMViNDU1kUqlglt4wuOxDiPmcs4133iF8y9dxIV/9QJPPrOZXT3vbiHdpNok/3r7qUxpqCAe3odcUVFBPB5n6rRpealfvmSzWbZs3jy0bee2jo6hBCSF0tubpaMzQ0dnhmy2uL2rSXVJrrj06BG78b33lMlUpuMsOLuF98ysBYIvegvOmsb01spiVVX2UFeT5OtfmUVVGNwbG1LccNVx7yqNrJQvK5VeVVTMmzfPlyxZckivHezl7rn72VgD5L4SfbhDe2+cT13z+xHlD911Gi1T3/lg71mzbr87wVXNaBtTvcbLwMAA7Vu20NDYSCKRYMvmzTQ0NpJKpQrSc+vq7uOuH6/hiac2UVuT4MrLjmH+KQ1UF3HeOpPJ0tndz+9e6aJ5aprDW6uGErx0dffRuztLPGZUVsaLvqeBjNTXl2X7zgEymRzpdJz6uuSYps9KlZktdfd5xa5HFCiw59lYAvt42tbZxxe+uoy163pGlN9y4wmcdkrD0Plo2b8mikO9z/7g38d5+OfruPXu1SPKH/jnU2lrKW4+c5FSpsCeP9FY+ioHrboqztyT6kcEdjM4vG1k8InKTmj5nvvcn109Azz7/N6roV9+bbsCu4iMCwX2MlVREeeSC45g3YZeXnipk7aWNDdePRsz2NqRoaY6QXqMKUHLUWU6zuyZtSx7tXtE+dH7SC0qMpqojJjJ+FJgL2ONk1N87epZZDI5MPjOrSt5fmknFRUxPnfRDM49Yxq1tQc331ruH0TJZIwLF7SxdFkXv/+/ncRi8PE/bWVqkzYUkYOXr2yHUl4U2EvUeAXIutokA5U57ntwLc8v7QQgk8lx2z2rmT+34aADuz6IoLGhgu9+7QR6d2dJJIyqykRkNnyRkWmGhx+LlAp92pSo8QyQPb1Zli7fe1OS11ftYMbh+RlCjqVS+8z/HtWe/OT6FKNv9isTTS6XY1dPD12dnbS0trJr5066u7tpaW1VcJeSocAuVFXGmXfSZJav2D6i/LhjavP2HtmeXn4968N7lZdTT14mvlgsRmU6Tac7b61di7vT2NhY7GqJjKDALiQSMT56Tguvr9rBc4u3cft1R9JS51RmO+lZ0/nO8yLauxY5GLFYjOqaGrq7ujAzampr1VuXkqLALgA01Kf4+y8dx+5MjqrtW/jNzDP3eo5611LuBofiu7u6qKuro6enhw3r1xdsKH5/qZzHmu1Qok2BXYbU1Sapq4WenYe+ccv+Pog8p6QVMvENDsU3NTVRXVNDfX09vb29BXu/qOwjIeNLgb1ETdRv6vv7INrXwjkpb9t39rNufS+/+d+tzJ5Zy4mzJzF5UunvgZ5IJqmOx4nFYsGwfHgsUioU2EtU1L6pT9QvKlIYAwM5fvXbdm7+0RtDZaef2sB1XzxuQuQZHx7IFdSl1Ciwy7iI2hcVGZvuHf3c/e9rRpQ9t3gbvbuzEyKwi5QyBXbZi3rXUnhGNrt3AirlpBIZOwX2UZjZWcAPgDhwl7v/Q5GrVHDqXUuh1dUkuOhj07nj3jeHyk6cXUdlurjD2oXe8bHct1yW8aHAfgBmFgduB84E1gGLzewxd19R3JqJTGzJZIzzzmzm6Bk1/NevN3PirEl84PQp1Bd58Vyhd3zUlssyHhTYD+w0YJW7rwYwsweABYACu8gYTapLMn9uA6fOqSce1wI0kXzRX9OBtQJvDztfF5aNYGaXmdkSM1vS3t4+bpUTiQIFdZH80l9UHrj7ne4+z93nNTU1Fbs6IiJSxhTYD2w9MH3YeVtYJiIiUpI0x35gi4FjzexIgoB+IfDnxa2SiBRKoW/11K2kMh4U2A/A3QfM7ArglwS3u93j7q8WuVoiUiCFvtVTt5LKeFBgH4W7/wL4RbHrISIi8m5ojl1ERCRCFNhFREQiRIFdREQkQhTYRUREIsRc6ZTyyszagbUH8ZIpwNYCVadUleM1Q3ledzleM5TndY/1mo9wd+3wlQcK7EVmZkvcfV6x6zGeyvGaoTyvuxyvGcrzusvxmkuVhuJFREQiRIFdREQkQhTYi+/OYlegCMrxmqE8r7scrxnK87rL8ZpLkubYRUREIkQ9dhERkQhRYBcREYkQBfYiMbOzzGylma0ys2uLXZ9CMbPpZvaMma0ws1fN7MqwvMHMnjKzN8Kfk4td13wzs7iZvWRmj4fnR5rZorDNHzSzVLHrmG9mVm9mD5vZ62b2mpn9YdTb2sy+FP7bfsXMfmJm6Si2tZndY2ZbzOyVYWX7bFsL/DC8/uVmdkrxal5+FNiLwMziwO3A2cBs4JNmNru4tSqYAeBv3X02MB/46/BarwWedvdjgafD86i5Enht2Pl3gO+5+zFAJ3BpUWpVWD8AnnT344CTCK4/sm1tZq3A3wDz3P14gvTOFxLNtr4XOGuPsv217dnAseF/lwF3jFMdBQX2YjkNWOXuq929D3gAWFDkOhWEu2909xfD4x0EH/StBNd7X/i0+4CPFqeGhWFmbcC5wF3huQEfAh4OnxLFa54EvB+4G8Dd+9y9i4i3NUH660ozSwBVwEYi2Nbu/iywbY/i/bXtAuB+DzwP1JtZ8/jUVBTYi6MVeHvY+bqwLNLMbAZwMrAImOruG8OHNgFTi1StQvk+8BUgF543Al3uPhCeR7HNjwTagX8JpyDuMrNqItzW7r4euBl4iyCgdwNLiX5bD9pf25blZ1ypUGCXcWFmNcAjwBfdffvwxzy45zIy912a2XnAFndfWuy6jLMEcApwh7ufDOxij2H3CLb1ZILe6ZFAC1DN3sPVZSFqbTuRKbAXx3pg+rDztrAskswsSRDUf+zuj4bFmweH5sKfW4pVvwL4I+AjZraGYJrlQwRzz/XhcC1Es83XAevcfVF4/jBBoI9yW58BvOnu7e7eDzxK0P5Rb+tB+2vbsvqMKzUK7MWxGDg2XDmbIlhs81iR61QQ4dzy3cBr7n7LsIceAy4Jjy8BfjbedSsUd/87d29z9xkEbfsrd78IeAY4P3xapK4ZwN03AW+b2cyw6I+BFUS4rQmG4OebWVX4b33wmiPd1sPsr20fAy4OV8fPB7qHDdlLgWnnuSIxs3MI5mHjwD3u/s0iV6kgzOx9wG+Bl3lnvvmrBPPsDwGHE6S5/YS777kwZ8Izsw8CV7n7eWZ2FEEPvgF4CfiUu2eKWb98M7M5BAsGU8Bq4NMEHYjItrWZ3QhcQHAHyEvAZwnmkyPV1mb2E+CDBOlZNwM3AD9lH20bfsm5jWBaogf4tLsvKUa9y5ECu4iISIRoKF5ERCRCFNhFREQiRIFdREQkQhTYRUREIkSBXUREJEIU2EVKTJgh7fLwuMXMHh7tNWN4rznhrZciEhEK7CKlpx64HMDdN7j7+aM8fyzmAArsIhGi+9hFSoyZDWb7Wwm8Acxy9+PN7C8JsmdVE6TDvJlgI5i/ADLAOeHmIEcTpAVuItgc5HPu/rqZfZxgU5EsQbKSM4BVQCXBdp/fBh4HbgWOB5LA19z9Z+F7/xkwiWDzlX9z9xsL/L9CRA5BYvSniMg4uxY43t3nhBnxHh/22PEEGfLSBEH5Gnc/2cy+B1xMsJvhncDn3f0NM3sv8COC/eqvB/7E3debWb2795nZ9QS5xK8AMLNvEWyB+xkzqwdeMLP/Dt/7tPD9e4DFZvaEdhMTKT0K7CITyzNhXvsdZtYN/Dwsfxk4McyidzrwH8GungBUhD8XAvea2UMEyUr25cMECWyuCs/TBNuFAjzl7h0AZvYo8D5AgV2kxCiwi0wsw/cbzw07zxH8PccIcoHP2fOF7v75sAd/LrDUzObu4/cb8DF3XzmiMHjdnvN2mscTKUFaPCdSenYAtYfywjDX/ZvhfDphdq2TwuOj3X2Ru18PtBOk1dzzvX4JfCFM4oGZnTzssTPNrMHMKgnm+hceSh1FpLAU2EVKTDjcvdDMXgFuOoRfcRFwqZktA14lWIgHcJOZvRz+3ueAZQTpRWeb2e/M7ALgGwSL5pab2avh+aAXgEeA5cAjml8XKU1aFS8iowpXxQ8tshOR0qUeu4iISISoxy4iIhIh6rGLiIhEiAK7iIhIhCiwi4iIRIgCu4iISIQosIuIiETI/wMbbttYK4fH5AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot of agent activity per timestep\n", + "param_plot(median_df,'timestep', 'AggregatedAgentSpend',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEWCAYAAAAJory2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYXUXZwH/vbdt7yaaRQnpCCiSETkJo0jvSmzRFQfgQURREFBAQEBGMIgRBqkhTIBgIIBIjKRQT0kjZ3Wzvfe+95/3+OGc3d++2m213N5nf89znzplzzsx75syZd+adJqqKwWAwGAyGznFFWwCDwWAwGAY7RlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANvVaWInKXiJSKSKFzfLqI5IpIrYjM6b2IPZZrwOQQkbEioiLi6c94BgMicoGILI22HAbD3o6IXCoi/+plGIeLyIa+kqmTOOJE5A0RqRKRl/ozrv6kW2UpIttEpMFROi2/3zrn9gFuAqapao5zy/3AdaqaqKpreiqYo3wm9PT+7uRwwq9znidfRH4tIu5exNclInK+iHzqxFcgIm+JyGH9FV8E8jwlIs0iUuP8vhSRu0Ukpav7VPVZVT22h3HeISL+sLz0g549wdAmJP1rRaRcRN4VkSnRlqs7+qKA7iBMn4g8ICJ5TnpsE5GH+jKOwYiIfCUil3fgf72IfDoQMqjqR6o6OSTubSJydKT3i83NIrLJ0RM7nHIkJuSys4BhQIaqnu3kIRWRB8PCOtXxf6q3z9UfRNqyPNlROi2/6xz/fYAyVS0OuXYM8L8+lbJnRCLHLFVNBI4EzgXaZdy+QERuBB4CfomdafYBfgec2sn1A9VC/ZWqJgFZwGXAQcDHIpLQj3K9EJaXftVBPCIie0MXwa+c/DcKKAae2t0Ahpo1oxN5bwXmAgcCScACYPUAihUtlgAXd+B/kXNuKPAb4Crs50gCvgEsAl4MuWYMsFFVAyF+W4BzwvLDJcDG/hW3F6hqlz9gG3B0B/5HAw2ABdQCzzn/CtQBW5zrRgB/BUqArcD3QsJwAz/CTrgaYBUwGvgwJJxa4NwO4ncBtwHbsQuap4EUIKYjOTq4X4EJIccvAo+GHKcATwAFQD5wF+AOkft+oBT4GviOE56ng3hSHHnO7iKN7wBeBp4BqoFvOc/xELDT+T0ExDjXZwJvApVAOfAR4HLO3eLIWwNsABZ1EudTwF1hfknO817nHF8KfAw8CJQ5aXAp8K+wdPyekw6lwH0tsnTynM90cm458AsnvgZgQm/eAWH5Njxu7IrBv500/AxYECbLzx1ZaoClQGbI+cNC7s110mQeUNQin3PdGcBnkaQ/cCJQ67gPBD5xwi8Afgv4wtL8O8AmYKvj97AjSzX2d3R42LO/hJ2/aoAvgEnYSqrYue/Y7vI+MBVoBILYebrSuT7GeRc7nDR4HIhzzi0A8rDzZSHw5w7S4k3ghk7S6TLgjZDjTcBLIce5wGzHPQV4F/ub2ACcE3JdJDL+CDs/bQMu6OJ7HQG87sSzGbgyLK1fxC6ParAr7HM7CWcUEADGhPhNA5px8ltn7yLk+wz9Fg8B/gtUOf+HhJxLB57ELksqgFdDn91x/xm7PG9w3u8PgL8D3w2T+3PgdGCikxcODDs/GmgCjgJ+5jyP3wnziha5gbeBE0PkK8QuP54KCesUJw0rsb/LqSHntgH/58hTBbwAxIacPwlY69z7b2Cm438z8NcwmX8DPNzZO1fVnivL8IQO+5AnOG4X9of7U8AHjMcu2I4LEfoLYDIgwCzspnqbcDqJ+3LsjDoeSAReIeRDjOD+UDmnOJnx+yHn/wb8HkgAsoGVwNXOuWuAr5xMkQ68T+fK8njsD6LdubAPzA+c5qRZHHAnsMKJO8t52T93rr8b+2P3Or/DnfSbjF14jHCuGwvs20mcTxGmLB3/p7Fbf2Bn6gDwXcDjyHUp7ZXl+0467INdM/xWF8/ZlbLcAUx34vL25h3QhbIERmIr/xOc9D7GOc4KkWULtkKJc47vcc6NwS4Ez3NkzGBXYb0O+EZYHrqpu/THzr9/AT5yjg/AVuYe5x2uJ0SZOM/5rvPcLQX+hY4sHuyukUKcgsN59kbgOOf809gV1x87z3AljtKNIO+3ef+O34PYyiMdu8L1BnB3SBkRAO7FVlhxHaTFbc67/zawHyAh58ZjF3YubCW1nV2F+3jsgt/lyJqLrVw9wBxsxTdtN2T8tSPjkdgV7cmdvLsPsS1DscBs7IbAUWFpfQJ2BeNuYEUX3/67wG0hx3fjKLLdeRfOc1Vgt0o92Pmzgl3l6d+xlUma886P7KgMp/13cw7wn5DjWdjfig/7G9zeyXN9EJK+d9C2onoptrI8n11lzbed57wLR1lif3912N+nF1t5b8apODqyrnTyRTr2d3KNc24OdkVwvvMeLnGujwGGO+GmOtd6nGsP6Ow9qUauLGuxM2zL78qOEjrkQ25RQvOBHWHnbwWedNwbgFM7ibc7ZbcM+HbI8WRsheOJ8H7FroXXOe7n2NVyG4ZdM4oLuf484H3H/V7LS3GOj6VzZXkBUNhNGt8BfBjmtwU4IeT4OGCb474TeC38+bBbY8XYrX5vN3E+RcfK8h7g3ZBMHf7+LqW9sjw+5PjbwLIunrM5LC+1KPblwJ0h1/bqHdC1sryFsBYO8A5wSYgst4U909sh+fdvnTzfLcCzjjsdqAeGd5H+jU4aFGIX5J1VbG4IjdN5zqO6eb8V2N0MLc/+bsi5k7G/6ZYWSpITZmoE6R7+/gX7G9o3xO9gdrV4FzjvPLYLWd3YLeWPnbh3trwL53wusD/wTWAxdgE5BVsxvu5ccy5OZSPkvt8Dt0coYwBICDn/IvCTDmQdjd2aSgrxu5tdBfwdwD9Dzk0DGrp49guBDY7bhV1pOD3Cb6D1XWAryZVhYX/iXDMcu8WY1kH8C+haWcY6eWmic3w/8DvHfRudVASA54E/hH97oXJjV0SLsFvPK4BDaassfwK8GHKfC7t1vSBE1gtDzv8KeNxxP4bTuAg5v4FdlYS32KXHTgLWdfU9qSqR9necpqr/jPDaUMYAI0SkMsTPjW02BDvjbelBuLCrltnCduwawjDsBI2E/Z34z8ZWEgnYmXMMdk2mQERarnVhf7QtceeGhBMqRzhlQKaIeLStzT6c3LDjjp5vhOO+DzsDLnXkW6yq96jqZhG5wTk3XUTeAW5U1Z1dxBvOSGzzUmdydSd7qJwd8aKqXhhBOH35DsIZA5wtIieH+HmxW6ctFIa467Fbf9B1nn0GWO/0+Z6DXXgXdCHH/ap6W7iniEzCbuXMBeKx8/WqsMtyw+75P2wT1whsxZeMba5voSjE3QCUqmow5BjsZxxB1+keTpYj46qQ6wX7O2+hRFUbO7kfR45HgUdFJA7bavQnEVmpquuxWykLsCuDH2BXMI7EVngfOMGMAeaHlTUebNNiJDJWqGpdyHFn+XgEUK6qNWHXzg05Ds87sV18/68AvxORgxwZ47FbgS3PFOm7CC8vWuQaiZ1ny1W1ooP7ukRVG0XkBeBCEfkZtrI+yzldiq2IO2I4tvWiq7AbROTv2Eo3Q1U/FpFvhFzS5plU1RKRXOeZWghP65Z3Nga4RES+G3LeF3J+CXAt8AfsCsufu5IV+n+eZS527S015JekqieEnN+3h2HvxE6QFvbBrh0WdXx5x6jNi9i1sJ+GyNWE3W/QIneyqk53zhdgZ8DQuDvjEyes07oTJey4o+fb6chco6o3qep4bJv+jSKyyDn3F1U9zLlXsc1fESEiidit0o9CvMPl6ojwtNgd5RxKaFy9fQd12AVPCzkh7lzslmVovkxQ1XsikLHTPKuq+djv+wzsmn63H2AnPIZtYp6oqsnYfWkSdk1rWonI4dgmqnOwWw+p2H044fdEQnfpHp4fSrGV7fSQ61PUHrjUTtbuUNUGVX0UuzUzzfFuUZaHO+4PsJXlkexSlrnAB2HvNFFVr41QxrSwgW2d5eOdQLqIJIVdG2kFPfx567HHK1yMnWeeV9XmkGfq6l2EyzUmzK9FrlxH5tRIROrAbwm2hWwRUK+qnzj+7wGjReTA0ItFZDR2N8KyCOJ7Grvb4JkOzrV5JrFrDKOJLK1zgV+E5Yd4VX3OOf8qMFNEZmC3LJ/tLsD+VpYrgRoRucWZa+MWkRkiMs85/0fg5yIy0RkBOVNEMpxzRdh9Ep3xHPB9ERnnFPK/xLZ/d9V664p7gCtFJMdpDSwFHhCRZBFxici+InKkc+2LwPdEZJSIpAE/7CxQVa3CVsKPishpIhIvIl4R+YaItBsJGvZ8t4lIlohkOmE8AyAiJ4nIBCfzVGGbhSwRmSwiRznDthvZNQCrS0QkRkQOwM5AFdgDAXaHm0UkzflIrsfuG+kVffAO1gLfdNJ6Lrtqw2Cn48kicpyTJ2NFZIGIjIpAtGeBo0XkHBHxiEiGiMwOOf80tuLaD7vV0BOSsLsIasWeTnJtBNcHsPvOPCLyU+yW5W4TQboXAaNExOdcb2HXzh8UkWwAERkpIsdFGqeI3OCkf5yTppc4z9Qy5esDYCG2OTIPuzJ3PHYfbcs1bwKTROQi5517RWSeiEzdDRl/JvY0lsOxC9B2cwJVNRd7/MDdTr6Zid2i76iwj5Ql2GbkMwkZBRvBuwjlH87zn++k4bnYlY03nXDewm7Bpjlpc0QnsrQrdx3laAEPEFIBVNWN2GMnnhWRg5xvaTr2gM5/RmiN/AC7T/KRDs69CJwoIotExIutVJuw0787/gBcIyLzHd2SICIntlRyHEvHy9hjBVaq6o7uAoxUWb4hbefG/S2SmxzzyknYneBbsWt4f8S2UYNtanoRO0NUY4/6inPO3QEsEZFKETmng+D/hP3iPnTCbsQeiNIjVPULJ6ybHa+LsZvt67AVyMvsMjn8AbuP6zPsIe5dFoqq+gBwI7a5oQS71nMdtnLqjLuAT7FHen3hxHOXc24i8E/sfqdPsPsQ3sfuvL4HO50LsQcE3NpFHD8QkRpsU/HT2Ka+Q8LMUZHwmnPvWmwT0hO7eX9n9OYd/AS7BViBPSLvLy0nnALvVOwWW8v7uJkIvgfnozoB+8Mtx37mWSGX/A27Nvw3p9XQE/4Pe/BDDfZzdlf5eAd7ZOFGbLNVI5GZzzujq3R/D3t0YqGIlDp+t2APvFghItXYeXMykVOPXRAXYufd7wBnqurX0Foo1+JYPFS1Gnug4MctpmTHLHosdr/mTieslkFFkchY6DzrTuwK0TWq+lUn8p6HPfBqJ/b7vr2H3VQtfIhd6c1T1f+GnevqXbSiqmXYZe1N2N/zD4CTVLXlHV2EPabjK+xxDTd0Isvd2JX0SrFN+y08jV0BDK8UXIddpj+D/Y7exu7zP7PLJ94lt6rqMlUt7+DcBmwT6SPY+eJk7GmMzeHXdnDvp9gD136LnW6bsftKQ1niPFNEFiBRjdhCYjC0Q0QU21y4OcpyjMWuNHl7YV3oK1m2YI9Y7E0BahggRGQB9gCUSCwLeyUicjFwldPFs0cg9qI6XwE5TgWsS/aGid8Gw4AhImdi9/u8F21ZDIa+QETisUeEL462LH2F2Iue3IjdR9ytogQiHg1rMBi6QUSWY/cTXeT0kxkMQxqnX/cVbLP1X7q5fEgg9kCuIuwui+Mjvs+YYQ0Gg8Fg6BpjhjUYDAaDoRv2WjNsZmamjh07NtpiGAwGw5Bi1apVpaqaFW05Bpq9VlmOHTuWTz8dkF1wDAaDYY9BRHZntaw9BmOGNRgMBoOhG4yyNBgMBoOhG4yyNBgMBoOhG/baPsuO8Pv95OXl0djY6QYJBsOAEhsby6hRo/B6vdEWxWDYqzHKMoS8vDySkpIYO3YsIj3ZsMFg6DtUlbKyMvLy8hg3bly0xTEY9mqMGTaExsZGMjIyjKIcJFiBAMGm5nY/KxDVpV8HDBEhIyPDWDoMhkGAaVmGYRTl4EGDFjVfbmznnzRj0l6Tc01+NBgGB6ZlaTAYDAZDNxhlOchwu93Mnj2bGTNmcPLJJ1NZWblb999xxx3cf//9HZ57+umnmTFjBvvttx9z5szp9Lq+ZuzYsey3337st99+TJs2jdtuu61L0+IhhxyyW+EvWLCAyZMnM3v2bGbPns3LL7/cW5ENBoOhDUZZDjLi4uJYu3YtX375Jenp6Tz66KN9Eu5bb73FQw89xNKlS/niiy9YsWIFKSkp7a4L9FN/4Pvvv88XX3zBypUr+frrr7n66qs7jfvf/45kI/S2PPvss6xdu5a1a9dy1llntTmnqliW2QTEYDD0HKMsBzEHH3ww+fn5rcf33Xcf8+bNY+bMmdx+++2t/r/4xS+YNGkShx12GBs2bOgwrLvvvpv777+fESNGABATE8OVV14J2C2zG264gblz5/Lwww+zbds2jjrqKGbOnMmiRYvYsWMHAC+99BIzZsxg1qxZHHHEEQD873//48ADD2T27NnMnDmTTZs2dflMiYmJPP7447z66quUl5ezfPlyDj/8cE455RSmTZvWeg3A8g8+4IQrL+Gc67/NvDNO5vu/vDNipbdt2zYmT57MxRdfzIwZM8jNzWXp0qUcfPDB7L///px99tnU1tYC8PbbbzNlyhT2339/vve973HSSScB7VvpM2bMYNu2bQA888wzrc999dVXEwwGW2X/8Y9/zKxZszjooIMoKioCoKioiNNPP51Zs2Yxa9Ys/v3vf/PTn/6Uhx56qDX8H//4xzz88MMRPZ/BYBhgVHWv/B1wwAEazrp169r5DTQJCQmqqhoIBPSss87St956S1VV33nnHb3yyivVsiwNBoN64okn6gcffKCffvqpzpgxQ+vq6rSqqkr33Xdfve+++9qFm5aWppWVlR3GeeSRR+q1117benzSSSfpU089paqqTzzxhJ566qmqqjpjxgzNy8tTVdWKigpVVb3uuuv0mWeeUVXVpqYmra+vbxf+mDFjtKSkpI3frFmzdMWKFfr+++9rfHy8fv311+3SYNk//6kxMTG6cd16baqr10VHHaUv/OU5Dfr97eSfNGmSzpo1S2fNmqWlpaW6detWFRH95JNPVFW1pKREDz/8cK2trVVV1XvuuUd/9rOfaUNDg44aNUo3btyolmXp2WefrSeeeKKqqt5+++1t0nL69Om6detWXbdunZ500kna3NysqqrXXnutLlmyRFVVAX399ddVVfXmm2/Wn//856qqes455+iDDz6oqva7rays1K1bt+qcOXNUVTUYDOr48eO1tLS0XfoNhnxpMLQAfKqDoAwf6N9eMqZw6NDQ0MDs2bPJz89n6tSpHHPMMQAsXbqUpUuXMmfOHABqa2vZtGkTNTU1nH766cTHxwNwyimn9Cjec889t9X9ySef8MorrwBw0UUX8YMf/ACAQw89lEsvvZRzzjmHM844A7Bbv7/4xS/Iy8vjjDPOYOLEiRHFpyH7qB544IEdziN0ud0ceOCBTJw6BYDzL7iAf/9nBeec98121z777LPMnTu39bimpoYxY8Zw0EEHAbBixQrWrVvHoYceCkBzczMHH3wwX331FePGjWuV+8ILL2Tx4q43hF+2bBmrVq1i3rx5gP3OsrOzAfD5fK0t0wMOOIB3330XgPfee4+nn34asPulU1JSSElJISMjgzVr1lBUVMScOXPIyMjoLukMBkMUMGbYQUZLn+X27dtR1dY+S1Xl1ltvbe2X27x5M1dccUXE4U6fPp1Vq1Z1ej4hIaHbMB5//HHuuusucnNzOeCAAygrK+P888/n9ddfJy4ujhNOOIH33nuv23BqamrYtm0bkyZN6jbu8KkTuzOVIjRcVeWYY45pTb9169bxxBNPdHm/x+NpY/ZtGZSkqlxyySWtYW3YsIE77rgDAK/X2yqj2+3utg/4W9/6Fk899RRPPvkkl19+ecTPZjAYBhajLAcp8fHx/OY3v+GBBx4gEAhw3HHH8ac//am1ny0/P5/i4mKOOOIIXn31VRoaGqipqeGNN97oMLxbb72Vm2++mcLCQsBuWf3xj3/s8NpDDjmE559/HrBbbIcffjgAW7ZsYf78+dx5551kZWWRm5vL119/zfjx4/ne977Hqaeeyueff97lc9XW1vLtb3+b0047jbS0tG7TYeXKlWzduhXLsnjhhRc47LDDur2nIw466CA+/vhjNm/eDEBdXR0bN25kypQpbNu2jS1btgDw3HPPtd4zduxYVq9eDcDq1avZunUrAIsWLeLll1+muLgYgPLycrZv73rXokWLFvHYY48BEAwGqaqqAuD000/n7bff5r///S/HHXdcj57NYDD0P8YMO4iZM2cOM2fO5LnnnuOiiy5i/fr1HHzwwYA9kOSZZ55h//3359xzz2XWrFlkZ2e3mgbDOeGEEygqKuLoo49GVRGRTlsyjzzyCJdddhn33XcfWVlZPPnkkwDcfPPNbNq0CVVl0aJFzJo1i3vvvZc///nPeL1ecnJy+NGPftRhmAsXLkTVHpV6+umn85Of/CSiNJg3bx7XXXcdmzdvZuHChZx++ukR3RdOVlYWTz31FOeddx5NTU0A3HXXXUyaNInFixdz4oknEh8fz+GHH05NTQ0AZ555Jk8//TTTp09n/vz5rS3hadOmcdddd3HsscdiWRZer5dHH32UMWPGdBr/ww8/zFVXXcUTTzyB2+3mscce4+CDD8bn87Fw4UJSU1Nxu909ejaDwdD/SGjf0d7E3LlzNXzz5/Xr1zN16tQoSWQIZ/ny5dx///28+eabe2yclmWx//7789JLL3Xa32vypWEwISKrVHVu91fuWRgzrMEQJdatW8eECRNYtGhRxAOjDAZDdDAtyxBMDd4wGDH50jCY2FtblkOyz1JEtgE1QBAIqOpcEUkHXgDGAtuAc1S1IloyGgwGg2HPYSibYReq6uyQGs4PgWWqOhFY5hwbDAaDwdBrhrKyDOdUYInjXgKcFkVZDAaDwbAHMVSVpQJLRWSViFzl+A1T1QLHXQgMC79JRK4SkU9F5NOSkpKBktVgMBgMQ5yhqiwPU9X9gW8A3xGRI0JPOusXthu5pKqLVXWuqs7NysoaIFF3j8bGRg488EBmzZrF9OnTWxdM37p1K/Pnz2fChAmce+65NDc3R1lSg8Fg2HsYkspSVfOd/2Lgb8CBQJGIDAdw/oujJ2HPiYmJ4b333uOzzz5j7dq1vP3226xYsYJbbrmF73//+2zevJm0tLRul2ozGAwGQ98x5JSliCSISFKLGzgW+BJ4HbjEuewS4LX+lmXp8iLOvHwFh5/yAWdevoKly4t6HaaItG5R5ff78fv9iAjvvfde6z6Nl1xyCa+++mqv4zIYDAZDZAw5ZYndF/kvEfkMWAn8XVXfBu4BjhGRTcDRznG/sXR5Eff+diNFJU2oQlFJE/f+dmOfKMxgMMjs2bPJzs7mmGOOYd999yU1NRWPx57pM2rUqDb7XBoMBoOhfxly8yxV9WtgVgf+ZcCigZLj909vpamp7UbETU0Wv396K8cuaDe2aLdwu92sXbuWyspKTj/9dL766qtehWcwGAyG3jEUW5aDguLSpt3y7wmpqaksXLiQTz75hMrKytbtnvLy8hg5cmSfxWMwGAyGrjHKsodkZ8bsln+klJSUUFlZCdibCr/77rtMnTqVhQsX8vLLLwOwZMkSTj311F7FYzAYDIbIMcqyh1x98ThiYtomX0yMi6svHtercAsKCli4cCEzZ85k3rx5HHPMMZx00knce++9/PrXv2bChAmUlZXt1sbPBoPBYOgdQ67PcrDQ0i/5+6e3UlzaRHZmDFdfPK7X/ZUzZ85kzZo17fzHjx/PypUrexW2wWAwGHqGUZa94NgFw3qtHA0Gg8Ew+DFmWIPBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoy0FIZWUlZ511FlOmTGHq1Kl88sknlJeXc8wxxzBx4kSOOeYYKioqoi2mwWAw7DUYZTkIuf766zn++OP56quv+Oyzz5g6dSr33HMPixYtYtOmTSxatIh77unXdeINBoPBEIJRlj1EVSnYuZOCnTuxLKvVbe873XOqqqr48MMPW1fo8fl8pKam8tprr3HJJfYOZGaLLoPBYBhYjLLsIYUFBTQ2NtLY2MiO7dtb3YUFBb0Kd+vWrWRlZXHZZZcxZ84cvvWtb1FXV0dRURHDhw8HICcnh6Ki3m8FZjAYDIbIMMqyl6gqlmX1ukXZQiAQYPXq1Vx77bWsWbOGhISEdiZXEUFE+iQ+g8FgMHSPUZY9ZFhOTjuFJSIMy8npVbijRo1i1KhRzJ8/H4CzzjqL1atXM2zYMAqcVmtBQQHZ2dm9isdgMBgMkWOUZQ8pKixs15pUVYoKC3sVbk5ODqNHj2bDhg0ALFu2jGnTpnHKKaewZMkSwGzRZeh/LMvC7/cTDAbbuA2GvRWzkHovaTGJ9pUZFuCRRx7hggsuoLm5mfHjx/Pkk09iWRbnnHMOTzzxBGPGjOHFF1/ss/gMhnDUssjdsYO0tDRiYmMpLCggZ/hw4uLiTBeAYa/EKMsekjN8eOtgnmE5Oa0tyhxnEE5vmD17Np9++mk7/2XLlvU6bIMhIkTIzs6muLgYgKTkZGJiYoyiNOy1GGXZQ0SE4SNGtB6Hug2GoY6I4HK7W4/dLtNjY9i7MV+AwWBoh1oWhQUFJCUnk5WVRWVlJU1NTX3a3WAwDCVMy9JgMLRiWRYulwtEGDlyJB6vF4CRPh8er9eYYQ17LaZlaTAYAAgGg1RVVhIMBABobm4GVdxuNzGxsbhDzLIGw96GaVkaDAbAblVWVVVRX1+P2+2moaGBkaNGYVSkwWBalgaDwcHj8TB8xAiampqor69nWE4OXscMazDs7RhlOQh5+OGHmTFjBtOnT+ehhx4CMFt0Gfody7KodPKViFBZUYFlFiIwGACjLAcdX375JX/4wx9YuXIln332GW+++SabN282W3QZ+h3LsmhsbGTkyJGMHDXKXrXHsqItlsEwKDB9lj3k7fT9CdbUtfN3JyVwfPnqHoe7fv165s+fT3x8PABHHnkkr7zyCq/lyvHuAAAgAElEQVS99hrLly8H7C26FixYwL333tvjeAyGcDweD6P32ad1xGuo22DY2xmSLUsRcYvIGhF50zkeJyL/EZHNIvKCiPj6W4aOFGVX/pEyY8YMPvroI8rKyqivr+cf//gHubm5ZosuQ78jIrhcrtYlHFvcBoNhiCpL4HpgfcjxvcCDqjoBqACuiIpUfcDUqVO55ZZbOPbYYzn++OOZPXt2uyH7Zosug8FgGFiGnLIUkVHAicAfnWMBjgJedi5ZApwWHen6hiuuuIJVq1bx4YcfkpaWxqRJk8wWXQaDwRBFhpyyBB4CfgC0jDzIACpVNeAc5wEjO7pRRK4SkU9F5NOSkpL+l7SHtCxevWPHDl555RXOP/98s0WXwWAwRJEhNcBHRE4CilV1lYgs2N37VXUxsBhg7ty5g3aRyzPPPJOysjK8Xi+PPvooqamp/PCHPzRbdBkMBkOUGFLKEjgUOEVETgBigWTgYSBVRDxO63IUkN/fgriTEjodDdtbPvroo3Z+GRkZZosug8FgiBJDSlmq6q3ArQBOy/L/VPUCEXkJOAt4HrgEeK2/ZenN9BCDwWAwDC2GYp9lR9wC3Cgim7H7MJ+IsjwGg8Fg2IMYUi3LUFR1ObDccX8NHNhH4ZppGYZBg9k/0mAYHOwpLcs+ITY2lrKyMlNAGQYFqkpZWRmxsbHRFsVg2OsZsi3L/mDUqFHk5eUxmKeVGPYuYmNjGTVqVLTFMBj2eqKmLEXEraqDaksDr9fLuHHjoi2GwWAwGAYZ0TTDbhKR+0RkWhRlMBgMBoOhW6KpLGcBG4E/isgKZ3Wd5CjKYzAYDAZDh0RNWapqjar+QVUPwZ76cTtQICJLRGRCtOQyDG7q6gM0Ng0q673BYNgLiGqfJfaC6JcBY4EHgGeBw4F/AJOiJZth8FFb52fT1jqefTmXxAQPl583huHDYvF629f3/AELtcDnM4O9DQZD3xDN0bCbgPeB+1T13yH+L4vIEVGSyTBI2bKtju/e+lnr8Uf/KeUvj81jWNauaRWBQBDLstiwuZavt9fzjUXZKEKMzwz6NhgMvSOaVe+ZqnpFmKIEQFW/Fw2BDIOThsYgz7+a18avqcli5ZqKNn6qSl7uDtJTg8zfP4m83B34m5vMvFmDwdBroqksR4jIMhH5EkBEZorIbVGUxzBIcbuE1GRvO/+UML/tefXExqfR1FBFfW0JvpgEikqDNDVb7e41GAyG3SGayvIP2Iui+wFU9XPgm1GUxzBI8flcXHT2PiTEu1v9xoyKZ8aUtoOnm/2KyxVqcnVTUxvA1cHyheWVzZRVNFNbF2h3zmAwGMKJZmdOvKquDFuH1ZRchg4ZlhXDM7+bx5ovKklK9DB53yTSU31trpk4LoHcHdvxxSQg4qWpsZKJ43LwenflMX/AYsvWOn7x0FfsyG/gsAPTufGaiWSkxwz0IxkMhiFENJVlqYjsCyiAiJwFFERRHsMgxu12kZURw7ELhnV5zfARI6irh7IKP/uMGIHX522zMH5VtZ/rb/uMunp7+skHn5Th9br4wXWTiI8zA4EMBkPHRLN0+A6wGJgiIvnAVuDCKMpjGOK4XC5iY2OJixMyM+I63EGmqtrfqih/e+s4kj3NiAhWQQH1LvtaT1IivozUAZffYDAMXqKmLJ1ttY4WkQTApao10ZLFsOcQqhw72motKdGL2wVBC5I9zaw/9MR21yzctMwoS4PB0IZoLkoQA5yJvSCBp6VgU9U7oyWTYc8nMcHNjddM5MHFm6MtisFgGEJE0wz7GlAFrAKaoiiHYQigqliWhdvtbuPeXeLjPBy7YBiHHJhBTGVxP0hqMBj2RKKpLEep6vFRjN8wRFBV/H4/pSUlZA8bhmVZrW6PZ/ezcFycm7g4N/U17c20BoPB0BHRVJb/FpH9VPWLKMpgGAKICCKC3+9nZ34+lmXh8/kwqs5gMAwU0VSWhwGXishWbDOsAKqqM6Mok2GQ4vF4yMzMpKioCIDsYcNw96BV2SbMpEQWblrWob/BYDCEEk1l+Y0oxm0YAgSDQVQVl8tFIBCgpKQEn89HMBiksKCAnOHD25hhm8sqCdTUtguns6kgvoxUM+rVYDBERDSnjmwXkVnYW3IBfKSqn3V1j2HvwbIsGhoaKC0pYcTIkaBKXHw8GRkZqCrl5eXtzLCBmlren7ioXVhmKojBYOgtUVsbVkSux96/Mtv5PSMi342WPIbBhcvlIi4uDp/PR15uLsXFxaSlpSEieL1eMjMze22GNRgMhkiJZmlzBTBfVesARORe4BPgkSjKZBhkxMTG0tjYSHNzM2ArUaBH00YMBoOhp0Rz1xEBgiHHQcfPYGg1w1ZVVpKekUFsbGzrSFiAmlo/xaWNFJc2dbtzSHVNgK+311Ffb9bpNxgMPSOaLcsngf+IyN+c49OAJ6Ioj2EQ0WKGzRk+nNjYWJKSkmhqsteuqKhq5tePb+L9f5XicsGJR+dw9cXj8HUSVn1DgEt+/CmP3jObmdNSBu4hDAbDHkM0B/j8WkSWY08hAbhMVddESx7D4MPtdhMXF9e6xmuL+5NPS3j/X6UAWBa8sbSQBYdkMWfsrqkgTc0WFZW26bY64EMV/vTcdu764TQSE0xfp8Fg2D0GvNQQkfSQw23Or/WcqpYPtEyGwUv4wujBoMV/11S0u271F5XMP2B866jXL1eXc+PP26530cG66gbDoCcQsLsPPB5PG7dhYIlGipcCeeza6Dm0CFNgfFc3i0gs8CEQgy3/y6p6u4iMA54HMrDXm71IVZv7WHZDlHG7XRxxcCbvftB2XdeD56a3Od53XCI52TEUFtumWxG4/LwxplU5iNjdebF7I8FgkJLiYgLBIDnDhlFYWIjH6yU7O9sMchtgolFy/AZYCHwMPAf8S1V1N+5vAo5S1VoR8QL/EpG3gBuBB1X1eRF5HHu07WN9LLthEDBnRgpnnzKSV/+xE5dbuOCM0YzbJ6HNNRlpPn5/3xyWfVRCYUkjJx87nGFZMVGS2NARZl5s97jdbjKzstiZn09ubq59nJlpFGUUGHBlqao3iG1bWwBcBDwiIkuBx1R1awT3K9BSHfU6PwWOAs53/JcAd2CU5R5JaoqPKy8cywVnjgYgMcFDbEz7wiMjPYZzTh010OIZDH1Ky9rIAOJydbhPq6H/iYpNylF474vIGuCbwM+BTcAfIrlfRNzYptYJwKPAFqBSVVtMu3nAyA7uuwq4CmCfffbp5VMYokl8nIf4OGNSNezZNJVW0FxVTaoqbrePYHOQhu35+FKSiclMi7Z4exXRGOCTAJwKnAtkAa8AB6jqjkjDUNUgMFtEUoG/AVMivG8xsBhg7ty5u2P6NRgMhgEnWFvHh1OObee/cNMyMMpyQIlG1bwYuxX5vPOvwFwRmQugqq9EGpCqVorI+8DBQKqIeJzW5Sggv88lNxgMBsNeSTSU5YvO/2TnF4pitzQ7RUSyAL+jKOOAY4B7gfeBs7CV8CXAa30ptMFg6FvMFmmGoUQ0lOVaVX1YRA5V1Y97cP9wYInTb+kCXlTVN0VkHfC8iNwFrMGsBmQwDGrMFmmGoUQ0lOVlwMPYC6bvv7s3q+rnwJwO/L8GDuy1dAaDwWAwhBENZbleRDYBI0Tk8xB/wR4oOzMKMhn2cILBIAK43O42boNhMGNM1YOHaMyzPE9EcoB3gFMGOn7D3kcwGKRg505S09KIi4ujYOdO0tLSiIuPb93yy9B7gkF7EyG3UyFpcRt6hj9g0RSTQHxqCm537+dWmhWTeke05lkWish87HmSAJtVtTEashj2DhISEiguKmotvH0xMWZydzdUVvuprQ3Q7LdITfaSntbZvi62oiwtKcHn85GSmkppSQkxMTEkJScbhdkDyiqaefmNPL5cX81hB2Vy7IJs0lI6T/9IMCsm9Y5ozLP0AL/E7rvcgW1+HS0iTwI/VlX/QMtk2LNxu90kp6RQWVlJMBgkNS0Nt9vdI2W5t7SeKiqbueeRDXy80t7XYNTwOH579ywyMzpfMjAhIYHi4mKqq6uxLIuU1FRTIekBFVXN3HrXl6zbWAPAmi+r2JZbx3ev2NcsxBFFomGDug9IB8ar6gGquj+wL5AK3B8FeQx7OC1mWJfLRUJiIpUVFTTU17duJB0plmVRX1dHwc6dBINBamtrW917Glt31LcqSoC8ggZeeiMPf6DjNHO73cTFx+P1egkGg8TFxeHz+YyZuwc0NgZbFWULby0ror4hiKrSspR2qNvQ/0SjmnISMCl08XRVrRaRa4GvgOujIJNhDycpKYn4hATcbjexMTE9MsO6XC58zQGSm4LUbc1FgFSXi6bcgj2u32dbXl07vy3b6vH7Lbye9gqwxQwbCARISkqipqaG6qoqY4btAW63C5fL3qu1hcR4Dx43+P1+LMvC5/MRCARa3eGVEr/foro2gNsNqcm9M98abKKhLLWjXUZUNSgipppk6HPcbjdJycmtC1KHuneXYG09H009rp1/Z/0+LbX/lrha3IPdPDlvdhoiEPqlHn/UsC7NgAmJiaSkpuLz+YiLj8fj8Qz65xyMxMe5Ofe0UTz3Sl6r33VXjCcxwUNFRTm1NTWkZ2RQUVGBz+tlWE5Om/srq5t55c2d/P2fhWSk+bjh6glMGGtGz/aWaCjLdSJysao+HeopIhditywNhj4ntObdU9OgZVlY1u7V5wJ+PwUFBeQMHw5AYUEBw4cPx+sb3LX9jDQf99+xH799Ygv1DUHOOmkk82Z3vhap2+0mPj4esNM31G3YPRITPFx45j4cfUQ2m7+uZb9pKaSn+vB43KSnp+NvbqastBSPx8OwnJw2LfdgUHn7vSKeemE7lgVFJU1c98O1PL94PqlmGkqviIay/A7wiohcjr1zCMBcIA44PQryGAwR4erB9kgulwuPx0N+nt1KiImJGRIKJD7Ow/z905k0PhFLlZQkL54OzK+h9EWFxGCTkuwlJdnL5H2TWv1UlWAwSHOzvad9MBjE7/e3sVrU1AVJTfbwwuJ5XHPzZ5RVNNPsVzZ9XcOhB2buUV0FA0005lnmA/NF5ChguuP9D1VtX+UxGPqAvpxftrtWRZfbTXpGBjvz7XX90zMyhtRiCGmpg7sFvDdhWRZVVVV4vV5yhg+ntKSE8rIysocNo6GhgarKSnKGj2D//eJoaijjsV/N4vxrPyUQUIZlx0Zb/CFPNMchnwj8SVX/F0UZDHsB0ZxfFvD7KSwoICbGnnJRWFDAyJEjB70Z1jD4cLttMyyquN1uMrOyQBWX201sbCzlwSB5uTuwLIvY+FRWfVZBIKAcf9QwstI7n/JjiIxoKsv1wGJn3uWTwHOqWhVFeQx7OY1NQWpqA1TX+ElN9pKY4CEmpm0rcHeXH3O5XCQlJZGaaivlyspKY6I09JjQ/slwd0JiItVVVYjLRXZWKlMnN/D84gNJSvSQkuSNhrh7FFFTlqr6R+CPIjIZe4GCz0XkY+APqvp+tOQy7J34/RZ+f4Dq6iZu/eV6fvWTacT4BI9HCFZW99iM6/Z4SEtPb1WQoW6Dobc0NgUJ+IOoNrVO1amvq6OwYCfjRo8w03b6kKguB+FsszXF+ZUCnwE3isjVqvrNaMpm2LuwrCA1VWX4PMqfHpxDZUUxNdVuvN5Mgr0045qBL4bO8Pstqmr8WJYS43OTkhx5C7C8spknn9tG3s4GbrtxIukZmSQlJZKamkpDfX3/Cb2XEjVlKSIPYi9Q8B7wS1Vd6Zy6V0Q2REsuw9CjviFAXb29ik58nJuE+N3P1rV1Fm5vMk11JRQX5eJyufDGpFJXbzGUhkZU1/jZmlvHO+8VMWViEofNzyTdDNIZlDQ0BPnPmnLufWQjNbUBZk5L4c4fTO1yScEW6hsCPPbU17y1rAiAm3+2nuMWZnH0EXGkp3pJSEw0rco+Jpoty8+B21S1/VIhZl9KQxidjWiV+HieeKOCv76Zj1rK8YtyuPaScaSGLDodST+j2y0EAi48bjd+y8Lj8RC0hNg+2O1hoAgGlQ8/KeWeRzYC8Po7hfz9n4Xcc9uMXi/Cbeh7qmv93H7vOoLOSj2fr6vi8SVfc+O1E7tdA7ahwWL5xyWtxxu31LJxSy0HH5BJRprPKMp+IJrK8kJVfTLUQ0SWqeoiM9DHEE5nI1oP/d+7vPDqrpVO/v5uIfNmp3H0Edmtfr6M1E7NpYFAwF7VJ9FNQ30ZwWCQxKQM6usqiPPWkJiQRVN5h7cOOiqr/Tz5/PY2fv/7qoba2oBRloOQwuKmVkXZwpovq2hoDHarLF0uGJkTx+ZtdW38YmONkuwvBrwDRURiRSQdyBSRNBFJd35jgZEDLY9haNPU3H5h73//t4xgBCvtBINBigoLKS2xa+ipqankDB9Oaloiw0eMGNDBOIGARVl5EyVlTdTU9nzjnQ7ngQ6dxvFeRU52DOHZa+a0FOJiuld4aak+bvneJGJjdgVw5UXjSIgzyrK/iEbL8mrgBmAEsDrEvxr4bRTkMQxhfL72yuzguRm4XW01hKpSUeVHVYmLdRMfZ69bmpGZScHOnWzfto24uDgys7Lwej2o2oWOiPT7bvX1DQFWrq7g/t9toqrGz2HzM7j525O63D+yI1KTvVx+3lh++fCuLv+Z05JJSjDbOg1GkhI93HHzVO59ZCN19UEOmJnKty8bT3yEfe4Txiby/OIDKS5pIj3NR2KCm4Ru3nUwGGw10Ya6Dd0TjRV8HgYeFpHvquojAx2/Yc/C63Fx7qkj+evfd2JZyjcW5TBvdluTa1NTkPWbarjnNxspKmlk4WFZXHfFvs56mx5cbjfBQABVbW1Jhi5r15UZty+orgnwk3vXtS5a/tGKMkbk7OCqi8YT00FloDPcbuGwgzL4/eg5vLu8iMkTkjjogPQ2/beGwUN8nIcjDkrnoAPmU99gkZLkxuWK3Azg9brITI8hM8IFBwKBAJUVFaSlpaHQ6nZ7TGUqEqKx+fNRqvoekC8iZ4SfV9VXBlomw9DF5YIrLhjLN08fDUBcrJvEsNp1dW2A7//kc/wBWxstXV5MarKX71w2jqLCQlAlKyuL0tJSKsrLSUtPH9Aa97YddYTvw7NydQUXnBkgZjdX+klO9DJ9spfpk5P7UEJDf2AFg+zMz7cXrUhOZmd+PqmpqSQmJfWL+d+yLGpqamhqbrY3BQgGSUlNxbQtIyMaVYojsaeLnNzBOQWMsjS0oytTqC/O0+WAiLydDa2KsoV/rSzj0m/uQ2ZmJi63G7fbbe8L6LgHktEj49v5TZ+STLzpf9qjUey1gouLiqioqMDr9RKfkNBv/eReZzuvwoICAEaNHo3Xa1b2iZRomGFvd/4vG+i4BxPR6jsIBCwqq/xs2V5HRpqPzAzfkNgctjem0GFZ7c1UE8cl4Ha78MV4W02uPdkQui9ISfby3W/ty++XfE2zX5m8byJXnD+W2AgGehg6prYuQLPfIiXJi3uQTv9xO2u6igiqSmxsLP6AUlzaQEyMm/RUb5/mx2AwSHlZGS6XC1WlrLSU7OxsY4aNkGguSvBL4FeqWukcpwE3qept0ZJpoAgEApSVlpKRmQnQ6vYMQKbNK2jgypvW0NBgT+I//KAMbrlu0pDq19rdXUSSEj1cedFY/vTsNoIWDB8Wy3VXTGi3eEG0NipOTPBwynHDOeqwLAJBJTbGRVqKr093S9lbCAQsLMti3YZKXl9axI+un4RLIDZ28LWgWsywHo+HxKQkKsrLUTy88341by0r4td3zmTUiLi+i8+yUFVGjhqFZVkUFxVhqRozbISIhneWDFTEImtUdU6Y32pV3X8g4p87d65++umnAxFVOwKBQOuWTSKCZVmMGDmy300itXUB7rhvPStWtZ04+NRvDmDCuKGzAWz9trxOl5+LHzuqw3vq6u1Vfpqbg8TFecjYzZGm0aAnz7k3EQwGW/cYbXEHgxb5ebl4vInEJyRQXVlEckoayclJuN2Da6nBYDBIY2MjMTExNDUrdXUN+ANubvjJlxQUNTJregp3/3g6yREugl5bF6CpKYiIkJribTdYSFVbB7GFuncXEVmlqnN3+8YhTjTb324RiVHVJgARiQP2in1kPB4POcOHk5ebC8CIESMGpO/A77coLWtq519R1fN5fUOFhHhPj5bBG6yoatRawoOBQCBASXExmVlZiEiru6LSjy82hYa6cpoaq/D5fDQ2e5DaQKfWE78/SFVNgPqGIPFxbpISva2jkOsbAjQ0WLjd9Ln1xe12ExcXh8vlIndnHc+/upPVn1dRUNQIwMYtNfj97ecRd0RZRTO/fmwjH/2njGFZsfzo+slMm5TUZtccEWnNM6FuQ2REs6r1LLBMRK4QkSuAd4ElUZRnwAgEAhQXFeF2BpOUlJQQCAT6Pd7kJC8nHze8jV98nJtx+7QfYLK3o6pYltXOPVjw+/34/X1fyamobGbjllq+2lRDeUVzRPcEAhb19f2ff8MJWhb5+fnszM+nudmWNaiCz7drNV9xxVBY3ITH03FRFwwq/9tQw3nX/Jfzr/kv5161ktWfV+D3W5RXNPPg45s5/9qV3HTHF2zaWksg0Lf5oKVll5To4b1/lbYqSoADZqW12yKuIxobgzzx7FY++KQMy4KCokZuuv1zqmsH/p3syURzi657ReQz4GjH6+eq+k5X94jIaOBpYBj2YLLFqvqwsyLQC8BYYBtwjqpW9JfsfYHL5WJYTg4iQnFREQNhDne7haOPyEIE3lhaSHamj29fOp60lMHXnzPQhPcPtrwPT3IiJMZjWRYxMTGDYtcQtZSd+fnExceTmZnZZ4PDyiub+b87vmDjFjsdRo+I45G7Z5GsDZ32ndZIHC+/uZNNX9dy7IJs5u+fRsoADBjzeDwMGzaM3B07sICc4cPxeDxkpbvIz8t1RjbH0dhQxfh9soiP6/i9VVY1c8d961v78JuaLO584Cue+d1cFv95K2+9Zy9UvmFzLd+9dS3P/G5exPMad4eUJA+/vmM/7vz1VxQUNTJnv1RuumZiu2lQ/oBFVbWf+oYgcbFukhI91DUEWLGqbXHX7FcKixvJimBRdkNkRNsutQbwYiu+NRFcH8AeBLRaRJKAVSLyLnApsExV7xGRHwI/BG7pJ5l7jcfjYVhOTmshF+rub1KSfZx6/AgWHpqF1+tq9zFGm2BQqaxqprS8maRED4kJnoj7bHpDZ2vPHrnhXUqqKoiNiyM7O7uDO3tOR31ukZjGglYQT6y3TxUlwKdrK1oVJUDuzgbefq+IM+a6OkmbZdzwwCa27rC3g1qxqpwrLxzL+WeMxuvt30pFIBCgqLAQt9uNy+WipLiYESNH4nK5yMjMwuPxUVUdIHtYHLGxnVdyAkGltLxtC7qmNkBzs8W//lPWxr+2Lkhllb9flKXX62b6lGR+f98cgpbi87nabdisqmzaUsuNt39ObV0Qn8/FT2+awpwZqUwcn0Bx6a4uFhGMouxjojka9hzgPmA59uqVj4jIzar6cmf3qGoBUOC4a0RkPfZ6sqcCC5zLljhhDlplCZ3veD4wcQtpg3TbpvzCBq79wRqqqm0T0tmnjOSyb45pozBD51y6fD6C9Q0AqGVRvy2v9Zq+GDFqWRYen4eMjCw++1812ZkxpCR7SUrsnQJvKewzs7Jwu92tbp/P16oww+eWqkIwGEDiYwk2N2JZVp/mne157fdA3LajDuYmtR7Pe30x7njHzGkF+dklaUAa1QEf1929lZffzOekY4aTkT5ArUvHOtOyvq/b7SY+3u4HjI31YllWl9aAGJ+LyRMS2bB5VyVh9Mg4PG4X+4yM54vq6lZ/Edtc2l+4XNLlEocVlX7uuH89tXV2K7i52eIXD23ghd/P4/qrJrAt93PyCxrxeoTvXD6+X2XdG4lmav4YmKeqxQAikgX8E+hUWYbiLLw+B/gPMMxRpACF2GbavY6+Gu0WLWpqAzz8h82tihLgpdfzOfPEEW2UZeicy/pteSyfemy7sCLdmDkS/H4/FZX1vPN+EX//ZxGXfnMfvnna6F61ykUEt9vNzvx83G5367vqbJm9lkXfER/Z2Zm4CwooLy/v09bl0Ydns+SFHW38Tjl+BFDTeuyOj2XF0Re3u3fqx38H7D5w6cMs19JX3DIXscXt8XjIys5uffZQd0uej2TqTWqKj1/cOp17frOBz/5XxdRJSfzohilkZcbwg+smcd2ta6mqDuBywTWXjI+qJcZSZWdhYxu/hoYgDU0WI3PieOzeOTQ02i3OhHiPWdSij4mmsnS1KEqHMiIccCQiicBfgRtUtTq0gFFVFZEOOwBF5CrgKoB99tmnp3IPSlSVZmcZq5iYGPx+/6DqZ4sEvz9I3s6Gdv6l5c2MGhGdQUhut4cYXyyB5lpOOT6Hv/+ziKdf3MEpx43oVcHpdrvJys5m+7ZtBAIBsrKzu5xn63a7yR42rFXJ5gwf3uruK7KzYnjgZ/ux+OmtBILKxefsYw/+Kq3p/mbsltd1l+9LanLfmM1VFb/fT2FBAcNHjMAKBikqKmqdZtWddaYz03p4RSonO5Y7b5lGs9/C63GR4sg/emQ8Tz8yl+raAAnxbhLi+ndEdTBotxjdbncbdwtej4vZM1JY++WuHQyHZcW07lKyuwvvG3aPaCrLt0XkHeA55/hc4B/d3SQiXmxF+WzIOrJFIjJcVQtEZDhQ3NG9qroYWAz2PMvePkBHNDVbVFQ2s2JVOVkZPqZOSh6Qneoty6Kmuprq6mpS09KoqqwkLi6OrOzsITO5PSnRy9FHtG3dxMW6+nRi9u7i91sU1dg7Onz/J18AYFnQ1BzsVbiBQIDCggLcbjcer5fSkhJ8Pl8bM2w4ocrUqqrt83eaEO9h/v7pTN43EVVITbFXkKkv7f7e5EQvzz42j4w0Hy6XUFPjp6yimQ1bapkyIZH0NN9um65FBI/bjdfrJT8vD1UlMTGxXyp/oZaLpqYgtaoZ/kMAACAASURBVPVBYmNcZKTHkNEPfZThBINBCnbuJDYujrS0NHbu3EliQgIpKSm4HIWZkuzlpzdN5d7fbmD1Z5VM2jeJH39/MmmpZoDeQBDN0bA3i8iZwKGO12JV/VtX94hdijwBrFfVX4eceh24BLjH+X+tH0RuQ119gLLyZlauLmf82ATGjUkgLcVHbn49V964unUt0onjE3ngZ/v1SGF2V9MMxe12k5aeTnNzM5XOOpMtpqmmCGvY0cbrdXHWySPx+y2WLi8mJzuWm66d2FrT709C+weDllJS2gQINZaPt94r5t0Pigk47zQnO6bbzXm7Q0SIiY0lNTUVl8tFeXl5xAN8IPJWU3c0lVbQXF1LU6MFAjExLnwue1syETuc0LTRQMeVhPh4N5nOGrcNjUH+/s9Cfvunr1vPf//qCZx0TE67qRCh80U7mjsqLhcpqam2CRpIcdKrvyivaGbJi9v55L/lTBiXwHe/NYHhw2K7v7GXiAjpGRkUFhRQXVWF2+22F1QP+96zM2O44/+m0tyseDwyIN+GwSaqPcCq+lfsVmKkHApcBHwhImsdvx9hK8kXnfma24Fz+lTQMCxLWfVZBT/65bpWvwWHZHLjNRN4fMnWNot2b/q6ltz8+t1WlsFgkPz8/2fvzMMkq8r7/zn33rq179XV23T3DMMAAyggm7IIsii4R1HcUTCKgopLXHA3GuOWaILBKCFINBo0JhIxAoOCBn8qsoPDJszSe3d1VXXty73n98etqqmeruq9p6d77ud55plTt6urzu1773nPec/7ft8hgsEgPq+X4eFhQuEw3jZCy1JKqtUqpVIJIQSVSoVyuYzTub4i4sJBncveuIWLX7EJrckltto07w9OZyoYmQnUUp5qJscVL/Zw2bn9lMomVd2FJx4hGtYxDMMKANI0q4pDrb0Qg6eqKpGm6iaRA1zppE45neXXR50363iz0d1/j3g+crkq3/n+rsbrwwa8hIIOEqkyTl0lXFOXqVarGIaBw2EF4tTb9fu77oYdHxvD6/VSra2+ejdtWhURj1ze2jO/4zdWsNDwWJGnduX41pdPWHUXp6IoOJ3OxsTY6XK1nRQsN7jMZmmsRYmuDFaqyKwfYW05tq0tJKX8P9rXfZ89zV4lUunKjFkzwJ2/neTKy7aSL8xOBM4XluayCwaDJCYnmUokZqh9tKLuhnW5XHR2dTE5OUk6laIjHscw10bScKk4dQXnAl1f7aqRqG5Xy4F9IW7KgN+B4je466SXzPrZ2U/cgbfThWma5LJZEokEPb29ZKanyWaz9A8MLHh1uJYR0WAZo8Xem/MVws5kK1SqklLJCszZ0u/hQ+/exle++QTP7MnT2eHkCx87hm2HechkMqSSSeKdnaSSSarVKn1NsQR1N2w4EsHv94OUZLLZVVtZFksGd949MePY8GiRfNEgsirfuI+6GxasidPU1BTTuj7DDbsS5PKWUpEAvF4Nt8sOAlooa1F1xD//uw5upLRcTbMQ8Pq/6OOhPz3aOBQMaGw7bPG6q6qq4vN6mUokkFLi9fnmHITrbliwZqnRaBSAYkmSyRw4JY8DvT/arhrJXLqqC+lHuyK89UugKApen49sLsfQoGWUu7q7W/7OYjEMS9/T0jrd115ppGRWHc35mKv6y/Boga9d+yRnnRbj5BPC3HN/ktf9RR9/9619uZhjEyX+6nMPc8M3TiQUDFAqlRgbHUUIQe+mTbPucVXTCAQCjfNvbs/HfIZ9fwSCeIdrhoqOqgr0eXJGKxWT6WwFQWtN1oVQd8PWA5d0p9NaZa+goUyly3zrxmf43x2jqKrgDa/q4zUv7z0gIhIbgTV1wwohzgC2SSn/VQgRA/xSymfWsk8LIeDXuOilvXzne7sax7b0e9AdVrTa1//62fzof4aIx5y88dV9LV2wpilJ1TRZg4HZZYQMw2BoeBhVVfH6fKRTKXRdb+uGhdYrlUKxRHmB+pIrwUrtpS2UuvuzrnVZbx8omoNuVFVd0nc3TzAUXaeazyMQoAjMWkqJFvDhjIaX3M92kxifZ2WM8FSyzFWfeIjhsSKPP5Xlbz5+DNu2eNnS5+GpZ3Iz3ptMVSiXrQoYRk3mUUqJaRjIFm7s5vt9MZOGxZZ1CwUdfOy9R/DBTz/c2Ep551u24PO0N1jp6Qr/c9sIN/10EI9b44pLD+M5zwrh3S9Sej4BCisvdJ/r1TWHG3ap/O7eJD+7zdr7NUzJDf+xh1NOiPDsY2xjuRDWUpTg08BJwJHAvwI68D32BfwctDgcCq+8sJveLhe33jnOEVt9vOrFPQ2jeNLxYY45MoCmiZZKJplsld/fN8V139uFYUre/Jo+zj6tY5ZSTTgcxu12I4RA1/U53bDtcLtU0k53Iw/OQtAR02fMsNdLxOz+GIbB3j176IjHURSFsdFRejetbkWORLKEIkARRbKZDPF4nEwmw8jw8KLcsHWaJxjP3XFjyzzGFzx5BzQZy4WumqaSZQpFg0Ahw6+PnL03efbO2xbV13YUSgbDtRVZarrCVZ94kLNP7yAa1jlswMvTu/cZzGBAIxjQyGQyVCoVNvX1kUwmGRsbm+GGrdNwHQqrnNlq1flUFMExRwa46bpTGRop0NnhxO9z4JkjXeTeh5J867vW/H4qVeFjX3iU71978gxjub8ARb3SSH2ve//80P3bK0G5YvLbexKzjt/zwBTPPia4ot+1UVnLleVfYIkK3AcgpRyuSditC4IBnfPO6uS0U6LoDmWWULN7joTg4dECn/nKzsbrL1/zJH09Hk541j6jpKrqjFXkXCvKVtSNnwDiHkmyolCtmmSlk0TFRXdPBL1pv+JArwhXCkVRCIfDTIxb2UKBYBBN01heYkd7qobksqvuI18wuOaLz6I73o3m0Il3elZF2LwdejREVvVQqZg4HArh4OxCwaPjRa76xEMMjhS48ZOtJxCqx70oV2Xb/jgUdIegXLFWZOWK5JGd07hcKp/7yHY+/NlHGB4rEgk5+MLHjkHXVZzOAD6fD03TCKk6VVmhuGd4xucKj4drbprg5zvGUFXBmy7q49Uv7Z0lBbdSOJ0qHU51QVJxhYLBrb+cnaX2u3unGNi0Ly9YYEX1Dg8N0dnZaRlLXcc0TVKpFIFAYNWrDukOhVNOCPPL/5u5J3vCs5furTjUWEtjWW4WEBBCeNewL0tmKSkEd/xm9gN2y45RjjsmOGO/o9k4SikxDGNBaSQwl9bpDo7aFEXX14dQwXwIIdCbIn6d+sq4lFqt3EwJI9NKQ0v0yo89zLFHBfjwlUfQFXctKvVjuezem+fqv3mU3YN5NnW7+cLVR7Ol39u4f3L5Ktdc/2cGR+oiD603J81yeUVqY/q8Gle983C++k9PYppWCsrVVx1JwK8R8Gt86ysnUCqb6A6FUFBr1Jas38NGNsedR8y+X5/78G38z60116Ehuf7fd3PKCWGCR639akjXBe+5OMY7L5iZWhIJmZQTqcYkU9U04vE4e/fsQVFVioUCuWwWXdcpFAp4PJ6Gxu1qUJf8O/O5UTrjx/LRv36UqgEXvbSHwwbsikMLZS2N5U1CiH8GQkKIvwQuBb6zhv1ZMpWKQSpd5fE/Z4jHXMQ7dEJzbJq3Cvg56nBf28AAwzAYHRnB6/XiDwQYGRnB7/fj8/kWHUWpKGLNDKVpGEisAbK5vRzqMnCBQAClVu6s1+lE9Xk5c+etKIpa2yeqWiXR/Aubk7Xa70pMlfjQZ+5rvM4XDP5wf5KpVJmuuOuAGcqpVJmP/c0j7Bm0DOFH39qFNjlG3tQb95A04fXnBbnz7gUoCqwAbpfKeWfGOfU5EZKpCrGojt+3b/9xqakX9ajaZu65P8mxB4GxVFWFkKPCXafPjppu9shUq1VGRkZQFIVUMklXVxd79uyhUCgQjUZXVWWrWq0ynU4TDIXwehQO64Nbvv88MjkTj1vdUDVeV5u1SB35JvDvUsqvCiHOB6ax9i0/JaW8/UD3ZyV4Zk+eyz/8AOWy9WC/4PQYH3z3trYG8/TtDn7wub5GYVdNU4iEmDEb3Z9AMMjE+DjJVApFCDzzpJEYxtrUX2ybyuHzks1mkYDf72+0l2Lwm1EUha7u7kY+qcvlsoJuwgEKmmAykQAJTpeTzq6uxj5R/W83n9B2M16vxuknR7n51pHGMZdTIR47sLmslYrZMJQAAa3MI8+zBuxmofP+7k5u/GQvAJFVKMPWap/bD4QjPvQVUr1pNbE7/lnL2xZYyv58u98RbVbsM99jeTzCkQhCCKYS1t6hqqqkUik8i9xiWSj13Ot0Ok2pXKZaqSClJBgM2hVJlsBaTCueAL5ak6W7CctwLqQ810HJdKbC17/954ahBPjV3ZO8/U1b2q8u83keOuXCWYfb7Q9alRQ8KLUVmaem7NFuJaMoSsPNdaBpF4FoGAalXI7ExAS5bJZisUg0Flv299XzT+t/i3pbSom3lnoDNAYk0zQplUo4NA1FVRttbQF7Ri6nytvfuNnKx/vtJL1dLj763iMJ+rVGgei6KPpiKoLsX0WlEXSjCISiIKW1d2cYElUVODSFnk5XI6Bmxt+jjdD58/98F6c/ejsOh4IQVsqIENYkplwuo2naogfsA7HP7XKqnH16jLt+O4miCF79kp5lFyufq9/1n++PNE3uPPL8WccXEiClahrRmuC9Ua1SqVTo7ulBdzgYHR2lWq2uihu2HhgY6+ho7On3DwzMqUFs0561yLP8BvANIcQA8DrgeiGEG0sj9gdSyicOdJ8WSiv5OcMwW1aUz2QrbWej0lzcqq/uhhVYQgXpdBrd6Vz2qqyZ2eWgLOkx1eelXCqhatqyvqueN5rNZikWCjhXsP/Nk4Z62zRNhoeGcDqduN1uklNT6LqOy+VicnISaZqW6EMiQTgSsZK/FzBYRcI6H3r3Nq64dCuKgHBIbyjNJCYnicfjGIZBIpGYVxxdSkkyXUEKD/7eQMt8volEiRtv2s0Tf57g7NNzXHhOJ+GQgy9cfQwf/tzDTCTKC8rrE9UqgcP7EAIKhQJjIyPEOzsplEqk9+5lYGAADrDgvpSSqVSFfKFKqI1whqLAR648gve+fStCiFV3HbYzpMuNGq7f56qmNUTw616R1cqjBes5SCWTjYniVCLRMNw2i2MttWF3A18CviSEOAG4HvgUcFBeRcMwSKVSlIpFurq7mZqaolqp0BHv5GUv6uLaG/alh4YCDrrjLqrTEyv24AVDIZy6jqppOF0unLqOoihkcxXSmSq79+bZ0u8h4HfgdilIt5Mzd95q7Q+aJiBQVQXN72upwdm8IiyXywzu3Us0GkWUq1T2jqCqGs2/stiUEtMwGobS5XJRLBbJZDL4/f5Ve3CjsRgul6sRBFSXE+vu7mZw714SiQRen29Rie5gBXV59tN2F1h/t+HhYaqGgd83e1+6efIkpRXOn8lUmTYc/P5Jg4te1jujYsdUyspdrNeZfPTxacYmilx+yWEcNuDlur8/kXLZwJ+bf19SUfYJLTidToLBIONjYwB0dnYi1qAyzfBokfdc/SDjkyWuuXoLpzx4m1Xia7/7zONbfv3QOql0GW2Ouaq5yInsUihXIJurYJoSp1OZM75hOdTdsACb+vqoVipMTEw0Sp3ZLI61zLPUgAuxVpfnYhVs/sxa9Wc+FEXB7/eTmZ5m965dSCnp6u5GUQQvOb8Ll0vl5ztG6e1y8863bCEc0sklW9+Ui71V627YeuJ9vV0qm9x+1wRfu/bJxns/+YGjOOeMDpzRMGY4iMPhsFw/1SpOpxPTNBt5XnOJG0RjMRKTk8Skym+2v2jWe5pdbQvZA6qFPBONxfbtWa7iQ9twXdfOsd42TbNRygygVCxaK/1lGGwhBJrDQSQaZWJ8nFhHB06ns5GAXq1W0TSt7apl+923cMMPh4jHdF56fnfDqBUKxqyCzD+7bZQ3v6afaNhJtBY0k9914EQYVopMtsLffetJxidLAFz5N8/gcAh+dN2pxFahykfVkOwZzPOFrz/Gx1/fepJXNyyLYbGpN5lslZ/fMco/3/gM5bLJs48O8tcfOXpJxbLnK7RQd8P2btqEoigoitJo2yyetQjwOR94PfBi4A/AD4F3SClzc/7iGlOvHeh0OikUCmia1jA4oYDOKy/o4dwzOtB1BY9bo1IxyeVbZ/uZxuKNRKuE5Wyuyjev//OM9339n5/ixONCxCLORgHobDZrFQru6CCdSiGlZFNf35zfZy5CT7adETjzsR1khJtQUG/kjdb77ywbGNkcpeTMWokrKYLQMslbShKJBIFg0CqFNDREJptdsBu2Fc1u2EAggKaqDA0OEovFqFSrpFMp+gcG5v2c2+8c5+zTOwjUVlGaJjjmSD/jkyUmEmWOPsKPUISl7tP03arPw9lP7LD2attUBWl+f6lUIp1OE4/HLbm5sbED7oYtl80ZQgXPf16MN726j3sfTNHZ4WRgk4fwCpa2S6fLvPfjD9ZUs9pH0oq20tOtWUjqjZSSyakyt/5ylJed7uPk7iInf2SfNGJlaJiiGcQVW3jOo2EY5HI5ctksnZ2d5LJZcvk88aYi2LC6QgeHGmuxsvwY8O/AB6WUyTX4/iVRd8MWCgXC4TDpdJrxsTHinZ1WSoIqCAX3PdyVqonRxigKt4vtd99CKKDjcu27gRebCG4YkuJ+ofWZXBVZO1RfifoDAUrlMpMTEwhFoa+vr/HgpKcrFEsGiiLwelQ8bo1qtUpyKoHTHUIU9g1ozZGWsmo0hMrb7cFOJkpc/eUH+Npnno3breLzqOi6FQBTzWS584i5q12sBkrNDVuf/HT39KzInpHACi4KRyKYpkkoFGJy0nKPxjs7F/T5Wzd7Z6jT+LwqX/7kdjI5g+/eNMhfvqkPr8eB27XPJWmaJjkhSZlla/8rk+fMnbehaWpNClCiaWrj3hJC4HQ62dTXh6ZpuD0e/IHALDfsQrwFqt+7ZEEDr1fjtJOj/PQXI2zqdvOql/Rw5dUPNgLljj/WWnGthMFMpspkc9WGvOR0Va8pWgk6O5xIaUkmqj4vRrb1nH054g1TyTJve9+9hAIOLjgWdrZINTnr8TtgEcayXqUkMTnJ3r17MQyjETC3XtW4DnbWIsDnnAP9nSuBoij4fD5cLjeGqdHV7cU0jbYRqR63RrGNis/EaJa3/PUQb724n7e/aba810Jx6grHHhXgkcemAUvb8l2XbMGUkky20tjnkVJSLlnuLllzQyqKQipd5TNf3cl9D6VwaIJLLh7gNS/vZWikRDzaw213TXDOtn0Gv12kZbs9WFUVfOoD27nu+7t4/M8ZTjkhwlte008woM5wwTYbYaE7yD212/pBLRoUVvZBbw66WYnIwLobti5nVk1Oo0/niMna9R9PUlRScwZ2bep288aL+mcE+bhdKkMJKyH/yks3MZUYR5E+3K4o9eI7qqoSDIUolcskJifpiMdJFXNUq9b17urpnqUzak3u5q54MlfEaEa4+cWvxti1N8/LXtjNln7PnHuK7QbvK14TI5c32NLv4Qc/2TsjovyBR9KMTRRnGMvFGoFKxeDJp3N88R8e55qrt9RUjCRgBeRpmkDxecDrQkiJ2+2mrKqNVXozilPH1RNve45zcd/DKVLpCsWigabNLdC/UIQQODQNby1oTlVV/D6fFeG9TtW4DnbsGOIFIoRgfLLKTTcP8l8/H+XkE0K8882b2TLgwtlm8usO+3juQ7dRLFkJwMm09ZBOV61fOOfMpT18dUJBnc9/7Ghu+OFu9gzlef87tvEvP9jFtTc8w5HbfHzoXUfQ2aGTzWSQUtI/MEAqmWRyYoLeTZv4yc+HuO+hFACVquS67+/iwnM7+dntYzz5dJaHd05zUi1Pbyn4vQ4+/c0nGkLaewaHGB0v8vGrjkRtHrybjPBc2qgH84NeX6nWV813LSLNIBZ18k9fPn6W4L6iKHR1dTE0OEhiYgyny0U4Emmp7FQqFhtt3emkWq2iKAp6LRBspTBNuPLqB9k7ZOV5/u8dY3zuw9t5wRkdbSeOcxnev7piG9lcld/8frZu6XR25h7ifKkq1rbDvkCmdKbK+z7xIIWiSWEqy87TX9zyd121+0pRFOsei65sgel6f4ols6XIAsxtLKezFRKJMjufzLD9CD+xiI7HrZDL5chms/h8PnK5HGPj48TjyxtTbNpjG8sFMpUq85HPP9pIBr/n/hSP7HyIH3zrFJxtEnzd8QjOWJj0tBX59ufRFDfetAeHQ+Ernz6Wzo7lBzLEIk6uvGwrmWyVz311J/c/kgbg9/cm+dBnHuYfv3gcwUAAn9+PpmmEIxFC4TCFksn9D6dnfd6jj03z0vO7uPQqS6mm7rKKRZyoLC5SUFGZVXHi7j8kMAyJskEj8uqu71bM5crTW7gb6/ma9VW4aRizgqJM0ySbyaDrOp1dXaTTafK5HNFolHQ6zcjwMD29vSsWcWyYkkrFRFUFhiHpijv53o/3csKzQktymXo9Gh63ykUv6+Xzf/dY47jfp7F1YOEKmBOJEj/9xQiJRIlXvayX3i4Xk4kyhaJ1z7aqM1tntfb16oIXxx8T5NI39PP9/xwkl58/iGj/qOlSwUBmK/R4dN58xR95z9u38soLLSGOWCyG1+ezvAvF2Xm3NiuHbSwXiGnKGaopAIWiSbE8twFRFNEYRM57fpyTjguDgHCw9cCyFHUZl1Mlk602DGWd3YN5iiVjxoqlPmi6hckLTotx4rOD3PAfewgHdV5xQRdbN3uJRZ187bPP4vp/38W1P0nwrrduIdbphcmxlt+/vxGoViXp6Qq4PTPEtQHCQQe6bpWe2ghMpcoUCgYOh4LXrc4qzdSMWS7j6u9Z8PWVUjI+Po7L5SIWizE8MkIqmSQSjTZ+r+6GDdbafr8ft8uF0+XC6/NRqVRWVIZPCPjWV47j6V15vnvTXj774SMZHSst2o048zMFp50U4XMfOZr/+vkwnR1O3vb6gRkxAHNhmpLLrrqXqZS1J/mzHaNc++Xj6Yg6GwIMqynSUddsbm4bhkE+l8Pj9RIKqFz0kigvO78LOdb6GWpmrqhpgO/82zOce6ZV0UWr5T8ritJo26wOtrFcII5arcoHmgxSNKLjdlkPhpSykdNYb+8/SAkhWs6+E8kyDzySYnOfm3hU4HZbuYGFWk7iQvbVFAViEb0h8g3gdinoWvvAjQufBVKq/MWJW3AEvZR1Fa/XidOpcepzIhx1uL+ROP6Vbz7B5Re0Vk5pFRFopssYhuSD79rGtd99hlS6Qk+Xkw+8cxtOXaUa8DcM7HwRnAcr4xNF3v+ph9k9mEdV4JKLB7jo5b1tHyopIZVMEggGEUKQTqUaVVJaoSiKFYyElcze29uLYPbqp3mArBcPrqcK1P+BtTJVVHVZASCaKkhOj9ETd/O5Dx9BJj1Kb2eIgH95Q0nA7+CcMzo4+fgQDodCsWgwkSg1As/mEiIoV2TDUIL1d77hh3v4xPuP5D1v38o3r3+aSGh1qnpYwXBTRKJRS2RiaopIJIIpJZOTk7jzeVRVJTM9XStuHZqh1mTkrQm4NM15A+bqlMomprnP9Q8z2zarg20sF0jQ7+CTHziKL37jce59KMXhW3x86oNHEfSrZDIZUqkUvb29VKZSVDO5WQNgu4EoPz5Fdm+SrS6ImSXMMYNCTTlnPJums7MTpSlfsB2hgM4nPnAUH/7sw5Qrlizah688Ar9vZj/azVqf/9htCN3fSDc0TZNgwMHIWJHLrrqXSlVy2cuO4HmP3E4uV8WUEo9bw+1SW0YE1lcF558V47znx3h6T4HD+t0oiiWOoMbCjei/+iCxnigUDb7z/V2NPEjDhOt/sJvzzorTLOLXHLyEYaAlMxSSWRSfm3Q+i7emYtRu9dcuGKl5UtbcBmasXOtu20qlQmZ6mmAoRHU6y69aVPho3hduq/Hr9xJzORkbHaFcylpKTH7/irkv/T4HU8kyn/zSn3jw0TSqAq97VR9veFUf7cxdq7+cplkFA156fhdnn9YB07Mr/SyXups8m81SrlT2FbKGhvjF8LBVcize2YnD4UCJOht/4/yuQe7c/sJZnzufaMnpJ0dwOdv/vVWfl7Me34GiiLYG2Y6MXTy2sVwEYaXI5y+NAhFAoJhJyoPg9nnJaRp79+xZUBJ/M8WpLI88d3bgwZk7byUcCeNaYMFnVRU8a3uQm75zKlOpMqGgjt+r4VxgoVxFURp6s0ZNbcfn83HXbyeoVC2lkazq5ZIP30+zRvsnP3AUL3pB64fOMAwmxseQUrJ1oJPRkWGcNZdi8yx4Pm3U+nsOJopFg8efmr06Gxwu0HXYvvMxKwZ3HT17QDxz5634QzEqVQWnc5G5faZJPp9v6N/W2/VST/X3lEslUqkUHR0dVCsVUqkU5XIZjzH/vlk7jV8pJUrNtSultAzAPHJ7Cy1UDVCtmvzXz4d48FHLg2OY8P0f7+XcMzrYHGr9OXg8dMWdjI5bEcCqKrj09Zsb5fM8bo2ysDwZdeGB+kpsOfeVYUi0WvmtsZp7ta+/H03TKE0mqaYzjYhoOZagqKaWZaQcDoXL3riZV17QPatQfB3TNKm4HIynywR9QRypHL9pYZAP9oC5gxHbWC4CK8qx9Yzc4XZQqqVnLIa59u7y+Tz+QGDBn+XUFZxRJ7ElVhRITE5SKhapVquUy2W8Hg89XdaqaOuAl0d2ptm/mMnPd4xy+ilRfC326ozUNKGKZTSLe4YJAZqsYKQyqLUHtVIxcUSC6+7B9Xk1Tjs5MiOxXlWsXEk96mqcz+jDu9p+RiGfxqHrGIaKlGYj39MwjDndalJKqpUKU1NT5Dwe8vk8oVAIPE0Fh4U10SgUCgzXyrtFolGmEgk8y1CUlFIyPDyMruuNSji60zmnZKAa8qMErSLP9S2Ldq7nYsnkgUenZx1//KksR7you+V9Uk6kuOHjmyiWDExT4napryo06wAAIABJREFUKEqKcqK6Lyc05Gc8n0EqCuFIhInxcXxeD9Hwwp+vOoWJJOV0lmLRwOuxVvYxVITHxeTEBPF4nGomx11HzY6IXo6RCod03nxRz6xC880oioLH4yEUDpNKJokdnOqh6xLbWK4AdVdMRzwO41OL+l1nG3eKw+PBn89T2jtCuclFt5ruk1gs1kik7920CVXTOOaoID1dLhLJMl2drlm/M9DnaSkADlDNtC7o+4In7yDv8PDAI2l+9X8THH9MiLNPj62oYstq43AoXPyKTUxOldnx63GiYZ2/uuKIWXt37WqHCmEZSGt/SjK4dy9+vx9/IMDw0BCRaBSfz9fSAKmqSiAQIF8okM/ncTqdhMLhGe8VQuBwOAiFw2QzGTweD+NjYyiqCotXdZtBvdSZoig4envnrFhSF5Uvl8t0d3czPj6ONE06u7paTgbcLpUzTolw/8OpGcefdXR7ozbXJFZvSgvpqKnbqKqKoxYhPJfXpp2cXCmV4e6jW6QGPbEDQ7PcsMsJeJoranouQ1nHNE1yuZzl2t8YcXQHBbaxXAEURaGnqxdd1ymqs9Mx5kJt48Iy84W27lxHJNjY42olir4UhBBkc/tWSdPT00QiEaJhnWu/fAKPPZmhp8vF6adEuPsPU4QCDq798nEE/Bq6rlCpVkmlKvzh/hTnnBGb0zUnJdz034Pc+KO9ANzxmwnu+t0En/2rowkGZrqXplJlcrlqTUZQXTFB7ZUgHNL5wOWH8663bgEEoYADVd1PoL7NRCKZrhDY2svTu/Mcf6yLjnicsdFR0uk0Tpdrhq7t/pimSb5QoFgo4NB1SqUSuVyutRs2mSQQCFirVUWhp7OL8uDoks+5rhxTv+ccDkejXV8R75+KUZcV3L1rF0IIenp759AlFrzoBZ08tSvHbXeO43GpvPtthy1bL7auk1rva3O7FaZhkM/nyUxP09nVZeU0ZjJ0xDvJ5loHpAkh6O7pRlVVZtchWjgLkdBr+7s17WfTNNnU10dxz8j8v2SzIGxjuUI0DyDtKJfLs0LM2zGXNmu5XEZVFFRNa7QXUo8R2u8fKT4P5UyaQKgLKU1ymUlCoZAlqh7WOf2UKABXv+8oprMVYhEHycQ4uiNCtVplanISnz/AKSeESCQmCQaDbR1AUkpuunloxrE/PpCiUDRmGMvxySLvvfohBkesAIVXvaSHy96weZZBXUusCiTtH6N2C5dqVXLDD/fw1tcNNFaBdZzzDOR1N2woFCIUDjOdTlMpl1u6YX1+P4FgiGKpQldXF089nWNTwMNZj+8gkSxjGDSiTVW3q2Ww1f7ejGbjmEql8Hg86LreaDeL9NeNZ90FW1/ZzXV+nmqeq17h430v99Y+w0BMjFIuLs+r0qqUW9v31uXkahV4DMMgEo1aUahz/N5iIlIXs5e7UOpuWLfbjaqqFFcwbehQxzaWK0T94WtXF1LxeRjcu5dYRwemYTA1NWUFAzTpa5qm9d7pbAVD7rvJ95eDq+wdoQIIoWBIEyEU9KAf5wK0JdsFbjz1TIau+CY+8cU/sanHxeWXHEZiqkpX50zDFAw4CAYcGIaB5nAwMjxMV1cXQgjGRkfQdZ1KpUKp7Mfdxt5Xq9KS/dpvi7f5uS6WDK7/we6GoQT4yS3DvPyC7oPKWM7H7PuhFiTj9fLOZwVxu9VG7U2Xy4XP72dyYqJRr7SdG7a+l60oSqPdquJEJBJBVVUefixDNlvhM195DJdL5e1v2szzTuxBUxU8NWOZ3zW4aJk0o1plZHi4UXbN7Zrpqm92w8Y6OkhOTTE+NtbWDQvUdIPXVq5NCIGmafh8Pqanp1Fqrm9L9nJlhs12zyLM9Bgt1nvUfM84/D7O3LmDXL6Kogg8HhVVEQddwNx6wDaWi2AhM8H6AyClbBTZDYfD6LpOkCCTExMADR1RM+hnImNVgFBQmRgfwdvdQW5wovGZC5WDMyNWNYXFhvGXygb/+sM9/OG+KQpFkz8+CLf+apxLLh7gTRf1t3xwVVUlFouRzWQYGx+nv7+ffD5fqwLfy/hkBVcbY1koGrzhVX18+992NY698Ow47iYt3WLR5M/PzBa13jtY4PDN6+dBn2tAbKazq6sWWargcDga7XbMp+0KM3PvDt/s454Hkhy1zU845OCkZ4fpiDoXtAc2Vx9iHR0UCgWKxSL+QGBW9HbdDRsMWuXi3G73gsU2lkI7sf+l1F/N5fNMT0/j9fko5POMjoxY+7Xq/IZrsavG/XNfpbRWsFrAC34vSk1/eLG4OsK4OsJ4jXoAmb3SXCq2sVwECx34wBqoXC5XIwIxGo1awRVNP68bHo/Xy8jISEOQO1uQUFl8EdpyqQS1FcViBiNNUzh8s5e7fruviHChaHLYgNeKZC0WcdVWDI22lIyOjqIoCp1dXY2ist09PaSSUwR9bhxVr5W/KRQQgvEJS45rLKfidit86ZPH8qcnpnn29iBHHu5rlKYC8PtUXnBmBzuf3FfCS1Vg+xH+Rf9dDnYURWkUqQZmtJdD8wCsAc/rg1Pf2YHm9+LqaC0wsRgMwyCVTFp6tLpOZnoan883yw1bj3xtlgJcSVWhZsMkq0bL3MXFrkrrbthoLIbP57P0d2vR7o7AwifNC6Vd/vPZT+xgYjqFx+slGo0uWXhgNRWMDhVsY7mKSCkt11RtT2dkZIRoLIZpGEyMjzdysoLBIJnpaaSU6E4//3nLOKcd6WD73T8nFtEXpMlqmiZjIyP4/H4ikcii+qkqgpe/qJvbfz3ekPQ76bgQxxwZsCTXxsbweL1omkY6lappjWroThdOTwTTVFEVha7ubqqGwOV2k0gkUDUNUxj09HZRLAmu/Pg9TGf2hWJu7vPwT186vmXOmKoqvPicThJTZW65fYRwUOcDl28jGNgYt+yBKKM0l/A4HQsvBzUXZi2y1eVykUgkkKZJJZnGyMz2CqxWJHezYVopgYv6PnJzhZZG9ZaQHyXgRdW0FTX6rTAMA4fLsSxDabMyrLuRRwhxPfBSYFxKeWztWAT4D2AzsAt47VrXyqwX2S3k8/T09CCzeToVHVErdtyp6FSGxjB9XkYyKZxOJ5rDQS6T4C2v6eH+R7J0DsRxhnWMmgrIXJimie52NvaoFks04uSaLx5PKl1B0wQBn0Yw4MA0Tbq6uxmp9SHW0YHD4SCRrPLIYwb/cfNjPL0rx/f+6URGJ6rEIi78fj/pdBqjWsXn81kuRRU++p4j+OTf/gnDtAJf3vq6gUb9xlau3lBQ5x1v2swbXrXJkgoMOlZ9cDpQzFdBYz2gqiqRaLQRxBOttYsTyXV/brDPjV0Xq08mk3T39DA9PU0ul6O/v/+A3I+GYVgpRvs913bdygPLujOWwA3ANcCNTcc+CtwhpfxbIcRHa68/spqdmO9Grbth+wcGUBSFwuhk22LHoXAYn8/XKMzrcjk487kdjffkF9qnUqkhnL2UPaFISJ9VJkpKSbGwL8imUCjg9Xp5eneWT315X5WIV196D4dv9vLtrx3PxMQEpmHg8/nIZrO43G68Xi8nnxDhR//yXMYmisRjTvw+K+2kWq1iGkYtQd9otK2/h7pgFSKb5bGU6MyF7J0eiH6sJK2KGfj8fnK5HEOD1sq1u7v7gPRF0zSEMJlKJmetLjfChGs9se6MpZTy10KIzfsdfgVwdq39XeBOVtlYLuRGXajBalY/aaWEMpccXF0BSA8F8FRKZDKZRbth50JKSSqVIh6Po2kaIyMjVIJBBvpm73n1b/IgJXg8HsLhMA6HA5fb3djDcrsEbpdKPLYvZ840TdLpNNNpSwd3amqqkSO2UVaR64XF7rNtxH5UKpXGHqxhGI02zNTmPRAu2DrdPT3Wd9pu2DVl3RnLNnRKKevZt6NAZ6s3CSHeAbwDoL+//wB1bX7mq6c31+DRrCwSa2qvZN/6BwYAyy1Vb3tcJq+8oJv//oX1Z49GdC6/ZAtOp4ameVEUBSEEXu++drvVuM/npeRyNQKGrOoMtqFcKNPZCsMjRX57T4Jjjgpw5FbfgstbrTfyhQqTiQpSSjqiOh7PzP3u5axKDcMgnU6TmZ4mEo2SSibRNI2u7m6ymQzZbJZ4PM709DTDw8Mr6oadq9/NRnpGrct1Wq1nvbJRjGUDKaUUQrRMWpBSfhv4NsBJJ520IYSgVsMN1ky71bG7kuHyCz2884LDatXpQSkmKCdm7pcs1G1kqtblqFdyWA8cDHtGlYrJjrvG+btvPdU4dv5ZHbz/8m24Fmg4llJDdX8WOog3a8POpxO7P6VShUI+RyotMaXE66mgql6czn0GczmrUlVVCYfDVMplEpOTqJrWyAf1+f24XC4cuo7b46FaqbT8jFZ77wu5Txba7+Zn6Lk7bpzn3TYryUYxlmNCiG4p5YgQohtY+Xo8NjNYiB7nQjFNEwPL9To1NcXY6OiquWFX0sAtZ89opfblprNVvvO9XTOO3X7XBJdfchiBjvkHYMMwyGWtUmFAo73YiVfz3+Lkm7/dGMhdvV0Izfos1ecllUqRz+Xo6e0lMTlpacb29Czo+6qGyXR6inDAhQAyaUsEodlYLhfTNCmXLbE6o1qlWqmgKEpDR7Z+Tza367RLs7L3FjcGG8VY3gxcAvxt7f+frm13ZrPUwTGZLmMaEq9Xa0SObjQs16s1YHZ0dKyY3m0rDsTAtZCF8crty0kqLXJyF7o4N6pVJicnKRSLSNOkUCjgbtKYXQr3vPwdjfYLnrwDfVMXYO35qZUKuWyW3bt2AdZ+3FzXunlyUywaxBwOZKmM8LjI6VF+87skF5y7MsE2dTesqqps6usjMTlJIpGgqxbMM59cXrVaZWx0lEAwiJSSzPQ0m/r6VqRvLfubL7aclNjqPKvDujOWQogfYAXzxIQQg8CnsYzkTUKIy4DdwGtXux+LNX6LHRzLZYMnn8nxlW8+wdhEiReeFeetrxtY08ocpmliGMaqqK/UXXEHYxCDlNKSqFOUGe12TKXKPP5gkqOPDOB2re75+Dwar315b0OUHuDE40K43Qu7RprDQWdXF2Ojlrj6Qld5i2F0dBRNVemIxxGKgkPXqVarVvWPeZSK2k1uztx5K1WX5PRTlx/M1myQPYAHQWnvCEGfF20R+Y0Oh4N4PM74uOXYqldnWWaRl7bsPylZqvi6zcJYd8ZSSvn6Nj+a/UStIqsdsZfOVHnP1Q9SLltLhP+8ZRiPR+PS1w/gaFPJYrWR0iolFQgGcc1Rh3MjIaWkWnPHOV0uDMNotNtRrUruvi/Bpm43+XyVgN+xatfM6VS5+JV9HLHVzy//b4LjjglyzhkdhAILm1RJKclm9qkkZTKZRvTnSlCtVqkCnfE4AKlUikI+TywWI5VKMToysiQDLRSVaqWI7pg5iasXL6+7ThfUxzm8DQvRW65TFyGpUywUGi5Zm/XPujOWBxOtNvPrASqqqs5oL5a9Q4WGoaxz590TXPSyXqLh1oPZagecCCEaVeEdcvHnNN9qfDXdr0vFNE0ymQypZJJwJMJ0Ot2IkGxHKOjAMEq8/l334HQoXPamzbzw7PgMOb+VJBhwcPbpHZx2ShSHJhb1NzSqVQqFAj29vUgpGRsdJRwOr+jqsr7fp6oqPilw1cQ5YlJFmpLS3hFUnxc15G+IAEgp5+yDQNDfPwBi3yQuGAzi8XgYGRmhIx7H6/Wu2P1UqZqkpys8vTtHNKwTizhnCfpXq1Wmp6fp6u5uKF8FgsEV+f46a52DeihjG8slUq1WLSkqh6Mxs9U0zSpXlUgQ7+xstDtqOYqLIR6bbRAH+jw42xQThgOzH1fXtxUeF2c9fnvLnNB2tFuNT2cqPPpwil/8cpTtRwR4/vNis8QR1gpVVQkGg5RLJZJTU6iqSle3VbOwPnBJCZlslXyhisOhUNZc/OfPngGgXDb5+j8/xbOOChA4fHWrpbSrnTkXmsPRSAcCZrQX9Tn7DeL1SFdH0I+RnWZiYoKOeBwjm28pznHW4zsYyVhSirlslnQ6Td8c6V2KAsnpCr/5XYLNfW62DnQwMT5OKpXC6/XidrtXdOK1d6jAOz90H4WiNYE954wYH3jXEYSaDKbD4WBg8+bG9/YPWOXX5AoauIMlF/ZQxDaWS8CsBQJMp9N0xOMkk0mQkp7eXoQQlEolhoeGqFaruD2eOevfNdO8MgyZ8J9fHCCXrzJd1fn0Pw/xnsu24vOu3SWTUjJa05/F7Wa8kKMz1olnGTN4wzC54zcTfO3aJwG4ZccY/3vHKF/65LGrkiu42Jl53TtQF9GuC2q7XK4ZA1dussRHP/oAp58SZTwxMetzfnfvFEcefvCJwK/U/nPz30JKaSlJYRnjnqAfMc93KYrA4dAZ3GvtvcY7O+d8bkxTculV95GYKnPumTGueNs+w7rQianVz/m3EzLZCv/wnacahhLgl/83ydtev3mGsWx3fraB2xjYxnIJKKpKKBSiXCoxPjbWSKSvF7UNRyIkJq0KHh21UlwLoX0www6u//qJREJrW8exXuVeq6mX6Js2NdpLJTVd5d9+tGfGsUcfz5DNVVfFWC524Kq7YesRkslkkuTU1Cw3bEgUuP5qy5VZLDm47FxLpWi6qnPlF5/h2KMCK3oeB5Lm3FdFURrtuUqD1YtZ79+ea6vb6XRSqu356bqOUJS2k5usqZOYKhON6PzVu7cxMT6Iy+3B5/MyOTGB0+Wa0w2bTJe567eT3PtgkqteOfcKr1KVTE6VZx1PpVvnWtpsTGxjuUTqgR/1dj2ooO56dTqdVCqVfTXwFumGbUbTBIE2+5SLxTAMTNNE0zRM02y0F2LwlFrZojrN7aUjafXVB8veZd0NGwwGG0nr9ePNtMs73X73Lbz43E62bvYekP6uBqZpMrh3L+FwGLfHw/DQENFYDI/H03Y11S7NolJtndNimpLpdJpoLEY2m2V4aIi+/v62k5tf3DIEQGKqzA/+a5BXvSROLg9ut5ueXh2Ho73o/nSmwpeveYLf/C4BwKuf7+fE+27F79Nm3It1b0PQr/GS87v45vVPN37m86r09bpbfn79fBLJMjt+PU6lYvLCszuJRnQcy6gfarO22MZyCdTdsKZp0tffz1QiwcT4eMMN6/P5iESjVt5WKrVgN+xcVCoG6UyValXi1JVFpZAYpiRfqOJyKmSzWaYSiUb1hHwu19hbWQtCAZ23v3EzX/j6441jJxwbxOtpvxqXUiJNE6UWRFVvrxbLUUnqiDp5z9sH8K9ScM+BIhQOM1nzluhO575yVYtgKlUmO906kUJRBN3xbpxOJ16vl0q5POdzc8apMb713WfIFwy+e9Nennwmx7su2YLDoaJpswUDmikUjYahBLjyi8+gaYIfX3cqsejsCaCqKlx4bieqIrhlxyidHU6uuHQr4Tk8H4lkmbe+94+ka+d74017uPGak+jpam9gl8PBoCa10bGN5RKou2GDwSCaphGrJdLXo/4itdys5vZykBL+3x+n+JtvPE42Z3DYgJcvf+pYuuIzw9KbXVaVqmQqWUZKyZ/HJHueHOe853fi8/nI53IMD1kz87pI81qhqoIzTo3yna+dwI5fj3PUNj8nHRee0wVbT/7u7OpqRB12dXUtqZL8aqOqAs8KGMq1HAwVRcHj8VA3L16PZ0mTK2lKkhWN7XffMuN4LOpE8/tw1IJyFGhsabQjGnZw4zUncdPNg+TzBhe/YhNdnZahm69vVlWemcINmiqYyzqHAjqvfmkv558VR9cVvJ65h847fzvRMJQAxZLJj24e4sq3b0VVVn5iaqsErT62sVwi7VYb9Rp4+7eXgykln/ryTqpVa8Pn6d05vvpPT/DpD22fsWKpu6ySqTJXffIh/rxrXwFeTRM876QoTl2bsQprJdt1oPH7HGw/wsH2IwKNtAGgbQpBvb/1ckkOh4OWvtwNxFoOhqZpMjw0hO504nG7SSaTOHR9TjdsKzxujV/cU+B/bhttHOvscPKdrz0Hfb9thvnuSVVV6Iq7uOLSrUhToi3Cvelxq7z25b381/+OUCqZeD0ql1w8gN8393CoqoJwSG9Ev8+V5lJ/VmceM62Z74r4mmwONLaxPIhoF8xQ1d2zHr5HH89QKpu0iq80pWT34MwqmNWqRNMgm82Sy2bp7OpienqakeHhNXXDNmOaJsVikVQySWdXF6VikVQq1RCzrqOqKtFYrFGQeimpOTaLIxqL4XK5rMCuJbph3W6Vd7x5CwG/xq//X4LDBjxccelWIsvYj1cVAYtcqfm8Gu948wBvvbifX/xqnBefF0dTFXR9/oltXXhgYmKCnp4eSqUSiUSC3lrgW51zzujg+h/splCwROU1TfDaV2xCVe09y/WKPcIcRLQLZphMlNAdgnJTmPtxxwTbasU6dZXTT45w1//bty8TCTkwDQgEfVb1BIfDEnmurpYY1+IRQqBpGuVymaHBQarVKsEWSd11N6yu60gpGRketgarNXTDbuRkcVVVZ6wiF7uibCYc0rnsjVu4+BV9OJ3zuzNXA8MwmJycQAB/8eJuRkdG0BwOYrHYvJ4gIQS6rqMoCoN79yKlJBQKzZpsRsM6N/7jSfzXz4cplw1e/bJe4jFbzWc9YxvLdYDfp/HFTxzL5//+MZKpCscc6ecD7zy8bc6lz6vxgcu3oaoKv7t3ii39Xj723iMIBXVUVSwrYGU1qRvLQDBIKplspOHsPzDX62SGa0Wuk1NTa+6G3ei5dPPVXF0MukNZ1mpyuSiKQjQaZXhoiN27dqGoKvF4fMHnpSgKfr+fqYQ1GQ3UIqWb0TSF7k4X73rrlloJu7X33NgsD9tYrgOcTpWTjgtxwzdOxDAlukOZNwcxGnHykfccQbFooGmC4AK1QteSZjesx+OhWCwyMjJC135uWE3TZgROrUQQ1cFGpWpSqZh43NYjarbJT9yoEr2tpCRXCiEEmqqiahrVSgWHZu3jL+Q76m7YqUQCv99PsVRiaHCwkWedSJZ5eOc0qiI45kg/0YjzgMzjNrJn42DBNpbrBFVViEYWl9fo9Whr4uZaKvWVZSgcJhgMYhgG2ezsCFBYuaLXqXSZx57K8vDONKefEmVTt5uAf22jaicSJW766SDP7Mnz4vM6OfG4MJrHMyuKVAiB8HjWqJerR7u6kCs1ITIMg7HxcaRpEuvoIDE5yeTk5KLcsNFYDJ/Ph5SSXC6HEILJqTKXXnUvyZQlVhCPOfn2104gtsjndilsdM/GwcD6GUltNjx1tZe6AICiKI32ajCdrfCN7zzF7XdZ8nTf/Y89vO8vt/LKC3vWrLLLVLLMFR99gOFRS8nmd/dO8d6/3MpZz4vxlr9+eMZ7dYfgpus2sZHMpZSSUrHYEHQvFosUi8Ula9a2ou6GVYRAczhwOp0oQizYDatpGn6/v/H+evt/btvbMJQA45OlWvEDu3TWRsAOzVoByokU+V2Ds/6VE6m17tq6YzVSb9pRKBgNQ1nn+n/fzXRm7YKeplLlhqGs86Obh1AUeMEZsRnHX/3S3nXlOVgIQghcLheRSIRkMtmoiLKSNVTrq0OtpvLT3F4o++/hSmnlNe/PVMqWxNsobKwnbY1YrwnBh7rqR6v9PkuObe02AltVlfG6VTRV4YOXb+PMU2P84f4kZ58W49jtq19cei2QQKFQaLwuFotomraiE6d2cnzL+bxXvaSXm28daYgdqKrgwnM7l/3ZNgcHtrFchyTTZZ56Osujj2d43kkRurtcS6qVuF6N/ErhdimcdHyIPz6wzwPw2pf34psnOX018fs0nntihN/dOwVYpaiuvGxrQ97whWd3ct7z4xs2urLuhi0Wi2zatIlisUgikcDnO/gDVbriLv75qydwww/3oKpw6es309FCPs9mfWIby3XGdLbCP173Z267cxyA676/iw++axsvfWGXLdK8SIIBnU9/cDt33j3JA4+mOOeMDo4/NohzAcnpq0UoqPPx9x/JM7tz7BrMc8oJkVm1PTeqoYR9btj+gQEURUHTNLw+34q6YVcLj1tl+7YAn/nQUYDA7d54q/5DGdtYrjMKBaNhKOt853vP8PznRYmGV2YWq+g6+V2Ds45vRPdsOKTzyhd3W5ONNQrq2Z9wUCf8bJ3nPDu81l1ZE5rlGMU6TAlyu+1hdSNiX9V1RrP48zUf20JAKyOEwJkcJ5+2VhzLNWpGvsCd21846/hGdc9aUbgbd7V2KGOaZmNV2txeDQ71GICNjm0sV4ADmRDsdquccGyQ+x9JE9DK7Dz9JbPes1GNmo3NYqiLXNTl6ert1dIRPtRjADY6trFcAQ5kQnAo4OBzHzma2+8ax+VcXlh6OyMvzdYFem1s1hNSShKTk0gp8QcCJKemiESjBAKBdbEHanNwYRvLdUg4pHPRy3op7B5a1ue0M/Kt9ittbNYbqqrS3dPD4N69JKem8Pl8M8QEbGwWg33XrFMURay1driNzUGNaZqUSiXMmqekWCw2aqXa2CwWe2VpMwtblNmmFYZhYhigtxBOOBiRUjKVSBAKhQiGQgwPDZHNZm03rM2SsI3lOma1jJotymzTjJSSiUSZH908yNhEiYte1sthA962JeIOFlRVpae3d1Z7tQylPcnc2Bzcd7vNnNhGzeZAMJWs8Pb339vQOf3l/03wtc8+i1OfE1njns3Pgazdaj+PGxvbF2FjYzMnTz6TnSUI/m8/2sN0xhYJtzl02FArSyHEBcA3ABW4Tkr5t2vcJRubdY/LOXtO7dSVNZXdOxACALbIgE0zG8ZYCiFU4JvA+cAgcI8Q4mYp5Z/Wtmc2Nuub/l4PW/o9PLMnD1jVNN7x5i1rumd5IAQAbJEBm2Y2jLEETgGeklI+DSCE+CHwCsA2ljY2yyAS1vnG54/j/kdSjE+UOOu0GNGwPv8v2thsIDaSsewF9ja9HgRObX6DEOIdwDsA+vv7D1zPbGzWOZGwzrlnxte6GzY2a8YhFeAjpfy2lPIkKeW1FRd5AAAHkUlEQVRJHR0da90dGxsbG5t1wkYylkNAX9PrTbVjNjY2NjY2y2IjuWHvAbYJIbZgGcnXAW9Y2y7Z2NisBgdCAMAWGbBpZsMYSyllVQhxJXArVurI9VLKR9e4WzY2NqvAgRAAsEUGbJrZMMYSQEr5c+Dna90PGxsbG5uNxUbas7SxsbGxsVkVbGNpY2NjY2MzD7axtLGxsbGxmQfbWNrY2NjY2MyDOFQrhwshJoDdi/y1GDC5Ct05mLHP+dDhUDzvQ/GcYXnnPSClPORUXQ5ZY7kUhBB/lFKetNb9OJDY53zocCie96F4znDonvdysN2wNjY2NjY282AbSxsbGxsbm3mwjeXi+PZad2ANsM/50OFQPO9D8Zzh0D3vJWPvWdrY2NjY2MyDvbK0sbGxsbGZB9tY2tjY2NjYzINtLBeAEOICIcTjQoinhBAfXev+rAZCiD4hxK+EEH8SQjwqhHhf7XhECHG7EOLJ2v/hte7raiCEUIUQ9wshflZ7vUUI8fvaNf8PIYS+1n1cSYQQISHEj4UQjwkhdgohnncoXGshxPtr9/cjQogfCCFcG/FaCyGuF0KMCyEeaTrW8voKi3+onf9DQojnrF3PD15sYzkPQggV+CZwIXA08HohxNFr26tVoQp8UEp5NPBc4IraeX4UuENKuQ24o/Z6I/I+YGfT6y8Bfy+lPBxIApetSa9Wj28Av5BSHgUch3XuG/paCyF6gfcCJ0kpj8Uq5fc6Nua1vgG4YL9j7a7vhcC22r93ANceoD6uK2xjOT+nAE9JKZ+WUpaBHwKvWOM+rThSyhEp5X21dgZr8OzFOtfv1t72XeCVa9PD1UMIsQl4CXBd7bUAzgF+XHvLhjpvIUQQeD7wLwBSyrKUMsUhcK2xyhK6hRAa4AFG2IDXWkr5a2Bqv8Ptru8rgBulxe+AkBCi+8D0dP1gG8v56QX2Nr0erB3bsAghNgMnAL8HOqWUI7UfjQKda9St1eTrwIcBs/Y6CqSklNXa6412zbcAE8C/1lzP1wkhvGzway2lHAK+CuzBMpJp4F429rVupt31PeTGuKVgG0ubGQghfMB/AldJKaebfyatPKMNlWskhHgpMC6lvHet+3IA0YDnANdKKU8Acuznct2g1zqMtYraAvQAXma7Kg8JNuL1XW1sYzk/Q0Bf0+tNtWMbDiGEA8tQfl9K+ZPa4bG6S6b2//ha9W+VOB14uRBiF5aL/Rys/bxQzVUHG++aDwKDUsrf117/GMt4bvRrfR7wjJRyQkpZAX6Cdf038rVupt31PWTGuOVgG8v5uQfYVouY07ECAm5e4z6tOLV9un8Bdkop/67pRzcDl9TalwA/PdB9W02klB+TUm6SUm7Gura/lFK+EfgVcFHtbRvqvKWUo8BeIcSRtUPnAn9ig19rLPfrc4UQntr9Xj/vDXut96Pd9b0ZeEstKva5QLrJXWtTw1bwWQBCiBdj7WupwPVSyi+scZdWHCHEGcBvgIfZt3d3Nda+5U1AP1ZJs9dKKfcPHNgQCCHOBj4kpXypEOIwrJVmBLgfeJOUsrSW/VtJhBDHYwU06cDTwNuwJs8b+loLIT4LXIwV/X0/8Has/bkNda2FED8AzsYqxTUGfBr4b1pc39rE4Rosl3QeeJuU8o9r0e+DGdtY2tjY2NjYzIPthrWxsbGxsZkH21ja2NjY2NjMg20sbWxsbGxs5sE2ljY2NjY2NvNgG0sbGxsbG5t5sI2ljc0yqFXveHet3SOE+PF8v7OM7zq+lsZkY2NzgLGNpY3N8ggB7waQUg5LKS+a5/3L4XjANpY2NmuAnWdpY7MMhBD1KjSPA08C26WUxwoh3opV1cGLVfroq1gCAG8GSsCLawnhW7FKwHVgJYT/pZTyMSHEa7ASyQ0swe/zgKcAN5YU2ReBnwH/CBwLOIDPSCl/WvvuvwCCWAn335NSfnaV/xQ2Nhsabf632NjYzMFHgWOllMfXqrX8rOlnx2JVb3FhGbqPSClPEEL8PfAWLFWobwOXSymfFEKcCvwTlj7tp4AXSSmHhBAhKWVZCPEprFqMVwIIIf4GS57vUiFECPiDEGJH7btPqX1/HrhHCHGLrcpiY7N0bGNpY7N6/KpWGzQjhEgD/1M7/jDw7FqFl9OAH1mKYwA4a//fDdwghLgJS/C7FS/EEoH/UO21C0vKDOB2KWUCQAjxE+AMwDaWNjZLxDaWNjarR7O+qNn02sR69hSsWorH7/+LUsr/397d4kQQBGEYfj+JwOBROAwhnAGFRCCQazBcAYPcs3AADrAkkJCwy65AcQgO0IhuCJBNOpl25H3U/KR7xlVqqjJ11TLNM+A5ycmW/QOcl1Lefl2s6/7WV6y3SANs8JHGfAC7Uxa2eaHvrT5Jm/pw1I4PSimPpZQb6qDm/S3Pugeu24+wSXL8495pkr0kO9Ta6WLKO0qqDJbSgPapc5FkDcwnbHEJzJIsgQ21WQhgnuS17fsALKmjpA6TvCS5AG6pjT2rJJt2/uWJOpt0BdxZr5TG2A0r/TOtG/a7EUjSODNLSZI6zCwlSeows5QkqcNgKUlSh8FSkqQOg6UkSR0GS0mSOj4B4jVxnep+54IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'VelocityOfMoney',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEWCAYAAADIJfYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3WmYFNX59/Hvj5lhR1kEVFBABQVBtlHARAMSFPd9j+JuoolRExUTE01iIsYlamJUomyJD4kSVDRq4A8SjIIEEDdARUEZZF+UHWbmfl6cM9A0s3YPPcNwf66rr646tZ1TVV131anTVTIznHPOOZcZtao6A84559zexAOvc845l0EeeJ1zzrkM8sDrnHPOZZAHXueccy6DPPA655xzGZR24JV0r6SVkpbG/rMlLZK0XlL39LOYcr4ylg9JbSWZpOzduZzqQNKlksZXdT6cc640kvpKyqvqfBSnzMAraaGkTTGAFX3+FIcdDPwE6GRm+8dJHgR+aGYNzezdVDMWA9lhqU5fVj7i/DfE8iyW9LCkrDSWVypJl0iaEZe3RNJrkr69u5ZXjvyMkLRV0rr4+VDSfZL2LW06M3vWzE5McZn3SNqWtC/dnloJ9mwJ63+9pNWSJkg6oqrzVRZJV0j6byXPs7akhyTlxfWxUNIjlbkMV7rKClKS9pH0iKQv47b8LPbvF4cvlPTdhPEPkPRMPCaukzRP0q8kNYjDE4/TKyWNltQ43XxWtfJe8Z4eA1jR54cx/WBglZktTxi3DfBRpeYyNeXJR1czawh8B7gQuGp3ZETSrcAjwO+AloT19mfgzBLGz9SV8+/NrBHQHLgS6A28VbTT76Z8/SNpX/p9McuRpL3hNsjv4/7XGlgOjKjoDPa0WpYS8nsnkAscAzQC+gKzMpitGi0TvydJ2ZJqAxOBI4GBwD5AH2AVYdsmT9MUmArUA/rEY9EAoDFwaMKoRcfpQ4AmwD27ryQZYmalfoCFwHeLSf8usAkoBNYDo+O3ARuAz+J4BwL/BFYAC4CbEuaRBfwM+AxYB8wEDgKmJMxnPXBhMcuvBdwFfEE4aI0C9gXqFJePYqY34LCE/ueAxxP69wWeAZYAi4F7gayEfD8IrAQ+B26M88suZjn7xvycX8o6vgcYA/wN+Aa4JpbjEeCr+HkEqBPH3w94BVgLrAbeBGrFYXfE/K4DPgb6l7DMEcC9SWmNYnl/GPuvAN4C/kD48dwb0/6btB5viuthJfBAUV5KKOffShg2GfhtXN4m4LB0tgFJ+23ysgknGW/Hdfge0DcpL7+JeVkHjAf2Sxj+7YRpF8V1cjSwrCh/cbxzgPfKs/6BU4H1sfsYwgFpbSz7n4DaSev8RuBTYEFMezTm5RvC7+i4pLI/T9i/1gEfAB0IAW95nO7EsvZ9oCOwGSgg7NNr4/h14rb4Mq6DJ4F6cVhfII+wXy4F/lrMungFuLmE9XQl8HJC/6fA8wn9i4BusfsIYALhN/ExcEHCeOXJ488I+9NC4NJSfq8HAuPicuYD1yat6+cIx6N1hJP/3FLmdSzwP+Dr+H1s0n54HzA9bteXgKYV2IeTf09XAnNjvj4Hro/jNmDnY/n6WMbSjkG7bFfCcWsZ0LCU8i4k/i4J+9UHlHC8KOE4fQMwPmn/2KVMiXlM6B/MjlgzBzg7YdgVwH/jPrKGEKtOThjeFBge18Ma4MWEYacBs+N2eBs4qqTybJ+mzBFKCLzFFSx5RRGC40zgl0BtwhnL58BJcfhtccUfDgjoCjQrboUXs+yrCDv9IUBDYCwJP+pyTJ+YzyMIB5lbEoa/ADwVd8oWhJ2/aEf9PjCPcJLQFHiDkgPvQCC/uGFJP9ZtwFlxndUDfg1Mi8tuHjfob+L49xEOHDnxc1xcf4cTDkQHxvHaAoeWsMwRJAXemD6KcFVatDPmAz8CsmO+rmDXwPtGXA8HA58A15RSztIC75eEs+XsWK6UtwGlBF6gFeFE4pS4vgfE/uYJefmMEJzqxf4hcVgbwg/34pjHZuw48M9h5x/rC8BPylr/hP33/wFvxv6ehINqdtyGc0kITLGcE2K5i4LH92Jesgm3f5YCdRPKvhk4KQ4fRTiw/DyW4VpiAC/Hvr/T9o9pfyAEoqaEk7eXgfsSjhH5wP2EA3m9YtbFXXHb3wB0AZQw7BDCAa0WIRh8QTzmxGFr4rAGhH3/yljG7oQg2qkCeXw45vE7hJP2w0vYdlMINVZ1gW6Ei4oTktb1KYSTlfuAaSXMp2nM/2UxzxfH/qJj4GTCiU/nWL5/UrF9OPn3dCrhSlKxjBuBHqUcy0s7Bu2yXYG/AyPLG0/ivH9VxviJx+kmhJPgXycML3eZgPMJ+1AtQg3nBuCAhP16G+G3kAX8gBBkFYf/C/hHzEMO8J2Y3p1w8torTjcolrFOqeUqbWDCilpP2PmLPteWsrESV1Qv4Muk4XcCw2P3x8CZZa3wEoZPBG5I6D88rrjsck5vhLPIDbF7NDvO5loCW0g4SBB+FG/E7knA9xOGnUjJgfdSYGkZ6/geYEpS2mfAKQn9JwELE34QLyWXj3BWu5xQG5FTxjJHUHzgHQJMSNgZk7ffFewaeAcm9N8ATCylnFuT9qWik4TJ7PyDSmsbUHrgvYOkKy/g38CghLzclVSm1xP23xdKKN8dwLOxuynhIHBAKet/c1wHSwlBoaSTpJsTlxnLeUIZ23cNoYquqOwTEoadTvhNF9UeNIrzbFyO9Z68/UX4DR2akNaHHVfifeM2r1tKXrMIV/BvxWV/VbQt4vBFQA/gImAo4UTgCEKQHRfHuZB44pIw3VPA3eXMYz7QIGH4c8AvisnrQYQr/kYJafcBIxLW9f8lDOsEbCqh3JcB05PSpgJXJOyHQ5LmtTWur/Lsw78ubrkJ478I/DhhHSQfy0s7Bu2yXQkng0PKWOZCdgTeT0n4DZcwftFxem1c7/OAVqmWKWnc2cT4Q9iv5ycMqx+XvT9wAKE2oEkx83iCeDKSkPYxMTCX9Cnv/aGzzOz/yjluojbAgZLWJqRlEapGIezEn6UwX9hx9lvkC8KZXUvCWWJ59IjLP58QcBoQfvhtCGc1SyQVjVuLcAAoWvaihPkk5iPZKmA/Sdlmll/KeIuS+osr34Gx+wHCD3x8zN9QMxtiZvMl3RyHHSnp38CtZvZVKctN1opQhVZSvsrKe2I+i/OcmX2vHPOpzG2QrA1wvqTTE9JyCFfNRZYmdG8kXJVC6fvs34C58R75BYRAsKSUfDxoZnclJ0rqQLj6yiUcALIJNUeJFiVN81PgasJ6McL9tf0SRlmW0L0JWGlmBQn9EMp4IKWv92TNYx5nJowvwu+8yAoz21zC9MR8PA48LqkeoTZrmKTpZjYX+A/hIHpY7F5LuLrpE/shbNNeSceabEIVaHnyuMbMNiT0l7QfHwisNrN1SePmJvQn7zt1S/j9J//Gi+bVKqE/eR/PIWzX8uzDyfvIyYQTkQ6EbVqfUONYktKOQbDrdl1FCFLlVd7xe8RjWw7hJPhNSZ3MbHNFyiTpcuBWQi0ShP098TeyfbuZ2ca4rzQknESvNrM1xcy2DTBI0o8S0mpT+jFwt/+PdxHhrLJxwqeRmZ2SMPzQUqYvzVeEQhc5mHDWuqz40YtnwXOEM81fJuRrC+G+XlG+9zGzI+PwJYQDcOKySzI1zuussrKS1F9c+b6KeV5nZj8xs0OAM4BbJfWPw/6fmX07TmuEqqBykdSQcLX8ZkJycr6Kk7wuKhLoEyUuK91tsIHwIyyyf0L3IsLVQuJ+2cDMhpQjjyXus2a2mLC9zyFczfy1HPMrzhOEM/v2ZrYP4d6jksbZvq4kHQfcTgj2TcysMeGeYfI05VHWek/eH1YSAveRCePva6ExzC55LYuZbTKzxwlX7J1iclHgPS52/4cQeL/DjsC7CPhP0jZtaGY/KGcemyQ1KixpP/4KaCqpUdK45T3ZT55Xm6S05Hkl7+PbCOUpzz6cuI/UIVRVPwi0jPvIq+zYR4rbRiUeg0qY5v+Ak0pqnFmM/wPOLm/DLzPbBjwNtAM6l6NM20lqA/wF+CGhKr8x8GFx4xZjEWGbF9eaehHw26TtUN/MRpc2w90deKcD6yTdIamepCxJnSUdHYc/DfxGUvvY8u4oSc3isGWEezglGQ3cIqldDBi/I9ybLO2qsjRDgGsl7R+vUsYDD8Xm8bUkHSrpO3Hc54CbJLWW1IRw075YZvY1IaA/LuksSfUl5Ug6WdIuLXqTyneXpOaxKf4vCVdUSDpN0mEKp2RfE6pgCiUdLumEuENuZkeDiVJJqiOpJ6GaZg2hEUFF3CapiaSDgB8T7oWkpRK2wWzgoriuc4HzEob9DThd0klxn6yr8HeK1uXI2rPAdyVdEFtyNpPULWH4KEIQ7EJod5CKRoTqtfUKfzH6QTnGzyfca8yW9EvCFW+FlWO9LwNaxxasmFkh4YD2B0ktACS1knRSeZcp6ea4/uvFdToolqnob4D/AfoRqr/zCCeGAwn3tIvGeQXoIOmyuM1zJB0tqWMF8vgrhb82HUdoMPN8MetnEeFe531xvzmKUNPwt/KWN8GrMc+XxHJfSDjZeCVhnO9J6iSpPuEW05hYQ1DRfbg24V7sCiA/Xikm/i1wGdBMO/+dsMRjUAn+SghE/5R0RNx3mkn6maRTihn/YcJ+OjIGxqLt8nBcrztR+LvnlYTj2uflKFOiBoQThRVxXlcS7p2XKf4mXgP+HI9zOZKOj4P/AnxfUq8YwxpIOlU7n5jtoryB92Xt/N/LF8qZ4QLCDtyN0JhjJSHYFm3chwkH0PGEA80zhJv0EKpLR0paK+mCYmY/jLChp8R5byY0AkqJmX0Q53VbTLqcsGHnEILRGHZUi/yFcD/lPcLfHko9wJrZQ4QqjrsIG34R4czrxVImuxeYAbxPqDqZFdMA2hPOFtcTrrD+bGZvEHbCIYT1vJTQKOLOUpZxu6R1hCqfUYTqzGOTqtzK46U47WxCI4RnKjh9SdLZBr8gXJmuAX5FaLwEbD94nkm4kizaHrdRjt+DmX1JaNDyE0KV/GxCo8AiLxCuEl4ws43lLunOfgpcQmjE9RfKPpH5N/A6oWHbF4TfQnluEZSktPU+idBSd6mklTHtDkJDx2mSviHsm4dXYHkbgYcI++xKwv3ec83scwAz+4Swr78Z+78hHHjfKqouj1W/JxLuA38V51XU8Kc8eVway/oV4eTq+2Y2r4T8XkyorvyKsL3vTuVWnJmtIhwff0L4Dd4OnGZmKxNG+yuhPcBSQmOum+K0FdqH4/q5iXC8XUPYv8YlDJ9HCLSfx2PugZR+DCpuGVsINWbzCPd7vyFcfO0HvFPM+KsJrbq3Ae/EY9FEwsXE/IRR35O0PuZ7EKE18uqyypS0rDmEfWwq4SSjC6FNQXldFvM5j9CO5uY43xmEBll/inmYT7hfXKqiFlvOpUSSEapE55c58u7NR1vCCVhOGrUelZWXzwitgFNpF+EyTFJfQsO78tR4ZIykyYR8PV3VeXGVa294SIFzGSPpXEKV1qSqzotzrnrao55641x1Fq9QOgGXxfuKzjm3C69qds455zLIq5qdc865DPKq5jLst99+1rZt26rOhnPO7VFmzpy50syaV3U+qiMPvGVo27YtM2bMqOpsOOfcHkVSRZ4mt1fxqmbnnHMugzzwOueccxnkgdc555zLIL/H69weZNu2beTl5bF5c4kv+3Euo+rWrUvr1q3Jycmp6qzsMTzwOrcHycvLo1GjRrRt2xYplZcPOVd5zIxVq1aRl5dHu3btqjo7e4yMB974BptRhPfmGuFdso9Kakp4GHxbwsuSLzCzNfENPI8SHky/kfCS6FlxXoMILx6A8FL3kTG9J+HB4vUIbwD5sZlZScuozPJtXbWG/HUbKCgwsuvVpnBjuDKpVb9uyt0mkVWvLoUbN+3cbZDVIIy3UzeQVb/83RnP356U10rMn0nUygp3d7IbNaR2s+LeMla6zZs3e9B11YYkmjVrxooVK6o6K3sWM8voh/CWkx6xuxHhjSqdgN8Dg2P6YOD+2H0K4ZVMAnoD78T0poQ3lDQFmsTuJnHY9Diu4rQnx/Ril1Hap2fPnlYR6z9fZK9kd7BXsjvYysnTKqW7Mue1O7qrSz6qe14TPxsWLKrQflVkzpw5KU3n3O5U3H4JzLAMx5c95ZPxxlVmtsTiFauF1zrNBVoRXnE1Mo42kh0vjj8TGBW35TSgsaQDgJOACRZeD7WG8BqqgXHYPmY2LW78UUnzKm4ZlVm+yp6lq4F8N3Fu71WlrZrjq9y6E97V2NLCC4chvHuyZexuxc7vFs2LaaWl5xWTTinLSM7XdZJmSJpR0SqULVv92fiubHty4M3KyqJbt2507tyZ008/nbVr11Zo+nvuuYcHH3yw2GGjRo2ic+fOdOnShe7du5c4XmVr27YtXbp0oUuXLnTq1Im77rqr1AZsxx57bIXm37dvXw4//HC6detGt27dGDNmTLpZdnuwKgu8khoC/wRutvBi6+3ilepuPTSVtgwzG2pmuWaW27x5xZ54VrdOVmVkz9VwtfbgP/LVq1eP2bNn8+GHH9K0aVMef/zxSpnva6+9xiOPPML48eP54IMPmDZtGvvuu+8u4+Xn757XLb/xxht88MEHTJ8+nc8//5zrr7++xGW//fbbFZ7/s88+y+zZs5k9ezbnnXfeTsPMjMJCP2nfW1TJz19SDiHoPmtmY2PyslhNTPxeHtMXAwclTN46ppWW3rqY9NKW4ZxLQZ8+fVi8ePH2/gceeICjjz6ao446irvvvnt7+m9/+1s6dOjAt7/9bT7++ONi53Xffffx4IMPcuCBBwJQp04drr32WiBcMd58883k5uby6KOPsnDhQk444QSOOuoo+vfvz5dffgnA888/T+fOnenatSvHH388AB999BHHHHMM3bp146ijjuLTTz8ttUwNGzbkySef5MUXX2T16tVMnjyZ4447jjPOOINOnTptHwdg8uTJHH/88Zx66qkcfvjhfP/73y93AF24cCGHH344l19+OZ07d2bRokWMHz+ePn360KNHD84//3zWr18PwOuvv84RRxxBjx49uOmmmzjttNOAXWsPOnfuzMKFCwH429/+tr3c119/PQUFBdvz/vOf/5yuXbvSu3dvli1bBsCyZcs4++yz6dq1K127duXtt9/ml7/8JY888sj2+f/85z/n0UcfLVf5XMky/lrA2Ep5JLDazG5OSH8AWGVmQyQNBpqa2e2STgV+SGhk1Qt4zMyOiS2UZwI94ixmAT3NbLWk6cBNhCrsV4E/mtmrJS2jtPzm5uZaRZ7VvHXVWvLXraewELLq1qZw4yYgvZa4SNSKrW936k5zvpXVXd3zV13yioTSbNU8d+5cOnbsWOHpKlPDhg1Zv349BQUFXHTRRVx99dUMHDiQ8ePHM2bMGJ566inMjDPOOIPbb7+dBg0acMUVV/DOO++Qn59Pjx49+P73v89Pf/rTnebbtGlTFixYUOxVbt++fenUqRN//vOfATj99NM577zzGDRoEMOGDWPcuHG8+OKLdOnShddff51WrVqxdu1aGjduzI9+9CN69+7NpZdeytatWykoKKBevXo7zb/omez77bff9rRu3brx1FNPsWnTJk499VQ+/PDD7X+ZKVoHkydPZuDAgcyZM4c2bdowcOBArr/++l2uaPv27cuSJUu2L3fixImsW7eOQw45hLfffpvevXuzcuVKzjnnHF577TUaNGjA/fffz5YtW7j99ttp3749kyZN4rDDDuPCCy9k48aNvPLKK9xzzz00bNhw+7rs3Lkzr7zyCps2beL2229n7Nix5OTkcMMNN9C7d28uv/xyJDFu3DhOP/10br/9dvbZZx/uuusuLrzwQvr06cPNN99MQUEB69evZ82aNZxzzjnMmjWLwsJC2rdvz/Tp02nWrNlO5Stuv5Q008xyy71j7UWq4n+83wIuAz6QNDum/QwYAjwn6WrgC+CCOOxVQtCdT/g70ZUAMcD+BvhfHO/XZrY6dt/Ajr8TvRY/lLKMSlO7WeOUDqjO7Sk2bdpEt27dWLx4MR07dmTAgAEAjB8/nvHjx9O9e3cA1q9fz6effsq6des4++yzqV+/PgBnnHFGSsu98MILt3dPnTqVsWNDZdlll13G7beH8+dvfetbXHHFFVxwwQWcc845QLgq/+1vf0teXh7nnHMO7du3L9fyEi9KjjnmmBL/p3rMMcdwyCGHAHDxxRfz3//+d5fAC6GqOTd3Rxxat24dbdq0oXfv3gBMmzaNOXPm8K1vfQuArVu30qdPH+bNm0e7du225/t73/seQ4cOLTXvEydOZObMmRx99NFA2GYtWrQAoHbt2tuvmHv27MmECRMAmDRpEqNGjQLCffx9992Xfffdl2bNmvHuu++ybNkyunfvvkvQdRWX8cBrZv8l/M2nOP2LGd+AG0uY1zBgWDHpM4DOxaSvKm4ZzrnyK7rHu3HjRk466SQef/xxbrrpJsyMO++8c5d7o4lVlaU58sgjmTlzJieccEKxwxs0aFDmPJ588kneeecd/vWvf9GzZ09mzpzJJZdcQq9evfjXv/7FKaecwlNPPVXiMoqsW7eOhQsX0qFDB957771Sl538n+qK/Mc6cb5mxoABAxg9evRO48yePTt5su2ys7N3qtouahBmZgwaNIj77rtvl2lycnK25zErK6vMe+bXXHMNI0aMYOnSpVx11VVlF8qVaQ9u4uGcq0r169fnscce46GHHiI/P5+TTjqJYcOGbb8vuXjxYpYvX87xxx/Piy++yKZNm1i3bh0vv/xysfO78847ue2221i6dCkQrviefvrpYsc99thj+fvf/w6EK8njjjsOgM8++4xevXrx61//mubNm7No0SI+//xzDjnkEG666SbOPPNM3n///VLLtX79em644QbOOussmjRpUuZ6mD59OgsWLKCwsJB//OMffPvb3y5zmuL07t2bt956i/nz5wOwYcMGPvnkE4444ggWLlzIZ599BrBTYG7bti2zZs0CYNasWSxYsACA/v37M2bMGJYvD81YVq9ezRdflP6Wvv79+/PEE08AUFBQwNdffw3A2Wefzeuvv87//vc/TjrppJTK5nbmj4x0zqWse/fuHHXUUYwePZrLLruMuXPn0qdPHyDcB/3b3/5Gjx49uPDCC+natSstWrTYXv2Z7JRTTmHZsmV897vfxcyQVOIV1h//+EeuvPJKHnjgAZo3b87w4cMBuO222/j0008xM/r370/Xrl25//77+etf/0pOTg77778/P/vZz4qdZ79+/ba3Lj777LP5xS9+Ua51cPTRR/PDH/6Q+fPn069fP84+++xyTZesefPmjBgxgosvvpgtW7YAcO+999KhQweGDh3KqaeeSv369TnuuONYt24dAOeeey6jRo3iyCOPpFevXnTo0AGATp06ce+993LiiSdSWFhITk4Ojz/+OG3atClx+Y8++ijXXXcdzzzzDFlZWTzxxBP06dOH2rVr069fPxo3bkxWlv9rozJkvHHVnqaijauc252qQ+Mqt8PkyZN58MEHeeWVV2rsMgsLC+nRowfPP/98iffHvXFVxXhVs3POuWLNmTOHww47jP79+5e7UZorm1/xlsGveF114le8rjryK96K8Ste55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zpXb5s2bOeaYY+jatStHHnnk9hchLFiwgF69em1/lvDWrVurOKfOVV8eeJ1z5VanTh0mTZrEe++9x+zZs3n99deZNm0ad9xxB7fccgvz58+nSZMmPPPMM1WdVeeqLQ+8ztVg4ycv49yrpnHcGf/h3KumMX7ysrTmJ2n7K/G2bdvGtm3bkMSkSZO2vxhg0KBBvPjii2nn3bmaygOvczXU+MnLuP9Pn7BsxRbMYNmKLdz/p0/SDr4FBQV069aNFi1aMGDAAA499FAaN25MdnZ4Am3r1q13ekevc25nHnidq6GeGrWALVt2fin7li2FPDVqQVrzzcrKYvbs2eTl5TF9+nTmzZuX1vyc29t44HWuhlq+ckuF0iuqcePG9OvXj6lTp7J27drtr5fLy8ujVatWlbIM52oiD7zO1VAt9qtTofTyWLFiBWvXrgXCy9UnTJhAx44d6devH2PGjAFg5MiRnHnmmSkvw7mazgOvczXU9Ze3o06dnX/iderU4vrL26U8zyVLltCvXz+OOuoojj76aAYMGMBpp53G/fffz8MPP8xhhx3GqlWruPrqq9PNvnM1VsbfxytpGHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJcZqLgZ8BBnwFfM/MVkpqCvwDaBvndYGZrZEk4FHgFGAjcIWZzcpEmZ2rCif2bQmEe73LV26hxX51uP7ydtvTU3HUUUfx7rvv7pJ+yCGHMH369JTn69zeJOOBFxgB/AkYlZD2NPBTM/uPpKuA24BfANcCmFkXSS2A1yQdTbhSfxToFIPt74EfAvcAg4GJZjZE0uDYfwdwMtA+fnoBT8Rv52qsE/u2TCvQOucqX8arms1sCrA6KbkDMCV2TwDOjd2dgElxuuXAWsLVr+KnQbyS3Ydw1QtwJjAydo8EzkpIH2XBNKCxpAMqsWjOOedcmarLPd6PCIER4HzgoNj9HnCGpGxJ7YCewEFmtg34AfABIeB2AooeldPSzJbE7qVA0el+K2BRwjLzYppzzjmXMdUl8F4F3CBpJtAIKHrQ6zBCgJwBPAK8DRRIyiEE3u7AgcD7wJ3JMzUzI9wDrhBJ10maIWnGihUrUiiOc845V7xqEXjNbJ6ZnWhmPYHRwGcxPd/MbjGzbmZ2JtAY+AToFod/FoPrc8CxcXbLiqqQ4/fymL6YHVfSAK1jWnH5GWpmuWaW27x580otq3POub1btQi8seEUkmoBdxFaOCOpvqQGsXsAkG9mcwgBs5Okoqg4AJgbu8cBg2L3IOClhPTLFfQGvk6oknbOOecyIuOBV9JoYCpwuKQ8SVcDF0v6BJhHuGc7PI7eApglaS6hZfJlAGb2FfArYIqk9wlXwL+L0wwBBkj6FPhu7Ad4FfgcmA/8Bbj1zOrxAAAgAElEQVRhtxbUuRpq7dq1nHfeeRxxxBF07NiRqVOnsnr1agYMGED79u0ZMGAAa9asqepsOldtKdTUupLk5ubajBkzqjobzgEwd+5cOnbsWKV5GDRoEMcddxzXXHMNW7duZePGjfzud7+jadOmDB48mCFDhrBmzRruv//+Ks2ny5zi9ktJM80st4qyVK1Vi6pm51zlMzOWfPUVS776isLCwu3d6Zxsf/3110yZMmX7k6lq165N48aNeemllxg0KNzh8dcCOlc6D7zO1VBLlyxh8+bNbN68mS+/+GJ799IlqTdtWLBgAc2bN+fKK6+ke/fuXHPNNWzYsIFly5ZxwAHhb/H7778/y5al9+pB52oyD7zO1XBmRmFhYVpXukXy8/OZNWsWP/jBD3j33Xdp0KABQ4YM2WkcSYTn2jjniuOB17kaquX+++8SACXRcv/9U55n69atad26Nb16haetnnfeecyaNYuWLVuyJF5JL1myhBYtWqSecedqOA+8ztVQy5Yu3eUq18xYtnRpyvPcf//9Oeigg/j4448BmDhxIp06deKMM85g5MjwpFZ/LaBzpauKlyQ45zKoqOq3sv7B8Mc//pFLL72UrVu3csghhzB8+HAKCwu54IILeOaZZ2jTpg3PPfdcpSzLuZrIA69zNdT+BxywvSFVy/33336lu/8B6b0bpFu3bhT3F7uJEyemNV/n9hYeeJ2roSRxwIEHbu9P7HbOVR2/x+ucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zlXIo48+SufOnTnyyCN55JFHAPy1gM5VgAde51y5ffjhh/zlL39h+vTpvPfee7zyyivMnz+fIUOG0L9/fz799FP69++/y/ObnXM7+P94nauhXm/ag4J1G3ZJz2rUgIGrZ6U0z7lz59KrVy/q168PwHe+8x3Gjh3LSy+9xOTJk4HwWsC+ffv6+3idK4Ff8TpXQxUXdEtLL4/OnTvz5ptvsmrVKjZu3Mirr77KokWL/LWAzlWAX/E658qtY8eO3HHHHZx44ok0aNCAbt26kZWVtdM4/lpA50qX8SteScMkLZf0YUJaV0lTJX0g6WVJ+8T02pKGx/T3JPVNmKa2pKGSPpE0T9K5Mb2OpH9Imi/pHUltE6a5M6Z/LOmkjBXauRrk6quvZubMmUyZMoUmTZrQoUMHfy2gcxVQFVXNI4CBSWlPA4PNrAvwAnBbTL8WIKYPAB6SVJTnnwPLzawD0An4T0y/GlhjZocBfwDuB5DUCbgIODIu/8+Sdj5Vd86Vafny5QB8+eWXjB07lksuucRfC+hcBWS8qtnMpiRehUYdgCmxewLwb+AXhIA6KU63XNJaIBeYDlwFHBGHFQIr4/RnAvfE7jHAnxTqvc4E/m5mW4AFkuYDxwBTK7eEztVs5557LqtWrSInJ4fHH3+cxo0bM3jwYH8toHPllHLglVQf+AlwsJldK6k9cLiZvZLC7D4iBMYXgfOBg2L6e8AZkkbHtJ7AQZI+icN/E6ufPwN+aGbLgFbAIgAzy5f0NdAspk9LWGZeTCuubNcB1wEcfPDBKRTHuaqX1ahBia2a0/Hmm2/uktasWTN/LaBz5ZTOFe9wYCbQJ/YvBp4HUgm8VwGPSfoFMA7YGtOHAR2BGcAXwNtAASHfrYG3zexWSbcCDwKXpVaUnZnZUGAoQG5ubuW8Pdy5DEv1L0POud0rncB7qJldKOliADPbqBSbMprZPOBEAEkdgFNjej5wS9F4kt4GPgFWARuBsXHQ84R7uxBOAA4C8iRlA/vG8YvSi7SOac4551zGpNO4aqukeoABSDoU2JLKjCS1iN+1gLuAJ2N/fUkNYvcAIN/M5piZAS8DfeMs+gNzYvc4YFDsPg+YFMcfB1wUWz23A9oT7hU7t0cJu7Nz1YPvjxWXzhXv3cDrhHuuzwLfAq4oa6J4v7YvsJ+kvDifhpJujKOMJVRjA7QA/i2pkHB1mliVfAfwV0mPACuAK2P6MzF9PrCa0JIZM/tI0nOEAJ0P3GhmBSmU27kqU7duXVatWkWzZs38v7KuypkZq1atom7dulWdlT2K0jlbkdQM6A0ImGZmK8uYZI+Tm5trM2bMqOpsOAfAtm3byMvLY/PmzVWdFeeAcDLYunVrcnJydkqXNNPMcqsoW9VaOq2azyZU4/4r9jeWdJaZvVhpuXPO7SQnJ4d27dpVdTacc2lI5x7v3Wb2dVGPma0lVBs755xzrgTpBN7ipvVnPzvnnHOlSCfwzpD0sKRD4+dhwv96nXPOOVeCdALvjwgPuvhH/GwBbix1Cuecc24vl3LVsJltAAZXYl6cc865Gi+dVs0dgJ8CbRPnY2YnpJ8t55xzrmZKpzHU84QnTD1NeH6yc84558qQTuDNN7MnKi0nzjnn3F4gncZVL0u6QdIBkpoWfSotZ84551wNlM4Vb9GLCG5LSDPgkDTm6ZxzztVo6bRq9ufWOeeccxWU1pOmJHUGOgHbX01hZqPSzZRzzjlXU6Xzd6K7Ca/36wS8CpwM/BfwwOucc86VIJ3GVecRXkC/1MyuBLoC+1ZKrpxzzrkaKp3Au8nMCoF8SfsAy4GDKidbzjnnXM2Uzj3eGZIaA38hvBxhPTC1UnLlnHPO1VApX/Ga2Q1mttbMngQGAINilXOpJA2TtFzShwlpXSVNlfSBpJfjFTSSaksaHtPfk9S3mPmNS5pXU0kTJH0av5vEdEl6TNJ8Se9L6pFq2Z1zzrlUVTjwSuqR/AGaAtnlDGYjgIFJaU8Dg82sC/ACO/4bfC1ATB8APCRpe54lnUO40k40GJhoZu2Biex4kcPJQPv4uQ7wp24555zLuFSqmh8qZZgBpb4kwcymSGqblNwBmBK7JwD/Bn5BaDE9KU63XNJaIBeYLqkhcCshiD6XMK8zCa2tAUYCk4E7YvooMzNgmqTGkg4wsyWl5dc555yrTBUOvGbWbzfk4yNCYHwROJ8djbTeA86QNDqm9Yzf04HfEE4CNibNq2VCMF0KtIzdrYBFCePlxbRdAq+k6wgBnYMPPjidcjnnnHM7qS4P0LgKeEzSL4BxwNaYPgzoCMwAvgDeBgokdQMONbNbirl63s7MTJJVNDNmNhQYCpCbm1vh6Z1zzrmSVIsHaJjZPODEON8OwKkxPR+4JWGZbwOfAN8BciUtjGVoIWmymfUFlhVVIUs6gPA3J4DF7Px3p9YxzTnnnMuYavEADUkt4nct4C7Ce36RVF9Sg9g9gPAqwjlm9oSZHWhmbYFvA5/EoAvhirnoBQ6DgJcS0i+PrZt7A1/7/V3nnHOZlk5V8yYzK5RUoQdoxPu1fYH9JOUBdwMNJd0YRxkLDI/dLYB/SyokXJ1eVo58DQGek3Q1oXr6gpj+KnAKMJ9wX7jMvz4555xzlS3jD9Aws4tLGPRoMeMuBA4vY34Lgc4J/asIV+LJ4xlwY3K6c845l0npvBbwhtj5pKTXgX3M7P3KyZZzzjlXM6V0j1dStiTF7oMI/63NqsyMOeecczVRKk+uupZwP/eL2D2R0NDq75LuqOT8OeecczVKKlXNNwOHAo2AuUAbM1spqT7wP+D+Ssyfc845V6OkEni3mtkaYI2k+Wa2EsDMNkraWsa0zjnn3F4tlcBbT1J3QjV17dit+Klb6pTOOefcXi6VwLsUeLiY7qJ+55xzzpUglZck9N0N+XDOOef2Cqm0av6epF2eICXpMkmXVE62nHPOuZoplf/x/ojwsvpkY4GfpJcd55xzrmZLJfDmmNn65EQz2wDkpJ8l55xzruZKtVVzgxhot5PUCKhdOdlyrubZumoN277ZgJlRq05tbNNmAGrVr0vhxtBtiKz6dSncuGnnboOsBmG8cnVDnLbk7uRlV7R7d+e1uudvd+W1EFErK1wTSZDdqCG1mzVOY89z1Y6ZVegD/BR4jfDgjKK0tsC/gNsqOr/q/unZs6c5Vxk2LFhkr2R3sFeyO9jKydOK7S5tWHXrri752FPzV1peEz8bFiyq6l03JcAMqwbH8Or4SaVV84OS1gNTJDUk/H93HTDEzJ6onNMB52qegkKr6iw456qBlN5OZGZPEt5K1Cj2r6vUXDlXA5nHXeccKQReSbcWk7a928weTh7unIPsLJU9knOuxkvlirdRpefCOeec20vIvP6rVLm5uTZjxoyqzoarAbauWkv+uvBPPNWuTeHGTcDOrVupJbLq1qVg46adu0mv1ezu6K7uea3u+Sstr6q145+ee2qrZkkzzSy3qvNRHaVS1fwAMN/MnkpKvx5oZ2aDy5h+GHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJ8RWEzxNeT1gAvFy0XEl1gFFAT2AVcKGZLYzD7gSujtPcZGb/rmj5nUtV7WaN98gDqHOucqXyAI0TgKHFpP+FEFDLMgIYmJT2NDDYzLoQnop1W0y/FiCmDwAeklSU5wfN7AigO/AtSSfH9KuBNWZ2GPAH4vuBJXUCLgKOjMv/s6SscuTXOeecqzSpBN46Vkz9tJkVEv5aVCozmwKsTkruAEyJ3ROAc2N3J2BSnG45sBbINbONZvZGTN8KzAJax2nOBEbG7jFAf4XWX2cCfzezLWa2AJgPHFN2cZ1zzrnKk0rg3SSpfXJiTNuUYj4+IgRGgPOBg2L3e8AZkrIltSNUHx+UOKGkxsDpwMSY1ApYBGBm+cDXQLPE9Cgvpu1C0nWSZkiasWLFihSL5Jxzzu0qlcD7S+A1SVdI6hI/VxKeXPXLFPNxFXCDpJmEVtNbY/owQoCcATwCvE24PwuApGxgNPCYmX2e4rJ3YWZDzSzXzHKbN29eWbN1zjnnUnpy1WuSziLch/1RTP4QONfMPkglE2Y2DzgRQFIH4NSYng/cUjSepLeBTxImHQp8amaPJKQtJlwV58XAvC+hkVVRepHWMc0555zLmJSeXAXMBVaYWc/KyISkFma2PDacuovQwpnYellmtkHSACDfzObEYfcSguo1SbMbBwwCpgLnAZPMzCSNA/6fpIeBA4H2wPTKyL9zzjlXXqk+MrJA0rdSmVbSaKAvsJ+kPOBuoKGkG+MoY4HhsbsF8G9JhYSr08viPFoDPwfmAbPik7P+ZGZPA88Af5U0n9CI66KY548kPQfMAfKBG81se7W1c845lwkpP0BD0hOExknPA9tfEWhmYysna9WDP0DDOecqzh+gUbJUq5oB6hLunZ6QkGaEK1bnnHPOFSPlwGtmV1ZmRpxzzrm9QSp/JwLCfVZJL0haHj//jPdenXPOOVeClAMvoQHUOEIL4QOBl9nRKMo555xzxUgn8DY3s+Fmlh8/IwB/2oRzzjlXinQC7ypJ35OUFT/fIzS2cs4551wJ0gm8VwEXAEuBJYSHVVxRCXlyzjnnaqx0/k7U2szOSEyID9VYVML4zjnn3F4vnSveP5YzzTnnnHNRha94JfUBjgWaS7o1YdA+gL9Y3jnnnCtFKlXNtYGGcdpGCenfEO7zOuecc64EqbwW8D/AfySNMLMvdkOenHPOuRorncZVGyU9ABxJeG4zAGZ2QsmTOOecc3u3dBpXPUt4LV874FfAQuB/lZAn55xzrsZKJ/A2M7NngG1m9h8zu4qd31TknHPOuSTpVDVvi99LJJ0KfAU0TT9LzjnnXM2VTuC9V9K+wE8I/9/dB7ilUnLlnHPO1VApVTVLygLam9nXZvahmfUzs55mNq4c0w6LrxH8MCGtq6Spkj6Q9LKkfWJ6bUnDY/p7kvomTNMzps+X9JgkxfSmkiZI+jR+N4npiuPNl/S+pB6plN0555xLR0qB18wKgItTXOYIYGBS2tPAYDPrArwA3BbTr43L6wIMAB6SVJTnJ+Lw9vFTNM/BwEQzaw9MjP0AJyeMe12c3jnnnMuodBpXvSXpT5KOk9Sj6FPWRGY2BVidlNwBmBK7JwDnxu5OwKQ43XJgLZAr6QBgHzObZmYGjALOitOcCYyM3SOT0kdZMA1oHOfjnHPOZUw693i7xe9fJ6QZqbVs/ogQGF8EzgcOiunvAWdIGh3TesbvQiAvYfo8oFXsbmlmS2L3UqBl7G7Fzi9wKJpmCUkkXUe4Kubggw9OoTjOOedc8VIOvGbWrxLzcRXwmKRfAOOArTF9GNARmAF8AbwNFFQgjybJKpoZMxsKDAXIzc2t8PTOOedcSVIOvJJaAr8DDjSzkyV1AvrE//ZWiJnNA06M8+0AnBrT80loKS3pbeATYA3QOmEWrYHFsXuZpAPMbEmsSl4e0xez40o6eRrnnHMuI9K5xzsC+DdwYOz/BLg5lRlJahG/awF3AU/G/vqSGsTuAUC+mc2JVcnfSOodWzNfDrwUZzcOGBS7ByWlXx5bN/cGvk6oknbOOecyIp17vPuZ2XOS7oRwdSqpzGrgeL+2L7CfpDzgbqChpBvjKGOB4bG7BfBvSYWEq9PLEmZ1AyH41wNeix+AIcBzkq4mVE9fENNfBU4B5gMbgSsrWmDnnHMuXekE3g2SmhEaVFF0FVnWRGZW0t+QHi1m3IXA4SXMZwbQuZj0VUD/YtINuDE53TnnnMukdALvrYTq20MlvQU0x9/H65xzzpUqnVbNsyR9h3BFKuBjM9tWxmTOOefcXi2dVs11CfdZv02obn5T0pNmtrmyMuecc87VNOlUNY8C1hFekABwCfBXwgMwnHPOOVeMdAJvZzPrlND/hqQ56WbIOeecq8nS+R/vrNiSGQBJvQhPmHLOOedcCdK54u0JvC3pS8I93jbAx5I+IPx756jKyKBzzjlXk6QTeAcCTYDjYv8UwtuDnHPOOVeCdKqazyI0ptqP8B/evwJnmNkXZvZFZWTOOeecq2nSueK9GuhtZhsAJN0PTGVHK2fnnHPOJUnnilfs/Iq+gpjmnHPOuRKkc8U7HHhH0gux/yygwq8EdM455/Ym6Twy8mFJkwlPrgK40szerZRcOeecczVUOle8mNksYFYl5cU555yr8dK5x+ucc865CvLA65xzzmWQB17nnHMugzIeeCUNk7Rc0ocJaV0lTZX0gaSXJe0T03MkjYzpcyXdmTDNLZI+kvShpNHxNYVIaifpHUnzJf1DUu2YXif2z4/D22a25M4551zVXPGOIDxuMtHTwGAz6wK8ANwW088H6sT0nsD1ktpKagXcBOSaWWcgC7goTnM/8AczOwxYQ3jQB/F7TUz/QxzPOeecy6iMB14zmwKsTkruQHjWM8AE4Nyi0YEGkrKBesBW4Js4LBuoF4fVB76SJOAEYEwcZyTh/8UAZ8Z+4vD+cXznnHMuY6rLPd6PCIERwlXuQbF7DLABWAJ8CTxoZqvNbDHwYExbAnxtZuOBZsBaM8uP0+cBrWJ3K2ARQBz+dRx/F5KukzRD0owVK1ZUXimdc87t9apL4L0KuEHSTKAR4coW4BjCoygPBNoBP5F0iKQmhEDdLg5rIOl7lZUZMxtqZrlmltu8efPKmq1zzjmX3gM0KouZzQNOBJDUATg1DroEeN3MtgHLJb0F5BKqoBeY2Yo4zVjgWOBZoLGk7HhV2xpYHOe1mHAlnRerp/cFVmWifM4551yRanHFK6lF/K4F3AU8GQd9Sbhni6QGQG9gXkzvLal+vE/bH5hrZga8AZwXpx8EvBS7x8V+4vBJcXznnHMuY6ri70SjCa8PPFxSnqSrgYslfUIIql8RXsAA8DjQUNJHwP+A4Wb2vpm9Q7j/Owv4IJZjaJzmDuBWSfMJ93CLXtzwDNAspt8KDN7NRXXOOed2Ib/oK11ubq7NmDGjqrPhnHN7FEkzzSy3qvNRHVWLqmbnnHNub+GB1znnnMsgD7zOOedcBnngdc455zLIA69zzjmXQR54nXPOuQzywOucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zjnnMsgDr3POOZdBHnidc865DPLA65xzzmWQB17nnHMugzzwOueccxnkgdc555zLoIwHXknDJC2X9GFCWldJUyV9IOllSfvE9BxJI2P6XEl3JkzTWNIYSfPisD4xvamkCZI+jd9NYrokPSZpvqT3JfXIdNmdc865qrjiHQEMTEp7GhhsZl2AF4DbYvr5QJ2Y3hO4XlLbOOxR4HUzOwLoCsyN6YOBiWbWHpgY+wFOBtrHz3XAE5VaKuecc64cMh54zWwKsDopuQMwJXZPAM4tGh1oICkbqAdsBb6RtC9wPPBMnOdWM1sbpzkTGBm7RwJnJaSPsmAa0FjSAZVaOOecc64M1eUe70eEwAjhKveg2D0G2AAsAb4EHjSz1UA7YAUwXNK7kp6W1CBO09LMlsTupUDL2N0KWJSwzLyYtgtJ10maIWnGihUr0i+dc845F1WXwHsVcIOkmUAjwpUtwDFAAXAgIdj+RNIhQDbQA3jCzLoTgvPg5JmamRGumivEzIaaWa6Z5TZv3jyV8jjnnHPFqhaB18zmmdmJZtYTGA18FgddQriPu83MlgNvAbmEq9U8M3snjjeGEIgBlhVVIcfv5TF9MTuupAFaxzTnnHMuY6pF4JXUIn7XAu4CnoyDvgROiMMaAL2BeWa2FFgk6fA4Xn9gTuweBwyK3YOAlxLSL4+tm3sDXydUSTvnnHMZkZ3pBUoaDfQF9pOUB9wNNJR0YxxlLDA8dj9OuI/7ESBguJm9H4f9CHhWUm3gc+DKmD4EeE7S1cAXwAUx/VXgFGA+sDFhfOeccy5jFG6DupLk5ubajBkzqjobzjm3R5E008xyqzof1VG1qGp2zjnn9hYeeJ1zzrkM8sDrnHPOZVDGG1c555wrm5mxZWshOdm1kIxt24zsnFoIY1u+kZ0lJMjPh1q1wie/ACTIqgUFBWE+WVlQUAhmkJ0FhYVQWGhkZwszyC8wcrKFIfK3FZKTI8zEtvxC6tSuhaSqXRE1kAde55yrZrasXE3+ug1s3lxI/X3rUbhxE2ZQ2KAuhRs379wNZNXfuXvrxs0A1Erq3lZC96ZiugsRBVkCRM4+DandrHFG10FN5oHXOeeqkW35BWz9ej1TjhgAQO//G8W0716e8e5E/T6Z6IG3Evk9Xuecq0a+WVeAWfWq3i30f51WKg+8zjlXjdRSuE/rai4PvM45V400aphFCu922a1qeaSoVL46nXOuGsnOzqKWR7oazR8ZWQZ/ZKRzLtO2rlpL/rr1ANSqXZuCjZtCd2y9nIluagnFE4DsRhVv1eyPjCyZt2p2zrlqpnazxt6KuAbz+gznnHMugzzwOueccxnkgdc555zLIA+8zjnnXAZ54HXOOecyyP9OVAZJK4AvKjDJfsDK3ZSd6mpvLDPsneXeG8sMe2e50y1zGzNrXlmZqUk88FYySTP2tv+u7Y1lhr2z3HtjmWHvLPfeWOZM8apm55xzLoM88DrnnHMZ5IG38g2t6gxUgb2xzLB3lntvLDPsneXeG8ucEX6P1znnnMsgv+J1zjnnMsgDr3POOZdBHngriaSBkj6WNF/S4KrOz+4i6SBJb0iaI+kjST+O6U0lTZD0afxuUtV5rWySsiS9K+mV2N9O0jtxm/9DUu2qzmNlk9RY0hhJ8yTNldSnpm9rSbfEfftDSaMl1a2J21rSMEnLJX2YkFbstlXwWCz/+5J6VF3O93weeCuBpCzgceBkoBNwsaROVZur3SYf+ImZdQJ6AzfGsg4GJppZe2Bi7K9pfgzMTei/H/iDmR0GrAGurpJc7V6PAq+b2RFAV0L5a+y2ltQKuAnINbPOQBZwETVzW48ABiallbRtTwbax891wBMZymON5IG3chwDzDezz81sK/B34MwqztNuYWZLzGxW7F5HOBC3IpR3ZBxtJHBW1eRw95DUGjgVeDr2CzgBGBNHqYll3hc4HngGwMy2mtlaavi2JrynvJ6kbKA+sIQauK3NbAqwOim5pG17JjDKgmlAY0kHZCanNY8H3srRCliU0J8X02o0SW2B7sA7QEszWxIHLQVaVlG2dpdHgNuBwtjfDFhrZvmxvyZu83bACmB4rGJ/WlIDavC2NrPFwIPAl4SA+zUwk5q/rYuUtG33ymPc7uKB16VEUkPgn8DNZvZN4jAL/1GrMf9Tk3QasNzMZlZ1XjIsG+gBPGFm3YENJFUr18Bt3YRwddcOOBBowK7VsXuFmrZtqxMPvJVjMXBQQn/rmFYjScohBN1nzWxsTF5WVPUUv5dXVf52g28BZ0haSLiNcALh3mfjWB0JNXOb5wF5ZvZO7B9DCMQ1eVt/F1hg/7+9+wmxqgzjOP79FZkWkQhtoiKSiGKokaAkXAj9A2sTWS4szUoQqZ3Qn8WURLUwalG0CIoWQWAlabaIIhcxQVqYTlZi1CKKIlqIIFjkr8XzTt1kRBw9Z+z6+2zmnnPuOee9886d557zvvd57N9s/wlsovp/2Pt60tH69rT6H9e1BN6TYwdweZv5OIuajLFlhtvUiTa2+Srwje3nBzZtAVa2xyuBzX23rSu2H7N9ke1Lqb792PZyYBuwtD1tqF4zgO1fgB8lXdFW3Qh8zRD3NXWLeaGkc9rf+uRrHuq+HnC0vt0CrGizmxcC+wduScdxSuaqk0TSEmoc8EzgNdtPz3CTOiFpEfAJMMG/452PU+O8G4FLqDKKd9s+cuLG/56kxcA627dLuoy6Ap4H7ATusX1oJtt3skkapSaUzQK+B1ZRH9iHtq8lrQeWUTP4dwIPUuOZQ9XXkt4EFlPl/34FngDeZYq+bR9CXqJuux8EVtn+fCbaPQwSeCMiInqUW80RERE9SuCNiIjoUQJvREREjxJ4IyIiepTAGxER0aME3oiOtQo/a9vjCyW9fax9TuBco+2rbRFxikrgjejeXGAtgO2fbS89xvNPxCiQwBtxCsv3eCM6JmmyWtVeYB9wpe0RSfdR1V/OpcqtPUclqrgXOAQsackL5lNlJy+gkhestv2tpLuopAd/Ucn8bwK+A+ZQ6fyeBa9Ihg8AAAGxSURBVLYCLwIjwFnAk7Y3t3PfAZxPJYd4w/b6jn8VEUElQY+Ibj0KjNgebRWdtg5sG6EqPM2mguYjthdIegFYQWVDewVYY3ufpOuBl6l80WPArbZ/kjTX9h+Sxqhasg8BSHqGSnF5v6S5wHZJH7VzX9fOfxDYIen9ZCOK6F4Cb8TM2tbqGh+QtB94r62fAK5uVaBuAN6qrH0AnN1+jgOvS9pIJfOfyi1UgYd1bXk2lQ4Q4EPbvwNI2gQsAhJ4IzqWwBsxswbz/R4eWD5MvT/PoGrBjh65o+017Qr4NuALSddOcXwBd9re+5+Vtd+R40wZd4roQSZXRXTvAHDedHZstY5/aOO5tOow17TH821/ZnuMKlh/8RTn+gB4uCW5R9KCgW03S5onaQ411jw+nTZGxPFJ4I3oWLudOy7pK2DDNA6xHHhA0i5gDzVRC2CDpIl23E+BXVT5uqskfSlpGfAUNalqt6Q9bXnSdqqu8m7gnYzvRvQjs5ojTkNtVvM/k7Aioj+54o2IiOhRrngjIiJ6lCveiIiIHiXwRkRE9CiBNyIiokcJvBERET1K4I2IiOjR37sN9U3E5qF0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorCICBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecFdXZwPHfs30X2AbLUhbpRUAWFCkqCiJYQLEbjYrdWKJJjDFGoyZixGiMxvjqa6Jie62xxwIqiFEJ0hSk9+2993vv8/4xs8vlsrsssJfdhef7+dzPnXvmzDlnzpQzc2bujKgqxhhjjDm4Qtq6AMYYY8zhyBpgY4wxpg1YA2yMMca0AWuAjTHGmDZgDbAxxhjTBqwBNsYYY9rAATfAIjJHRPJFJNv9fY6IpIlIuYiMOfAi7ne5Dlo5RKSfiKiIhAUzn/ZARH4qIvPbuhzGmI5DRH4nIv9so7zb7f55rw2wiGwXkSq3Iav//N0ddwRwGzBcVXu4kzwC3KyqnVV15f4WzK2wQfs7/d7K4aZf4c5Phog8KiKhB5Bfs0TkEhFZ5uaXJSIfi8gJwcqvBeWZJyK1IlLmftaIyIMiEtfcdKr6iqpO38887xORuoB16Tf7Nwcdm1/9l4tIoYgsEJFhbV2uvRGRK0TkP62cZoSI/EVE0t362C4ij7VmHqZ5IjJZRNJbIQ1fwPb9AYCq/klVr2lhOvNEZE5AmH87VCQi/xaRPgdS3vagpWfAZ7oNWf3nZjf8CKBAVXP94vYFfmzVUu6flpQjVVU7AycBFwFXBaMgIvIr4DHgT0AyTr39DzCrifgH60jtz6raBUgCrgQmAF+LSKcgluv1gHXpz43kIyJyOFwe+bO7/qUAucC8fU2gPR7VN6eJ8t4JjAXGAV2AycCKg1isQ9rB2J78lmtmwPZ9Zitmc6a7vfQEcoAnWjHttqGqzX6A7cApjYSfAlQBPqAceNX9VqAC2OLG6wX8C8gDtgG3+KURCvwO2AKUAcuBPsBiv3TKgYsayT8EuBvYgbPzehGIAyIbK0cj0yswyO/3G8CTfr/jgGeBLCADmAOE+pX7ESAf2Arc5KYX1kg+cW55Lmimju8D3gJeBkqBa9z5eAzIdD+PAZFu/G7Ah0AxUAh8BYS44+5wy1sGbACmNpHnPGBOQFgXd35vdn9fAXwN/BUocOvgCuA/AfV4i1sP+cDD9WVpYj5fbmLcIuABN78qYNCBLAMC1tvAvHEONr5x6/B7YHJAWe53y1IGzAe6+Y0/wW/aNLdOjsXZKYT6xTsX+L4l9Q/MAMrd4XHAt276WcDfgYiAOr8J2ARsc8Med8tSirMdTQqY9zdx1q8yYDUwBKfhy3Wnm763dR84EqgGvDjrdLEbP9JdFjvdOngaiHbHTQbScdbLbOClRuriQ+AXTdTTlcAHfr83AW/6/U4DRrvDw4AFONvEBuBCv3gtKePvcNan7cBPm9leewHvu/lsBq4NqOs3cPZHZTgnAWObSes44DugxP0+LmA9fBBY6i7X94DEfViHA7enK4F1brm2Ate7cTux+7683J3H5vZBeyzX+rCWbPs462O2O9+LgRFu+HVAHVDrluODJrbnM4CNAdvPSree0oD7/Mb1Y/d9Q6P1EDBft+FsG1nAlX7jo4G/4LQ7JcB/2LUeNbk8mlz+e43QRAPsX9iAsIaGDaeRXA7cA0QAA9wZPtUdfzvOzmAoIEAq0DUwnSbyvgpn5R8AdAbexm/jbsH0/uUc5lb0L/3GvwP8L87K2R1nI6hfYX8GrMc5WEgEFtJ0A3wa4GlsXMDKWQec7dZZNPBHYImbd5K7YO934z+IswMJdz+T3Pob6q58vfxWvIFN5DmPgAbYDX8R5ywVnIbFA/wcCHPLdQV7NsAL3Xo4AtgIXNOSjTBg3CKcneMIN6/wA1kGNNMAA71xDijOcOt7mvs7ya8sW3AaqWj391x3XF+cDfdit4xd2dUArAVOD1iHbttb/eOsv/8HfOX+PgZnYw5zl+E6/Boodz4XuPNdv/Ff6pYlDGfnkQ1E+c17NXCqO/5FnIPhu9x5uBa3IW/Bur/b8nfD/orTICXiHMR9ADzot4/wAA/h7NCjG6mLu91lfyNwFCB+4wbg7NBCcBqFHbj7HHdckTuuE866f6U7j2NwGtPh+1DGR90ynoRz8D60iWW3GKcHKwoYjXNycXJAXZ+Bc9DyILCkiXQS3fJf5pb5Yvd3/T5wEc4B0Eh3/v7Fvq3DgdvTDGAgzr7iJKASOLqZfXlz+6A9lmtjaTS17ePsv7uwq5Ff1dy+Cb/tGYgBXgBe9Bs/GWfdCQFG4Rxkne23H/TfN+ytHjzuvIe79VsJJLjjn3Trtre7fI9z56HZ5dHkvr+5kX4zXo6zEdR/rm1mofk3bOOBnQHj7wSed4c3ALOayHdvDejnwI1+v4fiNGJhLZxecY6WKtzhV9l1dJcM1OC3s8DZOBa6w18AP/MbN52mG+CfAtl7qeP7gMUBYVuAM/x+nwps99sw3gucP5yj3Fyc3onwveQ5j8Yb4LnAAnf4ikaW3xXs2QCf5vf7RuDzZuazNmBdqj9YWAT80S/uAS0Dmm+A7yDgTAz4FJjtV5a7A+bpE7/1950m5u8O4BV3OBFnw+3ZTP1Xu3WQjdM4NHWw9Av/PN35PHkvy7cI5xJL/bwv8Bt3Js42Xd+b0MVNM74F9R64/AVnGxroFzaRXWfmk91lHtVMWUNxzui/dvPOrF8W7vg04GjgJ8AzOAcEw3Aa2/fdOBfhHsD4Tfe/wL0tLKMH6OQ3/g3g942UtQ9OD0AXv7AHgXl+df2Z37jhQFUT830ZsDQg7FvgCr/1cG5AWrVufbVkHf5jY/n6xX8XuNWvDgL35c3tg/ZYrm6Yj9237wsDt79GyhGPs/7F+W0bjTXA9e1QnbuOHNXMvD0G/NUd7kcT++cm6qHKPy7OPnUCTsNahbtdNbLtN7k8mvq09PrR2ar6WQvj+usL9BKRYr+wUJwuU3BW5i37kS7sOhqutwPnSC8Z56ixJY52878Ap+HphLMD6Itz9JMlIvVxQ3B2BPV5p/ml41+OQAVANxEJU1VPM/HSAn43Nn+93OGHcVbo+W75nlHVuaq6WUR+4Y4bISKfAr9S1cxm8g3UG6drraly7a3s/uVszBuqemkL0mnNZRCoL3CBiPhfnwrHOYuul+03XIlzlgrNr7MvA+vca+gX4jQIWc2U4xFVvTswUESG4JyNjcU52g/D6UnylxYwza+Bq3HqRYFYnEsV9XL8hquAfFX1+v0GZx570Xy9B0pyy7jcL77gbOf18lS1uonpccvxJPCkiETjnB09JyJLVXUd8CXOjnGQO1yMc+Yy0f0NzjIdH7CvCcPpGm1JGYtUtcLvd1PrcS+gUFXLAuKO9fsduO5ENbH9B27j9Wn19vsduI6H4yzXlqzDgevI6TgHJENwlmkMTg9kU5rbB0HjyzVTVVOaSRP3ZtcHcPa7STiNNjjzVdLMpGer6mfu9LOAL0VkuKpmi8h4nH34SJze1kicbu7G8t9bPRQELKv67b8bTq9HY9t/S5bHHoJ9o0sazlFmvN+ni6qe4Td+4H6mnYkz0/WOwDmKzWk8euPU8QbOkec9fuWqwbnuV1/uWFUd4Y7PwtkR++fdlG/dtM7eW1ECfjc2f5lumctU9TZVHQCcBfxKRKa64/5PVU9wp1WcLqIWEZHOOGfPX/kFB5arMYF1sS8Nvj//vA50GVTgbFj1evgNp+Ecrfqvl51UdW4LytjkOquqGTjL+1ycs5uXWpBeY57C6V4frKqxONcmJSBOQ12JyCTgNziNfoKqxuPsyAKnaYm91Xvg+pCP04CP8Isfp87NMnuUdW9UtUpVn8Q5gx/uBtc3wJPc4S9xGuCT2NUApwFfBizTzqp6QwvLmBBw82FT63EmkCgiXQLitvSgPzCtvgFhgWkFruN1OPPTknXYfx2JxOnCfgRIdteRj9i1jjS2jJrcBzUzTUtcgtOAnoJzv0G/+mK2JF1V9arq2zg9EfX/JPk/nF6kPqoah3OJbo/1vwX10Jx8nF6rxrb//dqnBLsBXgqUicgdIhItIqEiMlJEjnXH/xO4X0QGu3fqjRKRru64HJxrPE15FfiliPR3G44/4Vy7bO4sszlzgWtFpId71jIf+IuIxIpIiIgMFJGT3LhvALeISIqIJAC/bSpRVS3BadifFJGzRSRGRMJF5HQR2eMO4ID5u1tEkkSkm5vGywAiMlNEBolzOF+CsyL6RGSoiJzsrmTV7LqxolkiEikix+B0xRQBz+9tmgC3i0iC+7eAW4HX93H6PbTCMlgF/MSt67HA+X7jXgbOFJFT3XUyyv0LRbNH7q5XgFNE5EIRCRORriIy2m/8iziN4VE49yXsjy44l0fKxflr0g0tiO/BuRYZJiL34JwB77MW1HsOkCIiEW58H/AP4K8i0h1ARHqLyKktzVNEfuHWf7Rbp7Pdear/++CXwBScbvF0nAPE03CuedfH+RAYIiKXucs8XESOFZEj96GMfxDnL1GTgJk0cgalqmk410IfdNebUTg9Dy+3dH79fOSW+RJ3vi/COej40C/OpSIyXERicC49veX2GOzrOlx/VpgHeNyzQP+/E+YAXWX3vyE2uQ86QF1wDvIKcA6S/xQwvtl9v9tWzAIScO6PqE+zUFWrRWQcTiPfmL3VQ5Pc9eg54FER6eXW+0R3f7tf+5SWNsAfyO7/7XqnhQX24qzIo3Fu+sjHaXTrF/KjODvS+Tg7nGdxLuaD0436gogUi8iFjST/HM4ZxmI37Wqcm4X2i6qudtO63Q26HGdhrcVplN7Cuf0dnI35U5w73Vawlx2tqv4F+BXOzSZ5OEdLN+M0eE2ZAywDfsDpHlnhhgEMBj7DuSbyLfA/qroQZ8Wai1PP2Tg3T9zZTB6/EZEynA3hRZxuzuMCuuJa4j132lXAv3GWY2s4kGXwe5wj1SLgDzhHyEDDTnQWzpll/fK4nRZsD6q6E+dGi9twuupX4dw8WO8dnLOGd1S1ssVzurtf4+xAynDmc28HNJ8Cn+DcALcDZ1toyaWDpjRX71/g3NmbLSL5btgdODdELhGRUpx1c+g+5FeJc2dpNs66exNwnqpuBVDVjTjr+lfu71Kcmzm/ru9Gd7uEp+NcJ85006q/QaglZcx25zUT5yDrZ6q6vonyXoxz1paJs7zv3Z9LdKpagLN/vA1nG/wNMFNV8/2ivYRzTTQbp/vzFnfafVqH3fq5BWd/W4Szfr3vN349ToO71d3n9qL5fdCBeBFnPc3AWceWBIx/FhjulsN/H/mBiJTjtBUP4Fxfrf+r6Y3AH9392T3ufO5hb/XQAr/GqYvvcLb/h3D+9bFf+xRR3d9eBGOcB5rgdJVubuNy9MM5EAs/gF6Q1irLFpy7hvfnvglzkInIZJwbhFrSA3LQiMginHK1yROkTPAdDg87MOagEZHzcK5hfdHWZTHGtG8d6ik6xrRn7hnLcOAy93qRMcY0ybqgjTHGmDZgXdDGGGNMG7Au6Bbo1q2b9uvXr62LYYwxHcry5cvzVTWprcvRXlkD3AL9+vVj2bJlbV0MY4zpUERkX55Qd9ixLmhjjDGmDVgDbIwxxrQBa4CNMcaYNmDXgPdTXV0d6enpVFc3+ZIXYw6qqKgoUlJSCA8Pb+uiGGNawBrg/ZSenk6XLl3o168fIvvz0hljWo+qUlBQQHp6Ov3792/r4hhjWsAa4P1UXV1tja9pN0SErl27kpeX19ZFMUHg9fooKqljZ0YlSV0jiYoIJSO7isT4CKKjQ8nOraZTdChdOoeTW1BDeJiQEB9BQVEtPq+S1DWS4tI6qmo89EyKoqzCS0lZLb17RFNZ5aWgsJYjekdTXesjJ7eGI1KiqatTMrOrOCIlhtjO4URHh+69oGafWAN8AKzxNe2JrY+HrvSsaq67bQVhYcKff38UN8xZRVW1lyceSOWX9/xAfkENf587mrsfWsvO9CoenzOKh57YyIYt5cy9ewRPzdvKyjUl3P2rYbzyVjpfLy3g1usG8tFnOXz8eQ5X/KQv3y4r5LV30zn3jF506xrBMy9tByAkBP70uxFMHJtIaKjdNtSarDaNMaYdq6j08ORzW6io9HLKid1556NMikvqOHFCNz77KpecvBqOSU1gxQ/F7EyvYuigzuzMqGLDlnJ6JUdRW+dj5ZoSYruEkRAXztdLCwgPE4YO7MLHn+cAcNzYRF5/Lx2AU07qzrzXdv191+eDP/99I8WlbfqSsUOSNcAdWGhoKKNHj2bkyJGceeaZFBcX79P09913H4888kij41588UVGjhzJUUcdxZgxY5qM19r69evHUUcdxVFHHcXw4cO5++67m73R7bjjjtun9CdPnszQoUMZPXo0o0eP5q233jrQIhsTVLW1PnLzagCIj4sgt8Adjg0nL78+PJxcdzghLoI8N05cbDi5+bUAdO4URmGRMxwZGUJZxa4Gtc6j+L8WoLZu93cEFJXUoT57b0Brswa4A4uOjmbVqlWsWbOGxMREnnzyyVZJ9+OPP+axxx5j/vz5rF69miVLlhAXF7dHPI8nOEfECxcuZPXq1SxdupStW7dy/fXXN5n3N998s8/pv/LKK6xatYpVq1Zx/vnn7zZOVfH57EVGpv2I7RLOGdN6ALD8+yKmHN/NGf6hmMnHO095XLWmhBMnOOE/ri9l3JgEQkJgy/ZyjhoWS1iYkJ1bzRG9Y4iOCqG8wktMdChxsc5VyMoqDz26RwKQm1fDoH6ddivD8eO6EhlpzUVrsxo9REycOJGMjIyG3w8//DDHHnsso0aN4t57720If+CBBxgyZAgnnHACGzZsaDStBx98kEceeYRevXoBEBkZybXXXgs4Z5C/+MUvGDt2LI8//jjbt2/n5JNPZtSoUUydOpWdO3cC8OabbzJy5EhSU1M58cQTAfjxxx8ZN24co0ePZtSoUWzatKnZeercuTNPP/007777LoWFhSxatIhJkyZx1llnMXz48IY4AIsWLeLEE09kxowZDB06lJ/97Gctbki3b9/O0KFDufzyyxk5ciRpaWnMnz+fiRMncvTRR3PBBRdQXl4OwCeffMKwYcM4+uijueWWW5g5cyawZ2/CyJEj2b59OwAvv/xyw3xff/31eL3ehrLfddddpKamMmHCBHJynO7AnJwczjnnHFJTU0lNTeWbb77hnnvu4bHHHmtI/6677uLxxx9v0fyZji00VDh1cjI/v3ogJaV19Ogexe03DUbEOWC857ZhxMWGk5lTxdy7R9C7VzSr15Xy6B9GMWRgF776bz5P/CmVUcPj+GRhNk/8aTRjRyfwwaeZPD4nleOOTeT9T7L48z1HMfn4bvz78yzuvf1Ipk/uTp/e0Zw3sxe/uWkIXTrb39tanaraZy+fY445RgOtXbt2j7CDrVOnTqqq6vF49Pzzz9ePP/5YVVU//fRTvfbaa9Xn86nX69UZM2bol19+qcuWLdORI0dqRUWFlpSU6MCBA/Xhhx/eI92EhAQtLi5uNM+TTjpJb7jhhobfM2fO1Hnz5qmq6rPPPquzZs1SVdWRI0dqenq6qqoWFRWpqurNN9+sL7/8sqqq1tTUaGVl5R7p9+3bV/Py8nYLS01N1SVLlujChQs1JiZGt27dukcdLFy4UCMjI3XLli3q8Xj0lFNO0TfffLPR8g8ZMkRTU1M1NTVV8/Pzddu2bSoi+u2336qqal5enk6aNEnLy8tVVXXu3Ln6hz/8QauqqjQlJUU3btyoPp9PL7jgAp0xY4aqqt5777271eWIESN027ZtunbtWp05c6bW1taqquoNN9ygL7zwgqqqAvr++++rqurtt9+u999/v6qqXnjhhfrXv/5VVZ1lW1xcrNu2bdMxY8aoqqrX69UBAwZofn7+HvPXHtZLExwej1cLimq0rKxOPR6fFhbVaElprfp8Pi0qrtHiUmcdKyqu0aKSGlVVLS6p1aLiGvX5fFpSVquFRTXq9fq01B32eHxaVl6nBUU1Wlfn1fIKZ7i21quVlR4tKKrR6hrPfpcZWKbtYB/eXj92F3QHVlVVxejRo8nIyODII49k2rRpAMyfP5/58+czZswYAMrLy9m0aRNlZWWcc845xMTEAHDWWWftV74XXXRRw/C3337L22+/DcBll13Gb37zGwCOP/54rrjiCi688ELOPfdcwDlLf+CBB0hPT+fcc89l8ODBLcrP2Y4d48aNa/J/ruPGjWPAgAEAXHzxxfznP//Zo4sZnC7osWPHNvwuKyujb9++TJgwAYAlS5awdu1ajj/+eABqa2uZOHEi69evp3///g3lvvTSS3nmmWeaLfvnn3/O8uXLOfbYYwFnmXXv3h2AiIiIhjPoY445hgULFgDwxRdf8OKLLwLOdf64uDji4uLo2rUrK1euJCcnhzFjxtC1a9dm8zaHltDQEBLjIxp+J/gNx8c1PhwXu+usNdbvDNb/bLZzp13NQFhYCJ2c3QPh4dhfj4KsXXVBi8hzIpIrImsCwn8uIutF5EcR+bNf+J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yISQQdWfw14x44dqGrDNWBV5c4772y4zrl582auvvrqFqc7YsQIli9f3uT4Tp06NTmu3tNPP82cOXNIS0vjmGOOoaCggEsuuYT333+f6OhozjjjDL744ou9plNWVsb27dsZMmTIXvMO/BvOvvwtxz9dVWXatGkN9bd27VqeffbZZqcPCwvbrcu7/sYxVWX27NkNaW3YsIH77rsPgPDw8IYyhoaG7vWa+jXXXMO8efN4/vnnueqqq1o8b8aY9qldNcDAPOA0/wARmQLMAlJVdQTwiBs+HPgJMMKd5n9EJFREQoEngdOB4cDFblyAh4C/quogoAhoeavUjsXExPC3v/2Nv/zlL3g8Hk499VSee+65huuWGRkZ5ObmcuKJJ/Luu+9SVVVFWVkZH3zwQaPp3Xnnndx+++1kZ2cDzhngP//5z0bjHnfccbz22muAc2Y5adIkALZs2cL48eP54x//SFJSEmlpaWzdupUBAwZwyy23MGvWLH744Ydm56u8vJwbb7yRs88+m4SEhL3Ww9KlS9m2bRs+n4/XX3+dE044Ya/TNGbChAl8/fXXbN68GYCKigo2btzIsGHD2L59O1u2bAHg1VdfbZimX79+rFixAoAVK1awbds2AKZOncpbb71Fbm4uAIWFhezY0fwb2qZOncpTTz0FgNfrpaSkBIBzzjmHTz75hO+++45TTz21uSSMMR1Au+qCVtXFItIvIPgGYK6q1rhxct3wWcBrbvg2EdkMjHPHbVbVrQAi8howS0TWAScDl7hxXgDuA54KztwcXGPGjGHUqFG8+uqrXHbZZaxbt46JEycCzs0+L7/8MkcffTQXXXQRqampdO/evaFbNNAZZ5xBTk4Op5xyCqqKiDR5xvXEE09w5ZVX8vDDD5OUlMTzzz8PwO23386mTZtQVaZOnUpqaioPPfQQL730EuHh4fTo0YPf/e53jaY5ZcoUVJ27kc855xx+//vft6gOjj32WG6++WY2b97MlClTOOecc1o0XaCkpCTmzZvHxRdfTE2N83eOOXPmMGTIEJ555hlmzJhBTEwMkyZNoqysDIDzzjuPF198kREjRjB+/PiGM/bhw4czZ84cpk+fjs/nIzw8nCeffJK+ffs2mf/jjz/Oddddx7PPPktoaChPPfUUEydOJCIigilTphAfH09oqHUNGtPhtfVF6MAP0A9Y4/d7FfAH4L/Al8CxbvjfgUv94j0LnO9+/ukXfpkbtxtOw1wf3sc/n0bKcR2wDFh2xBFHaCC72aV9WbhwYcMNUYdqnl6vV1NTU3Xjxo1NxrH10rQn2E1YzX7aWxd0Y8KARGACcDvwhhyEZ+6p6jOqOlZVxyYlJQU7O2OatXbtWgYNGsTUqVNbfPOaMaZ9a1dd0E1IB952j6aWiogP52w2A+cstl6KG0YT4QVAvIiEqaonIL7p4CZPnszkyZMP2TyHDx/O1q1bD0pexpiDoyOcAb8LTAEQkSFABJAPvA/8REQiRaQ/MBhYCnwHDHbveI7AuVHrfbcBX4jTRQ0wG3jvoM6JMcYY42pXZ8Ai8iowGegmIunAvcBzwHPuX5NqgdluY/qjiLwBrAU8wE2q6nXTuRn4FAgFnlPVH90s7gBeE5E5wEqc68bGGGPMQdeuGmBVvbiJUZc2Ef8B4IFGwj8CPmokfCu77pQ2xhhj2kxH6II2xhhjDjnWAHdg1dXVjBs3jtTUVEaMGNHw0oVt27Yxfvx4Bg0axEUXXURtbW0bl9QYY0wga4A7sMjISL744gu+//57Vq1axSeffMKSJUu44447+OUvf8nmzZtJSEjY62MUjTHGHHzWAB8k8xflcN5VS5h01pecd9US5i/KOeA0RaThdXx1dXXU1dUhInzxxRcNLyGYPXs277777gHnZYwxpnVZA3wQzF+Uw0N/30hOXg2qkJNXw0N/39gqjbDX62X06NF0796dadOmMXDgQOLj4wkLc+6vS0lJ2e09wcYYY9oHa4APgv99cRs1Nbu/HL6mxsf/vrjtgNMODQ1l1apVpKens3TpUtavX3/AaRpjjAk+a4APgtz8mn0K3x/x8fFMmTKFb7/9luLi4oZX26Wnp9O7d+9Wy8cYY0zrsAb4IOjeLXKfwlsqLy+P4uJiwHnR+4IFCzjyyCOZMmUKb731FgAvvPACs2bNOqB8jDHGtD5rgA+C6y/vT2Tk7lUdGRnC9Zf3P6B0s7KymDJlCqNGjeLYY49l2rRpzJw5k4ceeohHH32UQYMGUVBQwNVXHxKvPTbGmENKu3oS1qFq+uRkwLkWnJtfQ/dukVx/ef+G8P01atQoVq5cuUf4gAEDWLp06QGlbYwxJrisAT5Ipk9OPuAG1xhjzKHDuqCNMcaYNmANsDHGGNMGrAE2xhhj2oA1wMYYY0wbsAbYGGOMaQPWAHdwxcXFnH/++QwbNowjjzySb7/9lsLCQqZNm8bgwYOZNm0aRUVFbV1MY4wxAawB7uBuvfVWTjvtNNavX8/333/PkUceydy5c5k6dSqbNm1i6tSpzJ07t62LaYxtBhFuAAAgAElEQVQxJoA1wAeBqpKVmUlWZiY+n69hWFUPKN2SkhIWL17c8KSriIgI4uPjee+995g9ezZgryM0xpj2yhrggyA7K4vq6mqqq6vZuWNHw3B2VtYBpbtt2zaSkpK48sorGTNmDNdccw0VFRXk5OTQs2dPAHr06EFOzoG/9tAYY0zrsgb4IFJVfD7fAZ/51vN4PKxYsYIbbriBlStX0qlTpz26m0UEEWmV/IwxxrQea4APguQePfZoBEWE5B49DijdlJQUUlJSGD9+PADnn38+K1asIDk5mSz37DorK4vu3bsfUD7GGGNanzXAB0FOdvYeZ72qSk529gGl26NHD/r06cOGDRsA+Pzzzxk+fDhnnXUWL7zwAmCvIzTGmPbKXsZwENV3B7dWFzTAE088wU9/+lNqa2sZMGAAzz//PD6fjwsvvJBnn32Wvn378sYbb7RafsYYY1pHu2uAReQ5YCaQq6ojA8bdBjwCJKlqvjj9uo8DZwCVwBWqusKNOxu42510jqq+4IYfA8wDooGPgFu1NVvERvTo2bPhhqvkHj0aznx7uDdKHYjRo0ezbNmyPcI///zzA07bGGNM8LTHLuh5wGmBgSLSB5gO7PQLPh0Y7H6uA55y4yYC9wLjgXHAvSKS4E7zFHCt33R75NXaRISevXrRs1cvQkJCGobt5ihjjDl8tbsGWFUXA4WNjPor8BvA/2x1FvCiOpYA8SLSEzgVWKCqhapaBCwATnPHxarqEves90Xg7GDOjzHGGNOYdtcAN0ZEZgEZqvp9wKjeQJrf73Q3rLnw9EbCG8vzOhFZJiLL8vLyDnAOjDHGmN21+wZYRGKA3wH3HMx8VfUZVR2rqmOTkpIOZtbGGGMOA+2+AQYGAv2B70VkO5ACrBCRHkAG0Mcvboob1lx4SiPhxhhjzEHV7htgVV2tqt1VtZ+q9sPpNj5aVbOB94HLxTEBKFHVLOBTYLqIJLg3X00HPnXHlYrIBPcO6suB99pkxowxxhzW2l0DLCKvAt8CQ0UkXUSubib6R8BWYDPwD+BGAFUtBO4HvnM/f3TDcOP8051mC/BxMObjYHj88ccZOXIkI0aM4LHHHgOwVxEaY0wH0e4aYFW9WFV7qmq4qqao6rMB4/upar47rKp6k6oOVNWjVHWZX7znVHWQ+3neL3yZqo50p7k52P8BDpY1a9bwj3/8g6VLl/L999/z4YcfsnnzZnsVoTHGdBDt7kEch6JPEo/GW1axR3hol06cVrhiv9Jct24d48ePJyYmBoCTTjqJt99+m/fee49FixYBzqsIJ0+ezEMPPbTfZTfGGBMc7e4M+FDUWOPbXHhLjBw5kq+++oqCggIqKyv56KOPSEtLs1cRGmNMB2FnwB3UkUceyR133MH06dPp1KkTo0ePJjQ0dLc49ipCY4xpv+wMuAO7+uqrWb58OYsXLyYhIYEhQ4bYqwiNMaaDsAa4A8vNzQVg586dvP3221xyySX2KkJjjOkggtYF7T7B6jbgCFW9VkQGA0NV9cNg5Xm4Oe+88ygoKCA8PJwnn3yS+Ph4fvvb39qrCI0xpgMI5jXg54HlwET3dwbwJnDYNcChXTo1eRf0gfjqq6/2COvatau9itAYYzqAYDbAA1X1IhG5GEBVK+UwvSNof/9qZIwx5tAVzGvAtSISjfv6QBEZCNQEMT9jjDGmwwjmGfC9wCdAHxF5BTgeuCKI+R10qmp/8zHtRgd9qJsxh62gNcCqukBEVgATAAFurX+E5KEgKiqKgoICunbtao2waXOqSkFBAVFRUW1dFGNMCwXzLuhzgC9U9d/u73gROVtV3w1WngdTSkoK6enp5OXltXVRjAGcg8KUlJS9RzTGtAtB7YJW1Xfqf6hqsYjcCxwSDXB4eDj9+/dv62IYY4zpoIJ5E1ZjadujL40xxhiC2wAvE5FHRWSg+3kU53/BxhhjzGEvmA3wz4Fa4HX3UwPcFMT8jDHGmA4jmHdBVwC/DVb6xpi2U1ZeR15BLavXlTDmqDjUB6t+LGHU8DjCw4QVq4sZPqQLMdFhrFxdzIB+nUiIi2Dl6mJSekXRvVsU3/9YQreuEaT0jGbN+lI6xYTR/4hOrN9URogoQwZ1Ycv2CqqqfIw8MpYdaRUUFtcx+qg4MrOrycqu4pjUBHLza9i2s4JxYxIpKqll45Zyjh2dQEWll7UbSzlmVDx1HuWHtSWkjogjNERYuaaYEUNjiY4KZcXqYoYM6EyXzuGsXF1MvyNiSEyI4Ps1JSR3j6RXchSr15YSFxvGESkxrN1YRkR4CIP6d2bjljK8XuXIIbFs21FBaXkdqSPiSMusIje/hqOPiic7t4a0jArGjk6ksKiWTdvKOXZMAuXlHtZtKuOY1Hhqa5TV6926VGHVmmK3LkNYuaaYPr2i6dsnhoS4iLZe9KYVBfMu6CHAr4F+/vmo6snBytMYE3y1dT4WfJnLo09v5vhxXRHgz09uYtTwWLp0DuO+h9fRNyWGm68ayDVzVpIYH8E9tw3j0hu/IzwshEfuO4rZP19Gba2Pv88dzTW/XEFxaR1Pzh3NTb9dRVZONY/PGcVt965m285KHrxrBL+f+yM/bijj7l8O5aG/bWTpyiJuuWYgT83bymeL85h90RH839tpvP3vTM45oxf5BbU8/9oOTj4hido6H48/s4WxqfFERobywF/XM3hAZxLjI7jrwbUkJ0Vyx81D+NntK4mJCePBu0Zw2U3LUJ/ytz+lcuWtyykv9/A/D43h+l+vJK+glr8/mMqtd31PWmYVj9x3FL+ds4aNW8r5w2+O5P6/rGflmhJ+feNgHn9mM4uXFHDdZf2Y9/oOPpyfzUWzUsjMruaVf6Vx2snJlFd4eWreVo47NpGQEOGhJzYyclgssV3CuffPa/H5nHo/YXxXfnvLUOJjw9t0+ZvWE8wu6DeBlcDdwO1+H2NMB1ZaVsfTL2wDYMYpPXju1R0AnD61By+8vhOfD06bkszL/0rD41FOObE7b32QQXWNjxOP68ZHn2dTXuFl/DGJfLWkgMLiOkYOi+PH9aVk5VTTNyWGnPwatu2sJDE+HBH4cUMZkZEhJCdFsXRlEQAjhsby2WLnb4ATjknkvY8zAZhyfBL/904aAKednMy813aVb96rO1CF009O5qU3d+L1KtMnJ/Pau+nU1iknH5/Eex9nUVXl5fhxXflscS4lpR7GjEpg2fdF5BXUMmRgZ7btrCQts4oe3SOprPKwcUs5nTuF0rlTGCvXlBAaAgP7dWLxkgIAjh6VwL8XZANw4sRuvPFeOgCnTk7mxTec8p1xSg+ed+vyjKnJvPD6jobGF+A//y2grLwuOAvVtIlg3pXsUdWngpi+MaYNqEJNjReA6KhQyis8ew5HNz4cExVKQVHtHvFjokMp849f7gxHRYZSXunkFR4mVLv5Anh9u578pQpet7EKDRVqa30N01e60+9Wpii//ALKnZNfs0c5YqJCGp/PqF1xIsJDqKp28goJEerqdpXP51PqH1QmAnUe50d4uFBdvasuyxqpM381Nb49wkzHFcwz4A9E5EYR6SkiifWfIOZnjDkIYqJDmXpidwC++a6AM6b2aBg+vWG4kDNOSXaGlxZwxilu+LICTjvZCV+6soiTJyURGgLf/1jMcWO7Eh4mbNpazshhsURHh5KZU03vHlHExYZRXuElPCyE5KRIAIqKa+l/RAwAO9MrGTU8DoA160s5YXxXAP67opDpU5J3lfWUXWWd4Vdu//Azpjrx/7u8kOmTkxGBFauLmTShG6Ghwjr3unJkZAjb0yoZ0K8zXTqFUVhcR1xsOF0TIqjzKNU1XlJ6RgOQnVvNsMFdANi4pZxxYxIAWPFDMSdP6r5H3t98V9hQr/V6JkeRGG/XgA8lEqznx4rItkaCVVUHBCXDIBo7dqwuW7asrYthTLtRVFLLpwtz+G5lET+bPYA160tZ/G0e11zan53plXy6KJfLL+hDabmH9z/J4twZvQgPC+HNDzKYPrk73btF8urb6Uwcm8DQwV146c2djBway7ijE3npzZ2k9Ipm2kndefnNNOJiw5h1ei9eeycdEbj4nD68+UE65RVervxJX977NJOcnGquvbw/n36Rw+ZtFdxwZX++WlLAqjXF3HjlAFb8UMzXSwu4fvYANm8t5/Ovcrny4r7k5tfy78+y+cnZKXg8Pt7+dyYzp/UgNjac195JZ/Jx3ejbJ4aX30rj6KPiGD0ynpfe3Mmg/p2YNCGJl97cSfduEcw4pSev/GsnUZGhnH9Wb954N52aOuXyC47g7Y8yKCyq5Zqf9uPfn+WwI62CG64YwOdf5bF2Qyk3XDmA/y4vZOnKIm64oj8/bihj0dd5XHtpP9Iyq/hkYS79j4jhknP6kNQtsq0X/T4RkeWqOraty9FeBa0BPpRYA2zMnrxeparaQ1RkKCEhQmWVh8jIUMLDnO7ayIgQwsNDqKj0EB4WQkSEMxwWJkRGhFJV5UFChKjIUKqqvCBON2x1jRefT4mJDqOmxovXHa6t9VLnUTrFhFFX56Om1kfnTmHUeXzU1HjpFBOG1+uceUZHOVfXqqo9REeFIuKULyoylNBQoaLSQ2RE6K7yhYcQ0VBWISIilMoqD6EhQmRkKJXVHkIQoqJCqa72oup0E/uX1b98tXU+6up8u5W1U0xoQ/liosNQVaqqdy/rbuVrpC47GmuAmxfUBlhERgLDgYYnxKvqi0HLMEisATbGmH1nDXDzgnZI5T73+Qn3MwX4M3DWXqZ5TkRyRWSNX9jDIrJeRH4QkXdEJN5v3J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yJiF1SMMca0iWD2aZwPTAWyVfVKIBWI28s084DTAsIWACNVdRSwEbgTQESGAz8BRrjT/I+IhIpIKPAkcDrO2ffFblyAh4C/quogoAi4+oDm0BhjjNlPwWyAq1TVB3hEJBbIBfo0N4GqLgYKA8Lmq2r9/fhLgPr3rc0CXlPVGlXdBmwGxrmfzaq6VVVrgdeAWeK8tPdk4C13+heAsw90Jo0xxpj9EeyXMcQD/8B5CcMK4NsDTPMq4GN3uDeQ5jcu3Q1rKrwrUOzXmNeHN0pErhORZSKyzN75a4wxprUF81nQN7qDT4vIJ0Csqv6wv+mJyF2AB3ilNcq3N6r6DPAMODdhHYw8jTHGHD5avQEWkaObG6eqK/YjzSuAmcBU3XXbdga7d2mnuGE0EV4AxItImHsW7B/fGGOMOaiCcQb8l2bGKc512BYTkdOA3wAnqWql36j3gf9z3zPcCxgMLAUEGCwi/XEa2J8Al6iqishCnJvDXgNmA+/tS1mMMcaY1tLqDbCqTtnfaUXkVWAy0E1E0oF7ce56jgQWOPdRsURVf6aqP4rIG8BanK7pm1TV66ZzM/ApEAo8p6o/ulncAbwmInNwXhTx7P6W1RhjjDkQ9iCOFrAHcRhjzL6zB3E0L5jvA74X52x2OPARzv9y/wN0uAbYGGOMaW3t7UEcxhhjzGGhXT2IwxhjjDlcBK0Lmj0fxFHOgT+IwxhjjDkkdJgHcRhjjDGHkqB0QYtImPvsZUSkDzAW5y9BxhhjjCEIDbCIXItzvXeHO/w57sMvROSO1s7PGGOM6YiC0QX9C2Ag0AVYB/RV1XwRiQG+w3kloDHGGHNYC0YDXKuqRUCRiGxW1XwAVa0Ukdog5GeMMcZ0OMFogKNFZAxO93aEOyzuJ6rZKY0xxpjDRDAa4CzgUXc422+4/rcxxhhz2AvayxhEJEpVq/3HiUhka+dnjDHGdETBfBLWN42E2YM4jDHGGIJwBiwiPYDe7LoWLO6oWCCmtfMzxhhjOqJgXAM+FbgCSGH3679lwO+CkJ8xxhjT4QTjGvALwAsicp6q/qu10zfGGGMOBcF8FvS/RGQGMAK/vx+p6h+DlacxxhjTUQTtJiwReRq4CPg5znXgC4C+wcrPGGOM6UiCeRf0cap6OVCkqn8AJgJDgpifMcYY02EEswGucr8rRaQXUAf0DGJ+xhhjTIcRtGvAwIciEg88DKwAFPhnEPMzxhhjOoxg3oR1vzv4LxH5EIhS1ZJg5WeMMcZ0JMF4EMfJqvqFiJzbyDhU9e3WztMYY4zpaIJxBnwS8AVwZiPjFLAG2BhjzGEvGA/iuNf9vnJ/pheR54CZQK6qjnTDEoHXgX7AduBCVS0SEQEeB84AKoErVHWFO81s4G432TnuA0IQkWOAeUA08BFwq6rq/pTVGGOM2V+tfhe0iMzzG569H0nMA04LCPst8LmqDgY+d38DnA4Mdj/XAU+5+SYC9wLjgXHAvSKS4E7zFHCt33SBeRljjDFBF4y/IaX6Dd+6rxOr6mKgMCB4FvCCO/wCcLZf+IvqWALEi0hPnOdRL1DVQlUtAhYAp7njYlV1iXvW+6JfWsYYY8xBE4wGOBjducmqmuUOZwPJ7nBvIM0vXrob1lx4eiPhexCR60RkmYgsy8vLO/A5MMYYY/wE4yasFBH5G87jJ+uHG6jqLQeSuKqqiAT9mq2qPgM8AzB27Fi7RmyMMaZVBaMBvt1veFkrpZkjIj1VNcvtRs51wzOAPn7xUtywDGByQPgiNzylkfjGGGPMQRWU1xGKSCjwkKr+upWSfR+YDcx1v9/zC79ZRF7DueGqxG2kPwX+5Hfj1XTgTlUtFJFSEZkA/Be4HHiilcpojDHGtFhQnoSlql4ROX5/phWRV3HOXruJSDrO3cxzgTdE5GpgB3ChG/0jnL8gbcb5G9KVbv6FInI/8J0b74+qWn9j143s+hvSx+7HGGOMOagkWH+BFZGncG5wehOoqA/viE/CGjt2rC5b1lq96cYYc3gQkeWqOraty9FeBfNlDFFAAXCyX5g9CcsYY4whuC9j2K8nYRljjDGHg6C9D1hEUkTkHRHJdT//EpGUvU9pjDHGHPqC1gADz+PcpdzL/XzghhljjDGHvWA2wEmq+ryqetzPPCApiPkZY4wxHUYwG+ACEblURELdz6U4N2UZY4wxh71gNsBX4fxfNxvIAs4HrghifsYYY0yHEcy/IaWo6ln+Ae7DOdKaiG+MMcYcNoJ5BtzYIx7tsY/GGGMMQTgDFpGJwHFAkoj8ym9ULBDa2vkZY4wxHVEwuqAjgM5u2l38wktxrgMbY4wxh71gvA3pS+BLEZmnqjtaO31jjDHmUBDMm7AqReRhYATOc6EBUNWTm57EGGOMOTwE8yasV4D1QH/gD8B2dr0e0BhjjDmsBbMB7qqqzwJ1qvqlql7F7m9GMsYYYw5bweyCrnO/s0RkBpAJJAYxP2OMMabDCGYDPEdE4oDbcP7/Gwv8Moj5mcNYYXEt360sYkd6JWdO78m6TaVs2FzGWaf2YntaBatWFzPz1F7k5tewZFkBM6b1oKzcw1dL8jnlpGRUlc+/yuOkCd2Ijg5l/qJcxo1JoFvXCOYvzGHEsFj6psTw6aJc+h8Rw7DBXViwKJekrhEcPSqBL77KIyYmhIlju7L423y8PmXK8UksWV5IaVkd0ycns/yHYjJzqph5Sk/WrCthy/YKzjy1J1u2V7B6XTFnntqLzKxqlq4q5MxpPSksruOb7/I5dUoyNbU+Fn2dz5QTkggPExYszuW4sYnEx0Xw6cIcRo+Mo3ePaD5ZmMPQgZ0Z2L8z8xfmktIripHD4vhscQ7xseGMOzqRhV/nERYWwqTxXfl6aQHV1V6mntid71YWkVdQwxmn9GDVmhK3LnuwfnM56zeVunVZyYbNpfzk7N6EhQkREeF4PB5UlbCwMLxeLz6fj7CwMHw+X7PDoaGhqCo+n4+QkBAE8NYPi+D1epsdDgkJwev1IiKEhobi8XgQEcLCwqirc47/w8N3la9h2OcjLDwcr9eL+nyEtqB8gWUFdpW7ufJ5PEhISKPlqx/21NWhAWUNrMu6whI8ZRWIQEhEBN7KKgBCYqLwVVYHbZgQQSQEBMK6dCaia3xwN+TDTFC6oEUkFBisqiWqukZVp6jqMar6fjDyM4e34pJa7vrTj9z/6HqSukby6NObuOehdcREh/H8qzu44/4f8Sq890kmv/z9D5SUevhqSQE3/fZ7dqRXsW5jGdf+aiWr15aQW1DDFbcs56v/5uP1KrNvXsa/P8uhU0wYl920jNffTSe5WxSzb17G86/toF+fTlz1i+U89cJWBvTtzPW/Xsnj/9jCoH6dufWuH3j4yU307dOJ3z3wI396bAM9u0fz4OMbuO+R9cTGhvP0C9u484EfCQkJ4fV307ntvtVUVflY8GUut9z1PVm5NaxYXcLPbl/Fhi3l7Eyv5KpfrOC7FUWUV3iZ/fNlLPgyl/CwEC67eRnvfJRJQnwEl9+8jJfe2knvntFceesy/vHydgb07cy1v1rB35/dysB+nbj5zu959OnN9O/biV/ft5q5T2ykT68Y7nt4Hfc/up5uiRE89r9b+P3ctURFhTHv9R3ccf8axhwVR1lpIdlZmdTV1VFUWEhmRgYej4fSkhIyMzLwejyUl5eTkZ6Ox+OhqqqK9LQ0amtqqK2pcYZra/F6PKSnpVFdVYVPlfS0NMrLy1FVMtLTKS0pASAjI4PCwkIAsjIzyc/LQ1XJzsoiNycHr9dLbk4O2VlZeDwe8vPzyc7Koq6ujsKCAjIzMqirq6O4uJgMt6xlpaWku+WrrKggIz2dutpaqqurSU9Lo66ujrq6Oqd81dX4fD7S09KorKwEID0tjbLSUqd86ekUFRUBkJmRQUF+PqpKVlYWebm5+LxecrKzycnOxuPxkJeXR1amU38FBQUNw0VFRXvUpcfjoa60jEVDprJw8FQqNm1j0ZHTWXTkdCo3bQ/q8KKh01jo5uspK2+DrfvQFpQGWFW9wMXBSNuYQKVlHlavc3aEgwd05ttlzo56zFHxzP8yB4ATxnXj3Y8yATh5UhKvvZsOwNQTu/N6/fCk7rzxnjN88glJvPVhBl4fnDixGx/Oz6bOo0w4JpHP/5NLVbWP0SPi+G5VEaVlHgb178yW7RXkF9aSnBRJaXkd6VlVREeHEhUZwoYtzs7riN7RLP+hGICRw2L54j95AEw4JpEP5mcDMOX4JN74IAOAU07szmvvpLnDSQ1lPXlSd978IAOfz4n/7seZeDzK8eO68skXOdTU+Dg2NYH//LeA8govw4fEsnp9KYXFdfTpHU12TjVZOdXEx4bj88G2nZWEhQndukY01OWQgV34+jvn/SnHjIrn04VOXT74t0143b/4Z2Zk0CU2ltDQUDLS04mOiSE8PJz09HQiIiKIiooiPS2NEBE6d+5MZmYmXp+P2NhYsjIzqa6uJiEhgdzcXMrLyujarRuFBQUUFxXRLSmJ4uJiCvLzSe7enfKyMvJyc+menExlZSU52dkkJSVRU1NDdlYWXbt1w+PxkJWZSWJCAj5VMjMyiI2LIyQkhIz0dDp36kRYeDjpaWlERUURGRlJRno6oWFhxMTEkJGRAap06dLFabRra4mPjycnO5uKigoSu3YlPy+PkpISuiUlUVRURGFBAd27d6estJT8vDy6JydTUVFBbk4OSd27U11dTXZ2Nt2SkqirqyMrK4vExER8Ph9ZmZnEx8fvqssuXXavy4gIMtLTEZFW215M+xHMLuivReTvwOtARX2gqq4IYp7mMORTbRhWv2Hnt/MtAj53ODRE8Lk/QoSGYQkBrw83fFccEfDWxw8BnxtHQmRXuH86Aj6vGwdQ357lCSQiDSPFLy0n3V1xdi+Hf/kaKbdfHP/4/nHwLzfQRPF2K3tdnQ+vTxERfD6fM0LEqXvVhsZCVRu6a9U/3L8b1y+Oz+0a3iNcFfEfdutC3Xzrh/3DNWB+GvIOHA4JceL7la+pvOu7q+vL6l9u8R/2S8e/LhrqsT6Of1n96lIC6tKZz2YWjOmwgnkX9Gic/wD/EfiL+3kkiPmZw1Rcl3AGD+gMwI60So4e5ZxRrF5XyuTjugGwZHkhM07pAcDCb/I4b2ZvABZ9nce5DcP5nDejlzP8TR7nnNELEfhqST4zp/UgNMRJZ+qkJCIiQvh+TTETjk4kJjqUjVvLGTqoC/Fx4WTn1tA1MYLkpEgqq7x4fEr/I2IAyM6tZuSwWADWby7j+GO7ArBsVRHTpyQDsHhJPuec7pRj4de7yrrw6zzOP3PX8HkznOEvv81n1mk9CQmBr5cWcPrUHoSHCctWFXHihG5ER4Xw4/pSRo+Io0vnMHakV9KndwzdEiMoLqkjMjKElJ7R1HmUktI6hg506nLrjgrGpjp1+cPaEqYc77zO+/e/GkpESDk+n4/eKSmUlZXhqaujd0oKVVVV1NTU0Kt3b+rq6qisrKR3794oUFZWRs9evQgLC6O4uJjkHj2Ijo6moKCAbklJxMbFkZebS0JiIomJieTm5BAbG0tSUhLZ2dnEdOpEcnIyOTk5REZF0aNnT/JycwkPD+f/27v3KLvK8o7j39+ZM5MrJCEMSWYmCMWIIiqXEUKlaAG5eCEICCgtlKayXFK1tq6K7Vra1kuXS5d4K3SxRARrRYwoESjKJWjFEpyAXMI1C4TcM7lN7pk5M0//2O+EkzCTkGHO2XPO/D5rnTXvvj/v7GSes/d+9/vOaGlh7dq1FAoFZrS07Lod3NLayqauLnp7e2lpbWXr1q30dHfT2tbGzh072LF9O61tbfT29rJlyxZaWlspFAp0dXUxfcYMxowZw4b16zlk2jQmTpzI2rVrOWjqVKZMnsya1auZNGkSBzc3s3rVKiZOnMgh06axetUqxo0bx/Tp01mzejVNY8YwfcYM1nZ2UiwWaWlpYd26dSjF17VxY/a7bG1l85Yt9JT/LnfsoLWt7RVfLK0+yCd239rb26OjoyPvMGwv1m/oZsEDnSxdvpWLzp1Jxx828uRzm7jk/ENZ/PQmHn58Ix8+r40/Lt3Gbxeu46I5baxd3809v1nD+e9tYcfOPu66bxVnnTqdpv8llUwAABDMSURBVMYCv/jVSt75jmYOntLEz/9nBW8/ZgqHzRzPz+5cwZvecABvfuOB/PzOFcxsGccJxx3E/F+u5MADipx68iHccc8qGgrirFOncfev17B1Ww/nnt3Kr3+3llWd27nwnDYWPryBJX/cwoc/MJNHF3fx6OIuLjl/Js8+v4WFi9bzofNmsmLVdhY8sJYPntPKps0lfnX/as45cwYRcMc9q3j3KYdwwMQit921gpPePpXW6eP42Z0reOtRB3LkEQdw650rOOKwCRz3lsncdtdKpk5t5JQTm7n97pWMGVPgjHdO4677slvr7z9jBvf9dg3rN/RwwftbeeChdS//Lh/dyJPPbuKS8w7lyWc38ezzW7j8ojYaG0VTUxOlUom+vj4aU8Om8sZMvb29NDY27ioXi0Uigt5SadfV5KDl3l4aGhqQRKlU2lXuLZUoNDRQKBQolUq7GjyVSiUKEg3FIqVSCUgNm3p66EuNsF7RSKy3l+JA8e0Ra7Gx8eVysUiUxSqgNFisZQ2yBotvzwZjA/0ud7y0ggWzTgNg9j038eDpl1alXO7Pn7uX8Ye17df/S0mLIqJ9vzYaRSqWgCVNA74MtETE2ZKOAk5K7wbXFCfg2tHXFxQKqlg5BritWD696/ZjheMYKbFadXSv27irEVTVW0Gn2+tDaQXtBLx3lXwG/H3gBuCf0/SzZM+Day4BW+0oTwyVKJc3htmzYUz5dKXjGCmxWnU0TZ3sV4DqUCWfAR8cEbcAfQARUQJ6h7ozSZ+StFjSE5J+JGmspMMlLZS0RNKPJTWldcek6SVp+WFl+/lsmv+MpDNfWxXNzMyGppIJeKukqaSGiJJmA11D2ZGkVuATQHtEHE02rvDFwFeAqyPi9cAGYG7aZC6wIc2/Oq1Hug1+MVnjsLOAa9I7y2ZmZlVVyQT898B84AhJDwA3AR9/DfsrAuMkFYHxwEqyvqXnpeU3Auem8pw0TVp+mrJ7bnOAmyNiZ0S8ACwBTngNMZmZmQ1JxZ4BR8TDkt4JHEn2FtszEdGzj80G29dySV8DXgK2A78CFgEb061tgGVAayq3AkvTtiVJXcDUNP/Bsl2Xb7MbSVcAVwAceuihQwnbzMxsUBW7ApY0luy28RfIhiO8Ms0byr6mkF29Hg60ABPIbiFXTERcFxHtEdHe3NxcyUOZmdkoVMlb0DeRPWv9NvCdVP7BEPd1OvBCRHSmq+hbgXcAk9MtaYA2YHkqLwdmAqTlk4B15fMH2MbMzKxqKpmAj46IuRGxIH0+QpaEh+IlYLak8elZ7mnAk8AC4IK0zmXAbak8P02Tlt8X2YuQ84GLUyvpw4FZwENDjMnMzGzIKvke8MOSZkfEgwCSTgSG1JtFRCyUNA94GCgBjwDXAXcAN0v6YprX/47x9cAPJC0B1pO1fCYiFku6hSx5l4Ar08ARZmZmVVXJnrCeImuA9RLZq0ivA54hS3wREW+tyIErwD1hmZntP/eEtXeVvAI+C5gC/Fma/g2wsYLHMzMzqxmVfAZ8Llmjq4OB5lQ+JyJejIgXK3hcMzOzEa+SV8BzgdkRsRVA0leA/yNrFW1mZjaqVfIKWOze93MvHlbazMwMqOwV8A3AQkk/S9Pn4pGQzMzMgMp2Rfl1SfcDJ6dZl0fEI5U6npmZWS2p5BUwEfEw2bu7ZmZmVqaSz4DNzMxsEE7AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsB07AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsBzWTgCVNljRP0tOSnpJ0kqSDJN0t6bn0c0paV5K+JWmJpMckHVe2n8vS+s9Juiy/GpmZ2WhWMwkY+CZwV0S8EXgb8BRwFXBvRMwC7k3TAGcDs9LnCuBaAEkHAZ8HTgROAD7fn7TNzMyqqSYSsKRJwCnA9QAR0R0RG4E5wI1ptRuBc1N5DnBTZB4EJkuaAZwJ3B0R6yNiA3A3cFYVq2JmZgbUSAIGDgc6gRskPSLpu5ImANMiYmVaZxUwLZVbgaVl2y9L8wab/wqSrpDUIamjs7NzGKtiZmZWOwm4CBwHXBsRxwJbefl2MwAREUAM1wEj4rqIaI+I9ubm5uHarZmZGVA7CXgZsCwiFqbpeWQJeXW6tUz6uSYtXw7MLNu+Lc0bbL6ZmVlV1UQCjohVwFJJR6ZZpwFPAvOB/pbMlwG3pfJ84NLUGno20JVuVf8SOEPSlNT46ow0z8zMrKqKeQewHz4O/FBSE/A8cDnZF4hbJM0FXgQuTOveCbwHWAJsS+sSEeslfQH4fVrv3yJiffWqYGZmllH26NT2pr29PTo6OvIOw8yspkhaFBHteccxUtXELWgzM7N64wRsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8uBE7CZmVkOnIDNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8tBMe8A6lVEUOoNIqDYAH190NcXFIsiAkq9QWNRBKLU00djo4gQPaU+mhoFiO6e/jJ09wRNjQUg6O4JGosFpFRuLCCCnlJQbBASlEpBoSAKBSiVQAVoKEBvbxZfQ0NWDsrjg2JxgFhLMWh8Y5qy73A7u3cvDxRrT09QLIu1oSy+QiH7lHpBZfHtirWPff4uC4Xs+H19fQOW+8e+lrTX9fIqR8Su2PacHgnx7S1WM9t/TsAVsHPtBkqbt9DbC43jm+jZtgOAwvixu5W376MciBg/lr5t23cvB8SEsfRt2/GKcl9ZuaG/DDSMH0v3HuWBYtrfWLftZ6x9A5VTTHvG2n+MVxNreUx9A5QpiMLYLKbdynvZpprlkR7f3mJtGDuW3hEU624xjcD4hhIrBaH05ad4wESapk7G6kBE+LOPz/HHHx/7Y8vzS+P24hvi9uIbYu39Dw65/Fq3r2Z5pMTh+BzrSIljOGMt/2x9Yel+/T3KE9ARI+Bv+Ej9+BlwBfT09OUdgpmZjXBOwBVQKPjZmJmZ7Z0TcAU0NDgBm5nZ3jkBV4Abh5qZ2b4oe05ue9Pe3h4dHR2vev3udRspbd4CQKGpacgtMOuxNafjq834ainWkR7faGoFLWlRRLTnHcdI5deQKqBp6uSa+Q9iZmb5qKlb0JIaJD0i6fY0fbikhZKWSPqxpKY0f0yaXpKWH1a2j8+m+c9IOjOfmpiZ2WhXUwkY+CTwVNn0V4CrI+L1wAZgbpo/F9iQ5l+d1kPSUcDFwJuBs4BrJDVUKXYzM7NdaiYBS2oD3gt8N00LOBWYl1a5ETg3leekadLy09L6c4CbI2JnRLwALAFOqE4NzMzMXlYzCRj4BvCPQH8vF1OBjRFRStPLgNZUbgWWAqTlXWn9XfMH2GY3kq6Q1CGpo7OzczjrYWZmVhsJWNL7gDURsahax4yI6yKiPSLam5ubq3VYMzMbJWqlFfQ7gHMkvQcYCxwIfBOYLKmYrnLbgOVp/eXATGCZpCIwCVhXNr9f+TaDWrRo0VpJL+5HvAcDa/dj/XowGusMo7Peo7HOMDrr/Vrr/LrhCqQe1dx7wJLeBXw6It4n6SfATyPiZkn/CTwWEddIuhJ4S0R8VNLFwHkRcaGkNwP/TfbctwW4F5gVEb3DHGPHaHv3bTTWGUZnvUdjnWF01ns01rmaauUKeDCfAW6W9EXgEeD6NP964AeSlgDryVo+ExGLJd0CPAmUgCuHO/mamZm9GjWXgCPifuD+VH6eAVoxR8QO4IODbP8l4EuVi9DMzGzfaqIRVg26Lu8AcjAa6wyjs96jsc4wOus9GutcNTX3DNjMzKwe+ArYzMwsB07AZmZmOXACHmaSzkoDPSyRdFXe8VSCpJmSFkh6UtJiSZ9M8w+SdLek59LPKXnHOtxe7YAg9UTSZEnzJD0t6SlJJ9X7uZb0qfRv+wlJP5I0th7PtaTvSVoj6YmyeQOeW2W+ler/mKTj8ou8PjgBD6M0sMN/AGcDRwEfSgNA1JsS8A8RcRQwG7gy1fMq4N6ImEX2jnU9fgF5tQOC1JNvAndFxBuBt5HVv27PtaRW4BNAe0QcDTSQvcpYj+f6+2QD05Qb7NyeDcxKnyuAa6sUY91yAh5eJwBLIuL5iOgGbiYbAKKuRMTKiHg4lTeT/UFuZfdBMMoHx6gL+zkgSF2QNAk4hfSOfUR0R8RG6vxck72iOS71pDceWEkdnuuI+A1ZXwnlBju3c4CbIvMgWU+EM6oTaX1yAh5er3qwh3qRxlo+FlgITIuIlWnRKmBaTmFVyv4MCFIvDgc6gRvSrffvSppAHZ/riFgOfA14iSzxdgGLqP9z3W+wczvq/r5VmhOwDZmkicBPgb+LiE3lyyJ7v61u3nHLY0CQEaIIHAdcGxHHAlvZ43ZzHZ7rKWRXe4eTdVk7gVfeph0V6u3cjjROwMNrSIM91CJJjWTJ94cRcWuavbr/llT6uSav+Cqgf0CQP5I9WjiVsgFB0jr1eL6XAcsiYmGankeWkOv5XJ8OvBARnRHRA9xKdv7r/Vz3G+zcjpq/b9XiBDy8fg/MSq0lm8gabszPOaZhl559Xg88FRFfL1s0H7gslS8Dbqt2bJUSEZ+NiLaIOIzsvN4XEZcAC4AL0mp1VWeAiFgFLJV0ZJp1Gllf6nV7rsluPc+WND79W++vc12f6zKDndv5wKWpNfRsoKvsVrUNgXvCGmZpyMRvkLWc/F7qe7quSDoZ+F/gcV5+HvpPZM+BbwEOBV4ELoyIPRt41Lw9RuT6E7Ir4oPIBgT5i4jYmWd8w03SMWQNz5qA54HLyb681+25lvSvwEVkLf4fAf6G7HlnXZ1rST8C3kU27OBq4PPAzxng3KYvI98hux2/Dbg8IjryiLteOAGbmZnlwLegzczMcuAEbGZmlgMnYDMzsxw4AZuZmeXACdjMzCwHTsBmVZBGFPpYKrdImrevbV7DsY5Jr8OZ2QjmBGxWHZOBjwFExIqIuGAf678WxwBOwGYjnN8DNqsCSf0jYz0DPAe8KSKOlvRXZKPNTCAb5u1rZB1e/CWwE3hP6gThCLKhLpvJOkH4SEQ8LemDZJ0n9JINGnA6sAQYR9ZN4L8DtwPfBo4GGoF/iYjb0rE/AEwi62TivyLiXyv8qzCzpLjvVcxsGFwFHB0Rx6QRpG4vW3Y02YhSY8mS52ci4lhJVwOXkvWsdh3w0Yh4TtKJwDVk/VF/DjgzIpZLmhwR3ZI+RzaW7d8CSPoyWdeZfy1pMvCQpHvSsU9Ix98G/F7SHe7dyKw6nIDN8rcgjau8WVIX8Is0/3HgrWnUqT8FfpL1BgjAmPTzAeD7km4hGzRgIGeQDSTx6TQ9lqybQYC7I2IdgKRbgZMBJ2CzKnACNstfeX/CfWXTfWT/RwtkY9Ees+eGEfHRdEX8XmCRpOMH2L+A8yPimd1mZtvt+QzKz6TMqsSNsMyqYzNwwFA2TGMtv5Ce95JGo3lbKh8REQsj4nNAJ9lwcXse65fAx1Nn+kg6tmzZuyUdJGkc2bPoB4YSo5ntPydgsypIt3kfkPQE8NUh7OISYK6kR4HFZA26AL4q6fG0398Bj5INm3eUpD9Iugj4Alnjq8ckLU7T/R4iG9f5MeCnfv5rVj1uBW02SqVW0Lsaa5lZdfkK2MzMLAe+AjYzM8uBr4DNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAf/DzTNvnxnjUfaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorFiatBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAEWCAYAAAAzRH40AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYXLW1wH9n2s7O9l5diSvFNjYYQrMxPQRiQuhgIKEloSQ8WkICIRDgUR4OIRBKAAOhPkJJ8oJppoPBjk0zYIPb9r47uztlZ0bvD90Zz463eYvXg/X7vvnmXl1d6UhXVzpXOpJEKYXBYDAYDAbDYLCNtgAGg8FgMBiSF6NIGAwGg8FgGDRGkTAYDAaDwTBojCJhMBgMBoNh0BhFwmAwGAwGw6AxioTBYDAYDIZBM2RFQkSuF5EGEamxzheKyGYRaReRWUMXcdBybTc5RGS8iCgRcYxkPDsCInKqiCwdbTkMBsO3CxF5SESuH205koH+2hwRuVZEHrWOx1rtoH2k5OlXkRCRDSLiswSJ/v4UFRC4FJiulCq2brkV+LlSKl0p9Z/BCmZl0ncGe39/cljhd1jpqRSR20cyo0XkFBH5yIqvWkT+T0T2H6n4BiDPQyISFBGv9ftURG4Ukay+7lNKPaaUOmyQcV4rIl0JZenywaUguYnL/3YRaRKRl0Vk6mjL1R8icqaIvD3MYbpE5DYRqbDyY4OI3DGccezIiOYbEfl8tGUZCsNQZ/cU5gQRiYjI3cMZbj9x9ljGRWRvEfmXiLRY7+xyETnLujZPRCoS/B8uIm9a9Wu9iLwhIsf0E8cGETlkONOjlNpktYPh4Qw3noH2SHzfEiT6+7nlPhZoVErVxfkdB3w2rFIOjoHIMUMplQ4cBJwInD0SgojIL4E7gD8AReh8+zNwbC/+t1fPxn8rpTKAAuAsYB/gHRFJG0G5nkwoS//dQzwiIjvDsNt/W+WvHKgDHtrWAJKtF6wXea8C5gB7AxnAPGDldhRrtDkQKAQmisheIxVJspUVizOAZuBEEUkZLSFEZF/gNeAN4DtAHnABcGQv/o8HngaWoN/vIuC3wPe3h7zbHaVUnz9gA3BID+6HAD4gArQDj1v/CugAvrb8lQL/C9QD64GL4sKwA78Cvga8wApgDPBmXDjtwIk9xG8DrgY2oivhJUAWkNKTHD3cr4DvxJ0/BdwVd54FPABUA5XA9YA9Tu5bgQbgG+BnVniOHuLJsuT5UR95fC3wDPAo0Ab8xErHHUCV9bsDSLH85wP/AFqAJuAtwGZdu8KS1wt8CSzoJc6HgOsT3DKs9P7cOj8TeAf4H6DRyoMzgbcT8vEiKx8agFuisvSSzkd7ubYMuMGKz4d+WQf9DEgot4lxo5Wmd608XA3MS5Dl95YsXmApkB93ff+4ezdbebIXUBuVz/J3HLB6IPkPfA9ot473Bt6zwq8G/gS4EvL8Z8BaYL3lttiSpQ39Hh2QkPan0eXLC3wCTEY34HXWfYf1V/aBaYAfCKPLdIvlP8V6FpusPLgHSLWuzQMq0OWyBnikh7z4B3BJL/l0FvBi3Pla4Om4883ATOt4KvAy+p34Ejghzt9AZPwVujxtAE7t430tBV6w4lkHnJOQ10+h6yMv+mNmTj917F+Bx4BngT8lXJuArg+9wCvAXXQvx2eg68BG4DfElXt6rldswJXoOrfRkjV3gOH1Wi7ppc4GjgZWWfe8C+wRF9cstMLoBZ4EnqD7OyGWnBdYz+z4hLw5zHrOregPszeAn8RdPxtYg1ZEXgLGJbxD56PLU4uVr0LvZfxt4tqHHp7hPKAiTu5NwGV9+D+TuHo0zj0+v3ts46xr4+le302w0u9FvwN/ipaTHvwuo+/6rdcy0Gt6+rrYU4XcW+YlPKDvxGXECrQm5gImoiv9w63rl6ErtSlW5s8A8hLD6SXus9Ev8UQgHf0SPtKTHL3cHy/nVPSL8Yu4638H/gKkob8WlgPnWdfOB75AKz25wOv0rkgcAYR6upZQ+XQBP7DyLBW4DnjfirsA/RL+3vJ/I7oidFq/A6z8m4KuWEvjCtAuvcT5EAmKhOW+BN1rALqwh4ALAYcl15lsrUi8buXDWOAr4l7mHtLZlyKxCdjViss5lGdAH4oEUIZ+SY6y8vtQ67wgTpav0Y1tqnV+k3VtHPrlO9mSMY8tDdnnwJEJZejS/vIfXX7/Brxlnc9GKzoO6xmuIa6htdL5spXuaGN4miWLAz3cWAO449LuBw63ri9BK/W/ttJwDpZCMoCy3+35W27/g25Yc9HK6IvAjXF1RAi4Gd2Yp/aQF1dbz/6nwO6AxF2biK7obegGfCNbKuyJ6EbCZsm6Ga14ONCNVAN62HWgMt5uyXgQukGc0suzexPdcLmBmeiPpIMT8vootPJ1I/B+H+++B93IHwX80JI5Xml8D60AudAKbBtbyvF0dGO3v3X9VnQ9Eq9IJNYrF6PrlXIrrX8BHh9geAMpl/EfZ7PQDeBcKy8Wod/LFCv8jcAv0GXweCuueEXiACAA5AB30l2hzLfy4jhLnout+39iXT8W3T5Ms65fDbybIOs/gGx0vVUPHNFTGbeeURiY38dznMeWcjnVCn9CH/67xRHnviEuv3tt49haOXiPLeX3QHQd1Zci0Vv91mcZ6DU9fV2MS1g7+mWO/s5JzLyeCpNVgDYlXL8KeNA6/hI4tpd4+1MEXgV+Gnc+xUqwY4D3K6sgdljHj7Pli78IXYBT4/yfDLxuHb8GnB937TB6VyROBWr6yeNrgTcT3L4Gjoo7PxzYYB1fBzyfmD70V3wdurfI2U+cD9GzInET8HJcYU98fmeytSJxRNz5T4FX+0hnMKEsRZWeZcB1cX6H9AzoW5G4goQvY/QXy6I4Wa5OSNO/48rv33tJ3xXAY9ZxLtAJlPSR/34rD2rQjVxvSt8l8XFa6Ty4n+fbjB66i6b95bhr30e/09HenQwrzOwB5Hvi8xf0O7RLnNu+bOkpmWc9c3cfstrRPSzvWHFXRZ+FdX0zsCdwEnAvWrGZilYaXrD8nIiliMXd9xfgmgHKGALS4q4/BfymB1nHoBuVjDi3G4GH4vL6lbhr0wFfH2k/Dd2IOdCKSSuw0Lo21pLLE+f/UbaU499iKQHWucfK63hFIrFeWUNcLyVQglVv9hfeAMtlvCJxN9bHT5zbl2hF7UDrOccrje/SXZG4H3gu7nl1AYXW+RnAewnlcDNbFIn/A34cd92Gfh/Hxcm6f8LzvrKXMl5m+Z/ax3OcxxZFYj/Lf19l/kzr2bYk/CJxz6/XNo445SCunMSX37/RtyLRW/22TWUg+hvomNkPlFKvDNBvPOOAUhFpiXOzo7viQb+UXw8iXNjydRJlIzpTi9DdsQNhTyv+H6Eb0DR0RTYOrSVXi0jUrw1dUKNxb44LJ16ORBqBfBFxKKVCffjbnHDeU/pKreNb0JXEUku+e5VSNyml1onIJda1XUXkJeCXSqmqPuJNpAzdZdubXP3JHi9nTzyllDptAOEM5zNIZBzwIxGJH690ons1otTEHXeivwig7zL7KLDGsjE5Ad2wVfchx61KqasTHUVkMvrrYg76RXage/bi2Zxwz38BP0bniwIy0V9tUWrjjn1Ag9pifOWz/tOt+/vK90QKLBlXxPkX9HsepV4p5e/lfiw57gLuEpFU9JfYX0VkuVJqDbrLdh5aUX4DXeEehG5c3rCCGQfMTahrHMAjA5SxWSnVEXfeWzkuBZqUUt4Ev3PizhPLjruP938R+p0IASER+V/L7e9xcXXG+d+MLoNRWWLPRSnVKSKNCeEnPrdxwN9FJBLnFkbXm32GN8BymRjXIhG5MM7NxZYyWqms1soi9g5b5eBH6OEYlFLvicgm4BT0MG+irCrB2HEcsFhEbotzE3T9Fo2nt3c8kWZ0A1+C7gXtj2ielaB7/nrjfaVUN4N7EdkQd9pXG0eCv57K7xh6p7e0D6RMbcVIG7RtRmv92XG/DKXUUXHXdxlk2FXowhIlqpXV9uy9Z5TmKXTX0G/j5Aqgx42icmcqpXa1rlfT/SGN7SOK96ywftCfKAnnPaWvypLZq5S6VCk1ETgG+KWILLCu/c0qnOOsMG/uJ94YIpKO7s14K845Ua6eSMyLbVFc4omPa6jPoANd2UUpjjvejO6RiC+XaUqpmwYgY69lVilViX7exwGnoxuxwXA3usKapJTKRI/dS4KfWF6JyAHA5WjlJUcplY3+sk28ZyD0l++J5aEBrYjsGuc/S2kj0q1k7Q+llE8pdRe68p5uOUcViQOs4zfQisRBbFEkNgNvJDzTdKXUBQOUMSfByLi3clwF5IpIRoLfgX68xBCRcuBg4DQRqRE9hf544CgRyUeX8VwRiS/H8WW+Gj1EEQ0vFT28FU9i3m9GD7/F55PbKrv9hTeQcpkY1w0JcXmUUo9bcZVJnGZH93d4IVoZ/nNc3pShlaye0i7x51bc5yXEnaqUercPeaN0yzNLkXsPPfQ0EL604h+o/94YaBtXTc/ldzAMpExtxUgrEssBr4hcISKpImIXkd3iLJPvB34vIpMsS/09RCQqdC16bKg3Hgd+YU0PSkfPiHiyn6/+vrgJOEdEiq2vyKXAbSKSKSI2EdlFRA6y/D4FXCQi5SKSgzZe6hGlVCtaQblLRH4gIh4RcYrIkSKy1YyFhPRdLSIFVqXyW/QXLyJytIh8x3p5WtFfFBERmSIiB1vWzX62GMP2iYikiMhs4Dl0Bf5gf/ckcJmI5IjIGPRY5ZPbeP9WDMMzWAWcZOX1HHQFHeVR4PvW9Cy7iLhFT98qp38eAw4RkRNExCEieSIyM+76EnSjvjt6THMwZKCH3dpFTwm9YAD+Q1hd5CLyW3QlvM0MIN9rgXIRcVn+I8B9wP+ISCGAiJSJyOEDjVNELrHyP9XK00VWmqLTtt8A5qOHWyrQiu4R6Aou6ucfwGQROd165k4R2UtEpm2DjL8TPRX1ALSR4NM95M9mdBf8jVa52QPdE/ToQNMbx+lom6IpaFuLmehx6wrgZKXURuAj4FpLrn3pbvX/DLocf9d6HtfSv/J4D3CDiIwDsOqX6Oyx/sLrr1wm1tn3AeeLyFyrfk8Tke9ZSth76DJ7kfWsjkMbc0ZZhDZC3T0ub/YDZojI7sA/gd2tOtWBHhqL/1i4B7hKRHa10pklIj/qJ2/i0xEr4xaXA2eKyGXRNkpEZojIE4k3W70svwR+IyJnxb1H+4vIvQOUAQbYxsWVk2j53Z/Bzw4ZTJkasCLxonSf+//3gdxkdVkejS4E69FfBvejrcJBd5M9ha642tCW4qnWtWuBh0XP2T2hh+D/iv7ie9MK2482ChwUSqlPrLAus5zOQHfDfY5uXJ9Bd1WBfkFeQlv7r6SfBkMpdRu6YF2Nruw3Az9HN9y9cT26cHyMNkhdabkBTEJbcLejX8g/K6VeRxva3ITO5xq0odxVfcRxuYh40V1xS9DdlN9N6CIbCM9b965Cv+APbOP9vTGUZ/AbdM9BM/A79JghEGsMjkV/UUWfx2UM4H1QSm1CG8Zdih4CWoU2Eo7yd6zu44Qu6W3hv9BduF50OvtTzF4C/o1ulDai34WBDEn1Rl/5/hp6JkKNiDRYblegjcLeF5E2dNmcsg3xdQK3octsA7pR+KFS6hsApdRX6LL+lnXehjbafic6PGMNNRyGtqOossKKGngORMYaK61VaGXxfKVUb93YJ6PHnavQz/uaQQ79LkK/uzXxP3QjGP3yPhU9hBOdNfUkuscIpdRn6DrvCfSXZDvaRirQR5yL0fY4S613/320LdtAwuuvXF5LXJ2tlPoIbcj7J3TerkPbBqCUCqJ77s5Ev0cnYr3DIlIGLADuSMibFehyvkgp1YAe+vhvK2+mo+vLaN78Hf38n7Ce96f0MlWzB7Yq41ZPxsHW7xsRaULb6/yrpwCUUs+wZUmBKrRycj26rhwo29LGnYJ+jk1ou6Al2xBPvNyDKVPa0MVgGCwiotBdnetGWY7x6JfNOYReqeGS5Wt0t+pgGhfDdkZE5qEN0wbSIzWqiMiTwBdKqWt6uJaOth+ZpJTqa2x+oHENa3gjieh1ZyrQ03Zf78+/YWAMtAzsDIv+GAzbDRH5IXqM9bXRlsWQ/FjDM7tYXeNHoHvSnou7/n3Rw6Vp6Kl6n6BnLA02vmENbySxhiazRQ/lRu013h9lsZKewZQBo0gkICK/EJHPRC8Z/bg1DjpBRD4QkXUi8mR07Ey0bcGTlvsH1ldxNJyrLPcvt2W82JC8iMgytEHaz6xxeYNhqBSjp+u1A38ELlDdl/w/li2L1k0CTlJD62Ye7vBGkn3RM6ga0DYBP1BK+fq+xTAAtrkMmKGNOKyxubfRi9j4ROQp9BjYUcCzSqknROQe9GqFd4vIT9ErtZ0vIieh53+fKCLT0YYye6On07wCTFYjuNa5wWAwGAyjgemR2BoHkGpZAnvQBicHow3OAB5my1TOY61zrOsLREQs9yeUUgFrXGkd3S2SDQaDwWD4VpCMm7iMGEqpShGJrsfvQ88mWYFebz1qwFeBns+M9b/ZujckIq3oKWlldB+ri7+nR/Lz89X48eOHKSUGg8Gwc7BixYoGpVTBaMuxM2MUiThEr0dwLHoDlBb0PPIjRjC+c4FzAcaOHctHH300UlEZDAbDtxIR2ZZVbQ0jgBna6M4h6JU465VSXeh5zfsB2bJlC95ytqxiV4m10px1PQs9pznm3sM9MZRS9yql5iil5hQUGIXaYDAYDMmHUSS6swnYx5r6IuhFUT5H78EQXRlxEVsWFXmBLQvHHA+8Zlm3voBeVTFFRCagLV+Xb6c0GAwGg8Gw3TBDG3EopT4QkWfQKyWG0Mvv3oterfEJEbnecouu3PgA8IiIrEOvKHaSFc5n1oyPz61wfmZmbBgMBoPh24iZ/rmDMGfOHGVsJAw7Cl1dXVRUVOD397ppp8GwXXG73ZSXl+N0Oru5i8gKpdScXm4zbAdMj4TBYNiKiooKMjIyGD9+PCKD2UTUYBg+lFI0NjZSUVHBhAkTRlscQwJGkTB864lEFC1tXdgElILahgCRiGJMqZu6hiAdvhCTJqTR0NRFQ1OQXcZ5aPWGqKsPMK7cQ1amE6dz5zIn8vv9Rokw7DCICHl5edTX14+2KIYe2LlqR8O3FqUU4XB4q+NOXxehUJjFf1lHY1OQlBS4/7H1FOQ6UWE/LidMKE8l1OWnINdBTqadUJcfVITf3/4FJ523nA2bB7uJZ3JjlAjDjoQpjzsupkfCkNREbXy6urpoamykoLCQcDhMY2MjeXn5OOzQ2FjPry75Djab0NDQwA1XTsVut1GxuQZXSgqp7kIqKxux2+1keDy4nC5sdlhwQAGzZ2Tx1vv1FOankJXp7Ecag8Fg2PkwPRKGpCUUCuH3+4lEIqAUfr+f+vp6IpEIwUCAhvo6IpEwXcEg9XW1hMNhQqEQNdVVNDY0UFxSgt/no6ammpLSUoLBIO5UN50+HzaxcdQhRYwrjfD9wwrQu6Ubtid2u52ZM2ey22678f3vf5+WlpZtuv/aa6/l1ltv7fHakiVL2G233dh9992ZNWtWr/6Gm/Hjx7P77ruz++67M336dK6++uo+DVq/+93vblP48+bNY8qUKcycOZOZM2fyzDPP9H+TwTBEjCJhSEpCoTCdnZ1UV1XR0d5OZ2cnObm5dHZ00NbaSn5BAX6/n+bmZgoLiwgGgzQ2NFBUVEQ4HCY1NZXODj1kkZaeTmdHRyxsFYnQ2FCD29FKwN+O0yGkuu2jldSdltTUVFatWsWnn35Kbm4ud91117CE+3//93/ccccdLF26lE8++YT333+frKysrfyFQqEe7h46r7/+Op988gnLly/nm2++4bzzzus17nfffXebw3/sscdYtWoVq1at4vjjj+92TSmlFW+DYRgxioQhqWjzdvHByiZ+f/uXNLfayMjMxOv1kuJ209zURKrHQ2ZWFg319bjdbnJycqirq8XlcpGXn09drT52p6bS1tZKQUEhGRkZtLa2kpuXh4iTvPx8RIRAIEBGZhZudwpOp1EkRpN9992Xysoti8Pecsst7LXXXuyxxx5cc801MfcbbriByZMns//++/Pll1/2GNaNN97IrbfeSmlpKQApKSmcc845gP6iv+SSS5gzZw6LFy9mw4YNHHzwweyxxx4sWLCATZs2AfD000+z2267MWPGDA488EAAPvvsM/bee29mzpzJHnvswdq1a/tMU3p6Ovfccw/PPfccTU1NLFu2jAMOOIBjjjmG6dOnx/wALFu2jAMPPJDvfe97TJkyhfPPP3/ACsGGDRuYMmUKZ5xxBrvtthubN29m6dKl7Lvvvuy555786Ec/or29HYB///vfTJ06lT333JOLLrqIo48+Gti6d2e33XZjw4YNADz66KOxdJ933nkx+6T09HR+/etfM2PGDPbZZx9qa2sBqK2tZeHChcyYMYMZM2bw7rvv8tvf/pY77rgjFv6vf/1rFi9ePKD0GUYfo0gYkoZwWPHa2/Vces0nfLS6GadTCPgDsetut5u09FxsNpulOBQgYsPpdFJUXIzdbsdut1NUVAQI5WPG4E51EwgqyseMweNJw+EQmhobiUQiuFJSaPe2ASHzFTeKhMNhXn31VY455hgAli5dytq1a1m+fDmrVq1ixYoVvPnmm6xYsYInnniCVatW8a9//YsPP/ywx/A+/fRTZs+e3Wt8wWCQjz76iEsvvZQLL7yQRYsW8fHHH3Pqqady0UUXAXDdddfx0ksvsXr1al544QUA7rnnHi6++GJWrVrFRx99RHl5eb9py8zMZMKECTGlY+XKlSxevJivvvpqK7/Lly/nzjvv5PPPP+frr7/m2Wef7THMU089NTa00djYCMDatWv56U9/ymeffUZaWhrXX389r7zyCitXrmTOnDncfvvt+P1+zjnnHF588UVWrFhBTU1Nv/KvWbOGJ598knfeeYdVq1Zht9t57LHHAOjo6GCfffZh9erVHHjggdx3330AXHTRRRx00EGsXr2alStXsuuuu3L22WezZMkSACKRCE888QSnnXZav/EbdgyMsaVhh8TnC+HtCLH2m3YmjksDBJ8/xNMvVFBW4ub7hxbjcYdo8XWRX1hCR4ePrKwsQmHhreUtHLB3IX9ZspHS4hSOPaIYhQ2nw0ZhYSF2hy724XAYh8NBdH0bu90e+5oqKS3F5XLR2NCAWbRtdPD5fMycOZPKykqmTZvGoYceCmhFYunSpcyaNQuA9vZ21q5di9frZeHChXg8HoCY4rGtnHjiibHj9957L9Zgn3766Vx++eUA7Lfffpx55pmccMIJHHfccYDuNbnhhhuoqKjguOOOY9KkSQOKL7587b333r2uk7D33nszceJEAE4++WTefvvtrYYuQA9tzJmzZX0mr9fLuHHj2GeffQB4//33+fzzz9lvv/0ArTjtu+++fPHFF0yYMCEm92mnnca9997bp+yvvvoqK1asYK+99gL0MyssLATA5XLFejRmz57Nyy+/DMBrr70WUxrsdjtZWVlkZWWRl5fHf/7zH2pra5k1axZ5eXl9xm3YcTCKhGGHoaurCwGw2YlEwoTDYZa904DPH+H3t63hyouncO1lU8nOcrB8ZQt2h5uy8nKe+1ctc2dnY7Pb+PWNn/HJmjbGlLr5440zycpw4nBs6XiLKhGgKzGAYGMLIa/u2rW5XKR1+ol4/fhtQrrNhvI1EspIx5WXvT2zY6cnaiPR2dnJ4Ycfzl133cVFF12EUoqrrrpqK9uC+K7xvth1111ZsWIFBx98cI/X09LS+g3jnnvu4YMPPuCf//wns2fPZsWKFZxyyinMnTuXf/7znxx11FH85S9/6TWOKF6vlw0bNjB58mRWr17dZ9yJ0x+3ZTpkfLhKKQ499FAef/zxbn5WrVrV6/0Oh6Nbr1zUQFQpxaJFi7jxxhu3usfpdMZktNvt/dqc/OQnP+Ghhx6ipqaGs88+u/9EGXYYzNCGYbsTDodjX/6hUIiurhDBYIj6+nqqqqoI+v34fF7S3CEuOHM8TofinltmkOa2k5vVRUdbLQd9N5e21ibqams5/OBCvtno49+v11HXEGDSxHSuuHAK6R4Hrl4Wkgo2ttC5oYLODRV0Nbfy+qQFvD5pAR1r17Ns2mH6N+XQmHtU0TBsfzweD3/84x+57bbbCIVCHH744fz1r3+NjetXVlZSV1fHgQceyHPPPYfP58Pr9fLiiy/2GN5VV13FZZddFuu6DwaD3H///T36/e53v8sTTzwB6C/9Aw44AICvv/6auXPnct1111FQUMDmzZv55ptvmDhxIhdddBHHHnssH3/8cZ/pam9v56c//Sk/+MEPyMnJ6Tcfli9fzvr164lEIjz55JPsv//+/d7TE/vssw/vvPMO69atA/QQxFdffcXUqVPZsGEDX3/9NUA3RWP8+PGsXLkS0MMv69evB2DBggU888wz1NXVAdDU1MTGjX3v6r1gwQLuvvtuQNcFra2tACxcuJB///vffPjhhxx++OGDSpthdDA9EobtSjgcprqqirT0dDIzM6mrq8PpdJKVlUNeXh61NTV0dHbgdruJRCK4U2zsNSMDf8BPXm46GRkO/D4fdTXa8C4to5Bb7vqKN99r5LD5Rdx100xSUmzkZLn6lCPkbef1SQsA2OeVJSOebsPQmDVrFnvssQePP/44p59+OmvWrGHfffcFtFHfo48+yp577smJJ57IjBkzKCwsjHW3J3LUUUdRW1vLIYccglIKEen1C/jOO+/krLPO4pZbbqGgoIAHH3wQgMsuu4y1a9eilGLBggXMmDGDm2++mUceeQSn00lxcTG/+tWvegxz/vz5sdkTCxcu5De/+c2A8mCvvfbi5z//OevWrWP+/PksXLhwQPclUlBQwEMPPcTJJ59MIKBtjK6//nomT57Mvffey/e+9z08Hg8HHHAAXq8XgB/+8IcsWbKEXXfdlblz5zJ58mQApk+fzvXXX89hhx1GJBLB6XRy1113MW7cuF7jX7x4Meeeey4PPPAAdrudu+++m3333ReXy8X8+fPJzs6O9RYakgOzadcOwrd9065wWC9T7XZBJBLnDIBCAAAgAElEQVSgvq6OjMxMUt1u6urqSElJIS8/n9qaGjKzskApmpubycvPB6CxoYFUj4esrCxaW1rw+Xx62dz8Em64Yx3NrV388vxJ7DLe022GReKwRbjTF7u2bNphgFYk3j/kjK2O45m/9lU84/s3nvu2sGbNGqZNmzbaYhgsli1bxq233so//vGPb22ckUiEPffck6effrpX+5KeyqXZtGv0MT0ShhHH7w8BirVft/HFunZOO74cm81GR3s7WVnZOBwO8vLyaGpqwm63I+ImxQ2pfn9s4aj09HRcKSng7SStM0im3YUtxUW4rpbfnpKJzeMm0tlEcGMTIY+bSOeWRX56UxgMBsOOweeff87RRx/NwoULB2ykathxMIqEYcRxOITKigrGlHiYM7OcmupqRISS0lIaGvRKlD6/n9zcXERsVFb7Kcy34fP5yMzMRDp8uL0+pN2PUvDWND1+2ltPglEYDN825s2bx7x58761cU6fPp1vvvlmu8RlGH6MImEYFErpoQoBsvuxR6iq9eNyZ+PraKStVU/3crrc1Dd2kZ2Vhd3u4MtvfEwoDxMIhtlU6SPV7SAjM4vsnGz8m6q7KQ/DTbjTHwvXM2k889Ys1Rdsgti0saYjI33Y4zUYDIZvA0aRMGwz3vYuPlzVzJKnNjGmNJXzz5xIRaUPt9vG1O+k883GDgLBCLtNzaCmzo/DbiM724O/s4mWlhayc/L5elM7eNtJz4eITZic7SJS14oH2KtYsEWESLuPgLcTiQy/HU+88uAuK0Yc2q7CnpJCamnRsMdnMBgM31aMIrETEQ5HaGkN4Q+E8aTaEBFCYYXDLthsQrArgt0mOBxCIBhBRMjOdGK3d5+vvn5TJ9f/zxeEQ4r/+ulkLv3tx7S1h3jm/r1oaqwjLyeLnOwUGurryc/Nxel0ULF5M06XC7c7jZbmBkqLckEivD1962GKxPOR6IX48JhzY8c7myGlwWAwDCdGkdhJCIcVX65r5/LrPsWTaufay6ax+L6vqa718d/X7M6fH/yGL9d5ueP3e/DY/27ijfcayc918bv/msrUKZk4LGUiElGMyejiH7dNpKMzTHqGjwcuL0YphaquIR2F6qwnLJlElKK6uoqsrCzyCwpwuVz4A4piTwp2h5Ng28ivzWCGLQwGg2FkMYrETkJLa5A77tML0Jx8XDl/vP9rPvuyjZ+cOp4H/7aRlR+38KNjyvAHQlx0zi589U0Hd96wO/l5Kaz8uIVdp3ior6ulqLgUV8jH65MPAbr3HOz1wr3YPW4AnJ5Usjq7UAh2fxeRJi8BpXCkpRLp9BNicKuh9aYY2DzuHo/jFQYzbJFc+P1+DjzwQAKBAKFQiOOPP57f/e53rF+/npNOOonGxkZmz57NI488gsvVt52OwWAYOYwi8S0n1NUFIohN+MOVUwmGFY3NIVZ90srko0qYvEs6by9vZPYeWRxxcCE5GWECnfU89Mc9iYQDVGzezIxdywCF3W6ntqaKfHpeLMbucQ9oFsW2DlkYe4adk5SUFF577TXS09Pp6upi//3358gjj+T222/nF7/4BSeddBLnn38+DzzwABdccMFoi2sw7LQYReJbRvwCTEBsKWpPVgakpYLYyMxw8atLvkMkEmFzVZDbrp2Oww4rPmmjpCATv6+NhroqCtMyyA0J/k2VOD2p5AQiaLPH7bsTprFn2PFZuqyWvyxZT11DgML8FM47YwKHzRuakicisW20u7q69F4sIrz22mv87W9/A2DRokVce+21RpEwGEYRo0h8C4hXHlQoHFuAKZ55X72CtyuA3++nqLiUttZW2tvbKS0qwuHrIOTtYHaRDVt7G7ldAIpwi5c3R3Axp77sF+xua3gibmgCjD3DjsjSZbXc/KevCAS0gllbH+DmP+ltsIeqTITDYWbPns26dev42c9+xi677EJ2tl7EDKC8vJzKysqhJcBgMAwJo0gkICLZwP3AboACzga+BJ4ExgMbgBOUUs2it7ZbDBwFdAJnKqVWWuEsAq62gr1eKfXwcMsaDodp74hgb23njSlb7xsRb7OgwmGylIv0sBCuqiE91U1qxIbUNBAG3hiF1R8TexrSvtP7+vyGHZe/LFkfUyKiBAIR/rJk/ZAVCbvdzqpVq2hpaWHhwoV88cUXQwrPYDAMP0aR2JrFwL+VUseLiAvwAL8CXlVK3SQiVwJXAlcARwKTrN9c4G5grojkAtcAc9DKyAoReUEp1TxcQgYamgm2erGJIJGehxribRZg+FZ/7LUnwbBTUtcQ2Cb3wZCdnc38+fN57733aGlpIRQK4XA4qKiooKysbNjiMRgM245RJOIQkSzgQOBMAKVUEAiKyLHAPMvbw8AytCJxLLBE6Z3P3heRbBEpsfy+rJRqssJ9GTgC2LIv7xAJeTt4c+qhwPZfBrq3noRgYwvz174K6A2ytmVGhRmySF4K81Oord9aaSjMTxlSuPX19TidTrKzs/H5fLz88stcccUVzJ8/n2eeeYaTTjqJhx9+mGOPPXZI8RgMhqFhFInuTADqgQdFZAawArgYKFJKVVt+aoBof20ZsDnu/grLrTf3YSPYtX0NHgeCKy8bV172aIth2M6cd8aEbjYSACkpNs47Y8KQwq2urmbRokWEw2EikQgnnHACRx99NNOnT+ekk07i6quvZtasWfz4xz8eahIMBsMQMIpEdxzAnsCFSqkPRGQxehgjhlJKiciwrNksIucC5wKMHTt2m+51OXtehaH7VMkhGrqZxZwMAyBqBzHcszb22GMP/vOf/2zlPnHiRJYvXz6ksA0Gw/BhFInuVAAVSqkPrPNn0IpErYiUKKWqraGLOut6JTAm7v5yy62SLUMhUfdliZEppe4F7gWYM2fOoJWTxHUWIqKnzg3m/t4UBrNmg6EvDptXNGTFwWAwJCdGkYhDKVUjIptFZIpS6ktgAfC59VsE3GT9P2/d8gLwcxF5Am1s2WopGy8BfxCRHMvfYcBVwylrvJ6QaLOQWl6MiBBu8cZsFiDObiF+eiUYhcFgMBgMg8YoEltzIfCYNWPjG+As9GrOT4nIj4GNwAmW33+hp36uQ0//PAtAKdUkIr8HPrT8XRc1vBwuHBnp3ZSEePfoHHu7sVkwGAwGwwhjFIkElFKr0NM2E1nQg18F/KyXcP4K/HV4pduCMWw0GAwGw47AYPZNMhgMBoPBYACMImEwGAwGg2EIGEXCYDDssLS0tHD88cczdepUpk2bxnvvvUdTUxOHHnookyZN4tBDD6W5edgWjDUYDIMgKRUJEfllD78fi8jM0ZbNYDAMHxdffDFHHHEEX3zxBatXr2batGncdNNNLFiwgLVr17JgwQJuuumm0RbTYNipSUpFAm0MeT5bVpE8D70E9X0icvloCmYw7GwopaiuqqK6qopIJBI71rbIg6e1tZU333wztnKly+UiOzub559/nkWLFgF6G/HnnntuyGkwGAyDJ1kViXJgT6XUpUqpS4HZQCFx+2QYDIbtQ011NX6/H7/fz6aNG2PHNdXV/d/cB+vXr6egoICzzjqLWbNm8ZOf/ISOjg5qa2spKSkBoLi4mNra2uFIhsFgGCTJqkgUAvG7BHWh98PwJbgbDIbthFKKSCQy5J6IKKFQiJUrV3LBBRfwn//8h7S0tK2GMURkm1ZxNRgMw0+yKhKPAR+IyDUicg3wDvA3EUlDr0JpMBi2E0XFxVs15iJCUXHxkMItLy+nvLycuXPnAnD88cezcuVKioqKqLZ6O6qrqyksLBxSPAaDYWgkpSKhlPo92i6ixfqdr5S6TinVoZQ6dXSlMxh2LmprarbqhVBKUVtTM6Rwi4uLGTNmDF9++SUAr776KtOnT+eYY47h4YcfBjDbiBsMOwDJvLLlSvTmWA4AERmrlNo0uiIZDDsv0WGG4RraALjzzjs59dRTCQaDTJw4kQcffDC2pfgDDzzAuHHjeOqpp4YtPoPBsO0kpSIhIhcC1wC1QBgQQAF7jKZcBsPOSHFJScywsqi4ONYTUWwZRA6FmTNn8tFHH23l/uqrW+8zYzAYRoekVCSAi4EpSqnG0RbEYNjZERFKSktj5/HHBoPh209S2kgAm4HW0RbCYDAYDIadnWTtkfgGWCYi/yRuuqdS6vbRE8lgMBgMhp2PZFUkNlk/l/UzGAwGg8EwCiSlIqGU+t1oy2AwGAwGgyHJFAkRuUMpdYmIvIiepdENpdQxoyCWwWAwGAw7LUmlSACPWP+3jqoUBoNhu7B48WLuu+8+lFKcc845XHLJJTQ1NXHiiSeyYcMGxo8fz1NPPUVOTs5oi2ow7LQk1awNpdQK6/+Nnn6jLZ/BYBg+Pv30U+677z6WL1/O6tWr+cc//sG6devMNuIGww5GUvVIiMgn9DCkEUUpZRakMhi2M//O3ZOwt2Mrd3tGGkc0rRx0uGvWrGHu3Ll4PB4ADjroIJ599lmef/55li1bBuhtxOfNm8fNN9886HgMBsPQSCpFAjja+v+Z9R8d6jiNPhQMg8EwcvSkRPTlPlB22203fv3rX9PY2Ehqair/+te/mDNnjtlG3GDYwUgqRUIptRFARA5VSs2Ku3SFiKwErhwdyQwGw3Azbdo0rrjiCg477DDS0tKYOXMmdru9mx+zjbjBMPoklY1EHCIi+8WdfJfkTYvBYOiFH//4x6xYsYI333yTnJwcJk+ebLYRNxh2MJK18f0x8GcR2SAiG4E/A2ePskwGg2GYqaurA2DTpk08++yznHLKKWYbcYNhByOphjaiWLM3ZohIlnU+bPtuiIgd+AioVEodLSITgCeAPGAFcLpSKigiKcASYDbQCJyolNpghXEVWtkJAxcppV4aLvkMhp2JH/7whzQ2NuJ0OrnrrrvIzs7myiuvNNuIGww7EEmlSIjIL3txB4Ztr42LgTVApnV+M/A/SqknROQetIJwt/XfrJT6joicZPk7UUSmAycBuwKlwCsiMlkpFR4G2QyGHQ57RlqvszaGyltvvbWVW15entlG3GDYgUgqRQLIGMnARaQc+B5wA/BL0RrKwcAplpeHgWvRisSx1jHAM8CfLP/HAk8opQLAehFZB+wNvDeSshsMo8VQpngaDIbkJ6kUie2wx8YdwOVsUVjygBalVMg6rwDKrOMy9HbmKKVCItJq+S8D3o8LM/6ebojIucC5AGPHjh2+VBgMBoPBsJ1ISmNLESkXkb+LSJ31+1+rN2EoYR4N1EVXz9weKKXuVUrNUUrNKSgo2F7RGgwDQimzNIthx8GUxx2XpFQkgAeBF9A2CKXAi5bbUNgPOEZENqCNKw8GFgPZIhLtuSkHKq3jSmAMgHU9C210GXPv4R6DISlwu900NjaaytuwQ6CUorGxEbfbPdqiGHogqYY24ihQSsUrDg+JyCVDCVApdRVwFYCIzAP+Syl1qog8DRyPVi4WAc9bt7xgnb9nXX9NKaVE5AXgbyJyO1rJmQQsH4psBsP2pry8nIqKCurr60dbFIMB0MptefmQOp4NI0SyKhKNInIa8Lh1fjK6N2AkuAJ4QkSuB/4DPGC5PwA8YhlTNqFnaqCU+kxEngI+B0LAz8yMDUOy4XQ6mTBhwmiLYTAYkgBJxq5LERkH3Ansi95j4130eg2bRlWwITBnzhz10UcfjbYYBoPBkFSIyAql1JzRlmNnJil7JKw9N44ZbTkMBoPBYNjZSSpFQkTupO9txC/ajuIYDAaDwbDTk1SKBHrp6ii/A64ZLUEMBoPBYDAkmSKhlHo4eiwil8SfGwwGg8Fg2P4k6zoS0McQh8FgMBgMhu1DMisSBoPBsNMTiUSIRCJbHRsM24ukGtoQES9beiI8ItIWvQQopVRmz3caDAbDt49IJILf78dms+Fyubod22zmO9GwfUgqRUIpNaK7fxoMBkMyoZTC6/XS2dFBZmYmra2tZGVl4czJGW3RDDsRSaWyisheInJkD+5Hisjs0ZDJYDAYBkP8EMRghyPsdjv5+fk4nE5aW1txp6aSnZOD3W4fLjENhn5JKkUCuBm99HQinwO3bGdZDAaDYVCEw2HavV7C4XC3476IhMOxTdRCoVDMHiIQCNAVDGKz2Qj4/XR1dRk7CcN2JamGNoAMa1XLbiilNopI/mgIZDAYDH2hlEJEAN3zYLPZCIfDNDY24vP5AOjs7MSdmtprT0I4HMbr9eLxeLDbbHR0dJCSkoLD4cDb1kZGZiZ5eXm0tLQQDARwOp0opVBKGVsJw4iTbIpEXwN/nu0mhcFgMAyAcDhMMBgkJSWFSCQSO7bZbBQVFVFTU4Pdbqd8zJhYgx8Oh7HZbDHlI0pnRwctzc0Ul5Tg6+ykqbGRtLQ0MjIzsdvtKKXweDwxxSUQCKCUisVnMIwUyVa6XhGRGyTuDRPNdcBroyiXwWBIYpRSdHV1EQqFuh0PNUy/3091VRWdnZ0Eg0Fqqqtpa20lFArh9Xqx2+0UFRfTUF9PJBwmFApRV1sbkyOK3W6nuKQEgOqqKvILCrDb7bS3t+P1enE6nQB4vV6qq6poaW6muqqKtrY2knFjRkNykWw9EpcC9wPrRGSV5TYDvXT2T0ZNKoPBkNQopaiuqsLhdJKXl0d1VRUZmZnk5OQM+mteRHC73eTk5FBXW0tOTg55eXm0t7eT6vHQ6fNRXFyM3W4nHIlQWVmJzWaLNfzxPRLhcJi2tjYikQi5eXm0e72EQiHsDgedHR10ZWXhSkkhNzeXYDBIS0sLLpeL/Px8Y3hpGHGSSpFQSnUAJ4vIRGBXy/kzpdQ3oyiWwWAYJiKRCEop7HZ77Kvc4XDEDAsdDsdWXf7DgYhQXFxMZWUllRUVpKSkkJWVNSglIj4NSikCgQAALpeLjs5OAoEArS0tjB07NmbDUFRUxOZNm4hEIpSVl+Nw6Ko5HA7HFAFfZyeFhYW4U1NpqK8nNy+PjIwM6uvrCQQCOJxOurq6CAYCiAjBYLDbUIrBMFIklSIhInvGnVZa/9lRd6XUyu0vlcFgGA6iNgRdXV14PB5aW1rwer2UlJbS3NQEQGFR0YAUiaihYbyRo4jEDB3jjwHd0MaHO0hlJbpAVFNjIyWlpQT8fnw+H2Xl5UQiEdq9XkpKSgiFQmzetIlyyz1qK5Gfn09nZ2fMRqKjowOPx4PNZqOgsBARweFwkF9QAOghjwLrGIgZZBYUFtLU2EhnZycul2tQaTEYBkpSKRLAbX1cU8DB20sQg8EwvERtCpoaG8nIyCAjIwOf309VZSVFxcU4rC/zUChEOBzG4XCglOp2HP3Cj0Qi1FRXU1RcjIhQU1NDQUEBDoeDmupq8vLycLpc1NbWkpWVhcfjoaa6GpfLRW5eHjU1NbS2tg54aCO+F8LpdBIOh6nYvJns7OyYIaVSirHjxumVJy3DSLFkdToc5FmyNjQ00NnRQWFREa2trbS2tJDq8eBta6OoqAibxxPrsQC6DV3k5uYCWjHKzsmJzRIJhUJEwmEcTieRSIRwOByb2REKhXA6nabXwjBokkqRUErNH20ZDAbDyGC328nIyMDv99Pe3k5GRgY2EbKzswkEAtQ2N1NaVkYgEKChvp7SsjLCoRC1tbUUl5Rgs9moqqyksLAQV0oKdrtdnxcV4XQ4qK6qorCoCJfLRXV1NYWFhaS4XNTV1uLxeCgsLMTucGC32ykrK8Nmsw1YifD5fLS2tlJUVEQkEiEzM5Pm5mYaGxtJz8jo004h2tsQ9VNaVsbmTZuorqqitKyMTRs34m1rIzsnh1Srd6KvPAQ9JNLc1ERHRwelZWV4vV7aWlspLSvD19lJc3MzhUVFtLW2EggEGDtu3DY+LYNhC0mlgorIaSJyeg/up4vIKaMhk8FgGBrBxhY6N1TQuaEC/6YqPO1+CnASaWsnEAiQ4nbjdrtxp6ZSWVGBzWYjPSODqspKwpEIWVlZ1FRXEwwGyc7Opq6ujoaGBvLy8ohEIjQ1NpKXn49SisaGBnLz8gBobGwkJzcXEaGzs5NAMIjdbt9q6mVXVxddXV2A7g3pdhwMAuB0OAgGAjQ1NdHV1UVzc7Ne88Fup7qqinA/M0DiFYC21lYAsrKzY8ciQrvXO+CFpux2Ozm5uTicTiorKvB4PKSkpFBVWYnT5cLj8VBbU4PP56OktHRE7E4MOw9J1SMBXAgs6MH9WeBN4G/bVxyDwTAQgo0thLztW7k7MtIJedt5fdLWr/W8r16lpLQ01gWPZfMgIt1mNkSs4+j6Cw6Hg9zcXGpqanC73eTl51NdVYXT5aKwsJDq6urYdMqa6mpEhFSPh8aGBpwOByluN7U1NQAUl5TQUF9PKBSiuKSEpqYm/H4/paWltLa00N7eTrFl85CekYHf5yMjI4OcnBwys7JidhEDtblQStHe0UFRcTEpKSmxqZ4ej4eqqioCfj+2fnoluoVn2YZYuxoCYBMhHKeQKGtYxigThsGSVD0SgFMptVVtZM3mcI6CPAaDYQBElYXXJy2gfc3X+DZW4ttYSVdzKyrU89LQIuB0OvXXeHs7fr+fsvJywuEwnVaXvc1mw9vWRklpKampqTQ1NZGVnY3NZiMtLS02ZODxeGJTLT2pqZSWlWG320n1eCgtK6OgoICcnBwcVnxFxcWEQiGqq6rIzc0lEolQVVWlZ3KIUFlRQXpGRmxlSaUUba2tOJxOGhsbcVjrOjidTjKzsgY8BdPhcDBmzBhSU1NxOByUlpXhsWwiysrKcKemDkiJiA5tRCIRyseMoaOzk66uLsrHjCEQCBDw+yktKyM9PZ0aS2kyGAZLsvVIpIpImqU4xBCRDMCYJhsMo0xvPQ8q7gvY7nHz/iFnxM73eWVJr+FFG+CMjAzSPB4cllGg25oiGW0oo1MtS8vKYlNEowpFtJs/GlZWdnbMWDHTWhVSRMi0pnuKyNb7XohA4sJOSoEIXV1dpGdkkJObS2ZmJuFwmI72LXmwres4xCsK8fduSzjRNOfk5OBwOMjKyiIzMxOHw0F6RgZp6enY7Xby8vPJsXotDIbBkmyKxAPAMyJyfnTPDREZD9xlXTMYDKNIr8MUa5YOKVy73R5rSONnLCR+nfc2myH+ON5PT/7D4TC1NTU4HA6KS0qor6vDJkJxaSlN1ld+WXk5rS0thLq6KC4pwdvWRkpKCiKyzb0QI0Vv6Yw/hm1XdAyGRJJKkVBK3Soi7cCbIpJuObcDNyml7h5q+CIyBlgCFKGnk96rlFosIrnAk8B4YANwglKq2VqqezFwFNAJnBldy0JEFgFXW0Ffr5R6eKjyGQw7GsFgmEhbG5F23UnY2zBFMmGz2WLTRu12e2zNBqfTSV5uLso6zrbsIJxOJ47c3JidQfQ+g2FnIakUCQCl1D0ishSot869ACIyQSm1fojBh4BLlVIrreGSFSLyMnAm8KpS6iYRuRK4ErgCOBKYZP3mAncDcy3F4xpgDlohWSEiLyilmocon8Ew4oSt7aqj6zEA3QwcQyGlG1OHUFPnJ7PTyzu7Hgp0H6bY64V7sXvc1lnv+z2EO/3s88oSUsqKiAA2mx5qcGSk93rPSBLtVYgSf+yIP+7jK3+kaGoOogCP24Y/ECGiFC6njYx0YyJmGD2STpGweEYptWeiGzB7KIEqpaqBauvYKyJrgDLgWGCe5e1hYBlakTgWWKJ0Dfu+iGSLSInl92WlVBOApYwcATw+FPkMhpFGKYXf56Ouro7SsjIi4TDV1dWUlpYiNhuVFRV6cShfgM6WNnJtdsTWs5IQbwux1wv3xpQMd1lRN38fHnMuoGdptDn1F31+fgGuFNM4dvpCdHSGiYQj1DUGufGPX1KQl8LZJ4/j9nvWsX5TB3vPyuWKCydTkJfSYxjBYBinc+vdRA2G4SKpFAkRmYreYyNLRI6Lu5QJuHu+a9BxjQdmAR8ARZaSAVCDHvoArWRsjrutwnLrzT0xjnOBcwHGjh07fMIbDINERHCnppKa6qGyooLCoiIyMjKosqYhZmVlU1tTQ6E4eWva4UDfxpJRosoCwIKNb3HgF9pmImokCRB0uOkMOHE4hLb2CAU9t4s7Dd72EC8ureLeRzZw5x9m8IvffIw/EOGX50/iV3/4jNY2vTbFhs0drP6slT2mZ5LmcZDm0dV6S1sXK1c389rb9czYNYvD5hehIgp3ih2Xy0ZbewiXU/CkJlUzYNgBSbYSNAU4GsgGvh/n7gXOGa5ILPuL/wUuUUq1xWvySiklIsOyL69S6l7gXoA5c+aYvX4NOwSBYIRwRBsxhrq6Yt35Dl8QW4ePfGXfegaDRXSYAiCltKhHPx1tPjImlhIIRnjhlToOOSCfhuYgF17+MREFRy4o4vwzJo5AypKL1rYu/vzgetI8dtq8IfwBPcxkt0tMiZgw1sPlP5/MA49t4LY/r2XW7ln84vxJZKY7ePK5zTzy9GacDuF7hxbz939W8c6Hjfz87Ims39TJP1+uoaTIzXlnTKC40I3dbnosDIMjqRQJpdTzwPMisq9S6r2RiENEnGgl4jGl1LOWc62IlCilqq2hizrLvRIYE3d7ueVWyZahkKj7spGQ12Doi2AwgsullYJgVwSnQ2jvCBHsUtht4HDYCAQj2ARcLhsKha29jQxfJ1k2F9LSTjgcptDmQnV08saUrW0h4onveTjws5d69NPVpWhsCfHFWi8VlT58AUVjYxeHHFjI3D1zmblbFulpSVU1DZk2bxc+f5hwWJHisqEUbKrsBMDnD5Od6YzNQHXYBadD6Aopzj5lPH9Y/CWbK30AvPl+I23tIX576TSefkHva3jkgmI+XNXMU89XctB381n1aSv3PboBgDVrvXy0uplH/jSHvNydvAvIMGiS9W1dJyK/Qs+iiKVBKXX2UAK1ZmE8AKxRSt0ed+kFYBFwk/X/fJz7z0XkCbSxZaulbLwE/EFEcix/hwFXDUU2g2FbaG4N8vb7jaz8uJlfnlZEsLWdYDBCdr4H2n04FTgzUgnFH9f5QECJxI7BwiEAACAASURBVIYt4g0mE20bonTrhSgrBpuNUFgRjvTca5GZ4cBTmEpJYSrz9ysEYEyph/3m5g93NiQFza1BFt+7jlferOfKCyfz2ZdtvPR6LX/8w0xsNohE4K0PGjjntPE88LeN/OuVGi4+5zv88f515Px/e3ceXldZLX78u86UM2Ue24SW0pbSMpdSxisgMzI4IKIooih6QVARZfAqKhfuRb1OXIEfAjIoItNlEilTGURAWqaWsYWWtmmSZh6a4Uzr98feSU/TprRpmpOdrM/z5One7xmydnebs/K+633fwuBAEgFw6AGlfP5TO5FOZwgGnYLM+XOL+Z/rlgFwwL7F3PVg7Ubfv6Mzxeq6HkskzLB5NZF4AHgOeAIYyflmhwBfApaIyGtu22U4CcRdInI28CFwmvvYIzhTP5fjTP/8CoCqtojIFcDL7vN+1l94acyO1tPYQqKhg73KMsw/Pop0dfLinhvqGfoLILd03C+7YHJreiEOWvI49y1Occd9a/jV96Yy55+PUFocIhDY0G2eq9kYY0V7RxKfQH6+M2T0/or1PPFsIyVFQUqKQzz0mLPS5IKFDVxywSyuv+UD7rhvNRedO5O/3jCfZCpDNOznkANKSaUyRCJ+enrS7LdXESccVcX3f7qEQ+aX8sVTp3DdLR/Q1ZWipChEa1uSzvVpiotCrFzdvVFMhTbrw2wHryYSUVW9eKTfVFX/AQw1ULjJKjvubI3zhnivm4GbRy46Y7ZOunM9i/Y9duB8a4oht/l7ZPVChKurUJ+fdDpDOhzl5GPjHDq/jObWBDW7xIkUBgkGRmc1/mQyQ0dnCgQK8wMERun7bjaWVAa/T/D5nB8pnV1JXlvazp/uWcWkijDnnDmNRDLD0nc7ACgvy2PVmg0f8P/3yFrWNZbykx/MoWZSmGgksMmQT18iw6Xn78rPfvUOnz25ml9eu4zunjSPP7OOXafH+eVP9qSpuY8LvjadCy9fwiNP1PPdb8zgzXc7SCScmotDDyiluNgSCTN8Xk0kHhaRE1T1kVwHYsxYMxrT/LJ7IY5Y9iSxnWs2eryibEQnUW2V9s4kf3u8nj/fuwq/T/jmWdP42EFlRPL8+P07JqFo70iSTGbw+YTiImefjs6uFCtXr+f/HlnLXrMLOHj/UprbEvT0ZLj0yjfx+eC8r07n+z9dSmdXkv+4cDcAVtX2MGdWwUarcT//cjP771vE3nMKN1sMmRfycdD+Jdx94wEkEhmaWhIDj/3+5g8oKwlx82/mEosGuOsP83l3eSeV5Xn85fr9ee/9LirK8qgsz6OowHYYMMPn1UTi28BlIpIAEtC/uZ0W5DYsY8avwb0QEnCXrM7xUEUqlaGrO8U773Vy7R8/AOCgeSVMqY5xw20rSaeV006poao8j7y8oVecbOtIUN/Qy6raHvbevZD2jiQrVnWz+6x8igtDxGIB0mmlrT1BIpVBEP7z1+/w2tJ2JleFufyi2cyaHueNt9q5+Iql5McDfOYT1Zx94SsccUg57R3O9uNz9yzi9Tfb+dDtfXhnWRff/vp0br97FS+83MyPL9yN625dQUdnkpOOncRRH6vY4oyKSDhAJBygtT3BrOlx3n1/wz4fkYgfRMjL81NZ7qeyfEOCl31szPbwZCKhqvm5jsGYsWp7OyQ2Thg2FFgO7oWIDuqFyIX2jiR/e6KOtvYkza3Ob+PhPB9fOX0qF/zw9YEpkwuebuCO6/anwk0kutanSKUyFOQH6elN09OT5vrbVvDoUw185fSpLH2ng/v+thaAXabG+NGFu1FWEqKppY+LfrqU006qZvEbbby2tB2A1vYkz73YSGlxkNvuWgXA0R+r4P5H19LalqSjM0mZW8xYVBhkXVPfwDXccPsKDj+4jKt+uAeTKsPEo37m7u3UaceifsJbSH6yFReG+M/Ldueq37zLG2+1M2fXfH743d0oKbLeBrNjeTKRcGdXnAFMU9Ur3D0yJqnqv3IcmjFjTn9iEK6uwhcNc9jbCxBkyGNESGuGQCCAPxLmiGVPbvKeO6oXorMrSd26Xl5a3MrB80qA/u79YqJhP8+91MxecwooLgrxzrJO0mm49o8rmL9vMfvuWQTA3L2K+Me/mgeSiF2nx7no32fy6MIGyorz2HV6nOtvXUFZSZBTT6rhj3es5IunTeHRpxoAOGC/Es69+NWB117wtelc+et3+OKpU7jpLytpbkkwc3qcm+5YCUAk7OPnP96DR59q4JkXmggFnUyusCDIqredXofnXmrmmqv25ql/rOO1pe1c9p1Z/N8jaweu++l/NnHmaVMoLXY+9LfUc7IlkyrCXHnpHJKpDAG/j8ICq30wO54nEwngWiADfBy4Amfjrt8D++cyKGPGgkB+fJMPf1UIFsTxFcYJqBIMBkmlUgRUCQQCzv4aiQThvDwyqiQSCfLy8kZ186lkKsMTzzbyP9ct48D9SigsCPLz/32PObvms1N1lB9f/RY1kyPM3CXO+ecu4vOfquH9lc5mYYteb+XM06aw15wCUikdmCUiAt/75kwuvfJN2toTXPfzffnm91+lty/DtVfvwwU/fJ313WlOPXlD70omo/Tven7maVP4r9+9S21dL6WloYGplmvW9jBzl3zefLeD44+s4oln1vG3x+uZMS3G187YmdffamfxG60ce0Qli15vo68vw9XXvMflF80mlVbKSkL84vI9uPmOD1Hg7C9MZXJVZET+HgvyLXkwo8uricQBqjpXRF4FcHfitP47Y4BQaRGh0qKPfN7gTaf8fmezLB8MHI+mjs4UN9zu7Lt37BEVA4smHXN4JXfcuxpVZ7jg7gdrSaeVxuY+aiY7H76ZDPzo6rc476vTmT0zn3DIx30Pr2VSZZi3lnXQ3Jpg2pQoy1d00duXobgoSEtbwpnhgbPoU/WkMLV1vTQ09g7UGhQWBKmt6wWgdm0Ps2bEeXd5F3c/VMsl58/iZ//zNnvOLhiozVi+Yj0vLGrhmqv2YfEbrew+q4CLz9+Vex+qJT8eIJznZ9rUGHkhHzvvFGP2rvmgUFRoP76Md3k1kUiKiB93S0ERKcfpoTDGDFN24pCbDZ6URNL5bxwI+AamJwaDslF7n9v+9D+buObKvXnplRZWremhtS3J0883csC+xRQWBLnld/ux5O12OrucZKGjM0WxWy/Q25umIGvthN/f/AGXf282Dz1WxzP/bOIn35/N/Y/WIUBJUZCWtiR/vm81l317Fr+5YTnvLu/irgdWc81Ve+MTYafqKI3NTo3GA4/W8dRzjfz5uv0pKQ6xy9QYh84vxe+XTXoLbLaEGQ9Eh1gzfywTkTOAzwFzcXbjPBX4D1W9O6eBbYd58+bpokWLch2GMTnT25fm5jtWcsd9azj6sAqm1ES56c8rOWBuMYfML+VX1y9nt5n5nP7JGn7yi7cBqJkU4TvfmEFFaYi8PD+xqH+T3+6bWvo46/zFtHUkueKSOdz/yFoWv9HGJefvyguLW3jmn00AlBYHufbqfcmPO+s1pNNKT2+KFau6ufTKN+noTLH7rHz+47u7EQ778ftloJDxwzXdnHfxa7R1JBGBs06fymkn15Af9+rvat4hIotVdV6u45jIPJlIwMBOoEfiTP18UlXfznFI28USCWOcKZgvv9rK0883csapU2huSbBgYQOnnlRNMqU8tKCOE46sJBoNcN/faqkoy+PUk2ooLw0N2YuSyShNLQkefqyO3t40nz6xmvaOJJ3rk0ytjtLemaKpJcH0nWMUFQQJBjdecyKZytDekaSvL0M4z0dRYXCTdSn6p4W2d6aIRf3EopsuHmV2DEskcs+TiYSIlGymuVNVk6MezAixRMJsjURzG6nOro3aVMEXixIqLSadztDTmyEW9ed0Vcft1duXJhT04fMJiUSaQKD/OEMg4KwWmUhm8PvYpsWmVDVHwzZmR7FEIve8mjK/grPrZitOj0QRUC8iDcDXVXVxLoMzpl8mk8Hn821yvC2ykwdNpXl69jHAxhtqRWfsTM+KVagqqNCWhnCen1BhfKsKL8ea7LUTQqHs4w1/f6Hgtv9dWhJhzMjzaiLxOHCPqi4AEJFjgM8Af8SZGnpADmMzBoBkMklPTw/xeJx0Ok1PTw+xWGybp1SmOrtYONPZ6mVLG2r1H2c7/L0nPZlIGGO8w6t9nwf2JxEAqvoYcJCqvgjYXrhmVKXTadJpZxPaVCpFKpUik8nQ29tLU2MjLc3NrF27lvb29hxHaowxI8+riUSdiFwsIlPdrx8A69wpoTYN1IyadDrN+vXraW1tJZ1O09vbS3NTE6pKXl4eBYWFdHR0kJeXx+TJk/H7/RslHplMZuBYVUmlUgPv3X+cSg+/jsmDJVDGGI/xaiLxBaAGuN/9mgKcDviB03IYlxlnUsnkwAd9Mpkc+HBPJpMkk0lEhEAgQEd7O60tLYgI3d3dNDY2kslkWL9+PZFolIKCAhrq6wd6LOrr6jY67n/vluZmEokkiUSSlpYWEokkft/wx/WHUZJhjDHbxJM1EqraBJzffy4iYeAkdx2J5TkLzIwrmUyGuro6AoEAFRUVrGtw9mKoqKyke72zNHM8P59AIEAsFqOjo4NwJEI8HkdESPT14fP5KC8vJ51Ok0gmWdfQQElpKel0mvr6esrKyshkMqxraKC0rIze3l4a1zVQGo4S7uihr6Nno2x/qA21jDEmVzw5/RPAHcY4Fvg8cDTwD1U9NbdRDZ9N/xx71N1zYm1tLaFQiNKyMurr6igscooXW1taKCsrQ1Vpbm6mpLQUv89HY2MjkUiEcDhMPD9/YKZGV1cXzU1N5BcUEIlEWNfQQCwWo6CgkLq6tVRE85HePtLpND7gmdnHAhvPzsibvGH7bl8kj3R3D5lMhmA0QqbbWcoZn4D4EHH23bBiSzOe2fTP3PNcj4SIHIYztHEC8C/gEGAXVe3OaWBm3BERfD4fIkI6nUZEEBFaW1qorq6mJxymt6+PaDRKSWkp+fn5JBIJioqKKCwqIplM0tnZSWFhIclkkpbmZvLz84nH49TX1xOLxSgsKqK+vp5wOIz09vH0rkcBG8/OyN6++7B3nyQ2rYa+vjR9yQzx8hJWr15NuqeLwuIiiouLhzXF1BhjhstTiYSIrAFWAdcBF6lqp4issCTC7AiZTIZ6d2ijatIkGurrERGqa2rItHcS70kivSn8KUW6e+ltascXDZPX3Utva9eG45ZOfNEwFRk/dPRASilP+5CuPjTTTlkKJKvIckv6c4S8PD+BANQ3NJBRJRaP097WRigUIhqNjuquncaYic1TiQRwD/BJnH020iLyAO7GXcaMtFRrOyVpZ4ggta6Fol53imdtA2SU59yhh+w1HLb3eFvFYjFKS0sJBoOEw2FCoZD1SExgm1v5FGyIy+xYnkokVPU7IvJd4HCc2oifA4UichrwiKpu+j/ImGFKda7n6V03LASVveDTcD70R5rf7ycejw8Mv2Qfm4kpe/GybEcss4XJzI7jqUQCQJ3q0IXAQhEJAsfhTP28FijLZWzGjJSNZ2dsKLAM5Mc3el72EIYNZxhjcsFziUQ2d5Ouh4CHRCSS63iM2R5bSh7st0ljzFjlqURCRJYwdE2EAnuPYjhbJCLHAb/FWSTrRlX97xyHZMa47NkZRyx7kujONTmMxnhd9rRhTaXpXrkGsMTUjDxPJRLAie6f57l/3u7++UXGUNGlu8bF73HWt1gDvCwiD6rqW7mNzGyLTGbof1L9vQehyZX4IhH+bekCEAjGI/zbm842MMH4oPalG9oPe+sxAPyxMIe/7RzjE8QtlBw8hGFMv+yCSl8oRLq7x3nAJ5D1bzZ7U7dsVi9hRpqnEglV/RBARI5W1X2zHrpYRF4BLslNZJuYDyxX1Q8ARORO4BTAEgkP0UiM2c//DYBQVZzD3noMRVEV8PtI9GVY1xuEYIy3Pszw7AtNHHFIHvP2qaIvkSGc56OXfF5Y1MIeu4UpLCzgxUUtlJX62XP2JEqKQjm+QuNFg3eDzU4W9n/wBg584jbC1VW5Cs9MQJ5KJLKIiByiqs+7JwcztvYNqQZWZ52vYTNbm4vIOcA5AFOmTBmdyMxW6wnGOOvKJWTcbeD8fuFTx0/izNOmUlwURBWifWnyQn52mRrjyH8rJy/kx+/feNbETidHB44/c2L1aF6CmWD6h8eOWPZkjiMxE8lY+vDdFmcD14rIShFZiTNj46u5DWnbqeoNqjpPVeeVl5fnOhwzSCzi5+tf3HngPBAQjj6skpLikLvqpRCNBPD7nRUv+4+NMWYi8WSPhKouBvYWkUL3vD3HIQ1WC+yUdV7jthkPicUCfOqEao76WCVNLX1MqghTkO/J/zLGg4ashfCwjNu95/P5Njo23ubJn4oiUglcBUxW1eNFZA5wkKrelOPQ+r0MzBSRaTgJxOk4+4MYj4nHAsRjASZVhnMdiplghqqF2NrF0AL58YEhjuxEREJB1i//0HnSRgW+MfxFBfj9flSVTCazydok/e39+870H2cnA6pKKpXCJ4LP7yeVSg08p7e3FxEhLy+PdCoF7uJp/ZtH2loo3uTJRAK4Bfgj8EP3/D3gr8CYSCRUNSUi3wIW4Ez/vFlV38xxWMaYcSB7vZHozJ2HnPUTKi0amJ3RvXINT88+Bti0QLPf4e89wbqe9VRVVZFOp2lsbKSqqopAYMPHRDqdZs3q1ZSVlxMKhQaSiVAoRCaTQVXx+XzU1dURDASoqKhgXUMDABWVlXR1ddHV2UnVpEn0dHeTTCapqKykrbWVVCpFWXm5JRMe5NVEokxV7xKRS2Hggzud66CyqeojwCO5jsMYM7q2ND1z8Af9cAxebyQ2Y+r2BTxAyKTT1K5Zg9/vp6KyEoGNeidEhIKCApoaG5k0eTIN9fWUlJQQ8Pupq6ujoLCQWCxGeXk59XV11NfXU1pWRn1dHatXraK6poZkIkF7eztFRUXU19Wx6sMPyWQyVE2aZMu7e5RXE4n1IlKKu3aEiBwIjLU6CWPMBLSl6Zn9xuJaDplMhuKyEtpaWykrL6dx3ToqKivJpFKsa2igorKSQCBAPD+ftrY2EokEkWiUhoYGSsvKiMZiNDU20tnZSWlpKWQNfYgI8fx8UqkUfX19+Px+UCUcDtPT00MwGCQvL8/qJTzKq4nEhcCDwHQReR4oBz6b25CMMbk0VE+ALxom0927yfFI9RBsreyVJrPrFIaMb5T5fMK6piYi4TCCk1isra1FVYnFYogI6XSatbW1hMNhUqkUhYWFdLS309baSnVNDe1tbVRUVFBXV0coGKSyqoqG+np8Ph9FRUW0tbURz8+npKSE9rY2enp6nPfo6KCpsdGGNjzKq4nEm8BhwCxAgHfx7lRWY8wI2FJx4uaOs41GD0H2SpNbE1//4lKw5VqIkRSPxSguKQEYGJIoLikhGokgIqgqJaWlRKPO2ihr164lEAhQNWkS9XV1+Hw+urq6qCgvxx8IICKUV1TgE8EfCFBSXAwiAzvXRiIRwpEI8fx80um0DW14lFcTiRdUdS5OQgGAu7Ll3NyFZIwxI2ckayEGz+DITkoUZwqmPx4lPxYZKKBsXLeOaCxGLBZjzerVFBUV4Q8ESCaThEIhgsEgBfn5xPPzAcjPzycai+H3+eju6cEfCOD3+zfqYQgEgwPHoby8geLMUCg0cGy8x1OJhIhU4awaGRGRfXF6IwAKgOiQLzTGjEvZwxmayl299ViJYyjZMzgGS6fTAx/2/ceqSjgScWodgLLycpoaGwEoKS0lGAzi9/spKCwc+PCP5+cPvE8kEvnIIYr+2onBx8Z7PJVIAMcCZ+Es8PSrrPZO4LJcBGSMGV2DP7SzpzVui22uWfAJ/nDYqb3IGl4A0EyGp2cdPfC+mx2SGKOyP/D7jwOBAGVlZfj9fjLp9MA6D7BhUSnYeDGpzb2PmRg8lUio6q3ArSLyGVW9N9fxGGNG1tYUTALDTh6ybWvNwubO+2UnC0MNSfRv4+0VA70UmQzNTU2Ulpbi8/udIY9o1JIFM8BTiUQ/Vb1XRD4B7A6Es9p/lruojDHba2sLJjdnqIWafNHwZo9H21B1CkPGN0a2lff7fOw0ZQo+nw8Bwu6xMf08mUiIyPU4NRFHADcCpwL/ymlQxpic2tbixO3tIcgeGnGXtNmiLdUpjGU+v99Z9yHr3JhsXk0rD1bVM4FWVf0pcBCwa45jMsZMIP1DIy8edSa9tQ25DseYnPFkjwTQvw1et4hMBpqBSTmMxxiTA9nDGeHqKiTgFguO8lDAWInDmFzwaiLxsIgUAb8AXsHpV7wxtyEZY0bDlj60t2XoYDg1C/6we+4TyGwYzhg8rBLduWb4F2iMx3gykVDVK9zDe0XkYSCsqrbXhjEetzUf7iO1tPX21ix4bRaGMTuKJxMJEfn0ZtragSWqui4HIRljRoBXCxKNmcg8mUgAZ+MUWC50zw8HFgPTRORnqnp7rgIzxkwM2b0ng9uNmUi8mkgEgNmq2gAgIpXAbcABwLOAJRLGmB3Kek+McXh1+udO/UmEa53b1gIkcxSTMcYYM+F4tUfiabfI8m73/FS3LQa05S4sY4wxZmLxaiJxHvBp4FD3/FbgXnV2ljkiZ1EZY4zHpNMZ2jtS+ANCYX7wo19gzCCeTCRUVUVkEdCuqk+ISBSI4+wCaowxZiu0dyR59KkG7v/7WooKg1zw9elMnxonFBp61LujM0lPb5pUSskL+UhnlGRSiUb8lBSHRjF6M1Z4MpEQka8D5wAlwHSgGrgeODKXcRljjFdkMsqzLzZxzU3vA7B6bQ/n/uA1/vqH+VSUhTf7mrb2BNfc9AELFjbwvX+fwfsr1/PAo3WoQs2kCL+7ci8qyjf/WjN+ebXY8jzgEKADQFWXARU5jcgYYzyka32KR56o36gtmVKWvtMx5GtW1fawYGED+fEANZOi3P93J4kAWFPXw813fkhvX3pHhm3GIE/2SAB9qpoQEQBEJMDWbL9njDEGgFDQR3VVmCVvb0gcaiZFmDktRiKZIRTc9PfM5Su7ACgrCVFb37PRYx8/tJzjP15Je0eSLl+KD2u7eX/leg7Yt4Ty0hAIpNNKW3uS5SvWs9vMOOkMLPugi12mRCkuDlEQtxoNL/JqIvGMiFwGRETkaOBc4KHteUMR+QVwEpAA3ge+oqpt7mOX4iyClQYuUNUFbvtxwG8BP3Cjqv632z4NuBMoxVko60uqmtie+IwxZiSFw37OPmMaL73aSmtbktM/WcOB+5Vww+0r2Wf3QubPLeGBBXVMmRxh3j7FPPbMOg6cWwxAbV0PM6bF8fkgk4FPnzCZGbvEueSKN/nGl6fx0istPPdiMyVFQXabkc/C59cRjQRQhWtuep/DDi6joyvJL69dNtCj8bUzdua0U6qJRrz6sTRxeXVo4xKgEVgCfAN4BPiP7XzPx4E9VHUv4D3gUgARmQOcDuwOHAdcKyJ+EfEDvweOB+YAn3efC3A18GtVnQG04iQhxhgzplRV5HHL7/bj5t/M5fBDyvjOj95g0Wtt7Dojny9fsJj7Hq5lxi5xzrpgMTf+aSVP/7OJi8/fleKiEE8828CVl+7OlJoIx328kl9e+x5d3SlmTIvz3IvNAHzjzGlcf+sKbvzzh8zcJc4f/rQCgBOPruIPt68cSCIAbvnrh6zvtmERL/Jc6ud+gN+mqmcAfxip91XVx7JOX8RZmwLgFOBOVe0DVojIcmC++9hyVf3AjetO4BQReRv4OPAF9zm3Aj8BrhupWI0xZiSICKXFecSiAa789TsAHLR/CY8/s45EIsOB+5XwwsstdPc4H/B/umc1B80r4fKLZjO5KkxBPMAes/dh5ar1ZDLg8znDF/2m1ER54y1nP0W/X+jtywBOb0hn18ZrB6ZSSiplI9Re5LkeCVVNA1NFZEfOM/oq8Hf3uBpYnfXYGrdtqPZSoE1VU4PaNyEi54jIIhFZ1NjYOILhG2PM1vP5hFjU+b1S1TkHZ2aHDPqUeGFRCwv/0UhJUYhQyE9xYYjJVZGBYY72jiTTpkQBJ1FxS9lYvqKL/fZylhR/bWk7hx1cvtH7zpoRJxz23EeSwYOJhOsD4HkR+ZGIXNj/9VEvEpEnRGTpZr5OyXrOD4EU8OcdGD8AqnqDqs5T1Xnl5eUf/QJjjNkBQkEfX/rsFCJhHy8sauboj1UQzvPx6pI2DtyvhPzYhs7rvDwfnz25eiDZAMiPB/jRd3cjFvVzzU3v86MLd+PLn5tCbX03Jx1TBcAf7/yQr33RqYNY/HorZ50+hbM+N4VZM+J85sTJXP2jPSgutHUovEhUvdeVJCKXb65dVX+6ne97Fk7NxZGq2u22Xeq+93+55wtwhioAfqKqx2Y/D/hvnPqNKlVNichB2c8byrx583TRokXbE74xxgxbKpWhpS3Bi4tbqJ4UYVJFmEcXNlBVkcfcPYud4Y5khhOOrKKsJERw0KyORCJDR2eSdMZZqCo/HqAvkSGRyLCqtoe33utg/r7FlJfkkVaIRfwgsL47TTTsIxTyDytuEVmsqvNG4u/ADI8nE4kdwZ2B8SvgMFVtzGrfHbgDpy5iMvAkMBMQnKLMI4Fa4GXgC6r6pojcjbNk950icj3whqpeu6Xvb4mEMcZsO0skcs9zxZYAIvIQm64b0Q4sAv6fqvYO423/F8gDHnfXp3hRVb/pJgZ3AW/hDHmc59ZpICLfAhbgTP+8WVXfdN/rYuBOEflP4FXgpmHEY4wxxox5nuyREJHfAuXAX9ymz+GscqlAgap+KVexDZf1SBhjzLazHonc82SPBHCwqu6fdf6QiLysqvuLyJtDvsoYY4wxI8qrszbiIjKl/8Q9jruntoKkMcYYM0q82iPxPeAfIvI+TtHjNOBcEYnhLABljDHGmFHgyURCVR8RkZnAbm7Tu1kFlr/JUVjGGGPMhOPJREJEPj2oabqItANLVHVdLmIyXdSpxwAAC09JREFUxhhjJiJPJhI4m2AdBDyFM7RxOM4um9NE5GeqensOYzPGGGMmDK8mEgFgtqo2AIhIJXAbcADwLGCJhDHGGDMKvDprY6f+JMK1zm1rAZJDvMYYY4wxI8yrPRJPi8jDwN3u+WfcthjQlruwjDHGmInFq4nEecCngUPd80VApaquB47IWVTGGGPMBOPJoQ111vX+AGfvi0/hJA9v5zQoY4wxZgLyVI+EiOwKfN79agL+irNfiPVCGGOMMTngqUQCeAd4DjhRVZcDiMh3cxuSMcYYM3F5bWjj00AdsFBE/iAiR+KsI2GMMcaYHPBUIqGq96vq6ThLYy8EvgNUiMh1InJMbqMzxhhjJh5PJRL9VHW9qt6hqicBNcCrwMU5DssYY4yZcDyZSGRT1VZVvUFVj8x1LMYYY8xE4/lEwhhjjDG5Y4mEMcYYY4bNEgljjDHGDJslEsYYY4wZNkskjDHGGDNslkgYY4wxZtgskRhERL4nIioiZe65iMjvRGS5iLwhInOznvtlEVnmfn05q30/EVnivuZ3ImKrbxpjjBmXLJHIIiI7AccAq7Kajwdmul/nANe5zy0BLgcOAOYDl4tIsfua64CvZ73uuNGI3xhjjBltlkhs7NfADwDNajsFuE0dLwJFIjIJOBZ4XFVbVLUVeBw4zn2sQFVfdLc7vw345OhehjHGGDM6LJFwicgpQK2qvj7ooWpgddb5GrdtS+1rNtO+ue95jogsEpFFjY2N23kFxhhjzOjz2jbi20VEngCqNvPQD4HLcIY1Ro2q3gDcADBv3jz9iKcbY4wxY86ESiRU9ajNtYvInsA04HW3LrIGeEVE5gO1wE5ZT69x22qBwwe1P+2212zm+cYYY8y4M6ESiaGo6hKgov9cRFYC81S1SUQeBL4lInfiFFa2q2qdiCwArsoqsDwGuFRVW0SkQ0QOBF4CzgSuGc3rMcaYsSbR3Eaqs2uT9kB+nFBpUQ4iMiPFEomP9ghwArAc6Aa+AuAmDFcAL7vP+5mqtrjH5wK3ABHg7+6XMcZMWKnOLhbO3LBJ8/4P3oA/GiZcXbVRgmGJhfdYIrEZqrpz1rEC5w3xvJuBmzfTvgjYY0fFZ4wxIyGXvQT+aJgXjzpzk/Yjlj1piYTHWCJhjDET1OBegn4j9WGenahoKr3d72fGJkskjDHGbJXsxMAXCpHu7nGOo2Ey3b2bHAM8PduZDHfgE7eNcrRmtFgiYYwxZkiDexWyE4P+oYktHZvxzxIJY4wxQ8oe/tiexCDd3Tvw+nD15pbzMV5liYQxxpgd7uWTzxk4PmLZkwTy4xyx7MlNnhfIj49mWGYEWCJhjDETVC4/zEOlRTY7Y5ywRMIYYyao7A/z7FqITF+C9cs/3O73HzycIQE/YL0O440lEsYYYzaphdhcwWR2YhCduTOHv/0Y4MzU2NwxPkF8zt6QttDU+GWJhDHGmCEN1avgz8sjMrkyl6GZMcISCWOMMUMaXCQZ3blmC882E5Ev1wEYY4wxxrsskTDGGGPMsNnQhjHGmI2mgvpCoSELJo0ZzBIJY4wxtq6DGTYb2jDGGGPMsFkiYYwxxphhs0TCGGOMMcNmiYQxxhhjhs0SCWOMMcYMm6hqrmMwgIg0AtuyS04Z0LSDwhnLJuJ1T8Rrhol53RPxmmH7rnuqqpaPZDBm21gi4VEiskhV5+U6jtE2Ea97Il4zTMzrnojXDBP3uscLG9owxhhjzLBZImGMMcaYYbNEwrtuyHUAOTIRr3siXjNMzOueiNcME/e6xwWrkTDGGGPMsFmPhDHGGGOGzRIJY4wxxgybJRIeJCLHici7IrJcRC7JdTw7gojsJCILReQtEXlTRL7ttpeIyOMissz9szjXsY40EfGLyKsi8rB7Pk1EXnLv919FJJTrGEeaiBSJyD0i8o6IvC0iB433ey0i33X/bS8Vkb+ISHg83msRuVlE1onI0qy2zd5bcfzOvf43RGRu7iI3W8sSCY8RET/we+B4YA7weRGZk9uodogU8D1VnQMcCJznXuclwJOqOhN40j0fb74NvJ11fjXwa1WdAbQCZ+ckqh3rt8CjqrobsDfO9Y/bey0i1cAFwDxV3QPwA6czPu/1LcBxg9qGurfHAzPdr3OA60YpRrMdLJHwnvnAclX9QFUTwJ3AKTmOacSpap2qvuIed+J8sFTjXOut7tNuBT6Zmwh3DBGpAT4B3OieC/Bx4B73KePxmguBjwE3AahqQlXbGOf3GggAEREJAFGgjnF4r1X1WaBlUPNQ9/YU4DZ1vAgUicik0YnUDJclEt5TDazOOl/jto1bIrIzsC/wElCpqnXuQ/VAZY7C2lF+A/wAyLjnpUCbqqbc8/F4v6cBjcAf3SGdG0Ukxji+16paC/wSWIWTQLQDixn/97rfUPd2wv18Gw8skTBjmojEgXuB76hqR/Zj6sxdHjfzl0XkRGCdqi7OdSyjLADMBa5T1X2B9QwaxhiH97oY57fvacBkIMam3f8Twni7txORJRLeUwvslHVe47aNOyISxEki/qyq97nNDf1dne6f63IV3w5wCHCyiKzEGbL6OE7tQJHb/Q3j836vAdao6kvu+T04icV4vtdHAStUtVFVk8B9OPd/vN/rfkPd2wnz8208sUTCe14GZrrV3SGcAq0HcxzTiHNrA24C3lbVX2U99CDwZff4y8ADox3bjqKql6pqjarujHNfn1LVM4CFwKnu08bVNQOoaj2wWkRmuU1HAm8xju81zpDGgSISdf+t91/zuL7XWYa6tw8CZ7qzNw4E2rOGQMwYZStbepCInIAzlu4HblbVK3Mc0ogTkUOB54AlbKgXuAynTuIuYArOtuunqergQi7PE5HDgYtU9UQR2QWnh6IEeBX4oqr25TK+kSYi++AUmIaAD4Cv4PyiM27vtYj8FPgczgylV4Gv4dQDjKt7LSJ/AQ7H2Sq8AbgcuJ/N3Fs3qfpfnGGebuArqrooF3GbrWeJhDHGGGOGzYY2jDHGGDNslkgYY4wxZtgskTDGGGPMsFkiYYwxxphhs0TCGGOMMcNmiYQx44i7i+a57vFkEbnno16zHd9rH3cqsjFmArNEwpjxpQg4F0BV16rqqR/x/O2xD2CJhDETnK0jYcw4IiL9u8G+CywDZqvqHiJyFs4OizGcLZp/ibP405eAPuAEd0Gg6Tjb1JfjLAj0dVV9R0Q+i7OQUBpng6mjgOVABGcJ4/8CHgauAfYAgsBPVPUB93t/CijEWXDpT6r60x38V2GMGSWBj36KMcZDLgH2UNV93F1TH856bA+cXVTDOEnAxaq6r4j8GjgTZ7XUG4BvquoyETkAuBZnz48fA8eqaq2IFKlqQkR+DMxT1W8BiMhVOMt6f1VEioB/icgT7vee737/buBlEfmbrVhozPhgiYQxE8dCVe0EOkWkHXjIbV8C7OXutHowcLezUjEAee6fzwO3iMhdOBtMbc4xOJuOXeSeh3GWQAZ4XFWbAUTkPuBQwBIJY8YBSySMmTiy92zIZJ1ncH4W+IA2Vd1n8AtV9ZtuD8UngMUist9m3l+Az6jquxs1Oq8bPIZqY6rGjBNWbGnM+NIJ5A/nharaAaxw6yFwd2Dc2z2erqovqeqPgUacrZ4Hf68FwPnuxkuIyL5Zjx0tIiUiEsGp1Xh+ODEaY8YeSySMGUfc4YPnRWQp8IthvMUZwNki8jrwJk7hJsAvRGSJ+77/BF7H2fJ6joi8JiKfA67AKbJ8Q0TedM/7/Qu4F3gDuNfqI4wZP2zWhjFmh3JnbQwUZRpjxhfrkTDGGGPMsFmPhDHGGGOGzXokjDHGGDNslkgYY4wxZtgskTDGGGPMsFkiYYwxxphhs0TCGGOMMcP2/wEVbjyNpaQRXAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCICHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAEWCAYAAACexWadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vbXu3N7YB0hQQUJoo2EEEjTEiNqyAvUTRxBhjNIkx+olGE4kSuwJqrDGxxCiKokZFBAQLqEvfXXaX7b3cMt8fc+71cNnG7sIFdn7Pc597zsycmffMmTPnPe+8M0eUUhgMBoPBYDDs6ziiLYDBYDAYDAZDd2CUGoPBYDAYDPsFRqkxGAwGg8GwX2CUGoPBYDAYDPsFRqkxGAwGg8GwX2CUGoPBYDAYDPsFXVZqROROESkVkSJrf7qI5IlIrYiM6bqInZZrj8khIgNERImIa3eWszcgIheIyOJoy2EwGPYvRGSBiNwZbTkMu4aILBWRy1qJ2+HZKCL/FZFZu1OedpUaEdksIg2WchD6PWTF9QNuBIYrpbKtQ+4DrlVKJSilvuysYFZFHNTZ49uTw8q/zjqfAhH5i4g4u1Bem4jI+SKywiqv0Lq4x+yu8jogzwIRaRaRGuv3jYjcLSLJbR2nlHpOKTW1k2XeLiK+iLb0686dwb6Nrf5rRaRcRN4VkYOjLVd7iMhsEflfN+fpEZH7RSTfqo/NIvJAd5axNyOajSKyNtqydIVu6LNbynOgiARF5OHuzLedMlts4yJyhIi8JSKV1j27XEQu3lNy7S5aum5WX/1sd5ellPqJUmphd+drp6OWmp9ZykHod60V3g8oU0ptt6XtD3zbrVJ2jo7IMUoplQAcD8wALtkdgojIL4EHgP8DstD19ndgWivp95TF516lVCKQAVwMTAA+EZH43SjXixFt6d4WyhER6QlDo/da7a8vsB1YsKsZ7GvWwVbkvQUYBxwBJAITgVV7UKxocxyQCQwSkcN3VyH7WluxmAlUADNEJCZaQojIkcD7wIfAQUA6cDXwk07mt9ML9O58qe5RKKXa/AGbgRNbCD8RaACCQC3wvPWvgDpgg5WuN/BPoATYBMyx5eEEfgtsAGqAlcABwEe2fGqBGS2U7wBuA7agHwiLgGQgpiU5WjheAQfZ9l8C5tv2k4EngUKgALgTcNrkvg8oBTYCP7fyc7VQTrIlz9lt1PHtwCvAs0A1cJl1Hg8A26zfA0CMlb4X8CZQCZQDHwMOK+5mS94a4HtgcitlLgDujAhLtM73Wmt/NvAJ8FegzKqD2cD/IupxjlUPpcCfQ7K0cp7PthK3FLjLKq8B3XF0+hoQ0W4jy0YrcJ9adbgGmBghy58sWWqAxUAvW/wxtmPzrDo5HCgOyWelOwNY05H6B34K1FrbRwCfWfkXAg8Bnog6/zmQC2yywuZZslSj76NjI879ZXT7qgG+BoaglYnt1nFT22v7wDCgEQig23SllT7GuhZbrTp4BIi14iYC+eh2WQQ800JdvAnc0Eo9XQy8YdvPBV627ecBo63tg4F30ffE98A5tnQdkfG36Pa0Gbigjfu1N/C6Vc564PKIun4J3R/VoF+sxrXTxz4FPAe8CjwUETcQ3R/WAO8B89mxHc9E94FlwO+wtXta7lccwG/QfW6ZJWtaB/NrtV3SSp8NnAqsto75FBhpK2sMWnmtAV4EXmDHe0IsOa+2rtlZEXUz1brOVeiXxA+By2zxlwDr0ErRO0D/iHvoKnR7qrTqVWi9jf8P2/OhhWs4G1u/aCvjINv9/jDwllVHJ7YS1pF2eiP6vi0ELraVFwvcb12/KkvmWOA/wHURsn0FTI+Us43+8ijgCyvfL4CjIvrLyzrYL9vTzrZkvM+6RpuAn3S07bd6LdpN0IpSY6/kNi6kA93B/h7wAIOsEz3Jir8J3cEOtRrUKCC9tYqOKOcSdIcyCEhAdwjPtCRHK8fb5TzYaiC/sMX/C3gUiEe/RS0HrrTirgK+QytgacAHtK7UnAz4W4qLaEA+4HSrzmKBO4BlVtkZ6A7hT1b6u9GN3W39jrXqbyi6k+9tpRsAHNhKmQuIUGqs8EVoa0qo0fmB6wCXJddsdlZqPrDqoR/wA7aOpa0bJSJuKfpGHmGV5e7KNaANpQbog+60T7Hqe4q1n2GTZQP6wR9r7c+14vqjb7LzLBnT+fGhupYdb8p/ATe2V//o9vsP4GNr/zC00uWyruE6bA996zzftc471OFdaMniQnd6RYDXdu6NwElW/CJ0B3KrdQ6XYylHHWj7O1x/K+yv6Id8GloxfgO429ZH+IF70B12bAt1cZt17a8BDgXEFjcI/dBxoJWJLVh9jhVXYcXFo9v+xdY5jkF3rMN3Qca/WDIej37IDG3l2n2Efoh6gdHoF7YTIur6FHQHfzewrI17Pw6tcJwCnGnJbFdgP0N3+h60Ml3Nj+14OPrBe4wVfx+6H7ErNZH9yvXofqWvda6PAs93ML+OtEv7i+IY9MN3vFUXs9D3ZYyV/xbgF+g2eJZVll2pORZoAlKBB9lRue1l1cUZljzXW8eHHpjT0M+HYVb8bcCnEbK+CaSg+60S4OSW2rh1jQLApDau4w7HtPCMWYBWCI62roW3lbCOtNM7rDo7BagHUq34+ei+qo9V30dZdX0O8LlNrlHo/s7T0nVrob9MQ99nF1l1eZ61H3pWL7XVe3v9sj3tbOuaXW7JezX6BV7aa/tt/Tqq1NSiO5bQ73JbJbel1IwHtkbE3wI8bW1/D0xrpdz2lJIlwDW2/aFWBbk6eLyyKqnO2n6eHy0hWeibKdaW/jzgA2v7feAqW9xUWldqLgCK2qnj24GPIsI2AKfY9k8CNlvbdwCvtdAQD0J3IicC7nbKXEDLSs1c4F1bo4u8frPZWak52bZ/DbCkjfNsjmhLIQVsKXCHLW2XrgFtKzU3E2ExQL/JzbLJclvEOb1ta7//auX8bgaeUz92BPVAThv132jVQRG6I2tNAb3BXqZ1nie0c30r0MOroXN/1xb3M/Q9HbJ6JVp5pnSg3iOvv6DvoQNtYUfyowVponXNvW3I6kS/0X1ilb0tdC2s+DxgLHAu8BhayToYrcC8bqWZgaUU2o57FPhDB2X0A/G2+JeA37Ug6wHoB1yiLexuYIGtrt+zxQ0HGto49wvRD1QX+qFWxY9v0P0sueJs6Z/lx3b8eyyFxNqPs+rartRE9ivrsFlvgRysfrO9/DrYLu1KzcNYL2K2sO/RSuNx2B5gVtyn7KjUPAH823a9fECmtT8T+CyiHebx4wPzv8CltngH+n7sb5P1mIjr/ZtW2ngfK/3BbVzHHY6JrA/0/b6ohT5gUcQ5tNdOG7A9Z9D9/QTr/Bqw7vmIcrzo/mCwtX8f8PcIOavZsV9utLWzi4DlEXl+Bsy2tpfa6r29ftmedjawPqK9KSCbdtp+W7+OjrGerpR6r4Np7fQHeotIpS3MiR4uAd1BbOhEvvDjW1uILegbMwttMu8IY63yz0Y/zOPRnWp/tCZcKCKhtA70TRMqO8+Wj12OSMqAXiLiUkr520iXF7Hf0vn1trb/jO6wFlvyPaaUmquUWi8iN1hxI0TkHeCXSqltbZQbSR+0Wb01udqT3S5nS7yklLqwA/l05zWIpD9wtoj8zBbmRr9VhCiybdejrSnQdpt9Flhn+SSdg37IFrYhx31KqdsiA0VkCNpqMA59o7vQFk87eRHH/Aq4FF0vCkhCv82GKLZtNwClSqmAbR/0Ofam7XqPJMOScaUtvaDv8xAlSqnGVo7HkmM+MF9EYtFW2KdEZLlSah16WGEiWmn/EN3pHo/u8D+0sukPjI/oa1zAMx2UsUIpVWfbb60d9wbKlVI1EWnH2fYj2463jft/Fvqe8AN+EfmnFfYvW1n1tvR56DYYkiV8XZRS9SJSFpF/5HXrD/xLRIK2sAC632wzvw62y8iyZonIdbYwDz+20QJlPa0swvew1Q7ORg+ZoZT6TES2Auejh+IjZVUikh9R9jwRud8WJuj+LVROa/d4JBVoN4sctBWis7R0D9nDOtJOyyLaUUjuXmjlZae+SSnVKCIvAheKyB/RLylnRSQbq5RaHy5U5Hb0/QY7P4uw9vu0cD672i+Hr4HV3rCdT1ttv1V2tzNmHlrLTLH9EpVSp9jiD+xk3tvQDTdESLMrbjl5yyjNS2jN8/c2uZrQfhQhuZOUUiOs+EJ2rNx+bRTxmZXX6e2JErHf0vlts2SuUUrdqJQaBJwG/FJEJltx/1BKHWMdq9Bm/w4hIgloK8/HtuBIuVoisi52RYmyYy+rq9egDt1BhMi2beehLTX2dhmvlJrbARlbbbNKqQL09T4D/XbzTAfya4mH0Z3nYKVUEtrXQyLShOtKRI4Ffo1WpFKVUinoN/7IYzpCe/Ue2R5K0UrRCFv6ZKUdoHeStT2UUg1KqfnoB8lwKzik1BxrbX+IVmqO50elJg/4MOKaJiilru6gjKkRDvKtteNtQJqIJEak7eiLVBgR6QucgH7YFIleFuMs4BQR6YVu42kiYm/H9jZfiB5GCuUXix6CtBNZ93noIVJ7PXmttttefh1pl5Fl3RVRVpxS6nmrrD5ie3qz4z08Ha2Y/91WN33QCl9L5y72favsKyPKjlVKfdqGvCF2qDPrwfoZeniwNXbob0Qku4U0Ld0H9rCOtNPWKEVbV1p7ni5EjxpMBuqVUp91IM8Qkc8iaL3N78qzsS3aa/utsruVmuVAjYjcLCKxIuIUkUNsHv5PAH8SkcHWjJeRIhK6iYrRY+at8TzwC2vKXwJ6ZtGL7VhD2mIucLmIZFtv14uB+0UkSUQcInKgiBxvpX0JmCMifUUkFe141yJKqSq0sjRfRE4XkTgRcYvIT0Rkp5k/Eed3m4hkWB3c79GWAETkVBE5yLqRq9BvWkERGSoiJ1izBBr50ZG7TUQkRkQOA/6Nfpg83d4xEdwkIqkicgB6bPvFXTx+J7rhGqwGzrXqehw7vpk8C/xMRE6y2qRXRCZaD5n2eA44UUTOERGXiKSLyGhb/CK0gnEo2s+rMySizcG1oqd5X92B9H6sYQwR+T36gbDLdKDei4G+IuKx0geBx4G/ikgmgIj0EZGTOlqmiNxg1X+sVaezrHMKLcXwITAJPSSWj1a6T0Y/cENp3gSGiMhF1jV3i8jhIjJsF2T8o+jp5ceiHVxfbqF+8tDDJHdb7WYk2kLWmemvF6F90IaifXNGo/248oHzlFJbgBXA7ZZcR6KHDkO8gm7HR1nX43baV2QfAe4Skf4AVv8SmoXZXn7ttcvIPvtx4CoRGW/17/Ei8lNLIfwM3WbnWNfqDLQjcohZaAfqQ211czQwSkQORTu/Hmr1qS708KVdkXgEuEVERljnmSwiZ7dTN/bzCLdxi18Ds0XkptAzSkRGicgLVvwatHV8tIh40XW3S3TlXrKOfQr4i4j0tvq1I61nAZYSE0Q7Eu/qy9Zb6HvrfOv+nIF+4XizhbQdfja2cz7ttf1W6ahS84bsuLbIvzooWADdOYxGOyaWohWZ0Foof0FXwmL0zfIk2pkNdKNYKHpNgHNayP4p9MX5yMq7Ee3Q2imUUl9bed1kBc1Em0rXoh/0r6DNj6Ab3jvohryKdh5eSqn7gV+indVK0G8R16KViNa4E31Rv0I7U6+ywgAGo73Ba9Gdw9+VUh+gncLmouu5CO3keUsbZfxaRGrQQ2SL0KbkoyLM8B3hNevY1ejO5sldPL41unINfod+a6kA/oh2xAXCD6Zp6DfN0PW4iQ7cD0qprWgHvRvRw3Sr0Y53If6FZeKPMJ3uCr9Cm9lr0OfZnpL4DvA2+gG5BX0vdGTYsDXaqvf30TN6ikSk1Aq7Ge2UuUxEqtFtc+gulFeP7myL0G3358CZSqmNAEqpH9Bt/WNrvxo94eCT0BCaNRw0Fe13s83KK+Sc3BEZi6xz3YZWXK9SSrU21HAe2lF2G/p6/0F1bnh+FvreLbL/0A/kkEXiAvQwW2j24YtoSxpKqW/Rfd4L6DfbWrSPRVMbZc5D+28ttu79ZWjfx47k1167vB1bn62UWoF2An0IXbfr0X4UKKWa0RbN2ej7aAbWPSwifdAWhQci6mYlup3PUkqVooen7rXqZji6vwzVzb/Q1/8F63p/Q8enX+/Uxi0LzwnWb6OIlKP9u96y4n9A+zq+h55R1dm1nLpyL/0K/az4Al2n97Bjn7YIrSTukgKulCpDP8dvRNf1r4FTrWsQyS49G9uh1bbfFiEvY4OhU4iIQpuj17ebePfKMQCt3Lq7YK3rLlk2oE3fnXnQGfYwIjIR7YDYEUtdVBHtG/GdUuoPLcQloP2NBiulNnVDWd2a3+5E9LpW+eip+B+0l74nIiIzgSss94R9jrbavp2esMCZwbDHEJEz0ePk70dbFsO+jzWEdqA1DHgy2sL4b1v8z0QPacejZ7V8jZ7519nyujW/3Yk1fJxiDbGE/HuWRVmsvRLRvinXoK1L+wTttf3WMEqNwdBNiMhStDPlz60xboOhq2Sjp8HWAn8DrlY7fvZlGj8u0DkYOFd1zfze3fntTo5Ez/YpRftbnK6Uamj7kJ6H5ZNTgvYV+kc7yfcm2mv7LWKGnwwGg8FgMOwXGEuNwWAwGAyG/YJ98QNnhlbo1auXGjBgQLTFMBgMhn2KlStXliqlMqIth6HrGKVmP2LAgAGsWLEi2mIYDAbDPoWI7MqK5Ia9GDP8ZDAYDAaDYb/AKDUGg8FgMBj2C4xSYzAYDAaDYb/A+NTs5/h8PvLz82lsbPUjyQbDHsXr9dK3b1/cbne0RTEYDPsZRqnZz8nPzycxMZEBAwYg0pmPNhsM3YdSirKyMvLz8xk4cGC0xTEYDPsZRqnZz2lsbDQKjWGvQURIT0+npKQk2qIYuonmskr8NbU7hbsSE/Ckp0RBIkNPxig1PQCj0Bj2Jkx73L/w19TyweDJO4VPyl1ilBrDHscoNQaDwWCIOpEWH4fHQ6C+ARyC0+vV24Ajzkuw3vIRdAji0PNdjGXIAEapMewBnE4nhx56KH6/n4EDB/LMM8+QktLxzuf2228nISGBX/3qVzvFLVq0iHvvvRcRweVyccEFF7SYrrsZMGAAiYmJAAQCAc444wxuu+02vF5vi+mPOuooPv300w7nP3HiRAoLC4mNjQXgtttu46yzzuq64AbDXoRdkVH+AEuHTQ3HTXhvEctOnNnmth1jGTKAmdJt2APExsayevVqvvnmG9LS0pg/f3635Pvf//6XBx54gMWLF/P111+zbNkykpOTd0rn9/u7pbxIPvjgA77++muWL1/Oxo0bufLKK1ste1cUmhDPPfccq1evZvXq1TspNEopgkHzIXDDvk1o6OqDwZNpLCiKtjiG/QCj1Bj2KEceeSQFBQXh/T//+c8cfvjhjBw5kj/84Q/h8LvuuoshQ4ZwzDHH8P3337eY19133819991H7969AYiJieHyyy8HtKXjhhtuYNy4ccybN4/NmzdzwgknMHLkSCZPnszWrVsBePnllznkkEMYNWoUxx13HADffvstRxxxBKNHj2bkyJHk5ua2eU4JCQk88sgj/Pvf/6a8vJylS5dy7LHHctpppzF8+PBwGoClS5dy3HHH8dOf/pShQ4dy1VVXdVg52bx5M0OHDmXmzJkccsgh5OXlsXjxYo488kjGjh3L2WefTW2tfut9++23Ofjggxk7dixz5szh1FNPBbTV67777gvnecghh7B582YAnn322fB5X3nllQQCgbDst956K6NGjWLChAkUFxcDUFxczPTp0xk1ahSjRo3i008/5fe//z0PPPBAOP9bb72VefPmdej8DPs+h7/+GBPeW8SE9xYhHjd167dQt34LDduKW9xW/kC3laf8Aeo351O/OZ/msspuOiPDvoZRagx7jEAgwJIlSzjttNMAWLx4Mbm5uSxfvpzVq1ezcuVKPvroI1auXMkLL7zA6tWreeutt/jiiy9azO+bb77hsMMOa7W85uZmVqxYwY033sh1113HrFmz+Oqrr7jggguYM2cOAHfccQfvvPMOa9as4fXXXwfgkUce4frrr2f16tWsWLGCvn37tntuSUlJDBw4MKwArVq1innz5vHDDz/slHb58uU8+OCDrF27lg0bNvDqq6+2mOcFF1zA6NGjGT16NGVlZQDk5uZyzTXX8O233xIfH8+dd97Je++9x6pVqxg3bhx/+ctfaGxs5PLLL+eNN95g5cqVFBW1/wa8bt06XnzxRT755BNWr16N0+nkueeeA6Curo4JEyawZs0ajjvuOB5//HEA5syZw/HHH8+aNWtYtWoVI0aM4JJLLmHRokUABINBXnjhBS688MJ2yzfsu7gSE5iUu4RJuUuIHzyAZSfOZNmJM6nP3czSYVNZOmxqq9tdtc4447zh8pYOmxq2+rQ0G8vQMzA+NYbdTkNDA6NHj6agoIBhw4YxZcoUQCs1ixcvZsyYMQDU1taSm5tLTU0N06dPJy4uDiCsBO0qM2bMCG9/9tlnYeXhoosu4te//jUARx99NLNnz+acc87hjDPOALQ16a677iI/P58zzjiDwYMHd6g8pVR4+4gjjmh1HZYjjjiCQYMGAXDeeefxv//9r0V/meeee45x48aF92tqaujfvz8TJkwAYNmyZaxdu5ajjz4a0ErckUceyXfffcfAgQPDcl944YU89thjbcq+ZMkSVq5cyeGHHw7oa5aZmQmAx+MJW3oOO+ww3n33XQDef//9sALjdDpJTk4mOTmZ9PR0vvzyS4qLixkzZgzp6eltlm3Yt/Gkp4R9Weo350dZGkNPxyg1ht1OyKemvr6ek046ifnz5zNnzhyUUtxyyy07+aLYhy/aYsSIEaxcuZITTjihxfj4+Ph283jkkUf4/PPP+c9//sNhhx3GypUrOf/88xk/fjz/+c9/OOWUU3j00UdbLSNETU0NmzdvZsiQIaxZs6bNsiOnNO/KFGd7vkoppkyZwvPPP79DmtWrV7d6vMvl2mG4K7TStFKKWbNmcffdd+90jNvtDsvodDrb9VG67LLLWLBgAUVFRVxyySXtn5TBAATqG5nwnlaSvX2yccbFMnHd4vDsp4nrFgN69lNo22CIxAw/GfYYcXFx/O1vf+P+++/H7/dz0kkn8dRTT4X9QAoKCti+fTvHHXcc//73v2loaKCmpoY33nijxfxuueUWbrrppvDwSnNzM0888USLaY866iheeOEFQFtAjj32WAA2bNjA+PHjueOOO8jIyCAvL4+NGzcyaNAg5syZw7Rp0/jqq6/aPK/a2lquueYaTj/9dFJTU9uth+XLl7Np0yaCwSAvvvgixxxzTLvHtMSECRP45JNPWL9+PaCHiX744QcOPvhgNm/ezIYNGwB2UHoGDBjAqlWrAD1EtmnTJgAmT57MK6+8wvbt2wEoLy9ny5YtbZY/efJkHn74YUAPLVZVVQEwffp03n77bb744gtOOumkTp2boWcQUmQmvLeI+MEDiO3fh9j+fXCnJuPtnUn8Qf2JH9Tvx+2D+hPbOyu8LS5ntE/BsJdhLDWGPcqYMWMYOXIkzz//PBdddBHr1q3jyCOPBLRD6rPPPsvYsWOZMWMGo0aNIjMzMzwkEskpp5xCcXExJ554IkopRKRVy8CDDz7IxRdfzJ///GcyMjJ4+umnAbjpppvIzc1FKcXkyZMZNWoU99xzD8888wxut5vs7Gx++9vftpjnpEmTwrOQpk+fzu9+97sO1cHhhx/Otddey/r165k0aRLTp0/v0HGRZGRksGDBAs477zyampoAuPPOOxkyZAiPPfYYP/3pT4mLi+PYY4+lpqYGgDPPPJNFixYxYsQIxo8fz5AhQwAYPnw4d955J1OnTiUYDOJ2u5k/fz79+/dvtfx58+ZxxRVX8OSTT+J0Onn44Yc58sgj8Xg8TJo0iZSUFJxO89AxtM4Xp10R3p6Uu4S4Ae37rxkMbSF2PwDDvs24cePUihUrdghbt24dw4YNi5JEhkiWLl3Kfffdx5tvvrnflhkMBhk7diwvv/xyq/5Ipl3un9jXnQkvnseOC+Z15+J53fWJBhFZqZQa135Kw96OsdR0EhE5AFgEZAEKeEwpNU9E0oAXgQHAZuAcpVSFaKeEecApQD0wWym1ysprFnCblfWdSqmFVvhhwAIgFngLuF4ZLdSwF7N27VpOPfVUpk+f3mEHa8P+g91peH8sz7D3Yyw1nUREcoAcpdQqEUkEVgKnA7OBcqXUXBH5DZCqlLpZRE4BrkMrNeOBeUqp8ZYStAIYh1aOVgKHWYrQcmAO8DlaqfmbUuq/rclkLDWGfQXTLg17E8ZSs/9gHIU7iVKqMGRpUUrVAOuAPsA0YKGVbCFa0cEKX6Q0y4AUSzE6CXhXKVWulKoA3gVOtuKSlFLLLOvMIlteBoPBYDAYIjBKTTcgIgOAMWiLSpZSqtCKKkIPT4FWePJsh+VbYW2F57cQHln2FSKyQkRWlJSUdPlcDAaDwWDYVzFKTRcRkQTgn8ANSqlqe5xlYdmt43tKqceUUuOUUuMyMjJ2Z1EGg8FgMOzVGKWmC4iIG63QPKeUCq11X2wNHYX8brZb4QXAAbbD+1phbYX3bSHcYDAYDAZDCxilppNYs5meBNYppf5ii3odmGVtzwJes4XPFM0EoMoapnoHmCoiqSKSCkwF3rHiqkVkglXWTFte+xSNjY0cccQRjBo1ihEjRoQ/XLlp0ybGjx/PQQcdxIwZM2hubo6ypAaDwWDYl+nxSo2IjG3hd6CItDfd/WjgIuAEEVlt/U4B5gJTRCQXONHaBz17aSOwHngcuAZAKVUO/An4wvrdYYVhpXnCOmYD0OrMp72ZmJgY3n//fdasWcPq1at5++23WbZsGTfffDO/+MUvWL9+PampqTz55JPRFtVgMBgM+zBmnRr4OzAW+AoQ4BDgWyBZRK5WSrX4kRGl1P+s9C0xuYX0Cvh5K3k9BTzVQvgKS549xuKlxTy6aBPbS5vI7BXDlTMHMnViVvsHtoGIkJCQAIDP58Pn8yEivP/++/zjH/8AYNasWdx+++1cffXVXT4Hg8FgMPRMerylBtgGjLGcbQ9Dz2LaCEwkaVkFAAAgAElEQVQB7o2qZHuYxUuLueehHyguaUIpKC5p4p6HfmDx0uIu5x0IBBg9ejSZmZlMmTKFAw88kJSUFFwurVf37duXggLjMmQwGAyGzmOUGhiilPo2tKOUWgscrJTaGEWZosKjizbR1BTcIaypKcijizZ1OW+n08nq1avJz89n+fLlfPfdd13O02AwGAwGO2b4Cb4VkYeBF6z9GcBaEYkBfNETa8+zvbRpl8I7Q0pKCpMmTeKzzz6jsrISv9+Py+UiPz+fPn12WobHYDAYDIYOYyw1+rMG64EbrN9GK8wHTIqaVFEgs1fMLoV3lJKSEiorKwFoaGjg3XffZdiwYUyaNIlXXnkFgIULFzJt2rQulWMwGAyGnk2Pt9QopRqA+61fJDt//nU/5sqZA7nnoR92GIKKiXFw5cyBXcq3sLCQWbNmEQgECAaDnHPOOZx66qkMHz6cc889l9tuu40xY8Zw6aWXdvUUDAaDwdCD6fFKjYgcDdwO9MdWH0qpQdGSKVqEZjl19+ynkSNH8uWXX+4UPmjQIJYvX96lvA0Gg8FgCNHjlRr0Anq/QH8dOxBlWaLO1IlZXVZiDAaDwWCIBkap0Sv77pOL2hkMBoPBYPgRo9TAByLyZ+BVIDzNRym1KnoiGQwGg8Fg2FWMUgPjrf9xtjAFnBAFWQwGg8FgMHSSHq/UKKV61LRtg8FgMBj2V3qsUiMiFyqlnhWRX7YUH/HlbYPBYDAYDHs5PXnxvXjrP7GVn6Ebqays5KyzzuLggw9m2LBhfPbZZ5SXlzNlyhQGDx7MlClTqKioiLaYBoPBYNiH6bFKjVLqUev/jy39oi3f/sb111/PySefzHfffceaNWsYNmwYc+fOZfLkyeTm5jJ58mTmzp0bbTENBoPBsA/Tk4ef/tZWvFJqzp6SZW9BKUVRYSEAWdnZFBcVAZCdk4OIdDrfqqoqPvroIxYsWACAx+PB4/Hw2muvsXTpUgBmzZrFxIkTueeee7p0DgaDYf9DKYVSCofDscO2wRBJT24VK62fFxgL5Fq/0YAninJFjaLCQhobG2lsbGTrli3h7ZCi01k2bdpERkYGF198MWPGjOGyyy6jrq6O4uJicnJyAMjOzqa4uLg7TsNgMOzlBAIBlFIA+P1+AoFAODwY2HENVKUUPp+PhoYGgsEgfr+foPXJlUAgED7WYIAerNQopRYqpRYCI4GJSqkHlVIPApPRik2PRSlFMBgMdzpdxe/3s2rVKq6++mq+/PJL4uPjdxpqEpEuWYMMBsPehVIqrLCElJHQfl1dHT6fD7/fT0VFBQ319eHwxqYmgpay4vf7CQaD1NXWUlxURENDA3W1tRQVFaGUorq6msJt24xiYwjTY5UaG6lAkm0/wQrrcWRlZ++kWIgIWdnZXcq3b9++9O3bl/Hj9ZJAZ511FqtWrSIrK4tCywpUWFhIZmZml8oxGAx7D8FgkLytW6mpqUEpRUF+PlWVlSilqKmuZtu2bTQ3N+NwONi+fTvVVVWEep+gUjQ1NdHU2AhAQmIicXFxVJSX442NJRAIsHXLFqoqK0lPTw+X2V0vYoZ9F6PUwFzgSxFZICILgVXA/7V3kIg8JSLbReQbW9iLIrLa+m0WkdVW+AARabDFPWI75jAR+VpE1ovI38TSKkQkTUTeFZFc63+3K1rF1tuPHaVU2Lems2RnZ3PAAQfw/fffA7BkyRKGDx/OaaedxsKFCwFYuHAh06ZN61I5BoMhOoQsJcFgkMbGxvB+eno65WVlVFRUkJaeTlVVFfn5+WRmZYHlw5ecnIzL5cLt8dDQ0EBRYSHNTU001NdTXFxMdVUVfr+fxsZGbe3x+YiNjUVEyM7JAcvKG0oTDAajWRWGKNNjHYVDKKWeFpH/8uPKwjcrpTryFF8APAQssuU1I7QtIvcDVbb0G5RSLQ1rPQxcDnwOvAWcDPwX+A2wRCk1V0R+Y+3f3NHz6gqhoaDufOt58MEHueCCC2hubmbQoEE8/fTTBINBzjnnHJ588kn69+/PSy+91G3lGQyGPYPf76eivJy4hBQ8bgfbCgpITEoiNjYWt0e7JzY1NpKYqFfKSElOpq62lmAwSGZWFhXl5fj9fmqqq0lLT6e5uZmioiL69OlDU1MT4nDQUF+PJyaGzMxMamtrqa2tJSs7m8bGRsrLyuiVkUFNdTV+v58D+vWLZnUYokyPVWpEZGxEUJ7131tEerf37Sel1EciMqCVvAU4h3Y+tSAiOUCSUmqZtb8IOB2t1EwDJlpJFwJL2c1KTXZOTquzn7rK6NGjWbFixU7hS5Ys6XLeBoMhegQCQerr62loaCQ+Pp6MzEzKy8pISUkhPy+PuLg4MjIzyc/LIyYmhviEBLYXF5Oeno7X66WpqYms7GxiYmJobGykubmZxKSksOXF5/ORlpZGYlISDoeD+Ph4XC4XsbGxxMTE4GtuprSkBBGhb9++xjevh9NjlRrg/jbiuvrtp2OBYqVUri1soIh8CVQDtymlPgb6APm2NPlWGECWUio07agIyGqpIBG5ArgCoF8X31BEhJzevcP79m2DwWBoic9XVTF8SC+qK4txOCQ8K6m2pobMrCzE4aZoewMZmZk4nW6+WlfNqOHZNDcHmP/0Zq6ePYDKqmZKyhqI9zaQlJRMUnIyNdXVJCQkkJLWi8qKchoaG0lPT8ftduN0OnE4HASDQZqbmwE9VN7s8+F0uYxi04PpsT41SqlJbfy6+jHL84DnbfuFQD+l1Bjgl8A/RCSpxSNbllWhFa2W4h5TSo1TSo3LyMjoiswGg8Gwy4wYmkBDXUXYClNWWkpqWhout4fa2loaG5pp9sF7H1dy4TUraW6GB5/cyDmXr2Rgv3h+c+dazrj4Cz5dUUFNvZdvfgjw7D8L8HgTcLqTOOX8T/lug6K6zkt9g/aXCSk0oVlUB/TrR3JyMqUlJVGuDUO06cmWGgBExA1cDRxnBS0FHlVK+TqZnws4AzgsFKaUagKarO2VIrIBGAIUAH1th/e1wgCKRSRHKVVoDVNt74w8BoPBsDuJj3PSUAcuTypKQd8DDsDvV2wtaCInM5nlqytxOh3c+1AuMTEO3C4H/3xTG6EH9Y/n3od+AODQYcnMmvMlSsFDd4/i1As/JxDQ73K//b91iMA/nxpPYoIbgEAAEhISiI+Px+l0kpKaSnJKirHS9HB6rKXGxsNoBeTv1u8wK6yznAh8p5QKDyuJSIaIOK3tQcBgYKM1vFQtIhMsP5yZwGvWYa8Ds6ztWbZwg8Fg2GtQOMjIyuHjzyv48NMyamqD3PXAerbkN3D9777hgcc24I1xAhAMKNzu9h87SoHTuaNyEuMWnA4H1TU+lq8q564HvuOl17ZRUxtERHA6nbjM0FOPxyg1cLhSapZS6n3rdzFweHsHicjzwGfAUBHJF5FLrahz2XHoCbQV6CtrivcrwFVKqXIr7hrgCWA9sAHtJAx6qvkUEclFK0rmw0gGg2GvI9brIsbj4qdTsmlsVkyb9TkfflZKeqqHQEBRVe3HH1CMGJqIz68oKGpg/Fi9QsWmrXWMG623v/q2ihOO0UPoHy0r5YxTfvTpm3ZyDo/eP5bikkYWf1jML//wNe99VMJzr+bxyRdlFJc0UlbehN9vpnP3dKSnL1YkIquAs5VSG6z9QcArSqnI2VF7PePGjVORM4zWrVvHsGHDoiSRwdAypl3un5SWNTF7zkoqq31kZcRw2y8OpqrGR2NjgLEjU9iwuY7S8iaOGJNG3rYGthU3MGFsGl9+Xcl3uTWc9bO+/LChlpVfVXDWqX0or/SxraielGQPv/2/b/n9jcN4eMFGikuaiIt1cv8fD2Xhi1tZtrKclCQ3v752MONGpxEX69wluUVkpVJq3G6qFsMepMf71AA3AR+IyEZAgP7AxdEVaf9j3rx5PP744yiluPzyy7nhhhsoLy9nxowZbN68mQEDBvDSSy+RmtojF3M2GPYL0lI9PP23w3jng2Lq6vxk9ophxMFJeKwhp8xe3nDarAwvocXbT5qUzUmT9MrlfXJimWRZbAb0gwEHxHH5jasIBsEfULhdOq+fTM7izXeLWLZSG70rq33cNnctLz8xfpeVGsP+Q48fflJKLUH7uMwBrgOGKqU+iK5U+xfffPMNjz/+OMuXL2fNmjW8+eabrF+/nrlz5zJ58mRyc3OZPHnyTt+DMhgM+xYOh5CRHsOFZ/XjylmD6JMTG1ZoOosCyir0tO13lxZz/pkHAHDQwAS++rZqh7TBIOQVNHSpPMO+TY+11IjIGa1EHWStpvvqHhVoL+DttLEEaup2CncmxnNyeZtrEbbJunXrGD9+PHFxcQAcf/zxvPrqq7z22mssXboUgFmzZjFx4kTuueeeTpdjMBj2P2K9DqYcn8l/lxTz+aoKhg1J4m93jaShMciwIYnkbdtRiemT420lJ0NPoMcqNcDPIrbfsO0roMcpNS0pNG2Fd5RDDjmEW2+9lbKyMmJjY3nrrbcYN24cxcXF5FirFWdnZ1NcXNylcgwGw/5HXKyLa2YPIisjhv8tK6OktJF+fXLolR7DkAMT2JxXzw8baomJcXDtJQeSlOiOtsiGKNJjlRprlhMAIvKlfd/QvQwbNoybb76ZqVOnEh8fz+jRo3E6dxzzDn1vymAwGCJJTfEwa0Z/zvxpH2K9Trxe3X9kpMdw/+2H0tgUxOUSEuNd4ThDz6TH+9RY9OwpYHuASy+9lJUrV/LRRx+RmprKkCFDyMrKotD61lRhYSGZmZlRltJgMOytuF0OUlM8OyktqSkecrK8ZKTHGIXGYJQaw55h+3a9IPLWrVt59dVXOf/88znttNNYuHAhAAsXLmTatGnRFNFgMBgM+zg9dvhJRN5AW2gEGCQir9vjlVKnRUWw/ZQzzzyTsrIy3G438+fPJyUlhd/85jecc845PPnkk/Tv35+XXnop2mIaDAaDYR+mxyo1wH2tbPdYnInxrc5+6ioff/zxTmHp6eksWbKky3kbDAaDwQA9WKlRSn0IICI/A/6jlOrx62t3Zdq2wWAwGAzRxvjUwAwgV0TuFZGDoy2MwWAwGAyGztFjLTUhlFIXikgScB6wQEQU8DTwvFKqJrrSdQ9KKTNd2rDX0NO/N7e301xWib+mdqdwV2ICnvSUKEhkMHQcY6kBlFLV6K9nvwDkANOBVSJyXVQF6wa8Xi9lZWXmQWLYK1BKUVZWhtdrVn3dW/HX1PLB4Ml8MHgytes20LClgIYtBfgqqqjfnE/95nyayyqjLabB0CI93lIjIqehP2B5ELAIOEIptV1E4oC1wIPRlK+r9O3bl/z8fEpKSqItisEAaEW7b9++0Rajx2O3yDg8HgL1O38zyRnnZdmJM3cKn5S7xFhtDHslPV6pAc4E/qqU+sgeqJSqF5FLoyRTt+F2uxk4cGC0xTAYDHsZIYsMwIT3FoWVlwnvLYqmWAZDlzBKDdwOFIZ2RCQWyFJKbba+4G0wGAwGg2EfwCg18DJwlG0/YIUdHh1xDAaDoXtodYjJIRDcNT+7w19/DGec9oUSj5u69VvCeYlDu2caZ2JDtDFKDbiUUs2hHaVUs4h4oimQwWAwdAetDTGF9lsiUN8YjvP2yQqH2/1rIvMKYXxtDNHGKDVQIiKnKaVeBxCRaUBpeweJyFPAqcB2pdQhVtjtwOVAyCv3t0qpt6y4W4BL0ZagOUqpd6zwk4F5gBN4Qik11wofiJ6NlQ6sBC6yK18Gg2H/pS0Ly+62inxx2hXh7clbPmZSrh6FV/5At5dlMHQ3RqmBq4DnROQh9Heg8oCdX0F2ZgHwEHrGlJ2/KqV2+OyCiAwHzgVGAL2B90RkiBU9H5gC5ANfiMjrSqm1wD1WXi+IyCNohejhTpyfwWDYx2jNwmIfAoobPCA8BOSI8xKsb9xpuy1CFhlvn2yccbFMXLdYR9gUJ0eMB2/vTADqN+d33wkaDLuJHq/UKKU2ABNEJMHa33nVqZaP+0hEBnSwmGnAC0qpJmCTiKwHjrDi1iulNgKIyAvANBFZB5wAnG+lWYh2aDZKjcHQg2ltCKit7dYIWWQm5S4JKy4Gw75Oj1dqRCQGPa17AOAKrbyrlLqjk1leKyIzgRXAjUqpCqAPsMyWJt8KA20ZsoePRw85VSql/C2kj5T/CuAKgH79+nVSZIPBEG3sQ05mqMdg6Bw9XqkBXgOq0H4rTV3M62HgT4Cy/u8HLulinm2ilHoMeAxg3LhxZtlgg2EfJXLIqTuwO/3GDR7Q4hCTKzGhQ3m5EhPC/jUOj6dLeRkMuwuj1EBfpdTJ3ZGRUqo4tC0ijwNvWrsFwAH2Mq0wWgkvA1JExGVZa+zpDQaDoUPYnX4n5S4h/qD+nc7Lk55iZjYZ9nqMUgOfisihSqmvu5qRiOQopUIL+U0HvrG2Xwf+ISJ/QTsKDwaWox2TB1sznQrQzsTnK6WUiHwAnIWeATULbVEyGAz7CK3NYOqIU2+rFhaDwdAm0tM/dCgia9HffdqEHn4SQCmlRrZz3PPARKAXUAz8wdofjR5+2gxcGVJyRORW9FCUH7hBKfVfK/wU4AH0lO6nlFJ3WeGD0ApNGvAlcKHlaNwq48aNUytWrNil8zcYDLuH+s35rX6GoL1tO5NylxA3QH8ra5cVJbMwXocQkZVKqXHRlsPQdYylBn7SmYOUUue1EPxkG+nvAu5qIfwt4K0Wwjfy4wwpg8GwD7C7nX3NEJDB0DY9XqlRSm0RkWOAwUqpp0UkAzDebgaDYZfpirPvjiv5ZiMuJ7BnnG+VUiilcDgcKKUIBoM4nbr8YDCIw7L2GAx7Oz1eqRGRPwDjgKHA04AbeBY4OppyGQyGzmG3ltjpyvBLR4Z9OvM9JTuRTr2hIae2CAQCiAgOh2OH7Y4Scj/w+Xw0NzcTFxeH3++nsaGB+IQEgsEgwUAAl9uN0+kkEAiElR2DYW+kxys1aIfeMcAqAKXUNhFJjK5IBoOhs9itJR1ZgbcjfietrfDb0e8pdRWlFKE1tEKWk4DfT2FhIenp6bg9HrYXF5OalkZMTEyrio3P5wPA5XLh9/tRSuF0Oqmvr6e8rIzMzEwCwSBlpaUEAgFi4+Koq6sjJTk5rPh4vV6cTqex4Bj2SoxSA83WbCMFICLx0RbIYDB0Dx1ZgdfO5C0fhz8HsMM3lzpBazOYHHHeFrdbW+8lEAjQ1NRETEwMSinq6+qIi9fdVIzXS2FhIV6vl14ZGWFLjd/vR0R2sKoEAgFKS0pobm6md58+lJeX01BfT2ZmJh63m/j4eLZv305GZiZJyck0Nzfj8XioqqzE7/ORnJwcVoT8fj/19fXEx8cby41hr8IoNfCSiDyKXhfmcvQMpcejLJPBYNhD2K05gfp6lg47Cej45wZao7vWiAkGgxQVFpKckkJSUhLl5eXU1NYS6/WSkpJCbU0NGZmZFG7bRkJCAknJyRTk55OSmkpiYmLYmuJ0OsnIzGTbtm0U5OeTnZODr7mZyspKUtPSaGhowOv14na7KS8rQymFx+MhNS2N5qYmAoEAZaWl+Hw+mhob8fv9xMXFdeqcDIbdRY9XapRS94nIFKAa7Vfze6XUu1EWy2Aw7CEirTldwf6RyKAIoId3dtXZNxgMhoecHA4HWdnZFBcV0dTYSE7v3hRu20avXr0oKizE4XTSUF9PSmoqpSUlVFVVkZ2Tg8vlClttQA85qWAQFeEEHJ+QQGNDAx6Ph6ysLOrq63E6neT07h0e4gJwezykpaVRXl5OfEICOTk5IEIwGARARMJDZAZDtOjRSo2IOIH3lFKTAKPIGAyGLhGyzhy77h1K8ZPTu3ebPi527LOOfD4f2woKyMrOxul00tio/X8SExOprakhGAzi8/mIi48nKSlpB0fh7OxsKisrSYiPR0QoKysjxuMhMTGR0tJSnE4n2Tk5lJWVISIkJCTQ1NiorS4ixMXFEW8dGwgEcLlcZGdnE1SK7cXFeL1ekpKSyMvLIycnh0AwyPbiYnr36YPb7d6t9WswtEePVmqUUgERCYpIslKqKtryGAyGrmP/RlF3rRXTkn+MQuGMiw1vI9onJhgMQmwMSW4nbrc7rHAopXC5XHpGUTCoLSdKhWcU+f1+ykpL6ZWRgdPpJD4hgfKyMjIyM6mqrCQrKwtPTAxlZWVkZmXh8XgI+P0EAgEcDgdFhYW43G4QISYmhpKSEtLS0vBax9TV1ZHeqxdOpxOHw0F6ejpKKdxud9jCEukfE+P1kp2Tg8PhoKmhAZ/PR+8+fRAR3G43BQUFKKVISEgwTsOGvYIerdRY1AJfi8i7QF0oUCk1J3oiGQyGzmJfoK65rLLFjzDu4KDbAez+MRN/WEJ5jAOX00lmVi+Ki4pQQGZmJpUVFdTU1NArIZVYp5O62loSEhPx+3zUNzSQmJhIMBiktqaG5JQUgoEAVVVVpKSkoJSiqamJwm3biI+PJyYmhtqaGqqrqujXv39Y8TigX7/wrCVXUlJYrl4ZGXg8HhwOBx6Ph5rqasrLyzmgXz+qq6tpamqiuqqK9F69cDgcOyghLlfLjwJ7Gq/XywH9+uGwFLfk5GSKi/Xn7pJTUoxSY9grMEoNvGr9DAbDfkbkCrwhPxVfczMFBQW43W6Smn605rT1VWus4RjldZOZloLT6cTpdJKZmQmW70tiUhIJiYl4PB5qa2vDQzyIUFFeDoDb7aayshLQikJNTQ0+nw+3201aejo1NTXExsVRuG0bycnJBJViW0EBOb177zS8Y/dhiY2NDQ8Zbd++nWAwSE7v3pSXl+Pz+YhPSKC2thZPTAyJiYm7PGsppLSEZj8VFxcTHx9PIBCgcNs2+vTta4afDFGnRys1lk/NVKXUBdGWxWAw7F4CgUB4mrLD6SQ7O5vCwkLcSSkc9927OJ0OK51ef8Xh8eDslRqeGp2fl0dcYgIpKSkUFxURHx9PUnKyHvKx8Hg8gFYAEiwH3NLSUjKzskhMSqKivJz0Xr1ISU2lsqKClJQU0tPTqa6uJjUtjeKiIm0JCQTIzMzEaykqjXFx7VpC7ApOXGwsaWlpOJ1OYi0fGI/HQ1xcHC6Xq0sOvSKCy+UiLT2dxES9pFdNTY2x1Bj2Cnp0K1RKBYD+IuKJtiwGg6F7CPmphLZDa6v4mpsp3LaNmpoa/H4/5eXl2lqRGEeFS1HhAmdOBpVuKHMGcaYksq2ggMrKSvx+P1nZ2eEp0lnZ2SRaDrp2QsM6wWAQX3NzeC0Xh8NBrWWB8Xg8VFdVERsbS1x8PBUVFTofpfDExJDTuzcejwefNWvJ6XQSFxfXqmWluTlIfYNO6/MFaWxSJCQm4nS6aPJBnDWUFcqno47LbeF0OklKSgpbq0LbBkO06dGWGouNwCci8jo7+tT8JXoiGQyGzqCUwufzactHairBQCC8DovT5SI1LY2amhq8Xi9+v5/snBxEhKzsbAry89leXExO795s3bKFivJyMjIzKS4qoqa6mrj4eDJa8EdpRRCam5uJj48nvVcv6uvr8cbGkpGRQVNTEx6Ph8ysLJqbm3G5XGRmZeH3+0lNTQXA5XbvoCi0ZFkJBBTbS5t45uWtOJ3CjGl9efn1fBoaA8yc0Z83FxeyflMdUydmMn5sGslJjm5VPOx1YKw0hr0Fo9TABuvnAMznEQyGfRilFMFAgOqqKlCKuPh4amtr8Vkr4vp8PnzNzZSVldGnb9/wt4/Kysr0jKBevSgtKQn7puz04O7gsI3Dmr0Un5Cgh4BiY4mNjdVDP4DXmqrt8XjIzskJz0gKOQDDzjORQlRUNVNW3kxcnJPLfrGK6ho/8+4cyXW/XU1JWTP/d+sIfvOnb9icVw/ADxtqSE50ceDABBLjXcTEdI9iU17RTHFpIy6ng17pHlKTjcHbEH16vFKjlPpjtGUwGAzdg8PhIMbrJS09nfKyMhChV0YGdbW1iDUElJ2Tg9/nY8vmzfTrr1f5DQYC9O7dG4fTiT8QCDvl5m3dSmxsLAkJiZSUbCcmJga3O46YGCfNzYrGpgAJCS4CAUVDQ4D4eBcoRV19gLhYZ1iBsM8ucrpc+P1ByiuacLsdxMU6Ka9oxuUS4uNclFc243BAcqKbyir9rabUFK0wVFQ287t71lJW0cyFZ/WjusZPcpKLhsYAJWX6uKQEV1ih6d83jt9eP5R//CuP3I21HDM+nZln9wMgPs6FCNTW+4n1unA5oabOT2yMs13Fp7S8iWtuXs22Ir1+zvAhicz93SGkpRjFxhBderxSIyIfADt9WlcpdUIUxDEYDF0gNPxUWVGBNzaWhISE8LTjpqYmDujXj8bGINV1QQ7o15+v1lZTWuZj0jG9cTgEp9OhV8oFlILsnBxq6xWff1nFUYf3obI6wONP5DLr7P4senkrVdU+rrvsQF56rYCtBfXcePVgXn+nkJVrKjlveh9GH5LC5rx6BhwQh8Mh4e233iti8dLt/PKqg9iwpY7X3i7kypkDqar28cobBZx7el9iYhw8+3IeDqcw57IDGdgvjh821rL6myoy0j3Ex2nFo9mn8FpKiFLgcv1oXbr8ogHc+cB35BU0kJriZtLRGSx6aSvrN9Vyw5WDWfpJCSvWVHDDFQfxxZoKPvyklCEHJnDJ+QMQwONxIAINjdpHKTbGiS8Q5PW3C8MKDcDaH2pY820Vk47O2BOX2WBolR6v1AC/sm17gTMBf5RkMRgMXSA0/BRa8t/n8+FyOsnKzsbn81NeVkaAROrqFT//zVes/aEGgL896eaZ+eNITfaEh31Ky5u4/+H1rPqqkrtvPYS5D27g81UV/O6XB3Pznd9QUNjIbb8Yyp1//Z7vcmu47rIDefCJDSz/soIjxqTicjk494rlDDkwkdnn9ue2u79l4tEZZGd6eeblrYwfm8qGzXU89NRGDh6cSH1DgD/Pz6VPjpekRDe33PUtAKdOzaahMcAzL28lLTUGgJKyZjxuB0MPTOD7DbVUVo++plAAACAASURBVPkYc2gKX35dSe7GWo6bkM5Hy8pITfaQV6A/yjl7Rn+efG4zK9ZUcsn5/Vnwwhbe/18JZ/2sD28sLuJfb23D7RIuPq8/r75ZwGcryvn1tUN4+Y0Clny8nfv+cChLPy3B5RTKK3071f3Wgvo9cYkNhjbp8UqNUmplRNAnIrI8KsIYDIYu4XA4UOImLT2Tp57fwk9OyCQnO4fcjXWsW1/D4aNTePaf+aQkucMKzdADE7jx6sG8/X4xSikmH5uJQ4SNW+r4eFkZcbFO/r+9O4+Pqj4XP/55ZstkspI9LGETFKWKEvcNFXerrVu1KtZabX9qrb1dXO69arX3tr1avdVr7XVrbXvVWhVFtCpSXKrFEiwqiAgICCEb2ffZnt8f5yQOMUESwJGZ5/16zWvO+Z5lnpOR+OS7hiNx/vq3LQDk5viprnFqKcpLM/lgtXOfvfbI4e4H1gJw+knl3HX/WmJx+PKJ5dz/x3VEosoB++bzyFMbAdj/S/m8+nfnnvtPz+PVN53tGfvk8/piZzsny8fJx5Zx9Q3L8Ps93Hnrvni9Qiym/OLuD/nX7+9JbzhOV2eUf/+XPdlY3U1tQw/fu3wPzjl9LHm5Pnw+IRpVpkzK5s7/XdP/2Q8/tgGAgw8YxU3/tRKA2UeX8Pa7LTw6dxMnHVvKS6/U88Jf6zjswAJWrGpn7vM1TKwIccn541n4ekP/z10EZh1mtTQm+dK+y7qIFCS8ikTkRCBvO657SETqRWR5QtltIvKBiLwrInNFJN8tnyAi3SKyzH39JuGamSLynoisEZG7xB3m4MazQERWu++jdsHjG5Ny3l/VzvHnvslzC+rY0hTlxPPe5NkFtaz4oJ3zvl1FZ2eUcMRZhNHrgR/8vylc99Pl3PPQR+TnBbj/j+uZ890qcPsEhyNxQpmf9DHxeWWr/sIBv7PTG46RneWcl5vtp7E5DEBejo8tjc52c0uYspKgux2htNipeWluTdwOU1rsnLPvPnm88Y9GYnHo6Y3z7Is1/OcN+7Dv3rnk5/lpaOxl/+l5nHhsGSVFQWbuN4pTZ5dTWhxk/y/lU1IU5P99YxLgjJbKyHB+5ff0OH2BADo6o4zKd+baqdxvFIvecJKVvfbIYek7zf3bVe72uo+72NIY5l++sweTxmex15Qc7rxlX4oLrT+NSb60T2qApUCV+/534AfApdtx3e+AkwaULQCmq+q+wIfA9QnH1qrqDPf1nYTye4HLgCnuq++e1wELVXUKsNDdN8ZsQ1t7hAcf2YAqzD6qhKee20xPb5w3lzRy8nGleD2wZFkzxxxeTMAvTJ+Wx7IVrTS1RCgsCJCX6+eFv9bR3hGltS3CoZUFRKPKh2s7OGFWCQCLlzZx9mljAPjr3+q56Fyns/FfFtZx2YUTAVj6bjPHHF4EQNU7LRx7pFOLMX9BLXPOrSA7y8tLr9Zx9pfHMirfz6tvNnDSsaWUFmfw1tvNHDyzgIqxmVslHADPL6zj/j+u49KvT+DOW/fl5GPLyM4aehbfUKaXU2eX8ucHDiI328e3L3Lie/7lWr51gbP97Eu1XHbBRDweaG2LUFzoJFeb67qZPDHL2a7tYfKErP773vXAWv72ViM/vW4at988ncoZowhlpn3Fv/kCkL4hjWb4RGQCMF9Vpw9y7KvA2ap6wVDniUg5sEhV93L3zwdmqeq3RWSVu13jnveKqu65rXgqKyu1qqpqJzyZMbun1rYI1/10Oe+tbOPir1Wwak0Hi5c6yxOcdkIZJxxdyl/+Wsv0vXKYsU8+i5c2EYvDr3/7EdOm5HDckcX8z0MfAU5C8MMrplBUECASVSZWhOjojFLX0MvkCdl0d8eoru1mj4lZ9PbG2bi5m8kTsojFlI2bu5lUkcWTz1WzZFkzP7pyKourGln0xhaOPqyIU2eXUdfQS3FhAK/XQ/2WHkbl+Qn4vTQ09ZIV8pIZ9NHcEiYv1881//Yum2qcvjGFBQEeuOOA/uRjONo7IjS3Rlj9UQd7T80hFoNVa9vZa48cRGDj5i5yc/xcdf07BPwebr/pS/zsrlVsruvh7v/cjzt+s5pVazoQga+eOppLz59AXu7uvzSCiCxV1cpkx2F2XNomNSJyIc7z/2FA+UVATFUf2Y57TGDopOZZ4E+q+kf3vBU4tTdtwL+p6usiUgn8XFVnu9ccCVyrqqeJSIuq9jVfCdDctz/gcy4HLgeoqKiYuWHDhu39ERiTkpYsa+b7//4ue0zMYs65Fdz4i5X9xyrGZHLPL2aQm+3D6/U4Q6tbwlx0ZRVxhV/e/CWuvG4Zib8Wr/vuVE6ZXYbHM/ylBSKROB2dUYJBL36f0N4RJSPDM+xajabmMB993Ek0GmfKpGwKRw0/odlekUiclrYI6z7upLw0SDDDSzgc72+6Cofj+HxCZtBHTnZq1M5YUpM60jmpeQs4TlU7BpRnAa+p6sztuMcEBq+B+VegEjhTVVVEMoBsVW0UkZnA08A+wFS2I6lxjzWr6jb71VhNjTHQ2Rllc10P816s6W8C+tMz1YzK8zPn3ApKi4N4vZ8kKLFYnIbGME88W83USVlkBH3c/cAa2tqjnH5SOReeNY58m1gupVlSkzpSI80eGf/AhAZAVTtFZMT1qSLyDeA0nIRJ3Xv2Ar3u9lIRWYuT0FQDYxMuH+uWAdSJSHlC81P9SGMyJtliMaWlzRkGnJPlpaMrhqqSneWjsyuGKoSCHjJ3Qr+MrCwfUyY5I5r6TJuSi9crBAKf7kbo9XooKwlyxSWT3BmGhS/tlYOqkJ312RPRGWO+ONI5qckUkSxV7UwsFJEcYER/lonIScCPgaNVtSuhvBhoUtWYiEzC6RD8kao2iUibiBwCvAXMAe52L5sHXAz83H1/ZiQxGZNsHZ1RFi9t4p6H1nLM4cXst08e9zz0Efvuk8vxR5fyq/vXUFvfywmzSrjiG5PICHjIyPASjyvhSLx/YrnP0toWpjccx+MR8nL9+BMmocvM/Ox7OM1LTg1OwS5s3jHG7DrpnNQ8CDwhIt9R1Q3Q35x0j3tsm0TkUWAWUCQim4CbcEY7ZQAL3JHZi92RTkcBt4hIBIgD31HVJvdWV+CMpMoE/uK+wElmHheRS4ENwLk79rjGfP46u6I0NPZy820rCQQ8HHNEMVdetwyAm06exndvWEY4opQWZ3Da8eX8eV41tQ09fOO88bz+9y28+34rxx5RzEEzR5GbvfXfGj29MVrbInxc3cXY8hA337aSFavayM3xcf3Ve1I5I5/MYDr/ijMm/aTtv3hVvV1EOoDXRCTbLe7A6eNy73Zcf/4gxYMmQ6r6JPDkEMeqgE91NFbVRuC4z4rD7N7icaWj0+k8mhHw0t4Rwe/3EA7H6emNISLkZPkIBnevJpCenhjrN3ax6I0GsrOcXzNjyzNZs66DeNwZwVPb0EM44vTpu/pbk7ntng9Zu76T66+eys9+tYply1vx+YSjDitm+cp23v+wjUNnFjK6LIiIsmZ9Fz+46T0uPGscBd4erj03h0/WpG0lurmbcF4OgcJP9a83xqSotE1qAFT1NyLyEtDg7rcDiMhEVV2X1OBMSurqjtHaFmbl6nb2nprLW2838dIr9Xzz/PFsaQrzl4W1XPnNydz/x3W8uaSJjAwPl10wgVOPLyMn+4sxdLarO0ptfS/zF9Qwc99RjB2dyXMLathzSg5TJ2Xzl5frOPrwIr79w7cpKXb6qoCz7MCY8kwA2ts/mQ/F64G8XD9r1zstwRVjQyxb3grA+V8dx4oP2pj7/GYKCwKcMyuXzg2NBINe9hwV4NlfVLjNRmFePeDUreJcCRyzeqElNcakkbROalxPqOoBA8uAzxz9ZMz2amuPEFdlxQftXP8fyzn+6BLWruvk4cc/5pCZBaxZ38ndD6zluCOLefm1et5c4rRO5uf6KS8NsqUpTHtHlFCml2jMqd3w+4RwWImrEvAL0SjE4s6ssdGoEospwQxP/8id9o4Ibe3OPCvjxmQSicSpre9lbHmQuEJ1bTdjyjLJyfaRFRr6V8Pa9Z1cce0ySooyOPzAQuZcVUVWyMuRhxRx8VVVHDyzgMircWJxqKnrIRZTjjuymIWvN7C5toevnFzOMy/UsGx5CxedM45H527cajRSRW6UJ382nlhMCYW8RCIeLjhiPJoZItLawT8rnfkpD3n59yyePad/2xhj0japEZG9cIZV54nImQmHcnEWtjRmp6it7+Gnd37AmaeO5te//Yh4HA6ZWcBvHnYqAw+ZWcBzL9cCMGl8Fm+97UxH7/MJP/nx3tx+z4esWd/JTT/ciw/WdDD3+c1cf/VU3n2/jXkvbOaqb02msSnMY09vYs45FWQEPDz46AZE4Cc/mkZRYQaqyptLmvjtoxv4ysnllJUE+c3D6zj2iGIq98vn9ntXE49DVsjLf904ndFlmWQGvQT87twqAS/Z2T46OqM8+H/rUYWjDi3imRdqiMWUwyoLeemVesIRpaMzRn6es4p0Z1eMn921imsum8w3zhtPcaCX2XvG+PaJk/BlBoh39XDBYRPwhnr4yy/Howre7g6q9j8RgAPn3Yc3FMQDBMeUjbALvzEmXaTzMgl74gy9zge+nPA6AGfZAmN2WEtrmBt/8T7LlreSFfLR0uoMa+7ojPXPxNrZFe3f/mhDJ1+algvA4QcV8sY/GlmzvrN/pto/Pb2J4sIAPq+Huc9vJifbT8WYEH98YiM+rzBzv1Hc+/A6wuE43710Mi8uquNb33+beAwe/pMzMePxR5fy0CPrATj1+DLu/d064nHIzfFx201f4vmFdXz/39+huqab+/6wju/8eBm33LmS+oYeenpigz5nXLV/PaR3VrRw+EGjmPu7gznt+FLO+8oYTpldSmmxH09PF6/uOZvX9ppN1+r1vDLtBF6ddgJdq9fz2j4n8vr0E+mpru2/rzcUZPHsOSyePYdXpp2w1TFjjBkobZMaVX1GVS8BTlPVSxJeV6vqm8mOz6SGSET7V4N+6+0mTjymFHDW3rnkvPF4vcILi+q48KxxBAIeXvv7Fg47sJBDKwsoKczg42pnZoA9Jmbxzgqnn8m40SE+WOPcc3RZkDXrnL4ohQUBNrrn+33CxIosFr3hrPYcjSnx+Cdx9XXQDWZ4ae+MAnDu6WN5bO5GnltQy4H7FzD3L5t57OlqtjT2ctYpY/jzs9X87O5VfO0rYxGB1/6+hTNOKsfrFd5c0siJs0oJZniYWJFFfq6X+tpNXPXNCuaclE/nuo1obR0aHTwpMsaYnSFtm58SrBGRG4AJJPw8VPWbSYvIpAyvVxhdGmRzXQ/PvFDDz/51HwpGBfjH2020tUd49DcHsmJVO4UFAR6590BWfNCGzydce9VUPF547/02Xn1zCxuruzlldhnPvlTLuo87OeOkcgA2bu5mrz2cwXsNW3oZPy6ECPj9Hrq6o/1xdHVHKS3OoK6hl4YtvUyekMXa9Z2sXd/B/tPz+OfyVvbbJ4+HHl0PwAFfyuc/f7UKgOOOLGHpuy08OncTAN/7WgnP3j6Rnt44uQVhnrt9PKqKL6ubp39e4Wx3tlEU80BtPVGE16c5zUm7qu9LrKun/94ZY0rB48Hj8eDLyf6MK40xqcSSGmdSu9eBlwH7M9LsVPl5fm7+0TR+cPN7tHdEufEX73Pnrfty5imjCYW8ZAS8jC7L7D+/rGTr7lwzpudz5Tcn8djTmxhTnsnso0pY+Ho9jc1hvnFeBY/N3cSKD9u46tJJPPTIBl59cwvXfncqv/7tRwT8HgpHBWhsDnPfH9Zz84+m8ehTG5m/oIabfjiNPzz+MS+9Wsdt14ynY0sewUAbz929J9rdg8fTwVO370GkoxuPB7yhTC48zFmN2uPp4dW9P0lSEjvrDrW9s/QlL8ExZXhCQY5e+SKCgAhxFK/Xiycrk+ZomJKSErze3WsovDFmx1hSAyFVvTbZQZjU5PEIUydn88d7KunqjpGZ6SU32z/odP2Dycv1c86Xx3DCrBIyI51MOyuHH5yZDRJD8HPeoRPwZGURz85h9lElqEJmhpdDZhbg8cC9/zWDB/9vPecem0sRLdxwfj7eYIB41xZ++NUQSBZ0dfD2zMFHFO3qJGUwibUuwTGlWx1bcvrlgDNU219SiB/w+XxEo06tlM/nIx6PU6JqCY0xaciSGpgvIqeo6vPJDsSkJp/PQ2FBBoXbOCfc2EK03VmKzBMIEOvqdg54BPF4yAQ0HufVPY8HPhkVBBCaMgGp2Uwm4AkFiTf39G9ndPXwL2eEgCivTDsB2DpB6dv/vCQmLKEpE5i18iVwY+3bxuPUvIDgCwU5ZvXCT93Hl5ONz/fJr6/EbY8nbbsKGpP2LKmB7wE3iEgYCOMs/qKqmpvcsEyqS0xkNBobNOlITF4Say36RgUNPD9ZtSvbq6+mBZzaluDEsf01KrFYrH87Ho9bcmKMGba0T2pUNeezzzJm5Hq3NBNt70RkQC0MbJXIDGZg8rI72ro5qQzxOYmLLyd7qyaixG1LaIwxI5H2SY04K09eAExU1VtFZBxQrqr/SHJoJgXEYjHCrW28ttena2FSIUkJTZnA0StfBJzOxLNWvoSi/dtAfxMaOImMLVtgjNlV0j6pAX6Ns3L2scCtOIta3gMcmMygTGrwer1f+A6rQ40oGmobEWIax+v1IX4/DZ5OxowdSzwep667g8KiIiLxOM3dHYyrqMDv/2KsWWWMSX2W1MDBqnqAiPwTQFWbRcQmYzdfONsaFTScaxM76OIR4qqoKpKbhWaHCBTm4/X5UNWtRhf5cZK0WMyZ+cDj8RCPxxk3KhcRwev1Mmbs2P5Ou6FQ6Auf0BljUoslNRARES+gACJSjFNzY8wOi8Vi/UnANs8bpElHkK3OSexke+yG1zh61QLi8Tj+QZp9Bm4jThOQiOAJBOjO8NHS0kJebh6ZoRAiQiAQIBqNElfF5yYpfbZ3pNFQfWSMMebzYEkN3AXMBUpE5D+As4F/S25IJlVsq/lpYAda9QgejwdPwE9PZoCcnBxiLe0cvWpBf/LQNyrIE/BT29NJSVkJ/mCQjR9/TEFBAcHsbGo2b0YVSgvzaaGRnp4egpmZdHd1UVpWhj8zk3ygq6uL1tZWECE/P9+ZuM7jQVWto64xZrckqprsGJLOXbH7OJzh3AtVdWWSQxqRyspKraqqSnYYZoDPmoMGwJeThTc/d9DhzYNtx+NxBv7bVVVEhI72dkJZWYgIba2tZGU7c7q0traSlZWFz+ejvb2dpsZGMjIy6O3tpaS0lFAoZMmMSUsislRVK5Mdh9lxaV9TIyIFQD3waEKZX1UjyYvKpJJAYf6wR/wM1YzTt72t5CMnN7f/eG5eHl6vFxEhLy+vvx9MPBajqLiY7OxsWpqbB02SjDFmd5P2SQ3wNjAOaMapqckHakWkDrhMVZcmMzhjhisx4Uns/9KXEHm9XvLy8/vP7du2PjDGmN2d1TXDAuAUVS1S1ULgZGA+cAXOcO9BichDIlIvIssTygpEZIGIrHbfR7nlIiJ3icgaEXlXRA5IuOZi9/zVInJxQvlMEXnPveYudz4dY3aKxL4+u8Owc2OM2R6W1MAhqvpi346qvgQcqqqLgYxtXPc74KQBZdfh9MmZAix098FJlKa4r8uBe6G/6esm4GDgIOCmvkTIPeeyhOsGfpYxxhhjElhSAzUicq2IjHdfPwbq3WHeQw7tVtXXgKYBxWcAD7vbDwNfSSj/vToWA/kiUg6cCCxQ1SZVbcapNTrJPZarqovV6ejw+4R7GWOMMWYQltTA14GxwNPuqwI4D/AC5w7zXqWqWuNu1wJ9M6SNATYmnLfJLdtW+aZByj9FRC4XkSoRqWpoaBhmuMYYY0zqSPuOwqq6Bfhu376IBIEvq+qfgTU7cF8VkV0+nERV7wPuA2dI967+PGOMMeaLympqABHxisgpIvIHYD3wtRHeqs5tOsJ9r3fLq3FGWPUZ65Ztq3zsIOXGGGOMGUJaJzUicrSI/C9OInMpcDwwSVXPHuEt5wF9I5guBp5JKJ/jjoI6BGh1m6leBE4QkVFuB+ETgBfdY20icog76mlOwr2MMcYYM4i0bX4SkU3AxzijjH6oqu0isk5Vu7bz+keBWUCRe6+bgJ8Dj4vIpcAGPumT8zxwCk5zVhdwCYCqNonIrcAS97xbVLWv8/EVOCOsMoG/uC9jjDHGDCFtkxrgCZwRRV8DYiLyDO6ilttDVc8f4tBxg5yrwJVD3Och4KFByquA6dsbjzHGGJPu0rb5SVWvASYCv8SpcVkFFIvIuSKSnczYjDHGGDN8aZvUgFODoqqLVPVynATn6zhzyqxPamDGGGOMGbZ0bn7airuA5bPAsyKSmex4jDHGGDM8aZvUiMh7DN2HRoH9PsdwjDHGGLOD0japAU5z3/s68P7Bfb+QYXQYNsYYY8wXQ9omNaq6AUBEjlfV/RMOXSsib/PJYpTGGGOM2Q2kdUdhl4jI4Qk7h2E/F2OMMWa3k7Y1NQkuBR4SkTx3vwX4ZhLjMcYYY8wIpH1So6pLgf36khpVbU1ySMYYY4wZgbRvZhGRUhF5EHhMVVtFZG93mQNjjDHG7EbSPqnBWV/pRWC0u/8hcE3SojHGGGPMiFhSA0Wq+jgQB1DVKBBLbkjGGGOMGS5LaqBTRApx56YRkUMA61djjDHG7GbSvqMw8C/APGCyiLwBFAPnJDckY4wxxgyXJTWwAjga2BMQnNW6rQbLGGOM2c3Y/7zh76oaVdUVqrrcXdjy78kOyhhjjDHDk7Y1NSJSBowBMkVkf5xaGoBcIJS0wIwxxhgzImmb1AAnAt8AxgJ3JJS3AzckIyBjjDHGjFzaJjWq+jDwsIicpapP7qz7isiewJ8SiiYBNwL5wGVAg1t+g6o+715zPc5yDTHgalV90S0/CfgV4AUeUNWf76w4jTHGmFSTtklNH1V9UkROBfYBggnlt4zwfquAGQAi4gWqgbnAJcCdqnp74vkisjdwnvv5o4GXRWSqe/ge4HhgE7BEROap6vsjicsYY4xJdWmf1IjIb3D60BwDPACcDfxjJ93+OGCtqm4QkaHOOQNniYZeYJ2IrAEOco+tUdWP3Dgfc8+1pMYYY4wZhI1+gsNUdQ7QrKo/AQ4Fpn7GNdvrPODRhP2rRORdEXlIREa5ZWOAjQnnbHLLhirfiohcLiJVIlLV0NAw8LAxxhiTNiypgW73vUtERgMRoHxHbyoiAeB04M9u0b3AZJymqRrglzv6GQCqep+qVqpqZXFx8c64pTHGGLNbSvvmJ2C+iOQDtwFv4yyX8MBOuO/JwNuqWgfQ9w4gIvcD893damBcwnVj3TK2UW6MMcaYAdI+qVHVW93NJ0VkPhBU1Z2x9tP5JDQ9iUi5qta4u18Flrvb84BHROQOnI7CU3D69AgwRUQm4iQz5wFf3wlxGWOMMSkp7ZMaETlzkLJW4D1VrR/hPbNwRi19O6H4v0RkBk5N0Pq+Y6q6QkQex+kAHAWuVNWYe5+rgBdxhnQ/pKorRhKPMcYYkw5EVZMdQ1KJyHM4nYMXuUWzgKXAROAWVf1DkkIbtsrKSq2qqkp2GMYYs1sRkaWqWpnsOMyOS/uaGpyfwbS+Pi8iUgr8HjgYeA3YbZIaY4wxJp3Z6CcYl9iJF6h3y5pwRkIZY4wxZjdgNTXwittBuG/o9dluWRbQkrywjDHGGDMcltTAlcCZwBHu/sPAk+p0NjomaVEZY4wxZljSPqlRVRWRKqBVVV8WkRCQjbNatzHGGGN2E2nfp0ZELgOeAP7XLRoDPJ28iIwxxhgzEmmf1OA0Px0OtAGo6mqgJKkRGWOMMWbYLKmBXlUN9+2IiA9ngjxjjDHG7EYsqYFXReQGIFNEjscZBfVskmMyxhhjzDBZUgPXAQ3AezhLFzwP/FtSIzLGGGPMsKX16CcR8QK/V9ULgPuTHY8xxhhjRi6ta2rchSPHi0gg2bEYY4wxZsekdU2N6yPgDRGZB3T2FarqHckLyRhjjDHDZUkNrHVfHiAnybEYY4wxZoTSPqlR1Z8kOwZjjDHG7Li0T2pE5Fk+PS9NK1AF/K+q9nz+URljjDFmuNK6o7DrI6ADZ/TT/TgzC7cDU7ERUcYYY8xuI+1raoDDVPXAhP1nRWSJqh4oIiuSFpUxxhhjhsVqaiBbRCr6dtztbHc3PPgl2yYi60XkPRFZ5q4AjogUiMgCEVntvo9yy0VE7hKRNSLyrogckHCfi93zV4vIxSN/RGOMMSb1WU0N/AD4m4isBQSYCFwhIlnAwztw32NUdUvC/nXAQlX9uYhc5+5fC5wMTHFfBwP3AgeLSAFwE1CJ0+dnqYjMU9XmHYjJGGOMSVlpn9So6vMiMgXYyy1aldA5+L934kedAcxytx8GXsFJas7AmdVYgcUiki8i5e65C1S1CUBEFgAnAY/uxJiMMcaYlJH2SY2InDmgaLKItALvqWr9CG+rwEsiojgjqO4DSlW1xj1eC5S622OAjQnXbnLLhiofGP/lwOUAFRUVAw8bY4wxaSPtkxrgUuBQ4K84zU+zgKXARBG5RVX/MIJ7HqGq1SJSAiwQkQ8SD6qqugnPDnMTpvsAKisrd8o9jTHGmN2RdRR2Ertpqnq2qp4F7I1T03IwTvPQsKlqtfteD8wFDgLq3GYl3Pe+WqBqYFzC5WPdsqHKjTHGGDMIS2pgnKrWJezXu2VNQGS4NxORLBHJ6dsGTgCWA/OAvhFMFwPPuNvzgDnuKKhDgFa3mepF4AQRGeWOlDrBLTPGGGPMIKz5CV4RkfnAn939s9yyLKBlBPcrBeaKCDg/30dU9QURWQI8LiKXAhuAc93znwdOAdYAXcAlAKraJCK3Akvc827p6zRskq+tPUIkquRm++jpjREOx8nJ9hGOKL3hGFkhH/G40t0TIzPoJZRp/9SMMWZXE2fQTfoSJ/s4EzjCLWrG6dR7VVwyEAAAEKJJREFUZfKiGpnKykqtqqpKdhi7tVgshtfrBSAajeLzOclIJBJh2Yo2mlsiHHVoIU89V0NLa4RvXVDBlqYwC17dwtfPHE00qtzz23Vc9c1JNLWE+fEt77PXlGy+M2cSRYUZyXw0Y8wQRGSpqlYmOw6z49I+qQEQkf2BrwPnAOuAJ1X1f5Ib1fBZUjMyfYlMNBqlqbGRgsJCAJqamsjPz0fEQ0tzEzm5+Xi8HtpamsnOycXv91G9aROBjAyKi4qpqdmMx+ulqKiIWCwGCP9c3s6ovAB+v1BcmElerj+5D2uM+RRLalJH2vapEZGpInKTOzLpbuBjnCTvmN0xoTHDFw7HiEQi1NfXE41GUVV6enqoq60lFovR627HYzF6w2HqajcTj0UJh8PU1mympaWFoqIiujo7qauvo7CoiN6eHiKRCG2trbS1tjJjej7ZmZ2EAl0ELJ8xxphdKm2TGuAD4FjgNFU9QlXvBmJJjsl8Djq7oqz8sI17f7eOzq4okXCYzdXVNDU2UlJaSm9vLw319ZSVlxOJRKirq6WsrIxYLEZtbS0lpWWoKt1dXXh9PjweD9FoFI/Hg8fjoaO9nZycHLq6Oqmr2Ug00oM/I5twxGpFjTFmV0rn3otnAucBi0TkBeAxnHlqTAppa4/Q2RUlEHDy93gcaut7+O/71rBqTQdTJ2dz5MHFbGmoIy8vj8YtW/C6TUgNDQ2ICEXFxWxxt4uLi2lqakRVKSsvZ3N1NT6fj9KycupqaxCPh8xQNh6vF7/fTzgcJiMjg2AwQGYwnf+5GWPMrpe2v2VV9WngaXeU0xnANUCJiNwLzFXVl5IaoNmmvr5gIoKqoqr9NSbxeNxNKKLE41HuenAtF51VwaI3GgA48uAC7vjJPry4qJ5jjyigrrYGfyAAzog1SstG4/UKGo9TPnoMHo+HeDxOWflovF4vsWgrZeXlxONKcUkJPp+PaHMbo6IAHjwdXUS7usgHRPzEeqJQV0ssLwdf0ajk/MCMMSYNWEfhBO58MOcAX1PV45Idz3ClS0dhVSUScaYQ8vv9RCIR4vE43T0Qj3bQ1tZGcUkpXo/g8XqJq4d4TPH7YcOmHspLvNTX1VJYXEoww09TYyNFRcVEYorPC82tEZ5+vo5LLxjP0neb2Vzby5dPcJqcPF4vaByAWEs70fYOJ6ZojFemnQDAIS//nsWz53wq7mNWLyQ0Yezn9FMyxmwv6yicOtK2pmYw7grY/csOmC+WSCRGR1eUYMBDa2sTPd3dlI8eTVtrKx0dHRQUFhHMyqK3t5dIuJeICK0tLZSVjyEW7aG+bgtjy8sByM7JobGhDr/fT3FpGU/Mr2HcmBB7TAhxzb8vp6a+l66eKJddOIn9x3cQ3uQs2+UJBIh1dffHlJjIGGOMSS5LasxuIRJxRiBFwnGq/tnOrMMLqautZXN1NeWjRxOJRGhpbqK0rIx4PE5rayulZWV0BwLUbN5EeU4+ReolUl2HP5RJVlcPIbx4fRlEN9Zw2nTFlxUj2lbPAz8uwxsKEu/qgZpqIjBoLYwlMsYY88ViSY1Jmkg0Tmub04wUyvTi8wqRqJIV8hGOxAmHY2Rn+YlE4sRVaW1uIhIJc9D+hUSjUaLRKH6/M046EomQP2oUnR0dxGIxRhU6i6B7PB5UlVh7J6/tNXhisj3bxhhjvvjSeUi3GaFwOE5jcy/tHRFUlda2MF3dUeCT0UYDtwfq6Izy0it1XHRlFTf+4n021/Zwx2/WMPf5zfT2Rqir7+Kvf2sgEokQi0WpreuluKTEGVXk89La2orP76e0rIxYSzsFUcHX1E4oHKMoKvjqG6C5jezOXkrV5wx7MsYYk9KspsYMS3NLmEee2siiNxr40RVTqd/Sy/wFtcw5dxzdPXGenF/NmaeOZkx5Jr/+7UdkZXq57nt7AhDwCZmZXnp7Y0hHO8fsEePgG8eSlRck3tXIVScHES/0bqwmX4QTZ+ZSW1ODz+ejvLSYaDRCLBqlvr6e0rIyPB4ft/96DVefnsNrQzQPfV61LbGunv7PCE2ZwKyV7uA5jyAe528HX072Lo3BGGPSnSU15jPF43FUlWgM3v+wlQNn5LFpczcbqrt4+50WPB5obY3w2DPVqCozpufikRhHHlzAyceW4vfHaG1XQkEfGz/+mOKSEujqYtFUZ4BZYvJx4Lz78IaCAPgygxSEFQ2HiW1pIt7VTTEeRDzQ3Eakq4fvnppFPDJ4bdCulpjIBMeUIT5nzShvRgaZo0uTEpMxxqQzS2rMoMKNLZ8MV1ZF44p4PMycFEJyspg4PotQ0MNXTirh3ZUdlBT6ue+o/VjxQTsBf5zGhjpmH1lEINxJuL6NbI+HeDSDwijEN9cjQ8xz6A0FP7OPy2DHdqXtrYUJFObv0jiMMcZsmyU1aU5Vicch0txCrL0TVafMo/H+ET+Jjl61gC3trYweM4auri7q65rYZ2o50tlNZFMT03K9SEeUUvWhzc3EEF6fdiKQ3M63QyUmnlDwM7cTkxerhTHGmC8uS2rSWLixmUhbB6pALM6re3+SxCQmHYlNQt5gBkVd3YQ/3kxGKJPiuIdYdR2CDNmv5YtgyemX928fs3ohWXuMT2I0xhhjdgVLatJYtL2TV6bOBradfGxPk1Ayk5ftqYWxDrvGGJP6LKlJY7F48pbIGLKfyghYLYwxxhiwpCatJXNJ8qESkXBjC8esXgg4SxIMVeviDbr7CTUwYLUwxhiTziyp2clEZBzwe6AUUOA+Vf2ViNwMXAY0uKfeoKrPu9dcD1wKxICrVfVFt/wk4FeAF3hAVX++M2P1eIZOa/pqUoJjylBGXqMz3PlbAoX5NorIGGPMiFhSs/NFgR+o6tsikgMsFZEF7rE7VfX2xJNFZG/gPGAfYDTwsohMdQ/fAxwPbAKWiMg8VX1/VwQ9cM4VvM6cK56sEPHOrmFdP1TyYiOHjDHG7EqW1OxkqloD1Ljb7SKyEhizjUvOAB5T1V5gnYisAQ5yj61R1Y8AROQx99ydltT4crL7m3oGlifWloQbPdvVJGTJizHGmGSypGYXEpEJwP7AW8DhwFUiMgeowqnNacZJeBYnXLaJT5KgjQPKDx7kMy4HLgeoqKgYVnzb29RjTULGGGN2B7ag5S4iItnAk8A1qtoG3AtMBmbg1OT8cmd8jqrep6qVqlpZXFy8M25pjDHG7JaspmYXEBE/TkLzf6r6FICq1iUcvx+Y7+5WA+MSLh/rlrGNcmOMMcYMYDU1O5mICPAgsFJV70goL0847avAcnd7HnCeiGSIyERgCvAPYAkwRUQmikgApzPxvM/jGYwxxpjdkdXU7HyHAxcB74nIMrfsBuB8EZmBM8x7PfBtAFVdISKP43QAjgJXqmoMQESuAl7EGdL9kKqu+DwfxBhjjNmdiGryZpU1O1dlZaVWVVUlOwxjjNmtiMhSVa1Mdhxmx1lSk0JEpAHYMIxLioAtuyicL7J0fO50fGZIz+dOx2eGHXvu8apqIy1SgCU1aUxEqtLxr5N0fO50fGZIz+dOx2eG9H1uszXrKGyMMcaYlGBJjTHGGGNSgiU16e2+ZAeQJOn43On4zJCez52Ozwzp+9wmgfWpMcYYY0xKsJoaY4wxxqQES2qMMcYYkxIsqUlTInKSiKwSkTUicl2y49kVRGSciCwSkfdFZIWIfM8tLxCRBSKy2n0flexYdzYR8YrIP0Vkvrs/UUTecr/vP7lLb6QUEckXkSdE5AMRWSkih6bJd/1997/v5SLyqIgEU+37FpGHRKReRJYnlA363YrjLvfZ3xWRA5IXufm8WVKThkTEC9wDnAzsjbOEw97JjWqXiAI/UNW9gUOAK93nvA5YqKpTgIXufqr5HrAyYf8XwJ2qugfQDFyalKh2rV8BL6jqXsB+OM+f0t+1iIwBrgYqVXU6zpIq55F63/fvgJMGlA313Z6Ms4beFOBy4N7PKUbzBWBJTXo6CFijqh+pahh4DDgjyTHtdKpao6pvu9vtOP+TG4PzrA+7pz0MfCU5Ee4aIjIWOBV4wN0X4FjgCfeUVHzmPOAonMVkUdWwqraQ4t+1ywdkiogPCAE1pNj3raqvAU0Diof6bs8Afq+OxUD+gAWFTQqzpCY9jQE2JuxvcstSlohMAPYH3gJKVbXGPVQLlCYprF3lv4EfA3F3vxBoUdWou5+K3/dEoAH4rdvs9oCIZJHi37WqVgO3Ax/jJDOtwFJS//uGob/btPv9Zj5hSY1JeSKSDTwJXKOqbYnH1JnTIGXmNRCR04B6VV2a7Fg+Zz7gAOBeVd0f6GRAU1OqfdcAbj+SM3CSutFAFp9upkl5qfjdmpGxpCY9VQPjEvbHumUpR0T8OAnN/6nqU25xXV91tPten6z4doHDgdNFZD1Os+KxOH1N8t3mCUjN73sTsElV33L3n8BJclL5uwaYDaxT1QZVjQBP4fw3kOrfNwz93abN7zfzaZbUpKclwBR3hEQAp2PhvCTHtNO5fUkeBFaq6h0Jh+YBF7vbFwPPfN6x7Sqqer2qjlXVCTjf619V9QJgEXC2e1pKPTOAqtYCG0VkT7foOOB9Uvi7dn0MHCIiIfe/977nTunv2zXUdzsPmOOOgjoEaE1opjIpzmYUTlMicgpO3wsv8JCq/keSQ9rpROQI4HXgPT7pX3IDTr+ax4EKYANwrqoO7IS42xORWcAPVfU0EZmEU3NTAPwTuFBVe5MZ384mIjNwOkcHgI+AS3D+cEvp71pEfgJ8DWe03z+Bb+H0IUmZ71tEHgVmAUVAHXAT8DSDfLducvc/OM1wXcAlqlqVjLjN58+SGmOMMcakBGt+MsYYY0xKsKTGGGOMMSnBkhpjjDHGpARLaowxxhiTEiypMcYYY0xKsKTGGLMVd7XrK9zt0SLyxGddswOfNcOdXsAYY3aYJTXGmIHygSsAVHWzqp79GefviBmAJTXGmJ3C5qkxxmxFRPpWbV8FrAamqep0EfkGzkrIWcAUnIUUA8BFQC9wijv52WTgHqAYZ/Kzy1T1AxE5B2fStBjOwouzgTVAJs409j8D5gN3A9MBP3Czqj7jfvZXgTycieX+qKo/2cU/CmPMbsb32acYY9LMdcB0VZ3hrm4+P+HYdJzVzoM4Ccm1qrq/iNwJzMGZpfo+4DuqulpEDgZ+jbMG1Y3AiapaLSL5qhoWkRuBSlW9CkBE/hNnaYdvikg+8A8Redn97IPcz+8ClojIczZTrDEmkSU1xpjhWKSq7UC7iLQCz7rl7wH7uiuiHwb82ZmtHoAM9/0N4Hci8jjOwouDOQFnQc4fuvtBnGnwARaoaiOAiDwFHAFYUmOM6WdJjTFmOBLXD4on7Mdxfp94gBZVnTHwQlX9jltzcyqwVERmDnJ/Ac5S1VVbFTrXDWwrt7ZzY8xWrKOwMWagdiBnJBeqahuwzu0/g7tS8n7u9mRVfUtVbwQagHGDfNaLwHfdRQkRkf0Tjh0vIgUikonTt+eNkcRojEldltQYY7biNvG8ISLLgdtGcIsLgEtF5B1gBU6nY4DbROQ9975vAu8Ai4C9RWSZiHwNuBWng/C7IrLC3e/zD+BJ4F3gSetPY4wZyEY/GWO+8NzRT/0dio0xZjBWU2OMMcaYlGA1NcYYY4xJCVZTY4wxxpiUYEmNMcYYY1KCJTXGGGOMSQmW1BhjjDEmJVhSY4wxxpiU8P8Bbl0YhP9SDDcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCurrencyHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEWCAYAAAD7KJTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYJUXVuN/TffO9cyfP7sxsYllYsoRFRKIRMMGn8gMVBFERBAXhQ0FRUFHUTxSUoAiIgIjoJ4r4qUQRkCBJEJaVBTZMzvHm7vr9UX1n79xJd/LcmX6fZ56pW51OV1dXnT7nVJUopXBxcXFxcXFZuhjzLYCLi4uLi4vL/OIqAy4uLi4uLkscVxlwcXFxcXFZ4rjKgIuLi4uLyxLHVQZcXFxcXFyWOK4y4OLi4uLissSZtjIgIpeJSIeItDi//0tEtovIgIjsN30RpyzXnMkhImtERImIZzavsxAQkY+JyL3zLYeLi8viQkRuFpHL5luOxYiIbBGRd463z4TKgHOSuNOpZv+udratAs4H9lBKLXcO+T5wtlIqopR6bhrCKxFZN9XjJ5LDOf+gcz+NIvIDETGncb1xEZGPisjTzvWaReTPInLobF2vAHluFpGUiPQ7f/8WkctFpHS845RSv1RKvXuK17xURNJ5demLU7uD4ian/AdEpEtE7hOR3eZbrokQkVNF5NEZPqdPRK4QkQanPLaIyJUzeY2FjGheF5GX51uW6TADbfZo59xJRGwRuW4mzzvBNUfU8am2l8VEoZaB9zudavbvbCd/FdCplGrL2Xc18NKMSjk1CpHjTUqpCHAEcAJw2mwIIiLnAVcC3waWocvtWuDYMfafKwvD95RSJUA18AngLcBjIhKeRbl+nVeXvjfKdUREloIL63tO/VsBtAE3T/YExWaNGkPei4ANwJuBEuBI4Nk5FGu+ORyoAdaKyIGzdZFiqysOHwe6gRNExD/PskyqvSw6lFLj/gFbgHeOkv9OIA7YwADwK+e/AgaB15z96oD/BdqBN4DP55zDBL4MvAb0A88AK4G/55xnADhhlOsbwMXAVnRDegtQCvhHk2OU4xWwLuf3ncA1Ob9LgRuBZqARuAwwc+T+PtABvA6c5ZzPM8p1Sh15jh+njC8FfgvcBvQBn3Lu40qgyfm7EvA7+1cB9wA9QBfwCGA4277kyNsPbALeMcY1bwYuy8srce73bOf3qcBjwA+BTqcMTgUezSvHzzvl0AH8T1aWMe7ztjG2/Q34lnO9OLBuOs+AvHqbf230i/wPpwz/BRyZJ8s3HVn6gXuBqpzth+Ycu90pkwOB1qx8zn4fBP5VSPkD7wUGnPSbgced8zcDVwO+vDI/C3gVeMPJu8qRpQ/9Hh2Wd++/QdevfuBFYFd0J9zmHPfuieo+sDuQACx0ne5x9vc7z2KbUwY/AYLOtiOBBnS9bAFuHaUs7gHOHaOcPgH8Mef3q8Bvcn5vB/Z10rsB96HfiU3A/8vZrxAZv4yuT1uAj43zvtYBdzvX2Qx8Oq+s70S3R/3oD5INE7SxNwG/BH4HXJ23bSd0e9gP3A9cw/B6/HF0G9gJfJWces/o7YoBXIhuczsdWSsKPN+Y9ZIx2mzgfcDzzjH/APbJudZ+aKWvH/g1cAfD3wlx5DzTeWYfziubdzvPuRf9cfUw8Kmc7acBG9HKxF+B1Xnv0Bno+tTjlKswdh2/mQnaywKv+Vnnmv3oNmZnp1z6nGeRLc9y9HvR7pzrHmDFJNqok3Oe41cYox8fdj/jbRytUc3bdiTQkJc31MmiK94zwNcAH7AW3XAf5Wy/AN0wrXcexJuAyvzzjHHt09Av4loggn6Rbh1NjjGOz5VzN+ehfiFn+13AT4EwWmt/CviMs+0M4BW04lIBPMTYysDRQGa0bXkNSBo4zimzIPAN4Ann2tVOhfmms//l6MbM6/wd5pTfenTjWOfstwbYeYxr3kxe5Xbyb0F/vYPu5DLA5wCPI9epjFQGHnLKYRXwH3JeyFHuczxlYBuwp3Mt73SeAeMoA0A9+iV5j1Pe73J+V+fI8hq6www6v7/jbFuNfvk+4shYyY7O6GXgmLw6dP5E5Y+uv7cDjzi/D0ArKx7nGW4kp7N07vM+576zHdpJjiwetOuuBQjk3HsCOMrZfgtaMf+Kcw+fxlEqCqj7w56/k/dDdOdYgW4g/whcntNGZIDvojvk4ChlcbHz7D8L7A1Izra16MbaQHfCW3HaHGdbt7MtjK77n3DucT90x77HJGT8gSPjEehObf0Yz+7v6M4nAOyLbrDfnlfW70ErUJcDT4zz7ofQHcF7gA85Mucqfo+jlRgfWgntY0c93gPdYR3qbP8+uh3JVQby25Vz0O3KCudefwr8qsDzFVIvcz+w9kMrmwc5ZXEK+r30O+ffCnwBXQc/7FwrVxk4DEiiO8YfM1wprHLK4oOOPOc4x3/K2X4sun/Y3dl+MfCPPFnvAcrQ7VY7cPQ4dfxmJm4vC7nmH4Aoup1LAg+g63Epuv04xdm30qkPIXR9/Q3w+7z2cqw2KvscD3fK+gfo+j0jysAA+oXM/n065yUaTxk4CNiWt/0i4OdOehNw7BjXnagzfwD4bM7v9U5l8BR4vHIq06CT/hU7vryXOQ8qmLP/R4CHnPSDwBk5297N2MrAx4CWCcr4UuDveXmvAe/J+X0UsMVJf8OpVOvyjlmHfvneCXgnuObNjF65vwPcl/NS5D+/UxmpDByd8/uzwAPj3Gcqry5lFZe/Ad/I2Xdaz4DxlYEvkfeFitbiT8mR5eK8e/pLTv29a4z7+xLwSyddAcSA2nHKP+GUQQu6oxpLcTs395rOfb59gufbjXaDZe/9vpxt70e/01krS4lzzrICyj3/+Qv6Hdo5J+9gdlgsjnSeeWAcWU20peMx59pN2WfhbN8O7A+cCFyPVk52Q3f8dzv7nICjTOUc91PgkgJlzADhnO13Al8dRdaV6K/Gkpy8y4Gbc8r6/pxtewDxce79JHRH5EErF73AfznbVjlyhXL2v40d9fhrOB258zvklHWuMpDfrmwkx1oI1OK0mxOdr8B6masMXIfzAZOTtwmtbB3uPOdcxe8fDFcGbsDpAJ3nlQZqnN8fBx7Pq4fb2aEM/Bn4ZM52A/0+rs6R9dC8533haHU8532dqL0s5JqH5Gx/BvhSzu8rgCvHKOt9ge6c339j7Dbqa8AdOdvC4z3H7F+hPqTjlFL3F7hvLquBOhHpyckz0WZt0C/Wa1M4L+z4SsiyFV2hl6FNm4Wwv3P949EPNYxujFajtdVmEcnua6ArW/ba23POkytHPp1AlYh4lFKZcfbbnvd7tPurc9L/g37R73Xku14p9R2l1GYROdfZtqeI/BU4TynVNM5186lHmz/Hkmsi2XPlHI07lVInFXCemXwG+awGjheR9+fkedHWhSwtOekY+usdxq+ztwEbHR/i/0N3Ts3jyPF9pdTF+Zkisitam9+AbpA96IYjl+15x/w38El0uSj010dVzi6tOek40KGUsnJ+g77HOsYv93yqHRmfydlf0O95lnalVGKM43HkuAa4RkSCaKvfTSLylFJqI9r8eyRa2X0YrUAdge4gHnZOsxo4KK+t8QC3Fihjt1JqMOf3WPW4DuhSSvXn7bsh53d+3QmM8/6fgn4nMkBGRP7Xybsr51qxnP23o+tgVpah56KUiolIZ97585/bauAuEbFz8ix0uznu+Qqsl/nXOkVEPpeT52NHHW1UTm/lMPQOO/XgeLRrA6XU4yKyDfgo2mWaL6sSkYa8a18lIlfk5Am6fcteZ6x3fDLktpeFXDP/Pcz/vRxAREJoa9bRaMsIQImImDnv7Vjy55fN4Cj1YgSzHaS1Ha19l+X8lSil3pOzfecpnrsJXfhZslp06+i7j47S3Ik2x30tR64k2geTlTuqlNrT2d7Mjhcye+2xeNw513ETiZL3e7T7a3Jk7ldKna+UWgt8ADhPRN7hbLtdKXWoc6xCm2cLQkQiaKvCIznZ+XKNRn5ZTEb5yCX3WtN9BoPoBivL8pz0drRlILdehpVS3ylAxjHrrFKqEf28P4j22d1awPlG4zq0C2QXpVQU7cuWvH2GykpEDgO+iFZAypVSZegvzPxjCmGics+vDx3oRmzPnP1LlQ6MHCHrRCil4kqpa9CWjT2c7KwycJiTfhitDBzBDmVgO/Bw3jONKKXOLFDG8rxAsLHqcRNQISIlefsW+gEyhIisAN4OnCQiLaKHZ38YeI+IVKHreIXTMWTJrfPNaHN/9nxBtHk5l/yy3452ZeWWU8CpuxOdr5B6mX+tb+VdK6SU+pVzrXrJ0c4Y/g7/F1qhvTanbOrRitJo9y65v51rfybv2kGl1D/GkTdLQfV1lPZyOtfM53y0tfsgp6wPz162gGOHtY1O/cmvFyOYbWXgKaBfRL4kIkERMUVkr5yI2RuAb4rILk4E+T4ikhW6Fe1LGYtfAV9whp5E0JH6v57g63s8vgN8WkSWO19z9wJXiEhURAwR2VlEjnD2vRP4vIisEJFydEDOqCiletFKxjUicpyIhETEKyLHiMiISPq8+7tYRKqdhuFr6C9PROR9IrLOeQF60Zq9LSLrReTtTtRtgh0BnuMiIn4ROQD4PboR/vlEx+RxgYiUi8hKtO/u15M8fgQz8AyeB050ynoDupHNchvwfhE5yqmTARE50mmcJ+KXwDtF5P+JiEdEKkVk35ztt6A75r3RcSxToQTtwhoQPdzwzAL2z+CYm0Xka+iGdNIUUO6twAoR8Tn728DPgB+KSA2AiNSLyFGFXlNEznXKP+iU6SnOPWWHBD8MvA3tumhAN75Hoxu47D73ALuKyMnOM/eKyIEisvskZPy66GGOh6ED334zSvlsR5uzL3fqzT5oi8xthd5vDiejY2zWo83A+6J9wA3AR5RSW4GngUsduQ5Gu3iy/BZdj9/qPI9Lmbiz+AnwLRFZDeC0L9lRTROdb6J6md9m/ww4Q0QOctr3sIi811GkHkfX2c87z+qD6ADFLKegAyv3zimbQ4A3icjewJ+AvZ021YN2M+Uq/D8BLhKRPZ37LBWR4ycom9z7GKrj+YzTXk7nmvmUoNvvHhGpQLu7CuW3wPtE5FDnHr5BAX19ocrAH2X42PC7CjnIMWe8D/0g30Br6DeggyVAm5zuRDc+fegI5qCz7VLgFyLSIyL/b5TT34T+8vq7c+4EOtBtSiilXnTOdYGT9XG0Setl9AP/Ldq/BrqS/xUdhf4sEzT6SqkrgPPQASXtaA3ybHRlGovL0A3BC+ggy2edPIBd0JHFA+iX6lql1EPoYJHvoMu5BR38ddE41/iiiPSjXRm3oE1+b80zlxbCH5xjn0e/pDdO8vixmM4z+Cr6C74b+Do6QA8YatCPRX/ZZJ/HBRTwPiiltqGDvc5HmwefRwe+ZrkLxxSbZ96dDP+NNof2o+9zIuXqr8Bf0B3LVvS7UIh7ZyzGK/cH0RHyLSLS4eR9CR049YSI9KHr5vpJXC+G9pe2oOvuWcCHlFKvAyil/oOu6484v/vQgciPZU2mjtn+3ei4gibnXNmgxUJkbHHutQmt8J2hlHplDHk/gg6ga0I/70um6EY9Bf3utuT+oTuV7Bfwx9DukOxonl+jLTcopV5Ct3l3oL8GB9AxQ8lxrnkVOj7lXufdfwId21XI+Saql5eS02YrpZ5GB6dejS7bzWh/PEqpFNqCdir6PToB5x0WkXrgHWj/eW7ZPIOu56copTrQboTvOWWzB7q9zJbNXejnf4fzvP8NHDNOueQyWh2HCdrLaV4znyvRfWEH+hn9pdADned4FrrNa0aXfcO4B+EEb7i4TBURUWiz4eZ5lmMNWin0TsM6NFOyvIY2F06lg3CZY0TkSHRQXiGWoXlFRH4NvKKUGvGlKNpC2oN+H9+YgWvN6PlmE9HzkjSgh4Q+NNH+LiNZChO7uLjMGSLyIbTP8cH5lsWl+HFcHTs77pqj0Rat3+dsf79o12MYPRTwRfRImqleb0bPN5s4br4yxy2ajV94Yp7FKlqKcUYqF5cFiYj8DW2uPNnxU7u4TJflaPN5JfrL90w1fHr1Y9HuUkGbyU9U0zP3zvT5ZpOD0abwrEvrOKVUfPxDXMbCdRO4uLi4uLgscVw3gYuLi4uLyxLHdRPMEVVVVWrNmjXzLYaLi4tLUfHMM890KKWq51uOxY6rDMwRa9as4emnn55vMVxcXFyKChGZzOyiLlPEdRO4uLi4uLgscVxlwMXFxcXFZYnjKgMuLi4uLi5LHFcZcHFxcXFxWeK4yoCLi4uLi8sSZ0kqA85Kdc+JyD3O751E5EkR2Swiv86uVuWsTvVrJ/9JZ/777DkucvI3TWaFtqWAbSs6u5I892IPr20ZoKc3Nd8iubi4uLiMw1IdWngOsJEdy7x+F/ihUuoOEfkJeknS65z/3UqpdSJyorPfCSKyB3p1tD2BOuB+Edk1u4LaUqelLcGnz3+W3j69XtBBB1Rw8RfWU1466oqgLi4uLi7zzJKzDIhes/696KWUEREB3o5ephXgF8BxTvpY5zfO9nc4+x8L3KGUSjqreW1m+FrcS5Z4wuKGX24ZUgQAnnymi6aWxDxK5eLi4uIyHktOGUCvE/1FILuQTCXQk7PsbQNQ76TrcdaFd7b3OvsP5Y9yzBAicrqIPC0iT7e3t8/0fSxIUmmblraRHX9bu6sMuLi4uCxUlpQyICLvA9qUUs/MxfWUUtcrpTYopTZUVy+N2TSjEQ/ve3ftsDyfz2DP3UrnSSIXFxcXl4lYajEDhwAfEJH3AAF0zMBVQJmIeJyv/xVAo7N/I7ASaBARD1AKdObkZ8k9ZkkjIhxyYCXnn7kLd/1fE2WlXj73yZ0pL11qVc3FxcWleFhSLbRS6iLgIgARORL4b6XUx0TkN8CHgTuAU4A/OIfc7fx+3Nn+oFJKicjdwO0i8gN0AOEuwFNzeS8LmdKolw8cVcuRb63C4xFKIt75FsnFxcXFZRyWlDIwDl8C7hCRy4DngBud/BuBW0VkM9CFHkGAUuolEbkTeBnIAGe5IwmGY5pCeZk7esDFxcWlGBCl1HzLsCTYsGGDclctdHFxcZkcIvKMUmrDfMux2FlSAYQuLi4uLi4uI3GVARcXF5dFhmVZWJY1Iu3iMhZuzIDLkqerJ8XAQAav1yAUMiktcQMeXRYmqc4eMv0DI/I9JRF8lWWA7vwbGhoojUaJlJTQ2NhIeXk5kUgEw3C//1xGx1UGXBYtSils28Y0zWHpXDo6k3zuK/9ie2McgHceXs25p6+jzJ062WUBkukf4KFd3jEi/22vPjCkDABUVFTQ3tZGV1cXXp+PUCjkKgIu4+LWDpdFiVKKVCrF4MAAtm0PpXPNpem0za9+3zCkCADc//d2Gprio53SxaUoME2TYDCInjmdYWkXl7FwlQGXRYlt2ySTSTo6Omhvb6epsZFYfHgnn0habH59pMn1je2xuRLTxWXGsSyLxsZGPF4v5RUV9PX2Mjg4iG3bEx/ssmRx3QQuixLTNImEwyTicQYGBjBNk5qammGm0kjYw7uPXMYzL/QM5YnAfnuXjXZKF5eioaqqCr/fj2EY+Hy+obSLy1i4tcNlUaKUIp3JMDg4iMfjwbIs+vv7h7kJRIRDDqrgtI+uprzMy8r6IN/72l5UlLkBhC7FS9ZN4PF4MAxjKO3iMh5uDXGZM5RSKKWG/JfZ9Gz4M7NugmAoRHV1NYMDA8TicSKRyLD9yqI+Tv7wKo49qg4xoLzUO+PyJFM2/f1p4gmLYNCkNOrF63H1cJfJ4ymJ8LZXHxg1P5dcK4BrEXApBFcZcJkzMuk0La2tLF++HKUUrU7a6535L/GsmyAcDut0JEI4EhkxmgDA6zWorJid0QPptMWzL/Tw1e+8TCJpEwmb/M8le7Pn+iiGUfxBXYmkRWdXiof/0c6ymgD77VVGRbk7EmO28FWWDRs14OIyU7jKgMucIYaBAI0NDSjA5/PNapSzkdPxG6MoARNhWdaQ8pCbzkcPW1SY5sgvsN6+DN/4/iskkjp4a2DQ4tL/2cj1V+xHZbl/0jItNN7YOsgZFzyH5cSmrV0d5srL9qHCXZfCxaWocJUBlznDNE0qq6pobmoCdJDTWB3sfJPJZOhob6equhpgKJ3re0119pDq7ScWt7AsRSjoweMRvNEdE8Ck0jb9g5lh525tT7IYJoTrH8jw01veGFIEAF7fOkhDU9xVBlxcigxXGXCZMzLpNK0tLfj8flCKluZm6urrZ8VNMBOk0mmaGht3ZOQt6pXqHeDh9e8ccVzuBDABv0nd8gBNLYmh7bvvUoLPW/wuAqUUqfTI4WrJ5CLQdFwmRf+AjokxRAiFTEJBt2spNtzIEpc5QwyDcCTC8uXLWV5bSygcXrCToXg8HpYtW0YmkyGTybBs2TI8eUpLxhp93HbucO7yMi9XXLo3e64vwTT0sMVvXrjHopjhMFri5aQPrxqWV1nuY+2ayBhHuCxGuntTfP/aV/nQaU9y/Kee5NbfbKe3Lz3fYrlMEld9c5kzPB4PlRUVQ/773PRCI5PJ0NbaimmaiAitbW3U1dUNcxMIEysyIsLK+hDf/dreWJaN12MQXURrH+yzeynXfndffvvHRuqWB/jQe+vdoZmjUMiaAsWIUoqH/9HBA4+0A5DOKG79zTYOeXMFpdHSeZbOZTIsKWVARALA3wE/+t5/q5S6RERuBo4Aep1dT1VKPS/6s/Uq4D1AzMl/1jnXKcDFzv6XKaV+MXd3UrxMN6hvLvF4PFRXV4MI7W1tI9wEpjm6MjDaSK6y6OLsICMRD/vsUcpu60owTUYNonQpfE2BYiOZsnny2a4R+c+92Mteu7nKQDGxpJQBIAm8XSk1ICJe4FER+bOz7QKl1G/z9j8G2MX5Owi4DjhIRCqAS4ANgAKeEZG7lVLdc3IXLrOOx+OhZtmyoQDH3HQWd/j2Dnw+tzCWIn6fwVsOqOCRJzqH5e/vzuJZdCwpZUAppYCsrc7r/Kmxj+BY4BbnuCdEpExEaoEjgfuUUl0AInIfcDTwq9mS3WXuye38Rxv1UOgEMC6zQ3Y2SdM0h6Vd5g4R4fCDq/jXS73c//c2PKZw0odXsaIuON+iuUySJaUMAIiICTwDrAOuUUo9KSJnAt8Ska8BDwAXKqWSQD2wPefwBidvrPwly2LziRZyP+4EMPOHZVl0d3djZTJU19TQ1dWFbdsLerjqYqW81Md5Z+zCmaeuRYBw2EMw4D6DYmPJKQNKKQvYV0TKgLtEZC/gIqAF8AHXA18CvjHda4nI6cDpAKtWrZpg7+JmsflEF9v9TIWF/OUtIkQiEZqbmti2dSu2bVNbW7tgR6csdiJhD5Hw8O5ksX0gLHaWnDKQRSnVIyIPAUcrpb7vZCdF5OfAfzu/G4GVOYetcPIa0a6C3Py/jXKN69HKBRs2bBjPHVGUDAxmaOtI8siTHXzgTW4jvJiwLIvBgQFSqRQVlZUMDAyQTqcpLy9fEAqBYRh4vV78fj+JRAKfz4dvAa/MN1mX0mLoSF2FurhYUsqAiFQDaUcRCALvAr4rIrVKqWZn9MBxwL+dQ+4GzhaRO9ABhL3Ofn8Fvi0i5c5+70ZbF5YMtq1obY+TTFrc9pttHLPnDp3pwLuvxwwFAFAZi9iWBqC4GrK5ILtwk2EYw9ILARHB4/XS0dFBPB4nnU5TWVU132INkXUTJBIJSsvK6OvtpaOjY8G6CSbrUnI7Upe5ZkkpA0At8AsnbsAA7lRK3SMiDzqKggDPA2c4+/8feljhZvTQwk8AKKW6ROSbwD+d/b6RDSacLQZjGZpbE9xzXzP1y4O8/dCaWVtcpxBisTQlIRu/J8Zt124g2Nc+tM0MBXjinR8fcYzbkO1AKUUmk8HKZPD5/ViWNZQeTyEYbdXH2cAwDAKBAKFQiFgshtfrpaSkZEEpK5FIhHAohD8QIBwOY9s2g3EL27IpK12cQzlBT/LT05tGKb3KZrk79bPLDLCklAGl1AvAfqPkv32M/RVw1hjbbgJumlEBx+GVV/s55+IXhn7/9p5GrvvufvO2QpylQAyTdCqBbbcTVKPPxucynFzzr23b2LZNxjBQAT99dprltbVjHmtZFol4nEBQR2pn07PxJZx1E8RisSGFoKuzk/KKigXx5W0YBj6fbyidTBnc/3A71/1iC2tXh7nonPWsqg+NORdEsWLbcOE3/81Lm/oB2HlNmB9+Yx93pUiXabOklIFipa8/zY23bxmW19icYHtTbN4agXDQQ09PimAoQmywHwlFOPI/D6AUiF3Y3PS2rfQXDorSEg8ej+nk2wV/gc6Wb3W2hg2OZf49bONfWb7TynFXRkylUrS2tlJWVkYqnSYei7FylgJTs26CqqoqIiUlJBIJMumFNcVsto4MDGb49lWbeOwpbZx7+T/9nPOVf/HzH22gcpF1ksmUNaQIALy2ZZAHHm3j+PevmEepXBYDrjJQxMxnRKJhQGUZtLX1EwgG6UgMEggGqampIbm9ecLjBwYzPPlMFzfdsYUvn7MryrKIRqOYpkFvby/RaHTY1L9jMZ5v1SiNoJSa0kJI8zFsMJVK4R/DTSAi+Hw+Kquq6OzoAKCuvn7WzPZZN4Fy5MmmF4JVIJ9kyuKJp4d76bp60sTimQWvDIylzCp7dEtbJjPyrd/8+gC2rTCMhWUFcefhKC5cZaAIiJZ4Oe2jazg3x01QXxtgVV1o3mQSEbw+L+UVFZSURLGsDLFYrODjm1sTXPI/G6mq8FFd6WNwsJ14bBCv10s8HicUCg2tCzAVlLMqooiwvLZ2QXZiuYgIXZ2d47oJAOLx+LD0bK74mKtoLJRYgdEQEVatCPHGth31z+sRAv6F/cxhbGX2HVsfGbUjzfhGTubznnctX3CKALjzcBQbrjJQJOy+Swk3/+gA7rm3mfpaHUA4GReBZVlDHWJueqpkv1Q9Hg+maWKaxlDaUxIe1pApBbZSqGCIeMIiGDB56DEdcNjRleKiyzZyxdf3pKujkXQ6TXVNDT6fb1rBcZZlkUFRv2LFgu7IspimyfLlyyd0E8RjMerr60ml03S0t1NSUjLHki48Ksp8fPW83TjnKy/QP5jB4xGCCVxrAAAgAElEQVQuOGvXEePeiwk7lSK0ZqTpf2Aww2UX7sHPbtuCbStOOWEVO60Kz4OELouN4n1blhjhkId1O0U49zO7TPpYy7Lo6emhtLQUERlKF2KGHw8RGeq8smmlFJSE6UslqK6pIZ3O0N3VxWAyzOfPfYHjP7CC4z+wgl3WalOh1yN87lM7MdCvl3UwDIOenh6CweC0O/GsMlEsE9GY4zyPrPK1avXqIX9+Nu0Ca1eHue3aDQwMWoRCJpHQ4pwFLxL2cMRbq9hnT70IUGmJd9EFSbrMD64ysARQSjE4OMjgwABen494LEY4HJ6WGX4iEokEzU1NZDIZPB5twUilFTfevpWDN1Sw756l7L9PKdsa4tQtD5CIDbC8tg6v10NzczOZTGZa8pmmiWEo2lpbF5SbYDp+1IVyDwsRj8egssJPZcV8SzL7iAgV7nBClxnGVQaWAB6Ph7q6OrZt3Uomk6GqunpUM7xt24gIIjIsPRlEBK/XS0VlJR3t2hVQVlHNJ855jkRSB0U9/1IvJx4X5Rtf3IOBQQsrA/X19YgIhmGwYsWKoXNNeG+jdK5KgTcapra0ZGgin4Uyo5vrR3VxcVmIFJUyICIvMk4QvVJqnzkUp2iwLIuuTr3EqGGa9HR3EwqFhpnhbdseCkjzeDxDaa/XOymFQClFOp2mq7MTn89HJpOhp6udy7+yO2dc8C8SSZt9HRNnWamPslGWPJ+Me6DQztWd0W1pEYtniMdtTFPXs4WIZdlFHXHf1ZMiFrPweoVg0CQaWbwTPS0FikoZAN7n/M9OBHSr8/9j8yBL0aCUIplKUVtXh9frHdUMr5Sit6eHVCpFSTRKb08P5RUVznC/ic3TlmU5LgEPKEUgEKCquppMxqK7qwsy4PMKJ31oNbXLF8fypkopLMsasmhk06Zp0teXYmtjnI2v9nPwARWUlXopcRvLOaGrO8VPb3mdhx/voL42yIWfW89Oq0J4PAsjkLS3P80rr/bzlwdb2WPXEt5xeM28mv3TaRuvd0fZFGJF6+hMcs7FL7C1QY/geP+7l/OZU9ZSFnXreLFSVMqAUmorgIi8SymVO5PghSLyLHDh/Ei2sPF4PNTX1YHTaWXTuV/8pmmybPlyGhsa6O3pIRQOF6wI2LbNQH8/XV1d1CxbRjwWI1paimEY+P0mlVXVePotfnH1gZSEPQQC5oIx208HpRQN27dTUlJCSTRKU2Mj5RUV+P1hbGUTCgqPPN7BEQeXY9s2lmVjmgujQ1qsJBIWN/xyC3+6vxWATZsHOPui57n9ugOprPDPs3SQydj85cFWfnzDawDc93Ab9/6tje9dshflc2zB6O5N8dhTnTz1bDeHHlTJm/cvpyzqm9CKlkrb/PJ324cUAYA/3tvCscfUucpAEVNUykAOIiKHKKUec368Fb3WgMsYGDmdujFKB2/bNol4nEwmgxgGiXgcy7IwDGNCN4FhGEOz1LW2tABQEo0OxRz4fB6qK4dXtcVitq+pqaGlpYXe3l78gQCRcBhbCf197fhM4dILdmWgrw3sED5fOcFFpgwsNKVuMJbh70905OVZdHanFoQy0Nuf5vb/3T4sb+Or/QwOWpSP4jKbLfoH0vzwJ5t58FEd1/Pgo+0ce3Qtn/3EWsZ7261MhlRS8Z/XRj7zLdsG2W2dO9S1WClWZeCTwE0iUopeXKgbOG1+RSpulFL09vZSVlZGWXk5Lc3NDA4OFmwdALByZk1Ttj2rC+ksBLJD/LL4fD4Qoac3jc9fTmygjd7uZrxeL2krRCJhEwxM7hoLrbPNZyaUumTKwrIUoWBhzVEiaRGLW4RDJn7f8Lrp8RqsXhGip7d3KE8EShfQF6vHM/KdyIbJ2LZN/6CFzyv4fcaszZERT9hDc31kuee+Fk49cTVjzVpg2zZNTU3U1dfzjsOq+ddLw8t4nz3mUJtxmXGKUhlQSj0DvMlRBlBK9U5wiMsEZN0EoL/0s+nJuAmSiQR19fX09fbS0tLCqtWrxzxGzfFcyrMRqKWUoqmxkUAgQEk0SntbGz6fj0goxGBMj8bQa13p2fBCocm/bovFgjIalqVobU/wi19vpbM7zUnHr2Tn1eFxYys6OpPccPsW/r2xjw37lnPy8auGTTlcWuLlgrN24ewL/0VPXxrDgM+cvBPhKZT9ZClEcSuL+vjUSWv41g83DW1/7zuXEY16SKXS9Pf309ZlsqzKRzwWL3ha7skiAoboBceyTDRfgW3bVFRWIyK8/dBqWtoS/OEvzZSWeDnn9HWLeqXIpUBRKgMi4gc+BKwBPDlBcN+YR7GKntyOfzJj2rNuglA4jMfjobKqinJnaOJYzLXBYLaG9C2vrcXr8SCGgbe+fijd0dGCx+MhFC6jr7cDZQ/gNZfAIPhRGKuTJBjitHNfZmDQYp89oqys85NKZVDKMywYM0tPb4ovf/slXv6PXqhny/YY25tiXPrfuw9TIFbWhfjFjw+gbyBDOGQSDnnmRBkoRHEzTeHQN1dy45X78/Bj7Rx5aDWxmMVzL3Szz+5henu6iYZCDPT1OMs0R2dF1lDQ5Lj31PG/9zQN5X30gyspCXuw+8c+Lrt2Rlmpj09+bA0nHLsCEaGs1Lsgp0R2KZyiVAaAPwC9wDNAcp5lcQFnSmJzRHoxowMk/UNKTzatlGLZsmUYhkHGgkhELyg0WqzGUmCsTvLgf9/HwKBFwG/w3a/uSWdHE35/iFTKpLmp0Vn3omTIVJ5I2kOKQJYnn+kmkbTJNfCYpjgTEM1/jMBolES8rI942WWnCA880sbXv/8KZ522lsGYxZv2KCM+2ANAVc0K/v1KP/vvUz7jMoRDHj5x4hoOf0sVz77Yw0H7VbB6ZVAH9+ZY0bLLbBuGAUE/zU1N1NfXY5jaReOvWJp1ejFSrMrACqXU0fMthMvUMSMhDtv4V0QMRHSjo9c1WPjjq3PJtX7kTn/s82nT9SxYeBcN2Q/JRNLmpl9t5YQP1BAb6KAx1o/f7yccDg/zmXtMwe83SCZ3xKZESzxzbmXKRw8xVZN2ffX2pbnlzm0AmIZw4L5lDPa3YRgGtm3T19vLzmtmzw9fVurlgDeVc8CbhisbuVa0TCZDKpUiEAhg2zaVqdTcm/Vc5oRibar+ISJ7K6VenMxBIhIA/g740ff+W6XUJSKyE3AHUIm2NpyslEo57ohbgAOATuAEpdQW51wXoQMZLeDzSqm/zsytLQ085aVkgn4CAR1Rl0gkCAQCS8KisJiYTiyGx2Owbqcwm98YZNPmAUxP3dA27ygzZEbCHs4+bWeuuO5VQPdJ552xy7wGB9q2TTKZIpmCTMKa3MHC0NwHTa0xfN5yYiKEo8ux0inSqV5Cwfl1LXk8Hm3VyvtzWXwUqzJwKHCqiLyBdhMIoAqYgTAJvF0pNSAiXuBREfkzcB7wQ6XUHSLyE3Qnf53zv1sptU5ETgS+C5wgInsAJwJ7AnXA/SKyq1Jqkq3BzLLQI89zMU2TUCg01ODnppc6g7EMLW0J/vJgKx8+soQjNj1Afvs7FQtKV0+Kx//ZyRvbYhz1tmXULvMTCU+vI51OLIZhwA++sQ+bX+9n371KaW5qwB8IEHWCMf1+/zA3QSBg8q4jqjlo/3K2NcZZszJEtMSDdx4nE7JtRUd7GwBlvsnV3/JSH6efvIYLvv5vfvvHZnZaGeaYd9Tx7Au9rKwPUFtXj8czc8rxVNuHYlnK2mV6FKsycMxUDlI6tDv7NnidPwW8Hfiok/8L4FK0MnCskwb4LXC16B7rWOAOpVQSeENENgNvBh6filwzRSEBTAtJYRjNxO4CL73Sx3mXaKPXr+6CnVaFuOpbb5rWLHXdPSnOv+RFXn1dP/s7ft/A5RfvyaFvrpzXsq8o8/Hm/SuxbZtly5cPfYl66+uH0rlEwl4iYS91C2QWy46uNL5AFfHBVggGOXzjvdgIpmEMKXDjKW777F7KLVdv4P6/txEKeRiI2bxlQ+WsyLqYR6a4TJ+iVAZyZiKsASY1cltETLQrYB1wDfAa0KOUyji7NAD1Troe2O5cMyMivWhXQj3wRM5pc4/JvdbpwOkAq1atmoyYs4bbICxsevpS/Oy2LcPy3tgWo7U9MS1loLM7NaQIZLnxti3stT5K+SxPhVuIK2GsYMyZZigYLi89VXw+IZ2yUErRHh/E6/PiD1YRCHiJlExsdQmHPawNezj95J2mJYeLy3QpSmVARD4AXIE20bcBq4GNaLP9uDim/H1FpAy4C9httuRUSl0PXA+wYcOGOR5ZPz0sS3s8TNMclp4tMhmb3r40AKGgh2BwicYOKLBHiUTLmc9paqcdpfZZthp71a8ZpFBXwmxbijKZDLHBQcKRCEqpofR06nU04qG5qRWvL0ikpJy+nlYMYnT3BpCBfoxEbES83UJ027m4FKUyAHwTeAtwv1JqPxF5G3DSZE6glOoRkYeAg4EyEfE41oEVQKOzWyOwEmgQEQ9Qig4kzOZnyT2m6LEsi472dgzTpLKykvb2djweD+Xl5bOiEAwMZvj74x1c8/PX+PbZK1kWsbHCnmF+8qXSgJaV+vjEiau58LKXhvJW1gWprZnk1IV5VFb42GlViDe27ZhP/hMnrqa81DvqYkuLzTeslCKVStHR0UEylSKZSGBZFuHwWPPtFYbHY7JseS3JlE1jc4raZcvZ3hjnnK8+x8++WMvGQ9474hjXCueyEClWZSCtlOoUEUNEDKXUQyJy5UQHiUi1c2yPiASBd6GDAh8CPoweUXAKeh4DgLud34872x9USikRuRu4XUR+gLZO7AI8NcP3OClSKXvGZvUTEaLRKM3NzQwODKCUoq6+ftY6iPbOJN++Ss/IVmKmeGb/4mxAMxmbnr40tq3Nx2XRqZnf992rjJ9dsR93/7WZ1StCvOuIZVSUT8+UX1Hm49rv7cujT3Tywsu9nPThlZRGvaQ6e0j39Q+tI2E7k0V5ohH8lTM/vn2+EBECgQCVlZV0Ost5r1q1CnOMsZ+2rV+mQibS8fm8+HxQUQ6fOOdZevoypFLTNOW4uMwxxaoM9IhIBD1M8Jci0gYMFnBcLfALJ27AAO5USt0jIi8Dd4jIZcBzwI3O/jcCtzoBgl3oEQQopV4SkTuBl4EMcNZ8jSSIxy0aW+Lc/rvtfPyYMg5/5X4MQ4aZJicbeW4YBj6/H6/PR9oZY+zxeKZkui0kYPHZF3smfd6FRiJp8ewLPXz7yk309KXZc32Ub164BzVVk5/4JhL2sPuuUXbbpWTGzOWWZWGoJO86oop3H1lNIh7H7xdS7YM8vP5dI/Z/26sPwAJTBqYb/GrbNv39/UMTQ/X19VFaVjbM2mVZNu2dKX73p0YSCZsPf6CeZVV+/P7RLWK5MgUtxffPrAagL+MDUlO4y9ljNqbkdlk8FKsycCyQAL4AfAxtvp9wKmKl1AvAfqPkv44eDZCfnwCOH+Nc3wK+NSmpZ4Gm1jinnfsMtg33/q2NgN/gl9cdyLLq0c3KhTQIWTdBJp2mtKyM3p4euru7p+QmKCRgsZCVzpJJm8GOJGWlHrzekTJkMjaxuEUoaM7LuvX9Axm+8u2XSGf0F+VLm/r40c9e5aJzdht3KtxUyqLfmYUvf7+Z9pt3dXWhlCJSUkJPdzdV1dVjNgC2rRiMZeZkGt9CmU7wa9ZNYFkWK1auJJlM0tnRQWnp8El9OrvTfPzsp4nFtW5/973N3PLjDaxaEZqUTLs/9qdCb2tGKERR8laUQkkIwzAwTZN0Oo1hGLOy9oFL8VGUtUApNQggIlHgj/MszryRztj8+vcNw4LLEkmbv/2jgxOOXTHqMYUEc2XdBGXl5Xi9XkLBIIZpzpqbYEVtkA++r467/tQ0LP/Au6/HDGmlxsSm+/UGfBU+guUlw+6hqyfFH/7cxNP/6mHDvuUcd3TtrEfI59PZlRpSBLI8/1IfiYQ1Zofa1ZPi1t9s4/F/drFubZizT9uZ5dOMDRgL0zSpratj+7Zt9HR3E41GCYfDJDr7Rt0/Frf40VWb+Pyn103JurHQEBHMeJJqPKQbWzGAajwkG1qGdZgPPdY+pAgAZDKKO37fwHlnrJuUkunzGmNaE2aDQhQl27Zpa21FKUVFZSVtbW1EwmEqKivdyb5cilMZEJHPAF9HWwdsnEmHgLXzKddcIzBq1H1ompH4hmHgDwSG/Mi56dmgNOrl9JN24qQPrSTY285GJ98MBXjinR8fsf8Rm3Y0cH39aS6/ahOPP90FwL9e6uU/m/v58rnrx139bqaprPBhmoKVswzcXrtFx+wQBmMZfnzDa9z3sJ6wpqE5zquvD3Ddd/ebdnzAaFiWRTweH1pWOhaL4QuUoKwdmmSu8uXzwWnv8JPc1kjcLiNYU/yLLFn9gxN2mN5RVu7zeGTEiICJKC/z4SkJLyizvGmaLK+tpbGhgdaWFvx+v6sIuAxRlMoA8N/AXkqpjvkWZD7xeAxOPG4F//dAK3Hna6aqwsdbN0y/4Z7rWcciYQ+RsIeUlOxYJCU9VhiGngu+py9NKmUNKQJZHn2qk3hi+OI1s00kbPL1L+7Od360iYFBi3U7hfnCZ9YRCY/+iiWSFg8+Onw9+cbmBLGExWx1uz3d3VRUVBApKaG5qYl4LI7kzPM/lvJ1+Cv3wyJQBgrh8IOruOlXW+lxhrn6/QYnHLcC05zcOyAC/qpyqFo4cRd6DQUL2zElWpblLLHt4lK8ysBrQGzCvZYANVV+fnntBh57qpOA3+TA/coX7GpthZDrxhh4vWHUfUSEVzb387XvvszF5+2Gz2cMi972+4wR0/fONsGAh0MOrOS2aw8kk1H4fca4rgpBqKny09yaGMozDfB7Z0dw0zSpq9fzYrV1pgmEqvnn893UhQx2f+xPGIbgLxu9OVhKk0NWlPv4+Y8O4MFH20kkLY46chmVs2CpmQ9s26a9rY1AIEBVdTXNTU10d3W51gEXoHiVgYvQixU9Sc4Sxkqpz8+fSPODaRrUVAX4r/eMmABxxrBtG6UUpmkOSxfCdCKYx+rQlVJc8PUX6evP8NAj7Xzsgyv5+R1bAbj6op2oL1MEe9uJ5bjD52KeAq/XoKpARays1MuFn9uV8y99kUxGsX7nCBd+fj2JpEV7Z5JI2EMwMLMN9NAzU2k+eubTxBM7FKhl1X5+cfHodWihTBU9F9HwhiFUV/rHjLmZD5lmiqybQADT46Guvl6nXUXAheJVBn4KPAi8iI4ZcJklbNse8jWHQiES8Ti2UgSDwYIakeksZDMWSkFfv549+q4/N3HmqWu58pv70NKeYG1Nhkd2H32o3FzNU1BIZLdhCHvtFuXOnx1Ea0eCaMTLeV97gdb2JF6P8IUz1vHOw2vw+2RURWw6HXQoaLLf3mX845873Cuf+fhOGEZ61P0XiC4wK3VpuiwUmQpVSnJHDkxnFIFlWWTSabw+H0qpofRim6xqKVGsyoBXKXXefAuxFFBKkUom6e7uJhyJMDgwQGlpKcHg1BaKGRjMEHeWeg0FzVEj7RNJi4HBDMFgaNQV+wiGKAl76B/MoBRc+/PX2XevUi7/yp6YHa1TkmuyWJaNbWtrQD6FDoHz+01q/CaBgMHFl79Ma7s2cqUziiuufZUj31qNbSVob2ujrq6OWCxGT08Pq1avHqGIWZY1lJebHo3SqJeLPr+eja/2s2nzAIe9pVIPRe1omVJZzBexeIa+/gxbG2KsrAsSLfGOGaMB0/+KtywLAQxniu5seiEwl0qJUop4PE5bayvVNTXEYzEGBwdZtXr1nFzfZXYoVmXgz84iQH9kuJuga+xDXKaCaZqUlpYSTyQYHBjA7/dTXl4+pUawpzfF1Te9xr1/a0OAY4+p47SPrKasdIdPtn8gw18fauG6X7xBMmmz396lXHrBHsP8tum0zeUX78nF33mZnt409bUBvnjWrpREvMQKCCmdzuQ1tq1o70zymz820tmV4vj317N6ZWha4/FTKZvXtgyXx7KhrSPJTquCBINBGhv1bNc1NTUjjs9kMnR0dFBVWQkiQ2mPd+zRFOVlPt56YCVvPXDHCnmp5OyYvLMWjaw1I5su5CtyrGdlRsI88UqaS763cWjmzfPP3IVj3r6MwBjulel0mJZl0djYSEVFBYFAgKamJiorKwkGg0vua1hECAaDREtLaW/To2Hq6uoWjDvJZWoUqzLwEef/RTl5S25oYaFkG9TsfAS5S6tO3PnZxBMJEvE4Hq+XZDJJLB4v2E2Qy9P/6uEvD7YN/f7dn5o45MBKDjpgR6R6T2+KK69/bej3cy/2cvvvtvGZj6/F53yFe70Ge+8e5eYfHUA6nQ3WK3wY4XQmr+nqSfHJc58dija/7+E2rr78Tey719S/ykJBkzfvVzE0zBAg4DcoK9X35M3p1McyxaZTKRqbmjCcKYWnEiM+W1+XViZDQ0MDy5YvR0RoaW6mfsUKfL6JA/PGelZHbLqfK67bNmwK7qtveo3DDqocUxmYLiWRCG2trXq6Zo8Hv9+/5BSBXLILmAFY011Jy2XeKUplQCnlrvc5CdJ9A/xt12nM3JZMUlpaSnlFBb09PSQTiUm7CWxb8cTTIw03/3y+a5gy8NqWkbNKP/9iL7FYBl+OBcE0Cw/Wm0le2tQ3pAhkueXObeyyNjJl60Ao6OGs09YSi2d4/Oku6pYF+coX1lMW9RCPx+nt7aWqqopYLEZTY+MIN4HH42HZ8uU0bN+OBdTW1o7rD57utL6TxTBNSkpKaGluBiASiWCIQTJpTXliHgX09mWG5SWTNhlrdobKmaZJNBqlu7t7aBbHpaoIZN0EscFBamtriTkuA9dNUNwUpTIgIiHgPGCVUup0EdkFWK+UumeeRVuQZBddmQqmaRJ1pmw1DGMoPVmrgGEIhxxUyV8eGu7Tf8sBlcN+r9tppEl6w77lBNODxLa0jdiW34HNdnR3wDfyvgN+gwLWsxmXqgo/Xz1vd5IpGxEoL/UOmWNr6+rw+XyEIxFSqZHz3WcyGdpaW/UskSK0t7dTV1c3pptgOpaRqSAihMJh+vr08I5gKMxD/+jgkSe6+OgHV7JqRZBQcHJNkYjwlgMqeOKZHQrmbruUEPDPTgeddRN4vF6CgQDdXV34fL4l7SZYsXIlpmni8/uJRqOum6DIKUplAPg58AzwVud3I/AbwFUGRiGVHt2EZyuwLQsxDL1iXU46l9yOfzrDkPbbu4zjjqnlj/e2YAh8+AP17LJ2eCddVurlS5/blR/f8BqxuMXBGyo44dgVWL1tBXVgE5m6bdsephzlzronPi+Dm/UQRQxBnEY+V+HYZW2ElXVBtjfF9TaP8MmPrSGY05lNVSHREy8NzzNNk4AzAyQwLJ2LYRjUO2b4ttbWKbkJZgsrk6GluZlwJIIgtLe1csDetdz1fy18+vxnueEH+7N+XQm9/Wn6BzL0D6SpqfQPiyXJxxC46Jz13HLnVp5+voe9do/yqY+tGfeY6VJaVkY4HEZE8Pn9S9pNYJrmjLULLguDYlUGdlZKnSAiHwFQSsXEVUvHxDPKFKugpzPu6+8nFArhMc2htNfrnRUtvyzq5cxT13LKCdqcGA6ZI74II2EPRx25jIM3VGDb+qs7WuIl1jszMhiGMWxZ2txZ995y/y2jzsCXq3BUlPu45jv78s/nu+nsTvG2Q6pHTB8807733Gcx2nPJugmyDXJuejaYrJvBME2qa2oIhUK0dyQpifrY0pBg43/6UApu/912zj19Hdff+gZ/vFePaCiNevjJ9/ajcsTZdlBZ7uOzn1jLYMwiFDBnLVYAdGdXkuMaKCliN8HAYIZk0iIc9hCYw/UTXBY2xaoMpEQkiHYdIiI7kzOqYLGTnU7UMIxh6bEYaypVEYgNDtLT3U0wGGRwcBCPxzPl5YoLIRzyTOhb9/lmNx7AjIQ5YtN92LbNVJrzinIfR71t2YzLNR3m8ittsm4G0zSJRCKICC++0s9Lr/Txh780k84oPvjeWkJBk97+NF6vUBr10NuXobcvw9U3vcalZ6wY18ri95n4R3HdzAZzPUX3bNDUGueq6zez+Y1BDt5QwWkfWTMra2G4FB/FqgxcAvwFWCkivwQOAU6dV4lmic7uFPGEhd9nEAl5CAQMkskkba2t1NXXk+npI93bPyJgLPcrzVca4YhND2ArhVJ62lvDEDwlEZaXR9m2dSuDg4NES0sJhUJF29AVgm3bpPwe2lWaiqpKpHOGTA6LnP6BDC1tCR59soPj9p98/cgql/vvU85Pb3mDdEZxwVnreOuGCNGSEH39GU7+0DL+65hazv7yC/T2ZWhsThD3hqlYs3Dm9y9murpTnPuVF2hypsD+/Z+b6etP86XPrR+moNuWhUIrcbnpsZjrgFSX2aEolQGl1H0i8izwFrS1+5zFuGhRU0uccy/WL6/XI3zuUztz9NuW4fN5MU2Thu3bqbQNHtn9qBHH5n6ljWW2tiyL3t5ebNvGNE0G+vuJRqOz5iZYCBiGQTAYZHltLYFAgETPyEZssTPZmAbLUjz2zw4u+8EmAI7YeepTX1eW+/jp9/fnpVd6efN+ZbQ0N5BK9BMIBunt7aGktIrDDqrknvtaedcRNUQjRdlELUhiCWtIEQC9uNZTz3UPW2bbtixi8TjxeJyKigriOemxFIK5Dkh1mR2K7k0TEQ9wDLCbk7UR6Cnw2JXALcAytIvheqXUVSJyKfBpILuM3JeVUv/nHHMR8EnAAj6vlPqrk380cBVgAjcopb4z/bvbwcBghh/+dPPQy5vOKH7408289cBKaqp8RKNROjqmr//EYzFqamoIhkK0trSQSqVm1U0wVWZylIDH45n2lL4LFaXUCDfSYMyiuydDScRDRblv0jENvX1pfnbrlqHf05lgCbRCcPjB1SilqK+vZ/v27SSTSUrLynnpP0n++XwPp56wimOPrsXjWbxWqrnG7zOGltkuL/Ny9bf3BsD0CJlMBgHEMDANg7pVIE0AACAASURBVP6+PpKJBKlUivJy1zKzFCgqZUBE6tFrEjQDz6GtAu8DrhCRtymlmiY4RQY4Xyn1rIiUAM+IyH3Oth8qpb6fd709gBOBPYE64H4R2dXZfA3wLqAB+KeI3K2Uenn6d6lJJi1efX34V6tSkEpbJJNJOjo6tB+2PzHGGSbGNE2WLV8+Ir0Q3QSzFZSXq2QYPh9HbrxX75A3mqBYsCyLhu3bqaqqwuvz0dzURKSkihtv38ZLm/q55rv7srw6MKlzKhRJZ1XI445ZTig4dv2wbbvg+qMVlR2LjyYScd5ywDL22r2UkrB31Kmei4ns8sAiMiw9X4RDJp89dS0/vvE1vn/JXniNfpRSlISX09LcjMfjoaq6Gr/fTyQSYWBgAI/HQ2lZ2ZTbhNz6MJm64TL3FJUyAHwLuE4pdWVupoh8HrgcOGW8g5VSzWhFAqVUv4hsBMazeR4L3KGUSgJviMhm4M3Ots1Kqded69/h7DtjykAo5OGgAyr403075ov3eYVw0IPXa1JZWUmkpIRkvHla11nqw4MWykIzuUzHBysilJaW0uZME+v1BejpUzz1XDcDgxY33PoG539210mtiBgt8fKRD67gup+/wRvb4hiRKg7b+NehKYWVUhiGgRkJM9DfTzgSGbMu5d+bkclQY/jwRsM09/eSTicpLw0VvdVGKUU6rSen8nq9w9JKqSmvAjodQkEP733XMg4/uIpYPE1FZSUtzU1s3bIFwzSHprqOxeMMDAwQDAaJx+N0dnaO6yYYC9tW9Pb2Ei0pARH6+/spiUQwp7FAksvsUWxP5S1KqVPzM5VSPxKRTZM5kYisAfYDnkQHIJ4tIh8HnkZbD7rRisITOYc1sEN52J6Xf9Ao1zgdOB1g1apVkxGPYMDk9JPX0N+f5tGnOllWHeAr564nEvGSziiUBLnhl1v50IFz34HHExaxWAa/zyQyhz7dhbxQzEwyHR+sYRiEIxG6u7v1bzPAU09pRQDgjW0xEklrUsqA12PwvnfWsmZFmP/P3nnHyVXVjfs5907vO9tLKiQhIY2QAtISQLp0AUFBUcEXeBELKihFEAVBJeJPmkaKSEek+VKCEQggEEBKKCGkbe+7M7s75d57fn/cmclsts32nc08n88k55655dzZmXu+51uf/VcdNR028gJedEPH5XRSX1+P1+0j0mmuNN2evjUp/d3blKlTEUJkvSAA5iq4ubmZSFcXwfx8mpuacDgcFBQWmim9OzoI5ucTiURS7f4m245Ojc4u82/YW0hupnjcVjxuK+BA17SUQGJRVZSE6UxVFPKCQXw+H7FolEh06IFaba2tdHZ2YlFVOjs7zSRNk9REl+1kmzDQ1c97nf281w0hhAd4FLhEStkuhLgVuBbTj+Ba4DfAucMZKICU8g7gDoClS5cOOg9Mfp6dyy/Zi2hURwhBXsB07Pt0c5hvf38DugEr9pzB3q89Q0HQ3q2632iptptaYtxx7xZe39DM7Jkevnf+npQW954IZyTRdZ36ujrcbjfuRI54j8eDy+3eLTUafaHrOtVVVTgcDmx2O+1trRxxSBEffxbmxVcaOfSgwiE55fl9Vg5Yns/yffzEY1Fqa1txuVxouk4gL4/WhPDRW0XFTJlMf0dVVSksLKSmuprGhgasNhuFRUUpbUooFCIajRKLxfAnsnr2RWtbjFvv3sL/ra1FUQSnnVjBmSdNwe/LvB7HrkQbW4i1teOXElWxoUd1OrdWYvP7sAf92Ox2VFXFnvge9fe3STe1CZsVvTMCEoSUFAoLelcc4VLxFBdPaufkbCfbhAG/EOLkXvoF4MvkBEIIK6YgcJ+U8jEAKWVd2vt3sjOTYRUwJe3wikQf/fSPKGZWup1/ps4ujbse2IqeSCp40a+2AHDd5fM4ZP/C0RhCinCHxu9u+5R1rzYB8FpzM1t3vMftN+4zJrHKLpeLxsZGREcEd2cMJdpGtLk99X4ulMk0E+QXFOB0OjEkWK12WtsFH20KccaJFRx7eEmfeScywWJRkdJKXl4ePr8fwzCoralJ2cVD7e34/P5JNbEPBSkluq6jaWb9BE3T0DUNq82G3W7H6/USCoVQVZW8YLBfW/p/3m5JmQt1Q3LfIzvYb0mQfRYM/buuhzt4aa8jevSv2rQWe8FOh8FMbPzpprbw5zv499ye5z3oo2dpkzoOux1yfgMTkmwTBv4NfKmP914a6OBElsI/Ax9JKX+b1l+a8CcAOAn4INF+AvibEOK3mA6Es4A3MIWPWUKIGZhCwBnAmYO/naHRm4pBjkH+2WjM4KXXm7r11dRF6IzoBPs4ZqRQVRWvz0drayuys2vAcMrdFVVVcbvdqYe4xetGonHbr/fB67FgG2aCHiEEVqsVn9+PEIJYLIaUkilTpxLp6qK5uTlVv2J3JmkmsNlsFJeUUFdbS3Nzc8pMEAqFzNDWSITGxkby+zATxDWDV99s6tH/5jstwxIGRou+nkOqaiEej6Ppes5MMEHJKmFASvkNACHEDCnllvT3EhPzQBwAfA14XwjxbqLvcuArQojFmPPsVuD8xPU+FEI8hOkYqAEXSin1xPUuAp7FDC1cI6X8cJi3lxEup4VzTp/G+jeaUiWJ8/NsLNgrI8XIsBACSoocVNfujGCwWAR22+hL+kkzgWEYCLF7rzoHYtdMeSOdr18IkZq4HA4H5RUVqKqK0+Wi3OXa7bUCYAplBQUFqc8qGamTNBP4AwECgQCxWIzOzr4tnFaLwn5Lg6x9uaFb/76LJ54gAHRL9Z2OEDAl4TeVEwQmJlklDKTxKLBkl75HgH37O0hK+Qrmqn5XnunnmOswoxh27X+mv+NGk2nlLu65ZSl/f6aaYJ6NYw4vGRM1fZ7fyk8vmcP3rnyfWKK63kXnzhx23HmmOF1uHM4AesOkyy/VjdGuvDiSDDYaJRvuTUqZmrDS24MlPSto+mdjt9ux2WymTT6t3Rf77xvkqFVFPPfveoQQnHpcGXtMd/e5/0QlF1Y4sckqYUAIsRdmzP+uvgM+YHDB01lAfyFm06cG+N53Zo3peIQQzJ3l46E7llPfGCU/aMPjsuByjuxKsLfY5NZ2nXXrQ7z6RjMXHuca9Dl1XcfQdSxWq1m5MNGeiKuU8Qx31HXTY11NRGwk2yPFRAnl7Ou3pXrcGC47NrtZGyMWjQ7oQDdYBlvjIOC3ccn5szjv7JkIAS6XinuI0QSjzQT8OeXIkIn5jeqbOZhJhgJ09x0IYWYQnFRMxDSfNptCQb6dgvzRKSSk6zqhUChV2CbZjnTp/O72zQADCgPxuEG4Q8PlVLHbzdCp9vZ2WltaKC0ro6WlhVg0mgplGwkmQ352XdfpCJv34PF6U+3+8gakk8x+qKpqt/ZgGYvPsq/f1spP11LX1ozP50NVVVpaWigrLx9308eujsTDZbQ0NNmg+cnRO1klDEgp/wH8Qwixv5TytfEeT45RQEra29pob2/HYbcTDoex2Wy40x6E7ZqNueufxmJRCAZsKedki9dDc2uMB/9RyX/eambeHB/f+Mo0CvPt+Hw+ujo7qa6qQghBWXn5iGoFJqLgNhQk0NTYSDgcJhKJkF9QkNlxiSQ7jQ0NFBUXY+g6jY2NFBUX9yiiNRDj+VkKQcrhDyC/oACbbXyr+o2GcDRaGpqJovnJMXiyShhI4zMhxOXAdNLuQUo57NwAOcYX1WKhrLyc7du2EY6bWdIcDge6oXPGieU88HgVF/1qC1aLYPV1i5g6c6fnerhD4+Y/fMqLr5jOVp9t7eDjz0L85ucL8HkmhgfzaKvhh4OqqngTGoFIJILD4cDr9Wakyk4mC4rH41RXVaHrOnbH6OefGA3isVi3thyLUJ1+mCyCZo6JTbYKA/8AXgZewCwglGOSkKykCKY9tb29HY/Hg9dj5ezTpvGlI8uorY8wc6ob3y5JVyJRnXWvdve6/nRzGIsK7e3tRCIRSsvKaG1pobamZkTNBJneW2dnJ4Zh4PV6U21Phmr4sRhfuiAQiUQGTC+cjsViIT8/P5UKuaioaELcVzrRmEG4I47d6P19KUmFAFosFmpravB4vd3uI9OVelwzaGuPE4kYOBwKfp8Va67wUo4JSrYKAy4p5Y/HexA5RgEp6ezooLikBLvdTk11NbFYDEVR8Hmt+LxWplX07jMghJkpr6U1nuqzWATRmCTP78PtdmO1WikqLjbTGY/DqlUaBk2NjXR0dBDp6iIvONoZGgaHxFSNJ5PiZLomTpkJGhux2e3omkZtTQ0lpaWDNhOMFm3tMR78RxVPPFvDH79X0us+QphZFJPakPR2kkxW6rou+fjTED+69gNCYbNi5A1XzGfvOT5UNfu0JZpuoCqTI1V0jt6ZGL/SwfOUEOKYZJnhycru6IyjWiyUl5dDIh47vT0QAZ+VH3xnFlfcsDGV/OSbZ03H5VRRVTW1uktvjyWqqpqOeR0ddHV1Ybfb8fv9EybkSlVVPIm6AoqipNqZfFZJM4HL5SK/oADDMGhpbp4wk4dhSNa+3MA9D20HoDlqYe76pynMt3ebnC1eTzfhZah/m9a2OD+7YSOhsJmBMBTWuOL6jay5eQn5wdFxvu2LtvYYDU0xauoizN7DQ8BnxW7v/jftS9shXC4+rBE8/Xwts2Z6OPbwEqSUWK3KmIUU5xgbsvWv+V3gciFEDIhh5g6QUsrRz7wzhuyuzjjpxYcGU4hIVRWW75PHQ3euYPPWMFMrXOT5rUMu6jIYMhHckmaCpCCQzEQ3UcwEMLwqllarlfyCgpSwlWwPll0/SynBkBLD7qKxOUqe3zbo1XW4Q+OFl+pT28k03lf+YC+OWFk86DEORFwzaGqOdetraokR18bW/6A9FOe2u7fw5HOmQ6SqCm755SIWzuueJTLWFubfc3pqO1a89xyX/GwrigIHLM/nmbW1vPBSPcWFdv7nnJmUlTgBo9cokoki5ObIjKwUBqSU3vEeQ46JictlweWyUFo8tmknMhXcpGGQFwzi9/sJh0LoRh/G6yxlJEpip3+WkajO+v80cd3qT4jFDAJ+Kzdfu5A9ZwxOO+awK+wx3c17G9u79U8tH3zOikyw2RSmT3GxdcfO7IJTyp3YhpCtczgawo5OPSUIgGm++O2tm/jdLxaSl8hMGYnqdHZpfRxv9n9hWT41dRFuv8cUoj75LMzb77Xy4J3LsVl0aqqrKS4uJhaP09Lc3Kt5JcfEJiv/WsLkq0KIKxLbU4QQy8d7XDly9Ieqqrg9Hnw+X6rUcDKefSTp7NJoaIpS1xChrT0+8AEZEGtqpXNrZY9XrKl1RM7fF+GwlhIEwFS/X/vbj2lpjQ1wZHdsNpWvfXka5aU7hcSjDy2mpHh0VPbBgI3rfzafOXuaE/acPTz8+sr5BAODD1O05QdwTa/o8cpE+OyK9PSvbm6NYeg7NRThDo2Ozt79sEUiYeuKJXmsTdOsmMfpbNrcgc1mw+f3U1dXR0tzM4WFhRPGPJQjc7JSMwD8ETCAQzFLDoeB/wcsG89B7W5MhkQ7Y81IrJz7oy0U5+EnKvnrIzvQNMmKJXn89Ht7DWkSSme8wtu6onpKEEiyZXsHxhDC/YoK7Nx6wz6Ewho2m4LbpeLzDr4McKYr9YoyJ7+5egGaLrGoYtA1InRdT31H0tuDwe+zUlRgp74xmuo77osleHe5774+Tk+i3HV7SDNTnm/t6PZ+wG+eR03PqpgrRJSVZKswsEJKuUQI8Q6AlLJFCDG+mUF2QyZ6/LOUkpbWOJGojs2m4PNYh6SmHW+aW2KEOzVsVgWXs/8JrLY+wl0PbE9t/+ftFp5+roYzT5kyrNLF44XLqRLwW2lt26nhWLY4D5t1aPcSzLOl6niEwnHqG6MIAR6XBaczM6c6i9eDa3pFRtcbapEoTdNoaWkhGAya3+NEOxOBIH3cTuDun5UT7tBo02y8u93gqFXF3T4/l1NF6yOluN2mcPct+7Lh3RbOP3sG73/URlfEFM6+sDxISZGdWCxGS0sLBYWFxGIx6mprc2aCLCRbhYG4MEvXSQAhRCGmpiBHjhRVNV18/6r3qa6N4HKq/Ox7c1ixJNjDk3oi0NfEI50uLrjiMyprugD40hElnH/OTAK+3gWCjZ+EevRteL+Nk44tx+POvoez32dj9S8Wcu1vP+bzbR0sW5zHTy6eg9cz+BV9Oi1tMW6+/TNefKUBiyo465QpfPn4Cvxpn+t4CbtSSnRdJxwKEY/F0DQNIUTGyY/6Gvchn6xl1qKKHs6XLqcFUexj/w+eJxLVsdsU7DYVRTEFnz3yPewx3UNcM/jbbcvZ9HmY/KCN4gI7HrcVXTejfixWK263G28ilXiO7CJbhYHfA38HioQQ1wGnAj8b3yFNHiaD+r+tPc4vV3+aKrfc2aVz9Y0f8eCdKyicgMJAXw/wfd9+NiUIADz5XC0nHlPWpzCwcF7PgJr9lwZxOsb+nnsrODVYLKpgj+kefnftQgxDYrMqwxYEDEOy7pXGVFnguCa568Ht7L8sv5swMF4IIbDZbBQWFVFfVweY+Q6Gm69BUegzCsNZFMRZFETXjT41SFaLQmG+ncJd6pLsGqo7USJjcgyOrBQGpJT3CSE2AIdhhhWeKKX8aJyHlVWEOzTicQOf19rjATHR1f+ZoOkGH3/WfZUci0s6u7IrYWVc66nw2l7ZxZw9eg+oKSqwc/G39+DOv27lxu9Npcit4/NAdEdVap+xEOp0Xae9vR2fzxROku2hThR5Q1S390Y0ZvD6huYe/e9+0MrecyZGdLKu6zQ3NaGqZqGthoaGMcnomI2mpBwjQ1YKA0KIIFAP3J/WZ5VSjozr9CRG0wwqq7u4Zc1mGptiHPfFEo5YWTwhVkRDxUiE5ymKkmrbrAr7LPDznw0tqf2cThW3a+KsWtI1MFLrXUhx7qLFUBSYv1ffkbVej5UTjizl0AMKsbfV89Kco3rsMxShLlOnuZa2GLou8RgdqK3tdDaboXyqlERaO7D6xl+7ZLcp7LdvkPVvNnXr32fBxBB0k2YCRVEoKS1F13Ua6uvHvUZCjslNVgoDwNvAFKAFUzMQAGqFEHXAt6WUG3o7SAgxBbgHKMb0N7hDSrk6IVw8iFn4aCtwWsIpUQCrgWOATuDrUsq3E+c6h52miV9IKe8ejRsdaVrb43z7h+/QlVghr75zM0LASceUDzqRy3hmSNQ0M/5ZURQiEdMUkMynLwC3y8GPLpzNz2/6iPc2tlNcaOeqH87F7x37r3xfxYnSNTD7vXBPr8c6HCpnnTKFJ56tIeCzcsn5exLwdV8l92bWcQEy42TCA5NJHoXmlhiXXfcBH34S4pFfTmPDkiN77DMRtEuKIlh1YAHvbmzlxZcbsFoEZ506lfIS57iOK0nSTFBaVpZSwSfbOXKMFtkqDDwPPCKlfBZACHEEcArwF8ywwxV9HKcBP5BSvi2E8AIbhBDPA18H1koprxdC/AT4CfBj4GhgVuK1ArgVWJEQHq4ClmIKFRuEEE9IKVt6XHGYjITdNZ0t2zpSgkCSp56r5bCDisgbZPjZeGVI1HU9VWK2qLiYjnCYUCiE1+cj1N6O3+/HZrdTXOjglz+dTzxuoCimqllRhubYFO7Q6OzScOud0NnJrv5Rfane9UQpX1VRCObn09jQgMViIZCXl9F1FQW+eeY0Tju+AqFAnt/awzmrL7POyo+ey/wGh4mmGTz2dBUffhLC67bg6sM7faIQ8Nu49ILZXPiNPcxoArelh1/FeAq7QojU5J/ezoTdMY15juGTrcLAflLKbyc3pJTPCSFuklKeL4ToM4uIlLIGqEm0Q0KIj4By4ARgZWK3u4F1mMLACcA90tTPvS6ECAghShP7Pi+lbAZICBRHkWa2GAk0TSMajeJ0OjEMw2w7HINK0bsrybCqdAoL7FiHGKo1HiiKQmFREdVVVezYvp3yigpisRih9nbsDgeBvLzUw7MvR7vB0NoeY83923jh33U8cO00Xt7r8B779LXiFULg9XqprakhHA4jpaS0rKzHhK53RlLaAXt5MUK1IERCyLCp5AeHN7kue+IOVJeZcEdqOp1bK4GR8x+IRHU++Ng0CcyY5iYboso8bgsed9+PwGxNB56t484xvmSrMFAjhPgx8EBi+3SgPhFumFGIoRBiOrAP8B+gOCEoANRimhHAFBR2pB1Wmejrq3/Xa5wHnAcwderUTIaVwjAMOjo6aGpsJC8YJNTejhCCsvIelxkU+UEbh+yfz79fM+2lLqfKRefO7PZQnOgrCyEESqIwjtfrJR6PE41GUVWVaCRCLBrF7nCMWJzzth2dPPZUNXa7gjQGp3pXFAW73Y7NZiMWi+FwOLBarT3G9ubx56XaB3/8HM2KTsWUKX3eg2EYSCkzDuFSXQ5eP/zsHv0jpbZ3OS0cvH8Bb/23lfc2ttEe8g98UI4cOSYM2SoMnImppn88sb0eOANQgdMGOlgI4QEeBS6RUranP1CllFIIMSLGVinlHcAdAEuXLh3UOZNV42LRqFn9TVGYMmVKv+pCKSVNLTHefs9MEbtkYYD8PFu3CSPgs3HphbM598wYLa1xpk9xkRfovnqe6CsLXdepq6tDURT8gQBtra14vV7yCwpoamqis7MTm31k0sx2dum8n8hnH40atA4yvW/STBCPx/H7/bS1tdHa0tKvmUBVVYpL+k/pqsXjVFVVUVJa2qdjmepypoS6vhwURwpFERx6YCFbd3Ty1HM1PbIG5siRY2KTlcKAlLIR+N/kthDCAXxJSvkw8Fl/xwohrJiCwH1SyscS3XVCiFIpZU3CDJBMwl2F6aiYpCLRV8VOs0Kyf92Qb6gPpJR0dZkx5tIwiEQiuJzOPs0Ejc0xvnnJBppbzQkr4Lfyl9X79ogLDvhtQ86MNhFImgkURUFVVQJ5eaa2QFEIBoPA8GOdO7s0Nm/t4OEnKjn+yDIAPG61X7+KZHIYVVVT7aT2wu/3Y7PZcLpcKIqCEKJfDYzVZutXGFAtFtxuNzXV1RTI3u/ViMVSmfKSZoHRJOC38T/nzOSc06fijHdQNE7apcmQJyNHjrEmK4UBgIRJ4EjgK8AXgVeAhwc4RgB/Bj6SUv427a0ngHOA6xP//yOt/yIhxAOYDoRtCYHhWeCXQojk8u4I4LIRubEESTMBQjBt+nTa29poaW7G2Y+Z4Ll1dSlBAMyiLs+sreWc06aN5NDGnaS3dRKrdadmY6Q8rusbo1zw43eREubv5edbZ03n0aeq+g3vqq6qwuFwkBcMUl1Vhc/nwx8I4HCYtnpFUbq1h6OBEULgdrsJh8MIl4OVn77QQ3gYD7OO06km0vrageCYXx8mR56MHDnGmqwTBoQQh2CaCY4B3gAOAGZKKTv7PdDkAOBrwPtCiHcTfZdjCgEPCSG+CWxjp6nhmcR1PsMMLfwGgJSyWQhxLfBmYr9rks6EI0XSTJCsde/z+/H5/f1Odm3tPcuQjlTVut2Np56vTRVvueXPmznm8BJuunoBVm+clZ+u7RFNoHrdFLoc1FRXEw6HsdlseBPVCdMZKT8GLR6nrq4Or9dLp5R0GDGmTJmC1Za9Gp8cOXKMH1klDAghKoHtmCF+P0xEBGzJUBBASvkK0JfutcdSIhFFcGEf51oDrMlo4ENksCk+v3RkCQ/+oxI9UZ5UVeDEo8tGbXyTmZLCnaYVKeHp52uZVu5izilT6GvFG4/HUznkLdaeIYAjiWqxUFhUhMvlAsDlcvUbZTLRnUJz5MgxvmSVMAA8ApyIGT2gCyH+ASOYWSXLKcy385ebl3DPw9uREs4+bSpFBaNTr30wjHSuhLFg1QGFPPSPKqrrzIRGxYV2jlhV1Of+hmFQU12N1WolEAhQX19Pu82GPxAYlftVVRVPWkEYzwDFYSa6U2iOHDnGF5FtKS4Tdv+VmL4CxwB+4JvAM1LKnl5DE4SlS5fKt956a0yuFYmanuOOCVCQR9d1Ojs7UyvYZDsbsqk1t8T4fFsHUkpmTveQ30uOhiSGYRCLxbBYLCiKkmoPt7hMfzS1xNhW2YEiBFPLXQTzbOPqPDdRHPc6t1b26TOQaenhHBMHIcQGKeXS8R7HZCfbNANJ1f2/gH8lIgOOwgwr/CNQMJ5jmyiMphCQjG9PFlBJtntDSkksFqOhvh6/308sFiMSiTBlkDkXxotgnq3XJE29kcwnkFydp7dHg8bmKN+59B1q66MATClz8ofrF+McR+e5TBz3DMPAMAyEEGit7eihjh77D1d4yJlEcuQYPFknDKSTKEz0JPCkEGJiJBafxCRXv/F4HLfbnWr3tdIXQmC32ykoKKCxsRGA8oqKrNAKDIX0yX+067k/+2JdShAA2FHdxcuvN3LE3FG97LAxDIPt27aRX1CApT3MutmZZ3PMlJxJJEeOwZNVwoAQ4n369hGQwKIxHM5uh5SSSCRCc1MTXV4vHeEwLpcrZQLo65iOjp2rv45wGEsgMGkFgrFASklVbVeP/uq6CMyd2NEEQggzOVRjY5/5EXLkyDH2ZJUwAByX+D/p4X9v4v+vknMkHHVUVcXn9RKNRAiHQlgsFgoKCwc0E0SiUcorKojH4zQ0NODz51LVDgchBCceXcYTz9am9cHRhxaDMeK1skaUXXNE5MiRY2KQVcKAlHIbgBDii1LKfdLe+rEQ4m3MaoM5Rph0xzApJU5dx4mKsNr7dQhMmgmmTp2KoihYrdZUO8fwKC9xcvMvFrLmb9tQFfjWV6dTXGiHuvEeWf8koy48Hg9KR3TgA3LkyDEmZJUwkIYQQhwgpVyf2PgCkJthRom+HMMO+eR5OhT6NROkT/yjbUffnXC7LSxdlMfsmR6EAK/HzMIYG0fnuUwc94QQlJaWYrPbiXbV9Ni3N5IOh0KIbu1MaW6J0RXRsVkVXC4VtytbH3s5cowe2fqr+CawRgiR1De3AueO43h2SxRF6ddMkGP08XknTpGpTK6tqioOp7NHdodkiQAAIABJREFUbQbFZkPv3FmHI1lLQfW6kS4HaiJMMxaNptqZCAR1DREuueI9dlR1oSpw7lnTOfmYspTwNNmZKOGeOSY+WSkMSCk3AIuSwoCUsm2ch7TbkhMEcgyW5CSeLjx0bq1k3dwjeuy7atNaWro60DSNQCBAU1MTfr+fQF7egN+9zi6N2+7ewo4qU8jQDbjz3q0cdlDRsIWB9PLRgyklPdLn6i+hVzxuEG8Ps252rk5DjoHJSmFACFEM/BIok1IeLYSYB+wvpfzzOA8tRz/kVik5hkJJaSmVlZU0NTXhdDozEgQAIlGDTzaHevTX1HZRUdp7JHIm31HDMIhFo1isVjPBVKI9lARTmqYRi8VwOByp0F2Hw5GRX42u63R0dOB2uwFSbUVRqG+M8rdHd3Dafln5iM8xDmTrN+Uu4C/ATxPbnwIPYlYknJRMhok0V00ux1CIxWLompZqJ1fAA62g3S4LByzLZ3vlzvLNqiqYVtG3j0t/31G8pqOsEIK6ujpUVcXv99PQ0EAwPx9fL4Wp+sMwDDrCYZqamsjPz6c9FEIaBhVTpgx8MKYWobmpiXAohNVmI9Tejs1mIxpXOe+H79DUHOOEJX1XOc2RI51sFQYKpJQPCSEuA5BSakIIfbwHNZqM5EQ6WLXkZMro1tWlY7UKLJacv2m20NzUhMfrJT8/n5rqatrb2jLSDthtCl85eQpNLTHWvtxAQdDGj/93Nl7v4E0EUkoqd+yguKQEp9NJWXk5lTt20NDQgNvjwev1DjpKRlEUPF4vsViMpqYmhBBMmTIl4/OoqpoaRyQSoaCwEJvNxqbPQzQ1xwZ9jzl2b7JVGOgQQuSTyC0ghNgPyPkNZEBSFWm1WBCJHPpWiwW1HxXnZMjo1haK897GNp56rpbpU12celw5hfnjX8Qpx8CUlJYC5uRXWlaWamdCMGDjB/8ziwvPnYlAEPBbUZTB2/d1Xcft8WKxmDkS4vE4ybou8Vgs1R4sUkoi0WiqHY3FUFQ1I4HAMAxC7e2p7c6EmcDtVvH7LL2WNM+Roy+yVRj4PvAEsIcQYj1QCHx5fIc0MdE0AynBat35cKmtqcFms+H1+WiorycvWIAMxVFjXaiqIP1ZmU1miL7QdcmLLzfwm1s3AbD+jSb+9XIDt924T8a1B3KMLv1pnwZbyntX3C7LiIQTxjVJKKwRzFNpqK/H5/PhDwSorqoiHA4P2Uxg6DpTp02jra2NpsbGQZkJQqEQxSUlWBMls3Vdp7jAzoN3LOOfL9TRrknmrn+G/DwbVuvOH3Y2avVyjC7ZKgx8CBwCzAEE8AkZ5BkQQqzBzGJYL6Wcn+i7Gvg20JDY7XIp5TOJ9y7DDGPUgYullM8m+o8CVgMq8Ccp5fUjdmcjhKZpaJrO9qoo9Y0R9l3oQ7VYsFq6qxYdDg8ffRajRLbx0QHH9jjPZLDnt7XHefDxym591XURGpujOWFggjDRtU9CKMSiYVxuF7G4hfKKCoQQKIrSrT0YkmYCt8eDxWIhEAjg9/sHZSaYOm0aYAoGO7ZvJxgM4nS5qKqs4shVhWzeHsdZ6MQRsGKfAFVMc0xcslUYeE1KuQRTKAAgkYFwyQDH3QX8Abhnl/7fSSlvSu9IRCicAewNlAEvCCFmJ97+f8AXgUrgTSHEE1LKjUO8l1FBbw0Ra22jVCiUFkC8qhNDVZFeD5pz5wSoG3GKCnyIxtFPCDRevgdCAZer54PQZsv5DeToTvp3VNMkimJqBFo1G4GiAlraNDxuBYtl5/dpOGWqh6P1SE++pOs6ecFgqiCY3W7H5XKwz/ycBiBHZmSVMCCEKAHKAacQYh9MrQCAD+jbRTiBlPIlIcT0DC93AvCAlDIKbBFCfAYsT7z3mZTy88SYHkjsO6rCwGAn0q6WEOvnHdmjf9WmtTSEWvH7/bg9XmprqvF7dIyO0V81jNfqL89v48JvzOR7V76HYZh9SxcFCPgycySbDJEcOTIj/Tva0hrj9vu28tTztei65AvLgnzv/FnYbGO7wpZS9ur0m+74qygKLpeLpsS2y+1GyWX8zDEIskoYAI4Evg5UAL9N6w8Blw/jvBcJIc4G3gJ+IKVswRQ6Xk/bpzLRB7Bjl/4Vw7h2Rgx2Iu0rQkACFVOmIISgo1MnECzlg49DlInJ7Ww0d7aPv926nNfeamJqhYvZMz0E/JmZCHIhkUMjHjdoD8cBQcBnQVWzSxOTF7DxrbOmc/RhxYQ7dPac4SYYGHuzUjwep662lpLSUqRhYBiGafKzWtF1HVVVMQyDqsrKhEbARUtzMzarFZfbnUsDniMjskoYkFLeDdwthDhFSvnoCJ32VuBazHnyWuA3jFBqYyHEecB5AFOnTh2JU2aMRe39ASDYqdb0eVVa2mJU10bYY8bktie6nCoup5MvH18x3kPZLWhrj/PUCzXc/1glVovg21+bwUEr8sc8DbCU0pw8VbVbe1fimkF7exwE+L3WVOhpXsBG3jgIAOkkcyrU1tRQWFRES0sLBYWFaJpGQ309hYWFiERqcIfDgRACq82GPdHOkSMTskoYSCKlfFQIcSymPd+R1n/NEM6VqvMmhLgTeCqxWQWku/VWJProp3/Xc98B3AGwdOnSUSmx3NfDLtNnQJ7fxmknTCHa1DJpcgnkGH8+/LidW/+yJbX9y5s/Yc3NS0ZNGOjLlKN6XHQq4PP7MQyDcCiEz+/vJhC0h+L888U67n1oO0KBb5wxjcMPLupR92G8UFWVYH4+DfX1gOkcXF1V1W2iV1UVl8uVcj5Mbw+FSFSno0PDblfxuHdOE/2lP86R3WSlMCCEuA3TR2AV8CfgVOCNIZ6rVEqZLJ92EvBBov0E8DchxG8xHQhnJa4hgFlCiBmYQsAZwJlDvJVho2kaDQ0NFBUVIaVMtQeLPT8P8vNGYYQTl2hUR1UnbwKipHAI5uoy2R7tehLxuMGz63rWUn7p9UZm7+EdlWv2ZcpZ+ekLtBgxotEo0USRI5/f322fTZ+HueVPm1Pbv73tM2bN9LBgrn/X040L8Xicuro6bIksg4WFhVRXVwNQVl6OxWoKLekT83Am6ebWGHc9sI31bzSxx3Q3l5y3J6XFDnRdJ9LVhdPlMvMjJNq5+iSTg6wUBoAvSCkXCiHek1L+XAjxG+CfAx0khLgfWAkUCCEqgauAlUKIxZhmgq3A+QBSyg+FEA9hOgZqwIVSSj1xnouAZzFDC9dIKT9kHNHicaqrqjCkxJL4YY61576UkubWOB2dGg67gstp6baimEiEwnE2fd7Bo09XUVrk4LQTKijMt006laphGOzYvp1AIIDb46GqspL8goJU/vrRwmIRzJvjY+3LDd36584aHUGgP4QQ5AWDtDQ3I4SgorS0x+T13L/rexy39uWGCSMMKIqC1+slEAggpaS2piaVFrm+ro6ysrKUQDBcOjo1/vDnzTy3zvxM6hqibN76X+6+ZV8wItTX1xMIBOjo6EBKSXk/5ctzZBcT82k9MF2J/zuFEGVAE1A60EFSyq/00t1nPQMp5XXAdb30PwM8k9lQRxeLxUJBYSG1NaZyo7i83PQJGGPP/Zq6CBdd9l/qG6MIAWefNpUzTqyYkKVi3/2gjcuu2ym/Pbeujr/8fin5feQcmCjpmAcb1SCEIJifT2NDA83NzdjtdpxO56irdoUQfPGQIta+VM/GT81CQV9YFmTeHN+oXrc3pIT2tjZUVUXXdVpbWnqkMl6wl4+nn6/tdtz8vcZ+rH1hsVjIS4xZ0zQsViuFBQUgBA0NDQOfYBBEojr/eqX7OesaorS0xSkrdhEIBGhtbQVg6rRpOa3AJCJbhYGnhBAB4EbgbcxV/Z/Gd0jjQ9KJyGq1YhgGtTU1lJaVDSv2ebAkVxP1jcm0qnD3g9s5+tCSCScMtLXH+esjO7r1NbfG2bKto09hYKIkxBlsVIMQAqdzZ3U+h9M5ZtqPYMDGDVfOp7NTR1EELqeKP8NQzpFFYrFYKCktJRqJ0NLS0mOPA5bns88CP++8b2Y0X75PgH0Xjv/fO53kpGuxWCgqKkptp7dHAiEEJcWOVNlnAFUBp8P0Sero6Ej1d3Z04PZ4cgLBJCErhQEp5bWJ5qNCiKcAh5Ryt61NYLfbKSgsREpJUyLpyFgSjRps2d7Zo7+uMUJFWe+lYscLRQGno+fK2GGffH4D6eFmbreb5uZmbDYbbrc7FauuKAq6rg+YQU/XdaQ0J9b0dn/k+W3kjbOmXQhBScI04HA6KXE4ekxeeQEb1/54Hl0R06fC6VQI+CZuZsrhpmfujzy/lcsunsMlV7xHLGZ+HuedPQOPWyXe3IY/ZmCx2DEMA6OhhWhLKJdvY5KQlcKAEOLkXvragPellD0NgJMYq9VKYdrqoHCEVwqZ4PFYOHj/fO57dGfKX5tVMLV8ePZEwzDQNA1VURCKkmr3V1RpILweK+efM4N3Ln0XXTcDPPac4aasj/r22YwQgsKiIux2O4qimOFmdrvp39HcjMvlwuFwpNp9mRCS6vVwOExZeTmNjY1o8TjlFRUTxps8k9oG/Y014LcRmBguAuOKEII5e3p46I7l1NRFKMi34/VYcNgtdHZ28fLc3hOZ5YSB7CcrhQHMegH7A/9KbK8ENgAzhBDXSCnvHa+BjQejuVLIBJtV4YwTpxAK6zz/Uj0lhXZ+dOHsEQnNqqmuxmaz4Q8EqKutJS8vD98g8rf3xoypbu6/bRkv/6eJkiIHC+b6xiWZzGiTzEqXNA0k27quowhBXW0tdrudaDSKx+3u8zyqquIPBOjs6mLH9u0IISgrL59QDpcTxZQzGbDbVOz5KgX5dtNPpSFMZwNIbVJXid/tyVZhwALMTeYIEEIUY9YbWAG8BOxWwkA6vaUtHQvyAjb+95t7cO6Z01AUMSKTa1LFW11VRVdNDS6XC+8gK8P1hsOuUlbi5PQTJn8CovS/f7Ktqip5wSDhcJhoNIrX68XucPT7uQohUBWFeKKdTIQznvSZW8DrxhLwpTLzSSlzdu0hku6nst8Lu5Z0yTGZyFZhYEp6siCgPtHXLISIj9egxhtd14lGo9jtdoBUe6wehE6nitM5ctdK5mRP1oo3DMP0TtxNGamoBl3XaW5qQtd1HA4HoVAIl9s9oJkgGo1SXFJCS3MztTU1424m6C+3QHMsQlFREV1dXYRCoRF3tMuRY7KRrcLAuoTj4MOJ7VMTfW6gdfyGNb7ouk5tTQ0+vx8BtLW1UTFlSlY/BOtqa3G73fgDAWqqqwklMshNFFv1WDKSqnBFVSktLcVmt9Pa2tpvUZukmcDr9ab8DoyE02GmRKM6oQ4NAXjcllEvpxvp6qKqshJN0wgEcuaDHDkGIluFgQuBk4EDE9t3A49Kcwm5atxGNc5YLBaKiouprzOVJkVFRWMaYjjSJG3TiqKgKAoVU6ak2pkw2aoNxmIGDc1R/u/FOjwuC4ceVEhBcPDJklRVJRAIpNT96e2+sFgsyESim/R2JrSF4vzjn9Xc+8gOpCE548QpfPn48lELNRRC4PX6aG9rM+8vL2+3FB5HGr0zkjIVOMpLEJadCc5yZD9ZOVNIKaUQ4i2gTUr5ghDCBXgwqxfutkgpiUajqe1oNIozizOECSGwpmVWsw4yy9pkqzZYUx/h6//7FnHNNJXc9+h21qzel4KgfdDnGorTaW/+B5nw+dYO7rh3a2r7rge3MX+uj/32DWZ8jsEgpaS9rQ2Xy0VXVxd1tbUUFRdntYZstNE1DYkp9KW303nz+PNS7VWb1uKaPvl9bnYnslIYEEJ8G7MaYBDYA7O08G1Azyf/boSu67S1tlJcXAxAXV0dXp8v9xCcBMTiBn99ZHtKEAAzWdKb77Rw9GEl4ziygXnptZ65L9a+XM+KJXmj5oSYjDrRNI3OtEQ5OXqi6zqNTU3EYzFKSktTmsXikpIJk30zx+iTlcIApplgOfAfACnlJiHE4KvzTDIsFgvTpk1DJFSi6e0cvZNMoKMoSspZcTCmiDFDgqH3dJ7Ue+mbaCxe4OfhJ7sX9ly6aPiCQPpEJQ2JISWqqqC4ndgSTrQ2mw2LxZITiPtBVVWCwSDVVVVs37YNRVFS5jk1F7K525CtwkBUShlLPkyEEBbMlMRZRTwep7KykkgkMt5DmZQYmkbpk/+vR/+WUAvKR6ZFyTCMPkpAT5wY+iQnHmFw4NKdOfMVIcgPtvDRRyPnM+twOKioqBi0SaY/Fs3zc9iBhaxN5Lw/cEU+y5f0XyFT182Y9mRNgWQ7naRDpWEYRCMR6mpqsKk2Yu2t5FmCOBwOMyQyJwgMiKIoqc86KQxPxN9AjtEjW4WBfwshLgecQogvAhcAT47zmAZNZWUlXq+X6dOn5354o4AejRGK9fxcvbNno9rNPAhSSjRNw0hMOBardcI+CA1DEtcMWlrjqKog4LNisYgRG6uUkqamJiorK5kxY8aInBPM7H4/uGAWF5w7EynNPPf9OQ/quk59XR1erxeny2W2fT5cLlevGhtFUbA7HLg9HjrCYSwWC/7dMOKktT1OW1ucji6N4kIHwYA1o++GrutmVklNo7i4mMbGRurr6iguKckJUrsR2SoM/AQzC+H7mCWHnyELCxVFIpGcIDCKCFXBO392r/3dtofoGDfWKIrAblMpLhwdYUUIQX5+fkaV8Nra40SjOooq8HutWK39T7w+r3VQGSkdTif19fWmQ5thELT2PbHpuk5XZycd4TBOp5Ouri6ampoIBoMZT2ZDSdal6wZxTeIY5TDJTGhti/HrP3zKS683ARAMWLn9piWUFjsGPDZpJpB5eVitVsoSKat3N2FqdyfrhAEhhArcI6U8C7hzvMczXCby5JPtKBZLv9/wpFlA1zRUiwUpJfF4HJttYqcmHs3vTCbnbmiKctWvN/LexnZ8Xgs/vmg2y/cJjljCKVVV8fv9tLW2omkaPp8Pa0IY0DQNMP1jku2kijsvGMTn8xGLRokkomoyCS+NNraghcI9hIFdQ1A7OjU6OnUz8ZWAx5+pYeuODo47opT5e/lGJP32UKmpi6QEATCdS9fcv5Uf/M+sjIQVq9Wauu/0do7dh6wTBqSUuhBimhDCJqWMjfd4JhuaboBMpJ9VJ/fDIBlbb7XZuk0EOfqms0vj1rs+572N7QC0hzSuvGEjD/95vxETBpJmAgm43W7a29txOJ04nU7q6+owDIPi4mJqa2ux2mwUFhZidziwJbJtprejGYSXaqEw62Yf3u8+7aE4Dz9ZxT0PbuPXVy3gN7duorrW9PV56fUmfnTRLI49vHTcfjM1dT39jqpquohGjYw1F9miIcsxOmSrHuhzYL0Q4gohxPeTr4EOEkKsEULUCyE+SOsLCiGeF0JsSvyfl+gXQojfCyE+E0K8J4RYknbMOYn9NwkhzhmVOxwjVFVl8eLFzJ8/n2OPPY6NH9WweVsHtfUR4pox4PFXX301N910U6/v3XPPPcyfP58FCxawzz779LnfSDN9+nQWLFjAggULmDdvHj/72c/6dNIUQnDggQcihOj26o+VK1cyZ84cFi9ezOLFi3nkkUdG4zYmJF0Rnf9+2L1auG5Abf3IOsE6nU7KysooKCwkGAymNAOFRUVous6OHTswpKQgPx9VVVPaAaBbOxMymfhaWuP85f5tOBwqUpISBJLc/1glbe3jlwl97718WC3d7+Pow0rwebNuvZdjnMhWYWAz8BTm+L1pr4G4Czhql76fAGullLOAtYltgKOBWYnXecCtYAoPwFWYRZGWA1clBYhsxOl08u677/Luu+9hs/tYs+Z2pAGhsEZdQ3TIoWv//Oc/ufnmm3nuued4//33ef311/H7e9aITap6R5p//etfvP/++7zxxht8/vnnnH/++X1e+9VXX031Zboiuu+++xKf27uceuqp3d5Lmh/AjGjQo7EeL6Of+06vx5DeTmco5x0JnA6V+XN93foUBYoLB5/4qC9UVcXr82Gz2bq1k46dydTJihAwRivYHdWdgBnKabH0vKbTqTKeJvaA38b/u2Ex8/fyUVHq5KJzZ3LwfgW5FX6OjMlKYUBK+fPeXhkc9xLQvEv3CZjpjEn8f2Ja/z3S5HUgIIQoBY4EnpdSNkspW4Dn6SlgZAXJiUOPxhCaxmGH7E9XqI6ppabN/Pc3/4YVK5azcOFCrrrqqtRx1113HbNnz+bAAw/kk08+6fXcv/rVr7jpppsoKysDwG638+1vfxswV9aXXHIJS5cuZfXq1WzdupVDDz2UhQsXcthhh7F9+3YAHn74YebPn8+iRYs4+OCDAfjwww9Zvnw5ixcvZuHChWzatKnfe/R4PNx22208/vjjNDc3s27dOg466CCOP/545s2bl9oHYN26dRx88MEce+yxzJkzh+985zupSX0gtm7dypw5czj77LOZP38+O3bs4LnnnuMLBx7IkkWLOeXY46h5411CH3zK3+9Yw7y992bJkiVcfPHFHHfccYCpZbnxxhtTvgvz589ny5YtxONx7r333tR9n3/++WixOKEPPsWfF+BH/3MRixYsYL+ly6itrgHMhFMnnXQSixYtYtGiRbz66qtceeWV3Hzzzakx//SnP2X16tUZ3V8Sl9PCRd/Yg7mzTNnb7VK54vtz8XpGdgWaHt6ZbCfNBwClpaUYhkFjY2Mq9HCoZGIa2nOGB0WBSNSgtS3Oor13CrZCwAVfn0nAP36+JnabwrzZPm64Yj5/vGHxqKZ7zjE5yUodkhDiSXrmFWgD3gJul1IORmdZLKWsSbRrgeJEuxzYkbZfZaKvr/7exnkeplaBqVOnDmJIPUk+sIQQ3drDOqdugGEQ+uBTdF3nhSef5KsnnIwqJOtfWcuOHZt57bXXUVXB8ccfz0svvYTb7eaBBx7g3XffRdM0lixZwr777tvj3B988EGv/UlisRhvvfUWAF/60pc455xzOOecc1izZg0XX3wxjz/+ONdccw3PPvss5eXltLaasfS33XYb3/3udznrrLOIxWIZTQQ+n48ZM2akBIe3336bDz74oNfwuTfeeIONGzcybdo0jjrqKB577LEeK3+As846C6fTCcDatWbim02bNnH33Xez33770djYyC9+8Quee+afGFuquPmuP/PH++7m4rPP5bvXXc3atWuZM28ep59+eq9jTmoE4vE4H3/8MQ899BDr16/HarVywQUX8Lf77+fExcvp6Opi6YKFXHHhxVy5+rf8ac0arrz6Ki6++GIOOeQQ/v73v6PrOuFwmLKyMk4++WQuueQSDMPggQce4I033hjw89uVwgI7N141n0jUwGIR+DxWbLbRX1coikJhURECUC0WysrLzfYww98y+R35vFZ+9dO9uemPm/j9nZ9x/c/m09IWY0d1Fwcsyyc/ODGcTnMCQI6hkpXCAKbPQCFwf2L7dMy6BLMxIwy+NpSTJmoejJgHmZTyDuAOgKVLlw75vFJKpGGg6TpWq9X0gE+0hysQdEWjHHTmqdTU1zN7xgxWrdgfgFfXv8ir6//FsmXmhB4Oh9m0aROhUIiTTjoJV6LmwfHHHz+k66ZPgq+99hqPPfYYAF/72tf40Y9+BMABBxzA17/+dU477TROPvlkAPbff3+uu+46KisrOfnkk5k1a1ZG10tf/S1fvrzPOPrly5czc+ZMAL7yla/wyiuv9CoM3HfffSxdujS1HQqFmDZtGvvttx8Ar7/+Ohs3buTgVSvRI1Hi8TjLFixi09YtTCsrZ9aesxBC8NWvfpU77rgjdZ6kz0L6BPfvf/+bDRs2sGzZMgC6urooCObD4uXYrFaOOugQABbPncf6TzcC8OKLL3LPPWZRmaR3vt/vJz8/n3feeYe6ujr22Wcf8vPzM/r8dmU8VsFDqVWRSTrdTPZxOVX22zefP//Oh5QSp1NlntPX45gcObKVbBUGviClXJa2/aQQ4k0p5TIhxIeDPFedEKJUSlmTMAPUJ/qrgClp+1Uk+qqAlbv0rxvkNQeFEAKZ0AjEYjGQEmWEkoE47XZe/tsjdEa6OOWi7/Cnhx/ghwt/js9r4bLLfsJ3vvOdbvunq5n7Y++992bDhg0ceuihvb7vdrsHPMdtt93Gf/7zH55++mn23XdfNmzYwJlnnsmKFSt4+umnOeaYY7j99tv7vEaSUCjE1q1bmT17Nv/973/7vfauwtVghK3080op+eIXv8hf77qb0Aefpvrf/+TjPo+3WCyp9Mi6pqWcHjVN4+yzz+b6669P7atHY4Q++BSrxbJTna4oA/pgfOtb3+Kuu+6itraWc889t999J0PVx0zKPmdaGlpVBcG8oQtBbe1x4pqBqgjyAv2fJxLRqWuM8vg/qwn4rBxzeMmQKlTmyJEpWekzAHiEECm9e6KdFOMHG274BJCMCDgH+Eda/9mJqIL9MCsk1gDPAkcIIfISjoNHJPpGldRqMbHCtaRNAiOBy+Hkhh/+hD/89W40XePoo49izZq/0NLajqYbVFVVUV9fz8EHH8zjjz9OV1cXoVCIJ5/sPfHjZZddxqWXXkptbS1gmgX+9Kfe80J94Qtf4IEHHgDMFfdBBx0EwObNm1mxYgXXXHMNhYWF7Nixg88//5yZM2dy8cUXc8IJJ/Dee+/1e1/hcJgLLriAE088kby8gf0833jjDbZs2YJhGDz44IMceOCBAx7TG/vttx/r16/ns82fAdDR1cln27Yya/oMtldXs3nzZgDuv//+1DHTp0/nnXfeAeC/773H1q1bsVqtHHrooTz66KPU15tyanNzM9u2bev3+ocddhi33norkChg1WZGAJx00kn83//9H2+++SZHHnlkv+dIVn3c9dWbgJCjf2rrI1x23YeceM7rXPzT/7J5a7hf59zKmi7OvvBNHn6iijv/upVzL9lAU8vEiaSONbXSubWyxyvWtDM1tpSSpuYoz7xQy2NPV1HfGEHLIEIpx/iQrZqBHwCvCCE2AwKYAVwghHCz0xmwB0LJALNQAAAaVElEQVSI+zFX9QVCiErMqIDrgYeEEN8EtgGnJXZ/BjgG+AzoBL4BIKVsFkJcC7yZ2O8aKeWuTokjStJMoGsaiqJgJGzJI2EmSGfhXnPZe9ZsHnjwQc4462yOPPpdVqzYH0VAIODjvvv+yuKFC/nyKaeyaOFCCguLWLpkXwxNw9A0M8lPgmOOOYa6ujoOP/zwVAKTvlait9xyC9/4xje48cYbKSws5C9/+QsAl156KZs2bUJKyWGHHcaiRYu44YYbuPfee7FarZSUlHD55Zf3es5Vq1alvPpPOukkrrjiiow+g2XLlnHRRRfx2WefsWrVKk466aRBfoomhYWF3HXXXXz17LNTZaWvufpq9tl3AbffeQfHn2yaWg466CBCIbNOwimnnMI999zDggULWL58ObNnz0YIwcKFC/nFL37BEUccgWEYWK1Wblm9mmnLloOyM8ui89MP4MN3AVi9ejXnnXcef/7zn1FVlVtvvZX9998fm83GqlWrCAQCuVSzY0Rbe4xrfvNRKjfDlu2dfP/K91mzel/ye9E0RKI6dz+0DT1t3mxpjfPu+60cfkhxj/3Hg0zKgze3xPjm996msdkUYm69ewv33LIvpcXOMR1rjswQ2ZpkRQhhB/ZKbH4ySKfBMWfp0qUy6TCX5KOPPmLu3LkZHT8aBXUMTTOdCHdFUdhSFUGL7/xuOOwKFWVOhK51U3sn8c7fme8/W1m3bh033XQTTz311KS9pmEYLFmyhIcffrhPf4vk97Jza2WfD/xcLfvMaWyOcuI5r/fof/CO5ZSX9pwYI1GdX978MS++0r30888vncthB0+M4qyZfDeeeLaGX/+h+7Pi1C+V87/fnImqZq6UFkJskFIuHXjPHMMhK80EQoiTgWOBPRKvY4QQh03mMsbJRCrJrHkjUVlPsVhQ7bYeLx2lmyAAZkhVlsqNI0K60JytAvTGjRvZc889OeywwzJ2vMwxfBRFMK3C1a3P5VSx23t//DrsKuecPq1bNsP8PBuL5/fM0zGR6erqGenT2alhZOfPZ9KTrWaCbwL7Ay9imglWAhuAGUKIa6SU947j2EaNsUoXKgQoqsBIs2larWKs8ruMGytXrmTlypU9+pMOfWrCDJJsj8TfoK9rjgbz5s3j888/H5Nr5dhJMGDj6kvn8v2r3qOlNY7TqXL1pXPxefqOhigvdfLXPy7lyedqCfisfPGQoiE5LyarcibLEifbY2EiWnlAAXf+dQuRqKl9VBQ446QKrJasXINOerJVGLAAc6WUdQBCiGLgHsysgC8Bk1IYGCtUVVBe4qCqpgvDSG47UVWBMbz8LlmLbhgYsRgkojqUEcr1MJHJJOQuR2bMmObmrt8vpatLx+FQBszN4LCrTClzccHXZw7rulJKaqqrsVqtBPPzqamuxufzEcjLG/WqhME8G3ffspT7/76DrojOmSdPyaiKYo7xIVuFgSlJQSBBfaKvWQgxfgnCJwmKEDgdKjOmuZGGKdGr6sA5+ycryfj2eCKs05Jw3Jwsn4emG8TjkkhUx+VQMRJ63ExD7nIMjEUVprPgGCcuF0JQXFJCdVUVVZWV2O12fH7/sAWBTARFq0WhvNTJd8/bEynBNkCZ6xzjS7YKA+uEEE8BDye2T0n0uYHWvg/LkSmKIlCUnpOdUHd6r+/aP1mRUpqZDhOTv67rE7LWuxmqJgflnKXrkqbmGC2tO2XoaNQgrhk5de4oMdb5G3Y1L46EEDsYQTH3PcoOslUYuBA4GUgGgb+FmVa4A1g1bqPaDVAsluz91gwDmQjpA9Di8RFLCT0SGIYkGjNobIoiJeQHbTjsakbldA1D0tLWXZkWCmu0t2sTJsXuZCCZXlpRlIzC8kbyurU1NdhsNvKCQepqa2lrbR0TM0GO7CIrvw3SfBJ/DmjASZgCwEfjOqgsJRKJsHz5chYtWsTee++dKki0ZcsWVqxYwZ577snpp59uZj7cTRFCYLXZUpEcyfZEEAQANM1gW2UnHZ06nV06O6q6iMUzS+4iU//sxJAS2aP0x/9v796joyzvBI5/f5nJZSYJBAK5QEDBooI5NihHbGsrlMJS65FaqXXrrqh0aW2t1NOewnrcXs6e7eJpz1YWra2XKp7tjSIVSz1UFqTSLojIRbGAUGNJICQxFyDkOpnf/vG+iUMShGRmMpf39zknJ/M+zLzv8/LMzPvL+zzP7zFD1ZM5tL2tjXA4PKyzUUSEktJSiktKCAQCjC8ri0k3gUk/KfWOEJFLReS7InIQWAUcxcmVMFtVH0lw9eLupa213HL3Dj5+05+45e4dvLS19vwvOo/s7Gy2bNnCvn372Lt3Lxs3bmTHjh0sW7aM+++/nyNHjjCyoIDHfvoEDY0dtLaFCA2UmyDNRV78ow0EQiHnNnyssrGdagn1u6A3NXde0EUnQ5zldyMFAj6CAUtIFCvhcJgzLS2cOHGCpsbGqFdZ7CsUCtN1juBPRMjKyurNWNrz2Ji+UioYAA4CnwRuVNXrVHUV4Inx7S9treWhR96mtt65FVxb38FDj7wddUAgIr1L+HZ1ddHV1YWIsGXLFhYuXEg4rNz8uS/y29+uo76hk6PVbTQ2dX5gKlVzbp1dYapr2vhb5RmqjrfR0dkd9V+KA/XJZl7gYC2/P4PxJTmMGZ1FMOijeGw2+bl+ggG7YMSKz+djZEEBgUDATQsdmztK3d1hamrbWfXU31ix6hCH32mhdYC5/cZciFQLBj4H1AAvi8gTIjKHWH2yktzPnq2ko+Ps6L+jI8zPnq2Met/d3d1UVFRQVFTE3LlzueSSSygoKHAWzgkrgWARtbU1vc9vbO7qHXFuLlwoFOZYTRvt7U47dnSEqT7eFnVglRv0nTVNze8XCkZeeKpqvz+DwtFZjC8JUDAyc8CBo2boeub6t7e3u7fnY/PZaWjq4s77dvHchuP88eU67v7G61Qfb43Jvo33pFT4r6rPA8+7swYWAN8AikTkMeB3qvpSQisYR3XvdQyqfDB8Ph979+6lubmZm2++mYMHz15Zr99Xl8UBQ6JKv4Cuq0ujzsjm92cwcXyAjk4nS2ROdgb+QY7gdhbC6l/e0dnNmdZucrIz7G7BEPV0E+Tk5FBcUkJ7fQOfOPhSv8Q/g83fsOP1Bs60vn8nQBV+8VwVDyy9jOxs6+Yxg5OSn2531sAvgV+6Kwd+HlgGpG0wUDQmm9r6/hf+ojHZMTtGQUEBs2fPZvv27TQ3NzvZysRHy6laiotLe5+Xl+fHxh8NnoiTybErItWzk78h+n37/YMPAM6nsamT1Wv+zs7dTVw+JZ97Fk2iaKwljRmsnm4CcNKKZ48ZDWNGR50F8COXZfLsv40/qyyQ44PTpyB7mBMamJSX8l/pqtqkqo+rav+5Omnky3dM6pfLPDs7gy/fMSmq/dbX19Pc7KRmaGtrY9OmTUydOpXZs2ezdu1afD7h9+t/xWc/u4C8XD9FY7MpGZs9qLnsxuHzCePcTI7gJHMaV5KD/wKmAA63ljMhfvSTt3luw3Gqjrex6U91fPN7b9LYnB6zSnoW/upZ9Cveo/x9Pl/vxT/ycTQC4XYOfOwzZ/3svno+3S1not638Z6UvDPgRfNmOUuX/uzZSure66BoTDZfvmNSb/lQ1dTUsGjRIrq7uwmHw9x6663ceOONTJs2jdtuu40HH3yQ6dOnc+/XlpCVlY1IcsytT0UiQk52BpMmBgmHQTLAl5E8UxQjtXd08+edDWeVVR5tpb099Qeo9Uz1O1FTw7jx4wmFQtTV1lI2YUJKjbS3sR0mllLnnW+YN6s46ot/X1deeSV79uzpVz558mR27twZ02MZJyDw+5P/S1zEWWCnZy16gEy/XPAshWTWk146KyuL6qoqAEaMGJGUQZkxwyX1P9nGxFg4rJ6fLVEwIotlX7+UyN6gr9w5mdxgevz9ICLkjxjRu22JeIzXpccnOwZE5F3gNE7egpCqzhCR0cBvgIuBd4FbVbVJnD8hVgI3AK3Anaq6e7jqGg6F0AES/4gvw0kXbIYkHFY6u8I0NnUiIhSOysTvz/Dk7VifT6goH8maJ2dSdbyNccU55Of50yIZUU83QX1dHXl5eYRCIY4fO5Zy3QTGxJK98882W1Xfi9heDmxW1RUistzdXgZ8Gpji/swEHnN/DwvtDnN6/9v9yvPLL7UWjUJnV5h3q1p7p06eauli8sRcTwYDAIEcP4EcP8VpNoOgp5ugcMyY3oRbLS0tKddNYEtMm1iyS8cHWwDMch+vBrbiBAMLgGfdNRJ2iEiBiJSqas2AezFJL6xKU3PnWTkUNOyk+i0cZQv2pBufz0d+fn5v10Dk41RhS0ybWEqtd398KfCSiLwuIkvcsuKIC/wJoGf03nigKuK11W7ZWURkiYjsEpFd9fX18aq3iQFh4NHZNoMyfUVe/FMtEDAm1uzOwPuuU9VjIlIEbHIXQ+qlqioigxpVpqqPA48DzJgxw9sj0pKciDC6IIuTp7oIu8Mx/H4hL9c+IsaY9GfhsEtVj7m/64DfAdcAtSJSCuD+rnOffgyYEPHyMrcsJTU3N7Nw4UIuv/xypk6dyvbt22lsbGTu3LlMmTKFuXPn0tTUlOhqxp3fL0yamEtJUTalxTlcPCEY86x+xhiTjOybDhCRXBHJ73kMzAP2Ay8Ai9ynLQLWu49fAO4Qx7XAyXiPF1BVao4fp+b4cVSgtXgUrcWjyLtiCvnll5JffikyxHvaS5cuZf78+Rw8eJB9+/YxdepUVqxYwZw5czh8+DBz5sxhxYoVMT6j5OMMLMugYGQWI0dkWiBgjPEMuwfqKAZ+544m9gO/VNWNIvIasEZEFgN/B251n/8izrTCIzhTC++KdwVP1NTQ3t4OQPWxY72pU+sbGygdN27I+z158iSvvPIKzzzzDABZWVlkZWWxfv16tm7dCsCiRYuYNWsWDz30UFTnYIwxJjlZMACo6jvAhwcobwD6rXngziL42jBUrR9V7Q0EYjEVqrKykrFjx3LXXXexb98+rr76alauXEltbS2lpc7iRCUlJdTW1kZ9LGOMMcnJ7oOmiOKSkn4XfxGhuKQkqv2GQiF2797NPffcw549e8jNze3XJSCSnPnzjTHGxIYFAymi9sSJfquqqSq1J05Etd+ysjLKysqYOdPJmbRw4UJ2795NcXExNTXOMIiamhqKioqiOs4HCYdCdHd09vsJh0JxO6Yxxpj3WTCQYkSEjIyMmP2lXlJSwoQJEzh06BAAmzdvZtq0adx0002sXr0agNWrV7NgwYKYHG8gPRkV+/4MlHLZGGNM7NmYgRRRUlrKCfcv9eKSkt47AiVuv340Vq1axe23305nZyeTJ0/m6aef7l3O+KmnnuKiiy5izZo1UR/HGGNMcrJgIEWIyFmzBqKZQdBXRUUFu3bt6le+eXP/vOfGGGPSj3UTGGOMMR5nwYAxxhjjcdZNYBJOfBnO8ssDlBtjjIk/CwZMwmX4/fZONMaYBLKvYGNMUmps7kRVycn2kRtMja+q7u5uAHw+31mPjUl2qfEJM8Z4RldXmCOVLfxg5SGqj7fx8WvHsHTJhygclZXoqn2g7u5uGhoayMrMZMTIkb2P80eMsIDAJD3rlDWsXLmS8vJyrrjiCh5++GEATy5hbJLDydNd3PfgG1QebaUrpGz5cz0/Xf0OrW3Jn5EyEAjQ2NhIdVUVLadPk52TY6m8TUqwYCBFbBx9FX/IvKzfz8bRV0W13/379/PEE0+wc+dO9u3bx4YNGzhy5IgnlzA2yaGxqYu2tu6zyra/1khrn7Jk4/P5CAaDZGZmEgqFCASDZGdnk5FhX7Mm+dm7NEV0nz4zqPILdeDAAWbOnEkwGMTv93P99dezbt061q9fz6JFiwBnCePnn38+quMYc6FGjvDT9/o5aWKQrMzk/rrq6Sbo6uoiLy+PttZWTp082Tt2wJhkltyfLhN35eXlbNu2jYaGBlpbW3nxxRepqqqyJYxNwuTl+rnvS5fg8zm31wtHZ/Htey9lRH5mgmt2fsFAgNJx4xgzdixFRUXWTWBShg0g9LipU6eybNky5s2bR25uLhUVFf0GO9kSxmY45Qb93PCpEq7/6Fja27sJBn2MGpncgwfB6SYIBIO9i4lFPjYm2VkwEAURmQ+sBHzAk6qakh3rixcvZvHixQA88MADlJWV9S5hXFpaGvcljI3pKxjwEwwkz9dTZ0MzodMt/cr9+XlkFRb0bkcG0oOdQXChxzAmHpLn05ZiRMQHPArMBaqB10TkBVX9a2JrNnh1dXUUFRVx9OhR1q1bx44dO6isrGT16tUsX7487ksYG5PsQqdbeHnKnH7lsw9vjtmFejiOYcy5WDAwdNcAR1T1HQAR+TWwAIhLMODLzx1wsKAvPzfqfd9yyy00NDSQmZnJo48+SkFBAcuXL7cljI0xxiMsGBi68UBVxHY1MDPyCSKyBFgCMHHixKgONr9xd1Sv/yDbtm3rV1ZYWGhLGBtjjEfYyJY4UtXHVXWGqs4YO3ZsoqtjjDHGDMiCgaE7BkyI2C5zy4wxxpiUYt0EQ/caMEVEJuEEAbcBXxzsTlTVpu2ZpKGqia5CUvLn5zH7cP9uM39+Xkodw5hzsWBgiFQ1JCL3An/EmVr4c1V9azD7yMnJoaGhgcLCQgsITMKpKg0NDeTk5CS6Kkknq7Ag7iP6h+MYxpyLBQNRUNUXgReH+vqysjKqq6upr6+PYa2MGbqcnBzKysoSXQ1jzDCzYCCBMjMzmTRpUqKrYYwxxuNsAKExxhjjcRYMGGOMMR5nwYAxxhjjcWJTiYaHiNQDfx/ky8YA78WhOsnMi+cM3jxvL54zePO8oznni1TVsrbFmQUDSUxEdqnqjETXYzh58ZzBm+ftxXMGb563F8851Vg3gTHGGONxFgwYY4wxHmfBQHJ7PNEVSAAvnjN487y9eM7gzfP24jmnFBszYIwxxnic3RkwxhhjPM6CAWOMMcbjLBhIQiIyX0QOicgREVme6PrEi4hMEJGXReSvIvKWiCx1y0eLyCYROez+HpXousaaiPhEZI+IbHC3J4nIq26b/0ZEshJdx1gTkQIRWSsiB0XkgIh8JN3bWkTud9/b+0XkVyKSk45tLSI/F5E6EdkfUTZg24rjv93zf0NErkpczU0PCwaSjIj4gEeBTwPTgH8UkWmJrVXchIBvquo04Frga+65Lgc2q+oUYLO7nW6WAgcith8CfqyqHwKagMUJqVV8rQQ2qurlwIdxzj9t21pExgP3ATNUtRxnqfPbSM+2fgaY36fsXG37aWCK+7MEeGyY6mg+gAUDyeca4IiqvqOqncCvgQUJrlNcqGqNqu52H5/GuTiMxznf1e7TVgOfTUwN40NEyoDPAE+62wJ8EljrPiUdz3kk8AngKQBV7VTVZtK8rXFWhg2IiB8IAjWkYVur6itAY5/ic7XtAuBZdewACkSkdHhqas7FgoHkMx6oitiudsvSmohcDEwHXgWKVbXG/acTQHGCqhUvDwPfBsLudiHQrKohdzsd23wSUA887XaPPCkiuaRxW6vqMeBHwFGcIOAk8Drp39Y9ztW2nvyOS3YWDJiEE5E84DngG6p6KvLf1Jn7mjbzX0XkRqBOVV9PdF2GmR+4CnhMVacDZ+jTJZCGbT0K56/gScA4IJf+t9I9Id3aNh1ZMJB8jgETIrbL3LK0JCKZOIHAL1R1nVtc23Pb0P1dl6j6xcHHgJtE5F2cLqBP4vSlF7i3kiE927waqFbVV93ttTjBQTq39aeASlWtV9UuYB1O+6d7W/c4V9t66jsuVVgwkHxeA6a4I46zcAYcvZDgOsWF21f+FHBAVf8r4p9eABa5jxcB64e7bvGiqv+qqmWqejFO225R1duBl4GF7tPS6pwBVPUEUCUil7lFc4C/ksZtjdM9cK2IBN33es85p3VbRzhX274A3OHOKrgWOBnRnWASxDIQJiERuQGnX9kH/FxV/yPBVYoLEbkO2Aa8yfv95w/gjBtYA0zEWfb5VlXtOzgp5YnILOBbqnqjiEzGuVMwGtgD/JOqdiSyfrEmIhU4gyazgHeAu3D+IEnbthaR7wNfwJk5swf4Ek7/eFq1tYj8CpiFs1RxLfBd4HkGaFs3MHoEp8ukFbhLVXclot7mfRYMGGOMMR5n3QTGGGOMx1kwYIwxxnicBQPGGGOMx1kwYIwxxnicBQPGGGOMx1kwYEwKcVf++6r7eJyIrD3fa6I4VoU7zdUYk+YsGDAmtRQAXwVQ1eOquvA8z49GBWDBgDEeYHkGjEkhItKziuUh4DAwVVXLReROnFXhcnGWhv0RTnKffwY6gBvchC+X4CyRPRYn4cu/qOpBEfk8TqKYbpwFdT4FHAECOKli/xPYAKwCyoFM4Huqut499s3ASJyEOv+jqt+P83+FMSaG/Od/ijEmiSwHylW1wl3pcUPEv5XjrPyYg3MhX6aq00Xkx8AdOFktHwe+oqqHRWQm8BOc9RG+A/yDqh4TkQJV7RSR7wAzVPVeABH5AU765LtFpADYKSL/6x77Gvf4rcBrIvIHyypnTOqwYMCY9PGyqp4GTovISeD3bvmbwJXu6pAfBX7rZIQFINv9/RfgGRFZg7OgzkDm4Syy9C13Owcn1SzAJlVtABCRdcB1gAUDxqQICwaMSR+R+e3DEdthnM96BtCsqhV9X6iqX3HvFHwGeF1Erh5g/wLcoqqHzip0Xte3v9H6H41JITaA0JjUchrIH8oLVfUUUOmOD8BdNe7D7uNLVPVVVf0OUI+zxGzfY/0R+Lq70AwiMj3i3+aKyGgRCeCMXfjLUOpojEkMCwaMSSHurfi/iMh+4IdD2MXtwGIR2Qe8hTMYEeCHIvKmu9//A/bhLLU7TUT2isgXgH/HGTj4hoi85W732Ak8B7wBPGfjBYxJLTabwBgTFXc2Qe9AQ2NM6rE7A8YYY4zH2Z0BY4wxxuPszoAxxhjjcRYMGGOMMR5nwYAxxhjjcRYMGGOMMR5nwYAxxhjjcf8PtHsE5ur7a1UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentDemand',swept)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Colab/CIC_Network_cadCAD_model_params.ipynb b/Colab/CIC_Network_cadCAD_model_params.ipynb new file mode 100644 index 0000000..0aba421 --- /dev/null +++ b/Colab/CIC_Network_cadCAD_model_params.ipynb @@ -0,0 +1,2565 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CIC Current System Network Graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph overview \n", + "\n", + "Modeling as a weighted directed graph with agents as nodes. A network is a set of items (nodes or vertices) connected by edges or links. \n", + "We represent a network by a graph (N, g), which consists of a set of nodes N = {1, . . . , n}.\n", + "\n", + "#### Node types\n", + "* Agent\n", + "\n", + "An agent is a user of the CIC system.\n", + "* Chama\n", + "\n", + "A chama is a savings group consisting of multiple agents. Redemptions of CICs for fiat occur through chamas.\n", + "* Trader\n", + "\n", + "A trader is an agent interacting with the bonding curve for investment/arbitrage opportunities.\n", + "* Cloud\n", + "\n", + "The cloud is a representation of the open boundary to the world external to the model.\n", + "* Contract\n", + "\n", + "The contract is the smart contract of the bonding curve.\n", + "\n", + "### Edges between agents\n", + "The edge weight gij > 0 takes on non-binary values, representing the intensity of the interaction, so we refer to (N, g) as a weighted graph.\n", + "E is the set of “directed” edges, i.e., (i, j) ∈ E\n", + "\n", + "#### Edge types\n", + "* Demand\n", + "* Fraction of demand in CIC\n", + "* Utility - stack ranking. Food/Water is first, shopping, etc farther down\n", + "* Spend\n", + "* Fraction of actual in CIC\n", + "\n", + "![](images/dualoperator.png)\n", + "\n", + "\n", + "![](images/v3differentialspec.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assumptions\n", + "(Defining data structures, not just initialization. Baking in degrees of freedom for future experimentation)\n", + "\n", + "* agents = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p\n", + "* Agent starting native currency is picked from a uniform distribution with a range of 20 to 500. Starting tokens is 400.\n", + "* system = external,cic\n", + "* chama = chama_1,chama_2,chama_3,chama_4\n", + "\n", + "Chamas are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* traders = ta,tb,tc\n", + "\n", + "Traders are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* Utility Types Ordered:\n", + " * Food/Water\n", + " * Fuel/Energy\n", + " * Health\n", + " * Education\n", + " * Savings Group\n", + " * Shop\n", + "* Utility Types Probability \n", + " * 0.6\n", + " * 0.10\n", + " * 0.03\n", + " * 0.015\n", + " * 0.065\n", + " * 0.19\n", + "* R0 = 500\n", + "* S0 = 200000\n", + "* P = 1\n", + "* priceLevel = 100\n", + "* fractionOfDemandInCIC = 0.5\n", + "* fractionOfActualSpendInCIC = 0.5 # if an agent is interacting with the external environment, then the actual spend is 100% shilling.\n", + "* kappa = 4\n", + "\n", + "\n", + "## Initial State Values\n", + "\n", + "# Equations\n", + "\n", + "## Generators\n", + "* Agent generation for each time step: Random choice of all agents minus 2 for both paying and receiving. \n", + "\n", + "* Agent demand each time: Uniform distribution with a low value of 1 and a high of 500. \n", + " \n", + "### Red Cross Drip\n", + "Every 30 days, the Red Cross drips 4000 shilling to the grassroots operator fiat balance. \n", + "\n", + "### Spend Allocation \n", + "\n", + "#### Parameters:\n", + "* Agent to pay: $i$\n", + "* Agent to receive: $j$\n", + "* Rank Order Demand: $\\frac{v_{i,j}}{d_{i,j}}$\n", + "* Amount of currency agent $i$ has to spend, $\\gamma$\n", + "* Amount of cic agent $i$ has to spend, $\\gamma_\\textrm{cic}$\n", + "* Percentage of transaction in cic, $\\phi$\n", + "* Spend, $\\zeta$\n", + "\n", + "\n", + "if $\\frac{v_{i,j}}{d_{i,j}} * 1-\\phi > \\gamma_{i} \\textrm{and} \\frac{v_{i,j}}{d_{i,j}} * \\phi > \\gamma_\\textrm{cic} \\Rightarrow \\zeta = \\frac{v_{i,j}}{d_{i,j}}$ \n", + "\n", + "else $ \\Rightarrow \\zeta = \\gamma$\n", + "\n", + "Allocate utility type by stack ranking in. Allocate remaining fiat and cic until all demand is met or i runs out.\n", + "\n", + "\n", + "### Withdraw calculation\n", + "\n", + "The user is able to withdraw up to 50% of the their CIC balance if they have spent 50% of their balance within the last 30 days at a conversion ratio of 1:1, meaning that for every one token withdraw, they receive 1 in native currency. We are assuming that agents want what to withdraw as much as they can.\n", + "This is one of the most important control points for Grassroots economics. The more people withdraw CIC from the system, the more difficult it is on the system. The more people can withdraw, the better the adoption however. The inverse also holds true: the less individuals can withdraw, the lower the adoption.\n", + "\n", + "## Distribution to agents\n", + "#### Parameters\n", + "FrequencyOfAllocation = 45 # frequency of allocation of drip to agents\n", + "* idealFiat = 5000\n", + "* idealCIC = 200000\n", + "* varianceCIC = 50000\n", + "* varianceFiat = 1000\n", + "* unadjustedPerAgent = 50\n", + "\n", + "```\n", + "# agent:[centrality,allocationValue]\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], \n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "```\n", + "\n", + "Every 15 days, a total of unadjustedPerAgent * agents will be distributed among the agents. Allocation will occur based off of the the agent allocation dictionary allocation value. We can optimize the allocation overtime and make a state variable for adjustment overtime as a result of centrality. We are currently assuming that all agents have the same centrality and allocation.\n", + "\n", + "Internal velocity is better than external velocity of the system. Point of leverage to make more internal cycles. Canbe used for tuning system effiency.\n", + "![](images/agentDistribution.png)\n", + "\n", + "### Inventory Controller\n", + "Heuristic Monetary policy hysteresis conservation allocation between fiat and cic reserves. We've created an inventory control function to test if the current balance is in an acceptable tolarance. For the calculation, we use the following 2 variables, current CIC balance and current fiat balance, along with 2 parameters, desired cic and variance.\n", + "\n", + "Below is \n", + "```\n", + "if idealCIC - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + "else:\n", + " \n", + " if (ideal + variance) > actual :\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + "if decision == 'mint':\n", + " if fiat < (ideal - variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + "if decision == 'none':\n", + " if fiat < (ideal - variance):\n", + " decision = 'mint'\n", + " amount = (ideal-variance)\n", + " else:\n", + " pass\n", + " \n", + "\n", + "```\n", + "\n", + "If the controller wants to mint, the amount decided from the inventory controller, $\\Delta R$ is inserted into the following minting equation:\n", + "\n", + "- Conservation equation, V0: $V(R+ \\Delta R', S+\\Delta S) = \\frac{(S+\\Delta S)^\\kappa}{R+\\Delta R'} =\\frac{S^\\kappa}{R}$\n", + "- Derived Mint equation: $\\Delta S = mint\\big(\\Delta R ; (R,S)\\big)= S\\big(\\sqrt[\\kappa]{(1+\\frac{\\Delta R}{R})}-1\\big)$\n", + " \n", + "\n", + "\n", + "If the controller wants to burn, the amount decided from the inventory controller, $\\Delta S$ is inserted into the following minting equation:\n", + " - Derived Withdraw equation: $\\Delta R = withdraw\\big(\\Delta S ; (R,S)\\big)= R\\big(1-(1-\\frac{\\Delta S}{S})^\\kappa \\big)$\n", + " \n", + "\n", + "There is a built in process lag of 7 days before the newly minted or burned CIC is added to the respective operator accounts.\n", + "\n", + "### Velocity of Money \n", + "\n", + "Indirect measurement of velocity of money per timestep:\n", + "\n", + "$V_t = \\frac{PT}{M}$\n", + "\n", + "Where\n", + "\n", + "* $V_t$ is the velocity of money for all agent transaction in the time period examined\n", + "* $P$ is the price level\n", + "* $T$ is the aggregated real value of all agent transactions in the time period examined\n", + "* $M$ is the average money supply in the economy in the time period examined.\n", + "\n", + "\n", + "\n", + "## Simulation run\n", + "* 5 monte carlo runs with 100 timesteps. Each timestep is equal to 1 day.\n", + "\n", + "\n", + "## Proposed Experiments\n", + "![](images/experiments.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Define cadCAD Model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: cadCAD in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (0.3.1)\r\n", + "Requirement already satisfied: pathos in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.2.5)\r\n", + "Requirement already satisfied: pandas in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (1.0.3)\r\n", + "Requirement already satisfied: fn in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.4.3)\r\n", + "Requirement already satisfied: funcy in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (1.14)\r\n", + "Requirement already satisfied: wheel in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.33.6)\r\n", + "Requirement already satisfied: tabulate in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from cadCAD) (0.8.2)\r\n", + "Requirement already satisfied: pox>=0.2.7 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.2.7)\r\n", + "Requirement already satisfied: dill>=0.3.1 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.3.1.1)\r\n", + "Requirement already satisfied: ppft>=1.6.6.1 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (1.6.6.1)\r\n", + "Requirement already satisfied: multiprocess>=0.70.9 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pathos->cadCAD) (0.70.9)\r\n", + "Requirement already satisfied: pytz>=2017.2 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pandas->cadCAD) (2018.7)\r\n", + "Requirement already satisfied: python-dateutil>=2.6.1 in /home/aclarkdata/.local/lib/python3.7/site-packages (from pandas->cadCAD) (2.8.0)\r\n", + "Requirement already satisfied: numpy>=1.13.3 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from pandas->cadCAD) (1.18.2)\r\n", + "Requirement already satisfied: six>=1.7.3 in /home/aclarkdata/anaconda3/lib/python3.7/site-packages (from ppft>=1.6.6.1->pathos->cadCAD) (1.14.0)\r\n" + ] + } + ], + "source": [ + "!pip install cadCAD" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", + " import pandas.util.testing as tm\n" + ] + } + ], + "source": [ + "# import libraries\n", + "import math\n", + "from decimal import Decimal\n", + "from datetime import timedelta\n", + "import numpy as np\n", + "from typing import Dict, List\n", + "\n", + "from cadCAD.configuration import append_configs\n", + "from cadCAD.configuration.utils import bound_norm_random, ep_time_step, config_sim, access_block\n", + "\n", + "\n", + "# The following imports NEED to be in the exact order\n", + "from cadCAD.engine import ExecutionMode, ExecutionContext, Executor\n", + "from cadCAD import configs\n", + "\n", + "\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from tabulate import tabulate\n", + "import matplotlib.pyplot as plt\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "from IPython.display import clear_output\n", + "import networkx as nx\n", + "from collections import OrderedDict\n", + "pd.options.display.float_format = '{:.2f}'.format\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "default_kappa= 4\n", + "default_exit_tax = .02\n", + "\n", + "#value function for a given state (R,S)\n", + "def invariant(R,S,kappa=default_kappa):\n", + " \n", + " return (S**kappa)/R\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return Supply S as a function of reserve R\n", + "def reserve(S, V0, kappa=default_kappa):\n", + " return (S**kappa)/V0\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return Supply S as a function of reserve R\n", + "def supply(R, V0, kappa=default_kappa):\n", + " return (V0*R)**(1/kappa)\n", + "\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#return a spot price P as a function of reserve R\n", + "def spot_price(R, V0, kappa=default_kappa):\n", + " return kappa*R**((kappa-1)/kappa)/V0**(1/kappa)\n", + "\n", + "#for a given state (R,S)\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#deposit deltaR to Mint deltaS\n", + "#with realized price deltaR/deltaS\n", + "def mint(deltaR, R,S, V0, kappa=default_kappa):\n", + " deltaS = (V0*(R+deltaR))**(1/kappa)-S\n", + " if deltaS ==0:\n", + " realized_price = spot_price(R+deltaR, V0, kappa)\n", + " else:\n", + " realized_price = deltaR/deltaS\n", + " deltaS = round(deltaS,2)\n", + " return deltaS, realized_price\n", + "\n", + "#for a given state (R,S)\n", + "#given a value function (parameterized by kappa)\n", + "#and an invariant coeficient V0\n", + "#burn deltaS to Withdraw deltaR\n", + "#with realized price deltaR/deltaS\n", + "def withdraw(deltaS, R,S, V0, kappa=default_kappa):\n", + " deltaR = R-((S-deltaS)**kappa)/V0\n", + " if deltaS ==0:\n", + " realized_price = spot_price(R+deltaR, V0, kappa)\n", + " else:\n", + " realized_price = deltaR/deltaS\n", + " deltaR = round(deltaR,2)\n", + " return deltaR, realized_price\n", + "\n", + "\n", + "\n", + "def iterateEdges(network,edgeToIterate):\n", + " '''\n", + " Description:\n", + " Iterate through a network on a weighted edge and return\n", + " two dictionaries: the inflow and outflow for the given agents\n", + " in the format:\n", + " \n", + " {'Agent':amount}\n", + " '''\n", + " outflows = {}\n", + " inflows = {}\n", + " for i,j in network.edges:\n", + " try:\n", + " amount = network[i][j][edgeToIterate]\n", + " if i in outflows:\n", + " outflows[i] = outflows[i] + amount\n", + " else:\n", + " outflows[i] = amount\n", + " if j in inflows:\n", + " inflows[j] = inflows[j] + amount\n", + " else:\n", + " inflows[j] = amount\n", + " except:\n", + " pass\n", + " return outflows,inflows\n", + "\n", + "\n", + "def inflowAndOutflowDictionaryMerge(inflow,outflow):\n", + " '''\n", + " Description:\n", + " Merge two dictionaries and return one dictionary with zero floor'''\n", + " \n", + " merged = {}\n", + "\n", + " inflowsKeys = [k for k,v in inflow.items() if k not in outflow]\n", + " for i in inflowsKeys:\n", + " merged[i] = inflow[i]\n", + " outflowsKeys = [k for k,v in outflow.items() if k not in inflow]\n", + " for i in outflowsKeys:\n", + " merged[i] = outflow[i]\n", + " overlapKeys = [k for k,v in inflow.items() if k in outflow]\n", + " for i in overlapKeys:\n", + " amt = outflow[i] - inflow[i] \n", + " if amt < 0:\n", + " merged[i] = 0\n", + " else:\n", + " merged[i] = amt\n", + " pass\n", + " \n", + " return merged\n", + "\n", + " \n", + "def spendCalculation(agentToPay,agentToReceive,rankOrderDemand,maxSpendCurrency,maxSpendTokens,cicPercentage):\n", + " '''\n", + " Function to calculate if an agent can pay for demand given token and currency contraints\n", + " '''\n", + " if (rankOrderDemand[agentToReceive] * (1-cicPercentage)) > maxSpendCurrency[agentToPay]:\n", + " verdict_currency = 'No'\n", + " else:\n", + " verdict_currency = 'Enough'\n", + " \n", + " if (rankOrderDemand[agentToReceive] * cicPercentage) > maxSpendTokens[agentToPay]:\n", + " verdict_cic = 'No'\n", + " else:\n", + " verdict_cic = 'Enough'\n", + " \n", + " if verdict_currency == 'Enough'and verdict_cic == 'Enough':\n", + " spend = rankOrderDemand[agentToReceive]\n", + " \n", + " elif maxSpendCurrency[agentToPay] > 0:\n", + " spend = maxSpendCurrency[agentToPay]\n", + " else:\n", + " spend = 0\n", + " \n", + " return spend\n", + "\n", + "\n", + "def spendCalculationExternal(agentToPay,agentToReceive,rankOrderDemand,maxSpendCurrency):\n", + " '''\n", + " '''\n", + " if rankOrderDemand[agentToReceive] > maxSpendCurrency[agentToPay]:\n", + " verdict_currency = 'No'\n", + " else:\n", + " verdict_currency = 'Enough'\n", + " \n", + " if verdict_currency == 'Enough':\n", + " spend = rankOrderDemand[agentToReceive]\n", + " \n", + " elif maxSpendCurrency[agentToPay] > 0:\n", + " spend = maxSpendCurrency[agentToPay]\n", + " else:\n", + " spend = 0\n", + " \n", + " return spend\n", + "\n", + "\n", + "def DictionaryMergeAddition(inflow,outflow):\n", + " '''\n", + " Description:\n", + " Merge two dictionaries and return one dictionary'''\n", + " \n", + " merged = {}\n", + "\n", + " inflowsKeys = [k for k,v in inflow.items() if k not in outflow]\n", + " for i in inflowsKeys:\n", + " merged[i] = inflow[i]\n", + " outflowsKeys = [k for k,v in outflow.items() if k not in inflow]\n", + " for i in outflowsKeys:\n", + " merged[i] = outflow[i]\n", + " overlapKeys = [k for k,v in inflow.items() if k in outflow]\n", + " for i in overlapKeys:\n", + " merged[i] = outflow[i] + inflow[i] \n", + " \n", + " return merged\n", + "\n", + "def mint_burn_logic_control(ideal,actual,variance,fiat,fiat_variance,ideal_fiat):\n", + " '''\n", + " Inventory control function to test if the current balance is in an acceptable range. Tolerance range \n", + " '''\n", + " if ideal - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " if (ideal + variance) > actual:\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + " if decision == 'mint':\n", + " if fiat < (ideal_fiat - fiat_variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + " if decision == 'none':\n", + " if fiat < (ideal_fiat - fiat_variance):\n", + " decision = 'mint'\n", + " amount = (ideal_fiat-fiat_variance)\n", + " else:\n", + " pass\n", + " \n", + " amount = round(amount,2)\n", + " return decision, amount\n", + " \n", + "#NetworkX functions\n", + "def get_nodes_by_type(g, node_type_selection):\n", + " return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection]\n", + "\n", + "def get_edges_by_type(g, edge_type_selection):\n", + " return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection]\n", + "\n", + "def get_edges(g):\n", + " return [edge for edge in g.edges if g.edges[edge]]\n", + "\n", + "def get_nodes(g):\n", + " '''\n", + " df.network.apply(lambda g: np.array([g.nodes[j]['balls'] for j in get_nodes(g)]))\n", + " '''\n", + " return [node for node in g.nodes if g.nodes[node]]\n", + "\n", + "def aggregate_runs(df,aggregate_dimension):\n", + " '''\n", + " Function to aggregate the monte carlo runs along a single dimension.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " Example run:\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,'timestep')\n", + " '''\n", + " df = df[df['substep'] == df.substep.max()]\n", + " mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " std_df = df.groupby(aggregate_dimension).std().reset_index()\n", + " min_df = df.groupby(aggregate_dimension).min().reset_index()\n", + "\n", + " return mean_df,median_df,std_df,min_df\n", + "\n", + "\n", + "\n", + "def plot_averaged_runs(df,aggregate_dimension,x, y,run_count,lx=False,ly=False, suppMin=False):\n", + " '''\n", + " Function to plot the mean, median, etc of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + " run_count = the number of monte carlo simulations\n", + " lx = True/False for if the x axis should be logged\n", + " ly = True/False for if the x axis should be logged\n", + " suppMin: True/False for if the miniumum value should be plotted\n", + " Note: Run aggregate_runs before using this function\n", + " Example run:\n", + " '''\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,aggregate_dimension)\n", + "\n", + " plt.figure(figsize=(10,6))\n", + " if not(suppMin):\n", + " plt.plot(mean_df[x].values, mean_df[y].values,\n", + " mean_df[x].values,median_df[y].values,\n", + " mean_df[x].values,mean_df[y].values+std_df[y].values,\n", + " mean_df[x].values,min_df[y].values)\n", + " plt.legend(['mean', 'median', 'mean+ 1*std', 'min'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + "\n", + " else:\n", + " plt.plot(mean_df[x].values, mean_df[y].values,\n", + " mean_df[x].values,median_df[y].values,\n", + " mean_df[x].values,mean_df[y].values+std_df[y].values,\n", + " mean_df[x].values,mean_df[y].values-std_df[y].values)\n", + " plt.legend(['mean', 'median', 'mean+ 1*std', 'mean - 1*std'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + "\n", + " plt.xlabel(x)\n", + " plt.ylabel(y)\n", + " title_text = 'Performance of ' + y + ' over all of ' + str(run_count) + ' Monte Carlo runs'\n", + " plt.title(title_text)\n", + " if lx:\n", + " plt.xscale('log')\n", + "\n", + " if ly:\n", + " plt.yscale('log')\n", + "\n", + "def plot_median_with_quantiles(df,aggregate_dimension,x, y):\n", + " '''\n", + " Function to plot the median and 1st and 3rd quartiles of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + "\n", + " Example run:\n", + " plot_median_with_quantiles(df,'timestep','timestep','AggregatedAgentSpend')\n", + " '''\n", + " \n", + " df = df[df['substep'] == df.substep.max()]\n", + " firstQuantile = df.groupby(aggregate_dimension).quantile(0.25).reset_index()\n", + " thirdQuantile = df.groupby(aggregate_dimension).quantile(0.75).reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " \n", + " fig, ax = plt.subplots(1,figsize=(10,6))\n", + " ax.plot(median_df[x].values, median_df[y].values, lw=2, label='Median', color='blue')\n", + " ax.fill_between(firstQuantile[x].values, firstQuantile[y].values, thirdQuantile[y].values, facecolor='black', alpha=0.2)\n", + " ax.set_title(y + ' Median')\n", + " ax.legend(loc='upper left')\n", + " ax.set_xlabel('Timestep')\n", + " ax.set_ylabel('Amount')\n", + " ax.grid()\n", + " \n", + "def plot_median_with_quantiles_annotation(df,aggregate_dimension,x, y):\n", + " '''\n", + " Function to plot the median and 1st and 3rd quartiles of the monte carlo runs along a single variable.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + "\n", + " Example run:\n", + " plot_median_with_quantiles(df,'timestep','timestep','AggregatedAgentSpend')\n", + " '''\n", + " \n", + " df = df[df['substep'] == df.substep.max()]\n", + " firstQuantile = df.groupby(aggregate_dimension).quantile(0.25).reset_index()\n", + " thirdQuantile = df.groupby(aggregate_dimension).quantile(0.75).reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " \n", + " fig, ax = plt.subplots(1,figsize=(10,6))\n", + " ax.axvline(x=30,linewidth=2, color='r')\n", + " ax.annotate('Agents can withdraw and Red Cross Drip occurs', xy=(30,2), xytext=(35, 1),\n", + " arrowprops=dict(facecolor='black', shrink=0.05))\n", + " \n", + " ax.axvline(x=60,linewidth=2, color='r')\n", + " ax.axvline(x=90,linewidth=2, color='r')\n", + " ax.plot(median_df[x].values, median_df[y].values, lw=2, label='Median', color='blue')\n", + " ax.fill_between(firstQuantile[x].values, firstQuantile[y].values, thirdQuantile[y].values, facecolor='black', alpha=0.2)\n", + " ax.set_title(y + ' Median')\n", + " ax.legend(loc='upper left')\n", + " ax.set_xlabel('Timestep')\n", + " ax.set_ylabel('Amount')\n", + " ax.grid()\n", + "\n", + "\n", + "def first_five_plot(df,aggregate_dimension,x,y,run_count):\n", + " '''\n", + " A function that generates timeseries plot of at most the first five Monte Carlo runs.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " x = x axis variable for plotting\n", + " y = y axis variable for plotting\n", + " run_count = the number of monte carlo simulations\n", + " Note: Run aggregate_runs before using this function\n", + " Example run:\n", + " first_five_plot(df,'timestep','timestep','revenue',run_count=100)\n", + " '''\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,aggregate_dimension)\n", + " plt.figure(figsize=(10,6))\n", + " if run_count < 5:\n", + " runs = run_count\n", + " else:\n", + " runs = 5\n", + " for r in range(1,runs+1):\n", + " legend_name = 'Run ' + str(r)\n", + " plt.plot(df[df.run==r].timestep, df[df.run==r][y], label = legend_name )\n", + " plt.plot(mean_df[x], mean_df[y], label = 'Mean', color = 'black')\n", + " plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + " plt.xlabel(x)\n", + " plt.ylabel(y)\n", + " title_text = 'Performance of ' + y + ' over the First ' + str(runs) + ' Monte Carlo Runs'\n", + " plt.title(title_text)\n", + " #plt.savefig(y +'_FirstFiveRuns.jpeg')\n", + " \n", + " \n", + "def aggregate_runs_param_mc(df,aggregate_dimension):\n", + " '''\n", + " Function to aggregate the monte carlo runs along a single dimension.\n", + " Parameters:\n", + " df: dataframe name\n", + " aggregate_dimension: the dimension you would like to aggregate on, the standard one is timestep.\n", + " Example run:\n", + " mean_df,median_df,std_df,min_df = aggregate_runs(df,'timestep')\n", + " '''\n", + " df = df[df['substep'] == df.substep.max()]\n", + " mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n", + " median_df = df.groupby(aggregate_dimension).median().reset_index()\n", + " #min_df = df.groupby(aggregate_dimension).min().reset_index()\n", + " #max_df = df.groupby(aggregate_dimension).max().reset_index()\n", + " return mean_df,median_df\n", + "\n", + "def param_dfs(results,params,swept):\n", + " mean_df,median_df = aggregate_runs_param_mc(results[0]['result'],'timestep')\n", + " mean_df[swept] = params[0]\n", + " median_df[swept] = params[0]\n", + " #max_df[swept] = params[0]\n", + " #min_df[swept] = params[0]\n", + " for i in range(1,len(params)):\n", + " mean_df_intermediate,median_df_intermediate = aggregate_runs_param_mc(results[i]['result'],'timestep')\n", + " mean_df_intermediate[swept] = params[i]\n", + " median_df_intermediate[swept] = params[i]\n", + " #max_df_intermediate[swept] = params[i]\n", + " #min_df_intermediate[swept] = params[i]\n", + " mean_df= pd.concat([mean_df, mean_df_intermediate])\n", + " median_df= pd.concat([median_df, median_df_intermediate])\n", + " #max_df= pd.concat([max_df, max_df_intermediate])\n", + " #min_df= pd.concat([min_df, min_df_intermediate])\n", + " return mean_df,median_df\n", + "\n", + "\n", + "def param_plot(results,state_var_x, state_var_y, parameter, save_plot = False,**kwargs):\n", + " '''\n", + " Results (df) is the dataframe (concatenated list of results dictionaries)\n", + " length = intreger, number of parameter values\n", + " Enter state variable name as a string for x and y. Enter the swept parameter name as a string.\n", + " y_label kwarg for custom y-label and title reference\n", + " x_label kwarg for custom x-axis label\n", + " '''\n", + " sns.scatterplot(x=state_var_x, y = state_var_y, hue = parameter, style= parameter, palette = 'coolwarm',alpha=1, data = results, legend=\"full\")\n", + " title_text = 'Effect of ' + parameter + ' Parameter Sweep on ' + state_var_y\n", + " for key, value in kwargs.items():\n", + " if key == 'y_label':\n", + " plt.ylabel(value)\n", + " title_text = 'Effect of ' + parameter + ' Parameter Sweep on ' + value\n", + " if key == 'x_label':\n", + " plt.xlabel(value)\n", + " plt.title(title_text)\n", + " if save_plot == True:\n", + " filename = state_var_y + state_var_x + parameter + 'plot.png'\n", + "# # plt.savefig('static/images/' + filename)\n", + "# plt.savefig(filename)\n", + " lgd = plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", + " #title_text = 'Market Volatility versus Normalized Liquid Token Supply for All Runs'\n", + " plt.title(title_text)\n", + " plt.savefig('static/images/' + filename, bbox_extra_artists=(lgd,), bbox_inches='tight')" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Initilization \n", + "\n", + "# Assumptions:\n", + "# Amount received in shilling when withdraw occurs\n", + "leverage = 1 \n", + "\n", + "# process time\n", + "process_lag = 7 # timesteps\n", + "\n", + "# red cross drip amount\n", + "drip = 4000\n", + "\n", + "# system initialization\n", + "agents = ['a','b','c','d','e','f','g','h','i','j','k','l','m','o','p']\n", + "\n", + "# system actors\n", + "system = ['external','cic']\n", + "\n", + "# chamas\n", + "chama = ['chama_1','chama_2','chama_3','chama_4']\n", + "\n", + "# traders\n", + "traders = ['ta','tb','tc'] #only trading on the cic. Link to external and cic not to other agents\n", + "\n", + "allAgents = agents + system\n", + "\n", + "mixingAgents = ['a','b','c','d','e','f','g','h','i','j','k','l','m','o','p','external']\n", + "\n", + "UtilityTypesOrdered ={'Food/Water':1,\n", + " 'Fuel/Energy':2,\n", + " 'Health':3,\n", + " 'Education':4,\n", + " 'Savings Group':5,\n", + " 'Shop':6}\n", + "\n", + "utilityTypesProbability = {'Food/Water':0.6,\n", + " 'Fuel/Energy':0.10,\n", + " 'Health':0.03,\n", + " 'Education':0.015,\n", + " 'Savings Group':0.065,\n", + " 'Shop':0.19}\n", + "\n", + "\n", + "R0 = 500 #thousand xDAI\n", + "kappa = 4 #leverage\n", + "P0 = 1/100 #initial price\n", + "S0 = kappa*R0/P0\n", + "V0 = invariant(R0,S0,kappa)\n", + "P = spot_price(R0, V0, kappa)\n", + "\n", + "# Price level\n", + "priceLevel = 100\n", + "\n", + "fractionOfDemandInCIC = 0.5\n", + "fractionOfActualSpendInCIC = 0.5\n", + "\n", + "def create_network():\n", + " # Create network graph\n", + " network = nx.DiGraph()\n", + "\n", + " # Add nodes for n participants plus the external economy and the cic network\n", + " for i in agents:\n", + " network.add_node(i,type='Agent',tokens=400, native_currency = int(np.random.uniform(low=20, high=500, size=1)[0]))\n", + " \n", + " \n", + " network.add_node('external',type='Contract',native_currency = 100000000,tokens = 0,delta_native_currency = 0, pos=(1,50))\n", + " network.add_node('cic',type='Contract',tokens= S0, native_currency = R0,pos=(50,1))\n", + "\n", + " for i in chama:\n", + " network.add_node(i,type='Chama')\n", + " \n", + " for i in traders:\n", + " network.add_node(i,type='Trader',tokens=20, native_currency = 20, \n", + " price_belief = 1, trust_level = 1)\n", + " \n", + " # Create bi-directional edges between all participants\n", + " for i in allAgents:\n", + " for j in allAgents:\n", + " if i!=j:\n", + " network.add_edge(i,j)\n", + "\n", + " # Create bi-directional edges between each trader and the external economy and the cic environment \n", + " for i in traders:\n", + " for j in system:\n", + " if i!=j:\n", + " network.add_edge(i,j)\n", + " \n", + " # Create bi-directional edges between some agent and a chama node representing membershio \n", + " for i in chama:\n", + " for j in agents:\n", + " if np.random.choice(['Member','Non_Member'],1,p=[.50,.50])[0] == 'Member':\n", + " network.add_edge(i,j)\n", + "\n", + " # Type colors \n", + " colors = ['Red','Blue','Green','Orange']\n", + " color_map = []\n", + " for i in network.nodes:\n", + " if network.nodes[i]['type'] == 'Agent':\n", + " color_map.append('Red')\n", + " elif network.nodes[i]['type'] == 'Cloud':\n", + " color_map.append('Blue')\n", + " elif network.nodes[i]['type'] == 'Contract':\n", + " color_map.append('Green')\n", + " elif network.nodes[i]['type'] == 'Trader':\n", + " color_map.append('Yellow')\n", + " elif network.nodes[i]['type'] == 'Chama':\n", + " color_map.append('Orange')\n", + " \n", + " pos = nx.spring_layout(network,pos=nx.get_node_attributes(network,'pos'),fixed=nx.get_node_attributes(network,'pos'),seed=10)\n", + " nx.draw(network,node_color = color_map,pos=pos,with_labels=True,alpha=0.7)\n", + " plt.savefig('images/graph.png')\n", + " plt.show()\n", + " return network" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAFCCAYAAACn2kcMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XdUVNfaBvCHgaE3GyAgMwxtaKJSBIMae49oiBJ7R43YRaPmEyxRMParsRDF2IMtmkDUqNcSQVFBelGadKTXYcr7/cH13HAxHfv+reW6KzozZ8+5Lh/2u9+9jxIRERiGYRiG+cd4r3sADMMwDPOuYKHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlioMgzDMEwrYaHKMAzDMK2EhSrDMAzDtBIWqgzDMAzTSlRe9wBeByLC47LHKKkrgVQuhSZfE+ZtzNFes/3rHhrDMAzzFnuvQrW2sRZXM67i8KPDeFr1FMpKyiAQlKAEBRT4UPghPnX4FE6GTlBSUnrdw2UYhmHeMkpERK97EK/C/fz7WHp5KWoba6GpqgkdVZ1mwSlXyFFWXwYFKeBk5ISvBnwFPXW91zhihmEY5m3zXoTqrexbWHp5KTRVNaGtqv27ryUiFNcWo5NuJ3wz8hvoq+u/olEyDMMwb7t3vlEp9Vkq/K/4Q1tN+w8DFQCUlJRgqG2Ip1VPseinRZApZH/rusXFxRgxYgTkcvnfej/DMAzz9nln11SvXr2KS5cuQdZPBgJBk6/5l95voGWAhOIE3M29iw/MPnhJo2QYhmHeJe/0TLW2sRa3c26jnWa7v/5mAlRVVHE07mjrD4xhGIZ5J70VM9WysjLs27cPCQkJUFdXh5eXF0aMGIGAgAB06tQJ06dPBwAEBwdDTU0No0ePxu7du/Hk2RM8vfUUeap56Da/GxQyBXJv56IspQwkJ7SxagOzvmbgqfBQlVOFjPAMGHQ1QNGDIugJ9NDWoS3CQsLQraIbbvx0AzweD5MmTUL//v0BANHR0Th69CgKCgqgpaWFAQMGYNy4ca/zVjEMwzCv0RsfqkSEtWvXwt3dHcuWLcOzZ8+wevVqmJiYYMGCBfDz84OrqyvKysqQlpaGXbt2QUNDA5999hkW/GsBHKc5QldNFwCQeysXDeUNcJjsACVlJTz54Qny7uShU69OAABprRTyBjmcZjkBAGryayCvk+NJ8ROEhoYiNjYWGzduhLu7O7S1taGuro5FixZBIBAgOzsbq1evhkgkgru7+2u7XwzDMMzr88aXf9PS0lBZWQkfHx+oqKjAyMgIgwYNws2bN9GmTRvMnTsX27Ztw/79+7F48WJoaGhw722UN0KF1/RzAxGh+FExzPqYQUVDBcqqymjo0IBHlx/hwYMHTW9QAkw+MAFPhQeeyn9uDQ9wGegCFRUVuLi4QENDA3l5eQAAR0dHCIVCKCkpQSgUonfv3khISHil94dhGIZ5c7zxM9WSkhKUlZXBx8eH+z25XA57e3sAgJubG/bt2wdTU1PY2dk1ey9PiYfnO4Zk9TIopAokHUn67+co5IAUKMgvQEFSAdpQm/+G6X8oqytDja8GoCmYJRIJQkND4eHhARsbGxw+fBjZ2dmQyWSQSqXw9PR8KfeBYRiGefO98aHavn17GBoaYv/+/S/882+//RampqYoKirCzZs30atXL+7PtPhakMgl0IIWVDRUwFPhwWGqA1R1VLnXNEoacfnyZQBAeVk5Ll26BCcnJxgZGgEAlKCEcyfPYdmJZSguLkZVVRUAoG/fvhAIBBg+fDgCAgKgqqqKAwcOcH/OMAzDvH/e+PKvtbU1NDQ0cPr0aTQ2NkKhUCA7Oxvp6elISEjAzz//jMWLF2PRokXYu3cvSktLAQD6+vow5BmisbERQNP+0w6dOyDneg6kdVIAQGN1I+rz65saj/5zuJK0UYr70fdx9dpVFBYXgsfj4UroFaSmpqK8vBxyuRxyuRxVVVXIz8+Huro6VFVVkZaWhhs3bryWe8QwDMO8Gd74UOXxeFizZg0yMzMxffp0jBs3Drt27UJZWRm2bduG2bNno127drC3t8fAgQOxfft2EBGcnJzgYuuCnNAcRO+MBgB06t0J6vrqSDqahAc7HiD1u1Q0lDVAXUMdLi4uXLACQH1dPdKy01CRWQFtdW1oajbf51pVVYXY2FiMGTMGHTt2hK+vLwwMDNDQ0PAqbw/DMAzzBnnnjykMeRiCPdF7YKxj/IeH5JeXlSPqbhTkMnnTjxsaAL4D8IKK7rJly5CZmQkDAwNIJBIUFBQgIyMDCoUCHTt2hLOzM3r37g1nZ2cYG//xtRmGYZi33zsfqg2yBvj+4IukkiQYahn+YbgVFRXhYcxDyDXkwG0AiS1fo6SkhLKyMigpKeHevXuIjIxEQkICrK2tYWxsjIqKCjx69AjJycmQyWTQ0dGBk5MTPD094erqCgsLC6iqqrb8YIZhGOat9s6HKgBUNFRgfsR8JJYkor1me6gqvzjQiAg1jTXIys9C3vk8yKJ/+9xfDQ0NeHl5Yfv27TAwMEB9fT0ePnyIqKgo3L9/HyYmJnB1dYWRkRGePHmCW7duIT4+Ho2NjVBRUYGNjQ169OgBNzc3iMVi6OmxJ+IwDMO87d6LUAWAemk9vr7/Nc4kn0GjrBEafA1o8DXAU+JBppChSlIFIoKJjgn83Pwwtc9U5OTk/O5nqqiogM/nY+jQodi6dSvMzMwAADKZDAkJCYiMjERUVBQ0NTXh4eEBV1dXqKioICYmBjdu3EBMTAy3BmtiYgI3Nzd0794dtra2MDU1ZSVjhmGYt8x7E6rP1TbW4lrmNZxKPIWimqKmLTd8LTgZOcHHwYd7QHl4eDiGDRv2h5/H5/PB4/HA4/HQr18/fPXVV7CxseH+nIiQnp6OqKgoREVFoa6uDt27d4eHhwfs7e2Rl5eHuLg43L59G9HR0aitrYWSkhK0tLTg7OwMNzc32NnZwcrKipWMGYZh3nDvXaj+WeXl5TA3N0dlZWWz3+fz+ZBKpS1er62tzT3mzdPTE8HBwejSpUuL1+Xl5XEz2Ly8PDg7O8Pd3R3Ozs5QV1dHXl4eEhISuBCurKyEiooKiAj29vZcyNrZ2bGSMcMwzBuGherv8PDwQFRUFICmrT18Ph8SiQQaGhqQSCQgIhARlJSUoKSkBCKCgYEBampqQERwdXXFhg0b8MEHL350XFlZGdfolJycDAcHB7i7u6N79+7Q09MDEaGwsBCJiYmIiYnBnTt3UFJSAjU1NUilUq5k/DxkWcmYYRjm9WKh+jsOHDiA06dPIzAwEMOHD0d1dTVUVVVRW1sLVVVVKCsro76+ngtWZWVlAE3dwebm5igoKIBCoYCjoyMCAwMxcODA37xWbW0tHjx4gKioKDx8+BACgQDu7u5wd3dHx44dudeVlJQgISEBcXFxuHfvHnJzc6GhoQGZTAYNDQ04OzvD3t4etra2sLa2ZiVjhmGYV4iF6p/0yy+/YNiwYZBIJNDU1ERFRQVUVFTQvn17FBcXA2g6k5jH40FVVRVSqRQaGhqws7NDcnIyFAoFxGIxVqxYgVGjRoHH++1zN6RSKeLi4rgSsJ6eHjw8PODu7g6RSNRsNlpWVoakpCTEx8fj/v37yMrKgqamJogIUqkU9vb2XMja2dlBX1//pd8rhmGY9xUL1b/gzJkzmDZtGuRyOXR0dFBaWgoigrW1NTIyMgCAOxaRz+dDQ0MDVVVVMDIygqOjI6KiokBEEAgEWLJkCSZOnPi74Qo0NTqlpKQgKioKkZGRkMlk3AzW3t6emx0/V1VVhcTERK5knJ6eDi0tLSgrK6O2thbGxsZwcHDgQrZTp06sZMwwDNNKWKj+Rbt27cKqVaugpKQEPT09lJSUQCqVwtbWFnl5eVz3rlQqBY/Hg4aGBpSVlVFVVQUHBwdYWlri+vXrICJ07NgR8+bNw6xZs6Ci8sfPNiAi5Obmco1OhYWFcHV1hbu7O7p16wY1NbUW76mtrUVSUhISEhIQHx+P5ORkaGtrg8/no6GhASoqKs1mslZWVi/8HIZhGOaPsVD9G5YtW4b9+/dDRUUF+vr6KCkpQX19PQQCAVRVVZGVlQU1NTVUV1dDSUkJfD4fHTp0QFlZGSQSCQYPHgxtbW1cunQJANCmTRv4+vrCz88P6urqf3ocz549w927dxEZGYm0tDR07twZHh4ecHNzg46Ozgvf09DQgOTkZCQkJCAhIQEpKSnQ1NSEuro6GhsbUVtbCwsLCy5kbW1t0aZNm1a5bwzDMO86Fqp/g0KhwMSJExEeHg4+nw99fX2Ul5ejsrISbdq0gbu7O65duwZlZWVIpVJIJBIoKytDVVUVAoEA6enp4PP58PX1RX5+Pn7++Wdub+qUKVOwZMkSaGtr/6Ux1dTUIDo6GlFRUYiNjYWFhQVXJjYwMPjN9zU2NiI1NZUL2eTkZGhqakJLSwsKhQLl5eXQ19fnAtbW1hYCgYCVjBmGYV6AherfJJPJMHjwYMTGxkJNTQ26urqoq6tDQUEBNDQ0MGHCBISFhaGhoQG6urooKiqCsrIyF8L6+vpISUlB+/btERgYiOvXr+Pq1atc+Pr4+GDFihV/a5bY2NiI2NhYREVF4d69e2jXrh3X6PRHgSiTybjH6iUkJCApKQmamprQ1dUF0LRmK5FIIBaLuZC1trb+SzNshmGYdxUL1X+gpqYGvXv3xtOnT7nZnZKSEh4/fgwVFRWMGzcOd+/eRVZWFvT19bnyr4qKClRUVODg4IDCwkLk5ORALBZj69atCAkJwY0bN7itMF5eXvj8889hbGz8t8aoUCiQlJTENTrxeDxuBmtra/uHjVJyuRwZGRlcyCYmJkJDQwNt2rSBsrIy6urqUFRUBDMzMy5k7ezs0LZt2781XoZhmLcZC9V/KD8/H3369EF1dTW0tLSgpqYGfX19PHz4EEpKSujfvz/09PRw8eJF8Pl86OnpITs7G3w+H8rKylBXV0fPnj1x48YNVFZWYuDAgQgMDERQUBBu374NdXV1SKVSDB48GKtXr4ZQKPzbYyUiZGdnc41OpaWlcHNzg4eHB5ycnP7UnlaFQoGsrCwkJiZyQauqqgoDAwOoqqpCIpFwe2efl4zt7OxgZmb2hwHOMAzztmOh2goSEhIwbNgwyOVy6OnpgcfjQSgU4vr16wAAW1tb+Pj4IDg4GDKZDEKhEOnp6ZBIJFBTU4OKigqMjY3h5OSE8+fPg4jw2WefYeLEiQgMDOQO5a+rq0Pv3r2xevVq2NnZ/eNxFxcXczPYjIwMdOnSBR4eHnBxcfnTa7rPO5Lj4+O5oAWATp06QUNDA1KpFPn5+aiqqoKNjQ0XsqxkzDDMu4iFaiu5fv06Jk2aBABo3749pFIp3N3d8d1330GhUKBDhw4ICgrC+vXrUVBQAD09PaipqeHx48fQ0NAA0LS3tXfv3qivr8eVK1ego6ODnTt3wtHREQEBAbh37x50dXVRVVUFV1dXrFq1Ci4uLq0y/qqqKkRHRyMyMhJxcXGwsbHhjkxs3779n/4cIkJBQQESExMRHx+PhIQENDY2wtLSEtra2lAoFCguLkZWVhY6derUrMu4Xbt2rfJdGIZhXhcWqq3o+PHj8Pf3B4/Hg7GxMWpqajBixAjs3bsXMpkMWlpaCAoKwuXLl3HlyhXweDx06dIFv/zyC/fnzxuVJk+ejB9//BHx8fEQCAQ4ffo0lJSUEBgYiPv376Nt27YoLy+Hvb09Pv/8c/Tq1avVvkdDQwNiYmIQFRWF6OhoGBkZwd3dHR4eHn/rfOHi4mKuVJyQkICamhpYW1tzIVpeXo6UlBRoaGg0C1mBQMBKxgzDvFVYqLayzZs3Y9euXVBSUoJAIEBZWRkmTZqE4OBgNDY2Qk1NDX5+fmjfvj3Wr18PIoJIJEJVVRXS09Oho6MDhUIBNTU1mJmZYdKkSdi4cSMKCwvRvXt3XLhwAVlZWQgMDERMTAw6dOiA0tJSiEQiLFu2DEOGDGnV7yOTyZo1OqmpqXGNTjY2Nn9ra01ZWVmzkC0rK4ONjQ2MjY3B5/NRUVGBtLQ0lJeXw8bGhgtZGxsbVjJmGOaNxkL1JViwYAF+/PFHSKVSWFtbIz8/HwsXLsQXX3yB+vp6qKqqYtCgQfjss88wc+ZMVFRUgM/nw9PTE+fPn4dCoYC+vj6e/18zbNgwWFhY4Msvv4REIsH48eOxf/9+xMbGIjAwEHFxcTA2NkZxcTGMjIywYMECeHt7t/osj4jw5MkT7kziqqoqdO/eHe7u7ujcuTP4fP7f+tzKyspmjU8FBQUQi8UwNzeHuro6amtrkZ6ejoyMDJiamjbbM/tXStMMwzAvGwvVl0ChUMDHxwfJycmorq6Gg4MDMjMzsXbtWixatAg1NTXg8/mwtrbG4cOH4e/vj8jISABA79698ejRI2RkZKBNmzZQKBTQ0NCAiooKVqxYgcjISBw9ehSqqqpYu3YtFi5ciOjoaAQEBCAxMRECgQCFhYXQ0dHB3LlzMWXKlJdWQi0oKOBmsDk5OejWrRs8PDzg7OwMTU3Nv/25NTU13NGKCQkJePr0KSwtLSEWi6Grq4uGhgY8efIEycnJUFNTa7aVRygUspIxwzCvDQvVl6SxsRGDBw9GTU0NSkpK0LVrV6SkpGDHjh2YN28eysrKoKysjLZt2+L48eO4cuUKduzYAT6fj/bt26Nbt244fvw4AMDAwAASiQQ8Hg/W1tZYt24dli9fjsjISBgYGODIkSPo27cv7t69i8DAQCQlJcHKygoFBQXg8XiYOXMm5syZ86fOF/67KioquGfDJiYmws7ODu7u7nBzc/vHe1br6+uRlJTEzWYzMzMhFAphb28PQ0NDyGQyZGZmIjk5GaWlpc26jG1sbLhGMIZhmJeNhepLVFFRgX79+kFXVxfZ2dno3r07YmNjceDAASxYsAC5ubncw8937NgBAwMDzJw5EzKZDBKJBBMnTsSZM2eQnZ0NAwMDSKVS6OjooK6uDmPGjMHHH3+MiRMnIjs7Gw4ODvj+++9hZmaGO3fuYN26dUhJSYGdnR0KCgpQX1+PyZMnY+HChS99XbK+vp57Nuz9+/fRqVMnbh3WxMTkH3++RCJBamoqt40nPT0dpqamcHBwgLm5OZSUlJCTk4OkpCQ8efIEJiYmzRqgOnTo0ArfkmEYpiUWqi9ZTk4OBg0aBHNzc6Snp6NHjx64d+8ejh49iqVLlyIlJQUAwOPxMH/+fPj6+mLChAlITEwEEcHFxQWGhob49ttvwePxYGZmhvLycmhra0NFRQXr169HTU0NFixYgOrqagwbNgwnTpyAuro6bt++jXXr1iE9PR1dunRBQUEBnj17Bh8fHyxfvvwvny/8d8hkMsTHx3PrsFpaWtyRiZaWlq1yhrBUKkVaWhq3jSc1NRWGhoZwcHCAWCyGpqYmcnNzkZSUhOTkZPD5/BYl4/99hB7DMMzfwUL1FYiJiYG3tzecnJyQlJSEnj174vbt2zh58iQCAgJw9+5dyOVy8Pl8DBgwAPv27UNwcDD27dsHPT09AICfnx82b96MgoICmJiYoLGxETo6OqiurkbXrl2xfft2/Otf/8Lu3buhpKSEhQsXYt26deDxeLh58ybWr1+PJ0+ewM3NDYWFhcjOzsaoUaPw+eefv7JmHyJCWloaF7D19fXcDNbBwaHVytMymQxPnjzhjlVMSkpCmzZt4ODgAHt7e7Rv3x5FRUVcyD579gzW1tbNSsb/ZE2YYZj3FwvVVyQiIgJz586Fs7MzUlJS0KtXL1y7dg1nzpzBjh078OOPP0Iul0NTUxPm5uYICwtDbGwsZs+eDS0tLW5rTnFxMY4fPw4VFRVYWVkhPz8fRkZGKC0txYwZM+Dn54dx48bh8uXL0NPTw+7duzFmzBgAwL///W+sX78emZmZ6NmzJwoLC5GSkoKhQ4di1apVrVKa/Styc3O5gM3Ly4OLiws8PDzQrVu3Vi1RKxQKZGZmNju/WFtbG/b29lzJ+NmzZ0hOTkZycjKePHmCjh07tigZsyfzMAzzR1iovkIHDx7Ehg0b0KVLFy7YfvrpJ5w9exbHjx9HaGgoiAi6urrg8/k4efIkOnTogAkTJiAnJwcAYGpqilmzZsHf3x+lpaUQCoWQyWTg8/lcKG/ZsgUmJibw8vJCSkoKF9JOTk4AgGvXrmHDhg3Izs5G3759UVxcjJiYGPTt2xerV6+GhYXFK783ZWVl3LNhU1JS4ODgwD0b9vlsvbUQEXJycprtlVVRUYGjoyMcHBxgY2OD+vp6LmSTkpKgoqLSLGTNzc1ZyZhhmBZYqL5i69atw7Fjx2BjY4OioiL07NkT33//Pc6dO4dr164hKCgIPB4POjo6qK+vx65duzBkyBCsXr0ax44dg6mpKYqLi7F27VpcunQJZ8+eBZ/PR+fOnZGeng6RSIScnBz07t0b27ZtQ1RUFKZNm4bS0lL06tULYWFhXDfulStXsHHjRjx9+hSDBg1CaWkp7ty5Aw8PD6xevRoODg6v5R7V1tbiwYMHiIyMRExMDIRCIVcmNjIyavXrERHy8/ObhaxcLoe9vT0cHR1hb28PPp/fLGRLSkpgbW3d7GAKLS2tVh8bwzBvFxaqr8Hs2bMRHR0NQ0ND1NXVwcPDA2fOnMHZs2eRmJiIZcuWQVVVFaqqqqitrcXChQuxaNEihIeHY+HChTAyMsLTp08xZMgQDBgwAAsWLEBFRQXX+NPQ0IC2bduisLAQixcvxsyZM7F582Z8+eWXkMlkmDx5Mv71r39xa5iXLl3Cxo0bkZeXh48++ggVFRW4evUqnJycsGrVKri5ub22e9XY2Ii4uDiuTPz8IfAeHh5cp29rI6IWRyvW1dVx5WIHBwe0a9cOaWlpXNA+fvwYRkZGzRqgDAwMWMmYYd4zLFRfA4VCgVGjRqGqqgo8Hg+qqqpwcXHBqVOncPr0aRQVFWHWrFnQ0NCAXC5HY2MjBg0ahD179iA/Px8TJkxAeXk5+Hw+eDwedu7ciW3btiEiIgJqamrw8PDAo0ePYG1tjby8PBgYGGD79u0Qi8WYPn06Tp8+DQ0NDXz55ZeYO3cuN66IiAhs2rQJBQUFGD16NGpra/HDDz/A2toaK1asQJ8+fV7jXWu6b6mpqdyj6+RyOTeDtbOze6nl2GfPnjU79am8vBx2dnZcyJqZmSE7O7vZbJbH4zULWXNz85e6V5hhmNePhepr0tDQgAEDBsDQ0BCFhYXcFpATJ05wT7bx8fGBuro6qquroaGhgU6dOuHUqVPQ1dXF0qVLce7cOdjb2yMxMRErVqyAvr4+Fi9ejJqaGtja2kJDQwP5+fmwtrZGfHw8PvroI2zatAllZWXw9vbGgwcP0LFjRxw7dgw9e/bkxvbDDz8gKCgIRUVF8PHxQUNDA86ePQtTU1MsWbIEI0aMeI13rsnzddHnM9ji4mK4urrCw8MDXbp0gZqa2ku9fkVFBdf0lJCQgKKiIojFYi5kLS0tUVpa2ixki4uLYWVlxYWsWCxmJWOGecewUH2Nnj17hv79+6NHjx6Ijo6GnZ0dRCIRjh49irCwMOjp6cHLywtKSkooKyuDkZERpFIpTp06BWtra5w5cwb+/v6ws7NDWloanJycsHHjRixatAg3b96Empoa+vXrh7t370IoFKKxsRGlpaUICAjAmDFjcOvWLUyYMAH5+fno2rUrTp8+DTMzM258Fy5cQHBwMEpKSjB+/HjI5XKcOnUKbdq0wfz58zF27Ng35kjAkpISLmAfP36Mzp07w8PDA66urtDR0Xnp16+urkZSUhJ3IEVubi6srKy4kLWxsYFUKkVqaiq3lSc9PR2GhobNGqAMDQ1ZyZhh3mIsVF+zJ0+eYMiQIRg/fjzOnj0LT09PGBsbIzQ0FKdOnYKpqSm8vLxQW1uLiooKiEQiPH36FF9//TUGDBiAzMxMTJgwgXt0XHFxMfbu3YvU1FSsXr0aDQ0NsLe3R7t27ZCQkAB3d3dER0fD2toau3btgrm5Ob7++musXLkSdXV18PLywqFDh5rt0zx37hy++uorbluPiooKDh8+DDU1NcyePRvTp09/Y8IVaAq4+/fvIzIyEo8ePYKlpSVXJn5VpynV1tYiJSUFCQkJiI+PR3Z2NszNzbnGJ1tbW/D5fGRmZnIhm5ycDCJqFrIikYiVjBnmLcJC9Q1w9+5d+Pj4YMmSJdizZw+8vLygo6ODgwcP4sSJExCLxfD29kZeXh5qampgZWWF1NRULF++HHPnzoVMJoOfnx8uX74MT09P3LhxA1OnTsXUqVMxffp0PHjwAKqqqhg5ciRu3bqFdu3awcjICNHR0Zg8eTK++OILAMD8+fNx6NAhKCsrw9/fH6tXr24WlmfOnMFXX32FiooKTJs2DVpaWggJCYFUKsX06dMxd+5cqKqqvq7b+EISiQSxsbGIiorCvXv30KFDBy5gBQLBK5sVNjQ0cCGbmJiIx48fo1OnTnBwcICjoyPs7OygqamJ4uLiZiFbWFgIS0tLLmTFYvErOQmLYZi/h4XqG+L8+fNYtGgRAgMDsX79ekybNg0AEBISgpMnT6JLly6YOHEiYmNjoaSkBAMDAzx9+hTDhw/Htm3bwOPxcPToUfzf//0fPDw8kJCQAAMDAxw+fBhnzpzBhg0b0NjYiM6dO0MgEODGjRvo27cvkpKS0NjYiKCgIAwYMABlZWUYM2YMbt68iTZt2mDv3r0YNWoUN06FQoGzZ89i8+bNqK6uxowZM9ChQwfs2bMH5eXlmDBhAhYvXvxGnkgkl8uRnJzMPVlHWVmZC1ixWPxKZ9uNjY1IS0vjGp9SU1NhbGzMnfrk4OAAXV1dbsb7PGTT0tJgYGDQ7PF3RkZGrGTMMG8IFqpvkD179mDr1q3YtGkTli9fjiVLlqC2thb79u3DiRNKOFR8AAAgAElEQVQn4OzsjIULFyIiIgK6urpQUVFBQ0MDTE1NcerUKWhrayM1NRUTJ06Euro6jIyMEBMTg+DgYHTu3BlTpkxBUlIS1NTUMHbsWNy+fRsKhQI9evTAjz/+CHd3d2zfvh0GBgaIi4vDmDFj8OTJE1hbW+P06dOwtbXlxqpQKBAWFoYtW7agtrYWs2fPhomJCXbu3Inc3FyMGTMG/v7+0NfXf4139LcRETIzM7l12LKyMu7ZsE5OTq98xi2TyfD48WMuZJOTk9GuXTvuQAp7e3u0bdu22RN5njdAKRSKZiFrYWHBSsYM85qwUH3DrFy5EhcuXMD69eu5mWtJSQn27NmD48ePo3v37li/fj0OHjwIU1NTlJeXo127dqipqUFYWBjMzc3R0NCAOXPm4JdffsGIESNw/vx5DBo0CFu3bsX27duxbds2KBQKdO7cGZ07d8a5c+fQq1cv1NbWIjY2Fn5+fpg/fz54PB5OnTqFefPmobKyEn379sWJEyfQpk0bbrwKhQKnTp3Cli1b0NDQgNmzZ0MsFmPz5s1IS0uDl5cXPv/8cxgYGLzGu/rHCgsLcffuXURFRSEzMxNdunSBh4cHXFxcXkuHrlwub3G0oq6uLncghYODAzp06AAiQklJCVcyTkpK4krGz0NWLBa/kmYthmFYqL6RJk+ejNTUVPj7+2PJkiXYunUrMjMzsXv3bi5YQ0JCsGHDhmadv3FxcThw4AB69+4NANxrhgwZgri4OEilUoSGhkKhUGDq1KnIzMyEqqoqpkyZgsjISBQVFeGTTz7B+fPnoaWlhR07dsDFxQUKhQJffPEFduzYAYVCgRkzZmDr1q3NZkMKhQLHjx/H9u3bIZFIMGfOHHTt2hWbNm3Co0ePMGjQIKxatapZd/GbqrKyEtHR0YiMjER8fDxsbGzg4eGB7t27o127dq9lTESE7OzsZgdSqKmpcd3FDg4OXBm4trYWqampXMimpaWhQ4cO3GzWzs6OlYwZ5iVhofoGUigUGDZsGABg6tSpWL58Ofbv34/ExETs2rUL3377LT744AOcO3cOixcvRrdu3fDw4UP06dMH165dwxdffIHp06cDAOLi4jBlyhS0b98elpaWiIiIwIoVKzBz5kysWbMG+/fvBxHB0dERffr0waFDh9CtWzeYmJjg/PnzGDJkCDZv3gxtbW1UV1dj0qRJCA8Ph5aWFjZt2oRZs2a1GPvRo0exY8cOSKVSfPbZZ3B3d8fGjRsRGRmJ3r17Y9WqVbCxsXnl9/XvaGhowMOHD7lnw3bs2JFbh+3UqdNrGxcRIS8vj+suTkhIAIBmIWtqagolJSXI5XJkZWU1a4CSSqXNuowtLS1ZyZhhWgEL1TdUTU0NBgwYAGtra/Tq1QsbNmzAsWPHcP/+fWzfvh2HDx+Gp6cnbt++jSlTpqBr1664f/8++vfvj+vXr8PLywvBwcHg8XioqanBzJkzERsbi6lTp+LgwYPo3LkzQkJCkJaWhlmzZiE/Px8qKirw9fVFbGwsHj16hGnTpuHWrVvIyMjA6tWrMXHiRABAeno6xowZg8TERJiYmODIkSPw9PRsNn6FQoEjR45g+/btkMvlmDdvHvr06YMvv/wS165dg5ubG1atWoUuXbq8jtv7t8hkMiQkJHBl4uenV7m7u8Pa2vq1zvyICIWFhdxhFPHx8ZBIJM2OVhQKhdwYS0pKuJlscnIy8vPzIRKJmq3NspIxw/x1LFTfYIWFhejfvz8++ugjGBoaYteuXTh79ixu3ryJbdu2ITQ0FD179kRiYiI++eQTWFpaIjk5Gd27d0d8fDxEIhGOHTvGdeLu2rULW7Zswbhx4xAbG4unT59i7969cHV1xYoVK3Ds2DEoKSnBwcEB3t7e2LFjB8zMzDBw4ECEhITAzMwMO3fu5GaZERERmDFjBkpKSuDq6oqTJ0+2mL0pFAocOnQIu3btAtD0XNiBAwfiyy+/REREBBwdHfH555+jR48er/bm/kNEhMePH3ONTjU1NVyjU+fOnd+IWV9JSUmzNdnKykrY29tzQSsSibijHevq6pCWlsaFbGpqKtq1a9dsNmtsbMxKxgzzB1iovuGSk5MxYsQILF68GGVlZThy5Ah++OEHXLlyBV999RUOHTqE3r17Izc3F15eXmjXrh2Ki4thbGyMhoYGroHp+VpmdHQ0pk+fDoFAAFdXVxw8eBBTp07FF198gTt37mDOnDkoKysDj8eDn58fHj9+jCtXrmDixIkoKSlBREQEPv30UwQGBkJVVRUKhQJbtmzB+vXrIZFIMGbMGOzdu7fFlhqFQoGDBw9i165d4PF4mD9/PoYNG4agoCCcO3cOFhYW8Pf3x4ABA17Hbf7H8vPzuYDNycmBs7Mz92zYN2V7UVlZGXfqU0JCAp49ewZbW1uuu9jKyor7YUAulyM7O7tZA5RUKoVYLG5WMubz+a0wMgmAOwDyAdQA0AHQCYA7gNb4fIZ5dViovgVu3ryJyZMnY+vWrbhz5w4iIiIQHh6O8PBwBAcH4+DBg/jwww9RUVGBkSNHgoigpKQEmUwGCwsL3L17F4cOHeJmg1VVVZg8eTLS09OxbNkybNu2DR06dMDhw4fRtm1bLFy4EOfPnwePx4OdnR1mzZqFoKAgqKqqYs6cOThw4AAqKyuxceNGbu23oaEBvr6++O6778Dn87Fy5Ur4+/u32PupUChw4MAB7N69G3w+H/Pnz8fIkSOxZcsWnDx5EkZGRli8eDFGjhz5Rp3S9FeUl5fj3r17iIyMRFJSEuzs7ODu7o7u3bs365x+3aqqqpo9JCA/Px82NjZcudja2rrZ1qJnz541C9n8/HyYm5s3Kxnr6ur+hREUADgP4CSAegAyADwABEAZgDaAcQA+AvBmd48zzHMsVN8Sp06dwooVK3DixAmEhobi7t27uHTpEs6dO4egoCCEhISgb9++aGhowNixY5GXlwdTU1NkZGRg6NChOHXqFNauXcutiwJAcHAw9uzZg9mzZyM5ORl37txBcHAwRo0ahYiICCxatAh1dXUAgIULF6KkpAQnTpzAyJEjIRAIsHv3bnTt2hU7d+6EsbExACA3Nxc+Pj64d+8e2rVrh/3797/wAH6FQoF9+/Zhz549UFNTw8KFCzF69Gjs3LkThw8fho6ODvz8/DB+/Pi3NlyBprLqw4cPERkZiQcPHsDMzIxrdHp+z94UtbW1SEpK4kI2JycHFhYWXMiKxWKoq6tzr6+vr2/RZdymTZtmXca/XTK+BWAFgEYAbQC86AEIDQAqAGgC2ALApdW/M8O0Nhaqb5GtW7di7969+PHHHxEQEMCVZk+dOoUvv/wSISEh6NevHxQKBaZPn4579+6hR48euH79OqZPn46QkBD4+Phg3bp1XFDdvn0bs2bNgoODA/r374+goCAMHjwY27Ztg0Qiwbx583D58mUoKytDLBZj6dKl3JNuVq1ahYsXL+LOnTuYPXs2li5dyn3uL7/8gkmTJuHp06ewtbXF8ePHYW9v3+I7KRQK7N27F3v27IG6ujoWLVoEb29v7N+/HwcOHACPx4Ovry9mzZr1Uh/t9ipIpVLEx8cjKioKd+/ehba2Nhewz5+F+yZpaGhAcnIyF7IZGRkQCARcyNra2jbbw6tQKJCVldWsAUoikTR7/J2FhQVUVSMBLEVTmffP7AGuAVAH4F8AXF/GV2WYVsNC9S2zZMkSXLlyBT///DNmzZqFiooK/PTTTzh27BjWr1+P/fv3c+uSy5cvx7lz5+Dl5YWwsDD4+vri+PHjEIvF+Pbbb7lZR1lZGfe0mrVr1yI4OBgymQyHDh2Cra0tzpw5g+XLl0OhUEAul2PhwoUAmhqfevbsidGjR2Pt2rVQUVHB1q1b8cEHH3DjPXDgAJYvX47a2loMGjQIoaGhaNu2bYvvJZPJ8PXXX3PrsUuXLsXHH3+Mw4cP4+uvv0Z9fT2mTp2KefPmNZstva2ICGlpadyRiRKJhAtYe3v7N6LR6X81NjYiNTWVC9m0tDSYmJhwIWtvb9+iY/jZs2fNTn9qbEyFv38c+Hw9aGq2hba29p9cl61BU3n4FIA3a4bPML/GQvUto1AoMH78eDx9+hTh4eHw9vYGj8fDhQsXcPToUaxbtw579+7FoEGDADTNbnft2oWJEyfi6NGj+PTTT7l/xMPCwrgSpEKhwLp16xAaGoply5bhyZMnOHv2LFasWAFfX1+UlZXB19cXd+7cgbKyMqytrREYGIjg4GAkJydj5cqVyM7ORmhoKPr27YstW7ZwRxQ2NjZi6dKl+OabbwAAs2fPRlBQ0AuDQyaTYffu3di3bx+0tbWxdOlSjB49GmfPnsWOHTu4x9AtWbLknTpYPjc3l3v4ekFBAVxcXODu7o5u3bq9sT9EyGQypKencyGbkpICAwODZtt4/veYSqk0EI2NYaioUENNTTX8/XMxfrweXFzaQUdHG9raOlBXV8eLJ+2FACYB8HsF304OIA1AOQAFmtZ3rfDnZtbM+4yF6ltIJpNh8ODB0NLSwrFjxzBkyBC0b98eZ86cwZEjRxAQEIA9e/ZgyJAhAICjR49i9erVmDp1Kk6ePAlPT09IpVLcvXsXR44cgYvLf9eqrly5gnnz5sHNzQ3e3t5Yvnw5nJycEBISAh0dHRw5cgRr1qyBsrIyGhsbsWjRInTo0AGBgYGwsbHBihUruKBdvnw5dwgFABQXF2PSpEm4fv06dHR0sGXLFkyePPk3v+POnTtx4MAB6OvrczPX8PBwfPXVV8jOzoa3tzc+//zzN/Z84b+rtLQUd+/eRWRkJFJTU+Ho6Ah3d3e4ublBT0/vdQ/vN8nlcmRkZHD7ZJOSkqCvr8897s7RUYh27T4FoA+g6QeqadNiMXNmR4hESqipqUZ1dQ0UCjm0tZsCVkdHG1paWv9ZVpCgaZ31MoCX9YNGBYAIAN8CKMN/G6eU/vPLC4A3ANFLuj7ztmOh+paqqqpC37594ezsjKCgIAwcOBA2NjY4fPgwF6y7d+/G0KFDATTtKf3ss8/g4+ODy5cvw8jICG5ubjh06BA2bdqEsWPHcp9dWFiICRMmoKKiAlu3bkVQUBBycnKwd+9efPDBB8jPz8esWbMQFxcHHo8HS0tLbNmyBdu3b8e///1v+Pn5wdTUFIGBgTAyMsLOnTubrafGxMRgwoQJSE9Ph0AgwLfffgsPD48Xfs/Gxkbs2rULISEhaNOmDZYtW4ZRo0bhxo0b2LRpE1JSUjBixAisXLkSRkZGL/emvwa1tbXcs2FjYmIgEom4MrGhoeHrHt7ver7G+rzDWF09Al5eySAygI6OLg4dKsPt25Xg85XA4ynBx8cY6em1iI+vRF1dI4yMePj4Y3Xo60uhqakJbW0dtG0rgZLSRmhpeb2EEf8IYD2ayswvWu+VoiloCcAwACsBvFmPOmTeAMS8tXJyckgsFlNgYCAVFRWRk5MTzZkzh4iIjhw5QkKhkC5evMi9Pjo6mqysrMjPz48GDBhA7u7uFBISQubm5hQYGNjss+VyOfn7+5NQKKSDBw9ScHAwCQQCCggIILlcTkREe/bsIYFAQGKxmAQCAW3bto1++ukncnJyIk9PT7p37x4tXLiQBAIBLV68mOrr65td4+TJk2RoaEiqqqrUq1cvys7O/s3vKpFIKCgoiKytralHjx70/fffc9/Jy8uLBAIBTZ8+nbKyslrl3r6JJBIJ3bt3j3bu3Enjx48nPz8/OnbsGD158oQUCsXrHt4fUijWUUNDFyosdKP0dFt6+NCERo7UpAsXzKmoyI3q6vrTpUvdqa5uCDU2DqX9+x3Jz09IMtlQqqzsRbm53Sg3tyOFhHSjmTNncn/fcnJyWuH7nyCibkTUn4iG/8GvoUTkTETziEjyD6/LvGtYqL7lYmNjSSQSUUhICGVnZ5OtrS0tX76ciIiOHj3aIljT0tLI0dGRxo8fTxMnTiQ7OzsKCwsjOzs7Gj9+PEkkzf+RuHjxIllaWtKMGTPozp075OTkRP3796e8vDwiIsrKyqJ+/fqRUCgkc3Nz6tevHyUlJdHixYtJIBDQihUr6MGDB/Thhx+Svb09nT17ttnny+VyWr16NWlra5O6ujpNmTKFampqfvP71tfX08aNG8nKyoo8PT2575aQkECffvopmZmZ0bhx4ygpKalV7u+bSi6XU2JiIn3zzTc0Y8YMmjZtGh04cIDi4+NJJpO97uH9Bn8i6kHPw0mhGE6TJxvT1asO9PixHcXEdKJbt/RJIhlERMOppmYwDR9uQDU1g+m/gdadFIoNlJmZSeHh4bRlyxaaPn06ffrppxQYGEjfffcdxcfHt/h7/PtuUFNIDqRfh2dR0QAaPtyAZLJh1DJYh1FTCK9tnVvDvDNYqL4DLl++TEKhkMLDwyklJYWsrKxow4YNRER0/PhxEgqFdP78ee71BQUF1L17dxo6dCitWLGCRCIRfffdd9SzZ0/q2bMnFRUVNfv87Oxs6tmzJ7m7u1NcXBxNmjSJLC0tuYCUy+X01VdfkZmZGTk6OnKz1gcPHlCPHj2oa9eudPXqVdq3bx9ZWlrSyJEjW8xKy8vLydvbm9TV1UlXV5eCgoK4GfGL1NfX0/r168nKyop69uxJ4eHhRESUkZFB06ZNI4FAQKNGjaL79++3yj1+kykUCsrMzKQTJ07QggULaNy4cbRt2zaKior6i+HysgUQkTv9OpymTetEMTE9iWg4yeXDaMuWTvTJJ7r0yScdaexYYxo+3IDy8389e3Qhoh0tPrm0tJRu375NBw4coEWLFtHHH39MS5YsoZCQEPrll1+ovLz8N8akIKKPiKh3i/H8fqg+n7G6ENFvV1iY9w8L1XdEaGgomZub0/379+nhw4ckEolo586dRNRUZhUKhc1midXV1dS/f3/y9PSk7du3k0AgoL1799K4cePIzs6OYmJimn2+XC6n+fPnk0gkopMnT9Lhw4dJJBLR3LlzuX+4U1JSyNPTkywsLMjCwoL69etHjx8/po0bN5JQKKQZM2bQ06dPacqUKSQUCmndunUtgjM1NZVcXFxIVVWVTExMms2yX6S+vp7WrVtHlpaW1Lt3b/rpp5+IiCgvL4/mzZtHAoGAhgwZQrdu3frH9/htUVRURBcuXKCVK1fSmDFjaMOGDXT16lWqqqp6zSMLpaYQenGoXrvmTr6+ZvTvf5tRfr4LN1NtHqrORHTmD6/U0NBAcXFxdOrUKVqzZg2NHTuWZs6cSVu3bqWIiAjKzs7+T8n4wX/GNKzFeP44VJ+H/LZWvUvM242F6jvkyy+/JBsbG8rKyqJbt26RUCik0NBQIiI6depUi2CVSCTk7e1NXbt2pW+//ZZEIhGtWbOGAgICyNzcvEWplogoLCyMRCIRzZs3j1JSUuiDDz6g7t27c+VWuVxOAQEB1KlTJ+rSpQsJhULatm0bPX78mAYPHkxisZjCwsLo1q1b5OrqSs7OznT9+vUW1wkPD6dOnTqRqqoqdevWjRITE3/3u9fW1lJAQABZWlrShx9+SJcvXyaiphmMv78/iUQi6tOnDzejfV9UVVXR1atXacOGDTRmzBhauXIlXbhwgYqLi1/DaPKJyJWaZnhNobRkiYgiItyIaDj9+KMr+fkJqbS0D92505G2b7f5n1AdTETdiajsL19ZoVBQVlYWRURE0JYtW2jGjBnk4+NDt2/3oGfPLKmysjdt3iymESMMafRoI/L27kinTzvT8OEGFBHhRpMmmdLEiSZ09qwzNQ/VgUTkSUR1rXGDmHcAC9V3zJw5c6hbt25UXl5OERERJBQK6cyZpp/sw8LCSCgUUlhYGPd6uVxOc+bM4cLO1taWpkyZwpWNN23a1OIajx8/Jnd3d/L09KTMzExavHgxCYVC2rt3L/eamJgYcnV1JbFYTJaWltSvXz/KyMiggwcPkqWlJY0ePZpyc3O5WezEiROppKSk2XXkcjlt3ryZ9PT0SE1Njby8vFq85n/V1tbSmjVryMLCgvr06UM///wzETXNzAMCAsjKyop69OhBYWFhv1tefhc1NDRQVFQUbdu2jT799FNauHAhnTx5krKysl5ho9NC+nUJOCrqA5oyxZTGjjWmkye70bp1NuTt3ZE+/bQDHThgSMOG/TpUXYno/1ptJGVlZVRR0YVycuwpMVFE0dFGNGqUDoWHW1Fp6Qf09OmHNHy4AQUH21J9/RDKzOxL48YZczPZX6/zEr3ba/jMn8dC9R0jl8tp1KhR9OGHH5JEIqHTp0+TUCikS5cuERFx//3rYCUiCggIIJFIRGFhYdS9e3caPHgwXb9+ncRiMU2ZMoWkUmmz10skEpo5cyZZWlrS999/T+Hh4WRtbU1jx46l6upqIiKSSqXk7+9PnTp1IhcXF27WWlRUROPGjSORSES7d++m7OxsGj16NFlYWNDu3btbhF11dTVNnz6dNDQ0SFtbm5YtW/aHa4XV1dW0evVqEolE1K9fP242XF9fT8HBwWRra0vOzs506NCh9y5ciYhkMhnFxcXR/v37adq0aTRz5kz65ptvKCkp6SXfj+fl1qZmpN/6pVAMp7Q0G8rOdqL/zghdqXXDS0FN5eSm8q5cPpQmTDCiS5fElJpqTZcvG1LPnmp086YFN66DB51oxw77/xmvOxHda8VxMW8zFqrvoPr6eurVqxd5e3uTXC6nQ4cOkbm5Od2+fZuIiM6ePUtCoZBOnjzZ7H179uwhoVBIR44coaFDh5Krqyvdv3+fPDw8qE+fPlRaWtriWocPHyahUEjLli2jgoICGjp0KDk4OHDXIiK6c+cOdenShRwdHcnKyoqbtV68eJHs7e2pb9++lJKSQhcvXiRHR0fq2bNnizVdoqaGqd69e5Oamhq1b9+eDh069If3orq6mlauXEkikYj69+9PN27cIKKmwN+9ezd17tyZHB0dadeuXS1+cHhfKBQKevLkCR09epTmzZtH48ePp507d1J0dPRLanT6hpo6Z38/WKXSwRQTY0qVlR7/ef2plzAWNyIawl3z12uqhYUDaPDgtnT7tiFJJE2dwT/84Epr1lhRy1Bt+feVeT+xUH1HlZWVUZcuXcjPz4+IiHbu3EkWFhZcWH3//fcvDNbnJeLdu3fTjBkzSCwWU1RUFHl7e5OjoyMlJCS0uFZSUhI5OztT3759KTc394V7Wuvr6+mzzz4jMzMz8vDw4Gat1dXVXEPRmjVrqLa2lvz9/UkgENC8efO4We+v3bhxg6ysrEhVVZWsra3pl19++cP7UV1dTZ9//jmJRCIaOHAg17gkl8spNDSUXFxcyNbWljZt2tRiP+37pqCggM6dO0fLly+nsWPH0qZNm+jf//737251+msURHSAmmaJPejXa6z/211bXd2ZMjLaUV3dN/95X2sbSkT96EWh+rxR6e5dW8rIcCCi4XTo0P/OVIdR0ww68yWMjXkbsVB9h2VkZJC1tTUFBQUREdG6devI2tqaUlJSiIjowoULJBQK6ejRo83ed/36dRKJRBQQEEDr1q0jc3NzunjxIhdKP/zwQ4tr1dfX06RJk8jKyoouX75M0dHR5OTkRAMGDOD2tBIR/fzzz2Rvb0/dunUja2trbtYaFRVFrq6u5OrqSlFRUZSSkkIDBgwgsVjcIviJmsJw//791L59e1JTU6O+ffv+7uERz1VWVpK/vz+Zm5vToEGDuBm1XC6n06dPk6enJ1lZWdEXX3zxwkB/31RUVNDly5cpMDCQPvnkE/riiy/oxx9/pGfPnrXCp0cR0SxqKge7ENEHRNTrP//7/Pc+o7NnV9PGjRtf0rrvAfp1R/KvG6eeh2pQkA1FRnak1FRPGj/ehB4+/PWaai8i8qaXE/jM24iF6jsuOjqazM3NueD09/cnOzs7LoAuXrzIlXx/7dGjRyQWi2nOnDl06NAhbstNaGgoCYVC2rp16wuvt3fvXhIKhfR///d/VF1dze1pPXfuHPea6upqmjp1KgmFQurVqxc3a5VKpRQQEEACgYDmzp1LtbW1FBoaSlZWVjRkyBB6/Phxi+vV19fTwoULSUtLizQ0NGjGjBl/KgzLy8tp2bJlJBQKafDgwRQVFcX9WUREBPXr149EIhEtWbLkD5uj3hf19fX0yy+/0JYtW8jHx4eWLFlCYWFh9PTp03/4yVlE9C8iWkBE06mpmWkPEeUSUdP6/bx587ims9ZVRE0zzaYS8K8bp86e/W/3r7d3Wxo5Uo9On/7f7l9XImr5Qybz/mKh+h54HpxXr14lIiJfX19ycnLiDnkIDw8noVBIhw8fbva+rKws6tKlC33yySf0008/kYWFBa1YsYJu3bpFVlZW5Ovr+8KmlpiYGHJycqLBgwdTSUkJt4f2s88+a7ZG9/3335NYLCYPDw8Si8XcrDUlJYX69u1L9vb2dPHiRaqsrCRfX18SCAS0evXqF659Pl/PVVdXJ319fdq8efOfargpLy/nupeHDh3aLFxv3bpFQ4cOJYFAQHPmzGk2437fSaVSiomJoa+//pomT55Mvr6+FBoaSikpKS9lRpmZmUnjxo2j/Pz8Vv9soiXUFI6/vb4rkw2hBw9MqLa2369+vw8R9SSi2pcwJuZtxUL1PbFv3z4SiUQUHx9Pcrmcxo8fT66urtxJM8+D9fm+1udKS0vJ09OT+vfvT/fv3ycHBwcaP348ZWRkkKurKw0cOPCFp9VU/z975x0V1dnt4WdmaEPvvQqIWFGxYRQbIqCAEqJGgxijsSQmRsUae4mJRjR2YxJji8aoiUHFci1o7L0jCoiCNOlthpn3/oFOQiT59MYvN2WetWaxOOU9Zc6affa79/7tkhIRHR0tfH19xbFjx0RKSoqmpvXmzZua7QoKCkS/fv00Wbq/9FqXL18u6tWrJ/r16ydyc3PFqVOnRLt27USzZs00Ig+/5vz586JJkyZCT09PuLi4iISEhOe6P/n5+d/UQPoAACAASURBVGLMmDHC3d1dhIWFibNnz2rWXbhwQURFRQlXV1cRGxtbp8f8b0atVovk5GTx9ddfixEjRoiYmBixfPlyceHChZea/LVr1y4xduzY/4IMY46oqYFtJ37PsGZm+ovkZJ8n/3cTNdPGx+scUcu/F61R/Rfx4YcfCl9fX/Hw4UOhUqlEZGSk6NChgygrq3nT3rdvn0ZA/5dUVFSI0NBQ0aZNG3Ht2jUREBAgunbtKjIzM0VERITw8/MTt2/frvOYixcvFm5ubmL+/PlCqVRqvMLVq1fX2m7z5s0a4QZfX1+N15qVlSWioqKEl5eX+Pzzz4VKpRKLFi0S9erVE3379hVZWVl1Hnfr1q3CwcFB6Ovri1atWtWZYFUXubm5miYA4eHh4vz585p1t27dEgMGDBCurq6iX79+zz3mv40HDx6I7du3i3Hjxom+ffuKjz/+WCQlJYny8j8mkKBWq8XUqVPFpk2bXtKZ/pJUUWNYf54K/vVHpQoVFy86ibKyFqIma7juFzst/260RvVfxptvvilatWolSkpKRFVVlejevbvo3r27Zlr2qY7w559/Xmu/p97t0wzg8PBw0aJFC434g6enp0bF6NecOnVKNGrUSERERIiCgoI6a1qFqJHXi4iIEPXr1xfBwcEar/VpElGDBg1Ejx49NMb2qYe7aNGiOqd6lUqlmDZtmjA1NRVyuVy8+uqrzx0fzc7OFu+++65wc3MTERERtUp80tPTxdChQzXrzpzR1ij+Fvn5+WLv3r1i+vTpIjo6WsyYMUPs27fvd7R4//N4AwcOrDXb8fLIFUJMEjUG018I0UnUlP30EDWeaStRUOAtLl1qLIS48F84vpZ/Alqj+i9DpVKJ0NBQERQUJJRKpSgrKxMdOnQQkZGRGsN04MCBOr1JlUolPvjgA+Ht7S3OnDkjRowYIerXry/OnDkj1q5dqynFqYuCggIRHh4uGjduLE6fPi2ys7PrrGkVQoi1a9dqSl8aNmyo8VpLSkrE0KFDhbu7u5g/f75QqVRi3759ws/PT7Rr165WPPSX5Ofni379+gm5XC5MTEzE5MmTn7v+Mjs7W1PyExkZKS5fvlxr3ejRo4W7u7sIDg6uU25Ry8+UlZWJY8eOiY8//lj07dtXjB8/XuzYseOF46Q//fSTeOutt/6w5/vb5Akh1gsheosaof32osawzhFK5XUxZMib4urVq/+lY2v5u6M1qv9CysrKREBAgBgwYIBQqVSioKBAtGrVSvO/EEIcOnToGenBpyxYsEB4eHiIffv2iQULFgh3d3exc+dOcfjwYeHl5SXefffdOj1HlUol5s2bJ9zc3MSSJUuESqUSH3+8QAQ0cxJrPnpbqLJPCPH4shBVhSI9PV10795d+Pr6irCwsFpe69GjR0WLFi1EQECAOH/+vFAqlWLq1KnCzc1NDB06VBQVFdV53Tdu3BBt27YV+vr6ws7OTnz99dfPfc+ysrLEiBEjhJubm+jTp0+tH9WCggJNuVFgYOB/bAKgRQiFQiHOnTsnli1bJt544w0xcuRIsWHDBnHnzp3nSnRasmSJWLz4/0fI/tChQyIuLu5v0cNWy5+P1qj+S8nOzhZNmjQR48eP1/zfrFkzMXz4cM02hw8fFh4eHmLFihXP7P/FF18INzc3sWHDBk0XnKVLl4qUlBTRsmVLERoa+pulLUePHhVNG9UXc9/pKBRHokXJ9obi0seG4vpiM1G5u4UQ+9oIcWWmUD2+JuLjFwt3d3cRHh5ey2tVKBRi0qRJtRqgp6SkiNDQUFG/fv1nEq5+SUJCgnBzcxP6+vqiYcOGzyUe8ZSHDx9qMpGjoqJqxVXLyso0tcBt27YV33zzzb9SAvFFUavV4ubNm+LLL78Uw4YNE7GxsWLVqlXi8uXLv5noVFFRIYYOHfrMLMefwVO97H9DW0EtL47WqP6LuXXrlvDy8hJLltT0p0xPTxcNGzYUcXFxmm2OHDkiPDw86pzWfVqqs2jRIpGUlCS8vLzEBx98IIqKikRoaKho2bKluHv37rMHfnxJVO3tIG7Fm4pz841E4a4OovpgiLiw2FkcmmYoHm1uLsTeVkLs9Rfi7GiRcuuyCAwMFE2bNhURERG1vNarV6+Kjh07iqZNm2piut98841o0KCBCAoK0ghd/JqnCU8WFhbCwMBABAUFibS0tOe+dw8fPtTEVaOjo2s1Ra+qqhKLFi3SiFw8TbDS8p9Rq9Xi/v37YuvWrWLMmDGif//+YtGiReLEiRPPKF09TRz7/6gjPnHihHjvvfe03qqWZ9Aa1X85T1vEPRXYf9rkfPbs2bW2qVevnvjss8+e2f/UqVPCy8tLxMXFieTkZNG0aVMRHR0tKioqxDvvvCO8vLzEkSNHft4h96QQ+1oLsb+jUB8OEzdXeYuDH8pF2vomQhzuKe5vaCYOfigXVz5zF6pDITWG9Xh/oaosFHPnztUYsUaNGmm81qcG0t3dXcTExIiCggJRUlKiSTSKi4v7TenBkpIS8dZbbwkjIyNhZGQkhg8f/kJKShkZGeKtt94Srq6uom/fvrWMuEqlEqtWrRJ+fn6icePGIj4+/i/WNPyvT25urkhISBBTp04V0dHRYvbs2eLAgQOaKf4tW7aIKVOm/OnGTa1Wi/fee++FZjm0/DvQGlUtGr3fp3q4Fy9eFJ6enpom50L8bFh/uewpt27dEo0aNRKxsbEiOztbdOzYUQQGBorHjx+LZcuW/ZxNXHxHiMR2QhzoLMThnppP9rY24tA0I3FhsbOoPhQqShM6i+NzLUTSHHNR8mOnGsN6ergQqmpx9epV0bZtW9GiRQsRFRVVy2tNT08X4eHhwtvbW6MgdfHiRdGhQwfRpEmT34113rt3T3Tp0kXI5XJhaWn5mxnFv0V6eroYPHiwptzmlyVGKpVKbNy4UbRp00Y0aNBAzJkzR1PGpOX5KSkpEYcPHxbz588Xffv2FRMnThQ7duwQI0eOrLP373+bc+fOiREjRmhnIbTUQmtUtQghagT3vby8NJ7W8ePHhYeHR63Y5PHjx0W9evVEfHy8EKJGx/dpTPbhw4fC399fhIeHi4KCAhEVFSWaNWsmUlJSxP79+4Wnp6c4/GlLod7bqpZBffqp2NdN/DTfShybbSZKdncS6sNh4tryek+82MZC7G0pRG5Ndq9KpdLEU994441aXqsQQmzcuFF4e3uL8PBwkZGRIVQqlVi+fLnw9PQUffr0+V1ZvSNHjggfHx9hYGAg3N3d69Q5/j3S09NFbGyscHV1FQMGDHhGKGLXrl2iY8eOwsvLS0yePPk3k6q0/D5VVVXizJkzYsmSJSIqKkrUr19fLF68WNy7d+9P81rVarWIi4vTKJVp0SKEEBIhhECLFmDChAns3buXgwcPYmtry4EDBxg2bBiffPIJr776KgAnT55k4MCBjBo1imbNmpGYmMjHH38MQHFxMZGRkajVanbs2MHs2bNJSEjgq6++wtYUKhO7USlMaN68JTKZ7JnjCwQ3b94kKysLHx8fnJ2cycnN4dq16zjbGODeMhq9dis12589e5bhw4ejp6eHm5sbp0+f5r333mP06NEUFxczYsQIEhMT8fT0xMPDAzs7O+7fv8+VK1d4++23iYuLQyqVPnMearWaL774gilTplBcXIyfnx9r166lcePGz30vU1NTmTFjBkeOHCEwMJDp06fj6empWX/gwAEWLlxIcnIykZGRTJo0CVtb2+ceX8vPqNVqvvrqKzZs2ICHhwcSiYR27drRtm1bGjZsWOd3/McoAQ4AeygqSuXu3RT8/AKRSrsDoYDlSz6elr8TWqOqRYNarSYmJoZ79+5x8OBBDA0N+e677xg3bhwrVqwgJCQEgNOnT/P6668TFBSEqampxqgCVFZW0r9/fzIyMti1axfbt29nyZIlbJvfneYmZzl3LQOlshr/li2Ry+V1nsejR4+4cfMG1tbWNG7cGKVSyeVLl5BLS6ho9Q2tAyM02yoUCuLi4vj+++/p1q0bJ0+exN7enrVr1yKXy1m1ahXbtm3D2tqaAQMGcPToUWJjY5k8eTJSqZRPP/2UV155pc7zqKysZMqUKaxduxaVSkV4eDhLlix5IeN39+5dZs6cydGjR+nUqROzZs3Czc1Ns/706dPMmzePy5cv06NHD6ZOnYqzs/Nzj6+lBiEEn3zyCWZmZgQHB3Pq1ClOnjxJXl4erVu3pm3btjRv3hw9Pb0/cJR8YA2wG6gGDABd7t69h7m5MVZWBoAU6A4MB5z+6GVp+RuiNapaalFdXU1YWBg6Ojrs3r0bqVTK+vXrmTZtGsHBwZSVlSGEwNXVla+//pr69esTExPD/v37MTIyYuTIkTRv3pzhw4eTmJhI27ZtuX//Poal54gNsmJguD9Xr17lzPVcDiWb8GqgCzuPP0IqgZGR7ujIJKz98T4FJVU0diilS2M9mjf340G+msWbzrP3ohILhwYMGzaMYcOGoaOjA8CRI0cYPXo0lpaWODk58dNPP2m8VoVCweTJk9mxYwdyuZydO3dSv3595s2bx7p16+jUqROLFy/G3Ny8znuSmZnJiBEjOHjwILq6uowaNYrp06e/0A/03bt3mT59OklJSXTp0oWZM2fi6uqqWX/lyhXmzJnD6dOn6dSpE1OnTsXb2/uPfZn/MkpLSxk9ejSjRo2iZcuWAOTk5HD69GlOnjzJ3bt38fPzo23btvj7+2NiYvICo6cDI4AcwBrQ/cVxy0hJuUPTpk2RStVAHmAMLAMavaSr0/K34f9v5lnLX5WSkhLRqlUrMXjwYCFETQyzY8eOwtraWpw6dUpUVVWJ69evi+XLlwtDQ0Px5ptvCpVKJRISEkRMTIwmphUbGyvc3d3FsWPHxPH4liKwoVTsme4k1IfDRMLMeqJdfalYNspNKA+Gim8m+4hAX8ToMBNxa20jcWWtv4h8xVYcnusiDn5oKI5/2kjcWttY3Dq4QDRs2FA4Ozs/o1FcVlYmhg4dKjw8PMTo0aNF48aNa8Vad+7cKSwtLUWzZs3E0aNHhRA1MdCIiAjh5eUlVq1a9btJJ2fOnBHNmzcXcrlcODg4iPXr179w/C45OVn0799fuLq6isGDBz/TAzY5OVnExMQIV1dXER0dXUseUct/5sqVKyImJkYUFhY+s66oqEgcPHhQzJkzR7z22mtiypQpYvfu3c9RkpMthOgufk9wPznZR2Rm+v9iWYcnnzpKyrT8o5HNmDFjxv+3Ydfy10JPT4+wsDDmzZvHo0ePcHJy4tKlS4SFhTFjxgxCQkLw9fWluLiY/Px8zp49S0VFBa+//jrr168nJCQEuVxOZGQkMpmMuLg4Poi0IL9EkJefj4HIx9zGnZM3iglrXISqWomfrwtf7EklqKECibKQsqI8ziWXYqJXhb2FLqWFjzDTK0Vh0Z7X357BiRMn2LRpEz4+PjRo0AAAXV1devXqRf369Vm5ciUuLi7Y2dkxe/ZsFAoFFy5cYOTIkTg7OzN16lRu3LhBZGQkMTExuLi48NFHH7F9+3ZatmyJnZ3dM/fFycmJt99+m3r16nHw4EG2bdvG1q1badq0aS2v8/ewsrIiKiqK0NBQDh48yKxZs7hx4wYtWrTA1NQUKysrevfuTXR0NOfOnWPOnDkcOnQIDw8PXFxcXur3/E/Ezs6OoqIiDh48SIcOHZBIJJp1+vr61KtXj44dOxIeHo6pqSlXrlzh888/5/jx4xQXF2NiYoKpqWmt/WA8kArY/OZxDQ0NSU1Nw9bW9kkM1wAoB04CrwGS39xXyz+Llx3B1/IPwdHRkW3btrF582bWrVuHra0tH374Ib1796Z3797cv38fAG9vb7Zu3cq6detYuHAhUBOLBDh//jzp6ek4OjoS9eEZztx8jIOLF9XV1Vy5cgULMzlt27QmOzub5Ns3sLaywspUF7VajaGhIUaG+siNzbG3twd9S+J3lxH8+oe0atWKS5cuIYRg4MCBtG/fnu+++47z58+TlZVF9+7dOXXqFNbW1pw8eZKoqCg++eQTDh48SOvWrZk4cSKHDh0iIyODVq1a8d1339G7d2/OnTtHixYt6NWrF2PGjKGioqLOe9O/f3/u3bvHhAkTePDgAcHBwYSGhpKWlvbc99fHx4ctW7awb98+ioqKeOWVVxg2bBiZmZkAODs7s3LlSs6cOYO3tzcDBgyge/fuHDp06A98q/8OBg4cSG5uLomJib+5jb6+Pm3btuX9999nw4YNDB48mMLCQmbMmMHbb7/NF198wc2bNxEiFThLzZRvDUOGXObSpaJa48nlcszMzHj0KPsXSy2A+8CFl3l5Wv7iaI2qlt+kcePGrF27ls2bN3Pp0iVUKhULFiygU6dOhIeHU1BQAECLFi349ttv+eqrr7hz5w4ASqWSefPm0bt3b44ePcryxbPxtKokNzeXNm3aoK+vT25uzpNMzQAUCgVFRcU0bNgQPT19ysvLEUIgkUgoKytl91kFTXycCI3oi5WVFWFhYTRt2pSQkBCuXr3KoEGDGDp0KNHR0QQGBjJ8+HC8vb3p2rUrq1evxszMjObNm9O5c2fi4+Nxd3dn7969jBs3jokTJ/Lqq69SWFjIokWLSEhI4MqVK/j7+7N9+/Y6742enh4zZszgzp07REZGcuzYMZo2bcqoUaMoLS197nvs6+vLtm3bSEhIoKCggICAAIYPH64xrra2tnz66adcunSJNm3aMHz4cAIDA9m5c+cf/Hb/uejo6DBu3Di+/vprHj58+B+3l8lkNG3alGHDhrFu3TomTpyIvr4+K1asYNOmaLKzcygsLEatVv/uOE5OjmRnP6K6uvrJEgkgA7b84WvS8vdBO/2r5Xfx8PDA1taWdevWUVFRQUBAAMHBwSQmJrJ9+3bc3NwICQnB3t6ejh07Eh8fT3V1NYGBgWzdupWwsDDs7OzIKtRh9/ffYqZbgp1xJVb2nhy/ko+zwQPMzS3w9PRm4/50vC0L8HR3RKGo4tTtKpytpDRwt+TUrVJKhTUVeu64urry/fffY25uzr59+4iLiyMrK4tz587RsWNH2rZty+PHj7l48SKXLl3CxMSEsrIyrl69iqWlJfv27ePzzz9HpVLh6+tLdHQ0J0+eZO7cuejp6dGjRw9iY2MxMDBg1qxZ7N+/n/bt29eZyGRoaEhUVBTh4eGcOXOGvXv3smLFCvT09GjduvWvphF/G1tbW1577TW6detGQkICc+bMITk5mZYtW2JsbIy+vj5dunRh4MCBFBUV8emnn7JhwwbkcjmNGzf++TglJfDjj7BsGWzaBDt2wLFjIJGAszM8Sez6p2NmZoZcLmfjxo1069btuctqJBIJFhYWNG3alNDQEHx81lFZqU9OTj4ZGQ9YtiyD5ORKfvqpkO3bHyGT1dz3jz++y9dfZ3H0aDlClNOkydOpYgPgJtAP0P9vXKqWvxja7F8tz8X06dNZvnw5AQEBGBsb07FjRzZu3EhaWhrJyckYGhoCEBgYSEZGBjExMbRq1YotW7ZQXV1N69atqc46hrXyHJ6WRTwqkbPnqj4z+5tz9+5dvLx9eGdlJlOjTSl5/BBTUxM+SyilpYegeytr0jOLWXu5FeVKGUqlkry8PO7du0fjxo3ZtWsXdnZ27N27l/fff58WLVqwdu1aUlJSGDt2LEqlkoqKCjIzM8nOzsbCwgITExNyc3Np1KgRPj4+lJaWkpeXx/Xr17G0tGTUqFH4+/tjbGxMfHw8R44cITY2lilTpmgyjuvihx9+YMyYMWRlZeHk5MTixYvp2bPnC9/vK1euMGPGDC5cuEBYWBjTp09HrVYzYMAAFi5cSKNGjVi5ciWff/45Ojo6jOnfn4EKBdKEBKiuBgODnw2oQgFKZc2y6GgYNAhMTf9Pz8HfCSEEs2fPxt3dnZiYmP/DCOVAR8ABqJl9KSwsZMSIm/Tpo0fLlhYolUZMn57Fe+/VIyDAgqKiSk6cuEaPHs3R03uaIZwLfAtoY+L/BrRGVctzM3r0aJKSkjh06BCWlpYoFAp69eqFEIIff/xRU2Jy7do1+vTpQ79+/Zg1a9bPA1SXwem3UBTc5szlNHR0dGjl709efh7Xrl3D1dUNby8vsh494vr1a+jq6mJlYYasOp9bhHDgjh1OTk6MHDkSHR0dEhISmDp1Kvn5+UyaNIn33nuPoqIiYmNjycjIYPXq1QQEBNS6hszMTGJjY0lJSaF9+/YcPHgQHR0dGjZsiIODA4aGhpw+fZqUlBSaNm1K48aNyc7OpqqqikuXLiGTyXjrrbcICQnB0dEROzu7Z4ysWq1m8eLFzJ8/n4qKClq0aMHy5ctp2rTpC9/zS5cuMXPmTC5evIijoyN5eXm4u7vzzTffYGlpWSO0MX8+LgsWYKRUYujmhpunJ7K6PLOqKsjPBzc3WL4cHBxe+Hz+bhQWFjJ69Gji4uJeSLyjhiIgCKidtDZkyGVGjnTFw0Pw5Zd3uHevimXLOvJ0suD+/fsIIX5Rj5wHbAC8/tC1aPl7oDWqWp4btVpN3759ycnJITExEQMDA8rLywkJCcHCwoIdO3ZoptmuX79Onz59iI6OZs6cOT8PUpkH50ahKrrD+ev3USjVtGrlT0VFBRcvXsTKyoomTZpQXFzC9cunMTEQ3CWQj3eW0KNHCC4uLhw6dIghQ4bQqVMnACZOnMjq1atxcXFh9OjRhIaGsmnTJlasWMGQIUOYMmXKM9N/K1as4JNPPqFLly5IJBIOHjzIoEGD6Ny5M+np6Rw7dozvv/8etVpNSEgITZs2RS6Xc+TIEY4ePYqTkxNNmjShvLwcAwMDDA0NadeuHU5OTjg5OeHo6Iiuri5xcXFs2bIFI5WKNzt0YNyIEVhYW4OFBTRoAM85LZmYmEi/fv2orKzE1NSUXr16sWbNGqQZGTBoEKK6msyKClJTU1EoFDg7OVGvXr26veq8PLC2hq+/rjmPfzhnz55l1apVLF26FCMjoxfYUwm0pcZT/Xkaf8iQy7z7rjt+fmasWJFGbm4W773nqwkPKJVKrl69SqNGjdDX16emtnUXTz1eLf9stEZVywuhUCjo0aMHZmZmfPfdd0ilUoqLiwkKCsLLy4sNGzY8Y1ijoqKYN2/ez4MoS+F2POoHP3Lv7h0eF1fRuFlLJMi4ePE8FsZS6nt7Ui0zZ9TSm+y/KmPw4MEkJSXh5+dHTEwM69atw8bGhq5duxIfH09BQQFnzpxBIpFgYmKCmZkZcXFxfPrpp9jb2/Pll1/i6OhY61pSU1MZMmQI+fn5DBo0iC+//BI7OzvWrl2Lh4cHarWaKVOmsH79elq0aEHnzp158OABycnJ3Lx5k8LCQkJCQkhNTeXx48fExcVRVlZGZmYmDx8+pLysDD+5HP/UVBwuXqSishKpRIKdvT0uTk5Ira0hJgZCQsDM7Hfv+/z58/nqq6+QyWRkZmZSVlZG78hINldXo5OdDVZWmm2zs7O5e+8eHxUVMcTentBGjdDV1a09YHY2tG8Pixf/sQfib8LKlSspKytj3LhxL7jna0A28PN0+S+N6rffZnL5cj59+1Irtv3gwQMUCiX16tkDamA/8O+IZ//b0RpVLS9MYWEhXbt2pU2bNqxYsQKoUa4JDg6mTZs2rFq1SrPtzZs3NWU48+fPrz2Qogj1w71c+XEq1aWZ+PrUQ9/Iih+OpZJw3Yy5KxMxM7fA39+fwsJC+vfvz61bt7Czs2PGjBkkJSWxZ88eYmNj6dq1K2VlZcTGxnL9+nXefvtt7t+/T35+PmlpaTx48IBPP/2UiIiIWqegVqtZuHAhK1eupGfPnlRWVnLw4EGNGpNUKuX27duMGDGCnJwcPv74Y4KDg8nKymLz5s189NFHlJaWYmhoiK2tLeHh4Xh4eODp5ITfrl2YnjtHtUpFqb4+eQUFZGZlUa1UIpVKcTQ3x87QEB1DQx4NH45RRASOjo4YGBjUOkchBJ06dcLV1ZXw8HAMDAxITk6mLCmJAUlJyN3dsbO3f2bKNy8/n7spKZSWlmJnZ4e3t/cTzwlQqyE3F3btgl+9bPwTqaqq4v3336dfv34EBga+wJ4JwEx+OQU8btwNunWzpkcPW3Jzqxg58hoREVK6dnXE2NiK3NwqXF0NuHLlMo0a2aCv/y4w5CVfkZa/KlqjquX/xP379wkODmbgwIFMmTJFsywkJISwsLBaesC3b98mMjKS8PBwFixYUOd4c+bM4csvv2TNmjUEBgYyZMgQzp8/z9atW3FwcKBLly7k5OQQGhpKUVERurq6TJ8+HV1dXZYsWYKFhQXvvPMO1tbWLFq0iM8++4xRo0YRGRlJQkICW7ZsISUlhZCQEL788stnPLcbN24wdOhQqqqqiI2NZfXq1c94ratWrWLRokW0adOGpUuXolKp6NWrF9nZ2eTk5GBkZMS8efNwsrLCfeFCTO/dI1sqRVdXF7mhIYaGhhjK5eTn53MvNZXq6moMDAxws7XFSKHgxyZN2GdkhLGxca1pZDMzM95//3309PRwcHBg/vz5NfHBuDiqDh4ko7KS4uJiHOztsbWze8a4FhYWcufOHYqKi7Gxtsa7fn0M5XJ49AjefBNGjHjJT8dfk6dSkZ9++ukL6DeXU6PlawTU5AycPl3AqlXpVFSo6dvXgfr1jVm9+h63buXh6GjJG2+40LWrNZmZD4A8HB3PA9pmCf8WtCU1Wv5PmJmZERAQwKRJkzA3N8fPzw8zMzO6d+/O9OnTKSoqomPHjgBYW1sTFBTEzJkzSU9Pp3v37s+M17FjR4yMjBg/fjxOTk5MnTqVrKwsJk+eTMuWLXnjjTc4deoU586dw9bWFrlczqFDh2jSpAmDBw8mNzeXJUuWYGxszMCBA2nbti2zZs3i4sWLzJw5k0GDBmFlZcUXX3xBfHw8lpaWNGrUSNMtx8bGhsGDB5OZmcnKlSvp3bs3crmc6dOnSXEGaAAAIABJREFUA9CmTRtat25NdHQ0u3fvZt68eSgUCiorK9HT08PAwIDHjx9z8MAB5kml1Hv0CDMfHxwcHTEzN0dPVxelUklRcTHl5eXo6+sjlUopLy8nv6gIpVRKN2DARx/xSr9+uLq6oqOjQ3Z2NocPH+bs2bOUlpby4MEDvv76a5SPH9PhyBF0bG2xtLLCzNycx/n5ZNy/DxIJhoaGDL1yBTe5HHdzc5ycnLCxsSE3L487yckUFhVhamWF3q1bEBv7Yl9+eTkcOQLHj9d8kpOhsLAm8amO7kN/FSwtLRFC8N1332li6f8ZXWrK+Y9QY1glODvLiYy059VXHfD1NcHWVp+QEHsCAgTdu5vh52cPCAwNS9m3zxBDw95Y/Ati11pq0BpVLf9nHBwcqF+/PuPHj6dRo0Z4enpiZWVFhw4dmDx5MhKJhDZt2gA1hjU4OJiZM2eSmppKcHDwM+O1aNECNzc3xo8fj0wmY+LEiRpD26BBAwICAmo61ly+TEVFBY6Ojpw4cQIDAwP69OlDy5Yt2bRpEydOnKBHjx4MGzaMb7/9lsWLF/PKK68QERHB+++/z+XLl1m+fDk//PADMpkMe3t7TExMkEgkdO7cmY4dO/LZZ5/x+PFj3n33XVatWsXOnTvp0KEDrq6u9O3bF0dHRz777DOMjIxYt24dEyZMYOTIkXRycMB49WrydXQwNjFBR0cHXR0d5HK5RobQ3t4eOzs7rK2sMDMzo6ysjMKSEvJzcri5bRvbAZVKhb29Pa1bt6asrIykpCScnJwwMTGhbdu2hPr54XnxIhgbAzUSjZaWlpiZmZH/xLgmFhbSzNAQ9yfxWn19fRwdHLCzs6OgoIDku3cReXlkdO2KvVNNR5UDBw5QUVFRtyd3/z6sWweTJ8OBA3DyJFy5UvP34EHYtq2mdMfZGV4oIejPo0GDBhw+fJiCggIaNXpesftmQBY1ykhyfkszx8jIiLS0VKysLJDJcpFK25OWFkti4sEXnHLW8ndGa1S1/CG8vb0xMTFhwoQJBAYGYm9vj729Pa1atWL8+PGYmprSvHlzoEb3NiQkhFmzZpGSkkKPHj2eGc/X1xd/f38mTZpEbm4u48aNw8fHhwkTJuDo6Ii5uTkdOnTgxo0bJCcn4+bmRkpKCjk5OXTu3JmgoCAKCgqIj4/HwsKCqVOnUlBQwMSJE9HR0aFdu3ZERUXRrFkztm/fzs2bNzl16hTXr1/HyMgIBwcHHB0defPNN7l9+zarV69m4MCByGQyjdfaunVrGjVqRGxsLCdPnmTatGkolUq6dOlCvf37MXv0iAqZjNTUVCQSCUZGRs94RVKpFH19fczMzHB3d8faxoacwkLMS0tZcekSj2UySkpKWL58OatWraKwsBCJREJAQABRUVF0qF8f2e7dlAMlJSUUFhaSl5fH44ICyp7U3B6uqMAsOxsjhQIhBLq6uujo6KCnp4e9vT2Ojo6U5+YStWMHew4exMbGhlmzZnHgwAHCwsI0tccAJCbCO+/A1as1Na5mZjV/jY3BxKTmr0oFJ07A999Ds2Z/yZIdiURCs2bNWLJkCU2aNMHqFwlev7MXNfWqVcApoIwaIYfaXrmODshkhVRU5GJsHA3MxcPDhw0bNtCgQQOsra1/PbCWfyDamKqWl8KsWbPYsmULiYmJGnH5upqcQ01sq1evXgQFBbFkyZI6x7t+/TrR0dG0b9+e1atXc+3aNfr160fz5s3R1dXlrbfeIj4+nlOnTtGhQwccHR2xtrZm7Nix6OnpkZGRQXx8PAYGBrz77rvcuHFD05Zu3bp1GBoakpOTQ2xsLPfv3+ftt98mNTWVoqIiQkJC6N69O6amphw/fpx33nkHS0tLBg0axMKFC2vFWqGm7dwHH3yAlZ4eu8rLMXJyAh0dKiorSU9Lo7q6mo8rK+nl6Mjh/HweK5W0NTdnpLs7er9OLrpxg425uUyurkZHRwcjIyOkUim5ubkYGRlRXl5OdXU19fT02CYEZXI5crkcQ0NDZDIZxSUlPM7PR6FUskQIwiUSvHV0cHZyQqFUoqujg7m5OWbm5pgYGSF59IjHe/cy/5NPWL16NSqVCgcHBwIDA1m1alVN7DkhAaZNqym/+Y0euLUoKYHKSli5Ep68UP3VSEpKYtOmTZpn5Pm5A3wH/ACogKc/nzUvTQpFJ6ZNu87w4Z/h7l7zfBw4cIAjR44wd+7cl3cBWv6yaD1VLS+FwMBArly5Qnx8PP369UNfXx9PT0/c3Nw03ubT/qCWlpaEhoYyZ84cbt26RWho6DPj2draEhERQXx8PImJiQwfPpxXX32VlStXUlxczK1bt1i6dCkVFRVs374duVyOo6Mje/bsoU2bNtja2tKtWzeKi4tZvHgxPj4+TJ06lc2bN7Ns2TLat2+Ph4cH/fv3p7S0lKVLl9K+fXuGDRvGhQsXWLlyJRkZGfj5+TF27FguXLjA559/zrBhwwCYNm0aUOO1enh4MHjwYIpPnsToyBEeK5VYWVmhp6uLlbU1OjIZ396/T1ppKXMbNiTK0ZGE7GweVVZSX1eX0tJSioqKyM/Pp0KpxF1PjxXFxVRUVFBaWkpZWRkqlQpra2tMTU2JiIjgq2++od7Jk5iZm6NQqcjLyyMvL4+SkhKQSBBqNWckEvzNzLAASoqLcXdzw8HRkaqqKrKzs3mclkaegQELnjQCOHHiBAqFgoKCAm7dukVqaioRPj5I3n//GYM65PJl3ORy7OsySPr6NdnF+/ZBWNhfcirYzc2N5ORkrly5QuvWrV9gTyvgFWpKbZoA7ajxYsOAschk4VRUmLBnzx46d+4MgLu7O99++y2urq41zSG0/KPRGlUtL42wsDD27NnDxo0bef3115FKpfj6+mJpacn48ePx9/fXeLEWFhb07NmTuXPncv36dUJDQ5+ZIjU1NeW1117jiy++YPPmzcTExBAbG8sPP/zAtWvXuH//PgsXLtTUoRYVFdG5c2fWr1+Pv78/pqam+Pr60qZNG7Zt28aZM2eYO3cuhYWFTJ48GRMTE1q2bMkrr7xC+/btWbBgAUlJSUydOpVXX32V/Px81q9fz/Hjx4mIiKBHjx6arOYxY8awdOlSTazV2tqattbWmJ4+TVpODmnp6RgZGWH0JOs3saiITvr6FF66RHpKCjpVVXyfnU2DkhJKS0tRVlcje+KZ2hoY0DcxEV1dXa5evYpCoQBq4qzvvPMOUVFRpKSmkn//PnoXLlAuk6FUKJDp6GBtbU1FZSVIJJwWAj+5XDP9m52dTVl5OTY2Ntja2mKto0NKWBjTN27k8OHDGsF4iUSCra0t169fp+XRo9iUl6NnY1OredkP2dm0MTev26hCjWEtKKiZGm7R4uU+aC+JZs2aaWqTnZ2dX3BvfcANqA/4AO7UxFvB09OTrVu34uLigr29PVKpFDMzM7Zt20b37t2fWw9ay98TbZcaLS8NqVTK1q1bqaqq4o033tD8SMfExDBu3DgGDRrEhQs/t8Fyc3MjISGBY8eOMWrUqDq7gJibm5OYmIiJiQldu3aluLiYH3/8kY4dO/Ldd98xa9YsYmNj2blzJykpKSxdupTu3bszYcIEbt26BdS0UVuwYAFt27Zl/PjxtG7dmmXLlrFgwQIGDx5MZWUlrVq14sSJE9jZ2REYGMjhw4fp06cPa9euZcCAAfz0009s2rSJUaNGYWJiwocffsjIkSPx8vKiS5cuxMfHo5ZKMTIyIiAgAGcnJ65cvsylS5dQKpWoVSrURTXtwgSgW15OsRAYGhpiYmKiyQTOyckhPTOT9u3bs3z5coQQyJ94iGVlZUyfPp2OHTsSFRXF3OvXqVYqKXz8GD09PVxdXCguLkZPVxcXZ2ckEgmeXl44Ojjg6uqKhYUFhYWF3Lhxg3s3b3L3/n12FRUxevRozTGgpi42JyeHqMBAmubmkl5czPVr13j8+DEvFC0yN4fNm2u0h/+CGBoaMnbsWJYvX67puPQy0NHRITY2lnXr1mme6Q4dOqBQKDhz5sxLO46WvyZaT1XLS0VHR4fw8HAWLVpESkqKJsu3devWlJeXM3XqVIKCgjRJG+bm5vTs2ZOPPvqIK1eu1Omx6ujo0LdvX06dOsWCBQvo1q0bb775JkVFRSxduhQ9PT369etHdHQ069atY8+ePUyYMIEVK1Zgb2+Pi4sLEomEBg0a0K5dO7777jvS0tKYPn06W7duZc2aNXTs2BEHBwd69+6NqakpkyZN4u7du3Tv3h1nZ2cCAwNp3749aWlppKenY29vzzfffIOJiQljx44lPj6es0eO0KOiAl1TUywtLXFwcCArK4vbycn8T1kZlkoljhIJ+np6PFSrSReCZgoFpaWlGJuY4OHujpO5OTa+vsTu2UN1dTX5+fmYmJhoYqm/5F5uLg5qNU3VavIrK8nKzkahVFKlUKBQKGihUCCvrKSyspLikhIADORyqsrLMamsRDFoEC6vvoq1tTXbtm3TjC+TyTA1NeU9Fxcc0tMpFgKpVEpeXh65ubnIdHQ4UFyMrb4+K9LTWZ+Rwb3yclqbmyP75Xeno1Pjrfr6grv7f+mJ+2PY2NhQVlbG3r17CQwMfGlepLOzM0eOHEEmk1GvXj0kEglWVlZs3LiRkJAQrbf6D0ZrVLW8dAwNDTX1qkqlknbt2gE1b+uZmZnMmjWLnj17arRSzczMCAsLY8GCBVy+fJmwsLBnfnQkEgmRkZGkp6czbdo0WrduTUxMDFKplJkzZ6Krq0toaChDhw7V9HadOHEimzZt0hhUQOPxVlVVsWbNGmKf1Gh++OGH2Nra0qRJE/z8/OjZsycrVqzgiy++0EzvGhsb07x5c3r16oWNjQ3V1dWcOHGC3bt3ExcXR55ajfHhw+hWVWFqbY1EKqVKoUCpUPA/5eVkqlQ00tXFzsGB78rLqS+VUk8iwdrGhuLiYlLv3UOVl0dqly5UeXtjZWXF9evXuXr1KlKpFLVa/YynmGpnx5vNmmH46BHFKhW6urqYm5vjWa8eefn5uLu7o6+vT3FxMXK5nLLiYuwkEn5UKnnt1Cm++eYbvv/+e8rLyzX3XCKRIJPJGGFhga1CgZGVFVKZDCEEpaWlZGdnc6CoiKyKCmY3akQfR0e+zcpCTyrF+9fx0+Ji8PEBP7+X/Zi9NBo2bEhCQgIKhQIfH5+XMqZEItE0mg8JCUFHRwcnJycOHTqEXC7/hdi+ln8aWqOq5b+CpaUlrVu3Ji4uDgcHB02HkG7dunHjxg0WLFhA7969MX5SZ2lmZkavXr1YsGABFy9epGfPnnW+zQcFBaFUKomLi8PLy4s333wTIQTz58+nsLCQ0NBQ3nrrLZKSkliyZAnDhw8nKSmJhw8f0rx5cyQSCRKJBB8fH9q3b8+uXbsQQhAREcHs2bO5ffs2wcHBWFtbM2jQIG7dusXUqVMxMjKiZcuWABrvIywsjNDQUDIyMli6dClVVVV0CgpC76efuPPoEfl5eUglEkpLSzkjkdBUCPZWV3NYqcRNJiPa0hIpUFRYiKWFBV4eHihLSuh05AiLli9n8+bNpKWlIYTA29ubqqoqKisrgZqpdldXV7Jyc1l97x5eQGOpFJlCgUIiobyiArUQNPfzw8rKCgOZDDOlkvqOjiQYGrLa0pLc/HxUKhXV1dWo1WpkMhmurq64urrStWtXQhUK9AsLqZJIUKlUSCQSpFIpFRUVHKmsxK+8HOW9e3i4uFAkBDkKBa1/3XO2vBzq14e2bf9rz9ofRSqV0qRJExYvXkyrVq0w+w86zM+LjY0Nt27dIicnh0aNGiGRSLC3t+eLL74gNDT0uXu8avl7oTWqWv5rODs7a8QcmjdvjvuTKcCQkBBOnTrF0qVLee211zQlDU8zWz/55BPOnTtHr1696jSs7dq1w9ramnHjxmnkCXNzc9m8eTMXL14kIiKCgQMHkp6ezscff0yPHj3Iy8vj9OnTtGnTRtO5xdjYmC5duqBSqdi9ezf9+vVj//79fPXVV3Tt2hVLS0uCg4Px8fFh2rRp/PTTT/To0UPT4g5qam/79OnDa6+9xo4dO9iclER/oKqykuLKSqqrqykvLydJoaC9vj7dgUAdHbxVKozkcuzs7BBqNY8fP4acHA7IZOyFWlO9QgiKi4tp2LAh2dnZSKVSLCwsMDY2Ji8vD6UQJKrVnFersZJKaayjg5VcjkFlJdYGBlBejlwqZa9KhfPKlazNzeV/jh6tNf7Tv0874PTr14+GubmQlkaRQkFhYSG5ubkUFhZSWVXFaaAxYAmUlJaSa2BAqRAEWFrW/rKKi+GVV/6ypTVPMTExwcTEhC+//JKgoCCN0tYfxdPTk6VLl9K1a1cMDAywt7fn1KlTCCHw9PR8KcfQ8tdC+6qk5b9K7969GT9+PEOGDOHmzZtAjWfw1Vdf4eLiQq9evSgtLdVs/7Qs5vz58wwZMqTO5CWAgQMHsnLlSmbOnMknn3zCnDlz6Nq1K5cuXSIkJITi4mJWrVrF+PHj+eSTT3j06BEGBgZMmTKFoicJQ1AzTRcaGsrixYvJzMykdevW1KtXj27durFz506g5iUgKSmJoqIiAgICOHnypGb/3NxcfvrpJ06dOlUj/K9SEVdVhaVMhpFMRlFxMSqVCqhJUFKr1fj7+2NhYUFOdjZpaWno6OpiUlXFvcpKphcWUl5ejpeXV622bUqlkvPnz9OwYUNkMhmVlZXcvXsX8STeaWJmxlngfSHoa2DAEktLlpuakhIdDXPnorN/P3P19Xll+HDeiIlBLpfXmXSUkZHBp59+SmBgIHErVpB+5w6ZWVkUFRWhFgI9PT1NFrCEGmOkp6dH1qNHNVnHv0Yq/dsI9gcFBWFvb8+GDRte2pgODg507tyZLVu2aJa98cYbbN68GaVS+dKOo+UvhNCi5U9g0qRJolGjRiIrK0uzTKlUih49eohu3bqJqqqqWts/fPhQ+Pn5iZiYGKFSqX5z3LNnzwpvb2/xwQcfiJSUFNG3b18RFBQkWrZsKdLT04UQQqxcuVJYW1uLLl26iM8//1wMHTpUPHjw4Jmx1Gq12Ldvn3j99dfFO++8I9zd3cWYMWM0x8/LyxOzZ88Wbm5uYvbs2UKlUokBAwaIxo0bCw8PD6GnpydsbGzE+fPnxRgvL3FOKhU3rKzEbhDdQKzU0xMH5HKhDAkRhR07iv0GBmIPiLMgbjVoIBqamwtqbG+tj4GBgejUqZOIbtFCfKinJ3ZIpWIviO9BrAbRQyoV+k+2HT58uHBwcNDs6+zsLJRKpRBCiIiICCGTyYSTk5OQSCR1HuuXH387O3Hd0FAkmZmJi87O4n+MjMRhExPxo0QigkCs1NUV+w0MxCkbG7HS01O8b2oq8gMChOjZs+bTvbsQ7doJUVr6h5+fP4uioiIRExMjLl269NLGLC4uFv379xcZGRmaZTNnzhQ//PDDSzuGlr8OWkUlLX8agwYNIjk5mQMHDmhiqZWVlZr+rDt37qwVZ3r06BGhoaE0btyYr7766jdjUHfu3CEqKgo/Pz9ef/11fvjhB1QqFUePHmXjxo34+/uzdetWxo0bh6WlJWPHjuXAgQNMnjwZX1/fZ8bLzc1l2bJlpKamcvnyZSwsLFiwYAGjR48mOjqawMBA3nrrLezt7fnggw944403NO3VRowYwf30dD5ft44ZPXtSPyEB58pKDAwMyFMqUahUGBoaolNdjaW+PgZGRhw2MGB8RgaP60hEAtj0wQe8np8P169TUVnJhTt3KKuqQkJNtaQBUAHskMmI3L2bY2fO8MuojpWVFS4uLiQnJ1NeXv7M+E/lCysqKoAapVtPwNbAgGmenlRnZHCvuhorW1uys7OprKxkKTDAzIxXnrSq25adTYVcTo/KSpycnLC1sanp2RodDePHP98D8hfh4sWLLF26lKVLl2JiYvJSxtyxYwc3btxg6tSpANy7d48ZM2awZs2aF1R00vJXR2tUtfxpqNVqwsLCAEhISNAYyeLiYrp3746HhwebNm2qZTxzcnIICQnB19eXr7/++jcN66NHj4iMjMTS0pLAwED09fWprKxkzZo1LF68mIiICH744QcmTZpERUUFkyZN4ujRowwfPpxXXnnlmfGEEBw6dIh169bx4MEDzpw5gxACX19fDh06hIGBAQMGDGD//v1YmZkRIJXSs6iIRoCkogKhq0vzHj0Yc/IkpwsK6COX07yqCn2FApVEgsLEhHR/f6YkJfHBzJlMnjy5zusa7uDAO4WFuHh7Y+riwvUbN8jLz8fI0JCCwkKqKisR1DQlswLSjYx4u7KS/CdTzr+FlZUVnp6epKWlkZOTg7VcTvuKCgYBTtTEhXSkUuRC4CqRIDMwIEOlotTEhKyiIpo0boxCocDIyAgLCwuuXL1Ks6ZNqa6u5vbt29hZWNQIQ3zzDTyRc/w7sXbtWvLz85kwYcJLKX9RKBSMGDGCMWPGaJL2FixYgKenZy0JTy1/f7RGVcufSmlpKUFBQdSvX5/169drlufm5hIcHIy/vz9r1qyptc/TPqo+PjXi5L9lWEtLS+nduzfl5eX4+PhgY2NDfn4+hw4dYuzYsbzzzjvs2bOH2bNn8+DBA0aNGsXt27cJDw8nMjKyzh/P/Px8+vTpw/Hjx1Gr1RgYGDB37lysrKyYOWMGb5ia0jU5GWOlEqVEQglQDTja26MoKkKUlKCWSDhuZsbs0lKKVSp27dpFXFwcDx8+rBVP/jXdgOUmJkhtbEjLzMTQ0JCy8nKsrazIycnR1FgW/iJGbAfcBN6mRv4dQC6Xo1QqNclPT8s91Go1pqamyDIyWFhZibVKRbEQ/PKM9HR1ecXVFZGailQmQ0dXl3wLCxyaN+d2cjJ2traYm5tz9+5djIyMsLe3R1FSQtaNGxwPCiJyzRqM/oIyhf8JhULBBx98QO/evenatetLGfPo0aN8//33LFq0CIlEwsOHD4mLi2PN3/Qeaakbbfavlj8VPT09evbsyYIFC3jw4IHmB8vIyIiwsDDmz5/P3bt3a7WGMzIyIjIykqVLl3LkyBH69OlTpwF8KgJx4MABkpKSOHHiBEqlkqVLl/Lhhx+Snp7OyJEjcXFx4e7duyQmJtKwYUPS0tJ48OABLVq0eGbc8vJyZsyYoSllqa6u5sCBA5w/d44fu3alb24uNs7O3C8uprCqiuon3WAKCgspqaqiFDAwM6O3mxvejx5xSAiOnz9PcHAw58+ff0bQ4SkN7exYAzwqK+NxeTm6uroUFhUhhKCkuJh4ITAsLUVeWYkE0JHJ0NfXp0IqxUOlQgDnnoylq6uLvr6+Ru4QamYHdHR0aG1vz2Z9fSz19akwNib/iUgE1CQiqdRqUgsKMDY2xlpHh6qqKsxVKiS6umSVlWFtbY2eri56eno8yMjAViZDR6FAb/ZsQpYtY+HChaQ9aSpgamr60qZT/9vIZDIaNmzIokWLCAgIeCnn7ebmRmJiIoaGhri5uWFqasqDBw9IT0+nadOmL+GstfwV0BpVLX86xsbGdO7cmalTp6Kjo0OrVq2AmpKa4OBgZsyYQX5+Pp06ddLsY2RkRJ8+ffjss880EoJ1GVaZTIadnR1btmyhvLyc0tJSevXq9b/snXl4VOXZ/z/nzL5nkkx2CCQhgYDsq1o2UUBBRASK4mvFhV+tWGWxtq6vWq0LbmBRq1ItilIXWlkUcWOrIDtCEkJWErJNkslMZp9zzu+PmYwgVIu4YN98risXIZPz5DkzZ+Z7nue+7+/NvHnz+NOf/sSmTZuYf911DKyuZuyBA/Tcvp0BZWVkFBXxr82byR01CvVxLc9qamo4cuQI1dXVKIoSj3nek57OhLo61JmZaEwmZFmmsakJRZaJRCLx3xMEAa1ej1uSMLndDAfWShIfbdoEcMoYqlqt5nd5efRqbaVFUeIOSaIgRA0ggO3AAJMJczhMbm4uQ4YMIS8vj9zcXKzJySQdPco/DAYCkQiRSOQEQe1AI0k84/GQZbPh0+upiNXEdtAC/A34EPBEIiRqNCQYjegVBZqaCIRCJNjtqAIBNH4/wdZWAkOH8lJWFq29ezNixAjWrl1LUVERe/fuZdWqVYwYMYLU1NTTul5+KhISElCr1bz55ptccMEFZ1xXKggCmZmZPP/880ycODFe77xkyRLGjRvXGVv9L6FTVDv5SXA4HPTv359FixaRnZ0dTxhKTExk5MiR3HXXXUQikbgbE0SdmqZNm8bSpUvZuHEj06ZNO0lYJUni17/+NRD9EGtpaWHnzp3ce++9zBw5kvAjj2B69FF6Op0ka7UowSBiIIDG6aRXXR1ty5ah93jQnHMOGI0kJSXxxRdfUFFRgdfrxeFw8O6jjzJ5+3ZKW1uRRJGyI0coKy/HaDSSkZERX9XKihI3m/B4PHhkme6AJxikLj0dSZJOELsO4/Wgz8ftzc34ZZmwoiAdV1ak0WjI79GDD1wuesgyqTodQ4cORRTFaD2rx0N1bS2Ky4U/M5OKmBAcvyJWqVQYjUZmJiYyyu3mQH09TU1NaLVaEmy2eJx2I5AMXANkKAptoRApffrgMRjQq1S0eb0kXnQRQo8eCBdfzOt5efxq9Wr21Nby0ksvkZycjNfrxev10tjYyNVXX83MmTN/VhZ9BQUFbN68mcbGRs4555wzHi81NZX9+/fT1tZGr169MJlMOJ1OioqKGHiWNh7o5PToFNVOfjKys7NJT09n0aJFjBgxIt4pJDU1lWHDhvG73/0Os9l8wodNh7A+++yzbNiwgSuuuOKED2lRFJk0aRL9+/cnMTGRo0ePUlZWRpLTyei//Y3+okiNz8eRpia65OWht1jwBAIoOh21bjcWux3f5s0YPvsM9ahR7Cor49Zbb8XtduNwOHA6nYwtLaVQFGnw+SgvL8fj8ZCVmRlfhWVkZMQblFssFiKRCOGYeIaIZtd+mJyM2+s9oVZRr9cTCAToK8sxcI8iAAAgAElEQVRcAWgdDgKBAFlZWWR16UJTYyMAKampfCGKpLa1kSyKaLVaXC5XXPgBvG1tpAHvShL9+/dHURTMZjPhcBiHw0Gi3c711dVoJIkg0dVxvKG6KBIMBvmCaO+V41uNNzQ0UNfcTMhiwdvcTNIrr6C+8kp2SRJLly9nz5498Tpgl8tFS0sLgiDgcDiorq5m8uTJP5stYIjemPXv358lS5bQu3fv76XReE5OTrzxQ0eLxGeffZZRo0ad2Bi+k58lnaLayU9Knz59kGWZO++8k4svvpjEmCNPVlYWffr0YeHChWRkZNC7d+/4MQaDgenTp/PnP/+Z9evXM3369BOEVa/X0717d8aMGcO8efPI02rp88QTaFUqzN26kZaRQXt7O4dLS0nPyMBmteJ2u0m026k5dgyDw4Gnuho2bOCa11+nNRTioosuor6+niStluurqqhyuzHbbMiyHBckT3s7dceOUVVdTcDvx2az4fV6UalU6LRaIpEIEpCsUrHT46FMkk4wt4hEIjz99NPkBAJ0r6igJRjE4XDQs2dPDhw4QI8ePfD5/RyrreUjj4cCIMNkora2FkmWyS8owO/3U3P0KJFIhNSEBELTpuFwONixYweyLJOamsrw4cNp3b6dX8kyrYJAekYGOq0WURRpi/Vx/RtQBZQBW4FegD12DrKi4PV6Mca2ppMmT+btt99m9erV+P3+r8wuFAWbzRZ3Edq1axePPvoo48ePj7/OPwcMBgPp6en8+c9/Zty4cdHG7WeAzWajoaGB4uJiBg4ciMFgwOPxsGfPntPs7drJ2Uhn9m8nZwXz58/no48+4qOPPjphNfDuu+8yf/58nn322ZOambtcLiZOnEhaWhp///vfT3AgiqMoMGsWTbt3c6C2ll69epGeHl17lZWXU1lRQa/CQnQ6HdVVVSQlJVF65AgmoxGt24160CBsK1cybtw4jh49yihZ5oFIBL/ZjCRJhMNhunbtiqIotLS0EDEaebWhgfKYV25vYKIgoFar46tVh0qFq6CAB+x2/vWvf50grIIg8Nv8fK4qLaVOltGo1fE4p1qjQZZlwqEQTwOTgN4GAwLgDwRQFAWtRhM1vw8ESE1LY6TPh8fjOSFWKooik9Rq7hcEakIhtFotdrsdWZZpampCVhREQeBvgsA5QN/Y/FQqFXqdDm+s1tUKtFgsZHz4IUOHDmXu3Lm8+uqrBINBRFHEYDAwbdo0li9fHm8IsGjRItasWcObb75J/7PYZP9UPPPMMyiKwm9/+9szHsvlcnHTTTexePFi0tPT8Xg8zJ07N/7/Tn6+dNoUdnJW8Pjjj9OrVy+mTp0aj0lC1ObwgQce4De/+Q2bYsk9HSQkJLB+/XoaGhq44oorTp1Je+AAlJfjyM+na3Y2R44coaamBgXIzcmhV2EhRYcO4XK5yM7OpsnpJDHWd9SlUiHv3Mmk3r2prKxEo9FgVRTEWOwyEomQmpaGq62Nuvp6vD4fT9bXY5IkbgEWajQM1GoxGo1IkUjcqkhSq/GUlbF169aTbBgVRWFXSQkRWUYlikQiESKShFqjQRQEhNgYHfj9fvyBAKIoIooi4XCYUDCICqhrbz8haaoDWZaxqtXxN38kEqG+oYGGxkbk2O/KikJElpFkGbVKhV6vR1EUwuEwYmxXIAzg8fDkk08iCAJ9+vTB4XAgCAKpqans3LkTi8nEvz78EAIBREFg8eLFzJ49myuuuIItW7ac3kXyE3PjjTdy8OBBtm7desZjJSQkMGXKFF599VUgavd46aWXnmBn2MnPk05R7eSsQBRFVqxYgU6nY+bMmSeIzezZs1m0aBHXXnstO3fuPOG4hIQE3n//fZqampg2bdrJwvrmmyAIIAjkdO9OQkICx44do7KyEllRot1h8vIoO3KEA7FG3A0NDRiMRnx+P8FwmMnhMAUFBVGT9ePGF2IdaATAaDDQpNXiVhQuADSAHAqREgzS3t5+QrJRIBhEkCR0Ot1Jz4MgCNQaDBg0GlAUFEAlioSCQQLB4CmzeFEUBECjVqNSqZAVBQvwcXv7KR2U9Ho95wweTFJyMimpqQiiiComyqfKcBVEEVmSsFosIAjY7fboawb4iLoFffLJJ4wePZpXXnmFJx97jDl5efRcvJjHNm0i/aqrkEaMgPPOg4cf5u5Zs7j11lu5+uqrWbNmzcnnc5ai1+tZsGABy5Ytw+l0nvF4l112GUVFRRQXFwNw6aWXsnv3bqqrq8947E5+OjpFtZOzBrVazTvvvENtbS033XTTCY/ddNNN3HDDDVx55ZVxY/4OrFYr69evp7m5malTp36V/OPzwcaNkJSEJMv4fD7+2N7OhvZ2FpSUMOb997nniy9o8vl4R6fjTreb5eEwGqsVRZbR6fW0AheHQhw6eJC2tjY8QIdXkSRJeNvbaXW5cLvd1Pt8WBUFNcRN55XY93q9HoGoQGqAFkkiGAzydRRF4Zii8LkokhBbNUqyjCa29dux5tTrdOg0GtLT0lCpVGg0GswWC7379MFkMCAKAhvM5lM2fB8+fDiq9HSEmFiHw+Holq8ootfr0Wg0GGNjCERjinqDAZ/fTyQcxhOrZTUCDVotkiRx+eWXU1NTw9hAgFvWrWNOURG+3bsxZGejysigKhQCqxXefRdmzeLmnTt54re/Zd68ebz22mune6n8ZBQUFDBp0iSeeuqpU5ZDnQ46nY7Zs2fz8ssvoyhKPAlvxYoV39NsO/kp6BTVTs4qrFYr77zzDp999hn333//CY/dcccdXHHFFVx++eVUVVWddNz69etpbW3lkksuYdu2bbz36qvU1tWx/+BB9uzeTWVVFbIkUanX85uEBP7UtSv7/H4erKhgiMfDQkEgIkmsb2mhvb2dQCBAmKi/boffzUGiIikA4djWrKIoRCQJs6LgBkS1GlEU46tHQRAIhUIIgoDBYCC/a1dazzmH5ORkevTogUqliq8QBUEgEAjwaiSClqhVIEAwFIrGS2PxWVmW0ep0ZGVlMWjQIGRZJhQK0dzcjD4Q4CBQHUuosdvt8cbjgiDw2Wefce/q1RysrSXQ2gqAIss4HA4UWaZLVhZJycmIokhiYiJms5mA348syxgMBkKxmxYR2Bnrv+r3+fj4yitpuPHG6E1Edjb1gQCIIllduuD2eGjz+SA1NfpVUsLU1atZvnAhd911F88+++z3eh39kEyfPp1QKMTq1avPeKyxY8fi9/vjnY8uueQSDh8+TGlp6RmP3clPQ2f2bydnHTabjfPPP58//OEPJ5XUXHDBBZSUlPDwww8zefJkmpub2bNnD0uWLOGWW25BURSKi4v54IMPOK9nT/qUlJDcpQuOlBSMRiPrW1qYYLGQGgoRdLsp9ftJVBT6ExWJkCBQQ7RXqEqliq4ggH/odHgkCTcwgGipiSkpiV6FhaAoZGRkILa3U6RW4xZFMiIRCvv04agsM2bQIFytrQQCAQRFIUGvZ/fkyXTJz2f37t3R5KOYUHUkDDWq1Zyv0dBdEAiqVCix+KaiKJiMRgaGwxiCQerr63G1tqJWq/F6vQTcbkzA3UBFIBBvE9dhXKFWq7Hb7YQlCSkcZqQg4I+dZ3t7OxqNBq/Xi9/vp0irJUur5dIhQ+jSpQvH6uriSUomwAXc2dLClClTuK9vX8YdOECZx4MnHKZbdjbX7d9PD5uNLKMRg8FARWUljpSU6A2E0QiBAN2Kihhx110sfOABPB4PI0eO/LEus++MKIr07duXJ598koEDB8a3w78LgiCQnp7Oiy++yMSJE9HE3KnWr1/PmDFjvsdZd/Jj0Smq/5fwN0Dz59C6HzyHwV8PumRQab/92B+ZtLQ0CgsLWbhwIQUFBaSlpVFSUhK/o//iiy947LHHaGpqIhwOo9Pp2Lt3b3xFWFdXx+7PP+eKYJDq5mZcLhftXi8ftbczQKsl02DAHwhQFA5jJSqSoiDgFATqBYEhWi1KzOvXodPxcX4+9bE4mlsQmAi4JYn6ujr8gQAtLS2EQiG6RyLslSQ+UBTWt7YSDocx1dUhxJKOkhWF9wIB7ty2jZ07d+Lz+eJx4I6tV6/Xiy0hgYquXTkvGKQwMZH03FyO1dVFt5EFgeSkJPw+H3LMwQlBQB2JkAQ8AHwaex6Pd4GC6Ja1z+cjHA7TYjRypUZDemoqLq8XR0oKyUlJtHu9+AMB+gO2WPZwKBxGiW2hoyg4gGeI+gxX79vHTQcP4larCUQiBAMBnM3N7AB6azTkJiai1+vx+nx429ux2WzEThja2siKRBj1pz9x9913U1lZyUUXXXTWG0SYzWbsdjsvvvjiGTc1T09Pj18LBQUFdO/enZUrV5KTk0NKSsr3OOtOfgw6RfW/HUWGll1QvBgO/QnqP4amTdC4CRo2QuVrEHCCIR10P33toCzLHDt2jP3791NTU0NbWxuPPPII27Zto6mpKV4DmZeXx+HDh9m7dy/V1dV8+umn1NfXEwqFCAaDGI1GgsBErxejVouiUqHRavksEGCE3U6P5GTS0tL4qLYWh9lM/5glXVUohEur5YKUFMKhECq/n3rgsZihvaIoVEsSA4E8oEvPngwcMICKigoUWaZfr15M7t6dnq2tXNW9O8OSkwmHQvh8PkyyjFqr5T61GucpGlRHIpF45rPP56O6sZFPdTrON5lQVVWhCocJiyJhSaLN7Y43KNcpCjZJQg38AXg/Nl6Hy9K/o12SKAFGt7VhttlwtrUhSxJSJEJ+jx70798fV1sboijSUF8fbVQuy6QDHwDLAI1Wy2WSxHBFoTkcxmw2Y7PZ8Pv9fOLzkSfL9MnMRBAErBYLlZWV8cbmABgMcPgwaXPmMHHGDB566CF27tzJ5MmTz3ph7datGwcPHqSkpIRBgwad0Vjdu3dnyZIljB8/Hr1ej9ls5p133mHcuHFn/fPQyYl01qn+NxPxwd4/gHMrCGrQJoLwtTC6HIZQS/T7nGuhx/+LZsv+CAQCASorKykvL6eiooKKigqqqqowm80kJiYiyzJer5dt27ZRVlZGWloaPp8Po9GI1WrFYDBw+PBhAAYNGsTevXtRq9X06dOHa665hszMTLZcfz3Tm5ro8YtfoBJFrtu3j5uzs1EfPYooiiypqcEOzO3Zk3aPh92Kwvs1NdxoMJCcnIzN72deQwP/+NrcLcArWi09dTpqYkJ+zjnnkJ2dTTgcZsuWLaSmphIMhZAiEUJOJ4IksVCnI1BYSG1tLQ0NDfHxOuo4v87NN9+MyWBg85NPciUwNGYg0VFaIwBtRD161wMtgnDaCTR/nj6d8Z9+irO5mWZFQSbanKAjOcpgMCDLMkZJQna7WQ/cT7SkRgWsEwRUioKfqI2iSq3GZDTyR4+HfpEI1QkJhPV6hickMNNiwdnQQO/eveOlOdTXw7XXwk03cezYMS699FKys7N54403ztho4Yemvb2defPmcfPNN5+xsD7zzDPYbDauueYaZFnm5ptv5rrrrjvjcTv5cekU1f9WpADs+DW0fQm61G8XSjkCwUboOgMKb/9ehVVRFJqbm08Qz/LychobG+NlJYFAALfbTXNzc9SAQJYxm82YTKaoMUN1NT6fjxkzZpCTk0N6ejppaWkkJiZy2223kZycTP/+/Rk+fDgXX3xx/O7eV11NVZ8+uLVaBg8bxo0HDjCvWzfCpaW0t7ez0ufDpihcarOR4nCwU5LYJ0lMbW8n5PWiD4eZajRSd1z3lg5MwEPACABRpM/IkUjA3r178bS3oxZFrIAqEqFZlrkVOCyKZGZm4nK58Hq9cSHtmO/XTRoOHDjAhRdeyLFjx9BqtaRIEjmShEUU0ZhMHPV62SvLjL3wQp588klGjx59ynIPs9l8yjZzKpWKpKQkCoBJTiejZBmDTgc6HRIQDoXQSBKyJFEtCPxFknifr2plz9FoeCEcpik2X4fDgc/nw+/z8ZQso1epmKUonFNQwCuBAH2sVob7fJjMZjIzMqKD+P2g1cK6dUDUGGHy5MkYjUbefffds966b//+/SxevDguit+V5uZm5s2bx1NPPUVKSgrbtm1j1apV8TrgTn4edIrqfyt7fw/1H4Iu7T8XSEWCQAMU3gHZ07/Tnw2Hwxw9ejQunmVlZRw8eBC3240Y85Rta2ujra0Nr9eLXq/HYDCg0+m++oAvKKBHjx6kp6fHv1JSUrj++utxuVx88MEHX20fEm1jNn78eLp168Zrr72GJEk0NjaSmZkJQOiPf6TikUdo0WoZOmwYKlGk+uhRjhw5AjFDg7S0NBLsdpxOJ4IgUJCXR9X27TwTDPICJ3eTsVgs0Q86RSHN42EGcAlR1yOVKBIMh1ErCl8Cq3Q6NsYyiSHaccdqtTJt2rS49d3mzZvx+/3f+Nz+7//+Ly+99BJHY6vsju1dayTCWIMBm6KgBVplmUOCwP6Ys1HHatNgMNDS0hIfTxAEBg8ejMfjoampiUgkgjkQ4LHRo+kdCkFbG872dnY3NrIpIYEdPh8NMf/hjuNHqFQsliSaYi5M6ljmsyTLPBEOcy4wiGgpjzslhQ9VKv7cqxdffvklvXr1wmAwRGt/29pg27b42D6fj6lTp+L1elmzZg0JCQmnfS3+mCxfvpza2lruvPPOMxLA1157jYaGBubPn4+iKNx2223MmDGDc88993ucbSc/JJ2i+jPgo48+4oMPPuDRRx/9zw5or4Qt00GXcvJ277ch+aNx2DHvf2sCU1tbW1w8S0pK2L17N0eOHInHBn0+X9zg3WAwoNVqUavVpKWlkZ+fzznnnEPXrl3jq860tLRvXJUEAgHGjx9PSkoKb7755glGBU6nk/Hjx9O3b18sFgtHjhxh7dq10Q+4SITIvHmUv/YaLRoNQ4YNwx8IsH37dlAUrDYbubm5VFVVYTQYqCovJ00U+USrxbVgAfd9rbQHIDk5mTfeeINrr72Wo0ePYjKZMMsyGZKEKhQiCDQDdYKAXq/H7/fHy1okSSIvLw9ZlgkEAtTW1gLRzF+XyxUX8K9vCWu1Ws4991zq6uooPXyYIQYDl/r9jIuZP+g0GqRIBElRUKnVHDObWerxsFkU8Z4ihisIAv369aOyshKXy4VWq+WGG26gqKiIjz76CICPP/6Y8ePH88gjj7B8+XK+/PLLaHzUauWGG24gv7WVoa+/jiYjg9qaGoLBYNyA4ilZZiLQA9BptbSo1TwvSXw4ZgzNLS00NzfTq1cvBEmC1laIJaF1EA6H+eUvf0lVVRX//Oc/yehY2Z6FhMNhFi5cyMSJE5kwYcJ3Hsfv9zN37lzuuece8vLy2LVrFy+99BJLly4949Zznfw4dIrqz4DTFtWixVD1Jui/Y9/KQAMMeARSoyn9HclD5eXl7N69m88//5xDhw7R0tJCOBwmGAzi9XoRBAEx1jWla9eu9OvXj379+lFYWHjCivOUHr3/IS0tLVxwwQWMHDmSp59++oTHSktLGTp0KFqtluzsbFasWEF+fn70wVCI8L33Uv7nPyMpCvkjRrB561asNhs2m40Emw2tSsXRvXsJBgK8IUk8AeTm51NTU3OCM5E65scrCEI8c3fOnDmsXLkyLirHd59Rq9UnOD11rLJzc3M5fPhwPPlKEASWLl1KSkoKN910E06n86QVsiiKdOvaldtEkWHl5UhE+56qNJp4yY2iKJgMBrLtdlpra6kyGpnr9+OMjTVq1Kj4OTU1NcXPQ6fTMXjwYMrLy3nrrbewWCwsWbKEF154gdTU1GjG8HErXYB+ajUvCQLNoogiy9FsZElCrVLxDDBSreb6AQPQqNWsKS7mzbY2bjcaGTR4MJWVlSQlJpJqs0V3UzZsOOn1lmWZ66+/nh07drB69Wry8vL+42vlx+bo0aPccccdPProo/Fdku/C+vXr2bJlCw8++CAQrc8eP348Y8eO/b6m2skPSKeo/gw4LVGN+OHjC0FtAvH0S2UkWcLfVkdls5Z712dRVFREY2MjwWAw7iOr1WoxmUxkZGTQrVs3+vTpQ7du3Rg0aBBZWVk0NjZy99138/zzz/8g3UgqKiqYMGEC1113HbfffjsQzZy99tpr2bFjBzU1NdhsNh566CF+9atffXWgy0X45ZfZ+fDDdPN4sCQkoLfZcIVCoFaTnJTEc0ePsqSujkPHvS0MBsMJW7MdWcDH/8xgMOBwOOIiFQgE6CLL9Fep6O5wUFNfTyvR5uInRzajYpmeno7FYmHz5s1AtNTi67aLep2OhaEQlykKjcDxj1rMZkxmM263G7VKhae9HYNejwOo9Pu5TqWilWim6fbt21m5ciUPPvgg9fX1QDTuKopi9Hi1mvT09Phr/++wG418ptcTAkSjkXAsaautrY2lokhaYiKPDxyIThS599Ah7O3tjBME/IEAvXr2pK6ujnNSUtDMmAG///2//TsLFiz4WRjxr1u3jo0bN/Loo49+55tHSZK4+eabmTNnDkOGDOHLL7/kqaee4rnnnjujG9JOfhw6X6GzDKfTyQsvvMDBgwdRFIWRI0fSo0cPAF5++WU2bNiAyWTipptuimcFbty4kbfffhun04nNKHBFfjMTzosWpB8od7N4VTmTR6Ty7pZ6RAFuuqwbKpXAs+8coamlnRH5AufmRRtmVzdFeH8feALwWckeEhISGDhwIH379mX48OH069ePjIwMTCbTN56DJEk4nc4fRFS7d+/OihUrmDFjBpmZmVx11VWIosiECRNobW1Fo9Fw+PBhnn766aioFhdHPYDXr0cjSQzr0oXy0lICzc10jZ3HVpOJC//2Nxb07w8GA2IgEN969fv9cdejzZs3M3v27Gg89jj8fj+FhYW8/uqrPDhxIr127aIvgCShqq+PGukDMrAvK4uV4TCbjsv+FQSB1tZW2tra+J//+R+KiopO2SBgllrNNXo9rVotSnMzyDJibDu2T58+1NTU0BwK8RbQLSWFwoYGqoDuBgMvWyxMd7k4cuQISUlJdO/eHZfLBURFPRAIYLVaMRqN+Hw+jh49+q2vhc5qpWbwYAq2bSOk12PQ6wkGg5jNZuTaWnJ8Pu4qKsIlSQxLSOCGnj05WlaG6HZz8OBBUlNSaGxsJGPaNL4pErl48WLsdjvTpk3jr3/9K7/4xS++dW4/BRMnTmTnzp2sXLmSq6+++juNoVKpuPbaa1m+fDkDBw6kT58+ZGRk8OGHHzJx4sTvecadfN901qmeRciyzB133EFubi533303U6dOxWKx0N7ezvr16xk7diy33347Wq2Wl19+mcsuuwxBEGhubmby5Mlce+215KaoWLzsDQYXJJJo1dLYGmTd540UdjPzh9l5mA1q7n9xB6VlVUzq006uI8SqbSH6dhFIspvQmZMYPTib+VOT+Z/7PqbV5ebKK6/klltuobCwkKSkpBOShI7n/vvv5+mnn2b9+vX079+fadOm/WBZi5mZmeTl5bFo0SL69u1LTk4Offv2ZdasWYwZMwZZlvn0k0+4vL2d5MWLobQUEhPBakWwWmmJRChqaqIptl1qrKggsHYt7f36oXE4TrJBVBSFt99+m1WrVrF169aTBE8URayyTOoDDzCmpgabouAEvIAH8IsiisGA0WYjx+3mgrY2bBYL20IhHA4HJpOJtrY2QqEQR44ciWcGdzx/WVlZmHQ6/ujz4VcUWtrb0ev1UdN9RSEQDMbreiVZpgQIt7fTjahVojsSoYdKReGcOZS63TidTlwuV/w8cnJy0Gq1NDc3n2TaL8QSkHQ63QnnrdFo8Pv9hBwOZigK1U1NGM1mEux2QqEQ1/fti6qmht6BAHN792Z0ejpalYqk5ORob1lJQnI6KRVFjk2cSPfu3b/xNR85ciRqtZpFixaRl5f31db+WURHnPrZZ58lPz//O5s3ZGRksG3btnj8PSsri2XLlnHxxRefkdFEJz88naJ6FlFSUsIHH3zA/fffj1arRaVS4XA4qKiooLKykttuuw1BEOjatSuvvPIKEydOxGAwkJmZGc9GTbEJlG5/A1GlpaCrmcbWIJv2t/C/vypApRLJTNbz901NXDXGSpdUE2a9QFGNQlqihhSbiIYAEX8zQV8Ll9/+AV9++SVr165l/fr1rFmzhk8++YQdO3ZQXFxMRUUF1dXVNDY24nK5GDp0KFOnTqVv376YzWZ69er1gz5f+fn5GI1Gfve73zFu3DhSUlIQBAGHw8HFF1/MdZKEvHQpYmoqeocDYokebo+HkpKSaAcYlQpnWxtuWUYfCDAJ+LvTSc0pSmjefvttDh8+HDW2j8VUOzJwzYrCkx4PPQSBelkmHLP+A1CrVNgSEpAkCZVGQ0N7O/qEBM6XZc7p3p01TicIAsFgMH7M12tWPR4PU5KSOK+lhabYNnxHO7kOa7uOBuIAhwEtUGgwYLfbkRQFyeOhePduSjIzaW9vP0E8LRYLGo2GSy+9lIqKipNaxsmyzKxZs3A6nXFDfb1eT79+/Ujo0oX6ykoKW1poDYXw+v0U9u6NyWgkNTWV+vp6qqur0Wq12Gw2BEEgISEBnSQh+Xzcq9Xy8po1XHXVVd+4AwIwdOhQHA4HixYtIjk5mb59+57GFfPjoNfrycrKYsmSJYwbN+7f3oR+E4IgkJ2dzdKlS5kwYQKpqakcOnSI1tbWH/x91cmZ0bn9exbhdDpJSUk55Z3o8SUFx9d2AuzatYuVK1dSW1uLEgkQrG2nW+ZXiTIWoxpRjK54tOpoItF5Q/qRYtehoLB6/z6SHDoSE2WqG3xs2BvkaLNARkYmkiRhtVoZPXo09fX1NDQ0UFlZGU9Y0el08TIKiK7oJEmipqaG559/nvz8fGw2GxaLJf6vxWLBarVitVrj31ssFnQ63WmvbG+88UZqamqYPn06Gzdu/CpD9JNPSFm9Gk9hIaWVleRrtZjNZiKRCEVFRVExUqujTbe9XhSgSZJQ1dTwhNnMS//zP7z65psn9HaVZZkbb7wRh8PBHXfcgd1uR9u1o2gAACAASURBVKvVIksSf3S5yIpEiKSkcFH//lRXVfHlwYOIsYxfj9tNRJJAUdDp9YQkCWNuLpe7XGxSqVgRM7Y/nuOzhRVF4fzqaiSVCkdiIsFAAH9si1pWFOolibcUhRaiTk8oCiaiRvwK0ZW9KMtMqKnh0X37+HpDuObmZoKxNnXZ2dmUlJREbwJUKgoLCzlw4ABr1qyJC7FGo0GlUlFcXMzevXtJveEGtq5axYiWlqhHcltbfAU+aNAg9u/fT3FJCW1tbfTu3RvB48Gh11N7331svv12ZFkmLy+Pxx57jFGjRtGzZ89/+5pfddVV2Gw25s2bR2trK/PmzTuta+bHYMiQIezcuZNly5axcOHC7zRGXl4e/fr145133uGqq65i9uzZ/OEPf2D8+PFnfe3u/2U6RfUsIjk5OW7F959u8YTDYR566CHmz5/PsGHDUKvVPPj/hqKET/6QPhUCAlqNFkeyg96FyfxtyyHyMgRGjTqXVTt1tMb8a8eOHUvv3r3jDjeKouDxeHA6nTQ3N5/w1dTUxNq1a2lpaaG4uBiTyRSvRdVoNNEOLjHnn0gkQigUihsTfJPonupnTqeTBQsWUFNTw2WXXcbHH3+M2WSCZcvAZMJis5EjihwuLaVnQQEtra0E/H4kSUIUBFxtbRBbkYVCIRoFgUEWC6Zdu04QVIiKakdpg1qt5u9//zujR49GPHSI4FVXsbu2ltb6ej799FMsFguiKMaTnI6PzyII+BWFLw8eRK8o3KBWs5JozFWn08UTg/R6Pd26daOpqQmr1Uq/mhqCKhXelhaE2HxkRSEkSbwKDAeGAMXABqORLEVB9vtxNjXR3t5OeloaOT168OpVVzH1nnuQJIkRI0awZcuWeOnTpk2bePbZZxk/fjyDBw+mrKyM1mPHGAmkeb3oRJGw1coev5+qcBi9Xs/VV19NUUkJz7W08PvERK7wevGWlZFsMiEYjZjNZvr06UNxcTGhxkZKmpvpPmAAuueeo/+AAczas4fXX38dn8/HzTffTO/evfnss8++0Uhh0qRJJCQkcM011+Byubj77rv/o+v9x2TOnDnceuutfPbZZ4waNeo7jXH11Vdz6623MnHiRLp27crAgQP55z//yS9/+cvvebadfF90iupZRH5+Pna7nVdeeYUrr7wSURQpKyv7xmMikQjhcBibzYZKpWLXrl3sqTGS3eu7NVEOhWWSbCam/HoZA5sC3H777Xi9XlasWEF1dTV9+vRh8ODBDBw4kLS0NKxWK1qtFlEUGTt2bDyZ58svv+Txxx8nMzPzBME9lQi73e5oWUtCAiaTCaPRiFarRavVxsXb7XZTWloa/97tduPxeNixYwd+v58hQ4bgdDoZMGAAd19+ORd/8QXhpCTU4TBqtZqUlBQOFRWR36MHAwcNovTwYYxGI0drahA0GuRQCLVKRSQS4UhNDZPsdt7KyqKmtvaEbdCcnByKioqYNm0aeXl5bNy4EftTT5HS2IhWq40bx/t8PgRBIBwKRT16BQFZUZAVBX3s3IRY+ZGhrY2pGRl8odGQkJDAvn37gKgAFxcXo1arcblcqCIRghpN1DZQkohI0eSyGqIJUEOJ2haeI4qU6nRkJCaSEUuyamxq4tixY0gqFR+99x6SJCEIAlu2bDnh9Xc6nRw5coRhw4bRFZgM/LK9HUQRu8lEOBjE43YjAEdUKv6p03Fw71527NkDwD8yMnCdcw5PjR+PsGIFNDaCKGJVFHonJ/O52cybKSmsa2zkxVCIYcCiRYvYs2cP5eXleL1eamtref/995k5c+Y3Xqvnn38+b7/9NjNnzqSlpYXFixefVbWcOp2OhQsXcu+999KrV6/vFF9NSUnhoosuYsWKFdxyyy3MmjWLBQsWcMkll2CxWH6AWXdypnSK6lmEKIrcc889PP/888yZMweA0aNHk5ub+2+PMRgMzJ07lz/96U9EIhGGDh3KsF9MgLY3IOTidFvmzrnAxNKNGt7+n9+Qk5PD5MmT2bdvH48++igej4c9e/awa9cuXn/99XhbtszMTD788ENqa2tRqVRkZGRw++23x+edmZn5jXV7kUgEl8t1guB2fF9XVxf/mU6nIzk5maSkJHJyckhKSqKyshKv10tpaSn9+/fn0KFDSKtWIYgi4XAYv99PJBKJJ8as3b6d90WR6lAIqyAwWpbppVLFV36CIOAMhcgPBJgydCgfGAzxGCPAoUOHAFi9ejVbt24lNzmZF6qqaI3ZKZpMJkKhUNQ9KhSiJRzmfUHgmFoN4TAjgCHBIIFgMO7IlCyKTGxp4Z1Q6JQJUuFwGFEUiYgiSiRCSBCi3ryx+lKPLGPlq8bokiwjejy0CAJhtZpu3bqRnp5OSUkJ7W1tfLR1K7IgMGrUKDZt2hQ/744a13vuvpsDd9/NY6JIekYGfqOREFBZXR09N7UaURDoEgiwMBjkmN/PTTodJCVRVlYWNcOfPRtmzYKGBmhvB7UaU0ICxpIS6pYtY1JmJjNnzuT3v/89N954I3379o3XO7e3tzN//nyKi4u59957v/F67d+/P+vWreOyyy7juuuu46WXXjqrhDU3N5fLLruMJ554goceeug7zW369OnMnTuXyspKunXrxnnnncc777zDNddc8wPMuJMzpbNO9b8Vdwl8PgcEDWj+wzvaYBPo02DEK6D9Zg9TRVEoLy9n165d7Nq1i/LycgoLCxk0aBCDBg0iIyPje8387VixHi+4TqeTu+66C7Vajc/nw+12Y7fbecHtJi8hgR5fS2KJyDK/+uIL+koSfb1eSoNB3gTmiiKJRBOK9AYDPq+XRFnmAZ2OtV/bAu6g49zONZt5KhCgVRSRYwJoNBhQqVS0eTy8CBQA5xM1vn9dEJisUtE1JtICYDMa0SoKw09hU6jVasnMzGThwoVMef11ju7aRcGgQXz55Ze43e5o+VAoxBqNhuX9+lFcVITP5+NlRSEbGCsICERv2BJsNlIEgbFtbXhtNpqbmyH22PGGFdcCC3Q66iMRsvPzaXO5sFgslFdURBu0CwI5OTk0NDbS2tKCA3CKIguSkmjXarn//vvjN4Wn4rPPPmP58uVMmDCBe+65hzFjxnD11Vfz4YcfcttttzF69GiOHTuGTqdj5MiRLF++/FuTfY434l+5cuV3Sg76oZBlmTvvvJOBAwcyffp3s/9877332LVrF/fddx9Op5NbbrmFpUuX/iAla52cGWfPLV0n3y/WAhjyLKBEHZJk6d//rhQC/zEwZsHQ575VUCH6wZqbm8uMGTN45JFH+Otf/8pFF11EZWUld955JzfccAPLli1jx44dJ8Umvwsd1njdu3dnyJAhTJgwgSlTppCQkEBiYiLDhg3jL3/5C7t27eIX/fvT0NRERUXFCWOUeL0IWi0jZJlwMEg3ohZ6+2UZYvHdYCCAWqNBDai/VlpyPB2rOp0kYbNasdlsyJJEUmIiVqsVv9+PU6vFLwiMJPpGswMDBYF9kUi0d6pajQK4fT5UwSB2ux2LxYLD4Yj/nZEjR/LSSy8xaNAgKkeMQBeJsDMW783q0gVJksgWRbQaDa8WFxMMhylVq6k77oZGrVZH62w9Hj5pbqY6Ejkhu7ijSbrBYGBGair3ORzUSRLmpCRqjh7F6XRSVl6OxWzmFaMRqWvX6LY5YLFaaQKSZJl7WltJstu/NYlm1KhRXHnllWzYsIE33niDAwcOcOeddzJ37lwSEhJYunQpAwYMAGDLli1ceOGFNB7nOXwqMjIy2LhxI42NjUyePDkeIz4bEEWR+fPn849//IPS0tLvNMbEiRM5duwYe/fuJTk5mbFjx/L3v//9e55pJ98HnSvV/3a8VVD6QrR3qiKDyhhtA4cCcgjkIKgM0GUa5M75t6vagwcP8u+qr77+5lYUhaqqKnbv3s2uXbs4fPgw+fn58Vhs165dv5dVbDgc5vXXX2f48OHk5+d/NeYVV+CqqGBXUVHcIhFgc3Mz79bXs7iwkE8+/ZRwKMSHskxQpWKmyUTA74978ura2pjv87HqFFm5EC3FSU1Npa8k8UBLC42ShNlsxmAw0NzcjM1mo0Sl4rnGRgyx8hpZlpGAXkYjd3TtyrG6Otra2lABNkHg/FiZjslkimYkKwpJSUkEg0H8fj/n9evHksOHqfN6SUpLo6mpidycHI7V1VEnCKzyemmSJApUKnQ6HdlmMwPdbmRJwmA0khSJcLPfzxcGwylFJ8FmY43BgNbtpiUcjpcMRWJdaowmE4l2O7l5eQjAv/71L2RFIT8/n+KiIhLDYX5vNnPTK69w+eWXf+vr989//pM1a9Zw//33c8cdd/D555/zl7/8hfPPP58//vGPqFQqXn31Vfx+PyaTiddee+1b3ZR8Ph+XX345Ho+H995776xayW3atInXX3+dp556KlpjfJps27aNlStX8vTTT+PxePj1r38d72jTydlDp6j+XyHYDLVrofEzCLuiwqpLgozJkDYGVKf/Jv9P8fv97N+/P75VLMsyAwcOZNCgQfTr1+9baxNPmwULYNs2joXDFB06xIABA0hMTOSgx8Ofjhzh1f79qa+vp729neebmjAGAowG/IEAFrMZs8lErsXCc4MHc+ebb8ZXdYqioI7FKN1uNw888ADaxkb63HsvbVotVpsNp9OJ0WRCFARKvF7eikT4rUoVLafhqz6oEN1uNpnNKB4PDbLMTKKlKh1JRB2ewCqVCrPZjKIo3OB280ugjq88iBVZRqPRYLVa8Xq9pKSm0qNHD1ytrRw5cgRJltH5fDRHIlwGWOx2Wk9xszAhM5Olfj/1sozH6yUSE9a0tDREUaS+vh5RFBk2fDi1NTXY7XYURaGoqAhBEOjlcLD62DEe79KFdevWfWNZTAerVq3i008/5eGHH+avf/0rTz75JAsWLIgbjixYsID58+dTXl6OIAg89dRTTJ069RvHjEQi/PKXv6SiooL33nvvrDLif+KJJ9DpdPzmN7857WMVReF3v/sd48eP54ILLmDFihU0Nzfz29/+9geYaSfflU7zh/8rqI1g7wdZUyB7JnSdDpmXgLUHiD9svppGoyErK4shQ4Zw6aWXMnjwYHw+H5s3b+bFF19k9+7dtLa2YjAYSEhIOPNVrM0G69ZhSUtDEASKi4txOBykmUy839REWJbpm5zMh4cPsyEYZEwggF6Wow4/kQiacJiA0cj1Bw7g+1qcc/Dgwdjtdurq6ti6dSvbi4oYpVaTBjS53RQWFmK1WhEEgSE9e7K2poaQSsXAtDQi4TBtWi1tioKF6Iek0WgkXafjqUCAElGMi+rx27MdZUxer5ddwGAgF/AqCkpsnIgk4fP5CMeSvirKy2lyOgkFg1gVBVmSmBtzefr6dnxOTg6TJk3i+kAAY309jV4vkiRFS6C0WlwuF6FwGK1Wy+OhEMHaWhxqNQUFBVitVgKBAMFQiGavlwuysthqt3Pnww/j8/kYM2bMN76evXv3pqWlhddee41FixYxfPhw7rnnHg4dOsSMGTNYs2ZNvDtOaWkp69atQ5IkzjvvvH87piiKXHHFFezcuZOHH36YCy+8kKSkpNO6hH4o+vbty8svv0xaWhpZWVmndawgCHTp0oVly5YxceJECgoKeO655xg+fDhWq/UHmnEnp0unqHbyo9IRG+3ZsydjxoxhypQpJCcnU1FRwapVq3jrrbeoqqoiHA6TmJgYN7o4LdLTYfVq8Puxp6TgDwQ4cuQImRkZDEpM5I2KCpYUF3M4EGCiIJCj1aLVaAiHQqjVanLtdlZnZPBJQ8MJ3WYgKmAPPvggmZmZbNy4EUmSSMnLI7+8HL8o0uZ2E4lEUKlUlJWVUSAIlBoMvNHayifhMG6rlUsHDGBA9+643W68ra1E/H7uA1QGA5FIBIfDwcMxUaqtrSUcDsfnIQFtAwaQ2tBAL5WKiCyjqNUnOTCp1WoMGg3WYBBvJMKvFYXDsTZ0X7dYbG1t5dChQ8yLRPB4vYRkOe58FIrVzIbDYcKhENuBgSYTxnCY+oYGtFot7rY2hgweDIJAfUUF4ogRjJo9m8cff5w33niDiy666Bu3Yfv27UtNTQ1vvfUWs2fPZubMmfzlL39h06ZNJCcnA9FOLeFwmM8//5zt27dz8OBBLrnkkn+bTSsIApdeeillZWXcd999nH/++fEwwE+JVqulR48ePPHEE4wZMybaT/Y0SE5Opri4mMbGRgYMGIAsy2zatOkbbzI6+XHpFNVOflLUajUZGRkMGjSIyZMnM3z4cEKhENu2bePFF19kx44dtLS0oNPpSExM/M9WsaIIWi1s3AhmM8kOBy2trdF+qbJMVksLY3U6hqvV2GUZrUaD3W7H7fFgE0UErZYto0cTEgSOHTt2Qp1qR6zuX//6F5IkEQ6HKQsE+G12NtpQCL+iEAwE8LS3Y7FYiHi95ASDnCsIjFKrmdqtG9lWK6Ig4PV6MXo8vKUofEJUuMxmMy6Xi3Xr1uFyuQiHwyf1VA0JAh9rNHi1WoaaTNjDYXSShJqoNWGCSkXPjAwIh3kjGOReoJxov9a77rqL4cOHs2nTphOeMo1Gw0yPB0WtRhFFdDpd1PJQUZBiJhMAnwPD7HYyjUYkSaKivBxbQgKpKSnY7XYSNBrebmpiXVERS5Ys4eOPP+axxx5DkiTOPffcU4qgIAgMHDiQ0tJS1q5dy8UXX8yvfvUrdu7cyQcffEBxcTETJ05k/Pjx5ObmsmHDBkpLS3n//feZMmXKN8Ynx48fj9vt5ve//z39+/enW7du3379/MA4HA58Ph/r169n1KhRp70zk5ubyzPPPMO4ceMoLCzkpZdeol+/ftjt9h9oxp2cDp2i2slZhcViIT8/n1GjRjFlyhTS09OpqqrinXfeYeXKlVRWVhIMBklMTPzmZI9evaCyEvbvRzCbcaSmUnbkCE1OJ1qNhtzc3KjVn8+HSq2mX9++OCsrSTIaMS9fznUPPBAX1A5RU6lUqNVqAoEA4XCY5OTkqBGF18unHg+XiyJhv5+ISoXFYqG5uTkuyEpMnJqdTqqqqigvL8fgdlOh03GPIBCM/Y2v+/+aTKaTtmuNRiNag4HNra2Yrr+e+tRUioqLkbRamiWJaq2WVRoNR+fMYfHu3bgikXjLsJycHGbPns0LL7yAVqvFYrEQCASQJImrVCq0sdWvIIqIgoAYc/ZSq9VYrVZ2AL01GvKSk5FlGX8gQLvHQ31DA8lJSRiBi554ghqViocffphZs2YxYMAAnn76aVavXs3IkSPjq8/jEQSBwYMHs2/fPj766CN+8YtfxAXzjTfeYNu2bVx99dX06tWLCy+8kLVr11JbW8vKlSsZM2bMCRnTX2fkyJFoNJp47XRBQcF/cin+oBQWFrJ27VrC4fBpNwawWCy0tLSwb98+RowYgVqtZsOGDd/ZtamT7xmlk05+JjQ0NCjr169XHnzwQWXGjBnKbbfdpvztb39TDh06pEQikZMPCAYV5c47FWXgQOVwerrykdGorFOrlfc1GqUkP18JT5ig7EhNVT4zmRRlyBClIilJeWvyZEXZsUNZ/8QTSheHQyGaV6RYLBblueeeUwwGQ/xngKJWqxVA0Wg0yiBRVDaB8gUo74ui8rHJpKxVqZR/QvxrrSgqxV27KoeMRmU5KAmgCIKgGAwGRRCE+LgajeaEv9PxZbPZlLy8PMVutyuiKCqTJk1SmpubFb1er2i12vjvNDU1KX6/XxHF/8/eeUdFdW5h/5mhzcDA0DsMbahSFQWUIti7WJForEG82BPFrrHGaGzXgpUoRuyKiMZGbGhQbKigKCi9t2EYmLa/P5D5wrVE7xdv7v2c31qz4sq87zn7HM6affZ+9/tsJgEgIyMjio2NpbVr15KdnR0xmUzFdwBIRUWF9jIYdA2gc2pqdFVHhy6y2XSRxaKHPB4JQkKI+vWj8VZW9LufHz11cKBUDocKfXwor107uqypSedUVSnfzIxkmZlERJSenk7e3t4UHBxMJ0+eJD6fT8bGxrR69WoSiUTv/BtLpVJatWoVrVy5UvE3vXHjBunp6VHXrl0V86qqqigkJITMzc2Jx+NRSkrKnz4/Bw8eJBsbGzpw4MC/+QT+tRQVFdGoUaMoPz//k+fW19fTqFGjqKCggMRiMY0bN46ysrI+g5VKPhVlpKrkfwYtLS04ODggKCgIgwcPhqWlJYqKipCUlISEhAS8fPkSTU1N0NXVbVmrUlEBunYFrK0he/4c7OpqsOVyUHMzJEIhLPX0YMZiwQSAmlwOpqoqzMrKwLl+HfaZmehZXQ1VsRgFRLB0cUFlZSUeP37cxqbWKFYul6OECKlMJgLc3WEjEEClsREMuRyqADQA6ACw0tVFg0SCfwqFWEkEIVqiQCMjI1haWqK+vv6tQqU/0lpAdOnSJaSkpKDi3j00bN2K6c3NmCCXI4IIPSQSXEhJwe7z55GZkwMmkwltbW2UlJQgJycHpaWlaGxsVHTaaW2IYOfqCq+KCjTI5ZBIpbAwN1dU8BYVFaGquhpXGhrgb2AA4zcFVQ1v0tyurq5Ql0jwpLQU3ZOSYGBgADc3N/Ts2RP37t3Dnj17MG3aNHC5XOzduxfnz59X9Ob9I0wmE/7+/khNTcW9e/fg5+cHHo+HkJAQbNmyBUeOHEH37t1hbm6Or776Cs+fP8fTp0+RlJQEDQ0NdOrU6b3Pj7u7OxwdHfHtt99CRUXlg2P/E7TqXMfHx6Nbt26f1NKttfnExYsX0bVrV2hqaiIpKQlhYWGf0WIlH4PSqSr5n4TJZMLExAReXl7o06cPunbtCgC4d+8e9u7di2vXrqG8vByqqqrQ79QJ2mPHQr9/f6iw2ShvbMTTkhKY8XjQqa1FvVyOl3V14NjYoKqpCYbW1mBoaaFZIoFdeTnmWFvDQksLa3/7DXjT6u19yDgc6IWHY1d1NQpEImjI5WiSy1EDIAvAHhYLmX374rWhIXLy8qCiogI7OzsEBgYiNTUVcrkcKioq73Wqrftgn50+jX+UliJGKoWzWNyi5kQEBgAdIrSrqkJgQQFs1dUx/PvvkXD8OIYOHYq9e/eiuLhYUaykpqYGTU1NtGvXDnliMfq+UaUSNjcr9JVtbGxgbW0NNouF06WlMKqthbi0FBaWlrCytERNbS1KSkrA09aG2syZWHvmDE6cOIFdu3bh/PnzaGpqwtKlS/Hjjz+CzWZj1qxZOHHiBI4fPw6BQABPT882qXwmk4mAgACcO3cOWVlZ6NixIywtLaGnp4cnT55g+/btcHBwgJOTEwYMGAAGg4G0tDRcu3YNubm56N2793vXKfl8Pjp06IB58+ahtrb2b0+Z2tnZKXSPWwUvPhZ7e3skJCTA3t4eHTt2xNGjR2FtbQ1TU9PPZK2Sj0HpVJX8f4Gmpibs7e3RpUsXDB48GHZ2digpKUFKSgr279+P5zk5EGpqwmzIELjOnAlTLhdNR49CzcoK9SoqeJGfj6bmZsjlcpi9+VF6kZsL0tKCjYsLdJ89gw+XiySBAO92dy2IxWI8e/YMTl5eKNTVxS9VVbgsFuMWAKmvL+y7d0favXtIT08HEcHDwwPJyclYvnw5ampqFGu4Q4YMQV1dnaJ3aSsSiQQBANYIBDBXUYGQxUKzujqapFLI0FIdLAYgVlODQCxGZ21t6KWnY2piImZ//z3y8/MBQOG4W6PV0tJSWNvZIdjXF34yGcz4fNTX16O2rg4FBQWQiMUwMzfH+ZoadORwYMHhgMlgoLCoCCpMJnSYTJRXV2NRUxPatW+PwsJCCAQC1NTUgMFgICgoCAsWLMC1a9eQmJiI+fPno6qqCklJSUhNTYWFhQVsbW0VzlBFRQUBAQE4efIkXr9+DR8fH7i5ueHu3bsICAjA6tWrIRAIEBgYiM6dO8PV1RXnzp3DkydPcPnyZQwYMOC9lePW1tYICQnB4sWL8fLlS/To0eMvldT8FBgMBry8vLBjxw7Y2tp+kkNUUVGBrq4uEhMT0atXL3C5XBw9ehTdu3f/265HiVL8QckXQF1dnULd6d69e/BpbMTYBw8g0dFBSVUVdHR0kJeXh5+kUgxgMDAmMBBMJhM3b96En78/XuXlQSAQQL+5Gac1NTH3TyTzAMBCQwPjTUww3cAAeY8eQSqTwcTEBLY8HuTBwQjevh15Ojqw5vGQnZ39lhgDk8lURKutYvcA4MNkYp+GBgRyORrkctg7OKC8vBwyqRT1AsFbES6TwYCxigpIRwejiSDR1YWhoSFyc3NRVVUFBoMBS0tL9OvXDzo6Ohjavz867NsHPHwImJigpLQUT7OyIBaLIVZTww41NXzLZiPIywtqamqQy+UQlJWhsbwcG+ztsSMjA0KhENra2i1z3mxTsrCwgLm5OQYMGAA1NTX885//ROfOndGuXTts2rQJxsbG6N27N2JiYtpsfREKhZg/fz46dOiA0aNH49GjR9iwYQMmTpyIqKgoODk54eeffwaHw0FWVhaGDx+OiooKmJqa4vjx4x9sRvHy5UsMHjwYPj4+2Lt3798qxH///n1s3rwZmzdv/qTuM0SE2bNnY9CgQQgMDMS0adPw1Vdf/e2p7S8ZpVNV8kUhl8nQ2KMHhMXFqBKLUVtbC6FQCAaDgXViMfoB8Dc1hYaGBkQiETgcDirKyyGXy8EEYMxgYKadHS4+fqxQPGqFwWDAwcYG/xCLMYHLRWVFBfLr61EvFgNEUFVTg6OdHZpLS9EoEKBKWxuLWSzcrax857H09PTAYrEgk8nAYrGgKpdjX1kZtFkskLa2QuiB5HJosFhobGxsOY+qKiRvxBpUVFXBZrGgL5Gg2sUFE+rrkZ2dDRUVFbDZbDQ2NsLOzg6JiYlYtWoVEhISwJJIgG+/Be7eBfT0INPQwIXMTKwpLIQ3gMHa2ujQoQO0NDSAqqqWLUw//IDmTp1w+PBhzJw5E3V1dSCilgYHO3di7ty5kMlk0NPTD1HscAAAIABJREFUg5qaGjw8PPDkyRPU1tZizpw52L59O2pqasDn8zFu3DgMGjRIscZYX1+P2NhYhISEYPjw4di8eTPU1NQQERGBkSNHoqKiAr/88gucnJxQW1uLoUOH4vHjx2CxWNi7dy9CQ0Pf+zyUlJRgwIABsLKyQmJi4t8qxL9r1y5UVVVh7ty5nxRpPn78GBs2bMD27dtx//59JCQkYPPmzcpo9W9Cmf5V8kXBePAA6sePg2NlBSNjY5iZmaGsvByNjY24JZfDVVUVDoaGKC4qgo6ODkrLyiCVSsFkMqHBZoPLZKKmuRlX6uvfOnaPkBAsFgjQVSTCi9paSNlsNIhEkLxZv5TL5aitq0O9VAoNfX24m5piEIOB8zU1qEBLm7/OnTuj4k1TcZFIBIFAACaTiWnTpuFoTAxM7t5FQWMjqqur0fxmK4xcLkfzm76tXC4XYDCgq6eHDm/SsA0NDZCoqcG4qgrPHR3h36MH+vXrB3t7e9TX16Ndu3a4cuUKnj17hsLCQrwsKEB1hw7QMjaGZm4uVGpqwOdyMUBfH8Y1NWA2NaH+9WtIBQJo9e4N5ooVQPv2UFVVhaenJxoaGlBZWalou/f06VOEh4dDLpfj5cuX8PLyQkFBgeJl5uTJk+jevTucnZ2RmpqKgoICZGRkgM/nKwRA/P39sXPnTkVqfOfOnfD09MT06dPx4sUL7PwpFnb6QjiZyvBVeAhEDdW4mfEMJ0+egvabl4B3oa2tjeHDh2PPnj04fPgwwsPD/zbH6u7ujqNHj4LFYsHOzu6j5xkbG+PRo0eoq6tDWFgYLl++DDabDR6P9xmtVfI+lJGqki+L774Drl0D/iBCXlNTg5KSEswvLcVAFRU4a2jgRU0NDshkCAPg9UZxSUVFBZoqKtAA0FddHSKZDLW1tZDJZCAirFRVRR8ilL2RG+RwOBA1NUEsFqO5qQkaLBbEzc0gAPZ2dlBRVUXly5fQ1tWFU3o6MkpLMXToUFRWVkIsFoPBYCjk9aRSKeIBmDc1oUYuB5PJhFgiadEP1tKCuoYGKisrFWINxsbGUHkjhi9ubgaTyQRHIMAdT090PXz4rbTotm3boKenB3d3d+Tm5iI3NxenT59GXk4OYjp0QGBNDRpzc2FlYgK5lhb2PnmCI01NUDU3x08//YR+/fopjlVZWYnBgwdjzJgxsLS0xOzZs8FisdClSxc8evQI2dnZsLCwwLRp03Dx4kVkZGSguLgY+vr6mD59OuLi4qCnpwcLCwv06tULkZGRYLFYqKioQGxsLIYPHw5tbW0cPLAPG+cPgVphIqryruN1fiGMDA1gaWkFBggvS5rxfcJrXH2mhvDho7Fu3br3pngbGxsxZMgQ1NfX/61C/K1dntatW/dJClAFBQWIjY3Fjh07kJubi23btmHbtm2fVFGs5K9BGakq+bJYsQLQ0WnZbvMGNpsNQ0NDHCssBK+5GTVCIRLkcvQG4KaiAmZrGo3BAFRUIK+rw/nmZhQ0NoLFYoHBYKAdgEVsNuTGxjA1M4OKigoIgIe7O4wMDVtk5by8WiJPBgP19fUoLSuDCpsNd0tL5GdmImjJEohEIjDfNFgHWrbbGBgYwILJxKSmJtCb9nDqGhowMTaGWCyGQCDAJZEIJ2UyXCbCEyYTDIEAnOZmsDQ0YGZmBk9PT3ANDaGVn4+eCQnIyspCp06doKWlBalUip07d2L06NHg8/mwt7fHzZs3cerUKdjz+VgQF4dUVVXElZejIjgYJ2UyCPh8yFgs5OTk4OjRo0hNTUVQUBB0dXWhqamJsLAwBAUFwcnJCePGjUNWVhbOnj2L/v37Y9KkSbh69Sr2798PS0tLTJs2DVZWVrhz5w6SkpLg7OwMPT09ZGZmQkVFBSkpKbCysoKDgwM6duyIjRs3or2LMULZ+8EsPgNNVQk0uVbQ0jVBVk4+yquFMDa3haGOGkLdCIG8chw8+wQnz6dh4MCBCi3lP6KmpoaRI0fiwoUL2Lx5M/r37/9Ja5t/Fbq6ulBVVcXhw4cRFhb20eu8XC4XZWVlyM7ORp8+fXD79m0Q0QfXlJV8HpSRqpIvB7kc8PVt0QZ+x3rT+AcPoF9UhPtEGATAQUUFLBarRcFIXR0MBqNl3bK6GtMYDNx7M09VVRWLJRL0V1dHs64uGhoawGQyIZPJwGQyocPlorS0FHq6uqirr4eGujoaGxvB4XAglUohbWqCoYoKlnTsiIzcXFRUVCgKjphMJgwNDbElOhq9jh2D9E16VyaVQtDQAEF9Paqrq5EuFMIKAAdAroYGThNhtYUF6ouLoaqqCnd3dxgZGAClpcg+cADzFyzA77//Djs7OzQ3N8PS0hLHjx9XrF/evHkT5eXl6NChA06dOoUpU6YgOjoa3t7eICJUVlYiNzcXaWlp2Lp1K/Lz88FgMNC+fXtERESAz+fD1tYWNjY2iircGzduYPr06WCxWNi6dStyc3Mxc+ZMMBgMeHh4ICAgADk5OUhMTATQIrZfVFQEPz8/aGtrw93dHRMnTkRD2RPU/RoOM2M95BUL4OzsBE12Sw9XiVSK+/fvQSRqgre3N3S0tdFYX4acZ08w+5A6apn2OHHiBKytrd/ziMgRFRWFW7du4fjx43+L+hIRYfHixXB1dUVERMRHz6utrcWUKVOwfv161NXVYe3atYiLi3vnS4SSz4cyUlXyZbF7N6Cl9U6nmlRWhgK5HOZSKbq9caStFa4kl7cIzIvFUGluRjKTidI376NcuRyLATRpaUHnjfCERCJpcZhSKQplMsQ3N+NMUxNKATwQi1GlqgpLiQRq6upQ09AASyLB/YIC/P5GlKEVImqRKSwuhn9VFcrq61FZVYWqqirU19VBJBJBTgQzVVUwpVIwGQwE8Pm4IxTCn88HX08PoqYmFBQUoKysDLoqKkg2NsadjAw0NDQgNzcXhYWFMDY2xqhRo/DLL78gMTERjY2N4HK50NTUhL6+Purr6zFq1CgAUPR8tbS0hL+/P6ZNmwYXFxekpaUhNzcX9+61vG7cv38f+/btw2+//YasrCyoqalh1KhRqKmpwdKlS6Grq4uDBw/i1atXuH79OnR1dcHlcmFubg6pVIrs7GwwGAy8evUK5eXl4PP5OJ4Yj166R2BsoImc/Bro6emhoqIcRkZGYIABFSYT5hbmaGpqQnZ2NjQ0WDAwNIOBgR58zStw9EYN4vYegq+v7zsda6sQf15eHpYsWYLOnTv/x4X4W7fZbN68GW5ubu+UdXwXrc0Srl69ikGDBuHhw4cQCoX/FbKMXxJKp6rky4HBAI4dA2QyQPXtdndJZWWY7uiIV6qqYJqYINTaGgwAciLo6+nB0NAQTU1NUBGJcFhDA1VvCpACmEyEEUFVTw8mJiYw0NeHtbU19PT1UVNfj60NDWgPYBgRmES4paoKPpsN/hslIzMzMxjq68PPyQmJIlFLNPwHmEwmtAGMYrOhaWAAfX19mJiYwMLSEjY8Huzt7fFaRwcpqqq4qaGB5OpqlAiFcFBVhS2bDRaLBQ93d4gaGlBeWIiYR49QVFQEBoMBDocDoVCIsrIy/PjjjygpKQGfz0dWVhakUikaGxvx+PFj9OnTBzKZTKFDrKam1iY16erqiujoaAiFQty+fRsPHz6EgYEBNm7ciM6dO0NTUxOlpaW4ffs2CgsLweVycenSJWzatAlqamr47rvvkJiYCKFQiIULF8Lb2xtCoRAvXryAmpoaBAIBUlNT0d9bDlf9QlQ1MGFubo7S0lIABBDA4XBa/sxgwNDQEGw2G1lZ2WhqEsHEzBLGeuqwNDfGkd9KcOzYMRgbG8PT0/Odj0qPHj3Q0NCAefPmwdPT8z8uxM9ms2Fqaort27ejW7duHx1t8vl87Nu3Dy4uLvD29sa2bdvQu3dvhfazks+P0qkq+bKorwdu3wbe/AD/kaSyMnTW08MQMzMklpSgnsFAmJ0dDA0MIJFIUF5eDnldHUqYTNzx8EBwSAjEYjE8mUz4NzdD19ISRIS6+nqUl5ejqroaRQwGMpqaMEguBwOAmaoq8phM6DEYaMfhgN5U7mqy2VBTUUFh584QCASoq6sD0BK1DB06FFbOzugvEMDY2BgcLhdsNrtly4yKCirEYix69gxzHRww2cYGkTY2uFhQAHsWCyoVFZBIJDA2NoaJmhr0Q0NR4uOD7OxsMJlMsNlsiMVi5OXlwdbWFleuXMHz58/h4+ODmJgYlJSUQF9fH5qamsjIyMDly5dx4sQJHDhwAMnJybh8+TJu3LiBjIwMZGdnw8bGBsHBwXj16hVu376NXbt2gcViYcyYMWjfvj3CwsIQHh6Onj17olu3bnj06BHS0tLw6NEjODg4oLi4GNu3bweLxcLChQsxevRopKWlobKyEkZGBpjkmwuhsBEyYqCurhb6+npoaBCirq4WBoaGbZyHNkcbxsZGePnyJcrKymBiZg0XUykM20/BxSvX8Ouvv6K2tva9PV8DAwOhrq6OOXPmwM7ODhKJBBMmTIBMJnuvM/4rsbKyQl5eHjIyMuDn5/dRc1RVVcHhcHDs2DEMGzYMOTk5qKyshKur62e2VkkryjVVJV8WRUXAoEEt1b//UgQy4eFDTLWxgReXC4FUivnZ2eikq4uv3jSTJgA1WVnYa2WFBWlpigKnThUVmCkQwKNHD6j/IaKQE+FKaSlOlpSgT0kJ2Gw2dHR0cJLBgIOBAcbZ2EAulyP72TNw1dVh4eQEnDyJiooK9OrVCxYWFqipqQGXy8Xdu3cRLZfjW2NjaNnatrG7QCTC9CdPsMXNDWYsFq5UVmLlo0eY6egIXzU1RVRqpa4O1vbt0OnVC5WVlVi2bBkSEhIAtKx3urm5QSwWIygoCBUVFTA0NISWlhaOHj36VpNvuVwOgUCA2tpa1NXVKf7b+qmtrUV6ejquXLmCpqYmsNls+Pv7w8nJCVwuF1wuF7q6usjPz8fdu3dRWVmJqqoqfPPNN2hsbMTOnTuhpqYGV1dX2NjYoKamBlXPf8WGSDFKamQQi8VgMlXAYmmAzdaEVCqBrq4u2rVzx7+6R6lMigcPHqChQQjfdlbQ8v0ev+UaYMyYMWhsbERISEjL/tz3dD06fPgw5s6dC0dHR3h4eMDT0xOjR4/+Nx6+T6epqQnTpk3D2LFjERAQ8FFz5HI5pk+fjoiICPB4PMyZMwc7d+6ElpbWZ7ZWCaB0qkq+RKZOBdLT22yr+SgaGwGJBOPMzPA4NxdZWVktsoEyGTapq4MfEPBW0+nH9fX4MTcX8Z6eAIMBQX09Zj9+DCu5HGMsLWFiYgI1NTXkPngAVrt2sL54EUBL0Ymurq7iOM+fP8eUgQPx44sXkOjqwsbODsZ/sP9AYSFSysvBABBqaIg7BQXoYWaGEC4XNbW1sDY0RHlVFfyqqiCWy2FpaQkWi4WiN/txBQIB/P390bdvX2RnZ2PhwoUIDw/H3bt34ePjgxUrVrx3r+eHaGpqwuLFixEXFwepVApLS0tYvnlJ4fP50NHRQUZGBjgcDm7fvo2amhro6+ujffv2ePnyJfLz8xUNEow1BRjjWwWeEQPq6up4VtiEk3cIHe2BWy9a1KOmDrGHpbkpdiXno75RisFdTDG8qzkIhAs3niDh13xUSExg7NgNjo6OOHr0KAoLC+Hg4ICTJ0++JfDfyoIFCxAXF6do5vCfcqoA8OzZMyxfvhybNm166+Xmfdy/fx/bt2/Htm3bsHXrVhgYGOCrr776zJYqAYC/T5dLiZK/i/nzAW1t4F+kAT9IUxNQVwesWAErJyfk5OQours8ZDBADAZu37jRsmZYVKRo6u3M4YAJILm8HHIiZMlkqFRTg5WlJVTV1JCdnY0XL17AiMPBqTfN2YGWrRUSiUShtOTo6IgtJ07ghYsLzFVU8PjxY1y/cQP5+fmQE2G0pSUO+fjgFx8fTLS2xjwLC3ThcFrSmlIp1IVCWK5dix27d0Mmk+Hp06fIeyO/uGHDBly/fh0sFgtTpkzB/fv38fvvv8PAwACPHj2Cm5sbhg4diqFDh+LZs2efdKtZLBbWrl2L9PR06Ovr4/Xr13j48CF69OiBmJgY9OzZE9ra2pgyZQpKSkqwZ88eqKurIzs7GzNmzMDs2bOhpqYGbW1tfDPEG2czWWhi6EIiEUNdXQPCZgakcmBmbwaCnAkbj7zApYwKbIxxww/fuOBwajHKqpvBAAP2trb4R7gdRvk2QF1dHYWFhZg3bx78/f2Rk5ODwMBA3L17961rKC8vR2VlJY4cOYJr167h5MmTn3QP/l9xcnJCv379sGHDhg82c/gj3t7eMDMzw7lz5xAREYGUlBTFkoKSz4tyTVXJl4e2NuDvD/z6a4tjZbPfWQ0MACBqWYdtaACWLgW6d0fnzp1x7949iEQi1NfXQ43Dwarp02FTXY1mVVUUFBQgNy8PQqEQHC0teOvr41BxMeILC9Esl8OcxYIxi4UACwuYmJpCRS6HoLoa3woE+OfOnTh+/Dji4+Oxfft2SKVShY6rkZERTpWWwpUIXiwWoKWF1/n5yMvLg1giAZfLhcqblHZjYyOkEglYTCYYlZXQnjULGDUKjo6OMDY2xvPnz1FXV4f6+no0NDTA398fAQEBKC8vB4vFwrJly8DlctG/f38MGzYMI0eOxK1bt7B06VJkZmbC19f3k/ZxVr5pzh4bG4urV6/i/PnzuHLlCqytrSEUChVba5ydnXHt2jWMHz8e69evBwAkJCQgPz8fDa8uw4QLWNs4ILijA56/qsCjfBliR1hBLG5CO74pLj6S4LsIZ5gasMDlqOHWkxpYGrFgacSGvo46LA1UwHMLxLqDmXj16hV0dHSwe/duVFRU4Pbt2zh8+DCsrKzQrl07he0bNmzAgAEDEBISgsrKSpw9exaFhYX/USF+FxcXXLhwAY2NjYp2fH+Gra0ttmzZgvDwcNTX1yMrKws+Pj6f2VIlykhVyZcJnw8cOAAEBAAVFUBpKSAStVQGy+WAWAyUlbV8TE2BbduAN6pB6urqWLlyJXR0dODk5ITx48dj0aNHaGxsBN/eHkFBQfDw8ECzWIzbv/+OisxMzNbWRqK3N2IdHFAlkcDwjRQek8GAvlwO3j/+gRmLFgEAHjx4gOfPn6OhoeGtApWvxo/HMi4X0h49YMNmI9DJCa6Ojqiursa1q1eRmZmJRpEILABqVVVQFQpxMyAAiIpSHOPrr79GcHAwOBwOvvnmGxgaGqJfv34YMWIEAgICMGvWLPTu3Rt6enoIDAzE5MmTAbRo016+fBkNDQ0ICAjAzJkzUVtb+1G3u7KyEsbGxhgxYgSePXuG6OhovH79GnPmzMGNGzcUDQVa97T2798f6enpaGpqQocOHZCRkYEH5aa487wB9x61aBd7e3tCX4eN8vJymJiYQthQB6lUCg01qeK86qoMiJpbov2iChG+P5CHqRsfwsrKCtXV1di1axfu3LmD9evXY+3atZDJZJgyZQq+//57AEB6ejpEIhECAwMBAObm5pg9ezauXLmCcePGvbdF31+NiooKZs2ahaNHjyIvL++j5tjY2KBjx444duwYhg8fjitXrrSobin5rCgjVSVfLtraQK9eLc5SUxN48aIlcm1oaNlyExoKLFwITJkCWFi0mdq6d9DJyQlLliyBbfv2uPvbb9B69AhMbW3o6enB3MwMVtbWyGpoQEVJCV69fInLFRW43dSEaFtbsFVUgOpqkL4+aPlytA8MhLu7O27duqVo+3b9+nVUV1fDw8MDLBYLurq6eF1YiDweDx5Tp4Ihk4GTmwsrPT0Ya2mhqaoKxS9eoE4oxA17e2j98AMuNTQg9A/NqxkMBgICAvDo0SN8/fXXiImJQXBwMA4fPoyrV6/i+PHjmDBhAlauXInu3bvj7NmzWL58OXJzc9GzZ098/fXXCAwMxNGjR7Fq1SrU1tbCz8/vg9s2Ghsbcf78eQwcOBDq6uro0aMHhgwZgtTUVDx79gy7d+8Gm81Ghw4dkJiYiP79+0NXVxenT59GREQE7ty5AzMTI/haN0JDDaCGV6gVEl6Uq2Fsf2e8fv0KKqqqSH0sg5VmCTiaauByubh4twJ8Sy3Ymmnih0MvYGPExPwfEhA5YQbs7e2Rm5uLPXv2gM1mY9KkSQgICMCZM2dw9c0LipqaGjIyMpCUlISTJ0/i5cuXKC4uRseOHZGeno7z588jPDz8PyIHyOFwoKenhz179qB79+4fdU4HBwds2bIFPXv2hFwux/3799GxY8fPbusXDSlRouQvQS6RUN6YMZSnr0+5jo7U3KMHUb9+dK5jR4q0sKCBBgY0QkuL/qmhQdd1damYxyNJaCjtW7KErK2tadq0aZScnEwrVqwgU1NT6tu3L+3bt49CQ0OJx+PRmDFjKCMjg8rKyigiIoKqq6tbTlxbS3T7NtGlS0SpqfTjqFE0bOBA4nA45OvrS4MHDyaZTNbGVolEQsOHD6e6ujoiItq2bRslJCTQkSNHyMfHh6ytralfv370+++/ExHR/fv3acCAAWRjY0OzZs2impoaIiK6dOkSBQYGkpOTE23atOmt87Qik8koJiaG9uzZQyKRiJqbm+np06d06dIlGjBgAFlZWZGmpiZ5eXlRly5dqLi4mBobG6l///6UmZlJDQ0NNHToUPK0UaVNE/So7Egn2hOtSX18NEiYEkrSy30oY4MV+fGZ9NtqK7q8WIvurjejWcNt6MpPfkSp/WhmuAUdWuJPcpmMCgoKKCoqir777ju6cOEC8fl8mjRpEkkkEnr9+jV5eXmRrq4u+fn50bNnz6i6upqqq6tpzZo1tGvXLqqvr6eamhoKDAykbt26kUAg+ExPVVvkcjmtWbOG4uLiPnpOQkICrV+/nurr6ykiIoKKi4s/o4VKlOlfJUr+IhiqqrCJj4f5ypXQIkLB3bsof/kSPQwMkODtjVP+/kjs3BnR7drBUUcH6c3N8Hv+HMmPH6O5uRmHDh3CggULcOzYMXTu3BkhISF49eoVfv31V5w9exbq6uoYMmQIhg0bBg0NDRw8eLDlxFwu0KkTEBYGcUAAtty4gYq6OgQHB8PPzw9Xr15F+/btsXnzZoV4w9OnT2Fpaamo/L127RpCQ0ORnJyMQ4cOISMjAw4ODhgxYgT69u0LkUiE06dPIzExUbE2N2/ePHTq1AnXrl3DihUrsH//fnh7eyMhIeHtvq5MJhYvXozi4mKMHz8eY8eOxfXr1wG0RPvPnz/H5MmTkZubi1u3bmHGjBmQSCSIiorCmjVrMGHCBPj7+yO4+xAIG4V4mfMMTk6OUFVVxa1bt/D69St4uLtDW1sbVVVV0NLSgkQiRVFhEWrr6gCSY3w3Hfz2UhfDR4zAli1bFCnd7t2749KlS3jy5AnCwsKgqqqKtLQ0BAcHIysrC3369EFBQQH09PSgoaEBDQ0NaGtrQ1dXFxcuXICqqip69uyJ6urqz/+MMRj4xz/+gVu3biEjI+Oj5oSHh+PBgwcoLy/HgAEDcOjQoc9s5RfO3+3VlSj5/5KGBqr++Wd66upKeQYGVO/iQvL27YkCAoh+/JEoN5eIiB4/fkzR0dHE5XJJQ0ODOBwOtWvXjjIzM0kqldLSpUtp48aNJJfLiYhIIBDQjz/+SJ6ensThcCgqKooKCgoUp71//z45ODgQj8cjDw8Punv3Ls2YMYPi4+PJz8+PHBwcaO7cubR582ZKSEggIqIjR47Qxo0b6dChQ7R27do2l1FVVUWzZ88mGxsb6tWrF12/fp2IiK5fv07dunUjOzs7WrRoEQmFQpLJZBQXF0eurq7k5+dHycnJn3zbsrOzKSgoiDQ1NcnY2Jh27dqluPZWJFnbqGCXCV1exKKn2+2p7EhHSl2qTWmrDUmYEkrNF3rSnXVmdHmxFj3YZEWXF7Eof6cxSTNiieTvjqSJiJqbm2ns2LHk5OREV69eJZlMRrGxsaSrq0smJiZ06tSpd86TSCQ0bNgw8vHxafO3+Jw8fPiQxowZQ7W1tR81/ty5czR//nxqaGigyMhIev369We28MtF6VSVKPnMPEhPp9njxtHS776j169evXPMrVu3yNramjQ1NUldXZ1CQ0MpJSWFhEIhzZw5kw4ePPjWnPnz55ObmxtZWVnRwIED6cKFC7R9+3ZycXEhOzs7MjIyojVr1tDUqVMVcy5cuEB9+vQhbW1tGjRoED1+/JjGjBlDDx48oIiICCotLX2nfTU1NTRnzhyys7Oj7t27U2pqKhG1pH9DQkLIwcGBli9frkjtrl69mhwcHCgsLIxu3rz5yffsyJEjZGlpSZqamtShQwd6+PDh//1SLifK3kzCY86U8YMOXf1eh8qP+tHDzdZ0aRGbXu51JXlqX3q935NufM+iF//k0s8zTKlLQEd6+vTpn55706ZNxOPxaPPmzUREtH//fjIyMiI9Pb23XjpakclkNGnSJHJzc6Ps7OxPvt5/h71799Ly5cvfeul4F1KplKKjoyk9PZ1OnDhBK1eu/A9Y+GWidKpKlPwHkEqllJSURJGRkRQXF/fWGpxMJqMRI0bQ0aNH6cKFC+Ti4kJWVlbk7u5O3377LY0aNYp+/fXXNnNEIhGNGTOGrl27RrNnzyY+n0+6urpkZGRE+vr6ZGZmRn369KHo6Og286qqqqh379701VdfkbGxMfH5fJo2bRrt3r37T6+jrq6O5s+fT3Z2dhQaGkoXL14kIqKzZ89Sly5dyNHRkdauXUvNzc0kEAho7ty5ZGNjo3Dgn4JIJKKZM2eStrY2cTgc+uabb9ret+ILJP9tEBXusaB7q9Upa6sFlR3yorQVWvT4Jy6JTnlQ49lAWjGpHbm3c6MRI0aQjY2Nwlm28vjxYxo6dGibT3BwMHE4HPr666+pubmZbt++TTwej3R0dGjs2LHvXTueM2cO8fl8unPnzidd67+DWCymadOm0blz5z5qfHp6OkVHR1OxYeNcAAAgAElEQVRjYyN9/fXX9Pz5889s4ZeJ0qkqUfIfpK6ujrZu3UqRkZGUkpLS5sdZKpUq/l1YWEjjx4+nGTNmUJ8+fcjMzIwsLCxozZo1beacPXuWFi5cSEQtacixY8eSs7MzsVgs8vb2plWrVtE333zTxoaLFy/SmjVrSC6X08SJEyk8PJw4HA516tSJ4uPj3+sw/ohAIKBFixaRvb09hYSEKH7YT5w4QX5+fuTi4kIbN24kiURCZWVlNHnyZOLxeDR69OhPTj1mZ2dTYGAgsdlsMjU1pZ9//vn/fimXE1U/pMor0XRtpRHd+F6Lig51pEtr21F4kClt3LCOJBIJrV27lng8Hg0bNoycnZ2pf//+VFZW9sHzFhUVUVBQEAUEBNDr16+pqKiI2rdvTzo6OhQUFKQo1vpXVq1aRXZ2dopo/nOSn59PERERVFhY+Kdj5XI5zZs3j86dO0dnz56lxYsXf3b7vkSUTlWJkr+Bly9fUmxsLE2dOpUyMzPfOaa6upqmT59OW7Zsofz8fJo8eTJxuVyys7OjWbNm0cuXL0kikdCkSZPowYMHbeZGRUWRl5cX6enpkZmZGR08eFDhLNesWUMXL16khw8fUnR0NC1btowSExPpp59+Ik9PT3Jzc6NVq1Z9VEVrQ0MDLV26lBwcHCgoKIiSk5NJJpNRYmIitW/fntzc3Gj79u0kk8koLy+PRo0aRTwej2JiYqiqquqT7tnhw4fJwsKC2Gw2+fn5vZXKlclktHXrVrKzs6MxY8bQiRMnqF27dhQWFka5ubn0+PFj8vPzo/bt21PPnj2Jz+fT6dOnP3hOiURCUVFRxOfz6eLFiyQSiSg8PJy0tbXJ0dGRsrKy3jlvx44dZGNj89512L+S5ORkmjlzJkkkkj8dm5OTQ6NHj6b6+nqaMGHCe589Jf8+SqeqRMnfhFwup+vXr9O4ceNozZo174ycGhsbafHixbRs2TISiUSUlpZGYWFh1LdvX7KysqJu3brRvHnzaPr06W3W1g4cOECxsbE0b9488vb2Jg8PD3J2dqa5c+fSoEGDqKqqipYtW0bbt2+nCRMmkFgsJqIWx3T48GEKDg4mW1tbmjZt2kdFQSKRiFasWEF8Pp86d+5Mp06dIplMRj///DN5eXmRp6cn7d69m2QyGT18+JD69+9PNjY2NH/+fBIKhR99z0QiEU2fPp04HA5xOByKiYkhkUjUZkxRURENGDCAHB0dKT4+nqKiosjGxoY2bNhAzc3NNGfOHOLxeDRkyBCytbWlqKiot47xr7Q6ybVr15JMJqOFCxcSl8slExOT96ZfExMTycbGhuLj4z/6+v4d5HI5LV26lPbv3/9R49etW0cJCQl0+fJlmjNnzketySr5eJROVYmSv5mmpiY6ePAgRURE0MGDB6mpqanN9xKJhDZs2EAzZ86k2tpaOnv2LH3zzTeUl5dHq1atIh8fH+JyuW3WLW/evEmTJ0+mmTNnUmRkJMlkMjpz5gwFBQURh8Ohvn37Urdu3Wjq1Kl09erVd9qVlpZG4eHhZG1tTSNHjqR79+796bWIRCJavXo1OTo6kr+/Px07dowkEgnt2rWL3N3dycfHhw4cOEAymYyuXbtGXbt2JT6fTz/++ONHRVqtZGdnU+fOnYnNZpOZmRkdPnz4rTEHDhwgPp9PgwcPpsTExDZR6/Xr18nd3Z0CAgKoU6dO5OPjQxkZGR885+3bt8nFxYVGjhxJIpGIEhMTycDAgHR1dd9ap20lJSWFbG1taePGjR99bf8ONTU1NHr06I9at27d51xRUUHR0dF09+7dz2rbl4bSqSpR8l9CeXk5rVmzhsaNG0fXr19vE0HI5XJKSEigSZMmUXFxMcXHx9Ps2bMVDnjv3r3k4OBA1tbWFBgYSKtXr6bBgwfT2LFjaeTIkYrjJCQk0Nq1ayk4OFixVWTTpk0fjNRyc3MpKiqKeDwedevWjc6cOfOn664ikYjWrl1Lzs7O1KlTJ0pMTCSJREJbt24lV1dX8vX1paNHjxIR0alTp8jX15fatWuniGY/lkOHDpGZmRmx2Wzq0qULvXjxos33VVVVNGrUKLKzs6PNmze3iVoFAgFNnDiRbG1tqV+/fsTj8WjVqlUfPH9ZWRmFhoaSr68vvXjxgu7cuUM8Ho+0tbXpm2++eefcmzdvkr29PS1ZsuSjr+vfIT09ncaPH08NDQ1/Onbfvn20adMmunnz5ltZDiX/byidqhIl/2VkZmbS1KlTKTY2lnLf7Gdt5dy5czR69GjKysqidevW0YoVKxQ/5AsWLKATJ07Qxo0byc/Pj9hsNllYWFBoaKhi/syZM+nmzZs0bNgwioiIoIULF1JAQADZ2dlRdHT0BytCa2pqaMmSJeTk5ETt27enbdu2/Wl02dzcTD/99BO5uLiQr68vJSQkUHNzM61fv56cnZ0pICCAkpKSSCaT0b59+8jd3Z18fX3p5MmTH32/RCIRTZs2TZESnjlz5lvR/pkzZ8jFxYV69OhBP//8c5uo9dSpU8Tn8yk4OJhcXV2pe/fuVFRU9N7zyWQymjp1Ktnb21NycjKVlJRQhw4diMPhUGho6DvXojMzM8nZ2ZmmTZv2SS8Nn8rWrVtp3bp1fzqudb9qbm4uTZ8+/d/a9qTk3SidqhIl/4XIZDJKSUmhyMhI2rp1q0JOkKglIomMjKS0tDRasGABbdu2jeRyOT1//pzGjBmjcCjjx48nc3NzYrPZ1LFjR1q+fDkNHjyYfvnlF5owYQItX75cccy0tDQaOXIkWVtbU8+ePenYsWPv/fGXSCQUFxdHvr6+5OjoSAsXLnxvJewf52zevJnc3Nyoffv2FB8fr0gV8/l8CgwMpPPnz5NEIqH169crnNxvv/320fcsOzubAgICiMVikYWFxVuOWSAQKCLV5cuX06RJkxRRa1lZGYWHhxOfz6fQ0FCyt7enxMTED54vPj6ebGxs6PvvvyeRSETDhw8nLS0tcnJyeitiJmqJ+N3d3WnMmDGfzbE2NTVRVFTUe1P6fyQpKYmWLFlCd+/epejo6M/q7L8klE5ViZL/Yurr6ykuLo4iIyMpKSlJse3m2bNnNGbMGDp58iTFxMQoUqlr1qyhI0eOEIkq6Ld94+jYfGtKXmRKj+O70k+TzKiDoxZZW1tRQEDAO9V/KioqaPHixeTq6kpubm60dOnSD1bpJicnU48ePYjH49GkSZPe6Uz+SGuFrru7O3l7e9Pu3btJKBTSsmXLyMHBgbp27UqpqakkFApp4cKFZGtrS3379qX79+9/9D07dOgQmZqaEovFopCQEHr1L4IbqampCo3huLi4NlHr7t27yc7Ojrp27aqoIv5QFXRGRga5ublReHg4CQQCWrZsGWlra5OJick7t9SUlJSQr68vDRo0iJqbmz/6mj6FnJwcioyM/NMtQ62V4/fu3aM5c+bQ5cuXP4s9XxpKp6pEyf8Ar169ogULFtCUKVMUDqa4uJgmTZpE27Zto7Fjx1JqaiqVPr9Kp5e5kDTZh+oOO9Kj9Tp0b602yX/tQsX7rOj1ThNKmqtJw7rokJeXJy1btuydP74ymYyOHj1KPXr0IGtraxo1ahTdvn37vfbdv3+fRo0aRdbW1jRo0CCFnOH7kMlktGPHDvLw8CBPT0+Ki4ujuro6WrBgAdnZ2VGPHj3o5s2bVFVVRVOnTiUej0cjR458Kx3+PkQiEcXExJCWlhZpa2tTbGxsm1R1c3Mzffvtt8Tj8ei7776jiRMnKqLWvLw8CgsLU6Ss3d3d6caNG+89V01NDfXs2ZN8fHwoOzubjh07RgYGBsTlcmnXrl3vHB8cHExhYWGfTYj/6NGjFBsb+6fR582bN2nq1Kn08OFDmjBhwicViyl5N0qnqkTJ/whyuZxu3bpFEyZMoBUrVlBJSQnV1tbSrFmzaPHixbQ8pis1nHCnkngevd7vTo0pYXR9hR5dX6FHsit9KOMnc7q73owertcjcZIHPUgIpz69upOVlRUNGjTovQVI2dnZNHnyZLK1taWAgADasWPHe6OsoqIimjFjBtnZ2VFgYCAlJiZ+8IddJpPR7t27ycvLi9zd3Wnbtm0KSUQbGxvq06cP3blzh/Lz82nMmDFkbW1NUVFRfxqF/dH2Tp06EYvFIisrK0pJSWnzfUZGhmLv6saNGxVR64sXL2j16tVkbW1NQUFBxOPxaMGCBR/swvPtt9+SnZ0dnThxgu7fv0/W1takpaX1znVUkUhEvXv3poCAAKqoqPioa/kUWnWLWzMY70Mul9N3331Hly5dokWLFr11f5R8OkqnqkTJ/xjNzc10+PBhioiIoP3791NNTQ3t/WEc5W03pIcbTKj2dBBl/GROTb92p2vLdenq91yqPxNMd9aZ0fUVulR40IfoSh+iFB+ih0vp9atXNGfOHHJxcSE3NzeKjY19Z2q4sbGRNm3aRL6+vuTg4EDTp09/K7XailAopDVr1pCbmxu5u7vTunXrPlhhLJPJKD4+nnx8fMjNzY02b95MZWVlNGPGDOLxeDRw4EB68OABPXnyhAYNGkQ2NjY0Z86cj470Dh06RCYmJsRisahbt25tCpFkMhktX76ceDweRUVF0YQJExRR6/3796ljx47k4eFBrq6uFBQU9MEUd+ve1Pnz51NpaSn5+vqSpqYm9ejR4639uJ9biL+8vJwiIyMpJyfng+OysrJo7Nix9PjxY4Uso5J/H6VTVaLkf5TKykpat24dxUwaTjVH3Ch/nyPdWWdKGT+ZU+6+dpS7z43urDOlK0u0KP+AF6WtNqBbawxJerkPUWq/N47Vm6jwDBG1OJdTp04p+pv26tXrvZFmamoqDRkyhKysrKhv377vjXJlMhkdOHCAOnfuTPb29jRr1qz3iva3jk9ISKAOHTqQq6srbdiwgQoKCmjKlCnE4/Fo6NCh9PTpU7p16xZ169aNHBwcaNWqVR/lCEQiEUVHR5OmpiZpa2vTokWL2ticnZ1NXbt2JXd3d1q1apUian3+/DnNmjWLrK2tyd/fn2xsbD6ok5yZmUmenp7Ur18/xZYeLS0tcnV1fUuiUSaTUVRUFLm6un4WIf6rV69SVFTUW9XQ/8rq1avp8OHDtHLlSjpx4sRfbseXhNKpKlHyX8alS5fou+++++jxRdeW06s4Y3qyzY5e7nWjtNUGb1K95vRoC48uLmTR/Y1WdGmRJpUd6djiUFs/F4KJrg5u0dD9A2VlZbR06VLy9PQkR0dHmj59+ju325SUlFBsbCw5OzuTp6cnrVq1qk2l8h9JTU2lAQMGkLW19Z8KFbRKHXbs2JGcnZ3pxx9/pLy8PJo0aZJifTUnJ4dSUlLI39+fXFxcFHKIf0Z2djb5+vqShoYG8Xi8NgU6MpmMNm/eTLa2thQZGUljx45VRK2pqank7u5OXl5eZGtrS8OGDXtv1XNdXR3179+fPD09KTMzk1avXk0cDodMTU0pLS3trfGfU4h/3bp1tHXr1g+OKS4upoiICMrMzKTIyMhPUrlS0hZlk3IlSv6XkUtgLv4N1vbuMDIyQl1dLTgcDhoahJBIxGhqaoZMJkNVVRU0NTVhZGTUdr4qB2gsBGoz2/xvY2NjLFmyBPfu3cO2bdtQXFyMbt26ITQ0FHv27EF8fDxiYmIQFRUFd3d3PHnyBN9++y0uXrwIDw8PjB07Fg8ePGhzzJCQEJw+fRoXLlyAmpoa+vbti969e+PChQtvXRaTycSIESNw69YtLF++HCdOnEDv3r1hb2+PixcvgsViISwsDImJifjll1+wYMEC7NixA76+vjhy5MgHb5mTkxPS09Oxb98+NDY2ok+fPujduzfKy8vBZDIxdepUXLt2DXV1dbh16xYiIyOxZ88erFixAgcPHoSXlxfkcjlycnIQEBCAixcvvnUOHR0dnDp1Cv369UP//v1hY2ODgwcPQiwWo3fv3ti/f3+b8T/88APGjx+PESNG4MqVKx+0/1OZPHkyMjIykJ6e/t4xZmZm6Nq1K65fvw4fHx8kJSX9pTZ8SSidqhIl/8tU3QWkAjBU2DAyNIK7uwe4XF2oq6ujoUGI+vo6SKVSSCRiODrywQCj7XwGo+VTcOKdh2cymQgLC8ORI0fw8OFD9OrVC3FxcZg/fz5KSkpgaWmpGPfVV1/hypUrSE5OhoqKCgYNGoSQkBD8/PPPkEqlimM6OTlhz549yMjIgLe3N2JiYuDn54c9e/ZALpe/df6hQ4ciLS0Nq1atwpkzZ9C3b184ODggJSUFMpkMwcHBSE1NRXJyMsaOHYslS5YgMDAQly5d+uCti4iIQH5+Pr7++mtcvXoVDg4OWLlyJeRyOSwtLXHmzBnMmzcPhw8fhr29PSwsLDBgwAB4enpi/fr1EAqFYLFYmDhxImbNmtXmGlttX7FiBX766ScsWLAA165dw2+//QZdXV1MmTIFc+fObXO9sbGxmDNnDiZMmICTJ0/+6Z/+Y9HS0sKsWbOwZcsW1NTUvHfcyJEjcePGDQQHByMpKQkCgeAvs+FLgkFE9HcboUTJl0plZSV27tyJJ0+egIgQFBQEPp+PX3/9Fc7Ozrhw4QK0tLQwZcoUtG/fHgBw6dIlHD9+HJWVleCq1mKo22v06uIEAMjMrcf6I7no2UEPB3/NhUjUiF4eBG0OC/dLjFHfKMXgLqYY3tUcAPC8oAE7k16gsEYV6uaBCAgIwMSJE6GqqvpBu3///Xds27YNZ86cgZGREWJiYjB+/HhoaWkpxjQ0NGD79u04dOgQhEIhBg4ciBkzZsDc3LzNscRiMeLi4hAfHw+RSISRI0di5syZ0NbWfue5k5OTsXbtWpSWluKrr75C//79sXr1aqSnp6NPnz6IjY1F/P9p776jorracIE/gzCMiDQNFmBmGEC6oIBRPkRUomKsqBQFBJWgWInGJAqWqNGYD7EA9lhIbESxJKBBEnvBhgqKil1EgShIZ8p7//A69/KhKYZIou9vrazlmnPmnH0OK+uZs8/e7964EZs2bUK7du0wb948uLq6/ub1XLt2DUFBQbh8+TLatm2LTZs2oWvXruq/0cSJE3HmzBn0798fBw8eRKtWrfDVV19h/vz5uHjxIrS1tWFgYIB169bB3t7+pccfPnw4jI2NkZiYiMDAQFy6dAk9e/ZEcnIyRCKRet/t27fj008/xdy5czFy5MjfbPefkZSUhJs3b2L27NkQCAQv3WfXrl24cuUKDA0Noaur26Dnf2c0cvczY+8spVJJEyZMoLVr11JVVRXV1NRQTk4OHTx4kAYOHEj79+8npVJJP/74I4WEhKjrs2ZmZtLDhw9JpVLR5QNfk6+7AeV9253ol350ab0nDXBvRVtjOpD8YF/67lNL6mYD+sS3JVXu96G723qSb9fW9GjnB0S/9KMb33an3G/eJ8Whoep1T//McmVffvkljRw5kjw8PEgikVBISEi9d4YqlYrS0tLUA6AGDRqkXtz8f+/Hrl27qEePHiSVSikyMvI3115NTU2lbt26kaWlJcXExNDJkydp0KBBJJFIaNKkSXTz5k36+OOP1euo/pFFub/99ltq2bIliUQi6tevHxUXF6u3paSkkK2tLX3wwQcUGBiofte6atUqkkgk1L59e5JIJK8srl9WVka+vr5kb29PZ86coaCgIGratCk5ODjUK4v4ohB/XFzc77b5j5LL5RQVFUX79u175T41NTU0atQoOnLkCAUGBv7p5fkYv1NlrNFcv34dT548QVhYGEQiEYRCIezs7AA8f6fZu3dvdffrkydPUFJSAgBwc3NDmzZtIBAI4GBnjQ6WOsi58/+66jSbCODn1RaaTTQwuLsVmhsaY/RABzTVbgJxq6YwM26K248qAQCWJs1gbaqNJtr6MDY2Rp8+fZCdnf2Hr0EoFKJXr144evQo9u7di6ZNmyIoKAhubm5YtGgRSkpKIBAI0KdPH+zZswfHjh2DTCZDZGQkXF1dsWTJEpSXlwN43l06ePBgZGRkYMeOHSgqKoKHhweGDRuGM2fO1Du3j48PDh06hMTERBw/fhwjRoyAnZ0dkpKScOvWLfTs2RMaGhpIS0uDnp4evL29MXr0aDx8+PCV1zNixAjcv38fQUFByMjIgEwmw9dffw2VSoVBgwYhMzMTUqkUJ0+ehLe3N9atW4fk5GRs3rwZLVq0QJMmTbBkyRL0798fhYWFdY6tq6uL5ORkBAQEYNiwYfD29sbcuXNx+/ZtuLq64uzZs3Wu7bvvvkNCQgJmzZr1h/8ev0VTUxNTp07Fli1bcP/+/ZfuIxQKERISgpSUFHTv3h3JyckNcu53CYcqY42kuLgYxsbGaNKkSb1tBgYG6n9ra2sDAKqrqwEA586dw7Rp0xAYGIiASQk4d6MSzyrk6v2b62hCQ+N5955Q8/n/4obNtdTbhZoCVNUoAQD5RVX4YnMegr/Mgp+fHzZv3oxnz5691vW0b98eq1atwtWrVxEZGYn09HQ4OTnBz88P6enpUKlUEIvFiI2NxZUrVzBu3DikpKTA0dER4eHhyMnJUR/rxYCjY8eOoVWrVvDz80OPHj2wa9eueu9dP/jgA2RkZGDdunXIzMxEaGgo7O3tsWbNGmRnZ6Nfv34wNjbG7t27UVZWBnd3d3z88cfqHyn/SyQSYe3atbhw4QIsLS0RHR0Na2trnDlzBrq6ulizZg02bNiAM2fOQE9PD0ZGRhg5ciT69++PsLAwKJVK3Lx5Ex4eHvUG/GhoaCA6OhoJCQmYN28e7t27hx07dqC6ulr97vqFLl26ICUlBcnJyZg0aVK9634dJiYmGDlyJL7++mvI5fKX7uPp6QkigomJCQ4fPlzvxwH7bRyqjDWSli1boqioCEql8g9/Ry6X48svv8TgwYORlJSEbTvT4GLXBqSsea02JO65A9OWQqxZ/y127NiBkJAQ0F8cZiEUChEWFoaMjAxkZGTAxMQEEyZMQIcOHTBr1iw8evQImpqaGD16NI4ePYrk5GTU1NTgww8/hLe3N7Zv364OELFYjPj4eFy+fBk9evRAdHQ0XF1dsWLFCtTU1L3m7t27Iz09HRs2bEBWVhYiIiLg4OCAZcuWITMzE8OGDYO9vT2SkpJw9epVuLi44IsvvlD/WPlf1tbWOHfuHNavX4+nT5+ia9eu8PX1RUlJCby8vHDq1Cl06dIFmZmZcHd3x/r163Ho0CGsXLkSurq6ICKMHz8eY8eOrXeOvn374sCBAzh9+jRiY2Pxww8/wNDQEKGhoXWeTB0cHJCamopDhw4hNDS0QYK1V69eMDY2RlJS0ku3CwQCjBo1Cjt37kSvXr2wdevWv3zOdwmHKmONpF27djA0NMSmTZtQXV2N2tpaXL169Te/83wkrxz6+vpo0qQJzp0/jwsP9QHV64VqVVUldFrIIGppjQcPHiAtLe0PfU+hUKC2thYqlQpKpVL97/9laWmJuLg4XL16FTNnzsS5c+fQqVMnDBw4ECkpKVCpVHB1dcXmzZuRlZUFLy8vLFiwAA4ODpg5c6b6KUlXVxfR0dHIzs7G+PHjsWXLFjg6OuLzzz/Hr7/+Wuecnp6e2L9/P5KSkpCTk4OJEyeiffv2WLRoEX755ReMHj0anp6eWLZsGdLT09GhQwesWLHilYEVFBSEBw8eYMSIEUhLS4NUKsWKFSsgFAoRGxuL77//Hjdv3oS2tjaaN2+OCRMmwN/fHx9++CEAID09He7u7jh//nyd41pYWODIkSNo1aoVxowZg3Xr1sHJyQlff/01fH191aOJzc3NcfDgQeTm5sLX1xe1tbV/6G/0KgKBAJMmTcLhw4dx6dKll+7j6OgIqVQKbW1tZGZmIj8//y+d813CocpYI9HQ0MCsWbPw8OFDjBo1CqGhoTh69Ohvfqdp06aIiIjAokWLEBgYiMOHD+N9zw+fzzetffV0iZdS1WLUB4Y4lGcAPz8/rFixQj3i9ffEx8djyJAhOHLkCHbs2IEhQ4bgl19+eeX+Ghoa8PPzw48//ogTJ07A3t4eMTExcHBwwPTp03H37l0YGBggOjoaWVlZWLhwIS5cuABXV1f4+fnh2LFj6uOMHj0aJ0+eREJCAi5evAgXFxeMGjUK165dq3PO//znP0hNTcW2bdtw48YNfPLJJ3BycsKsWbPwww8/4JNPPsGgQYMwa9YsbNy4ER07dsR333330nAViURYv349srKyIJVKMW3aNNjZ2SErKwuurq44ceIEBgwYgAsXLsDZ2RnffPMNsrOzsXjxYmhra+PZs2cYOHAgvvzyyzrHF4lE2LJlC8LCwjBmzBiEhIQgICAAaWlpcHV1RXFxMYDn79gPHjyIkpIS9O3bV/0e+nXp6elh8uTJiIuLe+XUmdDQUPzwww/o3bs3vvvuu790vncJT6lh7G1Qfgs4NQpQKQCh4e/vr6wBan8FbD8BpAF/f/teQqVSYf/+/Vi3bh3Onj0LW1tbBAcHIyAgQD2l5+bNm1i6dClSU1Px3nvvITg4GKNHj64zBSUnJweLFy/GoUOH4OTkhI8//hheXl71znf27FnMnz8fWVlZ6NevHzp06IA1a9agrKwMY8eOhZaWFlasWAEDAwPExMTAx8fnlW3fvHkzoqKi1FOF1q9fD11dXeTm5mLcuHEoKiqCRCLBlStXMHbsWOTk5CAjIwNNmjSBtbU1Nm7cCBMTkzrHTE9Px/jx4+Hl5QUrKyvMmTMH+vr6+Omnn+Dg4ADg+Xv1IUOG4OnTp9i7dy9atmz5l/4Ga9aswdOnTzF9+vSXTrNJTEyEQCDAyZMnMWfOHMhksr90vndCo449Zow1nGc3iDJ6E6W5EqV71S1H+OK/jF5EaW5E+zsR3fvn1HgtKiqiefPmUceOHcnKyoomTJhAV65cUW+vqqqihIQE6ty5M8lkMoqMjKxX2P7x48c0bdo0srCwIHd3d0pKSnpp2cILFy7Q4MGDSSKR0EcffZd9aXUAACAASURBVEQJCQnk4uJCjo6OFB8fTwsWLCALCwvy9vamkydPvrLNlZWVFBoaSiKRiAwMDGjVqlVE9HxqUFxcHJmbm1OvXr3I1taWevbsSfHx8WRhYUFSqZSkUilt3bq13jHv3r1L7u7u5OnpSd999x0ZGhqSnp5enWlOcrmc/P39qUOHDr855eiPqKmpocjISDp48OBLtz99+pQCAwNp48aNNHfu3L90rncFP6ky9jaRPwMepgG3k4DqQoBeDIIiQKAJaGgBpoMA8VBA1/yVh8nJycGcOXNeuu3vnmZx6NAhrFmzBidOnIBUKkVgYCBGjhypfjo9fvw4VqxYgZMnT8LOzg4fffQRBg4cCA2N52+zqqurkZiYiE2bNkGpVCIoKAgTJ06sU5gCAC5fvowvvvgCZ86cgbe3N+zs7LB582YIBAKMHTsWN2/eRHJyMpydnbFgwQL1dKf/de3aNfj5+SE3NxcWFhZITk6Gvb097t27h8jISNy4cQNisRh5eXkYPXo0MjMz1dNnPvjgAyQkJEBXV1d9vNraWkRERODEiROYM2cOPv/8cxQWFmLmzJmYOXMmgOdP+ZGRkThy5AhSUlJgbW392vf7zp07mDlzJmJjY9G6det627dv346bN28iLy8P06dPh42NzWuf653Q2KnOGPsbqJRExWeI7mwnurGW6NZ3RA9/IpKXN3bL/rBnz55RbGwsde7cmczNzWn06NF07tw59fbCwkKKiYkhOzs7cnR0pLlz59YpcP+iKL+npyfJZDKaPHlyvSILRETZ2dnk7+9PYrGYQkND1SvUuLi40KpVqyg8PJzEYjGFhITQvXv3XtnejRs3kqGhIWlra9cpSr9hwwaytLQkT09PsrGxoZ49e9LcuXPJ1NSUTE1NycHB4aWLui9fvpwkEgl99dVX5O7uTtra2uTn51fn6fuzzz5rkEL8KSkpNG3aNFIoFPW2VVdX08iRI2n9+vU0Y8aMv3SedwGHKmPsH+/MmTMUFhZGUqmUOnfuTLGxseq1VJVKJW3fvp28vb1JLBbTiBEjKDMzs873jx49SoMGDSKxWEwBAQF04cKFeufIzc2lwMBA9So6s2fPJltbW3r//fdp5cqVFBAQQBKJhCZOnEhPnjx5aTsrKipo5MiRpK2tTYaGhrRhwwYiev4DwM/Pj8zNzcnT05OkUinNnDmTPDw8qG3bttS6dWuaMWNGve7qI0eOkLW1NQUHB1NoaChpa2tTx44d6/x4WLRoEclksjqr7fxZKpWKoqOjX9olTUSUnp5OU6dOpfDwcMrKynrt87wLOFQZY/8aVVVVtGrVKvL09CSJRELDhw+v85R35coVioiIIKlUSh4eHrR27do6a63m5eXRRx99RBKJhHr16vXSkn3Xr1+noKAgEovFFBgYSJ999hlZW1uTu7s7LV++nD788EMyNzen6OjoVy6RduXKFXJwcCAtLS1ycHCga9euERHRrl27yMbGhtzc3Mja2pp69OhBUVFR1KZNG2rdujV5eHjUe1ecn59Pnp6e5O7uTnPnzqWmTZuSiYlJnfVXV69eTVKp9C+thVpcXEwjRox46bquL0pqJiQk0NSpU9UlM1l9HKqMsX+l7OxsioyMJEtLS+rYsSPNnz9fXau2oqKClixZQq6urmRpaUlTpkypM6jn6dOnFBMTQ+3atSNXV1datWoVyeXyOse/efMmjRw5ksRiMQ0bNoyioqLIysqKunXrRosXL6Zu3bqRlZUVxcbG1vvuC+vXrycDAwPS1tam0NBQqqqqorKyMho9ejSJxWLq3LkzSaVSmjp1Kjk7O1Pr1q3J1NS03iLocrmcIiIiyMrKir766isyMDAgPT09Sk1NVe+zfft2kkgk6qfj13H8+HEKDw+nysrKetvOnz9PY8aMocjISDp16tRrn+Ntx6HKGPtXk8vltHnzZvrggw/IzMyMfH19KTU1Vd2VmpGRQb6+vmRmZkYDBgyos00ul9PKlSvJ1dWVrK2tKSYmpt7C43fu3KGwsDASi8Xk6+tL48ePJwsLC+rZsyfNnz+f3NzcyNHRkTZs2PDS0cYVFRU0fPhw0tbWJiMjI9qyZQsRPV+M3snJiRwdHcnS0pK6d+9OoaGhZGxsTO+99x4NHTq0XlteFO//7LPPSCqVkkgkoq+++kq9ff/+/WRubk5Llix57fu5dOlSWrZs2Uu3zZo1i77++muaMGECP62+AocqY+ytcevWLZo6dSrZ2NiQo6MjzZgxQz04KT8/n6ZPn07W1tbk7OxMCxcuVL+XJSLat28f9erViyQSCUVERNTrhr179y6Fh4eTRCKhgQMH0pgxY9TTZmbMmEEODg7k5uZGe/bseWnbsrOzydbWlrS0tMjZ2Zlu3bpFVVVVNGXKFDIzM6OOHTuSVCqlcePGkZWVFRkbG5OVlRX99NNPdY5z6tQpsrW1paFDh9L7779PQqGQRowYoQ70U6dOkaWlJUVHR7/WPaysrKTw8HA6fvx4vW23b9+mESNG0MSJE+nw4cOvdfy3HYcqY+yto1QqaefOndSvXz8yMzOjvn37UnJyMimVSlIqlbR582by8vIiiURCoaGhdPHiRfV3L1y4QAEBASQWi2nQoEH1wiU/P5/Gjh1LEomE+vXrR8HBwSSVSqlv3740efJksrKyIi8vr5eO6CUiWrNmDenr65NIJKLw8HCqqamhzMxMcnNzo3bt2pFMJiMvLy8aNGgQtWjRglq2bElTpkyp08X8+PFj6tmzJ7m6upKfnx8JhUJyc3NT/0jIzs4mGxsbmjBhwkufnn9Pbm4ujRgxos7Sdy8sXbqUvvjiC/roo49eOlr4Xcehyhh7qz18+JCio6PJ0dGRbGxsKCoqSv0UmpWVRaGhoSSRSMjLy4s2bdqkDqH8/HyaPHkyyWQy8vT0pG3bttUJqIKCAoqMjCSJREJ9+vQhf39/kkgk1L9/fwoPDyepVEr9+/evE9gvVFRUUGBgIAmFQmrRogV9//33pFQqafbs2WRmZkYODg7q9WlNTU2pRYsW5OrqStnZ2epjKJVKmjhxIllYWFBkZCQ1bdqUTE1N6datW0T0vNvaycmpzlPsn7FlyxaaOXNmvW7e4uJiCgwMpMmTJ9d7imYcqoyxd4RSqaT9+/fT0KFDyczMjHr27EkbN26kmpoaevbsGS1atIicnZ3J2tqapk+fru42Lisro4ULF5K9vT21b9+eYmNjqaqqSn3cx48f06RJk0gikZC3t7e6WtPAgQNpxIgR6lHKd+7cqdem7Oxssra2Ji0tLXJxcaF79+5RTk4OdevWjczNzUkqlVLXrl3Jy8uLjIyMyNjYmJYuXVrnGBs3biSpVEphYWGkr69Penp69Msvv6jb1qlTJxowYECdNv8RCoWCpk2bRikpKfW2JSUl0aeffkphYWFUW1v7p477tuNQZYy9c548eUILFy4kFxcXsrCwoLFjx1J2djYplUpKTU2lAQMGqAc9vZj/+aLb2N3dnSwsLGjatGn0+PFj9TGLioooKiqKpFIpde/enfr166fuQh40aBBJJBIaO3Zsne+8sGrVKnWX8Pjx46m2tpZiY2NJLBaTjY0NicViGjJkCBkbG5OhoSH5+PjUOc65c+fIwcGBfHx8SCwWk0gkUg82Ki0tpW7dulGPHj3qvEP+IwoKCmj48OHqp98XKisrKTg4mCZPnkx79+79U8d823GoMsbeaUePHqWgoCCSSCTk4eFBCQkJVFFRQXfv3qUpU6aQpaUlubi4UFxcnHpe6i+//EL9+/dXV1r6/7tlnzx5QtOmTSNzc3Pq2rUr9e7dWx2uvXr1IqlUSp9++mm9gKuoqKBhw4aRUCikli1b0u7du+nu3bvk4+NDZmZmZGZmRu7u7tShQwcyNDQkMzOzOjWBnz59Sn369CFnZ2fq2LEjaWlpUWhoKCmVSqqqqqK+fftS586dqaio6E/dn4MHD1JkZGSd+b5ERKmpqTRu3DgKCgr600/BbzMOVcYYo+fdvMuWLSN3d3eSSqU0cuRIOnXqFNXU1NDatWvJw8ODzM3NKSIiQl0gITc3l8LCwkgikZCPj0+dd4xPnz6l6dOnk0wmI3d3d+rRoweJxWLq378/eXh4kKWlJS1cuLBeWGVnZ5OVlRVpaWlRp06dqKCggNatW0cymYxkMhmZmZlR7969ycjIiAwMDCg8PFwdakqlkqZNm0YymYx69epFQqGQ3n//faqoqCCFQkEBAQHk7Oz8pwrxq1QqWrRoEa1evbrO5wqFgsaOHUvjx4+n5OTk173tbx0OVcYY+x/nz5+n8PBwkslk5ObmRosXL6bS0lLKzMykESNGkFgsJm9vb9q+fTsplUoqKipS1+Ht3LkzrV+/Xj04qLS0lGbMmEEymYw6depEHh4eJJFI6MMPPyQXFxeys7OjVatW1RtMFB8fT3p6eiQSiSgqKooKCgpo2LBh1KZNGzIxMSE3NzeysrIifX19srOzq1P/d9u2bSSVSqlPnz6kra1NZmZmdP/+fVIqlTR27FiytbWtswrQ73n27BmFhobWqb1MRHT69GkKCQmhgIAAKi//99SV/jtxqDLG2CtUVVXRunXrqHv37uq6wRkZGfT06VOaO3cuOTo6kp2dHUVHR1NRURFVV1fT8uXLydnZmWxtbWnevHnqbt6ysjKKiYkhCwsLcnFxoc6dO5NYLKbevXuTvb09ubi41Hviq6ioIF9fX9LS0iJjY2NKS0uj5ORkateuHZmZmZGJiQl5eHiQnp4eGRkZ0fz589XhfPnyZXJyciJ3d3fS09MjPT09OnbsGBERff7552RlZVWvRvJvuXjxIoWEhFBJSYn6M5VKRZ9//jlFRERQUlLSX73dbwUOVcYY+wNyc3Np4sSJZGVlRc7OzjRnzhwqKCigXbt2UZ8+fdShe+LECfU82e7du5NUKqXx48eru1wrKipozpw5ZGlpSc7OzuTq6koSiYR69uxJlpaW1LVr13rrm16+fJksLCxIU1OT3N3dKS8vj8LCwqhVq1bUunVrcnZ2JlNTU2revDl5enrS/fv3iej5U/KAAQPIzs6O2rRpQ9ra2hQfH09ERIsXLyaZTPbKtVRfZv369TRv3rw602xu3LhBfn5+5OfnVydw31Uajb30HGOM/RtYW1tj+fLlyM3NxfTp03Hq1Cl06tQJmzdvRmRkJA4ePAgjIyMEBQXhP//5Dx49eoTU1FRs374djx8/hoeHB/z8/HDlyhXMnj0bly9fxtChQ1FaWgo9PT0UFxdDqXy+/u2YMWPQt29fnDt3DgDg4OCAvLw8xMbG4vLly3BwcMB7772HTZs2oUWLFnj8+DGUSiUsLCxw7tw5uLi4YOvWrdDT00NKSgp8fX0hFAohlUoRFRWF8PBwTJ06FZ9//jnGjBmDlJSUP3QPgoODUVRUhJ9++kn9maWlJTp16oRmzZr97Wvt/is0dqozxti/1d27d2n69OlkZ2dHdnZ2NH36dLp+/TrFx8dT586dSSaT0YQJEygvL4/u3LlDkZGRJJVKqUePHrRr1y71yNyFCxeStbU12dnZkb29vXqJuxfF/P//kokVFRU0cOBA0tLSotatW1NaWhpNmjSJjI2NydjYmBwcHKhly5akq6tL/v7+6u7nXbt2kUwmIycnJ9LS0iJ3d3eqqqqiHTt2kFQqrVfE/1Xu3btHgYGB9ODBA/Vnjx8/piFDhpCvr++fHl38tuFQZYyxv0ipVNKePXto4MCBZGZmRn369KFt27bR4cOHadiwYWRmZkY+Pj60e/duKikpoS+++IJsbGyoY8eOtHz5cqqpqaGamhpavHgx2djYULt27cjGxobMzc3JxcWFzMzMaMyYMVRQUKA+58WLF8nc3Jw0NTWpa9eulJ6eTh07dlSHq6WlJeno6JBUKlWXTMzNzSUXFxeyt7cnoVBIYrGYCgoK6KeffiJzc3OKjY39Q9e7b98+ioqKqlM6ccOGDTR8+HB19/K7SkBE1NhPy4wx9rYoLCzEypUrkZKSgsrKSvj4+MDf3x9paWnYuXMnNDU14efnh8jISKSkpGDt2rV48uQJhg4dimnTpkFXVxeJiYlYs2YNamtrIRAIoFQqoauri2fPnmHIkCGYPXs29PT0AABLly5FTEwMlEoloqKiAADr1q2DUqmEoaEhCgsLQUQYN24cFi5ciMrKSoSGhuL8+fMoLCxEkyZN1N25QUFBCAgIwLx5837zGokIc+fOhYWFBYKDgwEAFRUVGDVqFKqqqrB69Wq0adPmb7zL/2CNm+mMMfb2OnjwIPn7+5NYLKbu3bvT2rVradOmTdSzZ0+SSCQUHBxMZ86cof3791OfPn1IIpHQqFGjKDc3l+RyOS1fvpzs7e3J3NxcXbbQ1taWZDIZzZs3Tz0/taKigvr160daWlrUtm1b2rRpE3Xp0oWMjIyoZcuWZGJiQiKRiJydnSkvL49UKhXNmzePzMzMqEWLFqStrU1r1qxRF+KPjIz83XrBT548oeDgYMrJyVF/tnfvXhoyZMgffuJ9G3GoMsbY3+zp06e0ePFicnNzI5lMRuHh4fT999+rC+97eHjQunXr6MKFCxQcHExisZgGDBhAhw4dIqVSSYmJieTg4EBisZjEYjFJpVKysLAga2trio+PVwfguXPnSCqVkqamJnl5edG8efOoVatWZGBgQGKxmHR0dMjAwEBdyOHHH38kmUxGbdu2JU1NTRo3btyfKsR/+vRpGjVqlHqOqlwup7CwMPLx8flTBSbeJtz9yxhjb9Dp06excuVKHD58GG3btsXgwYNRW1uLXbt24dmzZ+jfvz+GDx+OrVu3Yvfu3WjdujXGjh2LgIAAfPPNN0hISMCTJ09ARNDU1AQAGBgY4NNPP4W/vz80NDTw9ddfY+7cuSAiREREIDs7G2fOnIFAIICGhgbKy8vRvXt3bN26Fb/++isCAwORn5+PwsJCdOnSBdu2bcPgwYPRunVrbN++HSKR6JXXk5CQgJqaGnz88ccAgOPHj+PLL79Ely5dEB0d/Ubu6T8JhypjjDWCyspKbNy4EVu3bsX9+/fh6ekJFxcXHD58GGfPnkWHDh0wZswYXL9+HZs2bQIRITg4GJGRkdi+fTtWrFiBoqIiKJVKCIVCqFQqiMVixMTEwMfHB5WVlRg6dCjS09PRqlUrBAcHY+PGjaisrIRIJEJpaSkMDAyQlJSErl27YtSoUTh06BCKi4vRtm1bZGRkYMyYMRAIBNi7dy90dXVfeh3V1dWYMmUKhg8fDk9PTxARpk6dipycHMTHx8PKyuoN39nGxaHKGGONLDs7GwkJCUhPT4eBgQF69eqF8vJyHDhwALq6uvDz80OrVq3wzTffID8/HwMGDMDUqVORkZGBZcuWoaCgAEqlEtra2pDL5Wjfvj3mzZuH999/H2fPnsWQIUPw8OFDuLu7o3nz5jh69CgAQKVSQaFQICQkBAkJCYiLi8OSJUtQUlICbW1tpKWlYcGCBfj111+xZ88eGBsbv7T9eXl5mD17NuLi4mBsbIyrV69i0qRJ6NSpExYsWPAmb2Wj41BljLF/iNraWmzduhVJSUm4fv06OnXqBHNzc5w+fRr37t1Djx490K1bN+zevRvnz5+Hh4cHpk6diqtXr2LJkiV48OCBOlwVCgU8PDywYMEC2NjYYNGiRepRvQMHDsTRo0dRUlICLS0tVFRUQCwWY/fu3SgoKEB4eDiKioogl8uxevVqHDhwAFevXsXevXshFotf2vbk5GScP38eCxYsgIaGBr788kscPHgQy5cvh4ODw5u8jY2KQ5Uxxv6Bbt68ifj4eKSmpkJbWxudO3dGSUkJMjMzIZPJ8OGHH+Lq1as4ePAgrK2tMXHiRFRUVOC///0v7ty5ow5XlUoFHx8fLFiwAIaGhhg8eDB+/vlntGrVCo6Ojjh+/DhUKhWUSiU0NDQQExOD4cOHIyAgADk5OaisrMS4ceMgl8tx+PBh7Ny5E7a2tvXaq1KpMHPmTLi4uGDo0KEoKChAUFAQHB0dERcXB4FA0Ah38c3jUGWMsX8wlUqFnTt3YuPGjeoShUZGRrh8+TJqa2vRp08fAEBqair09fURFhYGQ0NDxMXFIS8vDwqFAiKRCAKBAP7+/pg7dy5u3LgBX19fPHr0CM7OzigsLERRURE0NDRQW1sLFxcXJCcnIyYmBikpKSgvL4eHhwc6d+6MnTt3YsuWLXBzc6vX1sLCQkRFRWHu3LmwtLTE6tWr8d133yEuLg4uLi5v+tY1Cg5Vxhj7l8jPz0diYiL27NkDpVIJW1tblJSUIC8vD66urhCLxTh27BgqKirg7+8PCwsLJCYm4tq1a1AoFNDW1oZQKMTo0aMxY8YMxMbGYsGCBRAIBGjfvj0uX74MpVIJpVIJHR0drFmzBo8fP8acOXNQWloKMzMzjBw5EklJSVi9ejW8vb3rtfHw4cPYunUrli1bhtraWgwZMgRisRhr1659J55WuaA+Y4z9S5iYmGDBggW4dOkSlixZAoFAgLy8PEilUlRWVmLfvn0QCATo2rUrjh49ipiYGDg5OWHx4sVwcHCAQqFAaWkp4uPjYWNjAx0dHRQUFKBLly44e/Ysmjdvjvfeew8aGhqorq5GUFAQDh8+jB07dsDU1BT5+fmIi4tDUFAQwsPDsXPnznpt7NatGywtLbF+/Xo0b94cERERuHLlCk6ePNkId+zN4ydVxhj7FysuLsaqVauQkpKC0tJSmJqaorS0FM+ePUOHDh1QVVWF7OxsuLq64j//+Q927tyJnJwc1NbWQigUwtjYGDNnzoSlpSX8/f3x6NEjSKVSFBQUQC6XQ6VS4b333sP69esxf/589co5ERER2LdvH6KjozF69Og6baqoqMCkSZMQEREBZ2dnDBs2DCKRCFu3boWGxtv9LNdkzpw5cxq7EYwxxl6Pjo4OPD09ERERAScnJ9y4cQPXr1+HoaEhysrKcPPmTZibm0MgECA1NRVGRkYYOnQoqqqq8OjRI5SUlOCnn37C8ePHERcXBysrK+zfvx8AYGRkhKqqKlRWVmLHjh0YNGgQ7OzscPnyZZw+fRpeXl5ITk6GQqGAu7u7uk1CoRCWlpaIi4uDt7c3zM3NsWPHDlhaWkImkzXWrXojOFQZY+wtIZVKMWTIEIwZMwZyuRxXr15FeXk5NDQ0kJ+fD5FIBH19fZw+fRpEhP79+0NDQwMFBQUoKipCSkoKysrKkJiYiNu3b+PKlSto3rw5iAgKhQKnT59GWVkZoqKicOrUKVy6dAkymQxHjx5FYWEhevbsqW6LsbExysvLsX//foSEhODYsWP4+eef1VWf3lbc/csYY2+xs2fPYuXKlfj5558hFAohEAhQXl4OU1NTVFZWoqqqCq6urrh9+zYuXboEpVIJLS0tuLu7IygoCJ999hkKCwuhq6uL8vJyEBGEQiEmTpyIb7/9Fo8ePUKbNm3QrFkzeHt7Iz4+Xh2aCoUC06dPR8+ePSEWixESEoIvvvgC/fv3b+S78vfhUGWMsXdAdXU1Nm3ahK1bt+LGjRvQ0dFBRUUFjIyMoKGhgZKSEtjb26OoqAg5OTnq8oe9e/dG27Zt1cvJCQQCKBQKAICrqysUCgWysrLQtGlTmJiYwNXVFUlJSepgzc/PxyeffIKvvvoKsbGxuHjxIg4cOAChUNiYt+Nvw6HKGGPvmCtXriAxMRFpaWmora0FPV+xDHp6eigrK4NEIkFZWRlu3LihnoozaNAg5OXl4cyZM9DS0oJcLgcRoXnz5nB3d0d6ejoEAgEkEglsbW2RnJysLsS/f/9+pKWlYfLkyfD19cX06dMxfPjwRr4Lfw8OVcYYe0cpFAps27YNSUlJyMrKgpaWFqqrq6Gnp4fq6mq0aNECtbW16gpNTZs2hY+PDw4fPqwuFvGiEpOrqyuysrIgl8thYmICKysrdSF+IsKCBQtgYmKC/Px87Nu3D+PGjcPWrVuxcePGt2pBcw5VxhhjuHPnDhISErB7926UlJSou38FAgG0tbUhEAiQn58PlUoFXV1dtG/fHqdOnYJCocCLGDE0NIRCoUBZWRmMjIxgaWmJffv2wdjYGKWlpZg0aRIkEom64IRQKMSpU6fQvn37Rr76hsOhyhhjTE2lUmHPnj345ptvcPLkSfVKNjo6OlCpVNDS0kJhYSFUKhX09fWhr6+PO3fuqL+voaEBIyMjFBcXo2nTprCwsMAPP/wAU1NT9OjRA0eOHFHvq6Ojg6NHj6Jjx46NcKV/Dw5VxhhjL/Xo0SMkJiZi27ZtePz4MeRyOUQiEVQqFTQ1NfH06VMAgJ6eHhQKBcrLy9XffTFaWFNTE6ampnj48CFqa2shEolQU1MDIoKWlhYOHTpUZ47rvx2HKmOMsd+kUqmQkZGBxMREHDp0SD24SUNDAxoaGuqpNi+C9AUNDQ2oVKo6xzIyMkJtbS0qKipARNi1axcGDRqE2yW3UVxZjBpFDXS0dCA1kKKFTos3fal/GYcqY4yxP6ykpASrVq3CN998gwcPHkChUKBJkyYgInXYvhgd/DI6Ojrw8fHBwYMHYfieIaKWReFE5QncenoLTQRNQCAIIIAKKvSQ9oC/gz+cWjn9a4rxc6gyxhh7LceOHcPSpUtx4MABVFdXAwCICEql8je/N2HCBHTo0wHfFn2Lcnk5RJoi6Gnr1QlOpUqJJ1VPoCIVnFo54b+9/gt9kf7fej0NgUOVMcbYX1JeXo5169YhPj4e9+7dg1KpVM99fRktcy1YTbRCS8OW0NPW+81jExGKKotg0twE6wesh2FTw7/jEhrM21uAkTHG2Buhq6uLKVOmIC8vD5mZmRg4cOCrKyYZAvLucuRm56LiSUWdTcVXinFtx7U6nwkEAhg3M0b+s3xEHYiCQqX4uy6jQfCTKmOMsQbXq1cvpKen19/QA4AMQAUAAWBrawsLC4vfPR4R4XH5lTEqrQAABDlJREFUY8T2joWnxLOhm9tg+EmVMcZYg2vevDmaNWsGfX19GBkZQSQSQUtfCwILAVD5f3ci4OqVq7iYdRH4ncc7gUAAoaYQ31769m9v+1/BT6qMMcYaXHV1NeRyOXR1ddUDkDZmbcSinxeh+E4xfn34K3ADQOnz/bVNtdHBswMKLxfCbrgdAKCquAr3fr6HiscVEGgIYNzRGE0cmyB5WDKkBtLGubDfodnYDWCMMfb2EYlE6oL6L5y8fxLGhsawbGWJSxsuodK0Er/a/QqogJryGpw6dQrmTc0BAMpaJXJ35KK1W2tY+VqBVISq4ipUoAJXiq5wqDLGGHu3ldaUoolGE1QUVEBZpUTnsM4QCAR48OABsi5mAVXA7Vu3YQ97lNwsgVYzLbRx+3/F9nXb6uJZ2TOU15b/xlkaF4cqY4yxN0KriRaICPIyObT1tSHQeN4tbGpmClMzU+QeysWd4jsAgNqyWogMRPWOIYAAWhpab7LZfwoPVGKMMfZGtGrWCjXKGgibC1H7rBakqjukp2XLlhBLxAAAYXMhqkuq6x2jiaAJDEQGb6S9r4NDlTHG2BsxwHoAlColmrVpBq1mWrh/5D6UtUqoFCqU5ZfV2dfAwgDyCjkenX0ElUIFZa0STx88haaGJjqZdGqkK/h93P3LGGPsjehi2gV62nqoVlbDytcK9zLu4eKaiwCAFrYt0KxVM/W+TYRNYD3MGvd+voeHJx5CoCmAyF6ECPcINBM2e9UpGh1PqWGMMfbGbLiwAfGZ8WjTvM2fKpIvV8rxpOoJtg3dBpmh7G9s4V/D3b+MMcbemEDHQLRv1R6FFYWvrA38vxQqBYoqijDebfw/OlABDlXGGGNvkEhThKV9lsKmpQ0KygtQq6z9zf3La8vxuPwxRnUYhRCnkDfUytfH3b+MMcbeuGpFNRIyE7Dr6i7UKmuhI9RBU82m0BBoQElKlFaXQkUqGDczRqRbJPpa9W3sJv8hHKqMMcYaTUVtBTJuZWBbzjYUlBegRlEDXaEuHI0dEeAQAJe2LtAQ/Hs6VTlUGWOMsQby74l/xhhj7B+OQ5UxxhhrIByqjDHGWAPhUGWMMcYaCIcqY4wx1kA4VBljjLEGwqHKGGOMNRAOVcYYY6yBcKgyxhhjDYRDlTHGGGsgHKqMMcZYA+FQZYwxxhoIhypjjDHWQDhUGWOMsQbCocoYY4w1EA5VxhhjrIFwqDLGGGMNhEOVMcYYayAcqowxxlgD4VBljDHGGgiHKmOMMdZAOFQZY4yxBsKhyhhjjDUQDlXGGGOsgXCoMsYYYw2EQ5UxxhhrIByqjDHGWAPhUGWMMcYaCIcqY4wx1kA4VBljjLEGwqHKGGOMNRAOVcYYY6yBcKgyxhhjDYRDlTHGGGsgHKqMMcZYA+FQZYwxxhoIhypjjDHWQDhUGWOMsQbCocoYY4w1kP8DPa2mUta8grsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "genesis_states = { \n", + " # initial states of the economy\n", + " 'network': create_network(),# networkx market\n", + " 'KPIDemand': {},\n", + " 'KPISpend': {},\n", + " 'KPISpendOverDemand': {},\n", + " 'VelocityOfMoney':0,\n", + " 'startingBalance': {},\n", + " '30_day_spend': {},\n", + " 'withdraw':{},\n", + " 'outboundAgents':[],\n", + " 'inboundAgents':[],\n", + " 'operatorFiatBalance': R0,\n", + " 'operatorCICBalance': S0,\n", + " 'fundsInProcess': {'timestep':[],'decision':[],'cic':[],'shilling':[]},\n", + " 'totalDistributedToAgents':0,\n", + " 'totalMinted':0,\n", + " 'totalBurned':0\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Exogenous \n", + "def startingBalance(params, step, sL, s, _input):\n", + " '''\n", + " Calculate agent starting balance every 30 days\n", + " '''\n", + " y = 'startingBalance'\n", + " network = s['network']\n", + "\n", + " startingBalance = {}\n", + "\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 31 == 0\n", + "\n", + " if timestep == 1:\n", + " for i in agents:\n", + " startingBalance[i] = network.nodes[i]['tokens']\n", + " elif division == True:\n", + " for i in agents:\n", + " startingBalance[i] = network.nodes[i]['tokens']\n", + " else:\n", + " startingBalance = s['startingBalance']\n", + " x = startingBalance\n", + "\n", + " return (y, x)\n", + "\n", + "def update_30_day_spend(params, step, sL, s,_input):\n", + " '''\n", + " Aggregate agent spend. Refresh every 30 days.\n", + " '''\n", + " y = '30_day_spend'\n", + " network = s['network']\n", + "\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 31 == 0\n", + "\n", + " if division == True:\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + " spend = outflowSpend \n", + " else:\n", + " spendOld = s['30_day_spend']\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + " spend = DictionaryMergeAddition(spendOld,outflowSpend) \n", + "\n", + " x = spend\n", + " return (y, x)\n", + "\n", + "def redCrossDrop(params, step, sL, s, _input):\n", + " '''\n", + " Every 30 days, the red cross drips to the grassroots operator node\n", + " '''\n", + " y = 'operatorFiatBalance'\n", + " fiatBalance = s['operatorFiatBalance']\n", + " \n", + " timestep = s['timestep']\n", + " \n", + " division = timestep % params['drip_frequency'] == 0\n", + "\n", + " if division == True:\n", + " fiatBalance = fiatBalance + drip\n", + " else:\n", + " pass\n", + "\n", + " x = fiatBalance\n", + " return (y, x)\n", + "\n", + "\n", + "def clear_agent_activity(params,step,sL,s,_input):\n", + " '''\n", + " Clear agent activity from the previous timestep\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " if s['timestep'] > 0:\n", + " outboundAgents = s['outboundAgents']\n", + " inboundAgents = s['inboundAgents']\n", + " \n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['demand'] = 0\n", + " except:\n", + " pass\n", + "\n", + " # Clear cic % demand edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['fractionOfDemandInCIC'] = 0\n", + " except:\n", + " pass\n", + "\n", + "\n", + " # Clear utility edge types\n", + " try: \n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['utility'] = 0\n", + " except:\n", + " pass\n", + " \n", + " # Clear cic % spend edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 0\n", + " except:\n", + " pass\n", + " # Clear spend edge types\n", + " try: \n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " network[i][j]['spend'] = 0\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + " x = network\n", + " return (y,x)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# System\n", + "\n", + "# Parameters\n", + "agentsMinus = 2\n", + "# percentage of balance a user can redeem\n", + "redeemPercentage = 0.5\n", + "\n", + "# Behaviors\n", + "def choose_agents(params, step, sL, s):\n", + " '''\n", + " Choose agents to interact during the given timestep and create their demand from a uniform distribution. \n", + " Based on probability, choose utility. \n", + " '''\n", + " outboundAgents = np.random.choice(mixingAgents,size=len(mixingAgents)-agentsMinus).tolist()\n", + " inboundAgents = np.random.choice(mixingAgents,size=len(mixingAgents)-agentsMinus).tolist()\n", + " stepDemands = np.random.uniform(low=1, high=500, size=len(mixingAgents)-agentsMinus).astype(int)\n", + " \n", + "\n", + " stepUtilities = np.random.choice(list(UtilityTypesOrdered.keys()),size=len(mixingAgents)-agentsMinus,p=list(utilityTypesProbability.values())).tolist()\n", + "\n", + " return {'outboundAgents':outboundAgents,'inboundAgents':inboundAgents,'stepDemands':stepDemands,'stepUtilities':stepUtilities}\n", + "\n", + "\n", + "def spend_allocation(params, step, sL, s):\n", + " '''\n", + " Take mixing agents, demand, and utilities and allocate agent shillings and tokens based on utility and scarcity. \n", + " '''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " spendI = []\n", + " spendJ = []\n", + " spendAmount = []\n", + "\n", + " # calculate max about of spend available to each agent\n", + " maxSpendShilling = {}\n", + " for i in mixingAgents:\n", + " maxSpendShilling[i] = network.nodes[i]['native_currency']\n", + " \n", + " maxSpendCIC = {}\n", + " for i in mixingAgents:\n", + " maxSpendCIC[i] = network.nodes[i]['tokens']\n", + "\n", + "\n", + " for i in mixingAgents: \n", + " rankOrder = {}\n", + " rankOrderDemand = {}\n", + " for j in network.adj[i]:\n", + " try:\n", + " rankOrder[j] = UtilityTypesOrdered[network.adj[i][j]['utility']]\n", + " rankOrderDemand[j] = network.adj[i][j]['demand']\n", + " rankOrder = dict(OrderedDict(sorted(rankOrder.items(), key=lambda v: v, reverse=False)))\n", + " for k in rankOrder:\n", + " # if i or j is external, we transact 100% in shilling\n", + " if i == 'external':\n", + " amt = spendCalculationExternal(i,j,rankOrderDemand,maxSpendShilling)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt \n", + " elif j == 'external':\n", + " amt = spendCalculationExternal(i,j,rankOrderDemand,maxSpendShilling)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt \n", + " else:\n", + " amt = spendCalculation(i,j,rankOrderDemand,maxSpendShilling,maxSpendCIC,fractionOfDemandInCIC)\n", + " spendI.append(i)\n", + " spendJ.append(j)\n", + " spendAmount.append(amt)\n", + " maxSpendShilling[i] = maxSpendShilling[i] - amt * (1- fractionOfDemandInCIC)\n", + " maxSpendCIC[i] = maxSpendCIC[i] - (amt * fractionOfDemandInCIC)\n", + " except:\n", + " pass\n", + " return {'spendI':spendI,'spendJ':spendJ,'spendAmount':spendAmount}\n", + "\n", + "\n", + "def withdraw_calculation(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " # Assumptions:\n", + " # * user is only able to withdraw up to 50% of balance, assuming they have spent 50% of balance\n", + " # * Agents will withdraw as much as they can.\n", + " withdraw = {}\n", + "\n", + " fiftyThreshold = {}\n", + "\n", + " startingBalance = s['startingBalance']\n", + "\n", + " spend = s['30_day_spend']\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % 30 == 0\n", + "\n", + " if division == True:\n", + " for i,j in startingBalance.items():\n", + " fiftyThreshold[i] = j * 0.5\n", + " if s['timestep'] > 7:\n", + " for i,j in fiftyThreshold.items():\n", + " if spend[i] > 0 and fiftyThreshold[i] > 0:\n", + " if spend[i] * fractionOfActualSpendInCIC >= fiftyThreshold[i]:\n", + " spent = spend[i]\n", + " amount = spent * redeemPercentage\n", + " if network.nodes[i]['tokens'] > amount:\n", + " withdraw[i] = amount\n", + " elif network.nodes[i]['tokens'] < amount:\n", + " withdraw[i] = network.nodes[i]['tokens']\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + "\n", + " return {'withdraw':withdraw}\n", + "\n", + "# Mechanisms \n", + "def update_agent_activity(params,step,sL,s,_input):\n", + " '''\n", + " Update the network for interacting agent, their demand, and utility.\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " outboundAgents = _input['outboundAgents']\n", + " inboundAgents = _input['inboundAgents']\n", + " stepDemands = _input['stepDemands']\n", + " stepUtilities = _input['stepUtilities']\n", + " \n", + " # create demand edge weights\n", + " try:\n", + " for i,j,l in zip(outboundAgents,inboundAgents,stepDemands):\n", + " network[i][j]['demand'] = l\n", + " except:\n", + " pass\n", + "\n", + " # Create cic % edge weights\n", + " try:\n", + " for i,j in zip(outboundAgents,inboundAgents):\n", + " # if one of the agents is external, we will transact in 100% shilling\n", + " if i == 'external':\n", + " network[i][j]['fractionOfDemandInCIC'] = 1\n", + " elif j == 'external':\n", + " network[i][j]['fractionOfDemandInCIC'] = 1\n", + " else:\n", + " network[i][j]['fractionOfDemandInCIC'] = fractionOfDemandInCIC\n", + " except:\n", + " pass\n", + "\n", + " # Create utility edge types\n", + " try: \n", + " for i,j,l in zip(outboundAgents,inboundAgents,stepUtilities):\n", + " network[i][j]['utility'] = l\n", + " except:\n", + " pass\n", + "\n", + " x = network\n", + " return (y,x)\n", + "\n", + "\n", + "def update_outboundAgents(params,step,sL,s,_input):\n", + " '''\n", + " Update outBoundAgents state variable\n", + " '''\n", + " y = 'outboundAgents'\n", + "\n", + " x = _input['outboundAgents']\n", + "\n", + " return (y,x)\n", + "\n", + "def update_inboundAgents(params,step,sL,s,_input):\n", + " '''\n", + " Update inBoundAgents state variable\n", + " '''\n", + " y = 'inboundAgents'\n", + "\n", + " x = _input['inboundAgents']\n", + " return (y,x)\n", + "\n", + "\n", + "def update_node_spend(params, step, sL, s,_input):\n", + " '''\n", + " Update network with actual spend of agents.\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + " \n", + " spendI = _input['spendI']\n", + " spendJ = _input['spendJ']\n", + " spendAmount = _input['spendAmount']\n", + "\n", + " for i,j,l in zip(spendI,spendJ,spendAmount): \n", + " network[i][j]['spend'] = l\n", + " if i == 'external':\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 1\n", + " elif j == 'external':\n", + " network[i][j]['fractionOfActualSpendInCIC'] = 1\n", + " else:\n", + " network[i][j]['fractionOfActualSpendInCIC'] = fractionOfActualSpendInCIC\n", + "\n", + " outflowSpend, inflowSpend = iterateEdges(network,'spend')\n", + "\n", + " for i, j in inflowSpend.items():\n", + " if i == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i]\n", + " elif j == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i]\n", + " else:\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + inflowSpend[i] * (1- fractionOfDemandInCIC)\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] + (inflowSpend[i] * fractionOfDemandInCIC)\n", + " \n", + " for i, j in outflowSpend.items():\n", + " if i == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]\n", + " elif j == 'external':\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]\n", + " else:\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] - outflowSpend[i]* (1- fractionOfDemandInCIC)\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] - (outflowSpend[i] * fractionOfDemandInCIC)\n", + "\n", + " # Store the net of the inflow and outflow per step\n", + " network.nodes['external']['delta_native_currency'] = sum(inflowSpend.values()) - sum(outflowSpend.values())\n", + "\n", + " x = network\n", + " return (y,x)\n", + "\n", + "\n", + "def update_withdraw(params, step, sL, s,_input):\n", + " '''\n", + " Update flow sstate variable with the aggregated amount of shillings withdrawn\n", + " '''\n", + " y = 'withdraw'\n", + " x = s['withdraw']\n", + " if _input['withdraw']:\n", + " x = _input['withdraw']\n", + " else:\n", + " x = 0\n", + "\n", + " return (y,x)\n", + "\n", + "def update_network_withraw(params, step, sL, s,_input):\n", + " '''\n", + " Update network for agents withdrawing \n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + " withdraw = _input['withdraw']\n", + "\n", + " if withdraw:\n", + " for i,j in withdraw.items():\n", + " # update agent nodes\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] - j\n", + " network.nodes[i]['native_currency'] = network.nodes[i]['native_currency'] + (j * leverage)\n", + "\n", + " withdrawnCICSum = []\n", + " for i,j in withdraw.items():\n", + " withdrawnCICSum.append(j)\n", + " \n", + " # update cic node\n", + " network.nodes['cic']['native_currency'] = network.nodes[i]['native_currency'] - (sum(withdrawnCICSum) * leverage)\n", + " network.nodes['cic']['tokens'] = network.nodes[i]['tokens'] + (sum(withdrawnCICSum) * leverage)\n", + "\n", + " else:\n", + " pass\n", + " x = network\n", + " return (y,x)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Operating Entity\n", + "\n", + "# Parameters\n", + "FrequencyOfAllocation = 45 # every two weeks\n", + "idealFiat = 5000\n", + "idealCIC = 200000\n", + "varianceCIC = 50000\n", + "varianceFiat = 1000\n", + "unadjustedPerAgent = 50\n", + "\n", + "\n", + "\n", + "\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], # agent:[centrality,allocationValue]\n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "\n", + "# Behaviors\n", + "def disbursement_to_agents(params, step, sL, s):\n", + " '''\n", + " Distribute every FrequencyOfAllocation days to agents based off of centrality allocation metric\n", + " '''\n", + " fiatBalance = s['operatorFiatBalance']\n", + " cicBalance = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + "\n", + " division = timestep % FrequencyOfAllocation == 0\n", + "\n", + " if division == True:\n", + " agentDistribution ={} # agent: amount distributed\n", + " for i,j in agentAllocation.items():\n", + " agentDistribution[i] = unadjustedPerAgent * agentAllocation[i][1]\n", + " distribute = 'Yes'\n", + " \n", + " else:\n", + " agentDistribution = 0\n", + " distribute = 'No'\n", + "\n", + "\n", + " return {'distribute':distribute,'amount':agentDistribution}\n", + "\n", + "\n", + "def inventory_controller(params, step, sL, s):\n", + " '''\n", + " Monetary policy hysteresis conservation allocation between fiat and cic reserves.\n", + " \n", + " '''\n", + " fiatBalance = s['operatorFiatBalance']\n", + " cicBalance = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + " fundsInProcess = s['fundsInProcess']\n", + "\n", + "\n", + " updatedCIC = cicBalance\n", + " updatedFiat = fiatBalance\n", + "\n", + " #decision,amt = mint_burn_logic_control(idealCIC,updatedCIC,variance,updatedFiat)\n", + " decision,amt = mint_burn_logic_control(idealCIC,updatedCIC,varianceCIC,updatedFiat,varianceFiat,idealFiat)\n", + "\n", + " if decision == 'burn':\n", + " try:\n", + " deltaR, realized_price = withdraw(amt,updatedFiat,updatedCIC, V0, kappa)\n", + " # update state\n", + " # fiatBalance = fiatBalance - deltaR\n", + " # cicBalance = cicBalance - amt\n", + " fiatChange = abs(deltaR)\n", + " cicChange = amt\n", + "\n", + " except:\n", + " print('Not enough to burn')\n", + "\n", + " fiatChange = 0\n", + " cicChange = 0\n", + " \n", + " elif decision == 'mint':\n", + " try:\n", + " deltaS, realized_price = mint(amt,updatedFiat,updatedCIC, V0, kappa)\n", + " # update state\n", + " # fiatBalance = fiatBalance + amt\n", + " # cicBalance = cicBalance + deltaS\n", + " fiatChange = amt\n", + " cicChange = abs(deltaS)\n", + "\n", + " except:\n", + " print('Not enough to mint')\n", + " fiatChange = 0\n", + " cicChange = 0\n", + "\n", + " else:\n", + " fiatChange = 0\n", + " cicChange = 0\n", + " decision = 'none'\n", + " pass\n", + "\n", + " if decision == 'mint':\n", + " fundsInProcess['timestep'].append(timestep + process_lag)\n", + " fundsInProcess['decision'].append(decision)\n", + " fundsInProcess['cic'].append(fiatChange)\n", + " fundsInProcess['shilling'].append(cicChange)\n", + " elif decision == 'burn':\n", + " fundsInProcess['timestep'].append(timestep +process_lag)\n", + " fundsInProcess['decision'].append(decision)\n", + " fundsInProcess['cic'].append(fiatChange)\n", + " fundsInProcess['shilling'].append(cicChange)\n", + " else:\n", + " pass\n", + " \n", + " return {'decision':decision,'fiatChange':fiatChange,'cicChange':cicChange,'fundsInProcess':fundsInProcess}\n", + "\n", + "\n", + "\n", + "# Mechanisms \n", + "def update_agent_tokens(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'network'\n", + " network = s['network']\n", + "\n", + " distribute = _input['distribute']\n", + " amount = _input['amount']\n", + "\n", + " if distribute == 'Yes':\n", + " for i in agents:\n", + " network.nodes[i]['tokens'] = network.nodes[i]['tokens'] + amount[i]\n", + " else:\n", + " pass\n", + "\n", + " return (y,network)\n", + "\n", + "def update_operator_FromDisbursements(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorCICBalance'\n", + " x = s['operatorCICBalance']\n", + " timestep = s['timestep']\n", + " \n", + " distribute = _input['distribute']\n", + " amount = _input['amount'] \n", + "\n", + " if distribute == 'Yes':\n", + " totalDistribution = []\n", + " for i,j in amount.items():\n", + " totalDistribution.append(j)\n", + " \n", + " totalDistribution = sum(totalDistribution)\n", + " x = x - totalDistribution\n", + "\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalDistributedToAgents(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalDistributedToAgents'\n", + " x = s['totalDistributedToAgents']\n", + " timestep = s['timestep']\n", + " \n", + " distribute = _input['distribute']\n", + " amount = _input['amount'] \n", + "\n", + " if distribute == 'Yes':\n", + " totalDistribution = []\n", + " for i,j in amount.items():\n", + " totalDistribution.append(j)\n", + " \n", + " totalDistribution = sum(totalDistribution)\n", + " x = x + totalDistribution\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_operator_fiatBalance(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorFiatBalance'\n", + " x = s['operatorFiatBalance']\n", + " fundsInProcess = s['fundsInProcess']\n", + " timestep = s['timestep']\n", + " if _input['fiatChange']:\n", + " try:\n", + " if fundsInProcess['timestep'][0] == timestep + 1:\n", + " if fundsInProcess['decision'][0] == 'mint':\n", + " x = x - abs(fundsInProcess['shilling'][0])\n", + " elif fundsInProcess['decision'][0] == 'burn':\n", + " x = x + abs(fundsInProcess['shilling'][0])\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + "\n", + " return (y,x)\n", + "\n", + "def update_operator_cicBalance(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'operatorCICBalance'\n", + " x = s['operatorCICBalance']\n", + " fundsInProcess = s['fundsInProcess']\n", + " timestep = s['timestep']\n", + "\n", + " if _input['cicChange']:\n", + " try:\n", + " if fundsInProcess['timestep'][0] == timestep + 1:\n", + " if fundsInProcess['decision'][0] == 'mint':\n", + " x = x + abs(fundsInProcess['cic'][0])\n", + " elif fundsInProcess['decision'][0] == 'burn':\n", + " x = x - abs(fundsInProcess['cic'][0])\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalMinted(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalMinted'\n", + " x = s['totalMinted']\n", + " timestep = s['timestep']\n", + " try:\n", + " if _input['fundsInProcess']['decision'][0] == 'mint':\n", + " x = x + abs(_input['fundsInProcess']['cic'][0])\n", + " elif _input['fundsInProcess']['decision'][0] == 'burn':\n", + " pass\n", + " except:\n", + " pass\n", + "\n", + "\n", + " return (y,x)\n", + "\n", + "def update_totalBurned(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'totalBurned'\n", + " x = s['totalBurned']\n", + " timestep = s['timestep']\n", + " try:\n", + " if _input['fundsInProcess']['decision'][0] == 'burn':\n", + " x = x + abs(_input['fundsInProcess']['cic'][0])\n", + " elif _input['fundsInProcess']['decision'][0] == 'mint':\n", + " pass\n", + " except:\n", + " pass\n", + "\n", + " return (y,x)\n", + "\n", + "def update_fundsInProcess(params,step,sL,s,_input):\n", + " '''\n", + " '''\n", + " y = 'fundsInProcess'\n", + " x = _input['fundsInProcess']\n", + " timestep = s['timestep']\n", + "\n", + " if _input['fundsInProcess']:\n", + " try:\n", + " if x['timestep'][0] == timestep:\n", + " del x['timestep'][0]\n", + " del x['decision'][0]\n", + " del x['cic'][0]\n", + " del x['shilling'][0]\n", + " else:\n", + " pass\n", + " except:\n", + " pass\n", + " else:\n", + " pass\n", + "\n", + " return (y,x)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# KPI\n", + "\n", + "# Behaviors\n", + "def kpis(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " KPIDemand = {}\n", + " KPISpend = {}\n", + " KPISpendOverDemand = {}\n", + " for i in mixingAgents:\n", + " demand = []\n", + " for j in network.adj[i]:\n", + " try:\n", + " demand.append(network.adj[i][j]['demand'])\n", + " except:\n", + " pass\n", + "\n", + " spend = []\n", + " for j in network.adj[i]:\n", + " try:\n", + " spend.append(network.adj[i][j]['spend'])\n", + " except:\n", + " pass\n", + "\n", + " sumDemand = sum(demand)\n", + " sumSpend = sum(spend)\n", + " try:\n", + " spendOverDemand = sumSpend/sumDemand\n", + " except:\n", + " spendOverDemand = 0\n", + "\n", + " KPIDemand[i] = sumDemand\n", + " KPISpend[i] = sumSpend\n", + " KPISpendOverDemand[i] = spendOverDemand\n", + "\n", + " #print(nx.katz_centrality_numpy(G=network,weight='spend'))\n", + " return {'KPIDemand':KPIDemand,'KPISpend':KPISpend,'KPISpendOverDemand':KPISpendOverDemand}\n", + "\n", + "def velocity_of_money(params, step, sL, s):\n", + " ''''''\n", + " # instantiate network state\n", + " network = s['network']\n", + "\n", + " KPISpend = s['KPISpend']\n", + "\n", + " # TODO: Moving average for state variable\n", + " T = []\n", + " for i,j in KPISpend.items():\n", + " T.append(j)\n", + " \n", + " T = sum(T)\n", + " \n", + " # TODO Moving average for state variable \n", + " M = []\n", + " for i in agents:\n", + " M.append(network.nodes[i]['tokens'] + network.nodes[i]['native_currency'])\n", + " \n", + " M = sum(M)\n", + " \n", + " V_t = (priceLevel *T)/M\n", + "\n", + " return {'V_t':V_t,'T':T,'M':M}\n", + "\n", + "\n", + "# Mechanisms\n", + "def update_KPIDemand(params, step, sL, s,_input):\n", + " y = 'KPIDemand'\n", + " x = _input['KPIDemand']\n", + " return (y,x)\n", + "\n", + "def update_KPISpend(params, step, sL, s,_input):\n", + " y = 'KPISpend'\n", + " x = _input['KPISpend']\n", + " return (y,x)\n", + "\n", + "def update_KPISpendOverDemand(params, step, sL, s,_input):\n", + " y = 'KPISpendOverDemand'\n", + " x = _input['KPISpendOverDemand']\n", + " return (y,x)\n", + "\n", + "\n", + "def update_velocity_of_money(params, step, sL, s,_input):\n", + " y = 'VelocityOfMoney'\n", + " x = _input['V_t']\n", + " return (y,x)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# partial state update block\n", + "partial_state_update_block = {\n", + " # Exogenous\n", + " 'Exogenous': {\n", + " 'policies': {\n", + " },\n", + " 'variables': {\n", + " 'startingBalance': startingBalance,\n", + " 'operatorFiatBalance': redCrossDrop,\n", + " '30_day_spend': update_30_day_spend,\n", + " 'network':clear_agent_activity\n", + " }\n", + " },\n", + " # Users\n", + " 'Behaviors': {\n", + " 'policies': {\n", + " 'action': choose_agents\n", + " },\n", + " 'variables': {\n", + " 'network': update_agent_activity,\n", + " 'outboundAgents': update_outboundAgents,\n", + " 'inboundAgents':update_inboundAgents\n", + " }\n", + " },\n", + " 'Spend allocation': {\n", + " 'policies': {\n", + " 'action': spend_allocation\n", + " },\n", + " 'variables': {\n", + " 'network': update_node_spend\n", + " }\n", + " },\n", + " 'Withdraw behavior': {\n", + " 'policies': {\n", + " 'action': withdraw_calculation\n", + " },\n", + " 'variables': {\n", + " 'withdraw': update_withdraw,\n", + " 'network':update_network_withraw\n", + " }\n", + " },\n", + " # Operator\n", + " 'Operator Disburse to Agents': {\n", + " 'policies': {\n", + " 'action': disbursement_to_agents\n", + " },\n", + " 'variables': {\n", + " 'network':update_agent_tokens,\n", + " 'operatorCICBalance':update_operator_FromDisbursements,\n", + " 'totalDistributedToAgents':update_totalDistributedToAgents\n", + " }\n", + " },\n", + " 'Operator Inventory Control': {\n", + " 'policies': {\n", + " 'action': inventory_controller\n", + " },\n", + " 'variables': {\n", + " 'operatorFiatBalance':update_operator_fiatBalance,\n", + " 'operatorCICBalance':update_operator_cicBalance, \n", + " 'totalMinted': update_totalMinted,\n", + " 'totalBurned':update_totalBurned,\n", + " 'fundsInProcess':update_fundsInProcess\n", + " }\n", + " },\n", + " # KPIs\n", + " 'KPIs': {\n", + " 'policies': {\n", + " 'action':kpis\n", + " },\n", + " 'variables':{\n", + " 'KPIDemand': update_KPIDemand,\n", + " 'KPISpend': update_KPISpend,\n", + " 'KPISpendOverDemand': update_KPISpendOverDemand \n", + " }\n", + " },\n", + " 'Velocity': {\n", + " 'policies': {\n", + " 'action':velocity_of_money\n", + " },\n", + " 'variables':{\n", + "\n", + " 'VelocityOfMoney': update_velocity_of_money\n", + " }\n", + " }\n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n" + ] + } + ], + "source": [ + "# config\n", + "params: Dict[str, List[int]] = {\n", + " 'drip_frequency': [30,60,90] # in days\n", + "}\n", + "\n", + "\n", + "sim_config = config_sim({\n", + " 'N': 5,\n", + " 'T': range(100), #day \n", + " 'M': params,\n", + "})\n", + "\n", + "seeds = {\n", + " 'p': np.random.RandomState(26042019),\n", + "}\n", + "env_processes = {}\n", + "\n", + "\n", + "append_configs(\n", + " sim_configs=sim_config,\n", + " initial_state=genesis_states,\n", + " seeds=seeds,\n", + " env_processes=env_processes,\n", + " partial_state_update_blocks=partial_state_update_block\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run cadCAD model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "exec_mode = ExecutionMode()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " __________ ____ \n", + " ________ __ _____/ ____/ | / __ \\\n", + " / ___/ __` / __ / / / /| | / / / /\n", + " / /__/ /_/ / /_/ / /___/ ___ |/ /_/ / \n", + " \\___/\\__,_/\\__,_/\\____/_/ |_/_____/ \n", + " by BlockScience\n", + " \n", + "Execution Mode: multi_proc: [, , ]\n", + "Configurations: [, , ]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/cadCAD/utils/__init__.py:113: FutureWarning: The use of a dictionary to describe Partial State Update Blocks will be deprecated. Use a list instead.\n", + " FutureWarning)\n" + ] + } + ], + "source": [ + "exec_mode = ExecutionMode()\n", + "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", + "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", + "\n", + "i = 0\n", + "results = {}\n", + "for raw_result, tensor_field in run.execute():\n", + " result = pd.DataFrame(raw_result)\n", + " results[i] = {}\n", + " results[i]['result'] = result\n", + " i += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networkKPIDemandKPISpendKPISpendOverDemandVelocityOfMoneystartingBalance30_day_spendwithdrawoutboundAgentsinboundAgentsoperatorFiatBalanceoperatorCICBalancefundsInProcesstotalDistributedToAgentstotalMintedtotalBurnedrunsubsteptimestep
4000(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000054100
4001(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000055100
4002(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45...{'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'...{'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000056100
4003(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,...{'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd...{'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,...9.77{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000057100
4004(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,...{'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd...{'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,...20.19{'a': 136.4003802092373, 'b': 848.068007320516...{'a': 422.1992395815254, 'b': 3202.55026803101...0[f, h, c, o, f, k, a, p, d, o, h, g, k, a][e, f, f, f, k, h, i, external, b, external, g...16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000058100
\n", + "
" + ], + "text/plain": [ + " network \\\n", + "4000 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4001 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4002 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4003 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4004 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "\n", + " KPIDemand \\\n", + "4000 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4001 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4002 {'a': 246, 'b': 0, 'c': 466, 'd': 620, 'e': 45... \n", + "4003 {'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,... \n", + "4004 {'a': 346, 'b': 0, 'c': 431, 'd': 245, 'e': 0,... \n", + "\n", + " KPISpend \\\n", + "4000 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4001 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4002 {'a': 246, 'b': 0, 'c': 5.187631236062657, 'd'... \n", + "4003 {'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd... \n", + "4004 {'a': 346, 'b': 0, 'c': 2.5938156180313285, 'd... \n", + "\n", + " KPISpendOverDemand VelocityOfMoney \\\n", + "4000 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4001 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4002 {'a': 1.0, 'b': 0, 'c': 0.011132255871379093, ... 9.77 \n", + "4003 {'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,... 9.77 \n", + "4004 {'a': 1.0, 'b': 0, 'c': 0.0060181336845274444,... 20.19 \n", + "\n", + " startingBalance \\\n", + "4000 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4001 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4002 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4003 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "4004 {'a': 136.4003802092373, 'b': 848.068007320516... \n", + "\n", + " 30_day_spend withdraw \\\n", + "4000 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4001 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4002 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4003 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "4004 {'a': 422.1992395815254, 'b': 3202.55026803101... 0 \n", + "\n", + " outboundAgents \\\n", + "4000 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4001 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4002 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4003 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "4004 [f, h, c, o, f, k, a, p, d, o, h, g, k, a] \n", + "\n", + " inboundAgents operatorFiatBalance \\\n", + "4000 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4001 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4002 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4003 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "4004 [e, f, f, f, k, h, i, external, b, external, g... 16500 \n", + "\n", + " operatorCICBalance fundsInProcess \\\n", + "4000 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4001 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4002 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4003 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4004 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "4000 1500 0 0 5 4 \n", + "4001 1500 0 0 5 5 \n", + "4002 1500 0 0 5 6 \n", + "4003 1500 0 0 5 7 \n", + "4004 1500 0 0 5 8 \n", + "\n", + " timestep \n", + "4000 100 \n", + "4001 100 \n", + "4002 100 \n", + "4003 100 \n", + "4004 100 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[0]['result'].tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(0,len(results)):\n", + " results[i]['result']['agents'] = results[i]['result'].network.apply(lambda g: np.array([get_nodes_by_type(g,'Agent')][0]))\n", + " results[i]['result']['agent_tokens'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['tokens'] for j in get_nodes_by_type(g,'Agent')]))\n", + " results[i]['result']['agent_native_currency'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['native_currency'] for j in get_nodes_by_type(g,'Agent')]))\n", + " # Create dataframe variables \n", + " tokens = []\n", + " for j in results[i]['result'].index:\n", + " tokens.append(sum(results[i]['result']['agent_tokens'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCICHolding'] = tokens \n", + "\n", + " currency = []\n", + " for j in results[i]['result'].index:\n", + " currency.append(sum(results[i]['result']['agent_native_currency'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCurrencyHolding'] = currency \n", + "\n", + " AggregatedSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedSpend.append(sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentSpend'] = AggregatedSpend \n", + "\n", + " AggregatedDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedDemand.append(sum(results[i]['result']['KPIDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentDemand'] = AggregatedDemand \n", + "\n", + "\n", + " AggregatedKPISpendOverDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedKPISpendOverDemand.append(sum(results[i]['result']['KPISpendOverDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedKPISpendOverDemand'] = AggregatedKPISpendOverDemand \n", + "\n", + "\n", + " AggregatedGapOfDemandMinusSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedGapOfDemandMinusSpend.append(sum(results[i]['result']['KPIDemand'][j].values())- sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedGapOfDemandMinusSpend'] = AggregatedGapOfDemandMinusSpend " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestepVelocityOfMoneyoperatorFiatBalanceoperatorCICBalancetotalDistributedToAgentstotalMintedtotalBurnedrunsubstepAggregatedAgentCICHoldingAggregatedAgentCurrencyHoldingAggregatedAgentSpendAggregatedAgentDemandAggregatedKPISpendOverDemandAggregatedGapOfDemandMinusSpendRed Cross Drip Frequency
0114.044500200000.00000386000.002912.001255.2525344.961325.0030
1218.484500200000.00000386040.002952.001693.6233705.591292.7530
2316.274500200000.00000386049.502961.501466.3424415.46381.5030
3418.754500200000.00000386124.943036.941672.0028676.481195.0030
4515.174500200000.00000386385.503297.501568.0019145.49734.8930
\n", + "
" + ], + "text/plain": [ + " timestep VelocityOfMoney operatorFiatBalance operatorCICBalance \\\n", + "0 1 14.04 4500 200000.00 \n", + "1 2 18.48 4500 200000.00 \n", + "2 3 16.27 4500 200000.00 \n", + "3 4 18.75 4500 200000.00 \n", + "4 5 15.17 4500 200000.00 \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "0 0 0 0 3 8 \n", + "1 0 0 0 3 8 \n", + "2 0 0 0 3 8 \n", + "3 0 0 0 3 8 \n", + "4 0 0 0 3 8 \n", + "\n", + " AggregatedAgentCICHolding AggregatedAgentCurrencyHolding \\\n", + "0 6000.00 2912.00 \n", + "1 6040.00 2952.00 \n", + "2 6049.50 2961.50 \n", + "3 6124.94 3036.94 \n", + "4 6385.50 3297.50 \n", + "\n", + " AggregatedAgentSpend AggregatedAgentDemand AggregatedKPISpendOverDemand \\\n", + "0 1255.25 2534 4.96 \n", + "1 1693.62 3370 5.59 \n", + "2 1466.34 2441 5.46 \n", + "3 1672.00 2867 6.48 \n", + "4 1568.00 1914 5.49 \n", + "\n", + " AggregatedGapOfDemandMinusSpend Red Cross Drip Frequency \n", + "0 1325.00 30 \n", + "1 1292.75 30 \n", + "2 381.50 30 \n", + "3 1195.00 30 \n", + "4 734.89 30 " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "params = [30,60,90]\n", + "swept = 'Red Cross Drip Frequency'\n", + "mean_df,median_df = param_dfs(results,params,swept)\n", + "median_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEWCAYAAACUr7U+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXd4XMW1wH9nd7XqVrMkF7lgMLjhhsE4NBvHQGimk4SA6YTAI6TQAgFCIEAgCQ4hEILphPpoIQmYGEjygh3HjWZjbFywqm3VVVmtdve8P+auvOprS7JW8vy+b7+dO/femXPnzp0zc6aJqmKxWCwWi2Vg4OprASwWi8VisfQcVrFbLBaLxTKAsIrdYrFYLJYBhFXsFovFYrEMIKxit1gsFotlAGEVu8VisVgsA4huK3YRuVNEdopIqXN8uohsE5FaEZnWfRH3WK69JoeIjBYRFRFPb8YTD4jIeSKyuK/lsFgsAwsReVJE7uxrOeIZEZktIoVdXdelYheRLSLS4CjIyO93zrmRwI+ACao6xLnlfuBqVU1T1dXdeAAVkQP29P6u5HDCr3Oep0hEfi0i7m7E1yki8m0RWeHEVyIifxORI3srvhjkeVJEAiLic36fisjdIpLR2X2q+pyqHreHcd4uIk2t8tL1e/YE/Zuo9K8VkQoReVdExvW1XF0hIheKyP/1cJheEfmViBQ66bFFRB7oyTjiGTFsEpG1fS1Ld+iBMru9MPcTkbCIPNyT4XYRZ5s8LiIFIvK/TiO22ikvL9xbMu0usbbYT3EUZOR3teM/EihX1e1R144CPutRKfeMWOSYoqppwDHAucDFvSGIiPwQeAD4BZCPSbffA/M7uH5vtfx/qarpQC5wEXA48G8RSe1FuV5slZd+2U48IiL7QjfRL538VwBsB57c3QD6m5WoA3lvAmYAhwHpwGxg1V4Uq685GsgDxojIob0VSX/LKw4XAJXAuSKS2IdyPANsw+iVHOB8oKwP5ekcVe30B2wBvt6O/9eBBiAM1ALPO/8K1AFfOtcNA/4X2AFsBq6JCsMN/AT4EvABK4ERwD+jwqkFzm0nfhdwC7AVUyg+DWQAie3J0c79ChwQdfwS8FDUcQawCCgBioA7AXeU3PcDO4FNwFVOeJ524slw5Dm7kzS+HXgFeBaoAS51nuMBoNj5PQAkOtcPBt4CqoAK4F+Ayzl3gyOvD1gPzO0gzieBO1v5pTvPe7VzfCHwb+A3QLmTBhcC/9cqHa9x0mEncF9Elg6e89kOzn0A3OXE1wAc0J13QKt82zpuTCXmQycNPwJmt5Ll544sPmAxMDjq/JFR925z0uRQzIfujrruDOCjWNIfOAmoddyHAUud8EuA3wHeVml+FbAB2Oz4LXRkqcF8R0e1evaXMfnLB3wCHIhRqNud+47rKu8D4wE/EMLk6Srn+kTnXXzlpMEjQLJzbjZQiMmXpcAz7aTFW8C1HaTTRcCfo443AC9HHW8DpjruccC7mG9iPXBO1HWxyPgTTH7aApzXyfc6DHjTiWcjcFmrtH4JUx75MI2LGV2UsY8DzwGvAr9rdW4/THnoA/4OPETLfHwBpgwsB35KVL6n/XLFBdyIKXPLHVmzYwyvw3xJB2U2cDKwxrnnQ2ByVFzTMBU4H/Ai8AItvwlx5LzSeWdntUqb45z3XI1pKP0DuDTq/MXAOkzF4B1gVKtv6LuY/FTlpKvQcR6vxcln7by/0U54l2PK6hLgx1HnO0zzqHsXYPLmTuDmqHuTMWVFJbAWuA4o7Cw/qeqeK/boD6KVX7PCdB5oJXAr4AXGYArh453z12EKmYOcRJ0C5LQOp4O4L8Z8VGOANMxH8Ux7cnRwf7Sc45yX8YOo868BfwBSMbXp5cAVzrnvAp9jKiHZwPt0rNhPAILtnWtVGDQBpzlplgzcASxz4s7FfBQ/d66/G1MwJTi/o5z0OwhT0A2LyjT7dxDnk7RS7I7/05hWNRiFFQT+B/A4cl1IW8X+vpMOI4EviPq42nnOzhT7V8BEJ66E7rwDOlHswHDMB3aik97znOPcKFm+xCi/ZOf4HufcKExB9C1Hxhx2KZa1wDda5aEfdZX+mPz7J+BfzvEhmIqHx3mH64hSfM5zvus8d0Q5fceRxYPpHisFkqKe3Q8c75x/GlPJvtl5hstwKggx5P0W79/x+w1G0WVjKod/Bu6OKiOCwL0Y5ZrcTlrc4rz77wEHAxJ1bgym4HVhFOpWnDLHOVfpnEvF5P2LnGechikkJ+yGjL92ZDwGo6AO6uDd/ROjSJKAqZhGy7Gt0vpETGXobmBZJ99+Ckbpngic6cgcXYlbiqmQeDEVyhp25eMJGIVzpHP+fkw5Eq3YW5cr38eUKwXOs/4BeD7G8GLJl9GNpWmYiuNMJy0WYL7LRCf8rcAPMHnwLCeuaMV+FNAIZAEP0rKCN9hJizMceb7v3H+pc34+Rj+Md87fAnzYSta3gExMubUDOKGTPP53TEX/m8DIVudGO+E9j8mHBzvhRdKtszSP3PtH5/1McZ55vHP+HkzDLRtT1n1KDyr2WszHFfldFvVBdKbYZwJftTp/E/CE414PzO8g3q4U8xLge1HHBzkv1hPj/epkjLqolxJpEec7iZscdf23gPcd93vAd6POHUfHiv08oLSLNL4d+Gcrvy+BE6OOjwe2OO47gDdaPx+mlbsdY01J6CLOJ2lfsd8DvBuVwVu/vwtpq9hPiDr+HrCkk+cMtMpLkUrIB8AdUdd26x3QuWK/gVYtR0yNfkGULLe0eqa3o/Lvax083w3Ac447G6gHhnaS/n4nDUoxSqejSti10XE6z3lsF++3EtPVFHn2d6POnYL5piPWj3QnzMwY0r31+xfMN7R/lN8sdlkSZjvvPKkTWd0YC8S/nbiLI+/COb8NmI4pVB/FVDTGYZT4m8415+JUjKLu+wNwW4wyBoHUqPMvAT9tR9YRmNZcepTf3cCTUWn996hzE4CGTp79Oxgl4MFUFKqB051zIx25UqKuf5Zd+fhWHAXhHKc4aR2t2FuXK+uIsuIBQ3HKza7CizFfRiv2h3EaI1F+6zEVp6Od9xxdifuQlor9MeD1qPfVBOQ5xxcAS1vlw23sUux/Ay6JOu/CfI+jomQ9stX7vrG9PO74ZWHKxs+c978GONQ5N9oJb1zU9b8EFsWQ5pF7C6LOLwe+6bg30bJ8vZwYFHusfS6nqerfY7w2mlHAMBGpivJzY2ogYD6SL/cgXNhVe4+wFZNQ+RjzYSxMd+I/G/PSUjEFyyhMLbJERCLXujAZJxL3tqhwouVoTTkwWEQ8qhrs5LptrY7be75hjvs+zEe72JHvUVW9R1U3isi1zrmJIvIO8ENVLe4k3tYMx5gYO5KrK9mj5WyPl1T1OzGE05PvoDWjgLNF5JQovwRMqz9CaZS7HtOqhs7z7LPAOmeMwjkYRVPSiRz3q+otrT1F5EBM63EGpnD1YCxf0Wxrdc+PgUsw6aLAIEyrJkJ0f2ADsFNVQ1HHYJ5xGJ2ne2tyHRlXRl0vmO88wg5V9XdwP44cDwEPiUgyxhr3uIgsV9V1GBPrbEzF9R+YytAxmML+H04wo4CZrcoaD6ZvNBYZK1W1Luq4o3w8DKhQVV+ra2dEHbfOO0mdfP8LMN9EEAiKyP86fq9FxVUfdf02TB6MyNL8XlS1XkTKW4Xf+r2NAl4TkXCUXwhTbnYaXoz5snVcC0Tkf6L8vOzKo0XqaCuH5m/YyQdnY7oPUNWlIvIV8G1Mt2RrWbXVaPFRwEIR+VWUn2DKt0g8HX3jbVDVSow5/UYRGYyxZrwuIgVRl7Uujw6OkqWjNI/QkSx7VM719gClbZhacWbUL11VT4w6v/8ehl2MSbAIkdrtbg1oUMNLGJPXrVFyNWL6VSNyD1LVic75EnZ9XJG4O2KpE9ZpXYnS6ri95yt2ZPap6o9UdQxwKvBDEZnrnPuTqh7p3KsYE2hMiEgaprX/ryjv1nK1R+u02J2KRDTRcXX3HdRhCp8IQ6Lc2zAt9uh8maqq98QgY4d5VlWLMO/7DMzgmmdiCK89HsZ0M4xV1UGYvl9pdU1zWonIUcD1mMpElqpmYlp+re+Jha7SvXV+2ImpGEyMuj5DzaDANrJ2hao2qOpDGIvDBMc7otiPctz/wCj2Y9il2LcB/2j1TtNU9coYZcxqNWi0o3xcDGSLSHqra2NtTDTjKIVjge+ISKmYKcNnASc6yqPEiSs6H0fn+RKMeTcSXjKmOyaa1mm/DdNdFJ1OSU7e7Sq8WPJl67juahVXiqo+78Q1XKJqWrT8hk/HVE5/H5U2wzGVnvaeXaKPnbivaBV3sqp+2Im8ETrNr6q6E6PYh2EscxE6Kgc7S/Ou2B1d00xvK/blgE9EbhCRZBFxi8ikqJGfjwE/F5GxzkjoySISyUhlmD60jnge+IEzHSINM+L8xS5axZ1xD3CZiAxxWlmLgV+JyCARcYnI/iJyjHPtS8A1zhSILExNrl1UtRpTYXhIRE4TkRQRSRCRb4hImxHhrZ7vFhHJdT7yWzEtQkTkZBE5wMnM1ZjaX1hEDhKRY53Ro352DW7sFBFJFJFDgNcxBeoTXd3TiutEJEtERmD6k17czfvb0APvYA3wTSetZ2AKzAjPAqeIyPFOnkwSMz+0gK55Dvi6iJwjIh4RyRGRqVHnn8Yo2YMx4z72hHRMN1GtmClwV8ZwfRDHpCsit2IKxd0mhnQvAwpExOtcH8b0D/5GRPIARGS4iBwfa5wicq2T/slOmi5wnikyTfUfwBxM90AhpuJ5AkbpRK55CzhQRM533nmCiBwqIuN3Q8afiZl6dxRm0NfL7aTPNozJ+G4n30zGWEqejfV5ozgfMyblIExf/VTMuI5C4FuquhVYAdzuyDUL040S4RVMPv6a8z5up+vK3CPAXSIyCsApXyKzc7oKr6t82brM/iPwXRGZ6ZTvqSJyklMpWorJs9c47+oMzOC8CAswgwoPjkqbI4ApInIw8BfgYKdM9WC6cqIr748AN4nIROc5M0Tk7C7SJvo5mvO4c/+9ju7yOPJfCWxU1WgLyU+d8n0ippsoUg52luZd8ZLzHFlO+fQ/Xd0AsSv2P0vLucevxXKTY2I7GfNSNmNqzo9hRt2CMeu8hClIajAjcZOdc7cDT4lIlYic007wj2NaRP90wvYT40N3IOsnTljXOV4XYMxGazHK7hVM3wiYDPsOZjT1KroowFX1V8APMQM4dmBqcFdjFGlH3In5qD/GDDBc5fgBjMUM5qjFfCC/V9X3MQMz7sGkcylm4NNNncRxvYj4MN0FT2PMal9rZZKMhTece9dgPrhFu3l/R3TnHfwU07KuBH6GGZwGNBfO8zEtjsj7uI4YvgdV/Qoz0OlHmC6LNZgBLxFewzG9tTKh7g4/xpgcfZjn7Kqi9A7wNkZJbMV8C7F0oXREZ+n+HqafsVREdjp+N2AGKi0TkRpM3jxoN+KrB36FybM7MYX0maq6CUBVv8Dk9X85xzWYvsd/R7oTHNP4cZh++GInrMiAvVhkLHWetRhTefuuqn7egbzfwvSNFmPe92172FW5APPtlkb/MIog0jI9D9PlEJmV8iLGooKqfoYp817AtOxqMWNsGjuJcyFmPMdi59tfhhkLFUt4XeXL24kqs1V1BWZg5u8wabsR03+NqgYwlq0LMd/RuTjfsIgMB+YCD7RKm5WYfL7AaTWfjenLLsdYd1ZEpc1rmPf/gvO+PwW+0Um6RNNeHk/BvOsqTN4bhbGWRvMP5xmXYLrZIgt5dZjmMfAzzDe9GaMnY7ICSssuDotl9xARxZjmNvaxHKMxmT+hG1abnpLlS4wZcE8Ke8teRkRmYwakxWKx6VNE5EXgc1W9rZ1zaRjFM1ZVN/dAXD0aXm8iZt2LQsw0xfe7ur6H4x5NnJQ9EfaFRUAslr2GiJyJ6aN7r69lsfR/nO6E/Z0ukRMwlqbXo86f4ph/UzH9vp9gZoTsaXw9Gl5v4nSlZYrpeoz09y/rY7Higv64EpHFEpeIyAcYk+D5Tr+uxdJdhmBM1DmYFumV2nKJ7PkY86xgTNHf1O6ZYXs6vN5kFqaLLdJtdJqqNnR+y76BNcVbLBaLxTKAsKZ4i8VisVgGENYU38MMHjxYR48e3ddiWCwWS79i5cqVO1U1t6/lGAhYxd7DjB49mhUrVvS1GBaLxdKvEJHdWT3S0gnWFG+xWCwWywDCKnaLxWKxWAYQVrFbLBaLxTKAsH3se4GmpiYKCwvx+zvc4Mpi2askJSVRUFBAQkJCX4tisVh6GKvY9wKFhYWkp6czevRoRPZkwy2LpedQVcrLyyksLGS//fbra3EsFksPY03xewG/309OTo5V6nFAOBgk1Bho8wsH42KJ572CiJCTk2MtSBbLAMW22PcSVqnHBxoK4/v0izb+6ZMO3Ke+BpsfLZaBi22xWywWi8UygLCKfR/B7XYzdepUJk2axCmnnEJVVdVu3X/77bdz//33t3vu6aefZtKkSRx88MFMmzatw+t6mtGjR3PwwQdz8MEHM2HCBG655ZZOzctf+9rXdiv82bNnc9BBBzF16lSmTp3KK6+80l2RLRaLpdexin0fITk5mTVr1vDpp5+SnZ3NQw891CPh/u1vf+OBBx5g8eLFfPLJJyxbtoyMjIw21wV7qQ/7/fff55NPPmH58uVs2rSJK664osO4P/zww90O/7nnnmPNmjWsWbOGs846q8U5VSUctpu4WSyW+MIq9n2QWbNmUVRU1Hx83333ceihhzJ58mRuu+22Zv+77rqLAw88kCOPPJL169e3G9bdd9/N/fffz7BhwwBITEzksssuA0yL99prr2XGjBksXLiQLVu2cOyxxzJ58mTmzp3LV199BcDLL7/MpEmTmDJlCkcffTQAn332GYcddhhTp05l8uTJbNiwodNnSktL45FHHuH111+noqKCDz74gKOOOopTTz2VCRMmNF8D8H8r/suJly3gnO9/j0PPOIUf/OKOmBX0li1bOOigg7jggguYNGkS27ZtY/HixcyaNYvp06dz9tlnU1tbC8Dbb7/NuHHjmD59Otdccw0nn3wy0Nb6MWnSJLZs2QLAs88+2/zcV1xxBaFQqFn2m2++mSlTpnD44YdTVlYGQFlZGaeffjpTpkxhypQpfPjhh9x666088MADzeHffPPNLFy4MKbns1gsAwBVtb8e/B1yyCHamrVr17bx29ukpqaqqmowGNSzzjpL//a3v6mq6jvvvKOXXXaZhsNhDYVCetJJJ+k//vEPXbFihU6aNEnr6uq0urpa999/f73vvvvahJuVlaVVVVXtxnnMMcfolVde2Xx88skn65NPPqmqqosWLdL58+erquqkSZO0sLBQVVUrKytVVfXqq6/WZ599VlVVGxsbtb6+vk34o0aN0h07drTwmzJlii5btkzff/99TUlJ0U2bNrVIg1BTk/79ncWamJioX6xdp4119Tr32GP1xRdeaFf+Aw88UKdMmaJTpkzRnTt36ubNm1VEdOnSpaqqumPHDj3qqKO0trZWVVXvuece/dnPfqYNDQ1aUFCgX3zxhYbDYT377LP1pJNOUlXV2267rUVaTpw4UTdv3qxr167Vk08+WQOBgKqqXnnllfrUU0+pqiqgb775pqqqXnfddfrzn/9cVVXPOecc/c1vfqOq5t1WVVXp5s2bddq0aaqqGgqFdMyYMbpz5842zxcP+dJiiQCs0DgowwfCbx8aB7xv09DQwNSpUykqKmL8+PHMmzcPgMWLF7N48WKmTZsGQG1tLRs2bMDn83H66aeTkpICwKmnnrpH8Z577rnN7qVLl/Lqq68CcP7553P99dcDcMQRR3DhhRdyzjnncMYZZwDGqnDXXXdRWFjIGWecwdixY2OKz5QPhsMOO6zNPG2Xx4Pbm8Bhhx3G2PHjAPj2eefx4dKlnBMla4TnnnuOGTNmNB/7fD5GjRrF4YcfDsCyZctYu3YtRxxxBACBQIBZs2bx+eefs99++zXL/Z3vfIdHH320U9mXLFnCypUrOfTQQwHzzvLy8gDwer3NLf5DDjmEd999F4D33nuPp59+GjDjKDIyMsjIyCAnJ4fVq1dTVlbGtGnTyMnJiSX5LBbLAMCa4vcRIn3sW7duRVWb+9hVlZtuuqm5H3njxo1ccsklMYc7ceJEVq5c2eH51NTULsN45JFHuPPOO9m2bRuHHHII5eXlfPvb3+bNN98kOTmZE088kffee6/LcHw+H1u2bOHAAw/sMu7W0712Z/pXdLiqyrx585rTb+3atSxatKjT+z0eTwvTf2TAn6qyYMGC5rDWr1/P7bffDkBCQkKzjG63u8sxC5deeilPPvkkTzzxBBdffHHMz2axWPo/VrHvY6SkpPDb3/6WX/3qVwSDQY4//ngef/zx5n7hoqIitm/fztFHH83rr79OQ0MDPp+PP//5z+2Gd9NNN3HddddRWloKmBbrY4891u61X/va13jhhRcA0xI+6qijAPjyyy+ZOXMmd9xxB7m5uWzbto1NmzYxZswYrrnmGubPn8/HH3/c6XPV1tbyve99j9NOO42srKwu02H58uVs3ryZcDjMiy++yJFHHtnlPe1x+OGH8+9//5uNGzcCUFdXxxdffMG4cePYsmULX375JQDPP/988z2jR49m1apVAKxatYrNmzcDMHfuXF555RW2b98OQEVFBVu3dr6T5dy5c3n44YcBCIVCVFdXA3D66afz9ttv89///pfjjz9+j57NYrH0T6wpfh9k2rRpTJ48meeff57zzz+fdevWMWvWLMAM0nr22WeZPn065557LlOmTCEvL6/ZPNyaE088kbKyMr7+9a+jqohIhy3EBx98kIsuuoj77ruP3NxcnnjiCQCuu+46NmzYgKoyd+5cpkyZwr333sszzzxDQkICQ4YM4Sc/+Um7Yc6ZMwdVMzr99NNP56c//WlMaXDooYdy9dVXs3HjRubMmcPpp58e032tyc3N5cknn+Rb3/oWjY2NANx5550ceOCBPProo5x00kmkpKRw1FFH4fP5ADjzzDN5+umnmThxIjNnzmy2MEyYMIE777yT4447jnA4TEJCAg899BCjRo3qMP6FCxdy+eWXs2jRItxuNw8//DCzZs3C6/UyZ84cMjMzcbvde/RsFoulfyLRfZKW7jNjxgxdsWJFC79169Yxfvz4PpLI0poPPviA+++/n7feemvAxhkOh5k+fTovv/xyh+MTbL60xBMislJVZ3R9paUrrCneYhlgrF27lgMOOIC5c+fGPOjQYrEMHGyLvYexLXZLf8HmS0s8YVvsPYdtsVssFovFMoAYkIpdRDJF5BUR+VxE1onILBHJFpF3RWSD85/lXCsi8lsR2SgiH4vI9KhwFjjXbxCRBX33RBaLxWKxxMaAVOzAQuBtVR0HTAHWATcCS1R1LLDEOQb4BjDW+V0OPAwgItnAbcBM4DDgtkhlwGKxWCyWeGXAKXYRyQCOBhYBqGpAVauA+cBTzmVPAac57vnA086qhsuATBEZChwPvKuqFapaCbwLnLAXH8VisVgslt1mwCl2YD9gB/CEiKwWkcdEJBXIV9US55pSIN9xDwe2Rd1f6Ph15N8GEblcRFaIyIodO3b04KP0HH6/n8MOO4wpU6YwceLE5s1eNm/ezMyZMznggAM499xzCQQCfSypxWKxWLrDQFTsHmA68LCqTgPq2GV2B8DZcKDHpgOo6qOqOkNVZ+Tm5vZUsD1KYmIi7733Hh999BFr1qzh7bffZtmyZdxwww384Ac/YOPGjWRlZXW5HKrFsruEQqHmXeqi3RaLpXcYiIq9EChU1f84x69gFH2ZY2LH+d/unC8CRkTdX+D4deTf6yz+oIwzL17GUaf+gzMvXsbiD8q6HaaING9b2tTURFNTEyLCe++917zP+IIFC3j99de7HZfFEiEUClFXW0t9fT3hcLjZbZW7xdJ7DDjFrqqlwDYROcjxmgusBd4EIiPbFwBvOO43gQuc0fGHA9WOyf4d4DgRyXIGzR3n+PUqiz8o497ffUHZjkZUoWxHI/f+7oseUe6hUIipU6eSl5fHvHnz2H///cnMzMTjMSsLFxQUtNin3WLpCcLhMDu2b6estJSdO3e22ADHYrH0PAN1rfj/AZ4TES+wCbgIU4l5SUQuAbYC5zjX/hU4EdgI1DvXoqoVIvJz4L/OdXeoakVvC/6HpzfT2Niy4GtsDPOHpzdz3Oz8Du6KDbfbzZo1a6iqquL000/n888/71Z4FktXuN1uBmVkUFdXR0NDA0nJyaSnpeGy69dbLL3GgFTsqroGaG8Fo7ntXKvAVR2E8zjweM9K1znbdzbulv+ekJmZyZw5c1i6dClVVVUEg0E8Hg+FhYUMH97u+ECLZY+ImOIbGxtJTEzE39BAXX09KSkpdnMai6WXGHCm+P5O3uDE3fKPlR07dlBVVQVAQ0MD7777LuPHj2fOnDm88sorADz11FPMnz+/W/FYLK0Jh8PkDB7M0GHDyM7OtqZ4i6WXsYo9zrjigv1ITGz5WhITXVxxwX7dCrekpIQ5c+YwefJkDj30UObNm8fJJ5/Mvffey69//WsOOOAAysvLueSSS7oVj8USjdvtJn3QINLS0nC5XM1u21q3WHqPAWmK789E+tH/8PRmtu9sJG9wIldcsF+3+9cnT57M6tWr2/iPGTOG5cuXdytsi6UzopW4VegWS+9jFXscctzs/G4rcovFYrHsm1hTvMVisVgsAwir2C0Wi8ViGUBYxW6xWCwWywDCKnaLxWKxWAYQVrFbLBaLxTKAsIp9H6KqqoqzzjqLcePGMX78eJYuXUpFRQXz5s1j7NixzJs3j8rKyr4W02KxWCzdwCr2fYjvf//7nHDCCXz++ed89NFHjB8/nnvuuYe5c+eyYcMG5s6dyz333NPXYlosFoulG1jFHmeoKiXFxZQUFxMOh5vdZkn7Pae6upp//vOfzSvLeb1eMjMzeeONN1iwwGx6Z7dttVgslv6PVexxRmlJCX6/H7/fz1dbtza7S0tKuhXu5s2byc3N5aKLLmLatGlceuml1NXVUVZWxtChQwEYMmQIZWXd3x7WYrFYLH2HVexxiqoSDoe73VLPaA6yAAAgAElEQVSPEAwGWbVqFVdeeSWrV68mNTW1jdldRBCRHonPYmmPUChEMBhs47ZYLD2HVexxRv6QIW2Uq4iQP2RIt8ItKCigoKCAmTNnAnDWWWexatUq8vPzKXGsASUlJeTl5XUrHoulI0KhEOU7d1JaWkooFGJ7WRnby8oIhUJ9LZrFMqCwij3OKCstbdNKV1XKSku7Fe6QIUMYMWIE69evB2DJkiVMmDCBU089laeeegqw27ZaeheXy0VWdjahYJCtW7bg9/vJGTwYl8sWQxZLT2I3gYlTImbxnjLFAzz44IOcd955BAIBxowZwxNPPEE4HOacc85h0aJFjBo1ipdeeqnH4rNYohERXC4XHo+HUCiE2+3G7Xbb7h+LpYexij3OGDJ0aPNAufwhQ5pb6kOcAW7dYerUqaxYsaKN/5IlS7odtsXSFRFTfCAQIDcvj4rycraXlZE/ZIjdztVi6UGsYo8zRIShw4Y1H0e7LZb+TMQUn5GZidfrJSkpiXA4bE3xFksPYxW7xWLZK4gIHo+nXbdl7xIoryLoq23j70lPw5uT2QcSWXoSq9gtFsteI1qJW4XedwR9tbw/dm4b/zkblljFPgAYkDYwEdkiIp+IyBoRWeH4ZYvIuyKywfnPcvxFRH4rIhtF5GMRmR4VzgLn+g0isqCvnsdisVgslliJyxa7iHwCdDgcXFUnxxDMHFXdGXV8I7BEVe8RkRud4xuAbwBjnd9M4GFgpohkA7cBMxxZVorIm6pqd0mxWCwWS9wSl4odONn5v8r5f8b5P68bYc4HZjvup4APMIp9PvC0mnlly0QkU0SGOte+q6oVACLyLnAC8Hw3ZLBYLBaLpVeJS1O8qm5V1a3APFW9XlU/cX43AsfFEgSwWERWisjljl++qkYWXC8F8h33cGBb1L2Fjl9H/m0QkctFZIWIrNixY0dMz7i3WbhwIZMmTWLixIk88MADAHbLVovFYhmAxKVij0JE5Iiog68Rm8xHqup0jJn9KhE5Ovqk0zrvsZVfVPVRVZ2hqjNyc3N7Ktge49NPP+WPf/wjy5cv56OPPuKtt95i48aNdstWi2UfxZOexpwNS9r8POlpfS2apQeIV1N8hEuAx0UkAxCgEri4q5tUtcj53y4irwGHAWUiMlRVSxxT+3bn8iJgRNTtBY5fEbtM9xH/D7r1NDHwdvZ0Qr66Nv7u9FROqFi1R2GuW7eOmTNnkpKSAsAxxxzDq6++yhtvvMEHH3wAmC1bZ8+ezb333rvHslsslv6BNyezR0a/22lz8UlcK3ZVXQlMcRQ7qlrd1T0ikgq4VNXnuI8D7gDeBBYA9zj/bzi3vAlcLSIvYAbPVTvK/x3gF5HR8044N/Xc07VPe0q9M/9YmDRpEjfffDPl5eUkJyfz17/+lRkzZtgtWy0WS7ew0+bik7hW7CKSCJwJjAY8kXmvqnpHJ7flA68513qAP6nq2yLyX+AlEbkE2Aqc41z/V+BEYCNQD1zkxFEhIj8H/utcd0dkIF1/Y/z48dxwww0cd9xxpKamMnXq1DZLeNotWy0Wi2VgENeKHdOqrgZWAo2x3KCqm4Ap7fiXA22qlk5/+1Wt/Z1zjwOP74a8ccsll1zCJZdcAsBPfvITCgoKmrdsHTp0qN2y1WKxWAYI8a7YC1T1hL4WYiCwfft28vLy+Oqrr3j11VdZtmwZmzdv5qmnnuLGG2+0W7ZaLBbLACHeFfuHInKwqn7S14L0d84880zKy8tJSEjgoYceIjMzkxtvvNFu2WqxWNpFVQmFQs3b7Ubcdie++CfeFfuRwIUishljiheM9TyWlef6Je701A5HxXeHf/3rX238cnJy7JatFoulXcLhMNu++oqsrCySU1IoLioiLy+PlNTU5vE4kWlzrbHT5vqWeFfs3+hrAfY2ezqlzWKxWHqawbm57Ni+HSoqSElJISk5ucUg256aNmfpWeJ6gRpn9bkRwLGOu544l9lisVgGAi6XC6/X23zsTUzsQ2ksu0NcK0kRuQ2znntk/ngC8GzfSbTnmMH3Fkt8YPOjpSvC4TDFRUWkpKSQM3gwVZWV+BsabN7pB8S7Kf50YBqwCkBVi0UkvW9F2n2SkpIoLy8nJyfHzhW39DmqSnl5OUlJSX0tiiXOGTJ0KN6EBMRpvXu9XluG9QPiXbEHVFVFRKF5Vbl+R0FBAYWFhcTrBjGWfY+kpCQKCgr6WgxLHON2u0lKSmpW5NFuS3wT74r9JRH5A5ApIpdh1on/Yx/LtNskJCSw33779bUYFovFsltEK3Kr1PsPca3YVfV+EZkH1AAHAreq6rt9LJbFYrH0O5qCYSqrmlj1cSUZgxI46IB0sjO9Xd9o6XfEtWJ3+ARIxmyzaheqsex1gsEwVTVNNDSESE5yMyg9Aa83rsedWixtKC3zc/G1K2nwhwHYb2QKC++aYpX7ACSuSycRuRRYDpwBnAUsE5Eut221WHqKcFj54stazr9qBd/67n/51neXs/rTKpqawn0tmsUSM/7GEI8/v7VZqQNs/qqeL7709aFUlt4irhU7cB0wTVUvVNUFwCGY6W8Wy16hsrqJ2+5bh682CECDP8ztv1xHta+pjyWzWGInFNLmPBxNja+tn6X/E++KvRyIrlL6HD+LZa8QCiklZf4Wfr66IIF2WuxNwTDllY1W6VvijtQUD986fdcsCJcLjp41mGkH21XjBiLx3se+EfiPiLyB6WOfD3wsIj8EUNVf96VwloGPN0EYPzaddRt21S+H5ieR5G25EUZVdYDX/1rMX5aUkZvj5QdXjGX0iBQSEuK97mzZVzjogHQW3jWZF18v5OJvj2TU8EQSEjyEQiGamprwer24XDa/DgQknlcRclae6xBV/dnekiVWZsyYoStWrOhrMSx7SHVNE8FgmMREN2mppt5bst3Pnb/+nI/XVnPg/mnc+qPxjBy+a83sYDDMi28U8vCTm5vDSUx08cIfDiM3xy7DaYkv/I1BNNxESXExOYMHE2xqorq6mpGjRuHx9F1bT0RWquqMPhNgABHXLfZoxS0iWUCVxnNNxNJvCYeVbUX1/GLhejZuqeOwaVn86LtjGZyTyNC8JH7xk4kEQ4rbBZkZLUcR+2qDvPP+9hZ+jY1hNm+ts4rdEnckJXoIhYTs7GzKd+4EID8/37bWBxBx+SZF5FYRGee4E0XkPeBLoExEvt630lkGIpVVAa655WM+W++jsTHMv5aVc8+DX+CrNf3lGYMSyMnytlHqAF6vi+FD2y7POtgqdUscEwqF2nVb+j9xqdiBc4H1jnsBRs5c4BjgF30llGXgUu8PUV4RaOH3n1UVBJq6NhClpnj43kVjyBi0ywD2jWPzycmy84Mt8Yeq0hQIUF1dTX5+Ptk5OezcuZNw2E7hHCjEqyk+EGVyPx54XlVDwDoRiVeZLf2YpEQ3Xq+LQGBX4TaqIIVYV9Eclp/M0w/OoGxHI+npHgalJ5CRntBL0lose46IkOD1MmLkSLMevCqpqaldmuIb/CFq64IEg2GSEt1k2YVt4pZ4VZKNIjIJKAPmAD+OOpfSNyJZBjLpqR5uuPpA7v7teoJBJS3VzS0/GBfzqlxut5CTnUhOtjW/W+Ift9uN2+1ucdwZtXVB/vJuKY88tYmmoDJ2TBq/vHWSHUMSp8SrYv8+8ArG/P4bVd0MICInAqv7UjDLwCQpyc3RswYzfXIm9fUh0lLdZAyyLW6LBcxskQcXfdl8vGFTLY89t4UfXH4ASUmdVwose5+4VOyq+h9gnIiMUdVNUf5/FZF1sYQhIm5gBVCkqieLyH7AC0AOsBI4X1UDIpIIPI1Z1a4cOFdVtzhh3ARcAoSAa1T1nR57SEufEQ6Hm82O0e7kJDfJSW6TQywWSzPbihva+H32eQ31/pBV7HFIvA6ei/BKjH7t8X0guhJwL6b1fwBQiVHYOP+Vjv9vnOsQkQnAN4GJwAnA753KgqUfEwqFqK2tJdjURDgcbnZ3dU8wGGzjtuwdogd12QFefcPokSm07oKfOT2LtJS4bBvu88SlYheRcSJyJpAhImdE/S4E2s4rant/AXAS8JhzLMCx7KoUPAWc5rjnO8c45+c6188HXlDVRqcrYCNwWI88oKVPqa6qori4mIrycnbu2IHf7+9QYYRCIXbu3ElpSQmhUIiysjK2l5XZ6UF7iWAwSF1tbXOFKuK27F0GpSVw540TyMpMMMvRHp7DeWeOtLscxinxWt06CDgZyAROifL3AZfFcP8DwPVAunOcg1ncJtLUKgSGO+7hwDYAVQ2KSLVz/XBgWVSY0fe0QEQuBy4HGDlyZAziWfoKt9vNsOHD+WrrVmpqasjMzCSlkxHBLpeL7OxsiouK2LplC+JyMXz4cLuYx15AVQkEAuzYsYOMQAC/309TUxMpKR2Pnw2UVxH01bbx96Sn4c2x66LvKSnJbo44LIeJ4zLQsJKUtGtlRkv8EZdvRlXfAN4QkVmqunR37hWRk4HtqrpSRGb3ioCtUNVHgUfBLCm7N+K07BmhUAifz4eqIiLU1tYyaNCgDhW1iOByuXB7zJrabpcLl8vVvJyspfcQEZKSksjOyaGi3Oz9NGLkSFydjOAO+mp5f+zcNv5zNiyJSbFHrAFut7uFuz+hqoTDYdxudwt3d3G7Xe2uzRAOhxERRKSF29J3xKVij2KjiPwEGE2UrKra2Z7sRwCnOiPok4BBwEIgU0Q8Tqu9AChyri8CRgCFzhz5DMwguoh/hOh7LP0YX00Ng3NzSU1NpbioCL/fT4rb3a5yj5jig01N5OXlUV5ezvayMvKHDOl3BX5/JBwOU1e7qwVe6/MxKCOjV9I+FApRX1+PhsOkpafvcqeldVqZiCdUlaamJurr6kgfNMg8k+PujTQLh8P4GxrwJCTg8Xia3QkJCVa59yHxrtjfAP4F/B0zMr1LVPUm4CYAp8X+Y1U9T0ReBs7CjIxf4IQN8KZzvNQ5/56qqoi8CfxJRH4NDAPGAst76LksfUTEFB9piUe72yNiitesLBISEkhMSkJVrSl+LxAxxTcFg4wYOZJGv5+d5eUMGjSo1+IMh8OU79xJXV0dDQ0NZGVn059McJFV5SoqKmhsbKShoQGv10t6L6WZqlJVVUUgEGBQRgZVlZVkZWX1WuXLEhvxrthTVPWGHgrrBuAFEbkTMxd+keO/CHhGRDYCFZiR8KjqZyLyErAWCAJXOavfWfo50QVOjS/E0hUVrN/o47g5+Ywcnkx62q756yKC1tQS9NURPRY+iO237W1EhMTEREaMGIHL5cKVksKIlJReq1S53W7S09KalXpiYiIZGRn9qhLncrlITkkhIyOD6upqXC4XQ4YO7dU0yx8yhMLCQqoqK0lJSbFKPQ6Id8X+loicqKp/3ZObVfUD4APHvYl2RrWrqh84u4P77wLu2pO4LfFPZXWAm+76jE8/rwHgf/9SzM3XHsRxs/Nxu3eZEYO+unb7bWd/EVu/raUlVdUBgiHF5ZIuV/bbndXRukvEFO93lHpjYyO1Pl+/M8UHg0F8Pl/zOIHqqqpeU7bhcBi/308oGEREjDsUsuNQ+ph4V+zfB34iIgEgAAigqtp7tjjLPkNtbZB5xwwmLdXNf1ZVcu3lY1j9SRUzp2eTHcMGLtU1Tfi2+xmS13IGph2Z3THFZQ3cdu861m3wsd/IFH52/QRGj0jB5eoZJeBJT2POhiXt+sdCOBwmOzubQRkZ+Hw+QuFwvzTFe71e8ocMoaGhgZrqagZlZPRafNVVVWRkZJCVnU1JcTF1tbW21d7HiN3evGeZMWOGrlixoq/FsMSAr7YRX40PtyeJwpIAQ3PDJHiT8Hq9ZAzapdjrtxS222If/++/cOOj5Txy37QWFYGOrp+zYQkpowt652H6AVXVAX502yes/3JXpSc3x8tjvzkkbnbCGwij4sOhEIqRO9odK6GQUlVjFm1KT/PgTejcjN9TaSYiK1V1xm7faGlDXLfYnYVizgP2U9Wfi8gIYKiq2kFslm6T6HVTEw5QX1vD0Nxk/A31JCd7SU2JvVAqLvNT3xAiO6sXBR0gNAW1hVIH2FEewN8YP0NX9qbpv7dwud2EQkpldYBEr4uU5NiL+dq6IB/+t5yHn9xEYyDMOacO57QTh5PZyb4JAyHNBhrxPirk98As4NvOcS3wUN+JYxlIeL0ehgzNR1wu/A31pKcPIiU1BY8n9sLJ5YJEu/pWTLjdQsHQ5BZ+6Wkem349THVNgFf+XMSPbvuEex/8guLSBsLh2CyzZTv83PGrz9lRHqDGF+Sx57ay+pOqXpbY0tPEdYsdmKmq00VkNYCqVopIfNjsLP2eUChETU0N4VAIj8dDba2PQRmDUHW3GPgT3W8bCISpqGoClJqglwXnjiJlN1r4+zJZGQncccN4fnz7J1RUNZGe6uHnN06w+9b3IE3BMK/9pZjH/rQVgC++rGX1J1U8sfCQmLYUXrqioo3fux+UMWtGNkmJNp/3F+JdsTc5G68ogIjkAnYXCEuP4ff7ycvLIzklhe3bt9PU1NRmcQ1vTmbzoDd3Y4i07CBbt9UxtCCJcyYnkGo3wogJEWHM6DSeWHgI/sYwiYkuMtITSOiiD9cSOzW+Jt76e2kLv4qqJnaUB2JS7Afu33aQ4YSDBpHgse+oPxHvJdJvgdeAPBG5C7OAzC19K5JloOB2u8nLy2vj7mzOb2Kim7xEN3mDOy4kuzsyeyDjcUtMCsayZ3jcQk6Wl9LtjS3801Jja22PHZPG7K8N5oMPdwJw0AFpnDh3SIvpn5b4J+5HxYvIOGAuZqrbElWNaT/2vsKOirdYLH3Jug01XHXDGgJNpmw/fnYe11x2ABmdDICLptrXRENDiFBYSUl2k5Wxd3o/7aj4niOuFbuIZLfj7VPVzjfQ7kOsYrdYBh79aRpcIBCmqqaJDZtqyc9NZHBOYqej2uMFq9h7jng3xa/CbMRSiWmxZwKlIlIGXKaqK/tSOIvFMvAJh0I01Nfj8/nIy8+nvr6eWscdj8rd63WRNzix0+4iy8Am3kdEvAucqKqDVTUH+AbwFvA9zFQ4i8Vi6VXE5SLB68Xv91NUWMiO7dtJTk7u+sZ+RCiklFcGKK8MEArFrxXXEhvxrtgPV9V3IgequhiYparLAFsdtVgsvY6IkJCQQHp6OsFgELfbPaCWTPXVNvHO+2V897rVXPHjVfxtSSk1vrjt7bTEQLwr9hIRuUFERjm/64HtzhQ4O+3NYtmLVFUHqNgHW3RhZ0/zmpoaUlNTCYfDlJWWNve193e+KmrgFwvXU1Lmp3R7I/c8+AVbttX3tViWbhDvfezfBm4DXneO/43ZVtUNnNNXQlksfU04HEZEEJEW7t6gwR/i8w0+fvf4lzT4Q5x7agGzj8yN24VlVLU5LaLde0rEFJ+Tk0P6oEE0NTXhb2joCVHjgsXvl7Xxe+e9UiZP6J2NYyy9T1wrdlXdCfxP5FhEkoBTVPVlYGOfCWax9CHhcJjGxkbcLheehIRmd4LX2yvKvbwywPdv+YiwYyO77/cbyM7yctThg3s8ru4SCoVo9PtJTDI77kXc3TGbiwherxePx4PL5Wp297UpvqdG6h90QHobv3Fj7Qaa/Zl4N8UjIm4ROVFEngG2AOf2sUgWS5+iqlRVVlJUXEx1dTUlxcVmadxw7/RO/WdlBa2D/vPiEuobgr0SX3cpKytje1kZNTU1lJaW4vf76e60XhFpVprR7r4iFArhq6mhvLyccDhMTU0NFeXle9Q9MGtGNgeP36XIJ45L54iZOT0prmUvE7ctdhE5BmOKPxFYDhwBjFFV2/lj2adxu93k5edTXFREZUUFSUlJZGVn95qyGTG87QjwUSNSutzOsy9wuVwMHz6cwsJCGhoayMrOJikpqde6KfoKESExKYmKigr8DQ0Eg8HmlRPbo8bXhDfBRVJS2zySmZHA7+6ezM6KACgMzvE2r75YXhngw+XlVFQF+PrReQzO9pJo14yPe+JSsYtIIfAV8DDwY1X1ichmq9QtFmOKDwQCNDU1ISI0BgKEgkFcLlevKLCx+6UxfXIGqz6uBiA/N5FzTinAE4frh4fDYRr8/uZjf0MDgwZ136ysqlRUNdHgD5HodZGe6mlXSe4tXC4XiV4vySkpNNTXk+C4W1fuanxNLF9dyWt/LSY3J5HLvjOaIXlJLZaIDQaDlBQXM2ToUACKCgsZOnQo9X7hyutWU1xm0vPx57ey6DfTOWA/uzRyvBOXih14BTgNY3YPicgbOBvBWCz7OqpKVVUVaWlpDM7NpbS0lJqaml5rtWdlernj+glUVjfR2Bgmd3AiOVnxu8liRXk5OYMHk5SURHFREX6/n5SUlG5VegpLGrj2lo8p29GI1+vix1eOZfYRuaQk941yj5jiG+rrSUtLo7a2lorycrJzcprzgKry7+Xl3PXA+ub7/rOygmd+P4PBUev1u1wuPB4PRYWFACQmJiIuF+s31jQrdROnsuhPW7j1h+NI3o093i17n7h8O6p6rYj8AJgNfAv4JZAhIucAf1XV2r6Uz2LpS9xuN3m5uSCCy+UiPy8POuj39dU2EWhSRCA7c8+VcWaGl8y9tGZ4d3C5XIwcNaqNuztKvcbXxC8f/IKyHWZjlUAgzL2/+4JDp2btsWKvqg4QDkPGoIQ92mAlYorPy8sjJSWF9EGDCAVbjnmormnilbeKWvj56oJs2lrXRrFn5+RQXGSujVQOGhrb9tc3NSkxbu1u6UPiUrEDqBnt8j7wvogkACdgprr9Hoi/4biWfZJwONzcHxnt7m3cHk+77mh2VjTyy999wdIVFRQMS+anPxzH2P3SBvQ2qa0HtrVX2VFVmpqacLlcuN3uZreng3QMNIXZuLmuhV8opNTUNpHbwbKtTcEw5RUB3nm/DI9HmHdMPtlZXpqawny+wcdDT2yirj7IufMLOPbIXAbt5tRBl8tFYmIi6vXicrub3dHP6/G4yMxoG27ruILBIKUlJSQmmmcpLSlh+PDhTJ6QQWZGAlXVZrEaEVhw7ki7TXE/oF984arapKp/VtXzMGvHd4qIJInIchH5SEQ+E5GfOf77ich/RGSjiLwoIl7HP9E53uicHx0V1k2O/3oROb6XHtHSDwkGg/j9fsLhcAt3PFBXH2ThH7/kw/9WoArbiowpudquKIaqUlZaSmlJCX6/3wxCrKzs8N0lJ7mZMS2rlZ+r093SdpY38p3v/Zc/PruFh5/czIKrV1BZaRb4ufaWj/h8g49tRQ3c//sNrP60ao+eI1Ixae2OkJbq4aqLxpCYuKuYn3ZwBvm5iW3CSU9PJ3/IEIYMHUp6ejricpE5KIHHHziEC84ZyYlfz+fxBw5h/1GpeySrZe8Sl1UvEfmEjvvUFZjSRRCNwLGqWuu09v9PRP4G/BD4jaq+ICKPAJdgBuhdAlSq6gEi8k3gXuBcEZmAsRJMBIYBfxeRA1V1YCw5ZdljwuFwi37NmpoaBBg+fHhfiwaA3x9m+aqKFn71DSFqfMEWZth9ERFhyNChFBUWUlJcTGJiItlZWR1aW1JTPHz/sv1paAjxn1UVDBuSxE9/OI6M9PaLz3BY+d+3ivE37qoo+OqCrPmsGl9dE6FW9Ye3Fpdy6JQsUnqhJTxiWArPP3IYn35eTW5OIgVDk9tsw+p2u8nKzm5+/mh33uBELj1vNKqK290v2oEW4lSxAyc7/1c5/884/98hhkF0jhk/0g+f4PwUOBYzhQ7gKeB2jGKf77jBDNz7nZhOufnAC6raCGwWkY3AYcDSPXkoy8Ah0soJNDZSUV6Oy+WiYMQIXK1aTaFQiHA4jNvtRlWb3cHKGoK+tkNFPOlpeHMyuy2fJ0HYf3QaH6+tbvZzu4X0tJaffGTes8vlam6x9tbo+nhCVZvntqtql4XK4OxEbvvxOAIBs8pfVmZCp2kUbGfZ3br6JkYMazt1cGRBCgne3lGaCQlmp7djj+x4KhzQolLTuoLjcglmc832qa8PUlcforYuSHq6h8xBCXE5Y2JfIi4Vu6puBRCReao6LerUDSKyCrixqzCc9eRXAgcADwFfAlWqGhlhUghEmlfDgW1O3EERqQZyHP9lUcFG3xMd1+XA5QAjR46M8Skt/R1Vxd9oBlRFVoNzuVzNBaOqEggEKCkuJn/IEJoCASoqKhg5ahRBXy3vj53bJsw5G5b0iGLPSE/gpmsO5JqbP2JHeQBvgvCjK8e26B+NyFdaUsKw4cMJBALs3LGDESNHdtjfvCdU1QTYsq2e1R9XMWNqFiMLUshITyBQXtWrlZuOiJjiExMTGTx4MCUlJVRWVpKTk9PpGIn0tNj6wV0u4ayTh/Pm28UEmoyCT05yMWtGDt4EFzOmZLLiI2N+z89N5JunFZDQTxVhQ0OIv/9rO7/6/QZCYUhLdbPwzintrmZn2XvEpWKPQkTkCFX9t3PwNWIcF+CYy6eKSCbwGjCut4RU1UeBRwFmzJhhx4z2E7qjWCKmeFQZOWoU1VVVVJSXtzDFR5YiHTRoEGWlpQAMzs3dawPshg9N5rFfT6fBHyYx0UVaqofkqLnXEfmSkpObpzplZ2f3aGu9viHIMy9v48XXTfiL/rSVC785iu+cOYJwL1duOiJiineJ4HK7GTZ8uHH34HvJHezlmYcO5ZW3ikjwCGecNJycLC8ej4vbrxtvpg4GwuTlJJIdx1MHu6K2PsivH9nY3L1QWxfiFwvX88Cdk9uY/C17j3hX7JcAj4tIZDeCKuDi3QlAVatE5H1gFpApIh6n1V4AROaCFGEG5RWKiAfIAMqj/CNE32Pp53Sn1RwxxaelpVFbFyZtUCaZmZltTPHQagR7O+cPffNR3ClmbXMNhqjfYpRgd1uuLpeQ00V/uoiQ4ixyApCcktKjCq6uPsQrf275yfzp1W2cdsJQUmIMQ1Wp9jXhcZvKSXeJbMMaIdrdUyR63Qwfmsw1l+7fHGeE/tg+0boAACAASURBVDJ1MBb8/hDBYMu2zNbCesJ2TlyfEteKXVVXAlMiil1Vq7u4BQARyQWaHKWeDMzDDIh7HzgLeAFYALzh3PKmc7zUOf+eqqqIvAn8SUR+jRk8NxazvK1lH6CiymxRmuCRdgvimtoQby0u5a9/L2XEcFOID813N89Ljpi6KysqyM7OoampibLS0ua51RHcKUks+/oFbcLv7ZarqtLY2Ej5zp1kZmXR6IwQ70lTvCptCvlQMBzzalM1viaWrqzg5TeLGJTm4XsXjWHk8GS83r5b9W13LD17av2orArw4YoK1n1Rw3Gz8xk9ImW3p8SBGUNhBr65CYfDze6essqkpHjIzkygomrXbIsjDs0msQ/fjyXOFbuI5AO/AIap6jecUeqzVHVRF7cOBZ5y+tldwEuq+paIrAVeEJE7gdVAJJxFwDPO4LgKzEh4VPUzEXkJWAsEgavsiPh9gy3b6rj13nVs2lrHQfun8bMbJlAwdNfAp0AgzPOvbuNPr5rW9bbiBtau9/HUg4c0t5LNVqoesnOG8Pb75YwsSGbigUOb+137mogpPj8/n6TkZMjIwN/Q0KOm+OQkF3OOyOW9/9vR7HfC3CFmYRdf1/ev/qSKn//q8+bjNZ+u4vk/HEZ+bt8pjj2x9FRUBti4pZZgUDlo/zSyszreia+qOsDNd3/Gx2trAHj9byVcf/VYTvr6kN0amR4Oh6n7f/bOO06Sss7/76eqOueeHHfJu+SwIIISVAwHJyoKGNEznfEMP0REVBAU9EA4Myp3mBOY8RQ40ZMTJagEYYkbJvaEzrHC8/ujunt6Qs90z87s9i79fr32tU/XdHVXdVfX93m+4fPNZpmZmaG/v59MOk06nWZ4w4Y1+47DQQf/8amjuOo/HuOp7VmevSXKe95ywJp4Vtqsnlb/9P8L+E/gkvLjx4AfMGeQl0RK+QBwzBLbn8LOal+4vQC8qs5rXQlc2cxBt9m7sSz40BUPVeU0tz6Z4SNXPsz1VxxJpKzels7o/PbO2Lz9Eimd6XipathNU3LLrePc/0CSu++bRVXg2cd38MqzBjhyyM/pj98B2O73PYWqqnh9vuqNvna8FgT8Dt7/rwdy/NER/nz/LCed0MFJW6L4vBrLNX6wLEk8qfOTW8fmbS/pkr89lORFp7vX7BjXm5l4iXde9FdGx+3rqSPq5OvXHktXx9JhkkzWrBr1Cjf9YAcnn9BBR6TxUkVFUfB5vWQymWoORW9v7yrPYmlUVbBxyMfVlx6Gbkg8brUtYNMCtPo30Cml/KEQ4mKoZqy3V8xt1hUp5TyNbICntmcp6XMFyJom6Oly2R2xagjUrFR0w+KhR1LcfZ9dT/7cEzv48HsP4Z6/xdEinWiRIEII8tv3bNpGrSFvxqg36pKOhJyc9cJeXnR6D86asi4tMDe5mXc8Xi+/un2CdFqnM7o4BFJP7a1VuesvM1WjDjAzW+IXvxnnTa9eu5VzXcr5BIV8HgDNsXyZ3moJBfeNnIF9hVY37FkhRAfl2nUhxIlAQ3H2Nm1Wop5hweOdJ6UJ0NvtQtPmboihoJMPvuMg3nnR36pCJOec1T/PBel2qbzglG7+cPcMmw4K8P637890bIRnHdM7r8xsb6UZl7Tt9p9vUJwd4UXPsyzJL347zme/+DjhoIOrLj2c/7t3llTarlJ92Uv6GOr3kM7oDZef7WmmZoqLtk1OF7AkLCUT7/OpHHlocN6q/YLzhgkvo3S3FBVXfDqVoqu7m0w6zdjo6Jq64tu0Jq1u2D+Andh2gBDiLqCLOi7zNm2aZSnDAmCaFld8+FAuvvJh0hmDcMjBFR8+bFH5zn7DPr7/1RPYOZanI+okHHQsSnA67qgIbzxvAz//zRgzcR2/x83EuO1e9vl8dpZ8nQmGFnjmtcdMpnV++utxwA5tfPHGJ7nqo4eTyRoM9rvZMZLnY1f/g6Bf491vPgBNUxACPB6V0CqSy3YHLzy1m2/+YPs8xblXnDmAqixtXCMhJ1defBh/uneWfzyW5kWndbNhyNu08lvFFe8cGMDpdOL1eNAXNIpps28iKupLrYgQwgWYwCHY0kdbAaWsBNeSbNmyRd577717+jDa7CK6YZFM2W1K3S6VcEhbtaRmqWSSzpo4HAJN0ZkYtw1XX38/brd7r1095baN1F2xu4YGSCR1DNPC4VBW7CxXcetLCYmkTrFkR9xShpN3f/ppvv/V45lN6Lzzor8BcM1lR3DzL0f5v3vsMMdzntXBRe85eLfUTjerf5AvGGzbmeMb39mOYVi88fwNHLS/f7fFoqWU1WusdtxqCCHuk1Ju2dPHsS/Q6iv2P0kpjwUermwoK88du+cOqc0zAYemrKip3ugN3ulU6XCqlEolRkcm8HrtCu6J8XEGBgdxOlvDGNU+R3E6MXN2XBZFIMq17Y3U1gunk/RTO0kndSxLoqkKjrADVzhQd996bv3Nd/2KZx0XJeDXuOFb2wA4fFOQkbF81agD/PHPM7zglAQvOGV56dS1oJ6npx4et8bmg4Jc9qHNSMmKGeNrrcjXTA5FpaFRpSSuMl5Kf6FN69KShl0I0Yst3eoRQhzDnFBxEBrWtWjTZl1ptuxJVRSi0Sj+QACkJJPJVG+Y693+tfZYawVx3AO9VSMiLYs7DzkDgBNv/+aqa+utXJ67Dn3hou2nbm2sLr/2+FwRB5e9wY0yG+NtL4vyP3+cYqDPzRNPLzZ8f3to9xj21dLoCn295YaXw7IsRnbuJByJ4HQ4iMVie71n6ZlISxp24EXAG7GV3q6t2Z4GPrInDqhNG2CeyEezqJpGIBisGu3K2DRNcrkcHo8HIUR1vJZ67fOOo44gzmmP/Lap16mXfCgXti+b+0tDr1vv+E7ZejsdUSePPp7hTa/ewC9+OzHv76ef3NXQ6+8u1nuyth4IIejq7mYqZpdyhkIhnM76NfdtWpOWNOxSypuwBWbOkVLevKePp82+QTZnoBuSUEBb1Y3Ksizy+TyFfJ5wJMJq8lOW6qIlpWRmehqH04nb5SKZTNLb11dVC6t0WzNNs6U6r9VzSWee2llnj107blUR3HjdcTy9PUtPt4u3vX4j3/6x/V6vf9UwB+7fOsmGhmGQiMeJRCJIqI5r5YXrudxlnb7wuwNbVKnGdV9nMlLpCqiq6rxxm9agJQ17BSnlzUKIM7H7obtrtl++546qzd6GrluMjOf58n89RTyhc84/D3DSluiqJDoFkEwmKRQKBMz6kgqV2GQjMp5quRHJyM6dFAsFoh0duN1uLMsimUjg8/vRNK06XmkFtdbJUs1q2dd7v7VYsHZEnHSUm6ac//IhzjyjD4CAX8PpaJ0VcaVJULFYREqJaZqEwmFqTV89l3uznpO1xLIsYpOThMJhnE4nU7EYHo9nniveNE3Gxsbw+/0Eg0HGxsYIBoP4/f62cW8RWtqwCyG+gh1TPx34OraOe1urvU1TJFI6b/3A/dV68yuufZRPXLi56Xisoii4PR678UsmQ4Clb2JSSnbu2EF/fz+5fJ5EPM7whg11b3qVeuMK2WwWv9+PEIJisUgymcTtdpPP53F7PMsaa13XsUwTh9Np94Ivj3eFZrXsVzOPqHXrN6rE53QoVSPfLKWSRSpjd1hzu1SiK/RXbxaHw0FPby/jY3Zp48Dg4LqFVmoxDKtuL/RGkvKEEAwODlY9C5Xxws8mEg4Ti8VIxOMoqorX620b9RaipQ07cJKU8kghxANSysuEENcAv97TB9VmMbOJEo88lmJyqsizt3QQDTtwuVrjh/7wo6mqUa9wy6/GOOGYSFOr9oorPpPJlFcwKqduvW1R7FT1+/DoBUZHbUW5ru7lJxBSSpKJBN3d3ThdLsZGRymVSng8Hnp6e9mxfTv5fJ5QOIzb7a4bqzVNk2QiQTqdpqOzk/jsLJqm0dPbi+r3Vo+1nuFUvZ6qcVWczlWvHOvF3pery69161c8ArtKPUOm+H3c84TJJ699lFzepK/HzbWXHcHQwNrl5Zqmycz0tP15l0MtPT0981zx9aj9HmrRAn6Mch26pmnzxsmUzj8eS/HbO2McvinI6c/pWlRi2EhS3sIM+KWMtaqq1S6AlmXh9Xj2ivyBZxKtbtjL9TbkhBD92K1U+/bg8bRZgniixIWfeJCtT9o3UU17kq9+9hgOOTCwh4/MpmMJWdLuTieOOiub5RBAKBwmEolQyOfJuwqEw+F5N0DTNHEmLHK5HF0eH8p0gqKYL5hYu0pSVZWh4WHA9gpUxpZlEY/HsSwLh8NBKpnEv4wrXlVVItEopVKJ6ampqlFXFIWSx0UsGcfr8uJzapzy6G8X3bQVlxN3/+JJSLOGttlysIWsZmKwFPUM2albb+fjn91GqWRP9sYnC1zxua1c/bHDCK+RNGolBDMwOIiUksmJCSwp6/h4FuxbKuHdOLhou2maxCYnMQyDnt5eJicmcDgcdHZ188vbx/nyfz4NwG2/j3H7H2J8+pLDGmoP22yqSMUVLxSFcChEIh7H6XK1XfEtRKsb9l8KIcLAZ4H7sdNqv75nD6nNQkYn8lWjDmAYki/f9DSfvOhQAv49f4kN9ns45vAQf33INq5+n8pbXrsfHk9zN6GKK95VXjVXxrU3MyklhXyeRCJBR2cnTCe4c9Pi0q/aVZIQovoaUsq5DGopMXSd3t5eXG43yUSiajAq+y3Esix03ZbCNU0TwzBwOp24PR7CkQiJeJy8EAxvrB8a2NM0MjHYlVpvS1I16hW2PpnGNJpPhiwWTabjJX531xTdHS62HBUhGnHicDgYGBysfke149WiqiqdXV2MjY4ysnMnqqbR2dlJOmvy3ZvnEha/cPF+BLUS6vQkufjce9ZLykuldWbH8vR2uXDUyVNY+HlHJYCKJgWunh6cLlfLXk/PRPb8XXcZpJSfLA9vFkL8EnA32pO9ze4jn1/s2s3nzUV9uPcUkZCTyy86lIlYgWTa4MD9fKtWKFsqq70WIQRut5u+/n5cLheFeP3epNmcQS5vIi2J260SDDiQUjI6MoLf7ycQDBIMhapLKq/XW3XlFotFNFVFc8yFEiqueFVVGRwaYnpqynYB9/ZiWRapZBJV0zDLGdvhSGSvvRkv51ZWwyESKR1XnetPEeDzqmRzc9ftMUeE5zWoaZRtO3N88tpH2bYzxxc+sh/57aNk4o55iYL1Jhur8UzUZq0LQCIwDJOr/20YL7YgZ2fI4n8PP5NHFuxbL7SSL5i89b338t0vH09P19Jd85b7vD2R/rYrvsVoacMuhHjFEtuSwINSytgSu7TZA+y/wUck7CCemGua8ppzBgk12bRiPYmEndWWq0uxlmpfqqbhXiYLHsC0JF/75tP89NdjWJbd+e1D7zqYUFCju6eHifFxUqkUHo+H7p4eAKanp7Esi3Akwsz0NMFQaF4YoOKKr2Thd3Z1IaW0XfHFIg6nk97eXgqFAolEouHzWSvX+O5ASvjD3dNcd8MTfO5dS+c2CEVw7WVH8Il/f5TxyQJHbA7y4fcc3HRTmWzOoFg0+PynDuezX3yS4Sj86fAXL3pevSTDZkMWpmlW68v7+/uJxWLMTE9hiiC9fos/H3UmYIsLNUuxaHHnXdOc97LFIYCVaBv11qOlDTvwZuDZwO/Kj08D7gP2E0JcLqX81p46sDZzRCN2f+nv/2Qn47EirzxrgEMObL2b/nKstdrXSm5XvSS55Vdzvcb/9+4ZnnXsNC99Ue/85KXyCl1VVXr7+hgdGWF6agqPx7Motl953lJjt8dDbzlsUClfqrda1w0LAdXs6l2Nme9OTEty6VX/KD9aesUugEMPCfLVzx6Dq5RBZnMo2Wlyc4UJDU3oFAUGehUSs+O8720bcKTia3MSdahM1gSgGwJ/sJtiyeLCTzzM9e/pWXn/mqS8VNogl7eT71KGPeH1+fZO702bxbS6YdeAzVLKSQAhRA/wTeBZwB+AtmFvAYQQ9HS5eeebDsAwJR73M+8GUVuv3og6nW4sjnc++EiSf35hD+NjY3g8HgKBALFYDLfLhc/vx9D1qhiIrut2zLRBV/pKIQSw48XjsQLf/8kIDk1w/suH6O6sH3dtRfSa2HnKcLL5rl/hdCiEw04qzdS0gF1KGI04yW3Lcechq5vQedwahu5Gc7jJpGK45dLfheJ0LpmAuBpvkKMcekmki7zn4gcxLcnYRIF0Rl9hz/lJeanJAu94773VcER3p4tnHxdt6ljatC6tbtiHKka9TKy8bVYIsfKV3Ga34nAoOFrH+75qmhVksSyLYrFIPB6np6eHUqlkj7u757mxkymdfMFEVQRawLfodU44JooQgt6+PhwOu666f2CgejOfnp7G7/fT0dnJ2OgoyVRqyVV7hWbDCxNTRS54z32Ypr3SvfV/JvnOl46nt3vpuGsrotVMQt79aTtL/DWvGOStr+tflwmKy6XicjnQS/m6zzFzee7cvHwC5aJ9alQGl1IcFEKQy5vMxEurOu6uTiff/tLx/OneGdwuleOOiqxaE6BN69Hqhv3OctLcj8qPX1ne5gMaDxK22SVM06waj9rxvkrzgix2VnupWGR0ZATDMOxGL0LMc2P/7Z4ZPvTJhwD44DsO4g3nDvPDn41gmJKzzujlWcdGUBQFl8tVvYnXjnv7+qrv1dffPy+bfimaCS9YluTHPx+pGnWw466/vXOSN5y7Yd5zE8kS07MlUmmd4UEvkZATVd29Mrf14v7C6+UVZ/bzk1vHkBIO3M/HeWcProtRtyd0eTLplO0in1obV7xpmmSzWdxuN5qmVceksxhpO17gAf7rkgHiyVLZlT5n4M1coRpndw/0IjT7GqnNiVBVha4OFy99UX9Dx6T6fTz3kd+UJxgKpmmgKCqW28v0TJFQ0LFXeXb2dVrdsL8LeAXwnPLjm4CbpV3vc/oeO6pnEIZhMD09TWdnJ0B1vDtUtBqh4poWQswrA9udCT1CCByaRjgcZnbWbiXa2dm56BgOPSTAq18+yM2/HOWLNz7BJe/bxHe/cgKKAl6PitejVV+v9rUr1H7m6/H5u5cIoSwMq8STJa649lH+fL9txAJ+ja9feywDfZ41P57lWC7u/7bXBXndOUPVsNBySZO7gqIoeD0e+gcGcDqd6CWT0x67fVF+xWq03zPpNLMzM3h9PjLpNJ1dXWjp7JITtZMfvg1HMErPY3csUv1bbavXhTg7wqjhAEII8gULBcmf7pnl8msfxOVU+NLVR3PwAa2hW9GmxQ27lFIKIe4FklLK24UQXsCP3eWtzW5ASkmpWGRsbGxOyaJG0SKbMzAMuccy4A1dZ3R0lN6+PizTJBaLMTQ83LRhX42kaYWKK352dha3x0OpWGR8fJzeBUpj4aCTf3n1Rs49exAhwO/VljSm642U8MTTGX7663H6ul286Hk9dEZdnHPWAD/773FyeROnQ/D2C/bjec/pqp6joiiMTxaqRh0gnTH42ref5sNv7MOqkcWtsFaGpRn8fg3/OuonZLIGI2N5fnnbOPtv9PH853bjdiu4OiM4O8KLDHuzAj+qqtLT28vIzp1k0mn8gQB+v5/CbGrJ5zudCt7eKLB+MXIhRHUymUqXePuFfyWR1JESCkWLa778BJ/52GGE1kjgp82u0dKGXQjxVuBt2FfsAdg92r8CLJ62tsE0TQSglDsuVca7gsPhoKenpyqPOjA4iOZwUCqZ7BzL85WbniadMTjv7AG2HB1pumRoV9EcDgLBIBPj4wBEIpFVrdYblTStF7dW/V6CoRCRSATTNEmlUkuKpns8atPCOGuNbli86YP3Vednt9w6xg3XHEtXhx13/eOfp3juiR1oSoFAwL6W0uk0gUCA2XgJVYFKZ1ZVgYlYESOd5ferTELbk6xUypfJGhSLFppG1Wj99aEEF1/xcPW5N/9ijM9/+iii4bVpb2qaJplMphr2ymWzGOHW+Qx9Vo7r3zO/lFBRBI5CBoLtBLxWoKUNO7Yr/gTgzwBSyseFEMsKbwshhrAz53uw611ukFJeL4SIAj8ANgLbgHOllHFh/xKvB/4JyAFvlFLeX36tC4CPll/6inI72ZbEsiyymUy1IUN17PHsknE3DINYLFaN5cYmJ+nr7yeZNnjrB+6npNvW4aFHU3zmY4dz0vEda3I+zeB2uaouHFdNF6r1YLm4dWTIbrWqKIrdonPB575cMlve4bObkhQtomEn0XVMZMpkjHkyopNTRZ7cluGEY6J0d7p4xZmD6LrOyM44+XweRVHI53J4PR6O2BzkJzedyHdu3sH//SXOF686kompIoqydzrRlnPpT80UufYrj3PPX+McsNHPR953CAG/xn9+b/u8520fyRGbKi7SZq/QjA7AbKKE36uQzWTo6OzE7/czOTFBoVBomZu1WsjxyMlnLtre9dgdrKfXoE3jtMq1Uo+ilLJUVVoSQqNeceocBvBBKeX9QogAcJ8Q4jbgjcAdUsqrhBAfBj4MXAS8BDio/O9ZwJeBZ5UnAh8HtpTf8z4hxM+llOtbrLpKpJQYpkliehqP10s+l6Ojs3PFD6uR11VVlb6+PiTYAhlS8tAj6apRr3DzL0c56rAQPu/uu6wMXWdqaopwOIxhmkyMj6/KFV9L5UZcabIBAk1T7SYcSxjmChVDXi+prb52+R1c9b0R/vfuGQB6ulx8+TNH0905l43eaIZ7NmeQSOo8vDXFiQd7OHXrHfNU0KSEiYzKK8/q58e/HCMSdvD853Qtjs1qGn39/YyVPTW9vb1oDgc+1WJ8bIzzz+7hdecMkUnF2DDQCVN1P5a9klRG56r/2FoNOzy8NcX7Pvp3vvLZY5bsKr/cXLIRHYBiyeSxJzNc/fnHyGQNbrjmaBxOreqWByjWccXvbhRl6ZNdx/l0myZpdcP+eyHERwCPEOIM4J3AL5bbQUo5DoyXx2khxCPYLvyzsQVuwE7CuxPbsJ8NfLOckHe3ECIshOgrP/c2KeUsQHly8GLge2t5gmuFqqqEw2HyuRz5XK5aB72rSWSV9pMVQ1UZ+5cQs+jqcOHQ1ufXXd8F7qtqqQP4fb5dPmdnRxgR9DE1OoppmmiaRv9Ar91RaxnDvloM06oadbBX0N+5eSfv+pcDqj3Gl/MUVP4OdiZ7MVniQC+MTXiY0l0ce0QEr0etqtD15Uu8ptfDIQf6OPTgID6Pidc7v7OZZVkkk3PqzclksuoN8Xq9JJNTKIqCqqq4XE5WV3S1/pimJJEqIaWdCNjopFMvWfzlr/Pn8FMzJYQQvPm1G/nQ5XZ1wxcu3o+oyyCqJMltm/u8ms0tSKUN/u2Sv1cny694018472WDvP31++F0zmW176oCYG3L3+Xa/7bZu2l1w/5hbPW5B4G3A7fSRBMYIcRG4BhsV35P2egDTGC76sE2+jtrdhspb6u3fan3eRt2LgDD5c5cuxvLssik0xSLRZxOJ/l8nlzZfbqrcfal1MwO3M/PoQcH+Mdjtgs2GNC44LwN1ZvQWrOsVnVNwpLH693lm5VpmkxNTVXLyiYnJpiemlqx/erq32+xX2XbjhylklU17MvtayUzS8a3T3n0dsJ+ByAxDINSsYjL7cYyS2RSMxx7WAhdT5DNGEQi841DpUVt/8AAQgjGx8cxDQOny0UoHCaZTGJZ1qpzGpaiWDLJZAwcDoWAf3EP8GbJ503ueyDOZ7/0OIlEiVNP6uJ9bz+wrsu8FqEIhgY87BiZq093OhWEgCMPDfGf1x/HrXdMMBiR/PnIlyzav9ncgtHx/CIP2P/ePc1rXjFIh9Nlv/8uKgCapkmhULBL56A63tfLV5+JtKxhF0Ko2Cvp1wJfW8X+fuBm4H1SylTtTaKcbb9mHUqklDcANwBs2bJlj3Q+qbjiox0dBINBEokEpmnusiu+HpGwk6svPZzRiTzpjMHB+/sbahG5HtQrD1stqqrSXTbiFZd0Zft64HQo8xLSAF7y/B78vpV/nlMzRVS1nmGV5DIzOFST6UwaTdPo7evD6/USiUaJl0vzlgpdaJpWnaQKIapjwzAYGx3F4XDgcrmYmZnB4XSi+n2c9tjtgEAIyqWHouHVZKmkU8jr3HLrBGed0YOmmjidDjRt9Z95MqPzkU89TKXa7H/+OEVfj5u3vHbjijXX0bCTS9+/ifd/7AEyWRNNE1z07oMJ+DXcLpWD9vfzb/sfuGa947s7XYu27b/Bh9u1NteclJJiocDkxITdcrhQoFAoMLxhvkbBWvZMaLPnaFnDLqU0hRAbhBBOKWVTnj4hhAPbqH9HSnlLefOkEKJPSjledrVXmsiMAkM1uw+Wt40y57qvbL+z+TPZPaiqSigUAuz62sp4PWfjKzVW2ZupVzO+Hg1RFEXwuSuO4vNff5J0RuecMwd49pbGkxBNc+k6acMET8BHMpmoas2rqophGGRrStOy2SyBQGDetVLbRazyGGwDEQwG8Qfsmman04nT6UTzenFEQ9UJQrX1bAPoul1FkE4l+eczoujFWaYKFoODyzckqX2Ppd7v6e1ZFpaQ/989M5z/ssGGrtsD9/fz7S8dTyZr4PNq+H3amhnahUTUPLdctYFM1s7rUBRBR8SJI58B78oG1TQMLCnRNA3LNKvjmvwk3G430Wi0qrUwMDi46DNrRNRob2oK9EylZQ17maeAu4QQPweqdyIp5bX1dihnuX8DeGTB834OXABcVf7/ZzXb3y2E+D528lyybPx/A3xKCBEpP++FwMVrc1rrQ70GIG3Wjl1xhy53Qzx2vzDXXn4ElgWhgFZtwLIrODRBqlioypLmczncHg/FQgHTMBgaHiafyxGPxwkEGhMXUVWVYGjOgPsDgerER9ak2tcz6kutCC1L4nB50BxucpkZhBD4Aj3sGM2z3/DSxsI0DJKpFKFgEKA6rtUNGOxfLJpz6CHBhnsZODSFzqiLzuji1fRaI7M57jn6RYu2N+LStyyLeDxONpult6+PmelpTNNccsclcgAAIABJREFU1ANeAvn8XGihUCigaVrT94q9qSnQM5VWN+xPlv8pQKOyRicDrwceFEL8rbztI9gG/YdCiDcD24Fzy3+7FbvU7Qnscrc3AZT16D8J3FN+3uWVRLo2q3PZmaZZVYWrHT9TWOmGuFyP+NpJgWVJpmdKWFKSMpwEtXoOLYmqaQz29ZFKpUgmk3i8XjxeL4NDQyiKgj8QwOf3N/U9VJ5bkT71er0oikImk8Hr9Va17Zei3orwlEdvh/JuUkqktJYVOzHLyX2FsqEqlkr4/X5qTVQ46ODtF+zHN76zDcOQ7L/Bx1tes3GPiAKtJ4qiEC6710dHRhBCLDbqZVd8oVBgcHCQQqHAzMwMfn97lb0v0tKGXUp52Sr2+SMsWZECSwjblLPh31XntW4Ebmz2GFqZigSrWhaxqYybpdk2pxXRDU3TcLvd1bHH42nIqFQMm2UBgnmdup4J1E4KTNMiq2e45FMPk0jp3HzdZk566DaKJQuXU8HhUFAUu2KgLxK0V9nBIMFgcNF33WhOwlJNSQDSqRSJeByv10s6nUbr6anW8sPiCWA9VT8hpN1rPtpHLpukkJ+ls6O+K97hcNDX11ctx6ttllMh4Hdwzpn9vPj0HnTdwu1WG0qcq9DI5LVZt7RlWRiGgaqqCCGq411FwDy3e+VbXXgOPYoTY3wKl9/H8IYNz6iJ9TOJljbsQohfsLhuPQncC3xVSlnY/Ue1vswmSuwYyZEvmBy0v59o2FmtGy2WTHRdNpRUtRSVzPlUKkX/wACpZJJMJkP/wMC6uO4X3lRUy8K0LAp+LzNZW/+61n27HHmHj9sfyvLTX48RDTt5z1sOYOOQd01c1nsbqqqw6cAA37juOExT8p2f7OSHPx+t/v1lL+njHW/cH1dNadeufL+VfgEdHR0IIarjSmLhju3bSafThMNhPOXVe3XfBRPASnOShSiKQl9/HxNTOl2dnWjqnGdgqbIsyzSJz85Wt8dnZ+nu7p7nigfwerSqBn+pZDE9W8QwJC6nsmKcvZHJa7NuaWlZjOzcSSgcxu12MzkxQW9f37L7rOTpqrjidV2nr7+f2ZkZJiYmGBgcXPYcXJ2RRdvb7Bu0tGHHjrF3MVc7fh62TvzB2Jnyr99Dx7UuzCZKvP/SB3hym51OEA45+MbnjqW708XkVJGbfrCdsYkCL31xH8cfHSEYaE6+VVEUvD4fyWSS7du2AdDd01PXvbGQWkPdiJ56vZvKcx/5DV6fF3+DLmDLkvz+T9N87qtP2Mfc6aKkW/z6fyYJBRwcvim4rkptrYiq2slVUzNFto/kOPG4CHffF2fLUWFiUwVyeXNNhYIMXWdsdNSWKzYMpLRX2KlUqlofn06nCQSDq14FOp0OhgccmKaJXipVe9vrpRJOlwsjnpq7/iT4TIOg6kAN+JjMpDAti3rTl3ze5E/3znD1Fx4jm7MnzVd99DB6unZvS1qhKHT39BCbnCQJBINBXC4XxWX2SadSOJxOPB7PvHHlc6644kOhEFpZd0Ja1qoqRNqJcfsGrW7YT5JSHl/z+BdCiHuklMcLIR6uu9deyoOPpKpGHSCR1Pn+T0d47TlDvPWD9xNP2C3o73sgwUXvOZgzX9BbVwWqHoqi4PZ4yKTT9tjtbrjOvdZQ11t5NYJAkMvlyOfzeDyeeTfsWiouz1TG4Je/LWvBhx1ccN4G/u2Sv5Mv2CnPQwMevvjpo58xxr12guWx4BNvsFde6df2oIZ8gERbQ6GgSpncju3bMU2Tnt5eHA5HVca4q7sbr9fL+NgYpWJxniu+WSzLIpvNMj01RWdXF5l0mlKpxPDw8LKrz6Hh4WUNWTprcNm/P1ItKXz8qQzX3/AEl7x/025VSgRQlqg2qGdQVb8P0zSZnZjA4/GQz+fp6u5e5Onalc5/7RK3fY9WN+x+IcSwlHIHgBBiGLu7G9CyYlerZmp68bw9lzcZGctXjXqFvz6Y4PSTO/H7Gl+1V1zxmXSaSCRCOp1mfGxsWVe8lJLZeIm//yPJ0V3Nt59cCkVV6fX6sCZnKSgCaZjcufmFi55XcXk6HYKeLhf/eCzN857Txc/+e6xq1AF2juZ5aGuKU07sXJPj29PkcgbZvImuW0u2Ha2fgHYb05ksLrcHX2Tt2qgahsHkxASKotDp9mKOT5FTNYSAKAJmkpglk77+fnRdEk8a+H0aLudi417pFV7bJxzmVoSKouDz+SgVi0xP2Tq1g0NDiBUmCitNJKZniiysCnx4a5pCYW09GyshLYuJiQl7pe52MxWL2QmN0VBdI+qwrOpE2Ofz4fN6d1l0qpZm82XatD6tbtg/CPxRCPEkdn7IfsA7hRA+bFnYfYqTT+jgCzc+iWHMzcbPekHvvG5g4ZCDyy7czM7RPDf9YAcvOKWb/l53Q13VKq54zeHA4/FUa5EFttGv6MLXMj1b4s3vu4/ZhM43L50T3qvcoIF5N+lGXHaTUwUiYYv/O+wMYOXVv9ej8fYL9ufevydwu1QmpxZPgDIZY4k99z7SaZ1bfj3Gjd/djmnamdzXfOIIupYQMFmIlBYOp4Ouri4cjrX9aSuKQv/AAMZYjN9vXrosa7Lo5LqvPsGO0TynPruT154zxMKjvuelb6s+37uxfnJcqTQ3b9d1fcVV6Eo17V2dLjRNzPttHX14aLdnyAtFsTsklmvMnTXjpTBNk3Qqha7rOJ1Ostks/kCg4aTTNs9MWtqwSylvFUIcBGwqb9pakzB33R46rHUjGnbwtWuO5YZvPU0ub/Lac4bYOOzFNCXHHRnivgeSvO+tB/L172zjwUfshhB/uHuayy7cTGeHhaIIZmZLPPJYisM3h+jqcC4y+A6Ho2q8dV0nPjtLb18fxUKhOq417rfePsHsAm8BzN2gwb5JG9EgXq+3YTdgPLGyw0VxOqvKXlHgR1cOY5pgeXr545/ntNU9HpUtR0f2CZdiPKXztW9tqz5+anuWr393G+9/+4ENiaPouo5lmUiprpkOuKZpdPf0oCgK9aZPpil550V/q3qWvv/TEUq6xTtf2dl01ng2m6VUKjE4NEQ6lWIqFltRqnl2ZoZwJIIA4vE44Uhk3rXo92lcefFhfPr6rSRSOkceGuTdbz5g2dV6rXtccToxc3ZpnbSs6nXZ7LWlKAou19x0p3ZcD9M06eruxuf1Eo/Hq5PwRmjHzJ+ZtLRhF0K8YsGmA4QQSeBBKWVsqX32ZlxlqcpPXLgZ05TzkuM+ceGh7BjN4fVoVaO+6aAA733LAXzxxqe46I29OPQCas7g8CgwmaOYdeDoDuJekP2qKApSShwOB4ZhMLJzJ6ZpEiyr1dUST84Z4HqGwjItpqem6Ovvr5bxwPybimlKpmbslfbytddzmLn8ki760x67gy9dfTTfvWUnoYDGG87dQDTsoDQyVXUpHv/zG1C9dmKUe6C3avBb3ciPjOUXbXv08TT5vLmiYdc0DY9bIx6P09XVtaaVDiu9lmnKReGi2/8Q44Jzh+nY2Hj2dcUV7/V67cZGkQihcHhFV3y27KpWVJVSsUgwFJqXTa9m0xzTnef7nxzCFrsVKOkpStS/Hmoz3nPbRpYNF60Xlc8A7BBWZdzod9sWk3lm0tKGHbsBzLOB/8F2xZ8G3AfsJ4S4XEr5rT14bOtGZRUxmyjx2JMZZuMlthwd5tCDg4xNzlX4vfk1G/j4Z/7B1EwJvxLlrmMWu0hP3Xo7dEaW7OpUURGrlA0t1UP8ZS/p55ZfjeH1qHQMhDnl0d+iKGpVD9w0TaTHSYcvhMvlmmf8a28qM7NF3vOxe0mmDFRVcMtV8zWqm6HSiOOg/fyoqsBZjuXWThVUr5u7X/CGRfu2etxw/w0+FIV5UqgnHR9tuMQxorkwM1mKO8fnbV/vCc1Sk76+bjeq2rzXoPYaNBPp6qRMcTo57ZHf2n9QRNXYawE//QEvO3fuBF2nt5zcV3tMrRhHtixrSX2Ahb/BtqJkm2ZpdcOuAZullJMAQoge4JvY0q9/APZJww62Uf/Axx7giaftLHmXS+EbnzuWUMDBwQf4eezJDB63ytTMSitfWwTDNE2cTiemaWKaJg6Hg0LZ/e71eikWi4yPj9O3wBXf0+Xma9ccy89+PYbh9ZLRMwhhEYlGKRQKpJJJyGdxWQa+BS1TTdOqNigJBR1cdcnhfPSqf/Ci03vQazpZ1YvXy4VC3wuozT0AuwRqbycYcPCpjxxW7Uh2+nO6Ofelg/OaliznXt0VA1Zx8S6cADYSyy2WTM49e4Af/syup3e7FC5818G73BhoufOpxOhNwyAWi1X17WdmZ+lzuZrODt/tSMnIzp0EgkH8Ph/j4+N0dnUt+h2tN213/b5Hi1/5DFWMeplYedusEGJx4HcvZamb6bYd2apRB7vP9te/vY1L3n8I//7xI/jdXVP4fVo1Iag2KagWISARj5NOp+nq6mJ2dtYWA+nrw+FwVOtfLcsinU4v2t/jVjnkwADvfssBqIog4O1jbGwMp9PJzPQ03T09uJxOxsbG0HUdVVWZTej85s5Jnno6y1kv7OWAjT4CfgeHHhLkxuuORTckk0/G2HzXrwDIAJqqEI04cYT889yfzX6OS1HrlpeGuer46O7A61F59pYObrwuABLcS/QQX869uiv94vVyrXpfXx+WlExOTFSlZyvUC6+MpRSiYSffuO5YCgWT/l4P4WBzOgurRWJn7vcPDKAoChPj44smKS2JEPT09jIxPk4qmcRbDkHs7qS4trt+36PVDfudQohfAj8qPz6nvM0HJPbcYa0dpmlSLBarSTSVcXqJLO9UxsAwJNGIk3POGiCXM3j/2w7k2q88XjcrXAiIRKOUSiVisdhcly9NQ5GSUChUrTuujJfC69EwDYPJySksKZmZnmag3H3LSqbpQkNOzpC1IBsvceKAxaE9Xt598d+59IObOOOUbltUJepiaqbIe696GtMCRYEL33UwPq/KA/eleMFz/ezv1fF66huF2qS6eedax7DvbW55W3xm/RuPLETTNHw+H2NjYwDzmr1UqDUC+YLB+EySqz+/lXhS58Tjorzk+b107GY9AU3TGBgYQJRd2rXjXcHWrJe7bGgrrwN2yKJes5y2m73NWtHqhv1dwCuA55Qf3wv0SCmzwOl77KjWENM0mRgfJxgMIoQgmUwyMDjI0YeF8PtUMtk5hbfzXzaIq5glNz23KnvBJnje5/ava9Sg3KvdsA1/Ja5XSXKr3Exqx4ZhMZso8ad7ZvF6VY49MkJHxIks7z8wMIAQgsmJCbq6uzHS2SXdpZvvupXrrziCp3dkSaR0QgH79b0elRc/v5df3TbBWWf0MTFZ4KYf7uC5J0bp6lBJp1JoagjF7+XUrbcturGahQJ3HnLGovd73vY/8NxHfmvHLFdw47dZjBACr9dLJmNfXz6vd1nj6HFrnHhchP+8fguWlLhdSkNll+tBbV13szXeqbTOQ48m+eOfZ3jhaT3sv8FHwK/NC2Gpfi+nPXb7os+jEXe1YRiMjozQ09uLoiiMj43R19+PQ9MYHxuza9N9PmKxGG63e7e74tvse7S0YZdSSiHEU8CJwKuAp7H7rO8zaJpGT08Pk5N2xKGruxuHw4GmCb5x3XF88wfbmYnrnPvSATYfHMCYnlzSiD5/+//WVa5KxOMIIRjesIHp6WmmYjH6+/sRdW6AsekiF7z3PvJ5e1LR0+XihmuOoSPisvcrr4b6+voQy5RARcMOXN4ig30BAj6Vmelp293o8fCOC/bjuCPDDPV7eO9HHwBgeMCLZRnkswmkVSKfz+P1eumsyfCWUtZ10Rv5EnpHDx+7+lE+/vZ+Tt16m13TvOw30KaCruvEYjGCwSBmWUhloSt+Iaqq0BFtfcW/uqVrpoUyNcERUeg9NYiv24FlmRiGPclOp1JEOzpIZFJoTge9vb1Nr6wVRakq8wF4PB47/i8E/QMD1Tr2Sn17o0Z9XyjvbLM+tKRhF0IcDLy6/G8a+AEgpJT7xCq9FiklxeKc4EqxUCyX+ij0dbv4wDsOwjAkHreCoijkppd+HatUqiv4oRlGta63q7MTydKrGiklhin58S9HOeXEDn7zO7uicHKqyL1/S/Ci03uaWhmZlgRFI5ueoVRMY+g6wWAQhCAccvLC03qYni1Ws96+c/MImw8KsOmAALlsGlVV6erunnejqyRILUUypZMySxx7ZIitk3DM4R1MT07QKZc+TsOQzMSLRMPO1o7FNsGuJEJpmkZ3dzcerxeA/C7Ee9eqRe9aJXY1Urp2yqO3M5ubQppu3O4OIpEIpVKJmelpW1a33LmuWRRFIRgKVT0hwVCo+nk0W9NeSytm+rdpDVp1MfMo8DzgLCnlc6SUnwdW7jqyF2KaJolEAo8visfXQSqVRNdtF2AqlUJVJG6XIJVKVd3pjZDL60zPFLjt95NMzeoUS7bxVDVtyWxh0zDI5/MgJa88q493vGGA97x5v+rfs7nmld2kBT3dUVRVRS+V8Pr8CMUx7wYf8Guc97IhAJ57YpTNB3nI5zI4HHYzkGQyWW0vuxIlXfLej/ydTQcGefaWKLHJiWWbkkzPFvmX993P2MSeaRJYe16NnuNKODvCeDcOLvrXyI1eVVV8fj+qqs4bN4tpmuRyOUql0ryxtYrwyK6cT7NIaaKoKrrlp1Cwqg1owD4nW/yn+XMwDIPxsTE8Hg8+n4/JiQl0fZ/J/W3TgrTkih07rn4+8DshxH8D36d+j/W9mokpna6eQb53yyiFosmbXj1MbEanv0clVXYFulwuMpkMLmdjLk9dNzEMHcPQKRZNBAalkommClyuxV+5lJJCocDk5CTRaBSsPOl0kZc8v5/v3jJKLm9w8gkdTZ+bx2O73y3Lwu32kM2k0TQ3QnhxOu3jcDlVXvXP/Ry+KUg2p+N0SKTHQ1d3N3qpVPUKVLKcK+I6S6EoUChapNI6ouzmdDgcGEqqGh81TMl0jVDOzGyJL9z4JJe8b9Oq2+GuBsMwmJqaorOzEyFEdbywp3gqrZNK68wmdPp73YSDjnVtVVvrudgVL0YulyOXzeLz+chkMnR0dCw6t9WwlHTsWrqkpWURDGr4vCrJZAJVVRkcGmJmepqZ2Vl6e3ubPmZFUYh2dOD3214Gd8UV36bNOtGSV5eU8qfAT8vZ72cD7wO6hRBfBn4ipfztHj3ANeSnt47zx7/MVFeNf/zLLEcdFuIj/3YI/QMD7Ni+HV3X6ejowOV208ja0jAsMukMhXyaLUcGyWWmsNxe3C4X6bROYEG7VyEEbo+HSCTC7OwsAH39A/zoFxOcdHyU171yeNnOaQvdpbbrVUELeHEISU9PL4k0uD1OTEtQKJpVww4QCjo58bhotRUoQZ8t2GFZzM7OEgx3YRhF8tk03T09aMG596ssoGYTJWYLGhsGvTzr2Gg1018IgdoRwRkNI4Tgvgfi/Nsnn5p3/Nt25iiVLPA18OGuIaZh2K1QFWXJlWAqrXPjd7fx419WYrMqX/nM0RywsbXri1VVpbOzk7FikUwmg9fnwx8I7HLWt2EYpFOpqqpcZbxWLml7EmlRzCcI+LuIRCLIcBhVVeno7Fyyl0I9Fk42HEAxnkYL+AlEVt/atk2bRmhJw16hnP3+XeC7QogIdgLdRcA+Y9iPPjzED38+Wn08NlHgX169AcuySCbsir4ujw85naSQyCyrvlUhk7PwoRJAQ2ay+FARBZ3YwzsoOTwkuyIM9LnnK3PFU2jJdDUebY7HOOd4FS3Qjatz+U5htfHLSgghPjuLmjEJRyKUdIXLr/kH//T8HrbtjPP6V22ohhU0TZs3rk2SE0KzY5xTYwRDITq7utF1C0c4iBYOVg33bLzEVDqLFhJ8/lO91UnIUqvP4QEvTqdiG/Iyp53URcC/e38KmqbR09vLzh07ME2T3r6+Rau4TNaoGnWwe4pf8+UnuOqjh82TG14v4skSs/ESlgUdUSfRcGMeI9M0yWaz1eYt+VwOXddXHWeHOZXDRCJBsVi0XeOGQSAQWNXrLYVS9vLA4tKzZiclzUw20hkdw7AlpFej1LdetJPz9l5a2rDXIqWMAzeU/+0zHH+Ayg+vGKZQtGOsLpdKKGBgxFNks1l6ensRU3F+V0eneqmEOb9XxUzm+P2mxftsvutXvPeSHXzt2mOr9cZSSox0hj8s8fzTH78DOhvX+lZVlWAwSDKRwDRNCoUS9z+U46FH0zy8Nc1VHz2cYEAlFoth6Do9vb1MTk6iqSrdNclJiZTO3x9Osml/P6oi0TSNsdERevv6yWYyxONxBoeGUFWVaMTZcC/2UEDj8586in//0uNMThU449Ruzj17YJ6y2+6g0gpVVVWEotiVCuXQQYVkenEcdnKqgK6vfynfbKLEhZc9yNYn7Bv7xiEv1195VMM16vl8nmhHB8FgkKmpKYqFwi654oUQOBwOunt6mJyYAOx2ruoqXNrLJeTtThe5rpvsGM3z+a8/STyp86bzhznmiAihBoV91lsxrp2ct/ey1xj2fRWZy/HXLS9etP30x+9gcNhOKisQr7v/UtnHTqcgT/269th0kVzeqN6kl8s0h6XbYC53PBPj4yAEfr+fTCbFSVu6+eq/H0046CQScsy5akdHGdm50368oIxIU+Gwg9ykU1N4ff5qV7rRkZ0AdHSurve606ly2CFBrr3sCCxL4vNpDXVNWw/U8qq9EmNfSFeHi4BfmydWdMap3YtCKevBPX+NV4062OGK2+6c5PyXD624b+X7BTu+XBnvqivesqxq6aaUkng8Xn3tZlhJaS2ZKmGYoCrssiTuciSSBm/7f3+lWLQ47aQOjtjsx7JMLEvFMIxqEmM92opxberRNuwtTCPGNJfN4nA6cTocc2Ons+6+Xb1+vnnpIOHCDLlts9Xty+myp9Np/E1kSPv9fjzl7lwulwuPx8WhBzsWucaFokB5MlL5WzKts/WJNPFEkZOPj2AYIUYnFQIBgcfrrfbp3lXpzUiDbuVGadZtWSktq3ymtePqMYacfOUzR3Pd155kdDzPC07p5lUvHcC5G7wLT+/ILtr25PYspiVRlZXdxWvduKTiijdMk8GhIUzTZHJycsV+As0yNpHnk9c+yoOPpDj04ACXfnATQ/3eNX2PCo88nqJYtHA6BB9+7yHMTI2iaU6cjjCxyQki0SjBZao62rSpxz5p2IUQNwJnATEp5eHlbVHseviNwDbgXCllXNgW5Xrgn4Ac8EYp5f3lfS4APlp+2SuklDftzvNohFwuR256uuHsY5kv8MjJ/8QjC7ZX4/YLME2T+OwsPl9jmWWqqhIoq+gJIeaNa19zamoKKSV9/f1MxWJMxWJ0dffwm99N8h9fexKAT1y4iU0H+pmIpThwo4NkIkE4HCaXyzE2Olp1xbcCq3FbrmT8VFWwYcjH5R/aTEmXaKoglzd5cCxJX7ebYEDD6Vyf83/BKd18+8c752375xf2NWTU14OKK35oaKiqklgZV1zSFRtfsYPNuqTjiRIfufJhnthmT2r+8ViaD132EF+8+uiG8gssSxJPlHhyW5aDAytPOLo67Lr1ki657LOP8P/euT/Z9CSTE7YwUyAQaBv1NqtinzTswH8BX8DuBFfhw8AdUsqrhBAfLj++CHgJcFD537OALwPPKk8EPg5swe4zcZ8Q4uflWH/LEO3ooFjOPvb5fPbNYBljp9Qk59Q2R6GO675ifJsxoLU3o6VuTLWuWofDQV9/PwCZrMl3bp4zJp/47KNsHPJy3RVH4vOpqGoPHo+HYChEoWDXByy3UnZEQ8STOlLasfX1LBNbK2rPp6KQpgBuIcgVJfmMjmk4Oe/SB7j+iqM4fFNwXY6jr8fN1Zcexte+tQ3DlFxw3jD7Da/PyrVRFgoVVSi5/fz1cYMv3/QUxaLFq18+yBmn9eBtMmRR0q2qUa+wcyxPsdiYV2Bqpsib338/iaTOFy7ejyP+/GuiYSe1P4HayUZfj5tnb4nyp3tncbkUaqNh1r7QqrDNHmOfNOxSyj8IITYu2Hw2dj93gJuAO7EN+9nAN6VdHH23ECIshOgrP/c2KeUsgBDiNuDFwPfW+fAXsTBJxjItLGkhvG6y2awdj9M0WwhE13HWrGIWUuu6rG2OcvzPb5jXOtUq91sXXjfpVIpINLqmq+Nar0JlbFpFtAVZwZVSNE1zzXO/V8bFOivl0x67g/ueNvnSfz5FLm9y7tmDvPj0noYTk/YUtSv/E2//5pLNazbf9SuKRYurP7+V/7jyqDUPKwD4vBonHd/BoQfbE4dQ0IGyxqt1wzCQ0k6MNE2zOm62fn5qpsjFVz5cfXzdDU/S3+vhpOOb017QVEFXh3NeK+Rw0IHDsfLx6LrFd2/ZSSJpJzy++9NPA3D1pYdx8glL5wGEQ04ued8hzCRKDA94GBvZic/nIxQOMz42RjqdXtIVb1mSYsnC7dr1RjfL0W7nuveyTxr2OvRIKcfL4wmgpzweAGp9jiPlbfW2L0II8TbgbQDDw8NNHVQjP56FSTKWZbFj+3a6fR4K6fRc9nEsVs0+rpdYU09n/Z6Xvq06Pu2x25nBboNpGAaZyUnCkcYz41dLOOjkLa/byJWf21rddvzR4Wrb0pU8AbWYluRDlz9U7dH++a8/SW+Xi1NP6lr7A99DjE0Wdnllt1JuwHpMGsC+huPxONlMht6+vqqQ0cDgYNPG6o9/nlm07dbbJ9hyVLipUEU45OTyDx3KhZc/SCZr4vWofOJDmxtqP2sYkolYcdH22PTibQvfMxxyIqWstp1VFKWq0b/wOo8nS/zP/07xl/vjnLglyuknd65bgl87OW/v5Zlk2KuUm8usma9LSlktw9uyZUtTr1v746m9yRrpTHVcm4BlmiYz09N2K8h0lkBeh7xOIZEhAFDIYJqg7sIPUgjB8PAGO36paQxv2LBbtNRVVfCcEzr4xueO5Xd3TbHpwABHHRZa1Sq7WLRYaPPCzKaLAAAUv0lEQVRuvX2SE46J4vG0Rlx+V3neyV143bso+rKHSpoURSESiVAsFqsiPZWugc2y/8bF+R8H7e9HVZsLvaiqYNPBAb7zpePJ5U08HrXhEI7Ho/LKswa46y9zkwxNE5x4XGNeg0oOQYWl8mTSGZ1rvvQ4d/6f3TDirntmePCRJB/414N2q2pim9bnmXQ1TAoh+qSU42VXe6y8fRSoreEZLG8bZc51X9l+53oeYKM3WVVV6evrw5qc4XcHv2DF59dS6yGQRn198spKYXc3R3EVswxpGd5wqhMoQiJGLtG8KIamLT7u/Tf6GnKrrobd6bZUFcErzuznjedvwOPZy3/CNbOv1c60Dz0owPFHh7nnb7ag037DXs56YR+qKjBNsypkVDuuh0NT6Ii6aF5AGTYd5OfKjxzK924ZwetR+dcL9mtYX6ER8gWL3/9pfheo2/8Q4x0X7N827G3m8Uy6Gn4OXABcVf7/ZzXb3y2E+D528lyybPx/A3yqrHgH8ELg4t18zItQVZVwJIIQoiF52YUs7HLVClimicQ+t7VaQTo0hROPi3L3fXZJ39CAh3PO6l929WWr3YlF40bYnW7LjqiTd72pH9ceqr9fCyo16YZpMjAwwPT0NJMTE6tyxUfCTj5+4WbSGQPTtBXcomEnZlmPPxKJoDkczExPEwqFcLpc6zJhDfgdnPrsLo4+LIyqijU3tkLYXgXDmJsCadr8pLs2bWAfNexCiO9hr7Y7hRAj2NntVwE/FEK8GdgOnFt++q3YpW5PYJe7vQlASjkrhPgkcE/5eZdXEun2NLuSxKbrFsm0zshYngM7vZy69Q4Whqt3Z3KMZZrk8nn0UolQOFy3wUs9llspX/qBHlIZHV2XhEOOZUuWpJSUSqWqKEhlvLubdSzsG15PPti5Fxt1sD1C4UiEUDhclddtdjJVSzjoJBxc8P2WyyzHyp3VItFo1RNlGEa1bG6tqPQ6CAUd1br7tXx9n1fl1S8f4ls/2lHd9oZXDuHfzXLIbVqfffKKkFK+us6fFi0Fy9nw76rzOjcCN67hoe1xnt6R5Z0X/Y1CuYTnvLMHeOP5Gwj492y2eDweJ5fPE2iyfelyK2UnNByftyyLqVgMy7KIdnQwFYvh9/uJdnTs1lr5Z1LCUu2kaT0mUKqq0tXdzbann6ajs5PxsTG8Ph/hcJix0VGCwSDBUGhNasWllOi6zvT0NN3d3ViWxfTUlN20aI3OzevROP/lgzznhA7+/o8ExxweZqDPs8eUE9u0LvukYd8XWSpW2CyJVIlrvvx41agD/OBno7zynwebMuylkoUl5bwbSrOxzAqKquIt96nOZrME9tAlqaoqvX19jI6MEJucxOV273ajvifYl0uaTMMgFoshhCCTThONRonFYqSSSRwOB/41FICpiDDppRJjo6NYloWjwTbLzRAKOAhtcnDYOukXtNk3aBv2FqLeTVb1+5idmSEYCqFp2tw44GvoplzJttcsycXnh7As+6aQMpy8+9NPk8kai15jKXTdZCJW5Js/2kGxaPG6Vw4x2O/F5bRX3MFgEFVVq2OHw7Gica+44rPZLC63G/KLG5/sDiqu00r7VLNcY72vkckaOB2iWgbm7Ahj+QJk8wYg9hohn4YQAlXT6B8YqNbKC0VBWhaudYiza5pGZ2cnk5OTAPSs4Wp9NlHCsiQOTWl5LYY2e562YW8h1HAAw+PE5bKlJovFYnVsTE4yNjqK0+mkVCoRCAZxREI4/397dx4dV3necfz7zKbRalmysLUYzFZjh8VgQ1yak+SkkLI1Tk9IICWFJiQ0h5KSpBBo6IGQnCRNIWQBQssBCrRpgAJNCOSQUkJCaoqxDbEBg4NrbPAuy5K8SB5JM0//uFdC8iZszWhGd36fczi6950ZzXt5rXnmXe77NI5+f/n+FqTNWvgE9XXJA67cHX4LXjbr9Hf08cnTE2wfSPHZL7/IvT+cyxGtaTK7d7Nhxw5SFRVkdu+mpqbmoOZMJ4fzrZmOTj6w8qm9elJj7UGONqIwOBSfTqdpOuwwNm7YQOe2bZHptXfv6GfR0m08/tQm2porufgThzO1qYLuHQPc/+BafvrkRqrScS7/zFG8f/6USKyyjsfjNDY2EovFcHc2bdxIIh6nrqGBjq1bSaVSeR+Kb29vJ5VKDSVD2lc63oORzTqr1+7ihptW8Na6Xk6YVccNV81i2mHp0V8sZWvi//VGiLuzedMmqqqrSSWTdHZ20tzSQjqdZuq0aaxds4ZMJsPkhgYqUqmhxVSHqiIV545/nHPADTgO9KUgl4MH/nMdV1/xBzQ3N7NmzRp2h+k6322PaHAo3isricViVDTU4w31eQ2m2WyWrVu3MnnyZOLx+NDx8BGFwaH4wQVVzS0teV9cVSzZrPP0s1u45Z9WAfDi8i4WvtDB/bfN5X+e7+Chx9YDwRTLt76/klm310YisMM7C03dnabDDiOZTBKLxUilUkPH+TA4FF9ZWcmUpiZyuRzbOvbeOOdgdXX38+UbltPZFYxkvfzadr7+3df59nXvUc9d9isiY27REIvFmNbcPJRvvDEMkIO9SYBUKkVXZyd9/f1jHiqun5RkemsV8fihD0lOqk1g5Ni6Nbi/NpFI0NXVRf9B1C82LD3l8ON8cXcGBgbYsH49GzdupGfXrn3WLZFIDL338OOJrntHP488vmFEWUdnH13d/TyzcO90sUuXdY1X1cZNLBYjnU6TSCRGHOdTMplkSlMT8Xh86His79G7OzsU1ActX9FN/0B+s9pJtCiwlxB3J5N5ZwvK3ZnMUAByoLmlheaWFiqrqoKd58YY2M2gq7uPTVt2s7UjQyZzcCvSa6rjnP+RNozg9qHmlhZa29pIJZPkcrmSmaNOJBJMmzaNXC5HXyZD45Qp72r+PyriMaOudu8Ak0rF9plEZuYxE3/h3L7smTa4EPKdrjadju21U+JRR1Tnfd9+iRYF9hLi7nRu28aUKVNoaWmhZ9cu+vr6iMViNDU1kUqlglt4wuOxDiPmcs4133iF8y9dxIV/9QJPPrOZXT3vbiHdpNok/3r7qUxpqCAe3odcUVFBPB5n6rRpealfvmSzWbZs3jy0bee2jo6hBCSF0tubpaMzQ0dnhmy2uL2rSXVJrrj06BG78b33lMlUpuMsOLuF98ysBYIvegvOmsb01spiVVX2UFeT5OtfmUVVGNwbG1LccNVx7yqNrJQvK5VeVVTMmzfPlyxZckivHezl7rn72VgD5L4SfbhDe2+cT13z+xHlD911Gi1T3/lg71mzbr87wVXNaBtTvcbLwMAA7Vu20NDYSCKRYMvmzTQ0NpJKpQrSc+vq7uOuH6/hiac2UVuT4MrLjmH+KQ1UF3HeOpPJ0tndz+9e6aJ5aprDW6uGErx0dffRuztLPGZUVsaLvqeBjNTXl2X7zgEymRzpdJz6uuSYps9KlZktdfd5xa5HFCiw59lYAvt42tbZxxe+uoy163pGlN9y4wmcdkrD0Plo2b8mikO9z/7g38d5+OfruPXu1SPKH/jnU2lrKW4+c5FSpsCeP9FY+ioHrboqztyT6kcEdjM4vG1k8InKTmj5nvvcn109Azz7/N6roV9+bbsCu4iMCwX2MlVREeeSC45g3YZeXnipk7aWNDdePRsz2NqRoaY6QXqMKUHLUWU6zuyZtSx7tXtE+dH7SC0qMpqojJjJ+FJgL2ONk1N87epZZDI5MPjOrSt5fmknFRUxPnfRDM49Yxq1tQc331ruH0TJZIwLF7SxdFkXv/+/ncRi8PE/bWVqkzYUkYOXr2yHUl4U2EvUeAXIutokA5U57ntwLc8v7QQgk8lx2z2rmT+34aADuz6IoLGhgu9+7QR6d2dJJIyqykRkNnyRkWmGhx+LlAp92pSo8QyQPb1Zli7fe1OS11ftYMbh+RlCjqVS+8z/HtWe/OT6FKNv9isTTS6XY1dPD12dnbS0trJr5066u7tpaW1VcJeSocAuVFXGmXfSZJav2D6i/LhjavP2HtmeXn4968N7lZdTT14mvlgsRmU6Tac7b61di7vT2NhY7GqJjKDALiQSMT56Tguvr9rBc4u3cft1R9JS51RmO+lZ0/nO8yLauxY5GLFYjOqaGrq7ujAzampr1VuXkqLALgA01Kf4+y8dx+5MjqrtW/jNzDP3eo5611LuBofiu7u6qKuro6enhw3r1xdsKH5/qZzHmu1Qok2BXYbU1Sapq4WenYe+ccv+Pog8p6QVMvENDsU3NTVRXVNDfX09vb29BXu/qOwjIeNLgb1ETdRv6vv7INrXwjkpb9t39rNufS+/+d+tzJ5Zy4mzJzF5UunvgZ5IJqmOx4nFYsGwfHgsUioU2EtU1L6pT9QvKlIYAwM5fvXbdm7+0RtDZaef2sB1XzxuQuQZHx7IFdSl1Ciwy7iI2hcVGZvuHf3c/e9rRpQ9t3gbvbuzEyKwi5QyBXbZi3rXUnhGNrt3AirlpBIZOwX2UZjZWcAPgDhwl7v/Q5GrVHDqXUuh1dUkuOhj07nj3jeHyk6cXUdlurjD2oXe8bHct1yW8aHAfgBmFgduB84E1gGLzewxd19R3JqJTGzJZIzzzmzm6Bk1/NevN3PirEl84PQp1Bd58Vyhd3zUlssyHhTYD+w0YJW7rwYwsweABYACu8gYTapLMn9uA6fOqSce1wI0kXzRX9OBtQJvDztfF5aNYGaXmdkSM1vS3t4+bpUTiQIFdZH80l9UHrj7ne4+z93nNTU1Fbs6IiJSxhTYD2w9MH3YeVtYJiIiUpI0x35gi4FjzexIgoB+IfDnxa2SiBRKoW/11K2kMh4U2A/A3QfM7ArglwS3u93j7q8WuVoiUiCFvtVTt5LKeFBgH4W7/wL4RbHrISIi8m5ojl1ERCRCFNhFREQiRIFdREQkQhTYRUREIsRc6ZTyyszagbUH8ZIpwNYCVadUleM1Q3ledzleM5TndY/1mo9wd+3wlQcK7EVmZkvcfV6x6zGeyvGaoTyvuxyvGcrzusvxmkuVhuJFREQiRIFdREQkQhTYi+/OYlegCMrxmqE8r7scrxnK87rL8ZpLkubYRUREIkQ9dhERkQhRYBcREYkQBfYiMbOzzGylma0ys2uLXZ9CMbPpZvaMma0ws1fN7MqwvMHMnjKzN8Kfk4td13wzs7iZvWRmj4fnR5rZorDNHzSzVLHrmG9mVm9mD5vZ62b2mpn9YdTb2sy+FP7bfsXMfmJm6Si2tZndY2ZbzOyVYWX7bFsL/DC8/uVmdkrxal5+FNiLwMziwO3A2cBs4JNmNru4tSqYAeBv3X02MB/46/BarwWedvdjgafD86i5Enht2Pl3gO+5+zFAJ3BpUWpVWD8AnnT344CTCK4/sm1tZq3A3wDz3P14gvTOFxLNtr4XOGuPsv217dnAseF/lwF3jFMdBQX2YjkNWOXuq929D3gAWFDkOhWEu2909xfD4x0EH/StBNd7X/i0+4CPFqeGhWFmbcC5wF3huQEfAh4OnxLFa54EvB+4G8Dd+9y9i4i3NUH660ozSwBVwEYi2Nbu/iywbY/i/bXtAuB+DzwP1JtZ8/jUVBTYi6MVeHvY+bqwLNLMbAZwMrAImOruG8OHNgFTi1StQvk+8BUgF543Al3uPhCeR7HNjwTagX8JpyDuMrNqItzW7r4euBl4iyCgdwNLiX5bD9pf25blZ1ypUGCXcWFmNcAjwBfdffvwxzy45zIy912a2XnAFndfWuy6jLMEcApwh7ufDOxij2H3CLb1ZILe6ZFAC1DN3sPVZSFqbTuRKbAXx3pg+rDztrAskswsSRDUf+zuj4bFmweH5sKfW4pVvwL4I+AjZraGYJrlQwRzz/XhcC1Es83XAevcfVF4/jBBoI9yW58BvOnu7e7eDzxK0P5Rb+tB+2vbsvqMKzUK7MWxGDg2XDmbIlhs81iR61QQ4dzy3cBr7n7LsIceAy4Jjy8BfjbedSsUd/87d29z9xkEbfsrd78IeAY4P3xapK4ZwN03AW+b2cyw6I+BFUS4rQmG4OebWVX4b33wmiPd1sPsr20fAy4OV8fPB7qHDdlLgWnnuSIxs3MI5mHjwD3u/s0iV6kgzOx9wG+Bl3lnvvmrBPPsDwGHE6S5/YS777kwZ8Izsw8CV7n7eWZ2FEEPvgF4CfiUu2eKWb98M7M5BAsGU8Bq4NMEHYjItrWZ3QhcQHAHyEvAZwnmkyPV1mb2E+CDBOlZNwM3AD9lH20bfsm5jWBaogf4tLsvKUa9y5ECu4iISIRoKF5ERCRCFNhFREQiRIFdREQkQhTYRUREIkSBXUREJEIU2EVKTJgh7fLwuMXMHh7tNWN4rznhrZciEhEK7CKlpx64HMDdN7j7+aM8fyzmAArsIhGi+9hFSoyZDWb7Wwm8Acxy9+PN7C8JsmdVE6TDvJlgI5i/ADLAOeHmIEcTpAVuItgc5HPu/rqZfZxgU5EsQbKSM4BVQCXBdp/fBh4HbgWOB5LA19z9Z+F7/xkwiWDzlX9z9xsL/L9CRA5BYvSniMg4uxY43t3nhBnxHh/22PEEGfLSBEH5Gnc/2cy+B1xMsJvhncDn3f0NM3sv8COC/eqvB/7E3debWb2795nZ9QS5xK8AMLNvEWyB+xkzqwdeMLP/Dt/7tPD9e4DFZvaEdhMTKT0K7CITyzNhXvsdZtYN/Dwsfxk4McyidzrwH8GungBUhD8XAvea2UMEyUr25cMECWyuCs/TBNuFAjzl7h0AZvYo8D5AgV2kxCiwi0wsw/cbzw07zxH8PccIcoHP2fOF7v75sAd/LrDUzObu4/cb8DF3XzmiMHjdnvN2mscTKUFaPCdSenYAtYfywjDX/ZvhfDphdq2TwuOj3X2Ru18PtBOk1dzzvX4JfCFM4oGZnTzssTPNrMHMKgnm+hceSh1FpLAU2EVKTDjcvdDMXgFuOoRfcRFwqZktA14lWIgHcJOZvRz+3ueAZQTpRWeb2e/M7ALgGwSL5pab2avh+aAXgEeA5cAjml8XKU1aFS8iowpXxQ8tshOR0qUeu4iISISoxy4iIhIh6rGLiIhEiAK7iIhIhCiwi4iIRIgCu4iISIQosIuIiETI/wMbbttYK4fH5AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot of agent activity per timestep\n", + "param_plot(median_df,'timestep', 'AggregatedAgentSpend',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEWCAYAAAAJory2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYXUXZwH/vbdt7yaaRQnpCCiSETkJo0jvSmzRFQfgQURREFBAQEBGMIgRBqkhTIBgIIBIjKRQT0kjZ3Wzvfe+95/3+OGc3d++2m213N5nf89znzplzzsx75syZd+adJqqKwWAwGAyGznFFWwCDwWAwGAY7RlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANRlkaDAaDwdANvVaWInKXiJSKSKFzfLqI5IpIrYjM6b2IPZZrwOQQkbEioiLi6c94BgMicoGILI22HAbD3o6IXCoi/+plGIeLyIa+kqmTOOJE5A0RqRKRl/ozrv6kW2UpIttEpMFROi2/3zrn9gFuAqapao5zy/3AdaqaqKpreiqYo3wm9PT+7uRwwq9znidfRH4tIu5exNclInK+iHzqxFcgIm+JyGH9FV8E8jwlIs0iUuP8vhSRu0Ukpav7VPVZVT22h3HeISL+sLz0g549wdAmJP1rRaRcRN4VkSnRlqs7+qKA7iBMn4g8ICJ5TnpsE5GH+jKOwYiIfCUil3fgf72IfDoQMqjqR6o6OSTubSJydKT3i83NIrLJ0RM7nHIkJuSys4BhQIaqnu3kIRWRB8PCOtXxf6q3z9UfRNqyPNlROi2/6xz/fYAyVS0OuXYM8L8+lbJnRCLHLFVNBI4EzgXaZdy+QERuBB4CfomdafYBfgec2sn1A9VC/ZWqJgFZwGXAQcDHIpLQj3K9EJaXftVBPCIie0MXwa+c/DcKKAae2t0Ahpo1oxN5bwXmAgcCScACYPUAihUtlgAXd+B/kXNuKPAb4Crs50gCvgEsAl4MuWYMsFFVAyF+W4BzwvLDJcDG/hW3F6hqlz9gG3B0B/5HAw2ABdQCzzn/CtQBW5zrRgB/BUqArcD3QsJwAz/CTrgaYBUwGvgwJJxa4NwO4ncBtwHbsQuap4EUIKYjOTq4X4EJIccvAo+GHKcATwAFQD5wF+AOkft+oBT4GviOE56ng3hSHHnO7iKN7wBeBp4BqoFvOc/xELDT+T0ExDjXZwJvApVAOfAR4HLO3eLIWwNsABZ1EudTwF1hfknO817nHF8KfAw8CJQ5aXAp8K+wdPyekw6lwH0tsnTynM90cm458AsnvgZgQm/eAWH5Njxu7IrBv500/AxYECbLzx1ZaoClQGbI+cNC7s110mQeUNQin3PdGcBnkaQ/cCJQ67gPBD5xwi8Afgv4wtL8O8AmYKvj97AjSzX2d3R42LO/hJ2/aoAvgEnYSqrYue/Y7vI+MBVoBILYebrSuT7GeRc7nDR4HIhzzi0A8rDzZSHw5w7S4k3ghk7S6TLgjZDjTcBLIce5wGzHPQV4F/ub2ACcE3JdJDL+CDs/bQMu6OJ7HQG87sSzGbgyLK1fxC6ParAr7HM7CWcUEADGhPhNA5px8ltn7yLk+wz9Fg8B/gtUOf+HhJxLB57ELksqgFdDn91x/xm7PG9w3u8PgL8D3w2T+3PgdGCikxcODDs/GmgCjgJ+5jyP3wnziha5gbeBE0PkK8QuP54KCesUJw0rsb/LqSHntgH/58hTBbwAxIacPwlY69z7b2Cm438z8NcwmX8DPNzZO1fVnivL8IQO+5AnOG4X9of7U8AHjMcu2I4LEfoLYDIgwCzspnqbcDqJ+3LsjDoeSAReIeRDjOD+UDmnOJnx+yHn/wb8HkgAsoGVwNXOuWuAr5xMkQ68T+fK8njsD6LdubAPzA+c5qRZHHAnsMKJO8t52T93rr8b+2P3Or/DnfSbjF14jHCuGwvs20mcTxGmLB3/p7Fbf2Bn6gDwXcDjyHUp7ZXl+0467INdM/xWF8/ZlbLcAUx34vL25h3QhbIERmIr/xOc9D7GOc4KkWULtkKJc47vcc6NwS4Ez3NkzGBXYb0O+EZYHrqpu/THzr9/AT5yjg/AVuYe5x2uJ0SZOM/5rvPcLQX+hY4sHuyukUKcgsN59kbgOOf809gV1x87z3AljtKNIO+3ef+O34PYyiMdu8L1BnB3SBkRAO7FVlhxHaTFbc67/zawHyAh58ZjF3YubCW1nV2F+3jsgt/lyJqLrVw9wBxsxTdtN2T8tSPjkdgV7cmdvLsPsS1DscBs7IbAUWFpfQJ2BeNuYEUX3/67wG0hx3fjKLLdeRfOc1Vgt0o92Pmzgl3l6d+xlUma886P7KgMp/13cw7wn5DjWdjfig/7G9zeyXN9EJK+d9C2onoptrI8n11lzbed57wLR1lif3912N+nF1t5b8apODqyrnTyRTr2d3KNc24OdkVwvvMeLnGujwGGO+GmOtd6nGsP6Ow9qUauLGuxM2zL78qOEjrkQ25RQvOBHWHnbwWedNwbgFM7ibc7ZbcM+HbI8WRsheOJ8H7FroXXOe7n2NVyG4ZdM4oLuf484H3H/V7LS3GOj6VzZXkBUNhNGt8BfBjmtwU4IeT4OGCb474TeC38+bBbY8XYrX5vN3E+RcfK8h7g3ZBMHf7+LqW9sjw+5PjbwLIunrM5LC+1KPblwJ0h1/bqHdC1sryFsBYO8A5wSYgst4U909sh+fdvnTzfLcCzjjsdqAeGd5H+jU4aFGIX5J1VbG4IjdN5zqO6eb8V2N0MLc/+bsi5k7G/6ZYWSpITZmoE6R7+/gX7G9o3xO9gdrV4FzjvPLYLWd3YLeWPnbh3trwL53wusD/wTWAxdgE5BVsxvu5ccy5OZSPkvt8Dt0coYwBICDn/IvCTDmQdjd2aSgrxu5tdBfwdwD9Dzk0DGrp49guBDY7bhV1pOD3Cb6D1XWAryZVhYX/iXDMcu8WY1kH8C+haWcY6eWmic3w/8DvHfRudVASA54E/hH97oXJjV0SLsFvPK4BDaassfwK8GHKfC7t1vSBE1gtDzv8KeNxxP4bTuAg5v4FdlYS32KXHTgLWdfU9qSqR9necpqr/jPDaUMYAI0SkMsTPjW02BDvjbelBuLCrltnCduwawjDsBI2E/Z34z8ZWEgnYmXMMdk2mQERarnVhf7QtceeGhBMqRzhlQKaIeLStzT6c3LDjjp5vhOO+DzsDLnXkW6yq96jqZhG5wTk3XUTeAW5U1Z1dxBvOSGzzUmdydSd7qJwd8aKqXhhBOH35DsIZA5wtIieH+HmxW6ctFIa467Fbf9B1nn0GWO/0+Z6DXXgXdCHH/ap6W7iniEzCbuXMBeKx8/WqsMtyw+75P2wT1whsxZeMba5voSjE3QCUqmow5BjsZxxB1+keTpYj46qQ6wX7O2+hRFUbO7kfR45HgUdFJA7bavQnEVmpquuxWykLsCuDH2BXMI7EVngfOMGMAeaHlTUebNNiJDJWqGpdyHFn+XgEUK6qNWHXzg05Ds87sV18/68AvxORgxwZ47FbgS3PFOm7CC8vWuQaiZ1ny1W1ooP7ukRVG0XkBeBCEfkZtrI+yzldiq2IO2I4tvWiq7AbROTv2Eo3Q1U/FpFvhFzS5plU1RKRXOeZWghP65Z3Nga4RES+G3LeF3J+CXAt8AfsCsufu5IV+n+eZS527S015JekqieEnN+3h2HvxE6QFvbBrh0WdXx5x6jNi9i1sJ+GyNWE3W/QIneyqk53zhdgZ8DQuDvjEyes07oTJey4o+fb6chco6o3qep4bJv+jSKyyDn3F1U9zLlXsc1fESEiidit0o9CvMPl6ojwtNgd5RxKaFy9fQd12AVPCzkh7lzslmVovkxQ1XsikLHTPKuq+djv+wzsmn63H2AnPIZtYp6oqsnYfWkSdk1rWonI4dgmqnOwWw+p2H044fdEQnfpHp4fSrGV7fSQ61PUHrjUTtbuUNUGVX0UuzUzzfFuUZaHO+4PsJXlkexSlrnAB2HvNFFVr41QxrSwgW2d5eOdQLqIJIVdG2kFPfx567HHK1yMnWeeV9XmkGfq6l2EyzUmzK9FrlxH5tRIROrAbwm2hWwRUK+qnzj+7wGjReTA0ItFZDR2N8KyCOJ7Grvb4JkOzrV5JrFrDKOJLK1zgV+E5Yd4VX3OOf8qMFNEZmC3LJ/tLsD+VpYrgRoRucWZa+MWkRkiMs85/0fg5yIy0RkBOVNEMpxzRdh9Ep3xHPB9ERnnFPK/xLZ/d9V664p7gCtFJMdpDSwFHhCRZBFxici+InKkc+2LwPdEZJSIpAE/7CxQVa3CVsKPishpIhIvIl4R+YaItBsJGvZ8t4lIlohkOmE8AyAiJ4nIBCfzVGGbhSwRmSwiRznDthvZNQCrS0QkRkQOwM5AFdgDAXaHm0UkzflIrsfuG+kVffAO1gLfdNJ6Lrtqw2Cn48kicpyTJ2NFZIGIjIpAtGeBo0XkHBHxiEiGiMwOOf80tuLaD7vV0BOSsLsIasWeTnJtBNcHsPvOPCLyU+yW5W4TQboXAaNExOdcb2HXzh8UkWwAERkpIsdFGqeI3OCkf5yTppc4z9Qy5esDYCG2OTIPuzJ3PHYfbcs1bwKTROQi5517RWSeiEzdDRl/JvY0lsOxC9B2cwJVNRd7/MDdTr6Zid2i76iwj5Ql2GbkMwkZBRvBuwjlH87zn++k4bnYlY03nXDewm7Bpjlpc0QnsrQrdx3laAEPEFIBVNWN2GMnnhWRg5xvaTr2gM5/RmiN/AC7T/KRDs69CJwoIotExIutVJuw0787/gBcIyLzHd2SICIntlRyHEvHy9hjBVaq6o7uAoxUWb4hbefG/S2SmxzzyknYneBbsWt4f8S2UYNtanoRO0NUY4/6inPO3QEsEZFKETmng+D/hP3iPnTCbsQeiNIjVPULJ6ybHa+LsZvt67AVyMvsMjn8AbuP6zPsIe5dFoqq+gBwI7a5oQS71nMdtnLqjLuAT7FHen3hxHOXc24i8E/sfqdPsPsQ3sfuvL4HO50LsQcE3NpFHD8QkRpsU/HT2Ka+Q8LMUZHwmnPvWmwT0hO7eX9n9OYd/AS7BViBPSLvLy0nnALvVOwWW8v7uJkIvgfnozoB+8Mtx37mWSGX/A27Nvw3p9XQE/4Pe/BDDfZzdlf5eAd7ZOFGbLNVI5GZzzujq3R/D3t0YqGIlDp+t2APvFghItXYeXMykVOPXRAXYufd7wBnqurX0Foo1+JYPFS1Gnug4MctpmTHLHosdr/mTieslkFFkchY6DzrTuwK0TWq+lUn8p6HPfBqJ/b7vr2H3VQtfIhd6c1T1f+GnevqXbSiqmXYZe1N2N/zD4CTVLXlHV2EPabjK+xxDTd0Isvd2JX0SrFN+y08jV0BDK8UXIddpj+D/Y7exu7zP7PLJ94lt6rqMlUt7+DcBmwT6SPY+eJk7GmMzeHXdnDvp9gD136LnW6bsftKQ1niPFNEFiBRjdhCYjC0Q0QU21y4OcpyjMWuNHl7YV3oK1m2YI9Y7E0BahggRGQB9gCUSCwLeyUicjFwldPFs0cg9qI6XwE5TgWsS/aGid8Gw4AhImdi9/u8F21ZDIa+QETisUeEL462LH2F2Iue3IjdR9ytogQiHg1rMBi6QUSWY/cTXeT0kxkMQxqnX/cVbLP1X7q5fEgg9kCuIuwui+Mjvs+YYQ0Gg8Fg6BpjhjUYDAaDoRv2WjNsZmamjh07NtpiGAwGw5Bi1apVpaqaFW05Bpq9VlmOHTuWTz8dkF1wDAaDYY9BRHZntaw9BmOGNRgMBoOhG4yyNBgMBoOhG4yyNBgMBoOhG/baPsuO8Pv95OXl0djY6QYJBsOAEhsby6hRo/B6vdEWxWDYqzHKMoS8vDySkpIYO3YsIj3ZsMFg6DtUlbKyMvLy8hg3bly0xTEY9mqMGTaExsZGMjIyjKIcJFiBAMGm5nY/KxDVpV8HDBEhIyPDWDoMhkGAaVmGYRTl4EGDFjVfbmznnzRj0l6Tc01+NBgGB6ZlaTAYDAZDNxhlOchwu93Mnj2bGTNmcPLJJ1NZWblb999xxx3cf//9HZ57+umnmTFjBvvttx9z5szp9Lq+ZuzYsey3337st99+TJs2jdtuu61L0+IhhxyyW+EvWLCAyZMnM3v2bGbPns3LL7/cW5ENBoOhDUZZDjLi4uJYu3YtX375Jenp6Tz66KN9Eu5bb73FQw89xNKlS/niiy9YsWIFKSkp7a4L9FN/4Pvvv88XX3zBypUr+frrr7n66qs7jfvf/45kI/S2PPvss6xdu5a1a9dy1llntTmnqliW2QTEYDD0HKMsBzEHH3ww+fn5rcf33Xcf8+bNY+bMmdx+++2t/r/4xS+YNGkShx12GBs2bOgwrLvvvpv777+fESNGABATE8OVV14J2C2zG264gblz5/Lwww+zbds2jjrqKGbOnMmiRYvYsWMHAC+99BIzZsxg1qxZHHHEEQD873//48ADD2T27NnMnDmTTZs2dflMiYmJPP7447z66quUl5ezfPlyDj/8cE455RSmTZvWeg3A8g8+4IQrL+Gc67/NvDNO5vu/vDNipbdt2zYmT57MxRdfzIwZM8jNzWXp0qUcfPDB7L///px99tnU1tYC8PbbbzNlyhT2339/vve973HSSScB7VvpM2bMYNu2bQA888wzrc999dVXEwwGW2X/8Y9/zKxZszjooIMoKioCoKioiNNPP51Zs2Yxa9Ys/v3vf/PTn/6Uhx56qDX8H//4xzz88MMRPZ/BYBhgVHWv/B1wwAEazrp169r5DTQJCQmqqhoIBPSss87St956S1VV33nnHb3yyivVsiwNBoN64okn6gcffKCffvqpzpgxQ+vq6rSqqkr33Xdfve+++9qFm5aWppWVlR3GeeSRR+q1117benzSSSfpU089paqqTzzxhJ566qmqqjpjxgzNy8tTVdWKigpVVb3uuuv0mWeeUVXVpqYmra+vbxf+mDFjtKSkpI3frFmzdMWKFfr+++9rfHy8fv311+3SYNk//6kxMTG6cd16baqr10VHHaUv/OU5Dfr97eSfNGmSzpo1S2fNmqWlpaW6detWFRH95JNPVFW1pKREDz/8cK2trVVV1XvuuUd/9rOfaUNDg44aNUo3btyolmXp2WefrSeeeKKqqt5+++1t0nL69Om6detWXbdunZ500kna3NysqqrXXnutLlmyRFVVAX399ddVVfXmm2/Wn//856qqes455+iDDz6oqva7rays1K1bt+qcOXNUVTUYDOr48eO1tLS0XfoNhnxpMLQAfKqDoAwf6N9eMqZw6NDQ0MDs2bPJz89n6tSpHHPMMQAsXbqUpUuXMmfOHABqa2vZtGkTNTU1nH766cTHxwNwyimn9Cjec889t9X9ySef8MorrwBw0UUX8YMf/ACAQw89lEsvvZRzzjmHM844A7Bbv7/4xS/Iy8vjjDPOYOLEiRHFpyH7qB544IEdziN0ud0ceOCBTJw6BYDzL7iAf/9nBeec98121z777LPMnTu39bimpoYxY8Zw0EEHAbBixQrWrVvHoYceCkBzczMHH3wwX331FePGjWuV+8ILL2Tx4q43hF+2bBmrVq1i3rx5gP3OsrOzAfD5fK0t0wMOOIB3330XgPfee4+nn34asPulU1JSSElJISMjgzVr1lBUVMScOXPIyMjoLukMBkMUMGbYQUZLn+X27dtR1dY+S1Xl1ltvbe2X27x5M1dccUXE4U6fPp1Vq1Z1ej4hIaHbMB5//HHuuusucnNzOeCAAygrK+P888/n9ddfJy4ujhNOOIH33nuv23BqamrYtm0bkyZN6jbu8KkTuzOVIjRcVeWYY45pTb9169bxxBNPdHm/x+NpY/ZtGZSkqlxyySWtYW3YsIE77rgDAK/X2yqj2+3utg/4W9/6Fk899RRPPvkkl19+ecTPZjAYBhajLAcp8fHx/OY3v+GBBx4gEAhw3HHH8ac//am1ny0/P5/i4mKOOOIIXn31VRoaGqipqeGNN97oMLxbb72Vm2++mcLCQsBuWf3xj3/s8NpDDjmE559/HrBbbIcffjgAW7ZsYf78+dx5551kZWWRm5vL119/zfjx4/ne977Hqaeeyueff97lc9XW1vLtb3+b0047jbS0tG7TYeXKlWzduhXLsnjhhRc47LDDur2nIw466CA+/vhjNm/eDEBdXR0bN25kypQpbNu2jS1btgDw3HPPtd4zduxYVq9eDcDq1avZunUrAIsWLeLll1+muLgYgPLycrZv73rXokWLFvHYY48BEAwGqaqqAuD000/n7bff5r///S/HHXdcj57NYDD0P8YMO4iZM2cOM2fO5LnnnuOiiy5i/fr1HHzwwYA9kOSZZ55h//3359xzz2XWrFlkZ2e3mgbDOeGEEygqKuLoo49GVRGRTlsyjzzyCJdddhn33XcfWVlZPPnkkwDcfPPNbNq0CVVl0aJFzJo1i3vvvZc///nPeL1ecnJy+NGPftRhmAsXLkTVHpV6+umn85Of/CSiNJg3bx7XXXcdmzdvZuHChZx++ukR3RdOVlYWTz31FOeddx5NTU0A3HXXXUyaNInFixdz4oknEh8fz+GHH05NTQ0AZ555Jk8//TTTp09n/vz5rS3hadOmcdddd3HsscdiWRZer5dHH32UMWPGdBr/ww8/zFVXXcUTTzyB2+3mscce4+CDD8bn87Fw4UJSU1Nxu909ejaDwdD/SGjf0d7E3LlzNXzz5/Xr1zN16tQoSWQIZ/ny5dx///28+eabe2yclmWx//7789JLL3Xa32vypWEwISKrVHVu91fuWRgzrMEQJdatW8eECRNYtGhRxAOjDAZDdDAtyxBMDd4wGDH50jCY2FtblkOyz1JEtgE1QBAIqOpcEUkHXgDGAtuAc1S1IloyGgwGg2HPYSibYReq6uyQGs4PgWWqOhFY5hwbDAaDwdBrhrKyDOdUYInjXgKcFkVZDAaDwbAHMVSVpQJLRWSViFzl+A1T1QLHXQgMC79JRK4SkU9F5NOSkpKBktVgMBgMQ5yhqiwPU9X9gW8A3xGRI0JPOusXthu5pKqLVXWuqs7NysoaIFF3j8bGRg488EBmzZrF9OnTWxdM37p1K/Pnz2fChAmce+65NDc3R1lSg8Fg2HsYkspSVfOd/2Lgb8CBQJGIDAdw/oujJ2HPiYmJ4b333uOzzz5j7dq1vP3226xYsYJbbrmF73//+2zevJm0tLRul2ozGAwGQ98x5JSliCSISFKLGzgW+BJ4HbjEuewS4LX+lmXp8iLOvHwFh5/yAWdevoKly4t6HaaItG5R5ff78fv9iAjvvfde6z6Nl1xyCa+++mqv4zIYDAZDZAw5ZYndF/kvEfkMWAn8XVXfBu4BjhGRTcDRznG/sXR5Eff+diNFJU2oQlFJE/f+dmOfKMxgMMjs2bPJzs7mmGOOYd999yU1NRWPx57pM2rUqDb7XBoMBoOhfxly8yxV9WtgVgf+ZcCigZLj909vpamp7UbETU0Wv396K8cuaDe2aLdwu92sXbuWyspKTj/9dL766qtehWcwGAyG3jEUW5aDguLSpt3y7wmpqaksXLiQTz75hMrKytbtnvLy8hg5cmSfxWMwGAyGrjHKsodkZ8bsln+klJSUUFlZCdibCr/77rtMnTqVhQsX8vLLLwOwZMkSTj311F7FYzAYDIbIMcqyh1x98ThiYtomX0yMi6svHtercAsKCli4cCEzZ85k3rx5HHPMMZx00knce++9/PrXv2bChAmUlZXt1sbPBoPBYOgdQ67PcrDQ0i/5+6e3UlzaRHZmDFdfPK7X/ZUzZ85kzZo17fzHjx/PypUrexW2wWAwGHqGUZa94NgFw3qtHA0Gg8Ew+DFmWIPBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoS4PBYDAYusEoy0FIZWUlZ511FlOmTGHq1Kl88sknlJeXc8wxxzBx4kSOOeYYKioqoi2mwWAw7DUYZTkIuf766zn++OP56quv+Oyzz5g6dSr33HMPixYtYtOmTSxatIh77unXdeINBoPBEIJRlj1EVSnYuZOCnTuxLKvVbe873XOqqqr48MMPW1fo8fl8pKam8tprr3HJJfYOZGaLLoPBYBhYjLLsIYUFBTQ2NtLY2MiO7dtb3YUFBb0Kd+vWrWRlZXHZZZcxZ84cvvWtb1FXV0dRURHDhw8HICcnh6Ki3m8FZjAYDIbIMMqyl6gqlmX1ukXZQiAQYPXq1Vx77bWsWbOGhISEdiZXEUFE+iQ+g8FgMHSPUZY9ZFhOTjuFJSIMy8npVbijRo1i1KhRzJ8/H4CzzjqL1atXM2zYMAqcVmtBQQHZ2dm9isdgMBgMkWOUZQ8pKixs15pUVYoKC3sVbk5ODqNHj2bDhg0ALFu2jGnTpnHKKaewZMkSwGzRZeh/LMvC7/cTDAbbuA2GvRWzkHovaTGJ9pUZFuCRRx7hggsuoLm5mfHjx/Pkk09iWRbnnHMOTzzxBGPGjOHFF1/ss/gMhnDUssjdsYO0tDRiYmMpLCggZ/hw4uLiTBeAYa/EKMsekjN8eOtgnmE5Oa0tyhxnEE5vmD17Np9++mk7/2XLlvU6bIMhIkTIzs6muLgYgKTkZGJiYoyiNOy1GGXZQ0SE4SNGtB6Hug2GoY6I4HK7W4/dLtNjY9i7MV+AwWBoh1oWhQUFJCUnk5WVRWVlJU1NTX3a3WAwDCVMy9JgMLRiWRYulwtEGDlyJB6vF4CRPh8er9eYYQ17LaZlaTAYAAgGg1RVVhIMBABobm4GVdxuNzGxsbhDzLIGw96GaVkaDAbAblVWVVVRX1+P2+2moaGBkaNGYVSkwWBalgaDwcHj8TB8xAiampqor69nWE4OXscMazDs7RhlOQh5+OGHmTFjBtOnT+ehhx4CMFt0Gfody7KodPKViFBZUYFlFiIwGACjLAcdX375JX/4wx9YuXIln332GW+++SabN282W3QZ+h3LsmhsbGTkyJGMHDXKXrXHsqItlsEwKDB9lj3k7fT9CdbUtfN3JyVwfPnqHoe7fv165s+fT3x8PABHHnkkr7zyCq/lyvHuAAAgAElEQVS99hrLly8H7C26FixYwL333tvjeAyGcDweD6P32ad1xGuo22DY2xmSLUsRcYvIGhF50zkeJyL/EZHNIvKCiPj6W4aOFGVX/pEyY8YMPvroI8rKyqivr+cf//gHubm5ZosuQ78jIrhcrtYlHFvcBoNhiCpL4HpgfcjxvcCDqjoBqACuiIpUfcDUqVO55ZZbOPbYYzn++OOZPXt2uyH7Zosug8FgGFiGnLIUkVHAicAfnWMBjgJedi5ZApwWHen6hiuuuIJVq1bx4YcfkpaWxqRJk8wWXQaDwRBFhpyyBB4CfgC0jDzIACpVNeAc5wEjO7pRRK4SkU9F5NOSkpL+l7SHtCxevWPHDl555RXOP/98s0WXwWAwRJEhNcBHRE4CilV1lYgs2N37VXUxsBhg7ty5g3aRyzPPPJOysjK8Xi+PPvooqamp/PCHPzRbdBkMBkOUGFLKEjgUOEVETgBigWTgYSBVRDxO63IUkN/fgriTEjodDdtbPvroo3Z+GRkZZosug8FgiBJDSlmq6q3ArQBOy/L/VPUCEXkJOAt4HrgEeK2/ZenN9BCDwWAwDC2GYp9lR9wC3Cgim7H7MJ+IsjwGg8Fg2IMYUi3LUFR1ObDccX8NHNhH4ZppGYZBg9k/0mAYHOwpLcs+ITY2lrKyMlNAGQYFqkpZWRmxsbHRFsVg2OsZsi3L/mDUqFHk5eUxmKeVGPYuYmNjGTVqVLTFMBj2eqKmLEXEraqDaksDr9fLuHHjoi2GwWAwGAYZ0TTDbhKR+0RkWhRlMBgMBoOhW6KpLGcBG4E/isgKZ3Wd5CjKYzAYDAZDh0RNWapqjar+QVUPwZ76cTtQICJLRGRCtOQyDG7q6gM0Ng0q673BYNgLiGqfJfaC6JcBY4EHgGeBw4F/AJOiJZth8FFb52fT1jqefTmXxAQPl583huHDYvF629f3/AELtcDnM4O9DQZD3xDN0bCbgPeB+1T13yH+L4vIEVGSyTBI2bKtju/e+lnr8Uf/KeUvj81jWNauaRWBQBDLstiwuZavt9fzjUXZKEKMzwz6NhgMvSOaVe+ZqnpFmKIEQFW/Fw2BDIOThsYgz7+a18avqcli5ZqKNn6qSl7uDtJTg8zfP4m83B34m5vMvFmDwdBroqksR4jIMhH5EkBEZorIbVGUxzBIcbuE1GRvO/+UML/tefXExqfR1FBFfW0JvpgEikqDNDVb7e41GAyG3SGayvIP2Iui+wFU9XPgm1GUxzBI8flcXHT2PiTEu1v9xoyKZ8aUtoOnm/2KyxVqcnVTUxvA1cHyheWVzZRVNFNbF2h3zmAwGMKJZmdOvKquDFuH1ZRchg4ZlhXDM7+bx5ovKklK9DB53yTSU31trpk4LoHcHdvxxSQg4qWpsZKJ43LwenflMX/AYsvWOn7x0FfsyG/gsAPTufGaiWSkxwz0IxkMhiFENJVlqYjsCyiAiJwFFERRHsMgxu12kZURw7ELhnV5zfARI6irh7IKP/uMGIHX522zMH5VtZ/rb/uMunp7+skHn5Th9br4wXWTiI8zA4EMBkPHRLN0+A6wGJgiIvnAVuDCKMpjGOK4XC5iY2OJixMyM+I63EGmqtrfqih/e+s4kj3NiAhWQQH1LvtaT1IivozUAZffYDAMXqKmLJ1ttY4WkQTApao10ZLFsOcQqhw72motKdGL2wVBC5I9zaw/9MR21yzctMwoS4PB0IZoLkoQA5yJvSCBp6VgU9U7oyWTYc8nMcHNjddM5MHFm6MtisFgGEJE0wz7GlAFrAKaoiiHYQigqliWhdvtbuPeXeLjPBy7YBiHHJhBTGVxP0hqMBj2RKKpLEep6vFRjN8wRFBV/H4/pSUlZA8bhmVZrW6PZ/ezcFycm7g4N/U17c20BoPB0BHRVJb/FpH9VPWLKMpgGAKICCKC3+9nZ34+lmXh8/kwqs5gMAwU0VSWhwGXishWbDOsAKqqM6Mok2GQ4vF4yMzMpKioCIDsYcNw96BV2SbMpEQWblrWob/BYDCEEk1l+Y0oxm0YAgSDQVQVl8tFIBCgpKQEn89HMBiksKCAnOHD25hhm8sqCdTUtguns6kgvoxUM+rVYDBERDSnjmwXkVnYW3IBfKSqn3V1j2HvwbIsGhoaKC0pYcTIkaBKXHw8GRkZqCrl5eXtzLCBmlren7ioXVhmKojBYOgtUVsbVkSux96/Mtv5PSMi342WPIbBhcvlIi4uDp/PR15uLsXFxaSlpSEieL1eMjMze22GNRgMhkiJZmlzBTBfVesARORe4BPgkSjKZBhkxMTG0tjYSHNzM2ArUaBH00YMBoOhp0Rz1xEBgiHHQcfPYGg1w1ZVVpKekUFsbGzrSFiAmlo/xaWNFJc2dbtzSHVNgK+311Ffb9bpNxgMPSOaLcsngf+IyN+c49OAJ6Ioj2EQ0WKGzRk+nNjYWJKSkmhqsteuqKhq5tePb+L9f5XicsGJR+dw9cXj8HUSVn1DgEt+/CmP3jObmdNSBu4hDAbDHkM0B/j8WkSWY08hAbhMVddESx7D4MPtdhMXF9e6xmuL+5NPS3j/X6UAWBa8sbSQBYdkMWfsrqkgTc0WFZW26bY64EMV/vTcdu764TQSE0xfp8Fg2D0GvNQQkfSQw23Or/WcqpYPtEyGwUv4wujBoMV/11S0u271F5XMP2B866jXL1eXc+PP26530cG66gbDoCcQsLsPPB5PG7dhYIlGipcCeeza6Dm0CFNgfFc3i0gs8CEQgy3/y6p6u4iMA54HMrDXm71IVZv7WHZDlHG7XRxxcCbvftB2XdeD56a3Od53XCI52TEUFtumWxG4/LwxplU5iNjdebF7I8FgkJLiYgLBIDnDhlFYWIjH6yU7O9sMchtgolFy/AZYCHwMPAf8S1V1N+5vAo5S1VoR8QL/EpG3gBuBB1X1eRF5HHu07WN9LLthEDBnRgpnnzKSV/+xE5dbuOCM0YzbJ6HNNRlpPn5/3xyWfVRCYUkjJx87nGFZMVGS2NARZl5s97jdbjKzstiZn09ubq59nJlpFGUUGHBlqao3iG1bWwBcBDwiIkuBx1R1awT3K9BSHfU6PwWOAs53/JcAd2CU5R5JaoqPKy8cywVnjgYgMcFDbEz7wiMjPYZzTh010OIZDH1Ky9rIAOJydbhPq6H/iYpNylF474vIGuCbwM+BTcAfIrlfRNzYptYJwKPAFqBSVVtMu3nAyA7uuwq4CmCfffbp5VMYokl8nIf4OGNSNezZNJVW0FxVTaoqbrePYHOQhu35+FKSiclMi7Z4exXRGOCTAJwKnAtkAa8AB6jqjkjDUNUgMFtEUoG/AVMivG8xsBhg7ty5u2P6NRgMhgEnWFvHh1OObee/cNMyMMpyQIlG1bwYuxX5vPOvwFwRmQugqq9EGpCqVorI+8DBQKqIeJzW5Sggv88lNxgMBsNeSTSU5YvO/2TnF4pitzQ7RUSyAL+jKOOAY4B7gfeBs7CV8CXAa30ptMFg6FvMFmmGoUQ0lOVaVX1YRA5V1Y97cP9wYInTb+kCXlTVN0VkHfC8iNwFrMGsBmQwDGrMFmmGoUQ0lOVlwMPYC6bvv7s3q+rnwJwO/L8GDuy1dAaDwWAwhBENZbleRDYBI0Tk8xB/wR4oOzMKMhn2cILBIAK43O42boNhMGNM1YOHaMyzPE9EcoB3gFMGOn7D3kcwGKRg505S09KIi4ujYOdO0tLSiIuPb93yy9B7gkF7EyG3UyFpcRt6hj9g0RSTQHxqCm537+dWmhWTeke05lkWish87HmSAJtVtTEashj2DhISEiguKmotvH0xMWZydzdUVvuprQ3Q7LdITfaSntbZvi62oiwtKcHn85GSmkppSQkxMTEkJScbhdkDyiqaefmNPL5cX81hB2Vy7IJs0lI6T/9IMCsm9Y5ozLP0AL/E7rvcgW1+HS0iTwI/VlX/QMtk2LNxu90kp6RQWVlJMBgkNS0Nt9vdI2W5t7SeKiqbueeRDXy80t7XYNTwOH579ywyMzpfMjAhIYHi4mKqq6uxLIuU1FRTIekBFVXN3HrXl6zbWAPAmi+r2JZbx3ev2NcsxBFFomGDug9IB8ar6gGquj+wL5AK3B8FeQx7OC1mWJfLRUJiIpUVFTTU17duJB0plmVRX1dHwc6dBINBamtrW917Glt31LcqSoC8ggZeeiMPf6DjNHO73cTFx+P1egkGg8TFxeHz+YyZuwc0NgZbFWULby0ror4hiKrSspR2qNvQ/0SjmnISMCl08XRVrRaRa4GvgOujIJNhDycpKYn4hATcbjexMTE9MsO6XC58zQGSm4LUbc1FgFSXi6bcgj2u32dbXl07vy3b6vH7Lbye9gqwxQwbCARISkqipqaG6qoqY4btAW63C5fL3qu1hcR4Dx43+P1+LMvC5/MRCARa3eGVEr/foro2gNsNqcm9M98abKKhLLWjXUZUNSgipppk6HPcbjdJycmtC1KHuneXYG09H009rp1/Z/0+LbX/lrha3IPdPDlvdhoiEPqlHn/UsC7NgAmJiaSkpuLz+YiLj8fj8Qz65xyMxMe5Ofe0UTz3Sl6r33VXjCcxwUNFRTm1NTWkZ2RQUVGBz+tlWE5Om/srq5t55c2d/P2fhWSk+bjh6glMGGtGz/aWaCjLdSJysao+HeopIhditywNhj4ntObdU9OgZVlY1u7V5wJ+PwUFBeQMHw5AYUEBw4cPx+sb3LX9jDQf99+xH799Ygv1DUHOOmkk82Z3vhap2+0mPj4esNM31G3YPRITPFx45j4cfUQ2m7+uZb9pKaSn+vB43KSnp+NvbqastBSPx8OwnJw2LfdgUHn7vSKeemE7lgVFJU1c98O1PL94PqlmGkqviIay/A7wiohcjr1zCMBcIA44PQryGAwR4erB9kgulwuPx0N+nt1KiImJGRIKJD7Ow/z905k0PhFLlZQkL54OzK+h9EWFxGCTkuwlJdnL5H2TWv1UlWAwSHOzvad9MBjE7/e3sVrU1AVJTfbwwuJ5XHPzZ5RVNNPsVzZ9XcOhB2buUV0FA0005lnmA/NF5ChguuP9D1VtX+UxGPqAvpxftrtWRZfbTXpGBjvz7XX90zMyhtRiCGmpg7sFvDdhWRZVVVV4vV5yhg+ntKSE8rIysocNo6GhgarKSnKGj2D//eJoaijjsV/N4vxrPyUQUIZlx0Zb/CFPNMchnwj8SVX/F0UZDHsB0ZxfFvD7KSwoICbGnnJRWFDAyJEjB70Z1jD4cLttMyyquN1uMrOyQBWX201sbCzlwSB5uTuwLIvY+FRWfVZBIKAcf9QwstI7n/JjiIxoKsv1wGJn3uWTwHOqWhVFeQx7OY1NQWpqA1TX+ElN9pKY4CEmpm0rcHeXH3O5XCQlJZGaaivlyspKY6I09JjQ/slwd0JiItVVVYjLRXZWKlMnN/D84gNJSvSQkuSNhrh7FFFTlqr6R+CPIjIZe4GCz0XkY+APqvp+tOQy7J34/RZ+f4Dq6iZu/eV6fvWTacT4BI9HCFZW99iM6/Z4SEtPb1WQoW6Dobc0NgUJ+IOoNrVO1amvq6OwYCfjRo8w03b6kKguB+FsszXF+ZUCnwE3isjVqvrNaMpm2LuwrCA1VWX4PMqfHpxDZUUxNdVuvN5Mgr0045qBL4bO8Pstqmr8WJYS43OTkhx5C7C8spknn9tG3s4GbrtxIukZmSQlJZKamkpDfX3/Cb2XEjVlKSIPYi9Q8B7wS1Vd6Zy6V0Q2REsuw9CjviFAXb29ik58nJuE+N3P1rV1Fm5vMk11JRQX5eJyufDGpFJXbzGUhkZU1/jZmlvHO+8VMWViEofNzyTdDNIZlDQ0BPnPmnLufWQjNbUBZk5L4c4fTO1yScEW6hsCPPbU17y1rAiAm3+2nuMWZnH0EXGkp3pJSEw0rco+Jpoty8+B21S1/VIhZl9KQxidjWiV+HieeKOCv76Zj1rK8YtyuPaScaSGLDodST+j2y0EAi48bjd+y8Lj8RC0hNg+2O1hoAgGlQ8/KeWeRzYC8Po7hfz9n4Xcc9uMXi/Cbeh7qmv93H7vOoLOSj2fr6vi8SVfc+O1E7tdA7ahwWL5xyWtxxu31LJxSy0HH5BJRprPKMp+IJrK8kJVfTLUQ0SWqeoiM9DHEE5nI1oP/d+7vPDqrpVO/v5uIfNmp3H0Edmtfr6M1E7NpYFAwF7VJ9FNQ30ZwWCQxKQM6usqiPPWkJiQRVN5h7cOOiqr/Tz5/PY2fv/7qoba2oBRloOQwuKmVkXZwpovq2hoDHarLF0uGJkTx+ZtdW38YmONkuwvBrwDRURiRSQdyBSRNBFJd35jgZEDLY9haNPU3H5h73//t4xgBCvtBINBigoLKS2xa+ipqankDB9Oaloiw0eMGNDBOIGARVl5EyVlTdTU9nzjnQ7ngQ6dxvFeRU52DOHZa+a0FOJiuld4aak+bvneJGJjdgVw5UXjSIgzyrK/iEbL8mrgBmAEsDrEvxr4bRTkMQxhfL72yuzguRm4XW01hKpSUeVHVYmLdRMfZ69bmpGZScHOnWzfto24uDgys7Lwej2o2oWOiPT7bvX1DQFWrq7g/t9toqrGz2HzM7j525O63D+yI1KTvVx+3lh++fCuLv+Z05JJSjDbOg1GkhI93HHzVO59ZCN19UEOmJnKty8bT3yEfe4Txiby/OIDKS5pIj3NR2KCm4Ru3nUwGGw10Ya6Dd0TjRV8HgYeFpHvquojAx2/Yc/C63Fx7qkj+evfd2JZyjcW5TBvdluTa1NTkPWbarjnNxspKmlk4WFZXHfFvs56mx5cbjfBQABVbW1Jhi5r15UZty+orgnwk3vXtS5a/tGKMkbk7OCqi8YT00FloDPcbuGwgzL4/eg5vLu8iMkTkjjogPQ2/beGwUN8nIcjDkrnoAPmU99gkZLkxuWK3Azg9brITI8hM8IFBwKBAJUVFaSlpaHQ6nZ7TGUqEqKx+fNRqvoekC8iZ4SfV9VXBlomw9DF5YIrLhjLN08fDUBcrJvEsNp1dW2A7//kc/wBWxstXV5MarKX71w2jqLCQlAlKyuL0tJSKsrLSUtPH9Aa97YddYTvw7NydQUXnBkgZjdX+klO9DJ9spfpk5P7UEJDf2AFg+zMz7cXrUhOZmd+PqmpqSQmJfWL+d+yLGpqamhqbrY3BQgGSUlNxbQtIyMaVYojsaeLnNzBOQWMsjS0oytTqC/O0+WAiLydDa2KsoV/rSzj0m/uQ2ZmJi63G7fbbe8L6LgHktEj49v5TZ+STLzpf9qjUey1gouLiqioqMDr9RKfkNBv/eReZzuvwoICAEaNHo3Xa1b2iZRomGFvd/4vG+i4BxPR6jsIBCwqq/xs2V5HRpqPzAzfkNgctjem0GFZ7c1UE8cl4Ha78MV4W02uPdkQui9ISfby3W/ty++XfE2zX5m8byJXnD+W2AgGehg6prYuQLPfIiXJi3uQTv9xO2u6igiqSmxsLP6AUlzaQEyMm/RUb5/mx2AwSHlZGS6XC1WlrLSU7OxsY4aNkGguSvBL4FeqWukcpwE3qept0ZJpoAgEApSVlpKRmQnQ6vYMQKbNK2jgypvW0NBgT+I//KAMbrlu0pDq19rdXUSSEj1cedFY/vTsNoIWDB8Wy3VXTGi3eEG0NipOTPBwynHDOeqwLAJBJTbGRVqKr093S9lbCAQsLMti3YZKXl9axI+un4RLIDZ28LWgWsywHo+HxKQkKsrLUTy88341by0r4td3zmTUiLi+i8+yUFVGjhqFZVkUFxVhqRozbISIhneWDFTEImtUdU6Y32pV3X8g4p87d65++umnAxFVOwKBQOuWTSKCZVmMGDmy300itXUB7rhvPStWtZ04+NRvDmDCuKGzAWz9trxOl5+LHzuqw3vq6u1Vfpqbg8TFecjYzZGm0aAnz7k3EQwGW/cYbXEHgxb5ebl4vInEJyRQXVlEckoayclJuN2Da6nBYDBIY2MjMTExNDUrdXUN+ANubvjJlxQUNTJregp3/3g6yREugl5bF6CpKYiIkJribTdYSFVbB7GFuncXEVmlqnN3+8YhTjTb324RiVHVJgARiQP2in1kPB4POcOHk5ebC8CIESMGpO/A77coLWtq519R1fN5fUOFhHhPj5bBG6yoatRawoOBQCBASXExmVlZiEiru6LSjy82hYa6cpoaq/D5fDQ2e5DaQKfWE78/SFVNgPqGIPFxbpISva2jkOsbAjQ0WLjd9Ln1xe12ExcXh8vlIndnHc+/upPVn1dRUNQIwMYtNfj97ecRd0RZRTO/fmwjH/2njGFZsfzo+slMm5TUZtccEWnNM6FuQ2REs6r1LLBMRK4QkSuAd4ElUZRnwAgEAhQXFeF2BpOUlJQQCAT6Pd7kJC8nHze8jV98nJtx+7QfYLK3o6pYltXOPVjw+/34/X1fyamobGbjllq+2lRDeUVzRPcEAhb19f2ff8MJWhb5+fnszM+nudmWNaiCz7drNV9xxVBY3ITH03FRFwwq/9tQw3nX/Jfzr/kv5161ktWfV+D3W5RXNPPg45s5/9qV3HTHF2zaWksg0Lf5oKVll5To4b1/lbYqSoADZqW12yKuIxobgzzx7FY++KQMy4KCokZuuv1zqmsH/p3syURzi657ReQz4GjH6+eq+k5X94jIaOBpYBj2YLLFqvqwsyLQC8BYYBtwjqpW9JfsfYHL5WJYTg4iQnFREQNhDne7haOPyEIE3lhaSHamj29fOp60lMHXnzPQhPcPtrwPT3IiJMZjWRYxMTGDYtcQtZSd+fnExceTmZnZZ4PDyiub+b87vmDjFjsdRo+I45G7Z5GsDZ32ndZIHC+/uZNNX9dy7IJs5u+fRsoADBjzeDwMGzaM3B07sICc4cPxeDxkpbvIz8t1RjbH0dhQxfh9soiP6/i9VVY1c8d961v78JuaLO584Cue+d1cFv95K2+9Zy9UvmFzLd+9dS3P/G5exPMad4eUJA+/vmM/7vz1VxQUNTJnv1RuumZiu2lQ/oBFVbWf+oYgcbFukhI91DUEWLGqbXHX7FcKixvJimBRdkNkRNsutQbwYiu+NRFcH8AeBLRaRJKAVSLyLnApsExV7xGRHwI/BG7pJ5l7jcfjYVhOTmshF+rub1KSfZx6/AgWHpqF1+tq9zFGm2BQqaxqprS8maRED4kJnoj7bHpDZ2vPHrnhXUqqKoiNiyM7O7uDO3tOR31ukZjGglYQT6y3TxUlwKdrK1oVJUDuzgbefq+IM+a6OkmbZdzwwCa27rC3g1qxqpwrLxzL+WeMxuvt30pFIBCgqLAQt9uNy+WipLiYESNH4nK5yMjMwuPxUVUdIHtYHLGxnVdyAkGltLxtC7qmNkBzs8W//lPWxr+2Lkhllb9flKXX62b6lGR+f98cgpbi87nabdisqmzaUsuNt39ObV0Qn8/FT2+awpwZqUwcn0Bx6a4uFhGMouxjojka9hzgPmA59uqVj4jIzar6cmf3qGoBUOC4a0RkPfZ6sqcCC5zLljhhDlplCZ3veD4wcQtpg3TbpvzCBq79wRqqqm0T0tmnjOSyb45pozBD51y6fD6C9Q0AqGVRvy2v9Zq+GDFqWRYen4eMjCw++1812ZkxpCR7SUrsnQJvKewzs7Jwu92tbp/P16oww+eWqkIwGEDiYwk2N2JZVp/mne157fdA3LajDuYmtR7Pe30x7njHzGkF+dklaUAa1QEf1929lZffzOekY4aTkT5ArUvHOtOyvq/b7SY+3u4HjI31YllWl9aAGJ+LyRMS2bB5VyVh9Mg4PG4X+4yM54vq6lZ/Edtc2l+4XNLlEocVlX7uuH89tXV2K7i52eIXD23ghd/P4/qrJrAt93PyCxrxeoTvXD6+X2XdG4lmav4YmKeqxQAikgX8E+hUWYbiLLw+B/gPMMxRpACF2GbavY6+Gu0WLWpqAzz8h82tihLgpdfzOfPEEW2UZeicy/pteSyfemy7sCLdmDkS/H4/FZX1vPN+EX//ZxGXfnMfvnna6F61ykUEt9vNzvx83G5367vqbJm9lkXfER/Z2Zm4CwooLy/v09bl0Ydns+SFHW38Tjl+BFDTeuyOj2XF0Re3u3fqx38H7D5w6cMs19JX3DIXscXt8XjIys5uffZQd0uej2TqTWqKj1/cOp17frOBz/5XxdRJSfzohilkZcbwg+smcd2ta6mqDuBywTWXjI+qJcZSZWdhYxu/hoYgDU0WI3PieOzeOTQ02i3OhHiPWdSij4mmsnS1KEqHMiIccCQiicBfgRtUtTq0gFFVFZEOOwBF5CrgKoB99tmnp3IPSlSVZmcZq5iYGPx+/6DqZ4sEvz9I3s6Gdv6l5c2MGhGdQUhut4cYXyyB5lpOOT6Hv/+ziKdf3MEpx43oVcHpdrvJys5m+7ZtBAIBsrKzu5xn63a7yR42rFXJ5gwf3uruK7KzYnjgZ/ux+OmtBILKxefsYw/+Kq3p/mbsltd1l+9LanLfmM1VFb/fT2FBAcNHjMAKBikqKmqdZtWddaYz03p4RSonO5Y7b5lGs9/C63GR4sg/emQ8Tz8yl+raAAnxbhLi+ndEdTBotxjdbncbdwtej4vZM1JY++WuHQyHZcW07lKyuwvvG3aPaCrLt0XkHeA55/hc4B/d3SQiXmxF+WzIOrJFIjJcVQtEZDhQ3NG9qroYWAz2PMvePkBHNDVbVFQ2s2JVOVkZPqZOSh6Qneoty6Kmuprq6mpS09KoqqwkLi6OrOzsITO5PSnRy9FHtG3dxMW6+nRi9u7i91sU1dg7Onz/J18AYFnQ1BzsVbiBQIDCggLcbjcer5fSkhJ8Pl8bM2w4ocrUqqrt83eaEO9h/v7pTN43EVVITbFXkKkv7f7e5EQvzz42j4w0Hy6XUFPjp6yimQ1bapkyIZH0NN9um65FBI/bjdfrJT8vD1UlMTGxXyp/oZaLpqYgtaoZ/kMAACAASURBVPVBYmNcZKTHkNEPfZThBINBCnbuJDYujrS0NHbu3EliQgIpKSm4HIWZkuzlpzdN5d7fbmD1Z5VM2jeJH39/MmmpZoDeQBDN0bA3i8iZwKGO12JV/VtX94hdijwBrFfVX4eceh24BLjH+X+tH0RuQ119gLLyZlauLmf82ATGjUkgLcVHbn49V964unUt0onjE3ngZ/v1SGF2V9MMxe12k5aeTnNzM5XOOpMtpqmmCGvY0cbrdXHWySPx+y2WLi8mJzuWm66d2FrT709C+weDllJS2gQINZaPt94r5t0Pigk47zQnO6bbzXm7Q0SIiY0lNTUVl8tFeXl5xAN8IPJWU3c0lVbQXF1LU6MFAjExLnwue1syETuc0LTRQMeVhPh4N5nOGrcNjUH+/s9Cfvunr1vPf//qCZx0TE67qRCh80U7mjsqLhcpqam2CRpIcdKrvyivaGbJi9v55L/lTBiXwHe/NYHhw2K7v7GXiAjpGRkUFhRQXVWF2+22F1QP+96zM2O44/+m0tyseDwyIN+GwSaqPcCq+lfsVmKkHApcBHwhImsdvx9hK8kXnfma24Fz+lTQMCxLWfVZBT/65bpWvwWHZHLjNRN4fMnWNot2b/q6ltz8+t1WlsFgkPz8/2fvzMMkq8r7/zn33rq179XV23T3DMMAAyggm7IIsii4R1HcUTCKgopLXHA3GuOWaILBKCFINBo0JhIxAoOCBn8qsoPDJszSe3d1VXXty73n98etqqmeruq9p6d77ud55plTt6urzu1773nPec/7ft8hgsEgPq+X4eFhQuEw3jZCy1JKqtUqpVIJIQSVSoVyuYzTub4i4sJBncveuIWLX7EJrckltto07w9OZyoYmQnUUp5qJscVL/Zw2bn9lMomVd2FJx4hGtYxDMMKANI0q4pDrb0Qg6eqKpGm6iaRA1zppE45neXXR50363iz0d1/j3g+crkq3/n+rsbrwwa8hIIOEqkyTl0lXFOXqVarGIaBw2EF4tTb9fu77oYdHxvD6/VSra2+ejdtWhURj1ze2jO/4zdWsNDwWJGnduX41pdPWHUXp6IoOJ3OxsTY6XK1nRQsN7jMZmmsRYmuDFaqyKwfYW05tq0tJKX8P9rXfZ89zV4lUunKjFkzwJ2/neTKy7aSL8xOBM4XluayCwaDJCYnmUokZqh9tKLuhnW5XHR2dTE5OUk6laIjHscw10bScKk4dQXnAl1f7aqRqG5Xy4F9IW7KgN+B4je466SXzPrZ2U/cgbfThWma5LJZEokEPb29ZKanyWaz9A8MLHh1uJYR0WAZo8Xem/MVws5kK1SqklLJCszZ0u/hQ+/exle++QTP7MnT2eHkCx87hm2HechkMqSSSeKdnaSSSarVKn1NsQR1N2w4EsHv94OUZLLZVVtZFksGd949MePY8GiRfNEgsirfuI+6GxasidPU1BTTuj7DDbsS5PKWUpEAvF4Nt8sOAlooa1F1xD//uw5upLRcTbMQ8Pq/6OOhPz3aOBQMaGw7bPG6q6qq4vN6mUokkFLi9fnmHITrbliwZqnRaBSAYkmSyRw4JY8DvT/arhrJXLqqC+lHuyK89UugKApen49sLsfQoGWUu7q7W/7OYjEMS9/T0jrd115ppGRWHc35mKv6y/Boga9d+yRnnRbj5BPC3HN/ktf9RR9/9619uZhjEyX+6nMPc8M3TiQUDFAqlRgbHUUIQe+mTbPucVXTCAQCjfNvbs/HfIZ9fwSCeIdrhoqOqgr0eXJGKxWT6WwFQWtN1oVQd8PWA5d0p9NaZa+goUyly3zrxmf43x2jqKrgDa/q4zUv7z0gIhIbgTV1wwohzgC2SSn/VQgRA/xSymfWsk8LIeDXuOilvXzne7sax7b0e9AdVrTa1//62fzof4aIx5y88dV9LV2wpilJ1TRZg4HZZYQMw2BoeBhVVfH6fKRTKXRdb+uGhdYrlUKxRHmB+pIrwUrtpS2UuvuzrnVZbx8omoNuVFVd0nc3TzAUXaeazyMQoAjMWkqJFvDhjIaX3M92kxifZ2WM8FSyzFWfeIjhsSKPP5Xlbz5+DNu2eNnS5+GpZ3Iz3ptMVSiXrQoYRk3mUUqJaRjIFm7s5vt9MZOGxZZ1CwUdfOy9R/DBTz/c2Ep551u24PO0N1jp6Qr/c9sIN/10EI9b44pLD+M5zwrh3S9Sej4BCisvdJ/r1TWHG3ap/O7eJD+7zdr7NUzJDf+xh1NOiPDsY2xjuRDWUpTg08BJwJHAvwI68D32BfwctDgcCq+8sJveLhe33jnOEVt9vOrFPQ2jeNLxYY45MoCmiZZKJplsld/fN8V139uFYUre/Jo+zj6tY5ZSTTgcxu12I4RA1/U53bDtcLtU0k53Iw/OQtAR02fMsNdLxOz+GIbB3j176IjHURSFsdFRejetbkWORLKEIkARRbKZDPF4nEwmw8jw8KLcsHWaJxjP3XFjyzzGFzx5BzQZy4WumqaSZQpFg0Ahw6+PnL03efbO2xbV13YUSgbDtRVZarrCVZ94kLNP7yAa1jlswMvTu/cZzGBAIxjQyGQyVCoVNvX1kUwmGRsbm+GGrdNwHQqrnNlq1flUFMExRwa46bpTGRop0NnhxO9z4JkjXeTeh5J867vW/H4qVeFjX3iU71978gxjub8ARb3SSH2ve//80P3bK0G5YvLbexKzjt/zwBTPPia4ot+1UVnLleVfYIkK3AcgpRyuSditC4IBnfPO6uS0U6LoDmWWULN7joTg4dECn/nKzsbrL1/zJH09Hk541j6jpKrqjFXkXCvKVtSNnwDiHkmyolCtmmSlk0TFRXdPBL1pv+JArwhXCkVRCIfDTIxb2UKBYBBN01heYkd7qobksqvuI18wuOaLz6I73o3m0Il3elZF2LwdejREVvVQqZg4HArh4OxCwaPjRa76xEMMjhS48ZOtJxCqx70oV2Xb/jgUdIegXLFWZOWK5JGd07hcKp/7yHY+/NlHGB4rEgk5+MLHjkHXVZzOAD6fD03TCKk6VVmhuGd4xucKj4drbprg5zvGUFXBmy7q49Uv7Z0lBbdSOJ0qHU51QVJxhYLBrb+cnaX2u3unGNi0Ly9YYEX1Dg8N0dnZaRlLXcc0TVKpFIFAYNWrDukOhVNOCPPL/5u5J3vCs5furTjUWEtjWW4WEBBCeNewL0tmKSkEd/xm9gN2y45RjjsmOGO/o9k4SikxDGNBaSQwl9bpDo7aFEXX14dQwXwIIdCbIn6d+sq4lFqt3EwJI9NKQ0v0yo89zLFHBfjwlUfQFXctKvVjuezem+fqv3mU3YN5NnW7+cLVR7Ol39u4f3L5Ktdc/2cGR+oiD603J81yeUVqY/q8Gle983C++k9PYppWCsrVVx1JwK8R8Gt86ysnUCqb6A6FUFBr1Jas38NGNsedR8y+X5/78G38z60116Ehuf7fd3PKCWGCR639akjXBe+5OMY7L5iZWhIJmZQTqcYkU9U04vE4e/fsQVFVioUCuWwWXdcpFAp4PJ6Gxu1qUJf8O/O5UTrjx/LRv36UqgEXvbSHwwbsikMLZS2N5U1CiH8GQkKIvwQuBb6zhv1ZMpWKQSpd5fE/Z4jHXMQ7dEJzbJq3Cvg56nBf28AAwzAYHRnB6/XiDwQYGRnB7/fj8/kWHUWpKGLNDKVpGEisAbK5vRzqMnCBQAClVu6s1+lE9Xk5c+etKIpa2yeqWiXR/Aubk7Xa70pMlfjQZ+5rvM4XDP5wf5KpVJmuuOuAGcqpVJmP/c0j7Bm0DOFH39qFNjlG3tQb95A04fXnBbnz7gUoCqwAbpfKeWfGOfU5EZKpCrGojt+3b/9xqakX9ajaZu65P8mxB4GxVFWFkKPCXafPjppu9shUq1VGRkZQFIVUMklXVxd79uyhUCgQjUZXVWWrWq0ynU4TDIXwehQO64Nbvv88MjkTj1vdUDVeV5u1SB35JvDvUsqvCiHOB6ax9i0/JaW8/UD3ZyV4Zk+eyz/8AOWy9WC/4PQYH3z3trYG8/TtDn7wub5GYVdNU4iEmDEb3Z9AMMjE+DjJVApFCDzzpJEYxtrUX2ybyuHzks1mkYDf72+0l2Lwm1EUha7u7kY+qcvlsoJuwgEKmmAykQAJTpeTzq6uxj5R/W83n9B2M16vxuknR7n51pHGMZdTIR47sLmslYrZMJQAAa3MI8+zBuxmofP+7k5u/GQvAJFVKMPWap/bD4QjPvQVUr1pNbE7/lnL2xZYyv58u98RbVbsM99jeTzCkQhCCKYS1t6hqqqkUik8i9xiWSj13Ot0Ok2pXKZaqSClJBgM2hVJlsBaTCueAL5ak6W7CctwLqQ810HJdKbC17/954ahBPjV3ZO8/U1b2q8u83keOuXCWYfb7Q9alRQ8KLUVmaem7NFuJaMoSsPNdaBpF4FoGAalXI7ExAS5bJZisUg0Flv299XzT+t/i3pbSom3lnoDNAYk0zQplUo4NA1FVRttbQF7Ri6nytvfuNnKx/vtJL1dLj763iMJ+rVGgei6KPpiKoLsX0WlEXSjCISiIKW1d2cYElUVODSFnk5XI6Bmxt+jjdD58/98F6c/ejsOh4IQVsqIENYkplwuo2naogfsA7HP7XKqnH16jLt+O4miCF79kp5lFyufq9/1n++PNE3uPPL8WccXEiClahrRmuC9Ua1SqVTo7ulBdzgYHR2lWq2uihu2HhgY6+ho7On3DwzMqUFs0561yLP8BvANIcQA8DrgeiGEG0sj9gdSyicOdJ8WSiv5OcMwW1aUz2QrbWej0lzcqq/uhhVYQgXpdBrd6Vz2qqyZ2eWgLOkx1eelXCqhatqyvqueN5rNZikWCjhXsP/Nk4Z62zRNhoeGcDqduN1uklNT6LqOy+VicnISaZqW6EMiQTgSsZK/FzBYRcI6H3r3Nq64dCuKgHBIbyjNJCYnicfjGIZBIpGYVxxdSkkyXUEKD/7eQMt8volEiRtv2s0Tf57g7NNzXHhOJ+GQgy9cfQwf/tzDTCTKC8rrE9UqgcP7EAIKhQJjIyPEOzsplEqk9+5lYGAADrDgvpSSqVSFfKFKqI1whqLAR648gve+fStCiFV3HbYzpMuNGq7f56qmNUTw616R1cqjBes5SCWTjYniVCLRMNw2i2MttWF3A18CviSEOAG4HvgUcFBeRcMwSKVSlIpFurq7mZqaolqp0BHv5GUv6uLaG/alh4YCDrrjLqrTEyv24AVDIZy6jqppOF0unLqOoihkcxXSmSq79+bZ0u8h4HfgdilIt5Mzd95q7Q+aJiBQVQXN72upwdm8IiyXywzu3Us0GkWUq1T2jqCqGs2/stiUEtMwGobS5XJRLBbJZDL4/f5Ve3CjsRgul6sRBFSXE+vu7mZw714SiQRen29Rie5gBXV59tN2F1h/t+HhYaqGgd83e1+6efIkpRXOn8lUmTYc/P5Jg4te1jujYsdUyspdrNeZfPTxacYmilx+yWEcNuDlur8/kXLZwJ+bf19SUfYJLTidToLBIONjYwB0dnYi1qAyzfBokfdc/SDjkyWuuXoLpzx4m1Xia7/7zONbfv3QOql0GW2Ouaq5yInsUihXIJurYJoSp1OZM75hOdTdsACb+vqoVipMTEw0Sp3ZLI61zLPUgAuxVpfnYhVs/sxa9Wc+FEXB7/eTmZ5m965dSCnp6u5GUQQvOb8Ll0vl5ztG6e1y8863bCEc0sklW9+Ui71V627YeuJ9vV0qm9x+1wRfu/bJxns/+YGjOOeMDpzRMGY4iMPhsFw/1SpOpxPTNBt5XnOJG0RjMRKTk8Skym+2v2jWe5pdbQvZA6qFPBONxfbtWa7iQ9twXdfOsd42TbNRygygVCxaK/1lGGwhBJrDQSQaZWJ8nFhHB06ns5GAXq1W0TSt7apl+923cMMPh4jHdF56fnfDqBUKxqyCzD+7bZQ3v6afaNhJtBY0k9914EQYVopMtsLffetJxidLAFz5N8/gcAh+dN2pxFahykfVkOwZzPOFrz/Gx1/fepJXNyyLYbGpN5lslZ/fMco/3/gM5bLJs48O8tcfOXpJxbLnK7RQd8P2btqEoigoitJo2yyetQjwOR94PfBi4A/AD4F3SClzc/7iGlOvHeh0OikUCmia1jA4oYDOKy/o4dwzOtB1BY9bo1IxyeVbZ/uZxuKNRKuE5Wyuyjev//OM9339n5/ixONCxCLORgHobDZrFQru6CCdSiGlZFNf35zfZy5CT7adETjzsR1khJtQUG/kjdb77ywbGNkcpeTMWokrKYLQMslbShKJBIFg0CqFNDREJptdsBu2Fc1u2EAggKaqDA0OEovFqFSrpFMp+gcG5v2c2+8c5+zTOwjUVlGaJjjmSD/jkyUmEmWOPsKPUISl7tP03arPw9lP7LD2attUBWl+f6lUIp1OE4/HLbm5sbED7oYtl80ZQgXPf16MN726j3sfTNHZ4WRgk4fwCpa2S6fLvPfjD9ZUs9pH0oq20tOtWUjqjZSSyakyt/5ylJed7uPk7iInf2SfNGJlaJiiGcQVW3jOo2EY5HI5ctksnZ2d5LJZcvk88aYi2LC6QgeHGmuxsvwY8O/AB6WUyTX4/iVRd8MWCgXC4TDpdJrxsTHinZ1WSoIqCAX3PdyVqonRxigKt4vtd99CKKDjcu27gRebCG4YkuJ+ofWZXBVZO1RfifoDAUrlMpMTEwhFoa+vr/HgpKcrFEsGiiLwelQ8bo1qtUpyKoHTHUIU9g1ozZGWsmo0hMrb7cFOJkpc/eUH+Npnno3breLzqOi6FQBTzWS584i5q12sBkrNDVuf/HT39KzInpHACi4KRyKYpkkoFGJy0nKPxjs7F/T5Wzd7Z6jT+LwqX/7kdjI5g+/eNMhfvqkPr8eB27XPJWmaJjkhSZlla/8rk+fMnbehaWpNClCiaWrj3hJC4HQ62dTXh6ZpuD0e/IHALDfsQrwFqt+7ZEEDr1fjtJOj/PQXI2zqdvOql/Rw5dUPNgLljj/WWnGthMFMpspkc9WGvOR0Va8pWgk6O5xIaUkmqj4vRrb1nH054g1TyTJve9+9hAIOLjgWdrZINTnr8TtgEcayXqUkMTnJ3r17MQyjETC3XtW4DnbWIsDnnAP9nSuBoij4fD5cLjeGqdHV7cU0jbYRqR63RrGNis/EaJa3/PUQb724n7e/aba810Jx6grHHhXgkcemAUvb8l2XbMGUkky20tjnkVJSLlnuLllzQyqKQipd5TNf3cl9D6VwaIJLLh7gNS/vZWikRDzaw213TXDOtn0Gv12kZbs9WFUVfOoD27nu+7t4/M8ZTjkhwlte008woM5wwTYbYaE7yD212/pBLRoUVvZBbw66WYnIwLobti5nVk1Oo0/niMna9R9PUlRScwZ2bep288aL+mcE+bhdKkMJKyH/yks3MZUYR5E+3K4o9eI7qqoSDIUolcskJifpiMdJFXNUq9b17urpnqUzak3u5q54MlfEaEa4+cWvxti1N8/LXtjNln7PnHuK7QbvK14TI5c32NLv4Qc/2TsjovyBR9KMTRRnGMvFGoFKxeDJp3N88R8e55qrt9RUjCRgBeRpmkDxecDrQkiJ2+2mrKqNVXozilPH1RNve45zcd/DKVLpCsWigabNLdC/UIQQODQNby1oTlVV/D6fFeG9TtW4DnbsGOIFIoRgfLLKTTcP8l8/H+XkE0K8882b2TLgwtlm8usO+3juQ7dRLFkJwMm09ZBOV61fOOfMpT18dUJBnc9/7Ghu+OFu9gzlef87tvEvP9jFtTc8w5HbfHzoXUfQ2aGTzWSQUtI/MEAqmWRyYoLeTZv4yc+HuO+hFACVquS67+/iwnM7+dntYzz5dJaHd05zUi1Pbyn4vQ4+/c0nGkLaewaHGB0v8vGrjkRtHrybjPBc2qgH84NeX6nWV813LSLNIBZ18k9fPn6W4L6iKHR1dTE0OEhiYgyny0U4Emmp7FQqFhtt3emkWq2iKAp6LRBspTBNuPLqB9k7ZOV5/u8dY3zuw9t5wRkdbSeOcxnev7piG9lcld/8frZu6XR25h7ifKkq1rbDvkCmdKbK+z7xIIWiSWEqy87TX9zyd121+0pRFOsei65sgel6f4ols6XIAsxtLKezFRKJMjufzLD9CD+xiI7HrZDL5chms/h8PnK5HGPj48TjyxtTbNpjG8sFMpUq85HPP9pIBr/n/hSP7HyIH3zrFJxtEnzd8QjOWJj0tBX59ufRFDfetAeHQ+Ernz6Wzo7lBzLEIk6uvGwrmWyVz311J/c/kgbg9/cm+dBnHuYfv3gcwUAAn9+PpmmEIxFC4TCFksn9D6dnfd6jj03z0vO7uPQqS6mm7rKKRZyoLC5SUFGZVXHi7j8kMAyJskEj8uqu71bM5crTW7gb6/ma9VW4aRizgqJM0ySbyaDrOp1dXaTTafK5HNFolHQ6zcjwMD29vSsWcWyYkkrFRFUFhiHpijv53o/3csKzQktymXo9Gh63ykUv6+Xzf/dY47jfp7F1YOEKmBOJEj/9xQiJRIlXvayX3i4Xk4kyhaJ1z7aqM1tntfb16oIXxx8T5NI39PP9/xwkl58/iGj/qOlSwUBmK/R4dN58xR95z9u38soLLSGOWCyG1+ezvAvF2Xm3NiuHbSwXiGnKGaopAIWiSbE8twFRFNEYRM57fpyTjguDgHCw9cCyFHUZl1Mlk602DGWd3YN5iiVjxoqlPmi6hckLTotx4rOD3PAfewgHdV5xQRdbN3uJRZ187bPP4vp/38W1P0nwrrduIdbphcmxlt+/vxGoViXp6Qq4PTPEtQHCQQe6bpWe2ghMpcoUCgYOh4LXrc4qzdSMWS7j6u9Z8PWVUjI+Po7L5SIWizE8MkIqmSQSjTZ+r+6GDdbafr8ft8uF0+XC6/NRqVRWVIZPCPjWV47j6V15vnvTXj774SMZHSst2o048zMFp50U4XMfOZr/+vkwnR1O3vb6gRkxAHNhmpLLrrqXqZS1J/mzHaNc++Xj6Yg6GwIMqynSUddsbm4bhkE+l8Pj9RIKqFz0kigvO78LOdb6GWpmrqhpgO/82zOce6ZV0UWr5T8ritJo26wOtrFcII5arcoHmgxSNKLjdlkPhpSykdNYb+8/SAkhWs6+E8kyDzySYnOfm3hU4HZbuYGFWk7iQvbVFAViEb0h8g3gdinoWvvAjQufBVKq/MWJW3AEvZR1Fa/XidOpcepzIhx1uL+ROP6Vbz7B5Re0Vk5pFRFopssYhuSD79rGtd99hlS6Qk+Xkw+8cxtOXaUa8DcM7HwRnAcr4xNF3v+ph9k9mEdV4JKLB7jo5b1tHyopIZVMEggGEUKQTqUaVVJaoSiKFYyElcze29uLYPbqp3mArBcPrqcK1P+BtTJVVHVZASCaKkhOj9ETd/O5Dx9BJj1Kb2eIgH95Q0nA7+CcMzo4+fgQDodCsWgwkSg1As/mEiIoV2TDUIL1d77hh3v4xPuP5D1v38o3r3+aSGh1qnpYwXBTRKJRS2RiaopIJIIpJZOTk7jzeVRVJTM9XStuHZqh1mTkrQm4NM15A+bqlMomprnP9Q8z2zarg20sF0jQ7+CTHziKL37jce59KMXhW3x86oNHEfSrZDIZUqkUvb29VKZSVDO5WQNgu4EoPz5Fdm+SrS6ImSXMMYNCTTlnPJums7MTpSlfsB2hgM4nPnAUH/7sw5Qrlizah688Ar9vZj/azVqf/9htCN3fSDc0TZNgwMHIWJHLrrqXSlVy2cuO4HmP3E4uV8WUEo9bw+1SW0YE1lcF558V47znx3h6T4HD+t0oiiWOoMbCjei/+iCxnigUDb7z/V2NPEjDhOt/sJvzzorTLOLXHLyEYaAlMxSSWRSfm3Q+i7emYtRu9dcuGKl5UtbcBmasXOtu20qlQmZ6mmAoRHU6y69aVPho3hduq/Hr9xJzORkbHaFcylpKTH7/irkv/T4HU8kyn/zSn3jw0TSqAq97VR9veFUf7cxdq7+cplkFA156fhdnn9YB07Mr/SyXups8m81SrlT2FbKGhvjF8LBVcize2YnD4UCJOht/4/yuQe7c/sJZnzufaMnpJ0dwOdv/vVWfl7Me34GiiLYG2Y6MXTy2sVwEYaXI5y+NAhFAoJhJyoPg9nnJaRp79+xZUBJ/M8WpLI88d3bgwZk7byUcCeNaYMFnVRU8a3uQm75zKlOpMqGgjt+r4VxgoVxFURp6s0ZNbcfn83HXbyeoVC2lkazq5ZIP30+zRvsnP3AUL3pB64fOMAwmxseQUrJ1oJPRkWGcNZdi8yx4Pm3U+nsOJopFg8efmr06Gxwu0HXYvvMxKwZ3HT17QDxz5634QzEqVQWnc5G5faZJPp9v6N/W2/VST/X3lEslUqkUHR0dVCsVUqkU5XIZjzH/vlk7jV8pJUrNtSultAzAPHJ7Cy1UDVCtmvzXz4d48FHLg2OY8P0f7+XcMzrYHGr9OXg8dMWdjI5bEcCqKrj09Zsb5fM8bo2ysDwZdeGB+kpsOfeVYUi0WvmtsZp7ta+/H03TKE0mqaYzjYhoOZagqKaWZaQcDoXL3riZV17QPatQfB3TNKm4HIynywR9QRypHL9pYZAP9oC5gxHbWC4CK8qx9Yzc4XZQqqVnLIa59u7y+Tz+QGDBn+XUFZxRJ7ElVhRITE5SKhapVquUy2W8Hg89XdaqaOuAl0d2ptm/mMnPd4xy+ilRfC326ozUNKGKZTSLe4YJAZqsYKQyqLUHtVIxcUSC6+7B9Xk1Tjs5MiOxXlWsXEk96mqcz+jDu9p+RiGfxqHrGIaKlGYj39MwjDndalJKqpUKU1NT5Dwe8vk8oVAIPE0Fh4U10SgUCgzXyrtFolGmEgk8y1CUlFIyPDyMruuNSji60zmnZKAa8qMErSLP9S2Ldq7nYsnkgUenZx1//KksR7you+V9Uk6kuOHjmyiWDExT4napryo06wAAIABJREFUKEqKcqK6Lyc05Gc8n0EqCuFIhInxcXxeD9Hwwp+vOoWJJOV0lmLRwOuxVvYxVITHxeTEBPF4nGomx11HzY6IXo6RCod03nxRz6xC880oioLH4yEUDpNKJokdnOqh6xLbWK4AdVdMRzwO41OL+l1nG3eKw+PBn89T2jtCuclFt5ruk1gs1kik7920CVXTOOaoID1dLhLJMl2drlm/M9DnaSkADlDNtC7o+4In7yDv8PDAI2l+9X8THH9MiLNPj62oYstq43AoXPyKTUxOldnx63GiYZ2/uuKIWXt37WqHCmEZSGt/SjK4dy9+vx9/IMDw0BCRaBSfz9fSAKmqSiAQIF8okM/ncTqdhMLhGe8VQuBwOAiFw2QzGTweD+NjYyiqCotXdZtBvdSZoig4envnrFhSF5Uvl8t0d3czPj6ONE06u7paTgbcLpUzTolw/8OpGcefdXR7ozbXJFZvSgvpqKnbqKqKoxYhPJfXpp2cXCmV4e6jW6QGPbEDQ7PcsMsJeJoranouQ1nHNE1yuZzl2t8YcXQHBbaxXAEURaGnqxdd1ymqs9Mx5kJt48Iy84W27lxHJNjY42olir4UhBBkc/tWSdPT00QiEaJhnWu/fAKPPZmhp8vF6adEuPsPU4QCDq798nEE/Bq6rlCpVkmlKvzh/hTnnBGb0zUnJdz034Pc+KO9ANzxmwnu+t0En/2rowkGZrqXplJlcrlqTUZQXTFB7ZUgHNL5wOWH8663bgEEoYADVd1PoL7NRCKZrhDY2svTu/Mcf6yLjnicsdFR0uk0Tpdrhq7t/pimSb5QoFgo4NB1SqUSuVyutRs2mSQQCFirVUWhp7OL8uDoks+5rhxTv+ccDkejXV8R75+KUZcV3L1rF0IIenp759AlFrzoBZ08tSvHbXeO43GpvPtthy1bL7auk1rva3O7FaZhkM/nyUxP09nVZeU0ZjJ0xDvJ5loHpAkh6O7pRlVVZtchWjgLkdBr+7s17WfTNNnU10dxz8j8v2SzIGxjuUI0DyDtKJfLs0LM2zGXNmu5XEZVFFRNa7QXUo8R2u8fKT4P5UyaQKgLKU1ymUlCoZAlqh7WOf2UKABXv+8oprMVYhEHycQ4uiNCtVplanISnz/AKSeESCQmCQaDbR1AUkpuunloxrE/PpCiUDRmGMvxySLvvfohBkesAIVXvaSHy96weZZBXUusCiTtH6N2C5dqVXLDD/fw1tcNNFaBdZzzDOR1N2woFCIUDjOdTlMpl1u6YX1+P4FgiGKpQldXF089nWNTwMNZj+8gkSxjGDSiTVW3q2Ww1f7ejGbjmEql8Hg86LreaDeL9NeNZ90FW1/ZzXV+nmqeq17h430v99Y+w0BMjFIuLs+r0qqUW9v31uXkahV4DMMgEo1aUahz/N5iIlIXs5e7UOpuWLfbjaqqFFcwbehQxzaWK0T94WtXF1LxeRjcu5dYRwemYTA1NWUFAzTpa5qm9d7pbAVD7rvJ95eDq+wdoQIIoWBIEyEU9KAf5wK0JdsFbjz1TIau+CY+8cU/sanHxeWXHEZiqkpX50zDFAw4CAYcGIaB5nAwMjxMV1cXQgjGRkfQdZ1KpUKp7Mfdxt5Xq9KS/dpvi7f5uS6WDK7/we6GoQT4yS3DvPyC7oPKWM7H7PuhFiTj9fLOZwVxu9VG7U2Xy4XP72dyYqJRr7SdG7a+l60oSqPdquJEJBJBVVUefixDNlvhM195DJdL5e1v2szzTuxBUxU8NWOZ3zW4aJk0o1plZHi4UXbN7Zrpqm92w8Y6OkhOTTE+NtbWDQvUdIPXVq5NCIGmafh8Pqanp1Fqrm9L9nJlhs12zyLM9Bgt1nvUfM84/D7O3LmDXL6Kogg8HhVVEQddwNx6wDaWi2AhM8H6AyClbBTZDYfD6LpOkCCTExMADR1RM+hnImNVgFBQmRgfwdvdQW5wovGZC5WDMyNWNYXFhvGXygb/+sM9/OG+KQpFkz8+CLf+apxLLh7gTRf1t3xwVVUlFouRzWQYGx+nv7+ffD5fqwLfy/hkBVcbY1koGrzhVX18+992NY698Ow47iYt3WLR5M/PzBa13jtY4PDN6+dBn2tAbKazq6sWWargcDga7XbMp+0KM3PvDt/s454Hkhy1zU845OCkZ4fpiDoXtAc2Vx9iHR0UCgWKxSL+QGBW9HbdDRsMWuXi3G73gsU2lkI7sf+l1F/N5fNMT0/j9fko5POMjoxY+7Xq/IZrsavG/XNfpbRWsFrAC34vSk1/eLG4OsK4OsJ4jXoAmb3SXCq2sVwECx34wBqoXC5XIwIxGo1awRVNP68bHo/Xy8jISEOQO1uQUFl8EdpyqQS1FcViBiNNUzh8s5e7fruviHChaHLYgNeKZC0WcdVWDI22lIyOjqIoCp1dXY2ist09PaSSUwR9bhxVr5W/KRQQgvEJS45rLKfidit86ZPH8qcnpnn29iBHHu5rlKYC8PtUXnBmBzuf3FfCS1Vg+xH+Rf9dDnYURWkUqQZmtJdD8wCsAc/rg1Pf2YHm9+LqaC0wsRgMwyCVTFp6tLpOZnoan883yw1bj3xtlgJcSVWhZsMkq0bL3MXFrkrrbthoLIbP57P0d2vR7o7AwifNC6Vd/vPZT+xgYjqFx+slGo0uWXhgNRWMDhVsY7mKSCkt11RtT2dkZIRoLIZpGEyMjzdysoLBIJnpaaSU6E4//3nLOKcd6WD73T8nFtEXpMlqmiZjIyP4/H4ikcii+qkqgpe/qJvbfz3ekPQ76bgQxxwZsCTXxsbweL1omkY6lappjWroThdOTwTTVFEVha7ubqqGwOV2k0gkUDUNUxj09HZRLAmu/Pg9TGf2hWJu7vPwT186vmXOmKoqvPicThJTZW65fYRwUOcDl28jGNgYt+yBKKM0l/A4HQsvBzUXZi2y1eVykUgkkKZJJZnGyMz2CqxWJHezYVopgYv6PnJzhZZG9ZaQHyXgRdW0FTX6rTAMA4fLsSxDabMyrLuRRwhxPfBSYFxKeWztWAT4D2AzsAt47VrXyqwX2S3k8/T09CCzeToVHVErdtyp6FSGxjB9XkYyKZxOJ5rDQS6T4C2v6eH+R7J0DsRxhnWMmgrIXJimie52NvaoFks04uSaLx5PKl1B0wQBn0Yw4MA0Tbq6uxmp9SHW0YHD4SCRrPLIYwb/cfNjPL0rx/f+6URGJ6rEIi78fj/pdBqjWsXn81kuRRU++p4j+OTf/gnDtAJf3vq6gUb9xlau3lBQ5x1v2swbXrXJkgoMOlZ9cDpQzFdBYz2gqiqRaLQRxBOttYsTyXV/brDPjV0Xq08mk3T39DA9PU0ul6O/v/+A3I+GYVgpRvs913bdygPLujOWwA3ANcCNTcc+CtwhpfxbIcRHa68/spqdmO9Grbth+wcGUBSFwuhk22LHoXAYn8/XKMzrcjk487kdjffkF9qnUqkhnL2UPaFISJ9VJkpKSbGwL8imUCjg9Xp5eneWT315X5WIV196D4dv9vLtrx3PxMQEpmHg8/nIZrO43G68Xi8nnxDhR//yXMYmisRjTvw+K+2kWq1iGkYtQd9otK2/h7pgFSKb5bGU6MyF7J0eiH6sJK2KGfj8fnK5HEOD1sq1u7v7gPRF0zSEMJlKJmetLjfChGs9se6MpZTy10KIzfsdfgVwdq39XeBOVtlYLuRGXajBalY/aaWEMpccXF0BSA8F8FRKZDKZRbth50JKSSqVIh6Po2kaIyMjVIJBBvpm73n1b/IgJXg8HsLhMA6HA5fb3djDcrsEbpdKPLYvZ840TdLpNNNpSwd3amqqkSO2UVaR64XF7rNtxH5UKpXGHqxhGI02zNTmPRAu2DrdPT3Wd9pu2DVl3RnLNnRKKevZt6NAZ6s3CSHeAbwDoL+//wB1bX7mq6c31+DRrCwSa2qvZN/6BwYAyy1Vb3tcJq+8oJv//oX1Z49GdC6/ZAtOp4ameVEUBSEEXu++drvVuM/npeRyNQKGrOoMtqFcKNPZCsMjRX57T4Jjjgpw5FbfgstbrTfyhQqTiQpSSjqiOh7PzP3u5axKDcMgnU6TmZ4mEo2SSibRNI2u7m6ymQzZbJZ4PM709DTDw8Mr6oadq9/NRnpGrct1Wq1nvbJRjGUDKaUUQrRMWpBSfhv4NsBJJ520IYSgVsMN1ky71bG7kuHyCz2884LDatXpQSkmKCdm7pcs1G1kqtblqFdyWA8cDHtGlYrJjrvG+btvPdU4dv5ZHbz/8m24Fmg4llJDdX8WOog3a8POpxO7P6VShUI+RyotMaXE66mgql6czn0GczmrUlVVCYfDVMplEpOTqJrWyAf1+f24XC4cuo7b46FaqbT8jFZ77wu5Txba7+Zn6Lk7bpzn3TYryUYxlmNCiG4p5YgQohtY+Xo8NjNYiB7nQjFNEwPL9To1NcXY6OiquWFX0sAtZ89opfblprNVvvO9XTOO3X7XBJdfchiBjvkHYMMwyGWtUmFAo73YiVfz3+Lkm7/dGMhdvV0Izfos1ecllUqRz+Xo6e0lMTlpacb29Czo+6qGyXR6inDAhQAyaUsEodlYLhfTNCmXLbE6o1qlWqmgKEpDR7Z+Tza367RLs7L3FjcGG8VY3gxcAvxt7f+frm13ZrPUwTGZLmMaEq9Xa0SObjQs16s1YHZ0dKyY3m0rDsTAtZCF8crty0kqLXJyF7o4N6pVJicnKRSLSNOkUCjgbtKYXQr3vPwdjfYLnrwDfVMXYO35qZUKuWyW3bt2AdZ+3FzXunlyUywaxBwOZKmM8LjI6VF+87skF5y7MsE2dTesqqps6usjMTlJIpGgqxbMM59cXrVaZWx0lEAwiJSSzPQ0m/r6VqRvLfubL7aclNjqPKvDujOWQogfYAXzxIQQg8CnsYzkTUKIy4DdwGtXux+LNX6LHRzLZYMnn8nxlW8+wdhEiReeFeetrxtY08ocpmliGMaqqK/UXXEHYxCDlNKSqFOUGe12TKXKPP5gkqOPDOB2re75+Dwar315b0OUHuDE40K43Qu7RprDQWdXF2Ojlrj6Qld5i2F0dBRNVemIxxGKgkPXqVarVvWPeZSK2k1uztx5K1WX5PRTlx/M1myQPYAHQWnvCEGfF20R+Y0Oh4N4PM74uOXYqldnWWaRl7bsPylZqvi6zcJYd8ZSSvn6Nj+a/UStIqsdsZfOVHnP1Q9SLltLhP+8ZRiPR+PS1w/gaFPJYrWR0iolFQgGcc1Rh3MjIaWkWnPHOV0uDMNotNtRrUruvi/Bpm43+XyVgN+xatfM6VS5+JV9HLHVzy//b4LjjglyzhkdhAILm1RJKclm9qkkZTKZRvTnSlCtVqkCnfE4AKlUikI+TywWI5VKMToysiQDLRSVaqWI7pg5iasXL6+7ThfUxzm8DQvRW65TFyGpUywUGi5Zm/XPujOWBxOtNvPrASqqqs5oL5a9Q4WGoaxz590TXPSyXqLh1oPZagecCCEaVeEdcvHnNN9qfDXdr0vFNE0ymQypZJJwJMJ0Ot2IkGxHKOjAMEq8/l334HQoXPamzbzw7PgMOb+VJBhwcPbpHZx2ShSHJhb1NzSqVQqFAj29vUgpGRsdJRwOr+jqsr7fp6oqPilw1cQ5YlJFmpLS3hFUnxc15G+IAEgp5+yDQNDfPwBi3yQuGAzi8XgYGRmhIx7H6/Wu2P1UqZqkpys8vTtHNKwTizhnCfpXq1Wmp6fp6u5uKF8FgsEV+f46a52DeihjG8slUq1WLSkqh6Mxs9U0zSpXlUgQ7+xstDtqOYqLIR6bbRAH+jw42xQThgOzH1fXtxUeF2c9fnvLnNB2tFuNT2cqPPpwil/8cpTtRwR4/vNis8QR1gpVVQkGg5RLJZJTU6iqSle3VbOwPnBJCZlslXyhisOhUNZc/OfPngGgXDb5+j8/xbOOChA4fHWrpbSrnTkXmsPRSAcCZrQX9Tn7DeL1SFdH0I+RnWZiYoKOeBwjm28pznHW4zsYyVhSirlslnQ6Td8c6V2KAsnpCr/5XYLNfW62DnQwMT5OKpXC6/XidrtXdOK1d6jAOz90H4WiNYE954wYH3jXEYSaDKbD4WBg8+bG9/YPWOXX5AoauIMlF/ZQxDaWS8CsBQJMp9N0xOMkk0mQkp7eXoQQlEolhoeGqFaruD2eOevfNdO8MgyZ8J9fHCCXrzJd1fn0Pw/xnsu24vOu3SWTUjJa05/F7Wa8kKMz1olnGTN4wzC54zcTfO3aJwG4ZccY/3vHKF/65LGrkiu42Jl53TtQF9GuC2q7XK4ZA1dussRHP/oAp58SZTwxMetzfnfvFEcefvCJwK/U/nPz30JKaSlJYRnjnqAfMc93KYrA4dAZ3GvtvcY7O+d8bkxTculV95GYKnPumTGueNs+w7rQianVz/m3EzLZCv/wnacahhLgl/83ydtev3mGsWx3fraB2xjYxnIJKKpKKBSiXCoxPjbWSKSvF7UNRyIkJq0KHh21UlwLoX0www6u//qJREJrW8exXuVeq6mX6Js2NdpLJTVd5d9+tGfGsUcfz5DNVVfFWC524Kq7YesRkslkkuTU1Cw3bEgUuP5qy5VZLDm47FxLpWi6qnPlF5/h2KMCK3oeB5Lm3FdFURrtuUqD1YtZ79+ea6vb6XRSqu356bqOUJS2k5usqZOYKhON6PzVu7cxMT6Iy+3B5/MyOTGB0+Wa0w2bTJe567eT3PtgkqteOfcKr1KVTE6VZx1PpVvnWtpsTGxjuUTqgR/1dj2ooO56dTqdVCqVfTXwFumGbUbTBIE2+5SLxTAMTNNE0zRM02y0F2LwlFrZojrN7aUjafXVB8veZd0NGwwGG0nr9ePNtMs73X73Lbz43E62bvYekP6uBqZpMrh3L+FwGLfHw/DQENFYDI/H03Y11S7NolJtndNimpLpdJpoLEY2m2V4aIi+/v62k5tf3DIEQGKqzA/+a5BXvSROLg9ut5ueXh2Ho73o/nSmwpeveYLf/C4BwKuf7+fE+27F79Nm3It1b0PQr/GS87v45vVPN37m86r09bpbfn79fBLJMjt+PU6lYvLCszuJRnQcy6gfarO22MZyCdTdsKZp0tffz1QiwcT4eMMN6/P5iESjVt5WKrVgN+xcVCoG6UyValXi1JVFpZAYpiRfqOJyKmSzWaYSiUb1hHwu19hbWQtCAZ23v3EzX/j6441jJxwbxOtpvxqXUiJNE6UWRFVvrxbLUUnqiDp5z9sH8K9ScM+BIhQOM1nzluhO575yVYtgKlUmO906kUJRBN3xbpxOJ16vl0q5POdzc8apMb713WfIFwy+e9Nennwmx7su2YLDoaJpswUDmikUjYahBLjyi8+gaYIfX3cqsejsCaCqKlx4bieqIrhlxyidHU6uuHQr4Tk8H4lkmbe+94+ka+d74017uPGak+jpam9gl8PBoCa10bGN5RKou2GDwSCaphGrJdLXo/4itdys5vZykBL+3x+n+JtvPE42Z3DYgJcvf+pYuuIzw9KbXVaVqmQqWUZKyZ/HJHueHOe853fi8/nI53IMD1kz87pI81qhqoIzTo3yna+dwI5fj3PUNj8nHRee0wVbT/7u7OpqRB12dXUtqZL8aqOqAs8KGMq1HAwVRcHj8VA3L16PZ0mTK2lKkhWN7XffMuN4LOpE8/tw1IJyFGhsabQjGnZw4zUncdPNg+TzBhe/YhNdnZahm69vVlWemcINmiqYyzqHAjqvfmkv558VR9cVvJ65h847fzvRMJQAxZLJj24e4sq3b0VVVn5iaqsErT62sVwi7VYb9Rp4+7eXgykln/ryTqpVa8Pn6d05vvpPT/DpD22fsWKpu6ySqTJXffIh/rxrXwFeTRM876QoTl2bsQprJdt1oPH7HGw/wsH2IwKNtAGgbQpBvb/1ckkOh4OWvtwNxFoOhqZpMjw0hO504nG7SSaTOHR9TjdsKzxujV/cU+B/bhttHOvscPKdrz0Hfb9thvnuSVVV6Iq7uOLSrUhToi3Cvelxq7z25b381/+OUCqZeD0ql1w8gN8393CoqoJwSG9Ev8+V5lJ/VmceM62Z74r4mmwONLaxPIhoF8xQ1d2zHr5HH89QKpu0iq80pWT34MwqmNWqRNMgm82Sy2bp7OpienqakeHhNXXDNmOaJsVikVQySWdXF6VikVQq1RCzrqOqKtFYrFGQeimpOTaLIxqL4XK5rMCuJbph3W6Vd7x5CwG/xq//X4LDBjxccelWIsvYj1cVAYtcqfm8Gu948wBvvbifX/xqnBefF0dTFXR9/oltXXhgYmKCnp4eSqUSiUSC3lrgW51zzujg+h/splCwROU1TfDaV2xCVe09y/WKPcIcRLQLZphMlNAdgnJTmPtxxwTbasU6dZXTT45w1//bty8TCTkwDQgEfVb1BIfDEnmurpYY1+IRQqBpGuVymaHBQarVKsEWSd11N6yu60gpGRketgarNXTDbuRkcVVVZ6wiF7uibCYc0rnsjVu4+BV9OJ3zuzNXA8MwmJycQAB/8eJuRkdG0BwOYrHYvJ4gIQS6rqMoCoN79yKlJBQKzZpsRsM6N/7jSfzXz4cplw1e/bJe4jFbzWc9YxvLdYDfp/HFTxzL5//+MZKpCscc6ecD7zy8bc6lz6vxgcu3oaoKv7t3ii39Xj723iMIBXVUVSwrYGU1qRvLQDBIKplspOHsPzDX62SGa0Wuk1NTa+6G3ei5dPPVXF0MukNZ1mpyuSiKQjQaZXhoiN27dqGoKvF4fMHnpSgKfr+fqYQ1GQ3UIqWb0TSF7k4X73rrlloJu7X33NgsD9tYrgOcTpWTjgtxwzdOxDAlukOZNwcxGnHykfccQbFooGmC4AK1QteSZjesx+OhWCwyMjJC135uWE3TZgROrUQQ1cFGpWpSqZh43NYjarbJT9yoEr2tpCRXCiEEmqqiahrVSgWHZu3jL+Q76m7YqUQCv99PsVRiaHCwkWedSJZ5eOc0qiI45kg/0YjzgMzjNrJn42DBNpbrBFVViEYWl9fo9Whr4uZaKvWVZSgcJhgMYhgG2ezsCFBYuaLXqXSZx57K8vDONKefEmVTt5uAf22jaicSJW766SDP7Mnz4vM6OfG4MJrHMyuKVAiB8HjWqJerR7u6kCs1ITIMg7HxcaRpEuvoIDE5yeTk5KLcsNFYDJ/Ph5SSXC6HEILJqTKXXnUvyZQlVhCPOfn2104gtsjndilsdM/GwcD6GUltNjx1tZe6AICiKI32ajCdrfCN7zzF7XdZ8nTf/Y89vO8vt/LKC3vWrLLLVLLMFR99gOFRS8nmd/dO8d6/3MpZz4vxlr9+eMZ7dYfgpus2sZHMpZSSUrHYEHQvFosUi8Ula9a2ou6GVYRAczhwOp0oQizYDatpGn6/v/H+evt/btvbMJQA45OlWvEDu3TWRsAOzVoByokU+V2Ds/6VE6m17tq6YzVSb9pRKBgNQ1nn+n/fzXRm7YKeplLlhqGs86Obh1AUeMEZsRnHX/3S3nXlOVgIQghcLheRSIRkMtmoiLKSNVTrq0OtpvLT3F4o++/hSmnlNe/PVMqWxNsobKwnbY1YrwnBh7rqR6v9PkuObe02AltVlfG6VTRV4YOXb+PMU2P84f4kZ58W49jtq19cei2QQKFQaLwuFotomraiE6d2cnzL+bxXvaSXm28daYgdqKrgwnM7l/3ZNgcHtrFchyTTZZ56Osujj2d43kkRurtcS6qVuF6N/ErhdimcdHyIPz6wzwPw2pf34psnOX018fs0nntihN/dOwVYpaiuvGxrQ97whWd3ct7z4xs2urLuhi0Wi2zatIlisUgikcDnO/gDVbriLv75qydwww/3oKpw6es309FCPs9mfWIby3XGdLbCP173Z267cxyA676/iw++axsvfWGXLdK8SIIBnU9/cDt33j3JA4+mOOeMDo4/NohzAcnpq0UoqPPx9x/JM7tz7BrMc8oJkVm1PTeqoYR9btj+gQEURUHTNLw+34q6YVcLj1tl+7YAn/nQUYDA7d54q/5DGdtYrjMKBaNhKOt853vP8PznRYmGV2YWq+g6+V2Ds45vRPdsOKTzyhd3W5ONNQrq2Z9wUCf8bJ3nPDu81l1ZE5rlGMU6TAlyu+1hdSNiX9V1RrP48zUf20JAKyOEwJkcJ5+2VhzLNWpGvsCd21846/hGdc9aUbgbd7V2KGOaZmNV2txeDQ71GICNjm0sV4ADmRDsdquccGyQ+x9JE9DK7Dz9JbPes1GNmo3NYqiLXNTl6ert1dIRPtRjADY6trFcAQ5kQnAo4OBzHzma2+8ax+VcXlh6OyMvzdYFem1s1hNSShKTk0gp8QcCJKemiESjBAKBdbEHanNwYRvLdUg4pHPRy3op7B5a1ue0M/Kt9ittbNYbqqrS3dPD4N69JKem8Pl8M8QEbGwWg33XrFMURay1driNzUGNaZqUSiXMmqekWCw2aqXa2CwWe2VpMwtblNmmFYZhYhigtxBOOBiRUjKVSBAKhQiGQgwPDZHNZm03rM2SsI3lOma1jJotymzTjJSSiUSZH908yNhEiYte1sthA962JeIOFlRVpae3d1Z7tQylPcnc2Bzcd7vNnNhGzeZAMJWs8Pb339vQOf3l/03wtc8+i1OfE1njns3Pgazdaj+PGxvbF2FjYzMnTz6TnSUI/m8/2sN0xhYJtzl02FArSyHEBcA3ABW4Tkr5t2vcJRubdY/LOXtO7dSVNZXdOxACALbIgE0zG8ZYCiFU4JvA+cAgcI8Q4mYp5Z/Wtmc2Nuub/l4PW/o9PLMnD1jVNN7x5i1rumd5IAQAbJEBm2Y2jLEETgGeklI+DSCE+CHwCsA2ljY2yyAS1vnG54/j/kdSjE+UOOu0GNGwPv8v2thsIDaSsewF9ja9HgRObX6DEOIdwDsA+vv7D1zPbGzWOZGwzrlnxte6GzY2a8YhFeAjpfy2lPIkKeW1FRd5AAAHkUlEQVRJHR0da90dGxsbG5t1wkYylkNAX9PrTbVjNjY2NjY2y2IjuWHvAbYJIbZgGcnXAW9Y2y7Z2NisBgdCAMAWGbBpZsMYSyllVQhxJXArVurI9VLKR9e4WzY2NqvAgRAAsEUGbJrZMMYSQEr5c+Dna90PGxsbG5uNxUbas7SxsbGxsVkVbGNpY2NjY2MzD7axtLGxsbGxmQfbWNrY2NjY2MyDOFQrhwshJoDdi/y1GDC5Ct05mLHP+dDhUDzvQ/GcYXnnPSClPORUXQ5ZY7kUhBB/lFKetNb9OJDY53zocCie96F4znDonvdysN2wNjY2NjY282AbSxsbGxsbm3mwjeXi+PZad2ANsM/50OFQPO9D8Zzh0D3vJWPvWdrY2NjY2MyDvbK0sbGxsbGZB9tY2tjY2NjYzINtLBeAEOICIcTjQoinhBAfXev+rAZCiD4hxK+EEH8SQjwqhHhf7XhECHG7EOLJ2v/hte7raiCEUIUQ9wshflZ7vUUI8fvaNf8PIYS+1n1cSYQQISHEj4UQjwkhdgohnncoXGshxPtr9/cjQogfCCFcG/FaCyGuF0KMCyEeaTrW8voKi3+onf9DQojnrF3PD15sYzkPQggV+CZwIXA08HohxNFr26tVoQp8UEp5NPBc4IraeX4UuENKuQ24o/Z6I/I+YGfT6y8Bfy+lPBxIApetSa9Wj28Av5BSHgUch3XuG/paCyF6gfcCJ0kpj8Uq5fc6Nua1vgG4YL9j7a7vhcC22r93ANceoD6uK2xjOT+nAE9JKZ+WUpaBHwKvWOM+rThSyhEp5X21dgZr8OzFOtfv1t72XeCVa9PD1UMIsQl4CXBd7bUAzgF+XHvLhjpvIUQQeD7wLwBSyrKUMsUhcK2xyhK6hRAa4AFG2IDXWkr5a2Bqv8Ptru8rgBulxe+AkBCi+8D0dP1gG8v56QX2Nr0erB3bsAghNgMnAL8HOqWUI7UfjQKda9St1eTrwIcBs/Y6CqSklNXa6412zbcAE8C/1lzP1wkhvGzway2lHAK+CuzBMpJp4F429rVupt31PeTGuKVgG0ubGQghfMB/AldJKaebfyatPKMNlWskhHgpMC6lvHet+3IA0YDnANdKKU8Acuznct2g1zqMtYraAvQAXma7Kg8JNuL1XW1sYzk/Q0Bf0+tNtWMbDiGEA8tQfl9K+ZPa4bG6S6b2//ha9W+VOB14uRBiF5aL/Rys/bxQzVUHG++aDwKDUsrf117/GMt4bvRrfR7wjJRyQkpZAX6Cdf038rVupt31PWTGuOVgG8v5uQfYVouY07ECAm5e4z6tOLV9un8Bdkop/67pRzcDl9TalwA/PdB9W02klB+TUm6SUm7Gura/lFK+EfgVcFHtbRvqvKWUo8BeIcSRtUPnAn9ig19rLPfrc4UQntr9Xj/vDXut96Pd9b0ZeEstKva5QLrJXWtTw1bwWQBCiBdj7WupwPVSyi+scZdWHCHEGcBvgIfZt3d3Nda+5U1AP1ZJs9dKKfcPHNgQCCHOBj4kpXypEOIwrJVmBLgfeJOUsrSW/VtJhBDHYwU06cDTwNuwJs8b+loLIT4LXIwV/X0/8Has/bkNda2FED8AzsYqxTUGfBr4b1pc39rE4Rosl3QeeJuU8o9r0e+DGdtY2tjY2NjYzIPthrWxsbGxsZkH21ja2NjY2NjMg20sbWxsbGxs5sE2ljY2NjY2NvNgG0sbGxsbG5t5sI2ljc0yqFXveHet3SOE+PF8v7OM7zq+lsZkY2NzgLGNpY3N8ggB7waQUg5LKS+a5/3L4XjANpY2NmuAnWdpY7MMhBD1KjSPA08C26WUxwoh3opV1cGLVfroq1gCAG8GSsCLawnhW7FKwHVgJYT/pZTyMSHEa7ASyQ0swe/zgKcAN5YU2ReBnwH/CBwLOIDPSCl/WvvuvwCCWAn335NSfnaV/xQ2Nhsabf632NjYzMFHgWOllMfXqrX8rOlnx2JVb3FhGbqPSClPEEL8PfAWLFWobwOXSymfFEKcCvwTlj7tp4AXSSmHhBAhKWVZCPEprFqMVwIIIf4GS57vUiFECPiDEGJH7btPqX1/HrhHCHGLrcpiY7N0bGNpY7N6/KpWGzQjhEgD/1M7/jDw7FqFl9OAH1mKYwA4a//fDdwghLgJS/C7FS/EEoH/UO21C0vKDOB2KWUCQAjxE+AMwDaWNjZLxDaWNjarR7O+qNn02sR69hSsWorH7/+LUsr/397d4kQQBGEYfj+JwOBROAwhnAGFRCCQazBcAYPcs3AADrAkkJCwy65AcQgO0IhuCJBNOpl25H3U/KR7xlVqqjJ11TLNM+A5ycmW/QOcl1Lefl2s6/7WV6y3SANs8JHGfAC7Uxa2eaHvrT5Jm/pw1I4PSimPpZQb6qDm/S3Pugeu24+wSXL8495pkr0kO9Ta6WLKO0qqDJbSgPapc5FkDcwnbHEJzJIsgQ21WQhgnuS17fsALKmjpA6TvCS5AG6pjT2rJJt2/uWJOpt0BdxZr5TG2A0r/TOtG/a7EUjSODNLSZI6zCwlSeows5QkqcNgKUlSh8FSkqQOg6UkSR0GS0mSOj4B4jVxnep+54IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'VelocityOfMoney',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEWCAYAAADIJfYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3WmYFNX59/Hvj5lhR1kEVFBABQVBtlHARAMSFPd9j+JuoolRExUTE01iIsYlamJUomyJD4kSVDRq4A8SjIIEEDdARUEZZF+UHWbmfl6cM9A0s3YPPcNwf66rr646tZ1TVV131anTVTIznHPOOZcZtao6A84559zexAOvc845l0EeeJ1zzrkM8sDrnHPOZZAHXueccy6DPPA655xzGZR24JV0r6SVkpbG/rMlLZK0XlL39LOYcr4ylg9JbSWZpOzduZzqQNKlksZXdT6cc640kvpKyqvqfBSnzMAraaGkTTGAFX3+FIcdDPwE6GRm+8dJHgR+aGYNzezdVDMWA9lhqU5fVj7i/DfE8iyW9LCkrDSWVypJl0iaEZe3RNJrkr69u5ZXjvyMkLRV0rr4+VDSfZL2LW06M3vWzE5McZn3SNqWtC/dnloJ9mwJ63+9pNWSJkg6oqrzVRZJV0j6byXPs7akhyTlxfWxUNIjlbkMV7rKClKS9pH0iKQv47b8LPbvF4cvlPTdhPEPkPRMPCaukzRP0q8kNYjDE4/TKyWNltQ43XxWtfJe8Z4eA1jR54cx/WBglZktTxi3DfBRpeYyNeXJR1czawh8B7gQuGp3ZETSrcAjwO+AloT19mfgzBLGz9SV8+/NrBHQHLgS6A28VbTT76Z8/SNpX/p9McuRpL3hNsjv4/7XGlgOjKjoDPa0WpYS8nsnkAscAzQC+gKzMpitGi0TvydJ2ZJqAxOBI4GBwD5AH2AVYdsmT9MUmArUA/rEY9EAoDFwaMKoRcfpQ4AmwD27ryQZYmalfoCFwHeLSf8usAkoBNYDo+O3ARuAz+J4BwL/BFYAC4CbEuaRBfwM+AxYB8wEDgKmJMxnPXBhMcuvBdwFfEE4aI0C9gXqFJePYqY34LCE/ueAxxP69wWeAZYAi4F7gayEfD8IrAQ+B26M88suZjn7xvycX8o6vgcYA/wN+Aa4JpbjEeCr+HkEqBPH3w94BVgLrAbeBGrFYXfE/K4DPgb6l7DMEcC9SWmNYnl/GPuvAN4C/kD48dwb0/6btB5viuthJfBAUV5KKOffShg2GfhtXN4m4LB0tgFJ+23ysgknGW/Hdfge0DcpL7+JeVkHjAf2Sxj+7YRpF8V1cjSwrCh/cbxzgPfKs/6BU4H1sfsYwgFpbSz7n4DaSev8RuBTYEFMezTm5RvC7+i4pLI/T9i/1gEfAB0IAW95nO7EsvZ9oCOwGSgg7NNr4/h14rb4Mq6DJ4F6cVhfII+wXy4F/lrMungFuLmE9XQl8HJC/6fA8wn9i4BusfsIYALhN/ExcEHCeOXJ488I+9NC4NJSfq8HAuPicuYD1yat6+cIx6N1hJP/3FLmdSzwP+Dr+H1s0n54HzA9bteXgKYV2IeTf09XAnNjvj4Hro/jNmDnY/n6WMbSjkG7bFfCcWsZ0LCU8i4k/i4J+9UHlHC8KOE4fQMwPmn/2KVMiXlM6B/MjlgzBzg7YdgVwH/jPrKGEKtOThjeFBge18Ma4MWEYacBs+N2eBs4qqTybJ+mzBFKCLzFFSx5RRGC40zgl0BtwhnL58BJcfhtccUfDgjoCjQrboUXs+yrCDv9IUBDYCwJP+pyTJ+YzyMIB5lbEoa/ADwVd8oWhJ2/aEf9PjCPcJLQFHiDkgPvQCC/uGFJP9ZtwFlxndUDfg1Mi8tuHjfob+L49xEOHDnxc1xcf4cTDkQHxvHaAoeWsMwRJAXemD6KcFVatDPmAz8CsmO+rmDXwPtGXA8HA58A15RSztIC75eEs+XsWK6UtwGlBF6gFeFE4pS4vgfE/uYJefmMEJzqxf4hcVgbwg/34pjHZuw48M9h5x/rC8BPylr/hP33/wFvxv6ehINqdtyGc0kITLGcE2K5i4LH92Jesgm3f5YCdRPKvhk4KQ4fRTiw/DyW4VpiAC/Hvr/T9o9pfyAEoqaEk7eXgfsSjhH5wP2EA3m9YtbFXXHb3wB0AZQw7BDCAa0WIRh8QTzmxGFr4rAGhH3/yljG7oQg2qkCeXw45vE7hJP2w0vYdlMINVZ1gW6Ei4oTktb1KYSTlfuAaSXMp2nM/2UxzxfH/qJj4GTCiU/nWL5/UrF9OPn3dCrhSlKxjBuBHqUcy0s7Bu2yXYG/AyPLG0/ivH9VxviJx+kmhJPgXycML3eZgPMJ+1AtQg3nBuCAhP16G+G3kAX8gBBkFYf/C/hHzEMO8J2Y3p1w8torTjcolrFOqeUqbWDCilpP2PmLPteWsrESV1Qv4Muk4XcCw2P3x8CZZa3wEoZPBG5I6D88rrjsck5vhLPIDbF7NDvO5loCW0g4SBB+FG/E7knA9xOGnUjJgfdSYGkZ6/geYEpS2mfAKQn9JwELE34QLyWXj3BWu5xQG5FTxjJHUHzgHQJMSNgZk7ffFewaeAcm9N8ATCylnFuT9qWik4TJ7PyDSmsbUHrgvYOkKy/g38CghLzclVSm1xP23xdKKN8dwLOxuynhIHBAKet/c1wHSwlBoaSTpJsTlxnLeUIZ23cNoYquqOwTEoadTvhNF9UeNIrzbFyO9Z68/UX4DR2akNaHHVfifeM2r1tKXrMIV/BvxWV/VbQt4vBFQA/gImAo4UTgCEKQHRfHuZB44pIw3VPA3eXMYz7QIGH4c8AvisnrQYQr/kYJafcBIxLW9f8lDOsEbCqh3JcB05PSpgJXJOyHQ5LmtTWur/Lsw78ubrkJ478I/DhhHSQfy0s7Bu2yXQkng0PKWOZCdgTeT0n4DZcwftFxem1c7/OAVqmWKWnc2cT4Q9iv5ycMqx+XvT9wAKE2oEkx83iCeDKSkPYxMTCX9Cnv/aGzzOz/yjluojbAgZLWJqRlEapGIezEn6UwX9hx9lvkC8KZXUvCWWJ59IjLP58QcBoQfvhtCGc1SyQVjVuLcAAoWvaihPkk5iPZKmA/Sdlmll/KeIuS+osr34Gx+wHCD3x8zN9QMxtiZvMl3RyHHSnp38CtZvZVKctN1opQhVZSvsrKe2I+i/OcmX2vHPOpzG2QrA1wvqTTE9JyCFfNRZYmdG8kXJVC6fvs34C58R75BYRAsKSUfDxoZnclJ0rqQLj6yiUcALIJNUeJFiVN81PgasJ6McL9tf0SRlmW0L0JWGlmBQn9EMp4IKWv92TNYx5nJowvwu+8yAoz21zC9MR8PA48LqkeoTZrmKTpZjYX+A/hIHpY7F5LuLrpE/shbNNeSceabEIVaHnyuMbMNiT0l7QfHwisNrN1SePmJvQn7zt1S/j9J//Gi+bVKqE/eR/PIWzX8uzDyfvIyYQTkQ6EbVqfUONYktKOQbDrdl1FCFLlVd7xe8RjWw7hJPhNSZ3MbHNFyiTpcuBWQi0ShP098TeyfbuZ2ca4rzQknESvNrM1xcy2DTBI0o8S0mpT+jFwt/+PdxHhrLJxwqeRmZ2SMPzQUqYvzVeEQhc5mHDWuqz40YtnwXOEM81fJuRrC+G+XlG+9zGzI+PwJYQDcOKySzI1zuussrKS1F9c+b6KeV5nZj8xs0OAM4BbJfWPw/6fmX07TmuEqqBykdSQcLX8ZkJycr6Kk7wuKhLoEyUuK91tsIHwIyyyf0L3IsLVQuJ+2cDMhpQjjyXus2a2mLC9zyFczfy1HPMrzhOEM/v2ZrYP4d6jksbZvq4kHQfcTgj2TcysMeGeYfI05VHWek/eH1YSAveRCePva6ExzC55LYuZbTKzxwlX7J1iclHgPS52/4cQeL/DjsC7CPhP0jZtaGY/KGcemyQ1KixpP/4KaCqpUdK45T3ZT55Xm6S05Hkl7+PbCOUpzz6cuI/UIVRVPwi0jPvIq+zYR4rbRiUeg0qY5v+Ak0pqnFmM/wPOLm/DLzPbBjwNtAM6l6NM20lqA/wF+CGhKr8x8GFx4xZjEWGbF9eaehHw26TtUN/MRpc2w90deKcD6yTdIamepCxJnSUdHYc/DfxGUvvY8u4oSc3isGWEezglGQ3cIqldDBi/I9ybLO2qsjRDgGsl7R+vUsYDD8Xm8bUkHSrpO3Hc54CbJLWW1IRw075YZvY1IaA/LuksSfUl5Ug6WdIuLXqTyneXpOaxKf4vCVdUSDpN0mEKp2RfE6pgCiUdLumEuENuZkeDiVJJqiOpJ6GaZg2hEUFF3CapiaSDgB8T7oWkpRK2wWzgoriuc4HzEob9DThd0klxn6yr8HeK1uXI2rPAdyVdEFtyNpPULWH4KEIQ7EJod5CKRoTqtfUKfzH6QTnGzyfca8yW9EvCFW+FlWO9LwNaxxasmFkh4YD2B0ktACS1knRSeZcp6ea4/uvFdToolqnob4D/AfoRqr/zCCeGAwn3tIvGeQXoIOmyuM1zJB0tqWMF8vgrhb82HUdoMPN8MetnEeFe531xvzmKUNPwt/KWN8GrMc+XxHJfSDjZeCVhnO9J6iSpPuEW05hYQ1DRfbg24V7sCiA/Xikm/i1wGdBMO/+dsMRjUAn+SghE/5R0RNx3mkn6maRTihn/YcJ+OjIGxqLt8nBcrztR+LvnlYTj2uflKFOiBoQThRVxXlcS7p2XKf4mXgP+HI9zOZKOj4P/AnxfUq8YwxpIOlU7n5jtoryB92Xt/N/LF8qZ4QLCDtyN0JhjJSHYFm3chwkH0PGEA80zhJv0EKpLR0paK+mCYmY/jLChp8R5byY0AkqJmX0Q53VbTLqcsGHnEILRGHZUi/yFcD/lPcLfHko9wJrZQ4QqjrsIG34R4czrxVImuxeYAbxPqDqZFdMA2hPOFtcTrrD+bGZvEHbCIYT1vJTQKOLOUpZxu6R1hCqfUYTqzGOTqtzK46U47WxCI4RnKjh9SdLZBr8gXJmuAX5FaLwEbD94nkm4kizaHrdRjt+DmX1JaNDyE0KV/GxCo8AiLxCuEl4ws43lLunOfgpcQmjE9RfKPpH5N/A6oWHbF4TfQnluEZSktPU+idBSd6mklTHtDkJDx2mSviHsm4dXYHkbgYcI++xKwv3ec83scwAz+4Swr78Z+78hHHjfKqouj1W/JxLuA38V51XU8Kc8eVway/oV4eTq+2Y2r4T8XkyorvyKsL3vTuVWnJmtIhwff0L4Dd4OnGZmKxNG+yuhPcBSQmOum+K0FdqH4/q5iXC8XUPYv8YlDJ9HCLSfx2PugZR+DCpuGVsINWbzCPd7vyFcfO0HvFPM+KsJrbq3Ae/EY9FEwsXE/IRR35O0PuZ7EKE18uqyypS0rDmEfWwq4SSjC6FNQXldFvM5j9CO5uY43xmEBll/inmYT7hfXKqiFlvOpUSSEapE55c58u7NR1vCCVhOGrUelZWXzwitgFNpF+EyTFJfQsO78tR4ZIykyYR8PV3VeXGVa294SIFzGSPpXEKV1qSqzotzrnrao55641x1Fq9QOgGXxfuKzjm3C69qds455zLIq5qdc865DPKq5jLst99+1rZt26rOhnPO7VFmzpy50syaV3U+qiMPvGVo27YtM2bMqOpsOOfcHkVSRZ4mt1fxqmbnnHMugzzwOueccxnkgdc555zLIL/H69weZNu2beTl5bF5c4kv+3Euo+rWrUvr1q3Jycmp6qzsMTzwOrcHycvLo1GjRrRt2xYplZcPOVd5zIxVq1aRl5dHu3btqjo7e4yMB974BptRhPfmGuFdso9Kakp4GHxbwsuSLzCzNfENPI8SHky/kfCS6FlxXoMILx6A8FL3kTG9J+HB4vUIbwD5sZlZScuozPJtXbWG/HUbKCgwsuvVpnBjuDKpVb9uyt0mkVWvLoUbN+3cbZDVIIy3UzeQVb/83RnP356U10rMn0nUygp3d7IbNaR2s+LeMla6zZs3e9B11YYkmjVrxooVK6o6K3sWM8voh/CWkx6xuxHhjSqdgN8Dg2P6YOD+2H0K4ZVMAnoD78T0poQ3lDQFmsTuJnHY9Diu4rQnx/Ril1Hap2fPnlYR6z9fZK9kd7BXsjvYysnTKqW7Mue1O7qrSz6qe14TPxsWLKrQflVkzpw5KU3n3O5U3H4JzLAMx5c95ZPxxlVmtsTiFauF1zrNBVoRXnE1Mo42kh0vjj8TGBW35TSgsaQDgJOACRZeD7WG8BqqgXHYPmY2LW78UUnzKm4ZlVm+yp6lq4F8N3Fu71WlrZrjq9y6E97V2NLCC4chvHuyZexuxc7vFs2LaaWl5xWTTinLSM7XdZJmSJpR0SqULVv92fiubHty4M3KyqJbt2507tyZ008/nbVr11Zo+nvuuYcHH3yw2GGjRo2ic+fOdOnShe7du5c4XmVr27YtXbp0oUuXLnTq1Im77rqr1AZsxx57bIXm37dvXw4//HC6detGt27dGDNmTLpZdnuwKgu8khoC/wRutvBi6+3ilepuPTSVtgwzG2pmuWaW27x5xZ54VrdOVmVkz9VwtfbgP/LVq1eP2bNn8+GHH9K0aVMef/zxSpnva6+9xiOPPML48eP54IMPmDZtGvvuu+8u4+Xn757XLb/xxht88MEHTJ8+nc8//5zrr7++xGW//fbbFZ7/s88+y+zZs5k9ezbnnXfeTsPMjMJCP2nfW1TJz19SDiHoPmtmY2PyslhNTPxeHtMXAwclTN46ppWW3rqY9NKW4ZxLQZ8+fVi8ePH2/gceeICjjz6ao446irvvvnt7+m9/+1s6dOjAt7/9bT7++ONi53Xffffx4IMPcuCBBwJQp04drr32WiBcMd58883k5uby6KOPsnDhQk444QSOOuoo+vfvz5dffgnA888/T+fOnenatSvHH388AB999BHHHHMM3bp146ijjuLTTz8ttUwNGzbkySef5MUXX2T16tVMnjyZ4447jjPOOINOnTptHwdg8uTJHH/88Zx66qkcfvjhfP/73y93AF24cCGHH344l19+OZ07d2bRokWMHz+ePn360KNHD84//3zWr18PwOuvv84RRxxBjx49uOmmmzjttNOAXWsPOnfuzMKFCwH429/+tr3c119/PQUFBdvz/vOf/5yuXbvSu3dvli1bBsCyZcs4++yz6dq1K127duXtt9/ml7/8JY888sj2+f/85z/n0UcfLVf5XMky/lrA2Ep5JLDazG5OSH8AWGVmQyQNBpqa2e2STgV+SGhk1Qt4zMyOiS2UZwI94ixmAT3NbLWk6cBNhCrsV4E/mtmrJS2jtPzm5uZaRZ7VvHXVWvLXraewELLq1qZw4yYgvZa4SNSKrW936k5zvpXVXd3zV13yioTSbNU8d+5cOnbsWOHpKlPDhg1Zv349BQUFXHTRRVx99dUMHDiQ8ePHM2bMGJ566inMjDPOOIPbb7+dBg0acMUVV/DOO++Qn59Pjx49+P73v89Pf/rTnebbtGlTFixYUOxVbt++fenUqRN//vOfATj99NM577zzGDRoEMOGDWPcuHG8+OKLdOnShddff51WrVqxdu1aGjduzI9+9CN69+7NpZdeytatWykoKKBevXo7zb/omez77bff9rRu3brx1FNPsWnTJk499VQ+/PDD7X+ZKVoHkydPZuDAgcyZM4c2bdowcOBArr/++l2uaPv27cuSJUu2L3fixImsW7eOQw45hLfffpvevXuzcuVKzjnnHF577TUaNGjA/fffz5YtW7j99ttp3749kyZN4rDDDuPCCy9k48aNvPLKK9xzzz00bNhw+7rs3Lkzr7zyCps2beL2229n7Nix5OTkcMMNN9C7d28uv/xyJDFu3DhOP/10br/9dvbZZx/uuusuLrzwQvr06cPNN99MQUEB69evZ82aNZxzzjnMmjWLwsJC2rdvz/Tp02nWrNlO5Stuv5Q008xyy71j7UWq4n+83wIuAz6QNDum/QwYAjwn6WrgC+CCOOxVQtCdT/g70ZUAMcD+BvhfHO/XZrY6dt/Ajr8TvRY/lLKMSlO7WeOUDqjO7Sk2bdpEt27dWLx4MR07dmTAgAEAjB8/nvHjx9O9e3cA1q9fz6effsq6des4++yzqV+/PgBnnHFGSsu98MILt3dPnTqVsWNDZdlll13G7beH8+dvfetbXHHFFVxwwQWcc845QLgq/+1vf0teXh7nnHMO7du3L9fyEi9KjjnmmBL/p3rMMcdwyCGHAHDxxRfz3//+d5fAC6GqOTd3Rxxat24dbdq0oXfv3gBMmzaNOXPm8K1vfQuArVu30qdPH+bNm0e7du225/t73/seQ4cOLTXvEydOZObMmRx99NFA2GYtWrQAoHbt2tuvmHv27MmECRMAmDRpEqNGjQLCffx9992Xfffdl2bNmvHuu++ybNkyunfvvkvQdRWX8cBrZv8l/M2nOP2LGd+AG0uY1zBgWDHpM4DOxaSvKm4ZzrnyK7rHu3HjRk466SQef/xxbrrpJsyMO++8c5d7o4lVlaU58sgjmTlzJieccEKxwxs0aFDmPJ588kneeecd/vWvf9GzZ09mzpzJJZdcQq9evfjXv/7FKaecwlNPPVXiMoqsW7eOhQsX0qFDB957771Sl538n+qK/Mc6cb5mxoABAxg9evRO48yePTt5su2ys7N3qtouahBmZgwaNIj77rtvl2lycnK25zErK6vMe+bXXHMNI0aMYOnSpVx11VVlF8qVaQ9u4uGcq0r169fnscce46GHHiI/P5+TTjqJYcOGbb8vuXjxYpYvX87xxx/Piy++yKZNm1i3bh0vv/xysfO78847ue2221i6dCkQrviefvrpYsc99thj+fvf/w6EK8njjjsOgM8++4xevXrx61//mubNm7No0SI+//xzDjnkEG666SbOPPNM3n///VLLtX79em644QbOOussmjRpUuZ6mD59OgsWLKCwsJB//OMffPvb3y5zmuL07t2bt956i/nz5wOwYcMGPvnkE4444ggWLlzIZ599BrBTYG7bti2zZs0CYNasWSxYsACA/v37M2bMGJYvD81YVq9ezRdflP6Wvv79+/PEE08AUFBQwNdffw3A2Wefzeuvv87//vc/TjrppJTK5nbmj4x0zqWse/fuHHXUUYwePZrLLruMuXPn0qdPHyDcB/3b3/5Gjx49uPDCC+natSstWrTYXv2Z7JRTTmHZsmV897vfxcyQVOIV1h//+EeuvPJKHnjgAZo3b87w4cMBuO222/j0008xM/r370/Xrl25//77+etf/0pOTg77778/P/vZz4qdZ79+/ba3Lj777LP5xS9+Ua51cPTRR/PDH/6Q+fPn069fP84+++xyTZesefPmjBgxgosvvpgtW7YAcO+999KhQweGDh3KqaeeSv369TnuuONYt24dAOeeey6jRo3iyCOPpFevXnTo0AGATp06ce+993LiiSdSWFhITk4Ojz/+OG3atClx+Y8++ijXXXcdzzzzDFlZWTzxxBP06dOH2rVr069fPxo3bkxWlv9rozJkvHHVnqaijauc252qQ+Mqt8PkyZN58MEHeeWVV2rsMgsLC+nRowfPP/98iffHvXFVxXhVs3POuWLNmTOHww47jP79+5e7UZorm1/xlsGveF114le8rjryK96K8Ste55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zpXb5s2bOeaYY+jatStHHnnk9hchLFiwgF69em1/lvDWrVurOKfOVV8eeJ1z5VanTh0mTZrEe++9x+zZs3n99deZNm0ad9xxB7fccgvz58+nSZMmPPPMM1WdVeeqLQ+8ztVg4ycv49yrpnHcGf/h3KumMX7ysrTmJ2n7K/G2bdvGtm3bkMSkSZO2vxhg0KBBvPjii2nn3bmaygOvczXU+MnLuP9Pn7BsxRbMYNmKLdz/p0/SDr4FBQV069aNFi1aMGDAAA499FAaN25MdnZ4Am3r1q13ekevc25nHnidq6GeGrWALVt2fin7li2FPDVqQVrzzcrKYvbs2eTl5TF9+nTmzZuX1vyc29t44HWuhlq+ckuF0iuqcePG9OvXj6lTp7J27drtr5fLy8ujVatWlbIM52oiD7zO1VAt9qtTofTyWLFiBWvXrgXCy9UnTJhAx44d6devH2PGjAFg5MiRnHnmmSkvw7mazgOvczXU9Ze3o06dnX/iderU4vrL26U8zyVLltCvXz+OOuoojj76aAYMGMBpp53G/fffz8MPP8xhhx3GqlWruPrqq9PNvnM1VsbfxytpGHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJcZqLgZ8BBnwFfM/MVkpqCvwDaBvndYGZrZEk4FHgFGAjcIWZzcpEmZ2rCif2bQmEe73LV26hxX51uP7ydtvTU3HUUUfx7rvv7pJ+yCGHMH369JTn69zeJOOBFxgB/AkYlZD2NPBTM/uPpKuA24BfANcCmFkXSS2A1yQdTbhSfxToFIPt74EfAvcAg4GJZjZE0uDYfwdwMtA+fnoBT8Rv52qsE/u2TCvQOucqX8arms1sCrA6KbkDMCV2TwDOjd2dgElxuuXAWsLVr+KnQbyS3Ydw1QtwJjAydo8EzkpIH2XBNKCxpAMqsWjOOedcmarLPd6PCIER4HzgoNj9HnCGpGxJ7YCewEFmtg34AfABIeB2AooeldPSzJbE7qVA0el+K2BRwjLzYppzzjmXMdUl8F4F3CBpJtAIKHrQ6zBCgJwBPAK8DRRIyiEE3u7AgcD7wJ3JMzUzI9wDrhBJ10maIWnGihUrUiiOc845V7xqEXjNbJ6ZnWhmPYHRwGcxPd/MbjGzbmZ2JtAY+AToFod/FoPrc8CxcXbLiqqQ4/fymL6YHVfSAK1jWnH5GWpmuWaW27x580otq3POub1btQi8seEUkmoBdxFaOCOpvqQGsXsAkG9mcwgBs5Okoqg4AJgbu8cBg2L3IOClhPTLFfQGvk6oknbOOecyIuOBV9JoYCpwuKQ8SVcDF0v6BJhHuGc7PI7eApglaS6hZfJlAGb2FfArYIqk9wlXwL+L0wwBBkj6FPhu7Ad4FfgcmA/8Bbj1zOrxAAAgAElEQVRhtxbUuRpq7dq1nHfeeRxxxBF07NiRqVOnsnr1agYMGED79u0ZMGAAa9asqepsOldtKdTUupLk5ubajBkzqjobzgEwd+5cOnbsWKV5GDRoEMcddxzXXHMNW7duZePGjfzud7+jadOmDB48mCFDhrBmzRruv//+Ks2ny5zi9ktJM80st4qyVK1Vi6pm51zlMzOWfPUVS776isLCwu3d6Zxsf/3110yZMmX7k6lq165N48aNeemllxg0KNzh8dcCOlc6D7zO1VBLlyxh8+bNbN68mS+/+GJ799IlqTdtWLBgAc2bN+fKK6+ke/fuXHPNNWzYsIFly5ZxwAHhb/H7778/y5al9+pB52oyD7zO1XBmRmFhYVpXukXy8/OZNWsWP/jBD3j33Xdp0KABQ4YM2WkcSYTn2jjniuOB17kaquX+++8SACXRcv/9U55n69atad26Nb16haetnnfeecyaNYuWLVuyJF5JL1myhBYtWqSecedqOA+8ztVQy5Yu3eUq18xYtnRpyvPcf//9Oeigg/j4448BmDhxIp06deKMM85g5MjwpFZ/LaBzpauKlyQ45zKoqOq3sv7B8Mc//pFLL72UrVu3csghhzB8+HAKCwu54IILeOaZZ2jTpg3PPfdcpSzLuZrIA69zNdT+BxywvSFVy/33336lu/8B6b0bpFu3bhT3F7uJEyemNV/n9hYeeJ2roSRxwIEHbu9P7HbOVR2/x+ucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zlXIo48+SufOnTnyyCN55JFHAPy1gM5VgAde51y5ffjhh/zlL39h+vTpvPfee7zyyivMnz+fIUOG0L9/fz799FP69++/y/ObnXM7+P94nauhXm/ag4J1G3ZJz2rUgIGrZ6U0z7lz59KrVy/q168PwHe+8x3Gjh3LSy+9xOTJk4HwWsC+ffv6+3idK4Ff8TpXQxUXdEtLL4/OnTvz5ptvsmrVKjZu3Mirr77KokWL/LWAzlWAX/E658qtY8eO3HHHHZx44ok0aNCAbt26kZWVtdM4/lpA50qX8SteScMkLZf0YUJaV0lTJX0g6WVJ+8T02pKGx/T3JPVNmKa2pKGSPpE0T9K5Mb2OpH9Imi/pHUltE6a5M6Z/LOmkjBXauRrk6quvZubMmUyZMoUmTZrQoUMHfy2gcxVQFVXNI4CBSWlPA4PNrAvwAnBbTL8WIKYPAB6SVJTnnwPLzawD0An4T0y/GlhjZocBfwDuB5DUCbgIODIu/8+Sdj5Vd86Vafny5QB8+eWXjB07lksuucRfC+hcBWS8qtnMpiRehUYdgCmxewLwb+AXhIA6KU63XNJaIBeYDlwFHBGHFQIr4/RnAvfE7jHAnxTqvc4E/m5mW4AFkuYDxwBTK7eEztVs5557LqtWrSInJ4fHH3+cxo0bM3jwYH8toHPllHLglVQf+AlwsJldK6k9cLiZvZLC7D4iBMYXgfOBg2L6e8AZkkbHtJ7AQZI+icN/E6ufPwN+aGbLgFbAIgAzy5f0NdAspk9LWGZeTCuubNcB1wEcfPDBKRTHuaqX1ahBia2a0/Hmm2/uktasWTN/LaBz5ZTOFe9wYCbQJ/YvBp4HUgm8VwGPSfoFMA7YGtOHAR2BGcAXwNtAASHfrYG3zexWSbcCDwKXpVaUnZnZUGAoQG5ubuW8Pdy5DEv1L0POud0rncB7qJldKOliADPbqBSbMprZPOBEAEkdgFNjej5wS9F4kt4GPgFWARuBsXHQ84R7uxBOAA4C8iRlA/vG8YvSi7SOac4551zGpNO4aqukeoABSDoU2JLKjCS1iN+1gLuAJ2N/fUkNYvcAIN/M5piZAS8DfeMs+gNzYvc4YFDsPg+YFMcfB1wUWz23A9oT7hU7t0cJu7Nz1YPvjxWXzhXv3cDrhHuuzwLfAq4oa6J4v7YvsJ+kvDifhpJujKOMJVRjA7QA/i2pkHB1mliVfAfwV0mPACuAK2P6MzF9PrCa0JIZM/tI0nOEAJ0P3GhmBSmU27kqU7duXVatWkWzZs38v7KuypkZq1atom7dulWdlT2K0jlbkdQM6A0ImGZmK8uYZI+Tm5trM2bMqOpsOAfAtm3byMvLY/PmzVWdFeeAcDLYunVrcnJydkqXNNPMcqsoW9VaOq2azyZU4/4r9jeWdJaZvVhpuXPO7SQnJ4d27dpVdTacc2lI5x7v3Wb2dVGPma0lVBs755xzrgTpBN7ipvVnPzvnnHOlSCfwzpD0sKRD4+dhwv96nXPOOVeCdALvjwgPuvhH/GwBbix1Cuecc24vl3LVsJltAAZXYl6cc865Gi+dVs0dgJ8CbRPnY2YnpJ8t55xzrmZKpzHU84QnTD1NeH6yc84558qQTuDNN7MnKi0nzjnn3F4gncZVL0u6QdIBkpoWfSotZ84551wNlM4Vb9GLCG5LSDPgkDTm6ZxzztVo6bRq9ufWOeeccxWU1pOmJHUGOgHbX01hZqPSzZRzzjlXU6Xzd6K7Ca/36wS8CpwM/BfwwOucc86VIJ3GVecRXkC/1MyuBLoC+1ZKrpxzzrkaKp3Au8nMCoF8SfsAy4GDKidbzjnnXM2Uzj3eGZIaA38hvBxhPTC1UnLlnHPO1VApX/Ga2Q1mttbMngQGAINilXOpJA2TtFzShwlpXSVNlfSBpJfjFTSSaksaHtPfk9S3mPmNS5pXU0kTJH0av5vEdEl6TNJ8Se9L6pFq2Z1zzrlUVTjwSuqR/AGaAtnlDGYjgIFJaU8Dg82sC/ACO/4bfC1ATB8APCRpe54lnUO40k40GJhoZu2Biex4kcPJQPv4uQ7wp24555zLuFSqmh8qZZgBpb4kwcymSGqblNwBmBK7JwD/Bn5BaDE9KU63XNJaIBeYLqkhcCshiD6XMK8zCa2tAUYCk4E7YvooMzNgmqTGkg4wsyWl5dc555yrTBUOvGbWbzfk4yNCYHwROJ8djbTeA86QNDqm9Yzf04HfEE4CNibNq2VCMF0KtIzdrYBFCePlxbRdAq+k6wgBnYMPPjidcjnnnHM7qS4P0LgKeEzSL4BxwNaYPgzoCMwAvgDeBgokdQMONbNbirl63s7MTJJVNDNmNhQYCpCbm1vh6Z1zzrmSVIsHaJjZPODEON8OwKkxPR+4JWGZbwOfAN8BciUtjGVoIWmymfUFlhVVIUs6gPA3J4DF7Px3p9YxzTnnnMuYavEADUkt4nct4C7Ce36RVF9Sg9g9gPAqwjlm9oSZHWhmbYFvA5/EoAvhirnoBQ6DgJcS0i+PrZt7A1/7/V3nnHOZlk5V8yYzK5RUoQdoxPu1fYH9JOUBdwMNJd0YRxkLDI/dLYB/SyokXJ1eVo58DQGek3Q1oXr6gpj+KnAKMJ9wX7jMvz4555xzlS3jD9Aws4tLGPRoMeMuBA4vY34Lgc4J/asIV+LJ4xlwY3K6c845l0npvBbwhtj5pKTXgX3M7P3KyZZzzjlXM6V0j1dStiTF7oMI/63NqsyMOeecczVRKk+uupZwP/eL2D2R0NDq75LuqOT8OeecczVKKlXNNwOHAo2AuUAbM1spqT7wP+D+Ssyfc845V6OkEni3mtkaYI2k+Wa2EsDMNkraWsa0zjnn3F4tlcBbT1J3QjV17dit+Klb6pTOOefcXi6VwLsUeLiY7qJ+55xzzpUglZck9N0N+XDOOef2Cqm0av6epF2eICXpMkmXVE62nHPOuZoplf/x/ojwsvpkY4GfpJcd55xzrmZLJfDmmNn65EQz2wDkpJ8l55xzruZKtVVzgxhot5PUCKhdOdlyrubZumoN277ZgJlRq05tbNNmAGrVr0vhxtBtiKz6dSncuGnnboOsBmG8cnVDnLbk7uRlV7R7d+e1uudvd+W1EFErK1wTSZDdqCG1mzVOY89z1Y6ZVegD/BR4jfDgjKK0tsC/gNsqOr/q/unZs6c5Vxk2LFhkr2R3sFeyO9jKydOK7S5tWHXrri752FPzV1peEz8bFiyq6l03JcAMqwbH8Or4SaVV84OS1gNTJDUk/H93HTDEzJ6onNMB52qegkKr6iw456qBlN5OZGZPEt5K1Cj2r6vUXDlXA5nHXeccKQReSbcWk7a928weTh7unIPsLJU9knOuxkvlirdRpefCOeec20vIvP6rVLm5uTZjxoyqzoarAbauWkv+uvBPPNWuTeHGTcDOrVupJbLq1qVg46adu0mv1ezu6K7uea3u+Sstr6q145+ee2qrZkkzzSy3qvNRHaVS1fwAMN/MnkpKvx5oZ2aDy5h+GHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJ8RWEzxNeT1gAvFy0XEl1gFFAT2AVcKGZLYzD7gSujtPcZGb/rmj5nUtV7WaN98gDqHOucqXyAI0TgKHFpP+FEFDLMgIYmJT2NDDYzLoQnop1W0y/FiCmDwAeklSU5wfN7AigO/AtSSfH9KuBNWZ2GPAH4vuBJXUCLgKOjMv/s6SscuTXOeecqzSpBN46Vkz9tJkVEv5aVCozmwKsTkruAEyJ3ROAc2N3J2BSnG45sBbINbONZvZGTN8KzAJax2nOBEbG7jFAf4XWX2cCfzezLWa2AJgPHFN2cZ1zzrnKk0rg3SSpfXJiTNuUYj4+IgRGgPOBg2L3e8AZkrIltSNUHx+UOKGkxsDpwMSY1ApYBGBm+cDXQLPE9Cgvpu1C0nWSZkiasWLFihSL5Jxzzu0qlcD7S+A1SVdI6hI/VxKeXPXLFPNxFXCDpJmEVtNbY/owQoCcATwCvE24PwuApGxgNPCYmX2e4rJ3YWZDzSzXzHKbN29eWbN1zjnnUnpy1WuSziLch/1RTP4QONfMPkglE2Y2DzgRQFIH4NSYng/cUjSepLeBTxImHQp8amaPJKQtJlwV58XAvC+hkVVRepHWMc0555zLmJSeXAXMBVaYWc/KyISkFma2PDacuovQwpnYellmtkHSACDfzObEYfcSguo1SbMbBwwCpgLnAZPMzCSNA/6fpIeBA4H2wPTKyL9zzjlXXqk+MrJA0rdSmVbSaKAvsJ+kPOBuoKGkG+MoY4HhsbsF8G9JhYSr08viPFoDPwfmAbPik7P+ZGZPA88Af5U0n9CI66KY548kPQfMAfKBG81se7W1c845lwkpP0BD0hOExknPA9tfEWhmYysna9WDP0DDOecqzh+gUbJUq5oB6hLunZ6QkGaEK1bnnHPOFSPlwGtmV1ZmRpxzzrm9QSp/JwLCfVZJL0haHj//jPdenXPOOVeClAMvoQHUOEIL4QOBl9nRKMo555xzxUgn8DY3s+Fmlh8/IwB/2oRzzjlXinQC7ypJ35OUFT/fIzS2cs4551wJ0gm8VwEXAEuBJYSHVVxRCXlyzjnnaqx0/k7U2szOSEyID9VYVML4zjnn3F4vnSveP5YzzTnnnHNRha94JfUBjgWaS7o1YdA+gL9Y3jnnnCtFKlXNtYGGcdpGCenfEO7zOuecc64EqbwW8D/AfySNMLMvdkOenHPOuRorncZVGyU9ABxJeG4zAGZ2QsmTOOecc3u3dBpXPUt4LV874FfAQuB/lZAn55xzrsZKJ/A2M7NngG1m9h8zu4qd31TknHPOuSTpVDVvi99LJJ0KfAU0TT9LzjnnXM2VTuC9V9K+wE8I/9/dB7ilUnLlnHPO1VApVTVLygLam9nXZvahmfUzs55mNq4c0w6LrxH8MCGtq6Spkj6Q9LKkfWJ6bUnDY/p7kvomTNMzps+X9JgkxfSmkiZI+jR+N4npiuPNl/S+pB6plN0555xLR0qB18wKgItTXOYIYGBS2tPAYDPrArwA3BbTr43L6wIMAB6SVJTnJ+Lw9vFTNM/BwEQzaw9MjP0AJyeMe12c3jnnnMuodBpXvSXpT5KOk9Sj6FPWRGY2BVidlNwBmBK7JwDnxu5OwKQ43XJgLZAr6QBgHzObZmYGjALOitOcCYyM3SOT0kdZMA1oHOfjnHPOZUw693i7xe9fJ6QZqbVs/ogQGF8EzgcOiunvAWdIGh3TesbvQiAvYfo8oFXsbmlmS2L3UqBl7G7Fzi9wKJpmCUkkXUe4Kubggw9OoTjOOedc8VIOvGbWrxLzcRXwmKRfAOOArTF9GNARmAF8AbwNFFQgjybJKpoZMxsKDAXIzc2t8PTOOedcSVIOvJJaAr8DDjSzkyV1AvrE//ZWiJnNA06M8+0AnBrT80loKS3pbeATYA3QOmEWrYHFsXuZpAPMbEmsSl4e0xez40o6eRrnnHMuI9K5xzsC+DdwYOz/BLg5lRlJahG/awF3AU/G/vqSGsTuAUC+mc2JVcnfSOodWzNfDrwUZzcOGBS7ByWlXx5bN/cGvk6oknbOOecyIp17vPuZ2XOS7oRwdSqpzGrgeL+2L7CfpDzgbqChpBvjKGOB4bG7BfBvSYWEq9PLEmZ1AyH41wNeix+AIcBzkq4mVE9fENNfBU4B5gMbgSsrWmDnnHMuXekE3g2SmhEaVFF0FVnWRGZW0t+QHi1m3IXA4SXMZwbQuZj0VUD/YtINuDE53TnnnMukdALvrYTq20MlvQU0x9/H65xzzpUqnVbNsyR9h3BFKuBjM9tWxmTOOefcXi2dVs11CfdZv02obn5T0pNmtrmyMuecc87VNOlUNY8C1hFekABwCfBXwgMwnHPOOVeMdAJvZzPrlND/hqQ56WbIOeecq8nS+R/vrNiSGQBJvQhPmHLOOedcCdK54u0JvC3pS8I93jbAx5I+IPx756jKyKBzzjlXk6QTeAcCTYDjYv8UwtuDnHPOOVeCdKqazyI0ptqP8B/evwJnmNkXZvZFZWTOOeecq2nSueK9GuhtZhsAJN0PTGVHK2fnnHPOJUnnilfs/Iq+gpjmnHPOuRKkc8U7HHhH0gux/yygwq8EdM455/Ym6Twy8mFJkwlPrgK40szerZRcOeecczVUOle8mNksYFYl5cU555yr8dK5x+ucc865CvLA65xzzmWQB17nnHMugzIeeCUNk7Rc0ocJaV0lTZX0gaSXJe0T03MkjYzpcyXdmTDNLZI+kvShpNHxNYVIaifpHUnzJf1DUu2YXif2z4/D22a25M4551zVXPGOIDxuMtHTwGAz6wK8ANwW088H6sT0nsD1ktpKagXcBOSaWWcgC7goTnM/8AczOwxYQ3jQB/F7TUz/QxzPOeecy6iMB14zmwKsTkruQHjWM8AE4Nyi0YEGkrKBesBW4Js4LBuoF4fVB76SJOAEYEwcZyTh/8UAZ8Z+4vD+cXznnHMuY6rLPd6PCIERwlXuQbF7DLABWAJ8CTxoZqvNbDHwYExbAnxtZuOBZsBaM8uP0+cBrWJ3K2ARQBz+dRx/F5KukzRD0owVK1ZUXimdc87t9apL4L0KuEHSTKAR4coW4BjCoygPBNoBP5F0iKQmhEDdLg5rIOl7lZUZMxtqZrlmltu8efPKmq1zzjmX3gM0KouZzQNOBJDUATg1DroEeN3MtgHLJb0F5BKqoBeY2Yo4zVjgWOBZoLGk7HhV2xpYHOe1mHAlnRerp/cFVmWifM4551yRanHFK6lF/K4F3AU8GQd9Sbhni6QGQG9gXkzvLal+vE/bH5hrZga8AZwXpx8EvBS7x8V+4vBJcXznnHMuY6ri70SjCa8PPFxSnqSrgYslfUIIql8RXsAA8DjQUNJHwP+A4Wb2vpm9Q7j/Owv4IJZjaJzmDuBWSfMJ93CLXtzwDNAspt8KDN7NRXXOOed2Ib/oK11ubq7NmDGjqrPhnHN7FEkzzSy3qvNRHVWLqmbnnHNub+GB1znnnMsgD7zOOedcBnngdc455zLIA69zzjmXQR54nXPOuQzywOucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zjnnMsgDr3POOZdBHnidc865DPLA65xzzmWQB17nnHMugzzwOueccxnkgdc555zLoIwHXknDJC2X9GFCWldJUyV9IOllSfvE9BxJI2P6XEl3JkzTWNIYSfPisD4xvamkCZI+jd9NYrokPSZpvqT3JfXIdNmdc865qrjiHQEMTEp7GhhsZl2AF4DbYvr5QJ2Y3hO4XlLbOOxR4HUzOwLoCsyN6YOBiWbWHpgY+wFOBtrHz3XAE5VaKuecc64cMh54zWwKsDopuQMwJXZPAM4tGh1oICkbqAdsBb6RtC9wPPBMnOdWM1sbpzkTGBm7RwJnJaSPsmAa0FjSAZVaOOecc64M1eUe70eEwAjhKveg2D0G2AAsAb4EHjSz1UA7YAUwXNK7kp6W1CBO09LMlsTupUDL2N0KWJSwzLyYtgtJ10maIWnGihUr0i+dc845F1WXwHsVcIOkmUAjwpUtwDFAAXAgIdj+RNIhQDbQA3jCzLoTgvPg5JmamRGumivEzIaaWa6Z5TZv3jyV8jjnnHPFqhaB18zmmdmJZtYTGA18FgddQriPu83MlgNvAbmEq9U8M3snjjeGEIgBlhVVIcfv5TF9MTuupAFaxzTnnHMuY6pF4JXUIn7XAu4CnoyDvgROiMMaAL2BeWa2FFgk6fA4Xn9gTuweBwyK3YOAlxLSL4+tm3sDXydUSTvnnHMZkZ3pBUoaDfQF9pOUB9wNNJR0YxxlLDA8dj9OuI/7ESBguJm9H4f9CHhWUm3gc+DKmD4EeE7S1cAXwAUx/VXgFGA+sDFhfOeccy5jFG6DupLk5ubajBkzqjobzjm3R5E008xyqzof1VG1qGp2zjnn9hYeeJ1zzrkM8sDrnHPOZVDGG1c555wrm5mxZWshOdm1kIxt24zsnFoIY1u+kZ0lJMjPh1q1wie/ACTIqgUFBWE+WVlQUAhmkJ0FhYVQWGhkZwszyC8wcrKFIfK3FZKTI8zEtvxC6tSuhaSqXRE1kAde55yrZrasXE3+ug1s3lxI/X3rUbhxE2ZQ2KAuhRs379wNZNXfuXvrxs0A1Erq3lZC96ZiugsRBVkCRM4+DandrHFG10FN5oHXOeeqkW35BWz9ej1TjhgAQO//G8W0716e8e5E/T6Z6IG3Evk9Xuecq0a+WVeAWfWq3i30f51WKg+8zjlXjdRSuE/rai4PvM45V400aphFCu922a1qeaSoVL46nXOuGsnOzqKWR7oazR8ZWQZ/ZKRzLtO2rlpL/rr1ANSqXZuCjZtCd2y9nIluagnFE4DsRhVv1eyPjCyZt2p2zrlqpnazxt6KuAbz+gznnHMugzzwOueccxnkgdc555zLIA+8zjnnXAZ54HXOOecyyP9OVAZJK4AvKjDJfsDK3ZSd6mpvLDPsneXeG8sMe2e50y1zGzNrXlmZqUk88FYySTP2tv+u7Y1lhr2z3HtjmWHvLPfeWOZM8apm55xzLoM88DrnnHMZ5IG38g2t6gxUgb2xzLB3lntvLDPsneXeG8ucEX6P1znnnMsgv+J1zjnnMsgDr3POOZdBHngriaSBkj6WNF/S4KrOz+4i6SBJb0iaI+kjST+O6U0lTZD0afxuUtV5rWySsiS9K+mV2N9O0jtxm/9DUu2qzmNlk9RY0hhJ8yTNldSnpm9rSbfEfftDSaMl1a2J21rSMEnLJX2YkFbstlXwWCz/+5J6VF3O93weeCuBpCzgceBkoBNwsaROVZur3SYf+ImZdQJ6AzfGsg4GJppZe2Bi7K9pfgzMTei/H/iDmR0GrAGurpJc7V6PAq+b2RFAV0L5a+y2ltQKuAnINbPOQBZwETVzW48ABiallbRtTwbax891wBMZymON5IG3chwDzDezz81sK/B34MwqztNuYWZLzGxW7F5HOBC3IpR3ZBxtJHBW1eRw95DUGjgVeDr2CzgBGBNHqYll3hc4HngGwMy2mtlaavi2JrynvJ6kbKA+sIQauK3NbAqwOim5pG17JjDKgmlAY0kHZCanNY8H3srRCliU0J8X02o0SW2B7sA7QEszWxIHLQVaVlG2dpdHgNuBwtjfDFhrZvmxvyZu83bACmB4rGJ/WlIDavC2NrPFwIPAl4SA+zUwk5q/rYuUtG33ymPc7uKB16VEUkPgn8DNZvZN4jAL/1GrMf9Tk3QasNzMZlZ1XjIsG+gBPGFm3YENJFUr18Bt3YRwddcOOBBowK7VsXuFmrZtqxMPvJVjMXBQQn/rmFYjScohBN1nzWxsTF5WVPUUv5dXVf52g28BZ0haSLiNcALh3mfjWB0JNXOb5wF5ZvZO7B9DCMQ1eVt/F1hg/7+9+wmxqgzjOP79FZkWkQhtoiKSiGKokaAkXAj9A2sTWS4szUoQqZ3Qn8WURLUwalG0CIoWQWAlabaIIhcxQVqYTlZi1CKKIlqIIFjkr8XzTt1kRBw9Z+z6+2zmnnPuOee9886d557zvvd57N9s/wlsovp/2Pt60tH69rT6H9e1BN6TYwdweZv5OIuajLFlhtvUiTa2+Srwje3nBzZtAVa2xyuBzX23rSu2H7N9ke1Lqb792PZyYBuwtD1tqF4zgO1fgB8lXdFW3Qh8zRD3NXWLeaGkc9rf+uRrHuq+HnC0vt0CrGizmxcC+wduScdxSuaqk0TSEmoc8EzgNdtPz3CTOiFpEfAJMMG/452PU+O8G4FLqDKKd9s+cuLG/56kxcA627dLuoy6Ap4H7ATusX1oJtt3skkapSaUzQK+B1ZRH9iHtq8lrQeWUTP4dwIPUuOZQ9XXkt4EFlPl/34FngDeZYq+bR9CXqJuux8EVtn+fCbaPQwSeCMiInqUW80RERE9SuCNiIjoUQJvREREjxJ4IyIiepTAGxER0aME3oiOtQo/a9vjCyW9fax9TuBco+2rbRFxikrgjejeXGAtgO2fbS89xvNPxCiQwBtxCsv3eCM6JmmyWtVeYB9wpe0RSfdR1V/OpcqtPUclqrgXOAQsackL5lNlJy+gkhestv2tpLuopAd/Ucn8bwK+A+ZQ6fyeBa9Ihg8AAAGxSURBVLYCLwIjwFnAk7Y3t3PfAZxPJYd4w/b6jn8VEUElQY+Ibj0KjNgebRWdtg5sG6EqPM2mguYjthdIegFYQWVDewVYY3ufpOuBl6l80WPArbZ/kjTX9h+Sxqhasg8BSHqGSnF5v6S5wHZJH7VzX9fOfxDYIen9ZCOK6F4Cb8TM2tbqGh+QtB94r62fAK5uVaBuAN6qrH0AnN1+jgOvS9pIJfOfyi1UgYd1bXk2lQ4Q4EPbvwNI2gQsAhJ4IzqWwBsxswbz/R4eWD5MvT/PoGrBjh65o+017Qr4NuALSddOcXwBd9re+5+Vtd+R40wZd4roQSZXRXTvAHDedHZstY5/aOO5tOow17TH821/ZnuMKlh/8RTn+gB4uCW5R9KCgW03S5onaQ411jw+nTZGxPFJ4I3oWLudOy7pK2DDNA6xHHhA0i5gDzVRC2CDpIl23E+BXVT5uqskfSlpGfAUNalqt6Q9bXnSdqqu8m7gnYzvRvQjs5ojTkNtVvM/k7Aioj+54o2IiOhRrngjIiJ6lCveiIiIHiXwRkRE9CiBNyIiokcJvBERET1K4I2IiOjR37sN9U3E5qF0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorCICBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecFdXZwPHfs30X2AbLUhbpRUAWFCkqCiJYQLEbjYrdWKJJjDFGoyZixGiMxvjqa6Jie62xxwIqiFEJ0hSk9+2993vv8/4xs8vlsrsssJfdhef7+dzPnXvmzDlnzpQzc2bujKgqxhhjjDm4Qtq6AMYYY8zhyBpgY4wxpg1YA2yMMca0AWuAjTHGmDZgDbAxxhjTBqwBNsYYY9rAATfAIjJHRPJFJNv9fY6IpIlIuYiMOfAi7ne5Dlo5RKSfiKiIhAUzn/ZARH4qIvPbuhzGmI5DRH4nIv9so7zb7f55rw2wiGwXkSq3Iav//N0ddwRwGzBcVXu4kzwC3KyqnVV15f4WzK2wQfs7/d7K4aZf4c5Phog8KiKhB5Bfs0TkEhFZ5uaXJSIfi8gJwcqvBeWZJyK1IlLmftaIyIMiEtfcdKr6iqpO38887xORuoB16Tf7Nwcdm1/9l4tIoYgsEJFhbV2uvRGRK0TkP62cZoSI/EVE0t362C4ij7VmHqZ5IjJZRNJbIQ1fwPb9AYCq/klVr2lhOvNEZE5AmH87VCQi/xaRPgdS3vagpWfAZ7oNWf3nZjf8CKBAVXP94vYFfmzVUu6flpQjVVU7AycBFwFXBaMgIvIr4DHgT0AyTr39DzCrifgH60jtz6raBUgCrgQmAF+LSKcgluv1gHXpz43kIyJyOFwe+bO7/qUAucC8fU2gPR7VN6eJ8t4JjAXGAV2AycCKg1isQ9rB2J78lmtmwPZ9Zitmc6a7vfQEcoAnWjHttqGqzX6A7cApjYSfAlQBPqAceNX9VqAC2OLG6wX8C8gDtgG3+KURCvwO2AKUAcuBPsBiv3TKgYsayT8EuBvYgbPzehGIAyIbK0cj0yswyO/3G8CTfr/jgGeBLCADmAOE+pX7ESAf2Arc5KYX1kg+cW55Lmimju8D3gJeBkqBa9z5eAzIdD+PAZFu/G7Ah0AxUAh8BYS44+5wy1sGbACmNpHnPGBOQFgXd35vdn9fAXwN/BUocOvgCuA/AfV4i1sP+cDD9WVpYj5fbmLcIuABN78qYNCBLAMC1tvAvHEONr5x6/B7YHJAWe53y1IGzAe6+Y0/wW/aNLdOjsXZKYT6xTsX+L4l9Q/MAMrd4XHAt276WcDfgYiAOr8J2ARsc8Med8tSirMdTQqY9zdx1q8yYDUwBKfhy3Wnm763dR84EqgGvDjrdLEbP9JdFjvdOngaiHbHTQbScdbLbOClRuriQ+AXTdTTlcAHfr83AW/6/U4DRrvDw4AFONvEBuBCv3gtKePvcNan7cBPm9leewHvu/lsBq4NqOs3cPZHZTgnAWObSes44DugxP0+LmA9fBBY6i7X94DEfViHA7enK4F1brm2Ate7cTux+7683J3H5vZBeyzX+rCWbPs462O2O9+LgRFu+HVAHVDrluODJrbnM4CNAdvPSree0oD7/Mb1Y/d9Q6P1EDBft+FsG1nAlX7jo4G/4LQ7JcB/2LUeNbk8mlz+e43QRAPsX9iAsIaGDaeRXA7cA0QAA9wZPtUdfzvOzmAoIEAq0DUwnSbyvgpn5R8AdAbexm/jbsH0/uUc5lb0L/3GvwP8L87K2R1nI6hfYX8GrMc5WEgEFtJ0A3wa4GlsXMDKWQec7dZZNPBHYImbd5K7YO934z+IswMJdz+T3Pob6q58vfxWvIFN5DmPgAbYDX8R5ywVnIbFA/wcCHPLdQV7NsAL3Xo4AtgIXNOSjTBg3CKcneMIN6/wA1kGNNMAA71xDijOcOt7mvs7ya8sW3AaqWj391x3XF+cDfdit4xd2dUArAVOD1iHbttb/eOsv/8HfOX+PgZnYw5zl+E6/Boodz4XuPNdv/Ff6pYlDGfnkQ1E+c17NXCqO/5FnIPhu9x5uBa3IW/Bur/b8nfD/orTICXiHMR9ADzot4/wAA/h7NCjG6mLu91lfyNwFCB+4wbg7NBCcBqFHbj7HHdckTuuE866f6U7j2NwGtPh+1DGR90ynoRz8D60iWW3GKcHKwoYjXNycXJAXZ+Bc9DyILCkiXQS3fJf5pb5Yvd3/T5wEc4B0Eh3/v7Fvq3DgdvTDGAgzr7iJKASOLqZfXlz+6A9lmtjaTS17ePsv7uwq5Ff1dy+Cb/tGYgBXgBe9Bs/GWfdCQFG4Rxkne23H/TfN+ytHjzuvIe79VsJJLjjn3Trtre7fI9z56HZ5dHkvr+5kX4zXo6zEdR/rm1mofk3bOOBnQHj7wSed4c3ALOayHdvDejnwI1+v4fiNGJhLZxecY6WKtzhV9l1dJcM1OC3s8DZOBa6w18AP/MbN52mG+CfAtl7qeP7gMUBYVuAM/x+nwps99sw3gucP5yj3Fyc3onwveQ5j8Yb4LnAAnf4ikaW3xXs2QCf5vf7RuDzZuazNmBdqj9YWAT80S/uAS0Dmm+A7yDgTAz4FJjtV5a7A+bpE7/1950m5u8O4BV3OBFnw+3ZTP1Xu3WQjdM4NHWw9Av/PN35PHkvy7cI5xJL/bwv8Bt3Js42Xd+b0MVNM74F9R64/AVnGxroFzaRXWfmk91lHtVMWUNxzui/dvPOrF8W7vg04GjgJ8AzOAcEw3Aa2/fdOBfhHsD4Tfe/wL0tLKMH6OQ3/g3g942UtQ9OD0AXv7AHgXl+df2Z37jhQFUT830ZsDQg7FvgCr/1cG5AWrVufbVkHf5jY/n6xX8XuNWvDgL35c3tg/ZYrm6Yj9237wsDt79GyhGPs/7F+W0bjTXA9e1QnbuOHNXMvD0G/NUd7kcT++cm6qHKPy7OPnUCTsNahbtdNbLtN7k8mvq09PrR2ar6WQvj+usL9BKRYr+wUJwuU3BW5i37kS7sOhqutwPnSC8Z56ixJY52878Ap+HphLMD6Itz9JMlIvVxQ3B2BPV5p/ml41+OQAVANxEJU1VPM/HSAn43Nn+93OGHcVbo+W75nlHVuaq6WUR+4Y4bISKfAr9S1cxm8g3UG6drraly7a3s/uVszBuqemkL0mnNZRCoL3CBiPhfnwrHOYuul+03XIlzlgrNr7MvA+vca+gX4jQIWc2U4xFVvTswUESG4JyNjcU52g/D6UnylxYwza+Bq3HqRYFYnEsV9XL8hquAfFX1+v0GZx570Xy9B0pyy7jcL77gbOf18lS1uonpccvxJPCkiETjnB09JyJLVXUd8CXOjnGQO1yMc+Yy0f0NzjIdH7CvCcPpGm1JGYtUtcLvd1PrcS+gUFXLAuKO9fsduO5ENbH9B27j9Wn19vsduI6H4yzXlqzDgevI6TgHJENwlmkMTg9kU5rbB0HjyzVTVVOaSRP3ZtcHcPa7STiNNjjzVdLMpGer6mfu9LOAL0VkuKpmi8h4nH34SJze1kicbu7G8t9bPRQELKv67b8bTq9HY9t/S5bHHoJ9o0sazlFmvN+ni6qe4Td+4H6mnYkz0/WOwDmKzWk8euPU8QbOkec9fuWqwbnuV1/uWFUd4Y7PwtkR++fdlG/dtM7eW1ECfjc2f5lumctU9TZVHQCcBfxKRKa64/5PVU9wp1WcLqIWEZHOOGfPX/kFB5arMYF1sS8Nvj//vA50GVTgbFj1evgNp+Ecrfqvl51UdW4LytjkOquqGTjL+1ycs5uXWpBeY57C6V4frKqxONcmJSBOQ12JyCTgNziNfoKqxuPsyAKnaYm91Xvg+pCP04CP8Isfp87NMnuUdW9UtUpVn8Q5gx/uBtc3wJPc4S9xGuCT2NUApwFfBizTzqp6QwvLmBBw82FT63EmkCgiXQLitvSgPzCtvgFhgWkFruN1OPPTknXYfx2JxOnCfgRIdteRj9i1jjS2jJrcBzUzTUtcgtOAnoJzv0G/+mK2JF1V9arq2zg9EfX/JPk/nF6kPqoah3OJbo/1vwX10Jx8nF6rxrb//dqnBLsBXgqUicgdIhItIqEiMlJEjnXH/xO4X0QGu3fqjRKRru64HJxrPE15FfiliPR3G44/4Vy7bO4sszlzgWtFpId71jIf+IuIxIpIiIgMFJGT3LhvALeISIqIJAC/bSpRVS3BadifFJGzRSRGRMJF5HQR2eMO4ID5u1tEkkSkm5vGywAiMlNEBolzOF+CsyL6RGSoiJzsrmTV7LqxolkiEikix+B0xRQBz+9tmgC3i0iC+7eAW4HX93H6PbTCMlgF/MSt67HA+X7jXgbOFJFT3XUyyv0LRbNH7q5XgFNE5EIRCRORriIy2m/8iziN4VE49yXsjy44l0fKxflr0g0tiO/BuRYZJiL34JwB77MW1HsOkCIiEW58H/AP4K8i0h1ARHqLyKktzVNEfuHWf7Rbp7Pdear/++CXwBScbvF0nAPE03CuedfH+RAYIiKXucs8XESOFZEj96GMfxDnL1GTgJk0cgalqmk410IfdNebUTg9Dy+3dH79fOSW+RJ3vi/COej40C/OpSIyXERicC49veX2GOzrOlx/VpgHeNyzQP+/E+YAXWX3vyE2uQ86QF1wDvIKcA6S/xQwvtl9v9tWzAIScO6PqE+zUFWrRWQcTiPfmL3VQ5Pc9eg54FER6eXW+0R3f7tf+5SWNsAfyO7/7XqnhQX24qzIo3Fu+sjHaXTrF/KjODvS+Tg7nGdxLuaD0436gogUi8iFjST/HM4ZxmI37Wqcm4X2i6qudtO63Q26HGdhrcVplN7Cuf0dnI35U5w73Vawlx2tqv4F+BXOzSZ5OEdLN+M0eE2ZAywDfsDpHlnhhgEMBj7DuSbyLfA/qroQZ8Wai1PP2Tg3T9zZTB6/EZEynA3hRZxuzuMCuuJa4j132lXAv3GWY2s4kGXwe5wj1SLgDzhHyEDDTnQWzpll/fK4nRZsD6q6E+dGi9twuupX4dw8WO8dnLOGd1S1ssVzurtf4+xAynDmc28HNJ8Cn+DcALcDZ1toyaWDpjRX71/g3NmbLSL5btgdODdELhGRUpx1c+g+5FeJc2dpNs66exNwnqpuBVDVjTjr+lfu71Kcmzm/ru9Gd7uEp+NcJ85006q/QaglZcx25zUT5yDrZ6q6vonyXoxz1paJs7zv3Z9LdKpagLN/vA1nG/wNMFNV8/2ivYRzTTQbp/vzFnfafVqH3fq5BWd/W4Szfr3vN349ToO71d3n9qL5fdCBeBFnPc3AWceWBIx/FhjulsN/H/mBiJTjtBUP4Fxfrf+r6Y3AH9392T3ufO5hb/XQAr/GqYvvcLb/h3D+9bFf+xRR3d9eBGOcB5rgdJVubuNy9MM5EAs/gF6Q1irLFpy7hvfnvglzkInIZJwbhFrSA3LQiMginHK1yROkTPAdDg87MOagEZHzcK5hfdHWZTHGtG8d6ik6xrRn7hnLcOAy93qRMcY0ybqgjTHGmDZgXdDGGGNMG7Au6Bbo1q2b9uvXr62LYYwxHcry5cvzVTWprcvRXlkD3AL9+vVj2bJlbV0MY4zpUERkX55Qd9ixLmhjjDGmDVgDbIwxxrQBa4CNMcaYNmDXgPdTXV0d6enpVFc3+ZIXYw6qqKgoUlJSCA8Pb+uiGGNawBrg/ZSenk6XLl3o168fIvvz0hljWo+qUlBQQHp6Ov3792/r4hhjWsAa4P1UXV1tja9pN0SErl27kpeX19ZFMUHg9fooKqljZ0YlSV0jiYoIJSO7isT4CKKjQ8nOraZTdChdOoeTW1BDeJiQEB9BQVEtPq+S1DWS4tI6qmo89EyKoqzCS0lZLb17RFNZ5aWgsJYjekdTXesjJ7eGI1KiqatTMrOrOCIlhtjO4URHh+69oGafWAN8AKzxNe2JrY+HrvSsaq67bQVhYcKff38UN8xZRVW1lyceSOWX9/xAfkENf587mrsfWsvO9CoenzOKh57YyIYt5cy9ewRPzdvKyjUl3P2rYbzyVjpfLy3g1usG8tFnOXz8eQ5X/KQv3y4r5LV30zn3jF506xrBMy9tByAkBP70uxFMHJtIaKjdNtSarDaNMaYdq6j08ORzW6io9HLKid1556NMikvqOHFCNz77KpecvBqOSU1gxQ/F7EyvYuigzuzMqGLDlnJ6JUdRW+dj5ZoSYruEkRAXztdLCwgPE4YO7MLHn+cAcNzYRF5/Lx2AU07qzrzXdv191+eDP/99I8WlbfqSsUOSNcAdWGhoKKNHj2bkyJGceeaZFBcX79P09913H4888kij41588UVGjhzJUUcdxZgxY5qM19r69evHUUcdxVFHHcXw4cO5++67m73R7bjjjtun9CdPnszQoUMZPXo0o0eP5q233jrQIhsTVLW1PnLzagCIj4sgt8Adjg0nL78+PJxcdzghLoI8N05cbDi5+bUAdO4URmGRMxwZGUJZxa4Gtc6j+L8WoLZu93cEFJXUoT57b0Brswa4A4uOjmbVqlWsWbOGxMREnnzyyVZJ9+OPP+axxx5j/vz5rF69miVLlhAXF7dHPI8nOEfECxcuZPXq1SxdupStW7dy/fXXN5n3N998s8/pv/LKK6xatYpVq1Zx/vnn7zZOVfH57EVGpv2I7RLOGdN6ALD8+yKmHN/NGf6hmMnHO095XLWmhBMnOOE/ri9l3JgEQkJgy/ZyjhoWS1iYkJ1bzRG9Y4iOCqG8wktMdChxsc5VyMoqDz26RwKQm1fDoH6ddivD8eO6EhlpzUVrsxo9REycOJGMjIyG3w8//DDHHnsso0aN4t57720If+CBBxgyZAgnnHACGzZsaDStBx98kEceeYRevXoBEBkZybXXXgs4Z5C/+MUvGDt2LI8//jjbt2/n5JNPZtSoUUydOpWdO3cC8OabbzJy5EhSU1M58cQTAfjxxx8ZN24co0ePZtSoUWzatKnZeercuTNPP/007777LoWFhSxatIhJkyZx1llnMXz48IY4AIsWLeLEE09kxowZDB06lJ/97Gctbki3b9/O0KFDufzyyxk5ciRpaWnMnz+fiRMncvTRR3PBBRdQXl4OwCeffMKwYcM4+uijueWWW5g5cyawZ2/CyJEj2b59OwAvv/xyw3xff/31eL3ehrLfddddpKamMmHCBHJynO7AnJwczjnnHFJTU0lNTeWbb77hnnvu4bHHHmtI/6677uLxxx9v0fyZji00VDh1cjI/v3ogJaV19Ogexe03DUbEOWC857ZhxMWGk5lTxdy7R9C7VzSr15Xy6B9GMWRgF776bz5P/CmVUcPj+GRhNk/8aTRjRyfwwaeZPD4nleOOTeT9T7L48z1HMfn4bvz78yzuvf1Ipk/uTp/e0Zw3sxe/uWkIXTrb39tanaraZy+fY445RgOtXbt2j7CDrVOnTqqq6vF49Pzzz9ePP/5YVVU//fRTvfbaa9Xn86nX69UZM2bol19+qcuWLdORI0dqRUWFlpSU6MCBA/Xhhx/eI92EhAQtLi5uNM+TTjpJb7jhhobfM2fO1Hnz5qmq6rPPPquzZs1SVdWRI0dqenq6qqoWFRWpqurNN9+sL7/8sqqq1tTUaGVl5R7p9+3bV/Py8nYLS01N1SVLlujChQs1JiZGt27dukcdLFy4UCMjI3XLli3q8Xj0lFNO0TfffLPR8g8ZMkRTU1M1NTVV8/Pzddu2bSoi+u2336qqal5enk6aNEnLy8tVVXXu3Ln6hz/8QauqqjQlJUU3btyoPp9PL7jgAp0xY4aqqt5777271eWIESN027ZtunbtWp05c6bW1taqquoNN9ygL7zwgqqqAvr++++rqurtt9+u999/v6qqXnjhhfrXv/5VVZ1lW1xcrNu2bdMxY8aoqqrX69UBAwZofn7+HvPXHtZLExwej1cLimq0rKxOPR6fFhbVaElprfp8Pi0qrtHiUmcdKyqu0aKSGlVVLS6p1aLiGvX5fFpSVquFRTXq9fq01B32eHxaVl6nBUU1Wlfn1fIKZ7i21quVlR4tKKrR6hrPfpcZWKbtYB/eXj92F3QHVlVVxejRo8nIyODII49k2rRpAMyfP5/58+czZswYAMrLy9m0aRNlZWWcc845xMTEAHDWWWftV74XXXRRw/C3337L22+/DcBll13Gb37zGwCOP/54rrjiCi688ELOPfdcwDlLf+CBB0hPT+fcc89l8ODBLcrP2Y4d48aNa/J/ruPGjWPAgAEAXHzxxfznP//Zo4sZnC7osWPHNvwuKyujb9++TJgwAYAlS5awdu1ajj/+eABqa2uZOHEi69evp3///g3lvvTSS3nmmWeaLfvnn3/O8uXLOfbYYwFnmXXv3h2AiIiIhjPoY445hgULFgDwxRdf8OKLLwLOdf64uDji4uLo2rUrK1euJCcnhzFjxtC1a9dm8zaHltDQEBLjIxp+J/gNx8c1PhwXu+usNdbvDNb/bLZzp13NQFhYCJ2c3QPh4dhfj4KsXXVBi8hzIpIrImsCwn8uIutF5EcR+bNf+J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yISQQdWfw14x44dqGrDNWBV5c4772y4zrl582auvvrqFqc7YsQIli9f3uT4Tp06NTmu3tNPP82cOXNIS0vjmGOOoaCggEsuuYT333+f6OhozjjjDL744ou9plNWVsb27dsZMmTIXvMO/BvOvvwtxz9dVWXatGkN9bd27VqeffbZZqcPCwvbrcu7/sYxVWX27NkNaW3YsIH77rsPgPDw8IYyhoaG7vWa+jXXXMO8efN4/vnnueqqq1o8b8aY9qldNcDAPOA0/wARmQLMAlJVdQTwiBs+HPgJMMKd5n9EJFREQoEngdOB4cDFblyAh4C/quogoAhoeavUjsXExPC3v/2Nv/zlL3g8Hk499VSee+65huuWGRkZ5ObmcuKJJ/Luu+9SVVVFWVkZH3zwQaPp3Xnnndx+++1kZ2cDzhngP//5z0bjHnfccbz22muAc2Y5adIkALZs2cL48eP54x//SFJSEmlpaWzdupUBAwZwyy23MGvWLH744Ydm56u8vJwbb7yRs88+m4SEhL3Ww9KlS9m2bRs+n4/XX3+dE044Ya/TNGbChAl8/fXXbN68GYCKigo2btzIsGHD2L59O1u2bAHg1VdfbZimX79+rFixAoAVK1awbds2AKZOncpbb71Fbm4uAIWFhezY0fwb2qZOncpTTz0FgNfrpaSkBIBzzjmHTz75hO+++45TTz21uSSMMR1Au+qCVtXFItIvIPgGYK6q1rhxct3wWcBrbvg2EdkMjHPHbVbVrQAi8howS0TWAScDl7hxXgDuA54KztwcXGPGjGHUqFG8+uqrXHbZZaxbt46JEycCzs0+L7/8MkcffTQXXXQRqampdO/evaFbNNAZZ5xBTk4Op5xyCqqKiDR5xvXEE09w5ZVX8vDDD5OUlMTzzz8PwO23386mTZtQVaZOnUpqaioPPfQQL730EuHh4fTo0YPf/e53jaY5ZcoUVJ27kc855xx+//vft6gOjj32WG6++WY2b97MlClTOOecc1o0XaCkpCTmzZvHxRdfTE2N83eOOXPmMGTIEJ555hlmzJhBTEwMkyZNoqysDIDzzjuPF198kREjRjB+/PiGM/bhw4czZ84cpk+fjs/nIzw8nCeffJK+ffs2mf/jjz/Oddddx7PPPktoaChPPfUUEydOJCIigilTphAfH09oqHUNGtPhtfVF6MAP0A9Y4/d7FfAH4L/Al8CxbvjfgUv94j0LnO9+/ukXfpkbtxtOw1wf3sc/n0bKcR2wDFh2xBFHaCC72aV9WbhwYcMNUYdqnl6vV1NTU3Xjxo1NxrH10rQn2E1YzX7aWxd0Y8KARGACcDvwhhyEZ+6p6jOqOlZVxyYlJQU7O2OatXbtWgYNGsTUqVNbfPOaMaZ9a1dd0E1IB952j6aWiogP52w2A+cstl6KG0YT4QVAvIiEqaonIL7p4CZPnszkyZMP2TyHDx/O1q1bD0pexpiDoyOcAb8LTAEQkSFABJAPvA/8REQiRaQ/MBhYCnwHDHbveI7AuVHrfbcBX4jTRQ0wG3jvoM6JMcYY42pXZ8Ai8iowGegmIunAvcBzwHPuX5NqgdluY/qjiLwBrAU8wE2q6nXTuRn4FAgFnlPVH90s7gBeE5E5wEqc68bGGGPMQdeuGmBVvbiJUZc2Ef8B4IFGwj8CPmokfCu77pQ2xhhj2kxH6II2xhhjDjnWAHdg1dXVjBs3jtTUVEaMGNHw0oVt27Yxfvx4Bg0axEUXXURtbW0bl9QYY0wga4A7sMjISL744gu+//57Vq1axSeffMKSJUu44447+OUvf8nmzZtJSEjY62MUjTHGHHzWAB8k8xflcN5VS5h01pecd9US5i/KOeA0RaThdXx1dXXU1dUhInzxxRcNLyGYPXs277777gHnZYwxpnVZA3wQzF+Uw0N/30hOXg2qkJNXw0N/39gqjbDX62X06NF0796dadOmMXDgQOLj4wkLc+6vS0lJ2e09wcYYY9oHa4APgv99cRs1Nbu/HL6mxsf/vrjtgNMODQ1l1apVpKens3TpUtavX3/AaRpjjAk+a4APgtz8mn0K3x/x8fFMmTKFb7/9luLi4oZX26Wnp9O7d+9Wy8cYY0zrsAb4IOjeLXKfwlsqLy+P4uJiwHnR+4IFCzjyyCOZMmUKb731FgAvvPACs2bNOqB8jDHGtD5rgA+C6y/vT2Tk7lUdGRnC9Zf3P6B0s7KymDJlCqNGjeLYY49l2rRpzJw5k4ceeohHH32UQYMGUVBQwNVXHxKvPTbGmENKu3oS1qFq+uRkwLkWnJtfQ/dukVx/ef+G8P01atQoVq5cuUf4gAEDWLp06QGlbYwxJrisAT5Ipk9OPuAG1xhjzKHDuqCNMcaYNmANsDHGGNMGrAE2xhhj2oA1wMYYY0wbsAbYGGOMaQPWAHdwxcXFnH/++QwbNowjjzySb7/9lsLCQqZNm8bgwYOZNm0aRUVFbV1MY4wxAawB7uBuvfVWTjvtNNavX8/333/PkUceydy5c5k6dSqbNm1i6tSpzJ07t62LaYxtBhFuAAAgAElEQVQxJoA1wAeBqpKVmUlWZiY+n69hWFUPKN2SkhIWL17c8KSriIgI4uPjee+995g9ezZgryM0xpj2yhrggyA7K4vq6mqqq6vZuWNHw3B2VtYBpbtt2zaSkpK48sorGTNmDNdccw0VFRXk5OTQs2dPAHr06EFOzoG/9tAYY0zrsgb4IFJVfD7fAZ/51vN4PKxYsYIbbriBlStX0qlTpz26m0UEEWmV/IwxxrQea4APguQePfZoBEWE5B49DijdlJQUUlJSGD9+PADnn38+K1asIDk5mSz37DorK4vu3bsfUD7GGGNanzXAB0FOdvYeZ72qSk529gGl26NHD/r06cOGDRsA+Pzzzxk+fDhnnXUWL7zwAmCvIzTGmPbKXsZwENV3B7dWFzTAE088wU9/+lNqa2sZMGAAzz//PD6fjwsvvJBnn32Wvn378sYbb7RafsYYY1pHu2uAReQ5YCaQq6ojA8bdBjwCJKlqvjj9uo8DZwCVwBWqusKNOxu42510jqq+4IYfA8wDooGPgFu1NVvERvTo2bPhhqvkHj0aznx7uDdKHYjRo0ezbNmyPcI///zzA07bGGNM8LTHLuh5wGmBgSLSB5gO7PQLPh0Y7H6uA55y4yYC9wLjgXHAvSKS4E7zFHCt33R75NXaRISevXrRs1cvQkJCGobt5ihjjDl8tbsGWFUXA4WNjPor8BvA/2x1FvCiOpYA8SLSEzgVWKCqhapaBCwATnPHxarqEves90Xg7GDOjzHGGNOYdtcAN0ZEZgEZqvp9wKjeQJrf73Q3rLnw9EbCG8vzOhFZJiLL8vLyDnAOjDHGmN21+wZYRGKA3wH3HMx8VfUZVR2rqmOTkpIOZtbGGGMOA+2+AQYGAv2B70VkO5ACrBCRHkAG0Mcvboob1lx4SiPhxhhjzEHV7htgVV2tqt1VtZ+q9sPpNj5aVbOB94HLxTEBKFHVLOBTYLqIJLg3X00HPnXHlYrIBPcO6suB99pkxowxxhzW2l0DLCKvAt8CQ0UkXUSubib6R8BWYDPwD+BGAFUtBO4HvnM/f3TDcOP8051mC/BxMObjYHj88ccZOXIkI0aM4LHHHgOwVxEaY0wH0e4aYFW9WFV7qmq4qqao6rMB4/upar47rKp6k6oOVNWjVHWZX7znVHWQ+3neL3yZqo50p7k52P8BDpY1a9bwj3/8g6VLl/L999/z4YcfsnnzZnsVoTHGdBDt7kEch6JPEo/GW1axR3hol06cVrhiv9Jct24d48ePJyYmBoCTTjqJt99+m/fee49FixYBzqsIJ0+ezEMPPbTfZTfGGBMc7e4M+FDUWOPbXHhLjBw5kq+++oqCggIqKyv56KOPSEtLs1cRGmNMB2FnwB3UkUceyR133MH06dPp1KkTo0ePJjQ0dLc49ipCY4xpv+wMuAO7+uqrWb58OYsXLyYhIYEhQ4bYqwiNMaaDsAa4A8vNzQVg586dvP3221xyySX2KkJjjOkggtYF7T7B6jbgCFW9VkQGA0NV9cNg5Xm4Oe+88ygoKCA8PJwnn3yS+Ph4fvvb39qrCI0xpgMI5jXg54HlwET3dwbwJnDYNcChXTo1eRf0gfjqq6/2COvatau9itAYYzqAYDbAA1X1IhG5GEBVK+UwvSNof/9qZIwx5tAVzGvAtSISjfv6QBEZCNQEMT9jjDGmwwjmGfC9wCdAHxF5BTgeuCKI+R10qmp/8zHtRgd9qJsxh62gNcCqukBEVgATAAFurX+E5KEgKiqKgoICunbtao2waXOqSkFBAVFRUW1dFGNMCwXzLuhzgC9U9d/u73gROVtV3w1WngdTSkoK6enp5OXltXVRjAGcg8KUlJS9RzTGtAtB7YJW1Xfqf6hqsYjcCxwSDXB4eDj9+/dv62IYY4zpoIJ5E1ZjadujL40xxhiC2wAvE5FHRWSg+3kU53/BxhhjzGEvmA3wz4Fa4HX3UwPcFMT8jDHGmA4jmHdBVwC/DVb6xpi2U1ZeR15BLavXlTDmqDjUB6t+LGHU8DjCw4QVq4sZPqQLMdFhrFxdzIB+nUiIi2Dl6mJSekXRvVsU3/9YQreuEaT0jGbN+lI6xYTR/4hOrN9URogoQwZ1Ycv2CqqqfIw8MpYdaRUUFtcx+qg4MrOrycqu4pjUBHLza9i2s4JxYxIpKqll45Zyjh2dQEWll7UbSzlmVDx1HuWHtSWkjogjNERYuaaYEUNjiY4KZcXqYoYM6EyXzuGsXF1MvyNiSEyI4Ps1JSR3j6RXchSr15YSFxvGESkxrN1YRkR4CIP6d2bjljK8XuXIIbFs21FBaXkdqSPiSMusIje/hqOPiic7t4a0jArGjk6ksKiWTdvKOXZMAuXlHtZtKuOY1Hhqa5TV6926VGHVmmK3LkNYuaaYPr2i6dsnhoS4iLZe9KYVBfMu6CHAr4F+/vmo6snBytMYE3y1dT4WfJnLo09v5vhxXRHgz09uYtTwWLp0DuO+h9fRNyWGm68ayDVzVpIYH8E9tw3j0hu/IzwshEfuO4rZP19Gba2Pv88dzTW/XEFxaR1Pzh3NTb9dRVZONY/PGcVt965m285KHrxrBL+f+yM/bijj7l8O5aG/bWTpyiJuuWYgT83bymeL85h90RH839tpvP3vTM45oxf5BbU8/9oOTj4hido6H48/s4WxqfFERobywF/XM3hAZxLjI7jrwbUkJ0Vyx81D+NntK4mJCePBu0Zw2U3LUJ/ytz+lcuWtyykv9/A/D43h+l+vJK+glr8/mMqtd31PWmYVj9x3FL+ds4aNW8r5w2+O5P6/rGflmhJ+feNgHn9mM4uXFHDdZf2Y9/oOPpyfzUWzUsjMruaVf6Vx2snJlFd4eWreVo47NpGQEOGhJzYyclgssV3CuffPa/H5nHo/YXxXfnvLUOJjw9t0+ZvWE8wu6DeBlcDdwO1+H2NMB1ZaVsfTL2wDYMYpPXju1R0AnD61By+8vhOfD06bkszL/0rD41FOObE7b32QQXWNjxOP68ZHn2dTXuFl/DGJfLWkgMLiOkYOi+PH9aVk5VTTNyWGnPwatu2sJDE+HBH4cUMZkZEhJCdFsXRlEQAjhsby2WLnb4ATjknkvY8zAZhyfBL/904aAKednMy813aVb96rO1CF009O5qU3d+L1KtMnJ/Pau+nU1iknH5/Eex9nUVXl5fhxXflscS4lpR7GjEpg2fdF5BXUMmRgZ7btrCQts4oe3SOprPKwcUs5nTuF0rlTGCvXlBAaAgP7dWLxkgIAjh6VwL8XZANw4sRuvPFeOgCnTk7mxTec8p1xSg+ed+vyjKnJvPD6jobGF+A//y2grLwuOAvVtIlg3pXsUdWngpi+MaYNqEJNjReA6KhQyis8ew5HNz4cExVKQVHtHvFjokMp849f7gxHRYZSXunkFR4mVLv5Anh9u578pQpet7EKDRVqa30N01e60+9Wpii//ALKnZNfs0c5YqJCGp/PqF1xIsJDqKp28goJEerqdpXP51PqH1QmAnUe50d4uFBdvasuyxqpM381Nb49wkzHFcwz4A9E5EYR6SkiifWfIOZnjDkIYqJDmXpidwC++a6AM6b2aBg+vWG4kDNOSXaGlxZwxilu+LICTjvZCV+6soiTJyURGgLf/1jMcWO7Eh4mbNpazshhsURHh5KZU03vHlHExYZRXuElPCyE5KRIAIqKa+l/RAwAO9MrGTU8DoA160s5YXxXAP67opDpU5J3lfWUXWWd4Vdu//Azpjrx/7u8kOmTkxGBFauLmTShG6Ghwjr3unJkZAjb0yoZ0K8zXTqFUVhcR1xsOF0TIqjzKNU1XlJ6RgOQnVvNsMFdANi4pZxxYxIAWPFDMSdP6r5H3t98V9hQr/V6JkeRGG/XgA8lEqznx4rItkaCVVUHBCXDIBo7dqwuW7asrYthTLtRVFLLpwtz+G5lET+bPYA160tZ/G0e11zan53plXy6KJfLL+hDabmH9z/J4twZvQgPC+HNDzKYPrk73btF8urb6Uwcm8DQwV146c2djBway7ijE3npzZ2k9Ipm2kndefnNNOJiw5h1ei9eeycdEbj4nD68+UE65RVervxJX977NJOcnGquvbw/n36Rw+ZtFdxwZX++WlLAqjXF3HjlAFb8UMzXSwu4fvYANm8t5/Ovcrny4r7k5tfy78+y+cnZKXg8Pt7+dyYzp/UgNjac195JZ/Jx3ejbJ4aX30rj6KPiGD0ynpfe3Mmg/p2YNCGJl97cSfduEcw4pSev/GsnUZGhnH9Wb954N52aOuXyC47g7Y8yKCyq5Zqf9uPfn+WwI62CG64YwOdf5bF2Qyk3XDmA/y4vZOnKIm64oj8/bihj0dd5XHtpP9Iyq/hkYS79j4jhknP6kNQtsq0X/T4RkeWqOraty9FeBa0BPpRYA2zMnrxeparaQ1RkKCEhQmWVh8jIUMLDnO7ayIgQwsNDqKj0EB4WQkSEMxwWJkRGhFJV5UFChKjIUKqqvCBON2x1jRefT4mJDqOmxovXHa6t9VLnUTrFhFFX56Om1kfnTmHUeXzU1HjpFBOG1+uceUZHOVfXqqo9REeFIuKULyoylNBQoaLSQ2RE6K7yhYcQ0VBWISIilMoqD6EhQmRkKJXVHkIQoqJCqa72oup0E/uX1b98tXU+6up8u5W1U0xoQ/liosNQVaqqdy/rbuVrpC47GmuAmxfUBlhERgLDgYYnxKvqi0HLMEisATbGmH1nDXDzgnZI5T73+Qn3MwX4M3DWXqZ5TkRyRWSNX9jDIrJeRH4QkXdEJN5v3J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yJiF1SMMca0iWD2aZwPTAWyVfVKIBWI28s084DTAsIWACNVdRSwEbgTQESGAz8BRrjT/I+IhIpIKPAkcDrO2ffFblyAh4C/quogoAi4+oDm0BhjjNlPwWyAq1TVB3hEJBbIBfo0N4GqLgYKA8Lmq2r9/fhLgPr3rc0CXlPVGlXdBmwGxrmfzaq6VVVrgdeAWeK8tPdk4C13+heAsw90Jo0xxpj9EeyXMcQD/8B5CcMK4NsDTPMq4GN3uDeQ5jcu3Q1rKrwrUOzXmNeHN0pErhORZSKyzN75a4wxprUF81nQN7qDT4vIJ0Csqv6wv+mJyF2AB3ilNcq3N6r6DPAMODdhHYw8jTHGHD5avQEWkaObG6eqK/YjzSuAmcBU3XXbdga7d2mnuGE0EV4AxItImHsW7B/fGGOMOaiCcQb8l2bGKc512BYTkdOA3wAnqWql36j3gf9z3zPcCxgMLAUEGCwi/XEa2J8Al6iqishCnJvDXgNmA+/tS1mMMcaY1tLqDbCqTtnfaUXkVWAy0E1E0oF7ce56jgQWOPdRsURVf6aqP4rIG8BanK7pm1TV66ZzM/ApEAo8p6o/ulncAbwmInNwXhTx7P6W1RhjjDkQ9iCOFrAHcRhjzL6zB3E0L5jvA74X52x2OPARzv9y/wN0uAbYGGOMaW3t7UEcxhhjzGGhXT2IwxhjjDlcBK0Lmj0fxFHOgT+IwxhjjDkkdJgHcRhjjDGHkqB0QYtImPvsZUSkDzAW5y9BxhhjjCEIDbCIXItzvXeHO/w57sMvROSO1s7PGGOM6YiC0QX9C2Ag0AVYB/RV1XwRiQG+w3kloDHGGHNYC0YDXKuqRUCRiGxW1XwAVa0Ukdog5GeMMcZ0OMFogKNFZAxO93aEOyzuJ6rZKY0xxpjDRDAa4CzgUXc422+4/rcxxhhz2AvayxhEJEpVq/3HiUhka+dnjDHGdETBfBLWN42E2YM4jDHGGIJwBiwiPYDe7LoWLO6oWCCmtfMzxhhjOqJgXAM+FbgCSGH3679lwO+CkJ8xxhjT4QTjGvALwAsicp6q/qu10zfGGGMOBcF8FvS/RGQGMAK/vx+p6h+DlacxxhjTUQTtJiwReRq4CPg5znXgC4C+wcrPGGOM6UiCeRf0cap6OVCkqn8AJgJDgpifMcYY02EEswGucr8rRaQXUAf0DGJ+xhhjTIcRtGvAwIciEg88DKwAFPhnEPMzxhhjOoxg3oR1vzv4LxH5EIhS1ZJg5WeMMcZ0JMF4EMfJqvqFiJzbyDhU9e3WztMYY4zpaIJxBnwS8AVwZiPjFLAG2BhjzGEvGA/iuNf9vnJ/pheR54CZQK6qjnTDEoHXgX7AduBCVS0SEQEeB84AKoErVHWFO81s4G432TnuA0IQkWOAeUA08BFwq6rq/pTVGGOM2V+tfhe0iMzzG569H0nMA04LCPst8LmqDgY+d38DnA4Mdj/XAU+5+SYC9wLjgXHAvSKS4E7zFHCt33SBeRljjDFBF4y/IaX6Dd+6rxOr6mKgMCB4FvCCO/wCcLZf+IvqWALEi0hPnOdRL1DVQlUtAhYAp7njYlV1iXvW+6JfWsYYY8xBE4wGOBjducmqmuUOZwPJ7nBvIM0vXrob1lx4eiPhexCR60RkmYgsy8vLO/A5MMYYY/wE4yasFBH5G87jJ+uHG6jqLQeSuKqqiAT9mq2qPgM8AzB27Fi7RmyMMaZVBaMBvt1veFkrpZkjIj1VNcvtRs51wzOAPn7xUtywDGByQPgiNzylkfjGGGPMQRWU1xGKSCjwkKr+upWSfR+YDcx1v9/zC79ZRF7DueGqxG2kPwX+5Hfj1XTgTlUtFJFSEZkA/Be4HHiilcpojDHGtFhQnoSlql4ROX5/phWRV3HOXruJSDrO3cxzgTdE5GpgB3ChG/0jnL8gbcb5G9KVbv6FInI/8J0b74+qWn9j143s+hvSx+7HGGOMOagkWH+BFZGncG5wehOoqA/viE/CGjt2rC5b1lq96cYYc3gQkeWqOraty9FeBfNlDFFAAXCyX5g9CcsYY4whuC9j2K8nYRljjDGHg6C9D1hEUkTkHRHJdT//EpGUvU9pjDHGHPqC1gADz+PcpdzL/XzghhljjDGHvWA2wEmq+ryqetzPPCApiPkZY4wxHUYwG+ACEblURELdz6U4N2UZY4wxh71gNsBX4fxfNxvIAs4HrghifsYYY0yHEcy/IaWo6ln+Ae7DOdKaiG+MMcYcNoJ5BtzYIx7tsY/GGGMMQTgDFpGJwHFAkoj8ym9ULBDa2vkZY4wxHVEwuqAjgM5u2l38wktxrgMbY4wxh71gvA3pS+BLEZmnqjtaO31jjDHmUBDMm7AqReRhYATOc6EBUNWTm57EGGOMOTwE8yasV4D1QH/gD8B2dr0e0BhjjDmsBbMB7qqqzwJ1qvqlql7F7m9GMsYYYw5bweyCrnO/s0RkBpAJJAYxP2OMMabDCGYDPEdE4oDbcP7/Gwv8Moj5mcNYYXEt360sYkd6JWdO78m6TaVs2FzGWaf2YntaBatWFzPz1F7k5tewZFkBM6b1oKzcw1dL8jnlpGRUlc+/yuOkCd2Ijg5l/qJcxo1JoFvXCOYvzGHEsFj6psTw6aJc+h8Rw7DBXViwKJekrhEcPSqBL77KIyYmhIlju7L423y8PmXK8UksWV5IaVkd0ycns/yHYjJzqph5Sk/WrCthy/YKzjy1J1u2V7B6XTFnntqLzKxqlq4q5MxpPSksruOb7/I5dUoyNbU+Fn2dz5QTkggPExYszuW4sYnEx0Xw6cIcRo+Mo3ePaD5ZmMPQgZ0Z2L8z8xfmktIripHD4vhscQ7xseGMOzqRhV/nERYWwqTxXfl6aQHV1V6mntid71YWkVdQwxmn9GDVmhK3LnuwfnM56zeVunVZyYbNpfzk7N6EhQkREeF4PB5UlbCwMLxeLz6fj7CwMHw+X7PDoaGhqCo+n4+QkBAE8NYPi+D1epsdDgkJwev1IiKEhobi8XgQEcLCwqirc47/w8N3la9h2OcjLDwcr9eL+nyEtqB8gWUFdpW7ufJ5PEhISKPlqx/21NWhAWUNrMu6whI8ZRWIQEhEBN7KKgBCYqLwVVYHbZgQQSQEBMK6dCaia3xwN+TDTFC6oEUkFBisqiWqukZVp6jqMar6fjDyM4e34pJa7vrTj9z/6HqSukby6NObuOehdcREh/H8qzu44/4f8Sq890kmv/z9D5SUevhqSQE3/fZ7dqRXsW5jGdf+aiWr15aQW1DDFbcs56v/5uP1KrNvXsa/P8uhU0wYl920jNffTSe5WxSzb17G86/toF+fTlz1i+U89cJWBvTtzPW/Xsnj/9jCoH6dufWuH3j4yU307dOJ3z3wI396bAM9u0fz4OMbuO+R9cTGhvP0C9u484EfCQkJ4fV307ntvtVUVflY8GUut9z1PVm5NaxYXcLPbl/Fhi3l7Eyv5KpfrOC7FUWUV3iZ/fNlLPgyl/CwEC67eRnvfJRJQnwEl9+8jJfe2knvntFceesy/vHydgb07cy1v1rB35/dysB+nbj5zu959OnN9O/biV/ft5q5T2ykT68Y7nt4Hfc/up5uiRE89r9b+P3ctURFhTHv9R3ccf8axhwVR1lpIdlZmdTV1VFUWEhmRgYej4fSkhIyMzLwejyUl5eTkZ6Ox+OhqqqK9LQ0amtqqK2pcYZra/F6PKSnpVFdVYVPlfS0NMrLy1FVMtLTKS0pASAjI4PCwkIAsjIzyc/LQ1XJzsoiNycHr9dLbk4O2VlZeDwe8vPzyc7Koq6ujsKCAjIzMqirq6O4uJgMt6xlpaWku+WrrKggIz2dutpaqqurSU9Lo66ujrq6Oqd81dX4fD7S09KorKwEID0tjbLSUqd86ekUFRUBkJmRQUF+PqpKVlYWebm5+LxecrKzycnOxuPxkJeXR1amU38FBQUNw0VFRXvUpcfjoa60jEVDprJw8FQqNm1j0ZHTWXTkdCo3bQ/q8KKh01jo5uspK2+DrfvQFpQGWFW9wMXBSNuYQKVlHlavc3aEgwd05ttlzo56zFHxzP8yB4ATxnXj3Y8yATh5UhKvvZsOwNQTu/N6/fCk7rzxnjN88glJvPVhBl4fnDixGx/Oz6bOo0w4JpHP/5NLVbWP0SPi+G5VEaVlHgb178yW7RXkF9aSnBRJaXkd6VlVREeHEhUZwoYtzs7riN7RLP+hGICRw2L54j95AEw4JpEP5mcDMOX4JN74IAOAU07szmvvpLnDSQ1lPXlSd978IAOfz4n/7seZeDzK8eO68skXOdTU+Dg2NYH//LeA8govw4fEsnp9KYXFdfTpHU12TjVZOdXEx4bj88G2nZWEhQndukY01OWQgV34+jvn/SnHjIrn04VOXT74t0143b/4Z2Zk0CU2ltDQUDLS04mOiSE8PJz09HQiIiKIiooiPS2NEBE6d+5MZmYmXp+P2NhYsjIzqa6uJiEhgdzcXMrLyujarRuFBQUUFxXRLSmJ4uJiCvLzSe7enfKyMvJyc+menExlZSU52dkkJSVRU1NDdlYWXbt1w+PxkJWZSWJCAj5VMjMyiI2LIyQkhIz0dDp36kRYeDjpaWlERUURGRlJRno6oWFhxMTEkJGRAap06dLFabRra4mPjycnO5uKigoSu3YlPy+PkpISuiUlUVRURGFBAd27d6estJT8vDy6JydTUVFBbk4OSd27U11dTXZ2Nt2SkqirqyMrK4vExER8Ph9ZmZnEx8fvqssuXXavy4gIMtLTEZFW215M+xHMLuivReTvwOtARX2gqq4IYp7mMORTbRhWv2Hnt/MtAj53ODRE8Lk/QoSGYQkBrw83fFccEfDWxw8BnxtHQmRXuH86Aj6vGwdQ357lCSQiDSPFLy0n3V1xdi+Hf/kaKbdfHP/4/nHwLzfQRPF2K3tdnQ+vTxERfD6fM0LEqXvVhsZCVRu6a9U/3L8b1y+Oz+0a3iNcFfEfdutC3Xzrh/3DNWB+GvIOHA4JceL7la+pvOu7q+vL6l9u8R/2S8e/LhrqsT6Of1n96lIC6tKZz2YWjOmwgnkX9Gic/wD/EfiL+3kkiPmZw1Rcl3AGD+gMwI60So4e5ZxRrF5XyuTjugGwZHkhM07pAcDCb/I4b2ZvABZ9nce5DcP5nDejlzP8TR7nnNELEfhqST4zp/UgNMRJZ+qkJCIiQvh+TTETjk4kJjqUjVvLGTqoC/Fx4WTn1tA1MYLkpEgqq7x4fEr/I2IAyM6tZuSwWADWby7j+GO7ArBsVRHTpyQDsHhJPuec7pRj4de7yrrw6zzOP3PX8HkznOEvv81n1mk9CQmBr5cWcPrUHoSHCctWFXHihG5ER4Xw4/pSRo+Io0vnMHakV9KndwzdEiMoLqkjMjKElJ7R1HmUktI6hg506nLrjgrGpjp1+cPaEqYc77zO+/e/GkpESDk+n4/eKSmUlZXhqaujd0oKVVVV1NTU0Kt3b+rq6qisrKR3794oUFZWRs9evQgLC6O4uJjkHj2Ijo6moKCAbklJxMbFkZebS0JiIomJieTm5BAbG0tSUhLZ2dnEdOpEcnIyOTk5REZF0aNnT/JycwkPD+f/27v3KLvK8o7j39+ZM5MrJCEMSWYmCMWIIiqXEUKlaAG5eCEICCgtlKayXFK1tq6K7Vra1kuXS5d4K3SxRARrRYwoESjKJWjFEpyAXMI1C4TcM7lN7pk5M0//2O+EkzCTkGHO2XPO/D5rnTXvvj/v7GSes/d+9/vOaGlh7dq1FAoFZrS07Lod3NLayqauLnp7e2lpbWXr1q30dHfT2tbGzh072LF9O61tbfT29rJlyxZaWlspFAp0dXUxfcYMxowZw4b16zlk2jQmTpzI2rVrOWjqVKZMnsya1auZNGkSBzc3s3rVKiZOnMgh06axetUqxo0bx/Tp01mzejVNY8YwfcYM1nZ2UiwWaWlpYd26dSjF17VxY/a7bG1l85Yt9JT/LnfsoLWt7RVfLK0+yCd239rb26OjoyPvMGwv1m/oZsEDnSxdvpWLzp1Jxx828uRzm7jk/ENZ/PQmHn58Ix8+r40/Lt3Gbxeu46I5baxd3809v1nD+e9tYcfOPu66bxVnnTqdpv8llUwAABDMSURBVMYCv/jVSt75jmYOntLEz/9nBW8/ZgqHzRzPz+5cwZvecABvfuOB/PzOFcxsGccJxx3E/F+u5MADipx68iHccc8qGgrirFOncfev17B1Ww/nnt3Kr3+3llWd27nwnDYWPryBJX/cwoc/MJNHF3fx6OIuLjl/Js8+v4WFi9bzofNmsmLVdhY8sJYPntPKps0lfnX/as45cwYRcMc9q3j3KYdwwMQit921gpPePpXW6eP42Z0reOtRB3LkEQdw650rOOKwCRz3lsncdtdKpk5t5JQTm7n97pWMGVPgjHdO4677slvr7z9jBvf9dg3rN/RwwftbeeChdS//Lh/dyJPPbuKS8w7lyWc38ezzW7j8ojYaG0VTUxOlUom+vj4aU8Om8sZMvb29NDY27ioXi0Uigt5SadfV5KDl3l4aGhqQRKlU2lXuLZUoNDRQKBQolUq7GjyVSiUKEg3FIqVSCUgNm3p66EuNsF7RSKy3l+JA8e0Ra7Gx8eVysUiUxSqgNFisZQ2yBotvzwZjA/0ud7y0ggWzTgNg9j038eDpl1alXO7Pn7uX8Ye17df/S0mLIqJ9vzYaRSqWgCVNA74MtETE2ZKOAk5K7wbXFCfg2tHXFxQKqlg5BritWD696/ZjheMYKbFadXSv27irEVTVW0Gn2+tDaQXtBLx3lXwG/H3gBuCf0/SzZM+Day4BW+0oTwyVKJc3htmzYUz5dKXjGCmxWnU0TZ3sV4DqUCWfAR8cEbcAfQARUQJ6h7ozSZ+StFjSE5J+JGmspMMlLZS0RNKPJTWldcek6SVp+WFl+/lsmv+MpDNfWxXNzMyGppIJeKukqaSGiJJmA11D2ZGkVuATQHtEHE02rvDFwFeAqyPi9cAGYG7aZC6wIc2/Oq1Hug1+MVnjsLOAa9I7y2ZmZlVVyQT898B84AhJDwA3AR9/DfsrAuMkFYHxwEqyvqXnpeU3Auem8pw0TVp+mrJ7bnOAmyNiZ0S8ACwBTngNMZmZmQ1JxZ4BR8TDkt4JHEn2FtszEdGzj80G29dySV8DXgK2A78CFgEb061tgGVAayq3AkvTtiVJXcDUNP/Bsl2Xb7MbSVcAVwAceuihQwnbzMxsUBW7ApY0luy28RfIhiO8Ms0byr6mkF29Hg60ABPIbiFXTERcFxHtEdHe3NxcyUOZmdkoVMlb0DeRPWv9NvCdVP7BEPd1OvBCRHSmq+hbgXcAk9MtaYA2YHkqLwdmAqTlk4B15fMH2MbMzKxqKpmAj46IuRGxIH0+QpaEh+IlYLak8elZ7mnAk8AC4IK0zmXAbak8P02Tlt8X2YuQ84GLUyvpw4FZwENDjMnMzGzIKvke8MOSZkfEgwCSTgSG1JtFRCyUNA94GCgBjwDXAXcAN0v6YprX/47x9cAPJC0B1pO1fCYiFku6hSx5l4Ar08ARZmZmVVXJnrCeImuA9RLZq0ivA54hS3wREW+tyIErwD1hmZntP/eEtXeVvAI+C5gC/Fma/g2wsYLHMzMzqxmVfAZ8Llmjq4OB5lQ+JyJejIgXK3hcMzOzEa+SV8BzgdkRsRVA0leA/yNrFW1mZjaqVfIKWOze93MvHlbazMwMqOwV8A3AQkk/S9Pn4pGQzMzMgMp2Rfl1SfcDJ6dZl0fEI5U6npmZWS2p5BUwEfEw2bu7ZmZmVqaSz4DNzMxsEE7AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsB07AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsBzWTgCVNljRP0tOSnpJ0kqSDJN0t6bn0c0paV5K+JWmJpMckHVe2n8vS+s9Juiy/GpmZ2WhWMwkY+CZwV0S8EXgb8BRwFXBvRMwC7k3TAGcDs9LnCuBaAEkHAZ8HTgROAD7fn7TNzMyqqSYSsKRJwCnA9QAR0R0RG4E5wI1ptRuBc1N5DnBTZB4EJkuaAZwJ3B0R6yNiA3A3cFYVq2JmZgbUSAIGDgc6gRskPSLpu5ImANMiYmVaZxUwLZVbgaVl2y9L8wab/wqSrpDUIamjs7NzGKtiZmZWOwm4CBwHXBsRxwJbefl2MwAREUAM1wEj4rqIaI+I9ubm5uHarZmZGVA7CXgZsCwiFqbpeWQJeXW6tUz6uSYtXw7MLNu+Lc0bbL6ZmVlV1UQCjohVwFJJR6ZZpwFPAvOB/pbMlwG3pfJ84NLUGno20JVuVf8SOEPSlNT46ow0z8zMrKqKeQewHz4O/FBSE/A8cDnZF4hbJM0FXgQuTOveCbwHWAJsS+sSEeslfQH4fVrv3yJiffWqYGZmllH26NT2pr29PTo6OvIOw8yspkhaFBHteccxUtXELWgzM7N64wRsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8uBE7CZmVkOnIDNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8tBMe8A6lVEUOoNIqDYAH190NcXFIsiAkq9QWNRBKLU00djo4gQPaU+mhoFiO6e/jJ09wRNjQUg6O4JGosFpFRuLCCCnlJQbBASlEpBoSAKBSiVQAVoKEBvbxZfQ0NWDsrjg2JxgFhLMWh8Y5qy73A7u3cvDxRrT09QLIu1oSy+QiH7lHpBZfHtirWPff4uC4Xs+H19fQOW+8e+lrTX9fIqR8Su2PacHgnx7S1WM9t/TsAVsHPtBkqbt9DbC43jm+jZtgOAwvixu5W376MciBg/lr5t23cvB8SEsfRt2/GKcl9ZuaG/DDSMH0v3HuWBYtrfWLftZ6x9A5VTTHvG2n+MVxNreUx9A5QpiMLYLKbdynvZpprlkR7f3mJtGDuW3hEU624xjcD4hhIrBaH05ad4wESapk7G6kBE+LOPz/HHHx/7Y8vzS+P24hvi9uIbYu39Dw65/Fq3r2Z5pMTh+BzrSIljOGMt/2x9Yel+/T3KE9ARI+Bv+Ej9+BlwBfT09OUdgpmZjXBOwBVQKPjZmJmZ7Z0TcAU0NDgBm5nZ3jkBV4Abh5qZ2b4oe05ue9Pe3h4dHR2vev3udRspbd4CQKGpacgtMOuxNafjq834ainWkR7faGoFLWlRRLTnHcdI5deQKqBp6uSa+Q9iZmb5qKlb0JIaJD0i6fY0fbikhZKWSPqxpKY0f0yaXpKWH1a2j8+m+c9IOjOfmpiZ2WhXUwkY+CTwVNn0V4CrI+L1wAZgbpo/F9iQ5l+d1kPSUcDFwJuBs4BrJDVUKXYzM7NdaiYBS2oD3gt8N00LOBWYl1a5ETg3leekadLy09L6c4CbI2JnRLwALAFOqE4NzMzMXlYzCRj4BvCPQH8vF1OBjRFRStPLgNZUbgWWAqTlXWn9XfMH2GY3kq6Q1CGpo7OzczjrYWZmVhsJWNL7gDURsahax4yI6yKiPSLam5ubq3VYMzMbJWqlFfQ7gHMkvQcYCxwIfBOYLKmYrnLbgOVp/eXATGCZpCIwCVhXNr9f+TaDWrRo0VpJL+5HvAcDa/dj/XowGusMo7Peo7HOMDrr/Vrr/LrhCqQe1dx7wJLeBXw6It4n6SfATyPiZkn/CTwWEddIuhJ4S0R8VNLFwHkRcaGkNwP/TfbctwW4F5gVEb3DHGPHaHv3bTTWGUZnvUdjnWF01ns01rmaauUKeDCfAW6W9EXgEeD6NP964AeSlgDryVo+ExGLJd0CPAmUgCuHO/mamZm9GjWXgCPifuD+VH6eAVoxR8QO4IODbP8l4EuVi9DMzGzfaqIRVg26Lu8AcjAa6wyjs96jsc4wOus9GutcNTX3DNjMzKwe+ArYzMwsB07AZmZmOXACHmaSzkoDPSyRdFXe8VSCpJmSFkh6UtJiSZ9M8w+SdLek59LPKXnHOtxe7YAg9UTSZEnzJD0t6SlJJ9X7uZb0qfRv+wlJP5I0th7PtaTvSVoj6YmyeQOeW2W+ler/mKTj8ou8PjgBD6M0sMN/AGcDRwEfSgNA1JsS8A8RcRQwG7gy1fMq4N6ImEX2jnU9fgF5tQOC1JNvAndFxBuBt5HVv27PtaRW4BNAe0QcDTSQvcpYj+f6+2QD05Qb7NyeDcxKnyuAa6sUY91yAh5eJwBLIuL5iOgGbiYbAKKuRMTKiHg4lTeT/UFuZfdBMMoHx6gL+zkgSF2QNAk4hfSOfUR0R8RG6vxck72iOS71pDceWEkdnuuI+A1ZXwnlBju3c4CbIvMgWU+EM6oTaX1yAh5er3qwh3qRxlo+FlgITIuIlWnRKmBaTmFVyv4MCFIvDgc6gRvSrffvSppAHZ/riFgOfA14iSzxdgGLqP9z3W+wczvq/r5VmhOwDZmkicBPgb+LiE3lyyJ7v61u3nHLY0CQEaIIHAdcGxHHAlvZ43ZzHZ7rKWRXe4eTdVk7gVfeph0V6u3cjjROwMNrSIM91CJJjWTJ94cRcWuavbr/llT6uSav+Cqgf0CQP5I9WjiVsgFB0jr1eL6XAcsiYmGankeWkOv5XJ8OvBARnRHRA9xKdv7r/Vz3G+zcjpq/b9XiBDy8fg/MSq0lm8gabszPOaZhl559Xg88FRFfL1s0H7gslS8Dbqt2bJUSEZ+NiLaIOIzsvN4XEZcAC4AL0mp1VWeAiFgFLJV0ZJp1Gllf6nV7rsluPc+WND79W++vc12f6zKDndv5wKWpNfRsoKvsVrUNgXvCGmZpyMRvkLWc/F7qe7quSDoZ+F/gcV5+HvpPZM+BbwEOBV4ELoyIPRt41Lw9RuT6E7Ir4oPIBgT5i4jYmWd8w03SMWQNz5qA54HLyb681+25lvSvwEVkLf4fAf6G7HlnXZ1rST8C3kU27OBq4PPAzxng3KYvI98hux2/Dbg8IjryiLteOAGbmZnlwLegzczMcuAEbGZmlgMnYDMzsxw4AZuZmeXACdjMzCwHTsBmVZBGFPpYKrdImrevbV7DsY5Jr8OZ2QjmBGxWHZOBjwFExIqIuGAf678WxwBOwGYjnN8DNqsCSf0jYz0DPAe8KSKOlvRXZKPNTCAb5u1rZB1e/CWwE3hP6gThCLKhLpvJOkH4SEQ8LemDZJ0n9JINGnA6sAQYR9ZN4L8DtwPfBo4GGoF/iYjb0rE/AEwi62TivyLiXyv8qzCzpLjvVcxsGFwFHB0Rx6QRpG4vW3Y02YhSY8mS52ci4lhJVwOXkvWsdh3w0Yh4TtKJwDVk/VF/DjgzIpZLmhwR3ZI+RzaW7d8CSPoyWdeZfy1pMvCQpHvSsU9Ix98G/F7SHe7dyKw6nIDN8rcgjau8WVIX8Is0/3HgrWnUqT8FfpL1BgjAmPTzAeD7km4hGzRgIGeQDSTx6TQ9lqybQYC7I2IdgKRbgZMBJ2CzKnACNstfeX/CfWXTfWT/RwtkY9Ees+eGEfHRdEX8XmCRpOMH2L+A8yPimd1mZtvt+QzKz6TMqsSNsMyqYzNwwFA2TGMtv5Ce95JGo3lbKh8REQsj4nNAJ9lwcXse65fAx1Nn+kg6tmzZuyUdJGkc2bPoB4YSo5ntPydgsypIt3kfkPQE8NUh7OISYK6kR4HFZA26AL4q6fG0398Bj5INm3eUpD9Iugj4Alnjq8ckLU7T/R4iG9f5MeCnfv5rVj1uBW02SqVW0Lsaa5lZdfkK2MzMLAe+AjYzM8uBr4DNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAf/DzTNvnxnjUfaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorFiatBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAEWCAYAAAAzRH40AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYXLW1wH9n2s7O9l5diSvFNjYYQrMxPQRiQuhgIKEloSQ8WkICIRDgUR4OIRBKAAOhPkJJ8oJppoPBjk0zYIPb9r47uztlZ0bvD90Zz463eYvXg/X7vvnmXl1d6UhXVzpXOpJEKYXBYDAYDAbDYLCNtgAGg8FgMBiSF6NIGAwGg8FgGDRGkTAYDAaDwTBojCJhMBgMBoNh0BhFwmAwGAwGw6AxioTBYDAYDIZBM2RFQkSuF5EGEamxzheKyGYRaReRWUMXcdBybTc5RGS8iCgRcYxkPDsCInKqiCwdbTkMBsO3CxF5SESuH205koH+2hwRuVZEHrWOx1rtoH2k5OlXkRCRDSLiswSJ/v4UFRC4FJiulCq2brkV+LlSKl0p9Z/BCmZl0ncGe39/cljhd1jpqRSR20cyo0XkFBH5yIqvWkT+T0T2H6n4BiDPQyISFBGv9ftURG4Ukay+7lNKPaaUOmyQcV4rIl0JZenywaUguYnL/3YRaRKRl0Vk6mjL1R8icqaIvD3MYbpE5DYRqbDyY4OI3DGccezIiOYbEfl8tGUZCsNQZ/cU5gQRiYjI3cMZbj9x9ljGRWRvEfmXiLRY7+xyETnLujZPRCoS/B8uIm9a9Wu9iLwhIsf0E8cGETlkONOjlNpktYPh4Qw3noH2SHzfEiT6+7nlPhZoVErVxfkdB3w2rFIOjoHIMUMplQ4cBJwInD0SgojIL4E7gD8AReh8+zNwbC/+t1fPxn8rpTKAAuAsYB/gHRFJG0G5nkwoS//dQzwiIjvDsNt/W+WvHKgDHtrWAJKtF6wXea8C5gB7AxnAPGDldhRrtDkQKAQmisheIxVJspUVizOAZuBEEUkZLSFEZF/gNeAN4DtAHnABcGQv/o8HngaWoN/vIuC3wPe3h7zbHaVUnz9gA3BID+6HAD4gArQDj1v/CugAvrb8lQL/C9QD64GL4sKwA78Cvga8wApgDPBmXDjtwIk9xG8DrgY2oivhJUAWkNKTHD3cr4DvxJ0/BdwVd54FPABUA5XA9YA9Tu5bgQbgG+BnVniOHuLJsuT5UR95fC3wDPAo0Ab8xErHHUCV9bsDSLH85wP/AFqAJuAtwGZdu8KS1wt8CSzoJc6HgOsT3DKs9P7cOj8TeAf4H6DRyoMzgbcT8vEiKx8agFuisvSSzkd7ubYMuMGKz4d+WQf9DEgot4lxo5Wmd608XA3MS5Dl95YsXmApkB93ff+4ezdbebIXUBuVz/J3HLB6IPkPfA9ot473Bt6zwq8G/gS4EvL8Z8BaYL3lttiSpQ39Hh2QkPan0eXLC3wCTEY34HXWfYf1V/aBaYAfCKPLdIvlP8V6FpusPLgHSLWuzQMq0OWyBnikh7z4B3BJL/l0FvBi3Pla4Om4883ATOt4KvAy+p34Ejghzt9AZPwVujxtAE7t430tBV6w4lkHnJOQ10+h6yMv+mNmTj917F+Bx4BngT8lXJuArg+9wCvAXXQvx2eg68BG4DfElXt6rldswJXoOrfRkjV3gOH1Wi7ppc4GjgZWWfe8C+wRF9cstMLoBZ4EnqD7OyGWnBdYz+z4hLw5zHrOregPszeAn8RdPxtYg1ZEXgLGJbxD56PLU4uVr0LvZfxt4tqHHp7hPKAiTu5NwGV9+D+TuHo0zj0+v3ts46xr4+le302w0u9FvwN/ipaTHvwuo+/6rdcy0Gt6+rrYU4XcW+YlPKDvxGXECrQm5gImoiv9w63rl6ErtSlW5s8A8hLD6SXus9Ev8UQgHf0SPtKTHL3cHy/nVPSL8Yu4638H/gKkob8WlgPnWdfOB75AKz25wOv0rkgcAYR6upZQ+XQBP7DyLBW4DnjfirsA/RL+3vJ/I7oidFq/A6z8m4KuWEvjCtAuvcT5EAmKhOW+BN1rALqwh4ALAYcl15lsrUi8buXDWOAr4l7mHtLZlyKxCdjViss5lGdAH4oEUIZ+SY6y8vtQ67wgTpav0Y1tqnV+k3VtHPrlO9mSMY8tDdnnwJEJZejS/vIfXX7/Brxlnc9GKzoO6xmuIa6htdL5spXuaGN4miWLAz3cWAO449LuBw63ri9BK/W/ttJwDpZCMoCy3+35W27/g25Yc9HK6IvAjXF1RAi4Gd2Yp/aQF1dbz/6nwO6AxF2biK7obegGfCNbKuyJ6EbCZsm6Ga14ONCNVAN62HWgMt5uyXgQukGc0suzexPdcLmBmeiPpIMT8vootPJ1I/B+H+++B93IHwX80JI5Xml8D60AudAKbBtbyvF0dGO3v3X9VnQ9Eq9IJNYrF6PrlXIrrX8BHh9geAMpl/EfZ7PQDeBcKy8Wod/LFCv8jcAv0GXweCuueEXiACAA5AB30l2hzLfy4jhLnout+39iXT8W3T5Ms65fDbybIOs/gGx0vVUPHNFTGbeeURiY38dznMeWcjnVCn9CH/67xRHnviEuv3tt49haOXiPLeX3QHQd1Zci0Vv91mcZ6DU9fV2MS1g7+mWO/s5JzLyeCpNVgDYlXL8KeNA6/hI4tpd4+1MEXgV+Gnc+xUqwY4D3K6sgdljHj7Pli78IXYBT4/yfDLxuHb8GnB937TB6VyROBWr6yeNrgTcT3L4Gjoo7PxzYYB1fBzyfmD70V3wdurfI2U+cD9GzInET8HJcYU98fmeytSJxRNz5T4FX+0hnMKEsRZWeZcB1cX6H9AzoW5G4goQvY/QXy6I4Wa5OSNO/48rv33tJ3xXAY9ZxLtAJlPSR/34rD2rQjVxvSt8l8XFa6Ty4n+fbjB66i6b95bhr30e/09HenQwrzOwB5Hvi8xf0O7RLnNu+bOkpmWc9c3cfstrRPSzvWHFXRZ+FdX0zsCdwEnAvWrGZilYaXrD8nIiliMXd9xfgmgHKGALS4q4/BfymB1nHoBuVjDi3G4GH4vL6lbhr0wFfH2k/Dd2IOdCKSSuw0Lo21pLLE+f/UbaU499iKQHWucfK63hFIrFeWUNcLyVQglVv9hfeAMtlvCJxN9bHT5zbl2hF7UDrOccrje/SXZG4H3gu7nl1AYXW+RnAewnlcDNbFIn/A34cd92Gfh/Hxcm6f8LzvrKXMl5m+Z/ax3OcxxZFYj/Lf19l/kzr2bYk/CJxz6/XNo445SCunMSX37/RtyLRW/22TWUg+hvomNkPlFKvDNBvPOOAUhFpiXOzo7viQb+UXw8iXNjydRJlIzpTi9DdsQNhTyv+H6Eb0DR0RTYOrSVXi0jUrw1dUKNxb44LJ16ORBqBfBFxKKVCffjbnHDeU/pKreNb0JXEUku+e5VSNyml1onIJda1XUXkJeCXSqmqPuJNpAzdZdubXP3JHi9nTzyllDptAOEM5zNIZBzwIxGJH690ons1otTEHXeivwig7zL7KLDGsjE5Ad2wVfchx61KqasTHUVkMvrrYg76RXage/bi2Zxwz38BP0bniwIy0V9tUWrjjn1Ag9pifOWz/tOt+/vK90QKLBlXxPkX9HsepV4p5e/lfiw57gLuEpFU9JfYX0VkuVJqDbrLdh5aUX4DXeEehG5c3rCCGQfMTahrHMAjA5SxWSnVEXfeWzkuBZqUUt4Ev3PizhPLjruP938R+p0IASER+V/L7e9xcXXG+d+MLoNRWWLPRSnVKSKNCeEnPrdxwN9FJBLnFkbXm32GN8BymRjXIhG5MM7NxZYyWqms1soi9g5b5eBH6OEYlFLvicgm4BT0MG+irCrB2HEcsFhEbotzE3T9Fo2nt3c8kWZ0A1+C7gXtj2ielaB7/nrjfaVUN4N7EdkQd9pXG0eCv57K7xh6p7e0D6RMbcVIG7RtRmv92XG/DKXUUXHXdxlk2FXowhIlqpXV9uy9Z5TmKXTX0G/j5Aqgx42icmcqpXa1rlfT/SGN7SOK96ywftCfKAnnPaWvypLZq5S6VCk1ETgG+KWILLCu/c0qnOOsMG/uJ94YIpKO7s14K845Ua6eSMyLbVFc4omPa6jPoANd2UUpjjvejO6RiC+XaUqpmwYgY69lVilViX7exwGnoxuxwXA3usKapJTKRI/dS4KfWF6JyAHA5WjlJUcplY3+sk28ZyD0l++J5aEBrYjsGuc/S2kj0q1k7Q+llE8pdRe68p5uOUcViQOs4zfQisRBbFEkNgNvJDzTdKXUBQOUMSfByLi3clwF5IpIRoLfgX68xBCRcuBg4DQRqRE9hf544CgRyUeX8VwRiS/H8WW+Gj1EEQ0vFT28FU9i3m9GD7/F55PbKrv9hTeQcpkY1w0JcXmUUo9bcZVJnGZH93d4IVoZ/nNc3pShlaye0i7x51bc5yXEnaqUercPeaN0yzNLkXsPPfQ0EL604h+o/94YaBtXTc/ldzAMpExtxUgrEssBr4hcISKpImIXkd3iLJPvB34vIpMsS/09RCQqdC16bKg3Hgd+YU0PSkfPiHiyn6/+vrgJOEdEiq2vyKXAbSKSKSI2EdlFRA6y/D4FXCQi5SKSgzZe6hGlVCtaQblLRH4gIh4RcYrIkSKy1YyFhPRdLSIFVqXyW/QXLyJytIh8x3p5WtFfFBERmSIiB1vWzX62GMP2iYikiMhs4Dl0Bf5gf/ckcJmI5IjIGPRY5ZPbeP9WDMMzWAWcZOX1HHQFHeVR4PvW9Cy7iLhFT98qp38eAw4RkRNExCEieSIyM+76EnSjvjt6THMwZKCH3dpFTwm9YAD+Q1hd5CLyW3QlvM0MIN9rgXIRcVn+I8B9wP+ISCGAiJSJyOEDjVNELrHyP9XK00VWmqLTtt8A5qOHWyrQiu4R6Aou6ucfwGQROd165k4R2UtEpm2DjL8TPRX1ALSR4NM95M9mdBf8jVa52QPdE/ToQNMbx+lom6IpaFuLmehx6wrgZKXURuAj4FpLrn3pbvX/DLocf9d6HtfSv/J4D3CDiIwDsOqX6Oyx/sLrr1wm1tn3AeeLyFyrfk8Tke9ZSth76DJ7kfWsjkMbc0ZZhDZC3T0ub/YDZojI7sA/gd2tOtWBHhqL/1i4B7hKRHa10pklIj/qJ2/i0xEr4xaXA2eKyGXRNkpEZojIE4k3W70svwR+IyJnxb1H+4vIvQOUAQbYxsWVk2j53Z/Bzw4ZTJkasCLxonSf+//3gdxkdVkejS4E69FfBvejrcJBd5M9ha642tCW4qnWtWuBh0XP2T2hh+D/iv7ie9MK2482ChwUSqlPrLAus5zOQHfDfY5uXJ9Bd1WBfkFeQlv7r6SfBkMpdRu6YF2Nruw3Az9HN9y9cT26cHyMNkhdabkBTEJbcLejX8g/K6VeRxva3ITO5xq0odxVfcRxuYh40V1xS9DdlN9N6CIbCM9b965Cv+APbOP9vTGUZ/AbdM9BM/A79JghEGsMjkV/UUWfx2UM4H1QSm1CG8Zdih4CWoU2Eo7yd6zu44Qu6W3hv9BduF50OvtTzF4C/o1ulDai34WBDEn1Rl/5/hp6JkKNiDRYblegjcLeF5E2dNmcsg3xdQK3octsA7pR+KFS6hsApdRX6LL+lnXehjbafic6PGMNNRyGtqOossKKGngORMYaK61VaGXxfKVUb93YJ6PHnavQz/uaQQ79LkK/uzXxP3QjGP3yPhU9hBOdNfUkuscIpdRn6DrvCfSXZDvaRirQR5yL0fY4S613/320LdtAwuuvXF5LXJ2tlPoIbcj7J3TerkPbBqCUCqJ77s5Ev0cnYr3DIlIGLADuSMibFehyvkgp1YAe+vhvK2+mo+vLaN78Hf38n7Ce96f0MlWzB7Yq41ZPxsHW7xsRaULb6/yrpwCUUs+wZUmBKrRycj26rhwo29LGnYJ+jk1ou6Al2xBPvNyDKVPa0MVgGCwiotBdnetGWY7x6JfNOYReqeGS5Wt0t+pgGhfDdkZE5qEN0wbSIzWqiMiTwBdKqWt6uJaOth+ZpJTqa2x+oHENa3gjieh1ZyrQ03Zf78+/YWAMtAzsDIv+GAzbDRH5IXqM9bXRlsWQ/FjDM7tYXeNHoHvSnou7/n3Rw6Vp6Kl6n6BnLA02vmENbySxhiazRQ/lRu013h9lsZKewZQBo0gkICK/EJHPRC8Z/bg1DjpBRD4QkXUi8mR07Ey0bcGTlvsH1ldxNJyrLPcvt2W82JC8iMgytEHaz6xxeYNhqBSjp+u1A38ELlDdl/w/li2L1k0CTlJD62Ye7vBGkn3RM6ga0DYBP1BK+fq+xTAAtrkMmKGNOKyxubfRi9j4ROQp9BjYUcCzSqknROQe9GqFd4vIT9ErtZ0vIieh53+fKCLT0YYye6On07wCTFYjuNa5wWAwGAyjgemR2BoHkGpZAnvQBicHow3OAB5my1TOY61zrOsLREQs9yeUUgFrXGkd3S2SDQaDwWD4VpCMm7iMGEqpShGJrsfvQ88mWYFebz1qwFeBns+M9b/ZujckIq3oKWlldB+ri7+nR/Lz89X48eOHKSUGg8Gwc7BixYoGpVTBaMuxM2MUiThEr0dwLHoDlBb0PPIjRjC+c4FzAcaOHctHH300UlEZDAbDtxIR2ZZVbQ0jgBna6M4h6JU465VSXeh5zfsB2bJlC95ytqxiV4m10px1PQs9pznm3sM9MZRS9yql5iil5hQUGIXaYDAYDMmHUSS6swnYx5r6IuhFUT5H78EQXRlxEVsWFXmBLQvHHA+8Zlm3voBeVTFFRCagLV+Xb6c0GAwGg8Gw3TBDG3EopT4QkWfQKyWG0Mvv3oterfEJEbnecouu3PgA8IiIrEOvKHaSFc5n1oyPz61wfmZmbBgMBoPh24iZ/rmDMGfOHGVsJAw7Cl1dXVRUVOD397ppp8GwXXG73ZSXl+N0Oru5i8gKpdScXm4zbAdMj4TBYNiKiooKMjIyGD9+PCKD2UTUYBg+lFI0NjZSUVHBhAkTRlscQwJGkTB864lEFC1tXdgElILahgCRiGJMqZu6hiAdvhCTJqTR0NRFQ1OQXcZ5aPWGqKsPMK7cQ1amE6dz5zIn8vv9Rokw7DCICHl5edTX14+2KIYe2LlqR8O3FqUU4XB4q+NOXxehUJjFf1lHY1OQlBS4/7H1FOQ6UWE/LidMKE8l1OWnINdBTqadUJcfVITf3/4FJ523nA2bB7uJZ3JjlAjDjoQpjzsupkfCkNREbXy6urpoamykoLCQcDhMY2MjeXn5OOzQ2FjPry75Djab0NDQwA1XTsVut1GxuQZXSgqp7kIqKxux2+1keDy4nC5sdlhwQAGzZ2Tx1vv1FOankJXp7Ecag8Fg2PkwPRKGpCUUCuH3+4lEIqAUfr+f+vp6IpEIwUCAhvo6IpEwXcEg9XW1hMNhQqEQNdVVNDY0UFxSgt/no6ammpLSUoLBIO5UN50+HzaxcdQhRYwrjfD9wwrQu6Ubtid2u52ZM2ey22678f3vf5+WlpZtuv/aa6/l1ltv7fHakiVL2G233dh9992ZNWtWr/6Gm/Hjx7P77ruz++67M336dK6++uo+DVq/+93vblP48+bNY8qUKcycOZOZM2fyzDPP9H+TwTBEjCJhSEpCoTCdnZ1UV1XR0d5OZ2cnObm5dHZ00NbaSn5BAX6/n+bmZgoLiwgGgzQ2NFBUVEQ4HCY1NZXODj1kkZaeTmdHRyxsFYnQ2FCD29FKwN+O0yGkuu2jldSdltTUVFatWsWnn35Kbm4ud91117CE+3//93/ccccdLF26lE8++YT333+frKysrfyFQqEe7h46r7/+Op988gnLly/nm2++4bzzzus17nfffXebw3/sscdYtWoVq1at4vjjj+92TSmlFW+DYRgxioQhqWjzdvHByiZ+f/uXNLfayMjMxOv1kuJ209zURKrHQ2ZWFg319bjdbnJycqirq8XlcpGXn09drT52p6bS1tZKQUEhGRkZtLa2kpuXh4iTvPx8RIRAIEBGZhZudwpOp1EkRpN9992Xysoti8Pecsst7LXXXuyxxx5cc801MfcbbriByZMns//++/Pll1/2GNaNN97IrbfeSmlpKQApKSmcc845gP6iv+SSS5gzZw6LFy9mw4YNHHzwweyxxx4sWLCATZs2AfD000+z2267MWPGDA488EAAPvvsM/bee29mzpzJHnvswdq1a/tMU3p6Ovfccw/PPfccTU1NLFu2jAMOOIBjjjmG6dOnx/wALFu2jAMPPJDvfe97TJkyhfPPP3/ACsGGDRuYMmUKZ5xxBrvtthubN29m6dKl7Lvvvuy555786Ec/or29HYB///vfTJ06lT333JOLLrqIo48+Gti6d2e33XZjw4YNADz66KOxdJ933nkx+6T09HR+/etfM2PGDPbZZx9qa2sBqK2tZeHChcyYMYMZM2bw7rvv8tvf/pY77rgjFv6vf/1rFi9ePKD0GUYfo0gYkoZwWPHa2/Vces0nfLS6GadTCPgDsetut5u09FxsNpulOBQgYsPpdFJUXIzdbsdut1NUVAQI5WPG4E51EwgqyseMweNJw+EQmhobiUQiuFJSaPe2ASHzFTeKhMNhXn31VY455hgAli5dytq1a1m+fDmrVq1ixYoVvPnmm6xYsYInnniCVatW8a9//YsPP/ywx/A+/fRTZs+e3Wt8wWCQjz76iEsvvZQLL7yQRYsW8fHHH3Pqqady0UUXAXDdddfx0ksvsXr1al544QUA7rnnHi6++GJWrVrFRx99RHl5eb9py8zMZMKECTGlY+XKlSxevJivvvpqK7/Lly/nzjvv5PPPP+frr7/m2Wef7THMU089NTa00djYCMDatWv56U9/ymeffUZaWhrXX389r7zyCitXrmTOnDncfvvt+P1+zjnnHF588UVWrFhBTU1Nv/KvWbOGJ598knfeeYdVq1Zht9t57LHHAOjo6GCfffZh9erVHHjggdx3330AXHTRRRx00EGsXr2alStXsuuuu3L22WezZMkSACKRCE888QSnnXZav/EbdgyMsaVhh8TnC+HtCLH2m3YmjksDBJ8/xNMvVFBW4ub7hxbjcYdo8XWRX1hCR4ePrKwsQmHhreUtHLB3IX9ZspHS4hSOPaIYhQ2nw0ZhYSF2hy724XAYh8NBdH0bu90e+5oqKS3F5XLR2NCAWbRtdPD5fMycOZPKykqmTZvGoYceCmhFYunSpcyaNQuA9vZ21q5di9frZeHChXg8HoCY4rGtnHjiibHj9957L9Zgn3766Vx++eUA7Lfffpx55pmccMIJHHfccYDuNbnhhhuoqKjguOOOY9KkSQOKL7587b333r2uk7D33nszceJEAE4++WTefvvtrYYuQA9tzJmzZX0mr9fLuHHj2GeffQB4//33+fzzz9lvv/0ArTjtu+++fPHFF0yYMCEm92mnnca9997bp+yvvvoqK1asYK+99gL0MyssLATA5XLFejRmz57Nyy+/DMBrr70WUxrsdjtZWVlkZWWRl5fHf/7zH2pra5k1axZ5eXl9xm3YcTCKhGGHoaurCwGw2YlEwoTDYZa904DPH+H3t63hyouncO1lU8nOcrB8ZQt2h5uy8nKe+1ctc2dnY7Pb+PWNn/HJmjbGlLr5440zycpw4nBs6XiLKhGgKzGAYGMLIa/u2rW5XKR1+ol4/fhtQrrNhvI1EspIx5WXvT2zY6cnaiPR2dnJ4Ycfzl133cVFF12EUoqrrrpqK9uC+K7xvth1111ZsWIFBx98cI/X09LS+g3jnnvu4YMPPuCf//wns2fPZsWKFZxyyinMnTuXf/7znxx11FH85S9/6TWOKF6vlw0bNjB58mRWr17dZ9yJ0x+3ZTpkfLhKKQ499FAef/zxbn5WrVrV6/0Oh6Nbr1zUQFQpxaJFi7jxxhu3usfpdMZktNvt/dqc/OQnP+Ghhx6ipqaGs88+u/9EGXYYzNCGYbsTDodjX/6hUIiurhDBYIj6+nqqqqoI+v34fF7S3CEuOHM8TofinltmkOa2k5vVRUdbLQd9N5e21ibqams5/OBCvtno49+v11HXEGDSxHSuuHAK6R4Hrl4Wkgo2ttC5oYLODRV0Nbfy+qQFvD5pAR1r17Ns2mH6N+XQmHtU0TBsfzweD3/84x+57bbbCIVCHH744fz1r3+NjetXVlZSV1fHgQceyHPPPYfP58Pr9fLiiy/2GN5VV13FZZddFuu6DwaD3H///T36/e53v8sTTzwB6C/9Aw44AICvv/6auXPnct1111FQUMDmzZv55ptvmDhxIhdddBHHHnssH3/8cZ/pam9v56c//Sk/+MEPyMnJ6Tcfli9fzvr164lEIjz55JPsv//+/d7TE/vssw/vvPMO69atA/QQxFdffcXUqVPZsGEDX3/9NUA3RWP8+PGsXLkS0MMv69evB2DBggU888wz1NXVAdDU1MTGjX3v6r1gwQLuvvtuQNcFra2tACxcuJB///vffPjhhxx++OGDSpthdDA9EobtSjgcprqqirT0dDIzM6mrq8PpdJKVlUNeXh61NTV0dHbgdruJRCK4U2zsNSMDf8BPXm46GRkO/D4fdTXa8C4to5Bb7vqKN99r5LD5Rdx100xSUmzkZLn6lCPkbef1SQsA2OeVJSOebsPQmDVrFnvssQePP/44p59+OmvWrGHfffcFtFHfo48+yp577smJJ57IjBkzKCwsjHW3J3LUUUdRW1vLIYccglIKEen1C/jOO+/krLPO4pZbbqGgoIAHH3wQgMsuu4y1a9eilGLBggXMmDGDm2++mUceeQSn00lxcTG/+tWvegxz/vz5sdkTCxcu5De/+c2A8mCvvfbi5z//OevWrWP+/PksXLhwQPclUlBQwEMPPcTJJ59MIKBtjK6//nomT57Mvffey/e+9z08Hg8HHHAAXq8XgB/+8IcsWbKEXXfdlblz5zJ58mQApk+fzvXXX89hhx1GJBLB6XRy1113MW7cuF7jX7x4Meeeey4PPPAAdrudu+++m3333ReXy8X8+fPJzs6O9RYakgOzadcOwrd9065wWC9T7XZBJBLnDIBCAAAgAElEQVSgvq6OjMxMUt1u6urqSElJIS8/n9qaGjKzskApmpubycvPB6CxoYFUj4esrCxaW1rw+Xx62dz8Em64Yx3NrV388vxJ7DLe022GReKwRbjTF7u2bNphgFYk3j/kjK2O45m/9lU84/s3nvu2sGbNGqZNmzbaYhgsli1bxq233so//vGPb22ckUiEPffck6effrpX+5KeyqXZtGv0MT0ShhHH7w8BirVft/HFunZOO74cm81GR3s7WVnZOBwO8vLyaGpqwm63I+ImxQ2pfn9s4aj09HRcKSng7SStM0im3YUtxUW4rpbfnpKJzeMm0tlEcGMTIY+bSOeWRX56UxgMBsOOweeff87RRx/NwoULB2ykathxMIqEYcRxOITKigrGlHiYM7OcmupqRISS0lIaGvRKlD6/n9zcXERsVFb7Kcy34fP5yMzMRDp8uL0+pN2PUvDWND1+2ltPglEYDN825s2bx7x58761cU6fPp1vvvlmu8RlGH6MImEYFErpoQoBsvuxR6iq9eNyZ+PraKStVU/3crrc1Dd2kZ2Vhd3u4MtvfEwoDxMIhtlU6SPV7SAjM4vsnGz8m6q7KQ/DTbjTHwvXM2k889Ys1Rdsgti0saYjI33Y4zUYDIZvA0aRMGwz3vYuPlzVzJKnNjGmNJXzz5xIRaUPt9vG1O+k883GDgLBCLtNzaCmzo/DbiM724O/s4mWlhayc/L5elM7eNtJz4eITZic7SJS14oH2KtYsEWESLuPgLcTiQy/HU+88uAuK0Yc2q7CnpJCamnRsMdnMBgM31aMIrETEQ5HaGkN4Q+E8aTaEBFCYYXDLthsQrArgt0mOBxCIBhBRMjOdGK3d5+vvn5TJ9f/zxeEQ4r/+ulkLv3tx7S1h3jm/r1oaqwjLyeLnOwUGurryc/Nxel0ULF5M06XC7c7jZbmBkqLckEivD1962GKxPOR6IX48JhzY8c7myGlwWAwDCdGkdhJCIcVX65r5/LrPsWTaufay6ax+L6vqa718d/X7M6fH/yGL9d5ueP3e/DY/27ijfcayc918bv/msrUKZk4LGUiElGMyejiH7dNpKMzTHqGjwcuL0YphaquIR2F6qwnLJlElKK6uoqsrCzyCwpwuVz4A4piTwp2h5Ng28ivzWCGLQwGg2FkMYrETkJLa5A77tML0Jx8XDl/vP9rPvuyjZ+cOp4H/7aRlR+38KNjyvAHQlx0zi589U0Hd96wO/l5Kaz8uIVdp3ior6ulqLgUV8jH65MPAbr3HOz1wr3YPW4AnJ5Usjq7UAh2fxeRJi8BpXCkpRLp9BNicKuh9aYY2DzuHo/jFQYzbJFc+P1+DjzwQAKBAKFQiOOPP57f/e53rF+/npNOOonGxkZmz57NI488gsvVt52OwWAYOYwi8S0n1NUFIohN+MOVUwmGFY3NIVZ90srko0qYvEs6by9vZPYeWRxxcCE5GWECnfU89Mc9iYQDVGzezIxdywCF3W6ntqaKfHpeLMbucQ9oFsW2DlkYe4adk5SUFF577TXS09Pp6upi//3358gjj+T222/nF7/4BSeddBLnn38+DzzwABdccMFoi2sw7LQYReJbRvwCTEBsKWpPVgakpYLYyMxw8atLvkMkEmFzVZDbrp2Oww4rPmmjpCATv6+NhroqCtMyyA0J/k2VOD2p5AQiaLPH7bsTprFn2PFZuqyWvyxZT11DgML8FM47YwKHzRuakicisW20u7q69F4sIrz22mv87W9/A2DRokVce+21RpEwGEYRo0h8C4hXHlQoHFuAKZ55X72CtyuA3++nqLiUttZW2tvbKS0qwuHrIOTtYHaRDVt7G7ldAIpwi5c3R3Axp77sF+xua3gibmgCjD3DjsjSZbXc/KevCAS0gllbH+DmP+ltsIeqTITDYWbPns26dev42c9+xi677EJ2tl7EDKC8vJzKysqhJcBgMAwJo0gkICLZwP3AboACzga+BJ4ExgMbgBOUUs2it7ZbDBwFdAJnKqVWWuEsAq62gr1eKfXwcMsaDodp74hgb23njSlb7xsRb7OgwmGylIv0sBCuqiE91U1qxIbUNBAG3hiF1R8TexrSvtP7+vyGHZe/LFkfUyKiBAIR/rJk/ZAVCbvdzqpVq2hpaWHhwoV88cUXQwrPYDAMP0aR2JrFwL+VUseLiAvwAL8CXlVK3SQiVwJXAlcARwKTrN9c4G5grojkAtcAc9DKyAoReUEp1TxcQgYamgm2erGJIJGehxribRZg+FZ/7LUnwbBTUtcQ2Cb3wZCdnc38+fN57733aGlpIRQK4XA4qKiooKysbNjiMRgM245RJOIQkSzgQOBMAKVUEAiKyLHAPMvbw8AytCJxLLBE6Z3P3heRbBEpsfy+rJRqssJ9GTgC2LIv7xAJeTt4c+qhwPZfBrq3noRgYwvz174K6A2ytmVGhRmySF4K81Oord9aaSjMTxlSuPX19TidTrKzs/H5fLz88stcccUVzJ8/n2eeeYaTTjqJhx9+mGOPPXZI8RgMhqFhFInuTADqgQdFZAawArgYKFJKVVt+aoBof20ZsDnu/grLrTf3YSPYtX0NHgeCKy8bV172aIth2M6cd8aEbjYSACkpNs47Y8KQwq2urmbRokWEw2EikQgnnHACRx99NNOnT+ekk07i6quvZtasWfz4xz8eahIMBsMQMIpEdxzAnsCFSqkPRGQxehgjhlJKiciwrNksIucC5wKMHTt2m+51OXtehaH7VMkhGrqZxZwMAyBqBzHcszb22GMP/vOf/2zlPnHiRJYvXz6ksA0Gw/BhFInuVAAVSqkPrPNn0IpErYiUKKWqraGLOut6JTAm7v5yy62SLUMhUfdliZEppe4F7gWYM2fOoJWTxHUWIqKnzg3m/t4UBrNmg6EvDptXNGTFwWAwJCdGkYhDKVUjIptFZIpS6ktgAfC59VsE3GT9P2/d8gLwcxF5Am1s2WopGy8BfxCRHMvfYcBVwylrvJ6QaLOQWl6MiBBu8cZsFiDObiF+eiUYhcFgMBgMg8YoEltzIfCYNWPjG+As9GrOT4nIj4GNwAmW33+hp36uQ0//PAtAKdUkIr8HPrT8XRc1vBwuHBnp3ZSEePfoHHu7sVkwGAwGwwhjFIkElFKr0NM2E1nQg18F/KyXcP4K/HV4pduCMWw0GAwGw47AYPZNMhgMBoPBYACMImEwGAwGg2EIGEXCYDDssLS0tHD88cczdepUpk2bxnvvvUdTUxOHHnookyZN4tBDD6W5edgWjDUYDIMgKRUJEfllD78fi8jM0ZbNYDAMHxdffDFHHHEEX3zxBatXr2batGncdNNNLFiwgLVr17JgwQJuuumm0RbTYNipSUpFAm0MeT5bVpE8D70E9X0icvloCmYw7GwopaiuqqK6qopIJBI71rbIg6e1tZU333wztnKly+UiOzub559/nkWLFgF6G/HnnntuyGkwGAyDJ1kViXJgT6XUpUqpS4HZQCFx+2QYDIbtQ011NX6/H7/fz6aNG2PHNdXV/d/cB+vXr6egoICzzjqLWbNm8ZOf/ISOjg5qa2spKSkBoLi4mNra2uFIhsFgGCTJqkgUAvG7BHWh98PwJbgbDIbthFKKSCQy5J6IKKFQiJUrV3LBBRfwn//8h7S0tK2GMURkm1ZxNRgMw0+yKhKPAR+IyDUicg3wDvA3EUlDr0JpMBi2E0XFxVs15iJCUXHxkMItLy+nvLycuXPnAnD88cezcuVKioqKqLZ6O6qrqyksLBxSPAaDYWgkpSKhlPo92i6ixfqdr5S6TinVoZQ6dXSlMxh2LmprarbqhVBKUVtTM6Rwi4uLGTNmDF9++SUAr776KtOnT+eYY47h4YcfBjDbiBsMOwDJvLLlSvTmWA4AERmrlNo0uiIZDDsv0WGG4RraALjzzjs59dRTCQaDTJw4kQcffDC2pfgDDzzAuHHjeOqpp4YtPoPBsO0kpSIhIhcC1wC1QBgQQAF7jKZcBsPOSHFJScywsqi4ONYTUWwZRA6FmTNn8tFHH23l/uqrW+8zYzAYRoekVCSAi4EpSqnG0RbEYNjZERFKSktj5/HHBoPh209S2kgAm4HW0RbCYDAYDIadnWTtkfgGWCYi/yRuuqdS6vbRE8lgMBgMhp2PZFUkNlk/l/UzGAwGg8EwCiSlIqGU+t1oy2AwGAwGgyHJFAkRuUMpdYmIvIiepdENpdQxoyCWwWAwGAw7LUmlSACPWP+3jqoUBoNhu7B48WLuu+8+lFKcc845XHLJJTQ1NXHiiSeyYcMGxo8fz1NPPUVOTs5oi2ow7LQk1awNpdQK6/+Nnn6jLZ/BYBg+Pv30U+677z6WL1/O6tWr+cc//sG6devMNuIGww5GUvVIiMgn9DCkEUUpZRakMhi2M//O3ZOwt2Mrd3tGGkc0rRx0uGvWrGHu3Ll4PB4ADjroIJ599lmef/55li1bBuhtxOfNm8fNN9886HgMBsPQSCpFAjja+v+Z9R8d6jiNPhQMg8EwcvSkRPTlPlB22203fv3rX9PY2Ehqair/+te/mDNnjtlG3GDYwUgqRUIptRFARA5VSs2Ku3SFiKwErhwdyQwGw3Azbdo0rrjiCg477DDS0tKYOXMmdru9mx+zjbjBMPoklY1EHCIi+8WdfJfkTYvBYOiFH//4x6xYsYI333yTnJwcJk+ebLYRNxh2MJK18f0x8GcR2SAiG4E/A2ePskwGg2GYqaurA2DTpk08++yznHLKKWYbcYNhByOphjaiWLM3ZohIlnU+bPtuiIgd+AioVEodLSITgCeAPGAFcLpSKigiKcASYDbQCJyolNpghXEVWtkJAxcppV4aLvkMhp2JH/7whzQ2NuJ0OrnrrrvIzs7myiuvNNuIGww7EEmlSIjIL3txB4Ztr42LgTVApnV+M/A/SqknROQetIJwt/XfrJT6joicZPk7UUSmAycBuwKlwCsiMlkpFR4G2QyGHQ57RlqvszaGyltvvbWVW15entlG3GDYgUgqRQLIGMnARaQc+B5wA/BL0RrKwcAplpeHgWvRisSx1jHAM8CfLP/HAk8opQLAehFZB+wNvDeSshsMo8VQpngaDIbkJ6kUie2wx8YdwOVsUVjygBalVMg6rwDKrOMy9HbmKKVCItJq+S8D3o8LM/6ebojIucC5AGPHjh2+VBgMBoPBsJ1ISmNLESkXkb+LSJ31+1+rN2EoYR4N1EVXz9weKKXuVUrNUUrNKSgo2F7RGgwDQimzNIthx8GUxx2XpFQkgAeBF9A2CKXAi5bbUNgPOEZENqCNKw8GFgPZIhLtuSkHKq3jSmAMgHU9C210GXPv4R6DISlwu900NjaaytuwQ6CUorGxEbfbPdqiGHogqYY24ihQSsUrDg+JyCVDCVApdRVwFYCIzAP+Syl1qog8DRyPVi4WAc9bt7xgnb9nXX9NKaVE5AXgbyJyO1rJmQQsH4psBsP2pry8nIqKCurr60dbFIMB0MptefmQOp4NI0SyKhKNInIa8Lh1fjK6N2AkuAJ4QkSuB/4DPGC5PwA8YhlTNqFnaqCU+kxEngI+B0LAz8yMDUOy4XQ6mTBhwmiLYTAYkgBJxq5LERkH3Ansi95j4130eg2bRlWwITBnzhz10UcfjbYYBoPBkFSIyAql1JzRlmNnJil7JKw9N44ZbTkMBoPBYNjZSSpFQkTupO9txC/ajuIYDAaDwbDTk1SKBHrp6ii/A64ZLUEMBoPBYDAkmSKhlHo4eiwil8SfGwwGg8Fg2P4k6zoS0McQh8FgMBgMhu1DMisSBoPBsNMTiUSIRCJbHRsM24ukGtoQES9beiI8ItIWvQQopVRmz3caDAbDt49IJILf78dms+Fyubod22zmO9GwfUgqRUIpNaK7fxoMBkMyoZTC6/XS2dFBZmYmra2tZGVl4czJGW3RDDsRSaWyisheInJkD+5Hisjs0ZDJYDAYBkP8EMRghyPsdjv5+fk4nE5aW1txp6aSnZOD3W4fLjENhn5JKkUCuBm99HQinwO3bGdZDAaDYVCEw2HavV7C4XC3476IhMOxTdRCoVDMHiIQCNAVDGKz2Qj4/XR1dRk7CcN2JamGNoAMa1XLbiilNopI/mgIZDAYDH2hlEJEAN3zYLPZCIfDNDY24vP5AOjs7MSdmtprT0I4HMbr9eLxeLDbbHR0dJCSkoLD4cDb1kZGZiZ5eXm0tLQQDARwOp0opVBKGVsJw4iTbIpEXwN/nu0mhcFgMAyAcDhMMBgkJSWFSCQSO7bZbBQVFVFTU4Pdbqd8zJhYgx8Oh7HZbDHlI0pnRwctzc0Ul5Tg6+ykqbGRtLQ0MjIzsdvtKKXweDwxxSUQCKCUisVnMIwUyVa6XhGRGyTuDRPNdcBroyiXwWBIYpRSdHV1EQqFuh0PNUy/3091VRWdnZ0Eg0Fqqqtpa20lFArh9Xqx2+0UFRfTUF9PJBwmFApRV1sbkyOK3W6nuKQEgOqqKvILCrDb7bS3t+P1enE6nQB4vV6qq6poaW6muqqKtrY2knFjRkNykWw9EpcC9wPrRGSV5TYDvXT2T0ZNKoPBkNQopaiuqsLhdJKXl0d1VRUZmZnk5OQM+mteRHC73eTk5FBXW0tOTg55eXm0t7eT6vHQ6fNRXFyM3W4nHIlQWVmJzWaLNfzxPRLhcJi2tjYikQi5eXm0e72EQiHsDgedHR10ZWXhSkkhNzeXYDBIS0sLLpeL/Px8Y3hpGHGSSpFQSnUAJ4vIRGBXy/kzpdQ3oyiWwWAYJiKRCEop7HZ77Kvc4XDEDAsdDsdWXf7DgYhQXFxMZWUllRUVpKSkkJWVNSglIj4NSikCgQAALpeLjs5OAoEArS0tjB07NmbDUFRUxOZNm4hEIpSVl+Nw6Ko5HA7HFAFfZyeFhYW4U1NpqK8nNy+PjIwM6uvrCQQCOJxOurq6CAYCiAjBYLDbUIrBMFIklSIhInvGnVZa/9lRd6XUyu0vlcFgGA6iNgRdXV14PB5aW1rwer2UlJbS3NQEQGFR0YAUiaihYbyRo4jEDB3jjwHd0MaHO0hlJbpAVFNjIyWlpQT8fnw+H2Xl5UQiEdq9XkpKSgiFQmzetIlyyz1qK5Gfn09nZ2fMRqKjowOPx4PNZqOgsBARweFwkF9QAOghjwLrGIgZZBYUFtLU2EhnZycul2tQaTEYBkpSKRLAbX1cU8DB20sQg8EwvERtCpoaG8nIyCAjIwOf309VZSVFxcU4rC/zUChEOBzG4XCglOp2HP3Cj0Qi1FRXU1RcjIhQU1NDQUEBDoeDmupq8vLycLpc1NbWkpWVhcfjoaa6GpfLRW5eHjU1NbS2tg54aCO+F8LpdBIOh6nYvJns7OyYIaVSirHjxumVJy3DSLFkdToc5FmyNjQ00NnRQWFREa2trbS2tJDq8eBta6OoqAibxxPrsQC6DV3k5uYCWjHKzsmJzRIJhUJEwmEcTieRSIRwOByb2REKhXA6nabXwjBokkqRUErNH20ZDAbDyGC328nIyMDv99Pe3k5GRgY2EbKzswkEAtQ2N1NaVkYgEKChvp7SsjLCoRC1tbUUl5Rgs9moqqyksLAQV0oKdrtdnxcV4XQ4qK6qorCoCJfLRXV1NYWFhaS4XNTV1uLxeCgsLMTucGC32ykrK8Nmsw1YifD5fLS2tlJUVEQkEiEzM5Pm5mYaGxtJz8jo004h2tsQ9VNaVsbmTZuorqqitKyMTRs34m1rIzsnh1Srd6KvPAQ9JNLc1ERHRwelZWV4vV7aWlspLSvD19lJc3MzhUVFtLW2EggEGDtu3DY+LYNhC0mlgorIaSJyeg/up4vIKaMhk8FgGBrBxhY6N1TQuaEC/6YqPO1+CnASaWsnEAiQ4nbjdrtxp6ZSWVGBzWYjPSODqspKwpEIWVlZ1FRXEwwGyc7Opq6ujoaGBvLy8ohEIjQ1NpKXn49SisaGBnLz8gBobGwkJzcXEaGzs5NAMIjdbt9q6mVXVxddXV2A7g3pdhwMAuB0OAgGAjQ1NdHV1UVzc7Ne88Fup7qqinA/M0DiFYC21lYAsrKzY8ciQrvXO+CFpux2Ozm5uTicTiorKvB4PKSkpFBVWYnT5cLj8VBbU4PP56OktHRE7E4MOw9J1SMBXAgs6MH9WeBN4G/bVxyDwTAQgo0thLztW7k7MtIJedt5fdLWr/W8r16lpLQ01gWPZfMgIt1mNkSs4+j6Cw6Hg9zcXGpqanC73eTl51NdVYXT5aKwsJDq6urYdMqa6mpEhFSPh8aGBpwOByluN7U1NQAUl5TQUF9PKBSiuKSEpqYm/H4/paWltLa00N7eTrFl85CekYHf5yMjI4OcnBwys7JidhEDtblQStHe0UFRcTEpKSmxqZ4ej4eqqioCfj+2fnoluoVn2YZYuxoCYBMhHKeQKGtYxigThsGSVD0SgFMptVVtZM3mcI6CPAaDYQBElYXXJy2gfc3X+DZW4ttYSVdzKyrU89LQIuB0OvXXeHs7fr+fsvJywuEwnVaXvc1mw9vWRklpKampqTQ1NZGVnY3NZiMtLS02ZODxeGJTLT2pqZSWlWG320n1eCgtK6OgoICcnBwcVnxFxcWEQiGqq6rIzc0lEolQVVWlZ3KIUFlRQXpGRmxlSaUUba2tOJxOGhsbcVjrOjidTjKzsgY8BdPhcDBmzBhSU1NxOByUlpXhsWwiysrKcKemDkiJiA5tRCIRyseMoaOzk66uLsrHjCEQCBDw+yktKyM9PZ0aS2kyGAZLsvVIpIpImqU4xBCRDMCYJhsMo0xvPQ8q7gvY7nHz/iFnxM73eWVJr+FFG+CMjAzSPB4cllGg25oiGW0oo1MtS8vKYlNEowpFtJs/GlZWdnbMWDHTWhVSRMi0pnuKyNb7XohA4sJOSoEIXV1dpGdkkJObS2ZmJuFwmI72LXmwres4xCsK8fduSzjRNOfk5OBwOMjKyiIzMxOHw0F6RgZp6enY7Xby8vPJsXotDIbBkmyKxAPAMyJyfnTPDREZD9xlXTMYDKNIr8MUa5YOKVy73R5rSONnLCR+nfc2myH+ON5PT/7D4TC1NTU4HA6KS0qor6vDJkJxaSlN1ld+WXk5rS0thLq6KC4pwdvWRkpKCiKyzb0QI0Vv6Yw/hm1XdAyGRJJKkVBK3Soi7cCbIpJuObcDNyml7h5q+CIyBlgCFKGnk96rlFosIrnAk8B4YANwglKq2VqqezFwFNAJnBldy0JEFgFXW0Ffr5R6eKjyGQw7GsFgmEhbG5F23UnY2zBFMmGz2WLTRu12e2zNBqfTSV5uLso6zrbsIJxOJ47c3JidQfQ+g2FnIakUCQCl1D0ishSot869ACIyQSm1fojBh4BLlVIrreGSFSLyMnAm8KpS6iYRuRK4ErgCOBKYZP3mAncDcy3F4xpgDlohWSEiLyilmocon8Ew4oSt7aqj6zEA3QwcQyGlG1OHUFPnJ7PTyzu7Hgp0H6bY64V7sXvc1lnv+z2EO/3s88oSUsqKiAA2mx5qcGSk93rPSBLtVYgSf+yIP+7jK3+kaGoOogCP24Y/ECGiFC6njYx0YyJmGD2STpGweEYptWeiGzB7KIEqpaqBauvYKyJrgDLgWGCe5e1hYBlakTgWWKJ0Dfu+iGSLSInl92WlVBOApYwcATw+FPkMhpFGKYXf56Ouro7SsjIi4TDV1dWUlpYiNhuVFRV6cShfgM6WNnJtdsTWs5IQbwux1wv3xpQMd1lRN38fHnMuoGdptDn1F31+fgGuFNM4dvpCdHSGiYQj1DUGufGPX1KQl8LZJ4/j9nvWsX5TB3vPyuWKCydTkJfSYxjBYBinc+vdRA2G4SKpFAkRmYreYyNLRI6Lu5QJuHu+a9BxjQdmAR8ARZaSAVCDHvoArWRsjrutwnLrzT0xjnOBcwHGjh07fMIbDINERHCnppKa6qGyooLCoiIyMjKosqYhZmVlU1tTQ6E4eWva4UDfxpJRosoCwIKNb3HgF9pmImokCRB0uOkMOHE4hLb2CAU9t4s7Dd72EC8ureLeRzZw5x9m8IvffIw/EOGX50/iV3/4jNY2vTbFhs0drP6slT2mZ5LmcZDm0dV6S1sXK1c389rb9czYNYvD5hehIgp3ih2Xy0ZbewiXU/CkJlUzYNgBSbYSNAU4GsgGvh/n7gXOGa5ILPuL/wUuUUq1xWvySiklIsOyL69S6l7gXoA5c+aYvX4NOwSBYIRwRBsxhrq6Yt35Dl8QW4ePfGXfegaDRXSYAiCltKhHPx1tPjImlhIIRnjhlToOOSCfhuYgF17+MREFRy4o4vwzJo5AypKL1rYu/vzgetI8dtq8IfwBPcxkt0tMiZgw1sPlP5/MA49t4LY/r2XW7ln84vxJZKY7ePK5zTzy9GacDuF7hxbz939W8c6Hjfz87Ims39TJP1+uoaTIzXlnTKC40I3dbnosDIMjqRQJpdTzwPMisq9S6r2RiENEnGgl4jGl1LOWc62IlCilqq2hizrLvRIYE3d7ueVWyZahkKj7spGQ12Doi2AwgsullYJgVwSnQ2jvCBHsUtht4HDYCAQj2ARcLhsKha29jQxfJ1k2F9LSTjgcptDmQnV08saUrW0h4onveTjws5d69NPVpWhsCfHFWi8VlT58AUVjYxeHHFjI3D1zmblbFulpSVU1DZk2bxc+f5hwWJHisqEUbKrsBMDnD5Od6YzNQHXYBadD6Aopzj5lPH9Y/CWbK30AvPl+I23tIX576TSefkHva3jkgmI+XNXMU89XctB381n1aSv3PboBgDVrvXy0uplH/jSHvNydvAvIMGiS9W1dJyK/Qs+iiKVBKXX2UAK1ZmE8AKxRSt0ed+kFYBFwk/X/fJz7z0XkCbSxZaulbLwE/EFEcix/hwFXDUU2g2FbaG4N8vb7jaz8uJlfnlZEsLWdYDBCdr4H2n04FTgzUgnFH9f5QECJxI7BwiEAACAASURBVIYt4g0mE20bonTrhSgrBpuNUFgRjvTca5GZ4cBTmEpJYSrz9ysEYEyph/3m5g93NiQFza1BFt+7jlferOfKCyfz2ZdtvPR6LX/8w0xsNohE4K0PGjjntPE88LeN/OuVGi4+5zv88f515Px/e3ceXldZLX78u86UM2Ue24SW0pbSMpdSxisgMzI4IKIooih6QVARZfAqKhfuRb1OXIEfAjIoItNlEilTGURAWqaWsYWWtmmSZh6a4Uzr98feSU/TprRpmpOdrM/z5One7xmydnebs/K+633fwuBAEgFw6AGlfP5TO5FOZwgGnYLM+XOL+Z/rlgFwwL7F3PVg7Ubfv6Mzxeq6HkskzLB5NZF4AHgOeAIYyflmhwBfApaIyGtu22U4CcRdInI28CFwmvvYIzhTP5fjTP/8CoCqtojIFcDL7vN+1l94acyO1tPYQqKhg73KMsw/Pop0dfLinhvqGfoLILd03C+7YHJreiEOWvI49y1Occd9a/jV96Yy55+PUFocIhDY0G2eq9kYY0V7RxKfQH6+M2T0/or1PPFsIyVFQUqKQzz0mLPS5IKFDVxywSyuv+UD7rhvNRedO5O/3jCfZCpDNOznkANKSaUyRCJ+enrS7LdXESccVcX3f7qEQ+aX8sVTp3DdLR/Q1ZWipChEa1uSzvVpiotCrFzdvVFMhTbrw2wHryYSUVW9eKTfVFX/AQw1ULjJKjvubI3zhnivm4GbRy46Y7ZOunM9i/Y9duB8a4oht/l7ZPVChKurUJ+fdDpDOhzl5GPjHDq/jObWBDW7xIkUBgkGRmc1/mQyQ0dnCgQK8wMERun7bjaWVAa/T/D5nB8pnV1JXlvazp/uWcWkijDnnDmNRDLD0nc7ACgvy2PVmg0f8P/3yFrWNZbykx/MoWZSmGgksMmQT18iw6Xn78rPfvUOnz25ml9eu4zunjSPP7OOXafH+eVP9qSpuY8LvjadCy9fwiNP1PPdb8zgzXc7SCScmotDDyiluNgSCTN8Xk0kHhaRE1T1kVwHYsxYMxrT/LJ7IY5Y9iSxnWs2eryibEQnUW2V9s4kf3u8nj/fuwq/T/jmWdP42EFlRPL8+P07JqFo70iSTGbw+YTiImefjs6uFCtXr+f/HlnLXrMLOHj/UprbEvT0ZLj0yjfx+eC8r07n+z9dSmdXkv+4cDcAVtX2MGdWwUarcT//cjP771vE3nMKN1sMmRfycdD+Jdx94wEkEhmaWhIDj/3+5g8oKwlx82/mEosGuOsP83l3eSeV5Xn85fr9ee/9LirK8qgsz6OowHYYMMPn1UTi28BlIpIAEtC/uZ0W5DYsY8avwb0QEnCXrM7xUEUqlaGrO8U773Vy7R8/AOCgeSVMqY5xw20rSaeV006poao8j7y8oVecbOtIUN/Qy6raHvbevZD2jiQrVnWz+6x8igtDxGIB0mmlrT1BIpVBEP7z1+/w2tJ2JleFufyi2cyaHueNt9q5+Iql5McDfOYT1Zx94SsccUg57R3O9uNz9yzi9Tfb+dDtfXhnWRff/vp0br97FS+83MyPL9yN625dQUdnkpOOncRRH6vY4oyKSDhAJBygtT3BrOlx3n1/wz4fkYgfRMjL81NZ7qeyfEOCl31szPbwZCKhqvm5jsGYsWp7OyQ2Thg2FFgO7oWIDuqFyIX2jiR/e6KOtvYkza3Ob+PhPB9fOX0qF/zw9YEpkwuebuCO6/anwk0kutanSKUyFOQH6elN09OT5vrbVvDoUw185fSpLH2ng/v+thaAXabG+NGFu1FWEqKppY+LfrqU006qZvEbbby2tB2A1vYkz73YSGlxkNvuWgXA0R+r4P5H19LalqSjM0mZW8xYVBhkXVPfwDXccPsKDj+4jKt+uAeTKsPEo37m7u3UaceifsJbSH6yFReG+M/Ldueq37zLG2+1M2fXfH743d0oKbLeBrNjeTKRcGdXnAFMU9Ur3D0yJqnqv3IcmjFjTn9iEK6uwhcNc9jbCxBkyGNESGuGQCCAPxLmiGVPbvKeO6oXorMrSd26Xl5a3MrB80qA/u79YqJhP8+91MxecwooLgrxzrJO0mm49o8rmL9vMfvuWQTA3L2K+Me/mgeSiF2nx7no32fy6MIGyorz2HV6nOtvXUFZSZBTT6rhj3es5IunTeHRpxoAOGC/Es69+NWB117wtelc+et3+OKpU7jpLytpbkkwc3qcm+5YCUAk7OPnP96DR59q4JkXmggFnUyusCDIqredXofnXmrmmqv25ql/rOO1pe1c9p1Z/N8jaweu++l/NnHmaVMoLXY+9LfUc7IlkyrCXHnpHJKpDAG/j8ICq30wO54nEwngWiADfBy4Amfjrt8D++cyKGPGgkB+fJMPf1UIFsTxFcYJqBIMBkmlUgRUCQQCzv4aiQThvDwyqiQSCfLy8kZ186lkKsMTzzbyP9ct48D9SigsCPLz/32PObvms1N1lB9f/RY1kyPM3CXO+ecu4vOfquH9lc5mYYteb+XM06aw15wCUikdmCUiAt/75kwuvfJN2toTXPfzffnm91+lty/DtVfvwwU/fJ313WlOPXlD70omo/Tven7maVP4r9+9S21dL6WloYGplmvW9jBzl3zefLeD44+s4oln1vG3x+uZMS3G187YmdffamfxG60ce0Qli15vo68vw9XXvMflF80mlVbKSkL84vI9uPmOD1Hg7C9MZXJVZET+HgvyLXkwo8uricQBqjpXRF4FcHfitP47Y4BQaRGh0qKPfN7gTaf8fmezLB8MHI+mjs4UN9zu7Lt37BEVA4smHXN4JXfcuxpVZ7jg7gdrSaeVxuY+aiY7H76ZDPzo6rc476vTmT0zn3DIx30Pr2VSZZi3lnXQ3Jpg2pQoy1d00duXobgoSEtbwpnhgbPoU/WkMLV1vTQ09g7UGhQWBKmt6wWgdm0Ps2bEeXd5F3c/VMsl58/iZ//zNnvOLhiozVi+Yj0vLGrhmqv2YfEbrew+q4CLz9+Vex+qJT8eIJznZ9rUGHkhHzvvFGP2rvmgUFRoP76Md3k1kUiKiB93S0ERKcfpoTDGDFN24pCbDZ6URNL5bxwI+AamJwaDslF7n9v+9D+buObKvXnplRZWremhtS3J0883csC+xRQWBLnld/ux5O12OrucZKGjM0WxWy/Q25umIGvthN/f/AGXf282Dz1WxzP/bOIn35/N/Y/WIUBJUZCWtiR/vm81l317Fr+5YTnvLu/irgdWc81Ve+MTYafqKI3NTo3GA4/W8dRzjfz5uv0pKQ6xy9QYh84vxe+XTXoLbLaEGQ9Eh1gzfywTkTOAzwFzcXbjPBX4D1W9O6eBbYd58+bpokWLch2GMTnT25fm5jtWcsd9azj6sAqm1ES56c8rOWBuMYfML+VX1y9nt5n5nP7JGn7yi7cBqJkU4TvfmEFFaYi8PD+xqH+T3+6bWvo46/zFtHUkueKSOdz/yFoWv9HGJefvyguLW3jmn00AlBYHufbqfcmPO+s1pNNKT2+KFau6ufTKN+noTLH7rHz+47u7EQ778ftloJDxwzXdnHfxa7R1JBGBs06fymkn15Af9+rvat4hIotVdV6u45jIPJlIwMBOoEfiTP18UlXfznFI28USCWOcKZgvv9rK0883csapU2huSbBgYQOnnlRNMqU8tKCOE46sJBoNcN/faqkoy+PUk2ooLw0N2YuSyShNLQkefqyO3t40nz6xmvaOJJ3rk0ytjtLemaKpJcH0nWMUFQQJBjdecyKZytDekaSvL0M4z0dRYXCTdSn6p4W2d6aIRf3EopsuHmV2DEskcs+TiYSIlGymuVNVk6MezAixRMJsjURzG6nOro3aVMEXixIqLSadztDTmyEW9ed0Vcft1duXJhT04fMJiUSaQKD/OEMg4KwWmUhm8PvYpsWmVDVHwzZmR7FEIve8mjK/grPrZitOj0QRUC8iDcDXVXVxLoMzpl8mk8Hn821yvC2ykwdNpXl69jHAxhtqRWfsTM+KVagqqNCWhnCen1BhfKsKL8ea7LUTQqHs4w1/f6Hgtv9dWhJhzMjzaiLxOHCPqi4AEJFjgM8Af8SZGnpADmMzBoBkMklPTw/xeJx0Ok1PTw+xWGybp1SmOrtYONPZ6mVLG2r1H2c7/L0nPZlIGGO8w6t9nwf2JxEAqvoYcJCqvgjYXrhmVKXTadJpZxPaVCpFKpUik8nQ29tLU2MjLc3NrF27lvb29hxHaowxI8+riUSdiFwsIlPdrx8A69wpoTYN1IyadDrN+vXraW1tJZ1O09vbS3NTE6pKXl4eBYWFdHR0kJeXx+TJk/H7/RslHplMZuBYVUmlUgPv3X+cSg+/jsmDJVDGGI/xaiLxBaAGuN/9mgKcDviB03IYlxlnUsnkwAd9Mpkc+HBPJpMkk0lEhEAgQEd7O60tLYgI3d3dNDY2kslkWL9+PZFolIKCAhrq6wd6LOrr6jY67n/vluZmEokkiUSSlpYWEokkft/wx/WHUZJhjDHbxJM1EqraBJzffy4iYeAkdx2J5TkLzIwrmUyGuro6AoEAFRUVrGtw9mKoqKyke72zNHM8P59AIEAsFqOjo4NwJEI8HkdESPT14fP5KC8vJ51Ok0gmWdfQQElpKel0mvr6esrKyshkMqxraKC0rIze3l4a1zVQGo4S7uihr6Nno2x/qA21jDEmVzw5/RPAHcY4Fvg8cDTwD1U9NbdRDZ9N/xx71N1zYm1tLaFQiNKyMurr6igscooXW1taKCsrQ1Vpbm6mpLQUv89HY2MjkUiEcDhMPD9/YKZGV1cXzU1N5BcUEIlEWNfQQCwWo6CgkLq6tVRE85HePtLpND7gmdnHAhvPzsibvGH7bl8kj3R3D5lMhmA0QqbbWcoZn4D4EHH23bBiSzOe2fTP3PNcj4SIHIYztHEC8C/gEGAXVe3OaWBm3BERfD4fIkI6nUZEEBFaW1qorq6mJxymt6+PaDRKSWkp+fn5JBIJioqKKCwqIplM0tnZSWFhIclkkpbmZvLz84nH49TX1xOLxSgsKqK+vp5wOIz09vH0rkcBG8/OyN6++7B3nyQ2rYa+vjR9yQzx8hJWr15NuqeLwuIiiouLhzXF1BhjhstTiYSIrAFWAdcBF6lqp4issCTC7AiZTIZ6d2ijatIkGurrERGqa2rItHcS70kivSn8KUW6e+ltascXDZPX3Utva9eG45ZOfNEwFRk/dPRASilP+5CuPjTTTlkKJKvIckv6c4S8PD+BANQ3NJBRJRaP097WRigUIhqNjuquncaYic1TiQRwD/BJnH020iLyAO7GXcaMtFRrOyVpZ4ggta6Fol53imdtA2SU59yhh+w1HLb3eFvFYjFKS0sJBoOEw2FCoZD1SExgm1v5FGyIy+xYnkokVPU7IvJd4HCc2oifA4UichrwiKpu+j/ImGFKda7n6V03LASVveDTcD70R5rf7ycejw8Mv2Qfm4kpe/GybEcss4XJzI7jqUQCQJ3q0IXAQhEJAsfhTP28FijLZWzGjJSNZ2dsKLAM5Mc3el72EIYNZxhjcsFziUQ2d5Ouh4CHRCSS63iM2R5bSh7st0ljzFjlqURCRJYwdE2EAnuPYjhbJCLHAb/FWSTrRlX97xyHZMa47NkZRyx7kujONTmMxnhd9rRhTaXpXrkGsMTUjDxPJRLAie6f57l/3u7++UXGUNGlu8bF73HWt1gDvCwiD6rqW7mNzGyLTGbof1L9vQehyZX4IhH+bekCEAjGI/zbm842MMH4oPalG9oPe+sxAPyxMIe/7RzjE8QtlBw8hGFMv+yCSl8oRLq7x3nAJ5D1bzZ7U7dsVi9hRpqnEglV/RBARI5W1X2zHrpYRF4BLslNZJuYDyxX1Q8ARORO4BTAEgkP0UiM2c//DYBQVZzD3noMRVEV8PtI9GVY1xuEYIy3Pszw7AtNHHFIHvP2qaIvkSGc56OXfF5Y1MIeu4UpLCzgxUUtlJX62XP2JEqKQjm+QuNFg3eDzU4W9n/wBg584jbC1VW5Cs9MQJ5KJLKIiByiqs+7JwcztvYNqQZWZ52vYTNbm4vIOcA5AFOmTBmdyMxW6wnGOOvKJWTcbeD8fuFTx0/izNOmUlwURBWifWnyQn52mRrjyH8rJy/kx+/feNbETidHB44/c2L1aF6CmWD6h8eOWPZkjiMxE8lY+vDdFmcD14rIShFZiTNj46u5DWnbqeoNqjpPVeeVl5fnOhwzSCzi5+tf3HngPBAQjj6skpLikLvqpRCNBPD7nRUv+4+NMWYi8WSPhKouBvYWkUL3vD3HIQ1WC+yUdV7jthkPicUCfOqEao76WCVNLX1MqghTkO/J/zLGg4ashfCwjNu95/P5Njo23ubJn4oiUglcBUxW1eNFZA5wkKrelOPQ+r0MzBSRaTgJxOk4+4MYj4nHAsRjASZVhnMdiplghqqF2NrF0AL58YEhjuxEREJB1i//0HnSRgW+MfxFBfj9flSVTCazydok/e39+870H2cnA6pKKpXCJ4LP7yeVSg08p7e3FxEhLy+PdCoF7uJp/ZtH2loo3uTJRAK4Bfgj8EP3/D3gr8CYSCRUNSUi3wIW4Ez/vFlV38xxWMaYcSB7vZHozJ2HnPUTKi0amJ3RvXINT88+Bti0QLPf4e89wbqe9VRVVZFOp2lsbKSqqopAYMPHRDqdZs3q1ZSVlxMKhQaSiVAoRCaTQVXx+XzU1dURDASoqKhgXUMDABWVlXR1ddHV2UnVpEn0dHeTTCapqKykrbWVVCpFWXm5JRMe5NVEokxV7xKRS2Hggzud66CyqeojwCO5jsMYM7q2ND1z8Af9cAxebyQ2Y+r2BTxAyKTT1K5Zg9/vp6KyEoGNeidEhIKCApoaG5k0eTIN9fWUlJQQ8Pupq6ujoLCQWCxGeXk59XV11NfXU1pWRn1dHatXraK6poZkIkF7eztFRUXU19Wx6sMPyWQyVE2aZMu7e5RXE4n1IlKKu3aEiBwIjLU6CWPMBLSl6Zn9xuJaDplMhuKyEtpaWykrL6dx3ToqKivJpFKsa2igorKSQCBAPD+ftrY2EokEkWiUhoYGSsvKiMZiNDU20tnZSWlpKWQNfYgI8fx8UqkUfX19+Px+UCUcDtPT00MwGCQvL8/qJTzKq4nEhcCDwHQReR4oBz6b25CMMbk0VE+ALxom0927yfFI9RBsreyVJrPrFIaMb5T5fMK6piYi4TCCk1isra1FVYnFYogI6XSatbW1hMNhUqkUhYWFdLS309baSnVNDe1tbVRUVFBXV0coGKSyqoqG+np8Ph9FRUW0tbURz8+npKSE9rY2enp6nPfo6KCpsdGGNjzKq4nEm8BhwCxAgHfx7lRWY8wI2FJx4uaOs41GD0H2SpNbE1//4lKw5VqIkRSPxSguKQEYGJIoLikhGokgIqgqJaWlRKPO2ihr164lEAhQNWkS9XV1+Hw+urq6qCgvxx8IICKUV1TgE8EfCFBSXAwiAzvXRiIRwpEI8fx80um0DW14lFcTiRdUdS5OQgGAu7Ll3NyFZIwxI2ckayEGz+DITkoUZwqmPx4lPxYZKKBsXLeOaCxGLBZjzerVFBUV4Q8ESCaThEIhgsEgBfn5xPPzAcjPzycai+H3+eju6cEfCOD3+zfqYQgEgwPHoby8geLMUCg0cGy8x1OJhIhU4awaGRGRfXF6IwAKgOiQLzTGjEvZwxmayl299ViJYyjZMzgGS6fTAx/2/ceqSjgScWodgLLycpoaGwEoKS0lGAzi9/spKCwc+PCP5+cPvE8kEvnIIYr+2onBx8Z7PJVIAMcCZ+Es8PSrrPZO4LJcBGSMGV2DP7SzpzVui22uWfAJ/nDYqb3IGl4A0EyGp2cdPfC+mx2SGKOyP/D7jwOBAGVlZfj9fjLp9MA6D7BhUSnYeDGpzb2PmRg8lUio6q3ArSLyGVW9N9fxGGNG1tYUTALDTh6ybWvNwubO+2UnC0MNSfRv4+0VA70UmQzNTU2Ulpbi8/udIY9o1JIFM8BTiUQ/Vb1XRD4B7A6Es9p/lruojDHba2sLJjdnqIWafNHwZo9H21B1CkPGN0a2lff7fOw0ZQo+nw8Bwu6xMf08mUiIyPU4NRFHADcCpwL/ymlQxpic2tbixO3tIcgeGnGXtNmiLdUpjGU+v99Z9yHr3JhsXk0rD1bVM4FWVf0pcBCwa45jMsZMIP1DIy8edSa9tQ25DseYnPFkjwTQvw1et4hMBpqBSTmMxxiTA9nDGeHqKiTgFguO8lDAWInDmFzwaiLxsIgUAb8AXsHpV7wxtyEZY0bDlj60t2XoYDg1C/6we+4TyGwYzhg8rBLduWb4F2iMx3gykVDVK9zDe0XkYSCsqrbXhjEetzUf7iO1tPX21ix4bRaGMTuKJxMJEfn0ZtragSWqui4HIRljRoBXCxKNmcg8mUgAZ+MUWC50zw8HFgPTRORnqnp7rgIzxkwM2b0ng9uNmUi8mkgEgNmq2gAgIpXAbcABwLOAJRLGmB3Kek+McXh1+udO/UmEa53b1gIkcxSTMcYYM+F4tUfiabfI8m73/FS3LQa05S4sY4wxZmLxaiJxHvBp4FD3/FbgXnV2ljkiZ1EZY4zHpNMZ2jtS+ANCYX7wo19gzCCeTCRUVUVkEdCuqk+ISBSI4+wCaowxZiu0dyR59KkG7v/7WooKg1zw9elMnxonFBp61LujM0lPb5pUSskL+UhnlGRSiUb8lBSHRjF6M1Z4MpEQka8D5wAlwHSgGrgeODKXcRljjFdkMsqzLzZxzU3vA7B6bQ/n/uA1/vqH+VSUhTf7mrb2BNfc9AELFjbwvX+fwfsr1/PAo3WoQs2kCL+7ci8qyjf/WjN+ebXY8jzgEKADQFWXARU5jcgYYzyka32KR56o36gtmVKWvtMx5GtW1fawYGED+fEANZOi3P93J4kAWFPXw813fkhvX3pHhm3GIE/2SAB9qpoQEQBEJMDWbL9njDEGgFDQR3VVmCVvb0gcaiZFmDktRiKZIRTc9PfM5Su7ACgrCVFb37PRYx8/tJzjP15Je0eSLl+KD2u7eX/leg7Yt4Ty0hAIpNNKW3uS5SvWs9vMOOkMLPugi12mRCkuDlEQtxoNL/JqIvGMiFwGRETkaOBc4KHteUMR+QVwEpAA3ge+oqpt7mOX4iyClQYuUNUFbvtxwG8BP3Cjqv632z4NuBMoxVko60uqmtie+IwxZiSFw37OPmMaL73aSmtbktM/WcOB+5Vww+0r2Wf3QubPLeGBBXVMmRxh3j7FPPbMOg6cWwxAbV0PM6bF8fkgk4FPnzCZGbvEueSKN/nGl6fx0istPPdiMyVFQXabkc/C59cRjQRQhWtuep/DDi6joyvJL69dNtCj8bUzdua0U6qJRrz6sTRxeXVo4xKgEVgCfAN4BPiP7XzPx4E9VHUv4D3gUgARmQOcDuwOHAdcKyJ+EfEDvweOB+YAn3efC3A18GtVnQG04iQhxhgzplRV5HHL7/bj5t/M5fBDyvjOj95g0Wtt7Dojny9fsJj7Hq5lxi5xzrpgMTf+aSVP/7OJi8/fleKiEE8828CVl+7OlJoIx328kl9e+x5d3SlmTIvz3IvNAHzjzGlcf+sKbvzzh8zcJc4f/rQCgBOPruIPt68cSCIAbvnrh6zvtmERL/Jc6ud+gN+mqmcAfxip91XVx7JOX8RZmwLgFOBOVe0DVojIcmC++9hyVf3AjetO4BQReRv4OPAF9zm3Aj8BrhupWI0xZiSICKXFecSiAa789TsAHLR/CY8/s45EIsOB+5XwwsstdPc4H/B/umc1B80r4fKLZjO5KkxBPMAes/dh5ar1ZDLg8znDF/2m1ER54y1nP0W/X+jtywBOb0hn18ZrB6ZSSiplI9Re5LkeCVVNA1NFZEfOM/oq8Hf3uBpYnfXYGrdtqPZSoE1VU4PaNyEi54jIIhFZ1NjYOILhG2PM1vP5hFjU+b1S1TkHZ2aHDPqUeGFRCwv/0UhJUYhQyE9xYYjJVZGBYY72jiTTpkQBJ1FxS9lYvqKL/fZylhR/bWk7hx1cvtH7zpoRJxz23EeSwYOJhOsD4HkR+ZGIXNj/9VEvEpEnRGTpZr5OyXrOD4EU8OcdGD8AqnqDqs5T1Xnl5eUf/QJjjNkBQkEfX/rsFCJhHy8sauboj1UQzvPx6pI2DtyvhPzYhs7rvDwfnz25eiDZAMiPB/jRd3cjFvVzzU3v86MLd+PLn5tCbX03Jx1TBcAf7/yQr33RqYNY/HorZ50+hbM+N4VZM+J85sTJXP2jPSgutHUovEhUvdeVJCKXb65dVX+6ne97Fk7NxZGq2u22Xeq+93+55wtwhioAfqKqx2Y/D/hvnPqNKlVNichB2c8byrx583TRokXbE74xxgxbKpWhpS3Bi4tbqJ4UYVJFmEcXNlBVkcfcPYud4Y5khhOOrKKsJERw0KyORCJDR2eSdMZZqCo/HqAvkSGRyLCqtoe33utg/r7FlJfkkVaIRfwgsL47TTTsIxTyDytuEVmsqvNG4u/ADI8nE4kdwZ2B8SvgMFVtzGrfHbgDpy5iMvAkMBMQnKLMI4Fa4GXgC6r6pojcjbNk950icj3whqpeu6Xvb4mEMcZsO0skcs9zxZYAIvIQm64b0Q4sAv6fqvYO423/F8gDHnfXp3hRVb/pJgZ3AW/hDHmc59ZpICLfAhbgTP+8WVXfdN/rYuBOEflP4FXgpmHEY4wxxox5nuyREJHfAuXAX9ymz+GscqlAgap+KVexDZf1SBhjzLazHonc82SPBHCwqu6fdf6QiLysqvuLyJtDvsoYY4wxI8qrszbiIjKl/8Q9jruntoKkMcYYM0q82iPxPeAfIvI+TtHjNOBcEYnhLABljDHGmFHgyURCVR8RkZnAbm7Tu1kFlr/JUVjGGGPMhOPJREJEPj2oabqItANLVHVdLmIyXdSpxwAAC09JREFUxhhjJiJPJhI4m2AdBDyFM7RxOM4um9NE5GeqensOYzPGGGMmDK8mEgFgtqo2AIhIJXAbcADwLGCJhDHGGDMKvDprY6f+JMK1zm1rAZJDvMYYY4wxI8yrPRJPi8jDwN3u+WfcthjQlruwjDHGmInFq4nEecCngUPd80VApaquB47IWVTGGGPMBOPJoQ111vX+AGfvi0/hJA9v5zQoY4wxZgLyVI+EiOwKfN79agL+irNfiPVCGGOMMTngqUQCeAd4DjhRVZcDiMh3cxuSMcYYM3F5bWjj00AdsFBE/iAiR+KsI2GMMcaYHPBUIqGq96vq6ThLYy8EvgNUiMh1InJMbqMzxhhjJh5PJRL9VHW9qt6hqicBNcCrwMU5DssYY4yZcDyZSGRT1VZVvUFVj8x1LMYYY8xE4/lEwhhjjDG5Y4mEMcYYY4bNEgljjDHGDJslEsYYY4wZNkskjDHGGDNslkgYY4wxZtgskRhERL4nIioiZe65iMjvRGS5iLwhInOznvtlEVnmfn05q30/EVnivuZ3ImKrbxpjjBmXLJHIIiI7AccAq7Kajwdmul/nANe5zy0BLgcOAOYDl4tIsfua64CvZ73uuNGI3xhjjBltlkhs7NfADwDNajsFuE0dLwJFIjIJOBZ4XFVbVLUVeBw4zn2sQFVfdLc7vw345OhehjHGGDM6LJFwicgpQK2qvj7ooWpgddb5GrdtS+1rNtO+ue95jogsEpFFjY2N23kFxhhjzOjz2jbi20VEngCqNvPQD4HLcIY1Ro2q3gDcADBv3jz9iKcbY4wxY86ESiRU9ajNtYvInsA04HW3LrIGeEVE5gO1wE5ZT69x22qBwwe1P+2212zm+cYYY8y4M6ESiaGo6hKgov9cRFYC81S1SUQeBL4lInfiFFa2q2qdiCwArsoqsDwGuFRVW0SkQ0QOBF4CzgSuGc3rMcaYsSbR3Eaqs2uT9kB+nFBpUQ4iMiPFEomP9ghwArAc6Aa+AuAmDFcAL7vP+5mqtrjH5wK3ABHg7+6XMcZMWKnOLhbO3LBJ8/4P3oA/GiZcXbVRgmGJhfdYIrEZqrpz1rEC5w3xvJuBmzfTvgjYY0fFZ4wxIyGXvQT+aJgXjzpzk/Yjlj1piYTHWCJhjDET1OBegn4j9WGenahoKr3d72fGJkskjDHGbJXsxMAXCpHu7nGOo2Ey3b2bHAM8PduZDHfgE7eNcrRmtFgiYYwxZkiDexWyE4P+oYktHZvxzxIJY4wxQ8oe/tiexCDd3Tvw+nD15pbzMV5liYQxxpgd7uWTzxk4PmLZkwTy4xyx7MlNnhfIj49mWGYEWCJhjDETVC4/zEOlRTY7Y5ywRMIYYyao7A/z7FqITF+C9cs/3O73HzycIQE/YL0O440lEsYYYzaphdhcwWR2YhCduTOHv/0Y4MzU2NwxPkF8zt6QttDU+GWJhDHGmCEN1avgz8sjMrkyl6GZMcISCWOMMUMaXCQZ3blmC882E5Ev1wEYY4wxxrsskTDGGGPMsNnQhjHGmI2mgvpCoSELJo0ZzBIJY4wxtq6DGTYb2jDGGGPMsFkiYYwxxphhs0TCGGOMMcNmiYQxxhhjhs0SCWOMMcYMm6hqrmMwgIg0AtuyS04Z0LSDwhnLJuJ1T8Rrhol53RPxmmH7rnuqqpaPZDBm21gi4VEiskhV5+U6jtE2Ea97Il4zTMzrnojXDBP3uscLG9owxhhjzLBZImGMMcaYYbNEwrtuyHUAOTIRr3siXjNMzOueiNcME/e6xwWrkTDGGGPMsFmPhDHGGGOGzRIJY4wxxgybJRIeJCLHici7IrJcRC7JdTw7gojsJCILReQtEXlTRL7ttpeIyOMissz9szjXsY40EfGLyKsi8rB7Pk1EXnLv919FJJTrGEeaiBSJyD0i8o6IvC0iB433ey0i33X/bS8Vkb+ISHg83msRuVlE1onI0qy2zd5bcfzOvf43RGRu7iI3W8sSCY8RET/we+B4YA7weRGZk9uodogU8D1VnQMcCJznXuclwJOqOhN40j0fb74NvJ11fjXwa1WdAbQCZ+ckqh3rt8CjqrobsDfO9Y/bey0i1cAFwDxV3QPwA6czPu/1LcBxg9qGurfHAzPdr3OA60YpRrMdLJHwnvnAclX9QFUTwJ3AKTmOacSpap2qvuIed+J8sFTjXOut7tNuBT6Zmwh3DBGpAT4B3OieC/Bx4B73KePxmguBjwE3AahqQlXbGOf3GggAEREJAFGgjnF4r1X1WaBlUPNQ9/YU4DZ1vAgUicik0YnUDJclEt5TDazOOl/jto1bIrIzsC/wElCpqnXuQ/VAZY7C2lF+A/wAyLjnpUCbqqbc8/F4v6cBjcAf3SGdG0Ukxji+16paC/wSWIWTQLQDixn/97rfUPd2wv18Gw8skTBjmojEgXuB76hqR/Zj6sxdHjfzl0XkRGCdqi7OdSyjLADMBa5T1X2B9QwaxhiH97oY57fvacBkIMam3f8Twni7txORJRLeUwvslHVe47aNOyISxEki/qyq97nNDf1dne6f63IV3w5wCHCyiKzEGbL6OE7tQJHb/Q3j836vAdao6kvu+T04icV4vtdHAStUtVFVk8B9OPd/vN/rfkPd2wnz8208sUTCe14GZrrV3SGcAq0HcxzTiHNrA24C3lbVX2U99CDwZff4y8ADox3bjqKql6pqjarujHNfn1LVM4CFwKnu08bVNQOoaj2wWkRmuU1HAm8xju81zpDGgSISdf+t91/zuL7XWYa6tw8CZ7qzNw4E2rOGQMwYZStbepCInIAzlu4HblbVK3Mc0ogTkUOB54AlbKgXuAynTuIuYArOtuunqergQi7PE5HDgYtU9UQR2QWnh6IEeBX4oqr25TK+kSYi++AUmIaAD4Cv4PyiM27vtYj8FPgczgylV4Gv4dQDjKt7LSJ/AQ7H2Sq8AbgcuJ/N3Fs3qfpfnGGebuArqrooF3GbrWeJhDHGGGOGzYY2jDHGGDNslkgYY4wxZtgskTDGGGPMsFkiYYwxxphhs0TCGGOMMcNmiYQx44i7i+a57vFkEbnno16zHd9rH3cqsjFmArNEwpjxpQg4F0BV16rqqR/x/O2xD2CJhDETnK0jYcw4IiL9u8G+CywDZqvqHiJyFs4OizGcLZp/ibP405eAPuAEd0Gg6Tjb1JfjLAj0dVV9R0Q+i7OQUBpng6mjgOVABGcJ4/8CHgauAfYAgsBPVPUB93t/CijEWXDpT6r60x38V2GMGSWBj36KMcZDLgH2UNV93F1TH856bA+cXVTDOEnAxaq6r4j8GjgTZ7XUG4BvquoyETkAuBZnz48fA8eqaq2IFKlqQkR+DMxT1W8BiMhVOMt6f1VEioB/icgT7vee737/buBlEfmbrVhozPhgiYQxE8dCVe0EOkWkHXjIbV8C7OXutHowcLezUjEAee6fzwO3iMhdOBtMbc4xOJuOXeSeh3GWQAZ4XFWbAUTkPuBQwBIJY8YBSySMmTiy92zIZJ1ncH4W+IA2Vd1n8AtV9ZtuD8UngMUist9m3l+Az6jquxs1Oq8bPIZqY6rGjBNWbGnM+NIJ5A/nharaAaxw6yFwd2Dc2z2erqovqeqPgUacrZ4Hf68FwPnuxkuIyL5Zjx0tIiUiEsGp1Xh+ODEaY8YeSySMGUfc4YPnRWQp8IthvMUZwNki8jrwJk7hJsAvRGSJ+77/BF7H2fJ6joi8JiKfA67AKbJ8Q0TedM/7/Qu4F3gDuNfqI4wZP2zWhjFmh3JnbQwUZRpjxhfrkTDGGGPMsFmPhDHGGGOGzXokjDHGGDNslkgYY4wxZtgskTDGGGPMsFkiYYwxxphhs0TCGGOMMcP2/wEVbjyNpaQRXAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCICHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAEWCAYAAACexWadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vbXu3N7YB0hQQUJoo2EEEjTEiNqyAvUTRxBhjNIkx+olGE4kSuwJqrDGxxCiKokZFBAQLqEvfXXaX7b3cMt8fc+71cNnG7sIFdn7Pc597zsycmffMmTPnPe+8M0eUUhgMBoPBYDDs6ziiLYDBYDAYDAZDd2CUGoPBYDAYDPsFRqkxGAwGg8GwX2CUGoPBYDAYDPsFRqkxGAwGg8GwX2CUGoPBYDAYDPsFXVZqROROESkVkSJrf7qI5IlIrYiM6bqInZZrj8khIgNERImIa3eWszcgIheIyOJoy2EwGPYvRGSBiNwZbTkMu4aILBWRy1qJ2+HZKCL/FZFZu1OedpUaEdksIg2WchD6PWTF9QNuBIYrpbKtQ+4DrlVKJSilvuysYFZFHNTZ49uTw8q/zjqfAhH5i4g4u1Bem4jI+SKywiqv0Lq4x+yu8jogzwIRaRaRGuv3jYjcLSLJbR2nlHpOKTW1k2XeLiK+iLb0686dwb6Nrf5rRaRcRN4VkYOjLVd7iMhsEflfN+fpEZH7RSTfqo/NIvJAd5axNyOajSKyNtqydIVu6LNbynOgiARF5OHuzLedMlts4yJyhIi8JSKV1j27XEQu3lNy7S5aum5WX/1sd5ellPqJUmphd+drp6OWmp9ZykHod60V3g8oU0ptt6XtD3zbrVJ2jo7IMUoplQAcD8wALtkdgojIL4EHgP8DstD19ndgWivp95TF516lVCKQAVwMTAA+EZH43SjXixFt6d4WyhER6QlDo/da7a8vsB1YsKsZ7GvWwVbkvQUYBxwBJAITgVV7UKxocxyQCQwSkcN3VyH7WluxmAlUADNEJCZaQojIkcD7wIfAQUA6cDXwk07mt9ML9O58qe5RKKXa/AGbgRNbCD8RaACCQC3wvPWvgDpgg5WuN/BPoATYBMyx5eEEfgtsAGqAlcABwEe2fGqBGS2U7wBuA7agHwiLgGQgpiU5WjheAQfZ9l8C5tv2k4EngUKgALgTcNrkvg8oBTYCP7fyc7VQTrIlz9lt1PHtwCvAs0A1cJl1Hg8A26zfA0CMlb4X8CZQCZQDHwMOK+5mS94a4HtgcitlLgDujAhLtM73Wmt/NvAJ8FegzKqD2cD/IupxjlUPpcCfQ7K0cp7PthK3FLjLKq8B3XF0+hoQ0W4jy0YrcJ9adbgGmBghy58sWWqAxUAvW/wxtmPzrDo5HCgOyWelOwNY05H6B34K1FrbRwCfWfkXAg8Bnog6/zmQC2yywuZZslSj76NjI879ZXT7qgG+BoaglYnt1nFT22v7wDCgEQig23SllT7GuhZbrTp4BIi14iYC+eh2WQQ800JdvAnc0Eo9XQy8YdvPBV627ecBo63tg4F30ffE98A5tnQdkfG36Pa0Gbigjfu1N/C6Vc564PKIun4J3R/VoF+sxrXTxz4FPAe8CjwUETcQ3R/WAO8B89mxHc9E94FlwO+wtXta7lccwG/QfW6ZJWtaB/NrtV3SSp8NnAqsto75FBhpK2sMWnmtAV4EXmDHe0IsOa+2rtlZEXUz1brOVeiXxA+By2zxlwDr0ErRO0D/iHvoKnR7qrTqVWi9jf8P2/OhhWs4G1u/aCvjINv9/jDwllVHJ7YS1pF2eiP6vi0ELraVFwvcb12/KkvmWOA/wHURsn0FTI+Us43+8ijgCyvfL4CjIvrLyzrYL9vTzrZkvM+6RpuAn3S07bd6LdpN0IpSY6/kNi6kA93B/h7wAIOsEz3Jir8J3cEOtRrUKCC9tYqOKOcSdIcyCEhAdwjPtCRHK8fb5TzYaiC/sMX/C3gUiEe/RS0HrrTirgK+QytgacAHtK7UnAz4W4qLaEA+4HSrzmKBO4BlVtkZ6A7hT1b6u9GN3W39jrXqbyi6k+9tpRsAHNhKmQuIUGqs8EVoa0qo0fmB6wCXJddsdlZqPrDqoR/wA7aOpa0bJSJuKfpGHmGV5e7KNaANpQbog+60T7Hqe4q1n2GTZQP6wR9r7c+14vqjb7LzLBnT+fGhupYdb8p/ATe2V//o9vsP4GNr/zC00uWyruE6bA996zzftc471OFdaMniQnd6RYDXdu6NwElW/CJ0B3KrdQ6XYylHHWj7O1x/K+yv6Id8GloxfgO429ZH+IF70B12bAt1cZt17a8BDgXEFjcI/dBxoJWJLVh9jhVXYcXFo9v+xdY5jkF3rMN3Qca/WDIej37IDG3l2n2Efoh6gdHoF7YTIur6FHQHfzewrI17Pw6tcJwCnGnJbFdgP0N3+h60Ml3Nj+14OPrBe4wVfx+6H7ErNZH9yvXofqWvda6PAs93ML+OtEv7i+IY9MN3vFUXs9D3ZYyV/xbgF+g2eJZVll2pORZoAlKBB9lRue1l1cUZljzXW8eHHpjT0M+HYVb8bcCnEbK+CaSg+60S4OSW2rh1jQLApDau4w7HtPCMWYBWCI62roW3lbCOtNM7rDo7BagHUq34+ei+qo9V30dZdX0O8LlNrlHo/s7T0nVrob9MQ99nF1l1eZ61H3pWL7XVe3v9sj3tbOuaXW7JezX6BV7aa/tt/Tqq1NSiO5bQ73JbJbel1IwHtkbE3wI8bW1/D0xrpdz2lJIlwDW2/aFWBbk6eLyyKqnO2n6eHy0hWeibKdaW/jzgA2v7feAqW9xUWldqLgCK2qnj24GPIsI2AKfY9k8CNlvbdwCvtdAQD0J3IicC7nbKXEDLSs1c4F1bo4u8frPZWak52bZ/DbCkjfNsjmhLIQVsKXCHLW2XrgFtKzU3E2ExQL/JzbLJclvEOb1ta7//auX8bgaeUz92BPVAThv132jVQRG6I2tNAb3BXqZ1nie0c30r0MOroXN/1xb3M/Q9HbJ6JVp5pnSg3iOvv6DvoQNtYUfyowVponXNvW3I6kS/0X1ilb0tdC2s+DxgLHAu8BhayToYrcC8bqWZgaUU2o57FPhDB2X0A/G2+JeA37Ug6wHoB1yiLexuYIGtrt+zxQ0HGto49wvRD1QX+qFWxY9v0P0sueJs6Z/lx3b8eyyFxNqPs+rartRE9ivrsFlvgRysfrO9/DrYLu1KzcNYL2K2sO/RSuNx2B5gVtyn7KjUPAH823a9fECmtT8T+CyiHebx4wPzv8CltngH+n7sb5P1mIjr/ZtW2ngfK/3BbVzHHY6JrA/0/b6ohT5gUcQ5tNdOG7A9Z9D9/QTr/Bqw7vmIcrzo/mCwtX8f8PcIOavZsV9utLWzi4DlEXl+Bsy2tpfa6r29ftmedjawPqK9KSCbdtp+W7+OjrGerpR6r4Np7fQHeotIpS3MiR4uAd1BbOhEvvDjW1uILegbMwttMu8IY63yz0Y/zOPRnWp/tCZcKCKhtA70TRMqO8+Wj12OSMqAXiLiUkr520iXF7Hf0vn1trb/jO6wFlvyPaaUmquUWi8iN1hxI0TkHeCXSqltbZQbSR+0Wb01udqT3S5nS7yklLqwA/l05zWIpD9wtoj8zBbmRr9VhCiybdejrSnQdpt9Flhn+SSdg37IFrYhx31KqdsiA0VkCNpqMA59o7vQFk87eRHH/Aq4FF0vCkhCv82GKLZtNwClSqmAbR/0Ofam7XqPJMOScaUtvaDv8xAlSqnGVo7HkmM+MF9EYtFW2KdEZLlSah16WGEiWmn/EN3pHo/u8D+0sukPjI/oa1zAMx2UsUIpVWfbb60d9wbKlVI1EWnH2fYj2463jft/Fvqe8AN+EfmnFfYvW1n1tvR56DYYkiV8XZRS9SJSFpF/5HXrD/xLRIK2sAC632wzvw62y8iyZonIdbYwDz+20QJlPa0swvew1Q7ORg+ZoZT6TES2Auejh+IjZVUikh9R9jwRud8WJuj+LVROa/d4JBVoN4sctBWis7R0D9nDOtJOyyLaUUjuXmjlZae+SSnVKCIvAheKyB/RLylnRSQbq5RaHy5U5Hb0/QY7P4uw9vu0cD672i+Hr4HV3rCdT1ttv1V2tzNmHlrLTLH9EpVSp9jiD+xk3tvQDTdESLMrbjl5yyjNS2jN8/c2uZrQfhQhuZOUUiOs+EJ2rNx+bRTxmZXX6e2JErHf0vlts2SuUUrdqJQaBJwG/FJEJltx/1BKHWMdq9Bm/w4hIgloK8/HtuBIuVoisi52RYmyYy+rq9egDt1BhMi2beehLTX2dhmvlJrbARlbbbNKqQL09T4D/XbzTAfya4mH0Z3nYKVUEtrXQyLShOtKRI4Ffo1WpFKVUinoN/7IYzpCe/Ue2R5K0UrRCFv6ZKUdoHeStT2UUg1KqfnoB8lwKzik1BxrbX+IVmqO50elJg/4MOKaJiilru6gjKkRDvKtteNtQJqIJEak7eiLVBgR6QucgH7YFIleFuMs4BQR6YVu42kiYm/H9jZfiB5GCuUXix6CtBNZ93noIVJ7PXmttttefh1pl5Fl3RVRVpxS6nmrrD5ie3qz4z08Ha2Y/91WN33QCl9L5y72favsKyPKjlVKfdqGvCF2qDPrwfoZeniwNXbob0Qku4U0Ld0H9rCOtNPWKEVbV1p7ni5EjxpMBuqVUp91IM8Qkc8iaL3N78qzsS3aa/utsruVmuVAjYjcLCKxIuIUkUNsHv5PAH8SkcHWjJeRIhK6iYrRY+at8TzwC2vKXwJ6ZtGL7VhD2mIucLmIZFtv14uB+0UkSUQcInKgiBxvpX0JmCMifUUkFe141yJKqSq0sjRfRE4XkTgRcYvIT0Rkp5k/Eed3m4hkWB3c79GWAETkVBE5yLqRq9BvWkERGSoiJ1izBBr50ZG7TUQkRkQOA/6Nfpg83d4xEdwkIqkicgB6bPvFXTx+J7rhGqwGzrXqehw7vpk8C/xMRE6y2qRXRCZaD5n2eA44UUTOERGXiKSLyGhb/CK0gnEo2s+rMySizcG1oqd5X92B9H6sYQwR+T36gbDLdKDei4G+IuKx0geBx4G/ikgmgIj0EZGTOlqmiNxg1X+sVaezrHMKLcXwITAJPSSWj1a6T0Y/cENp3gSGiMhF1jV3i8jhIjJsF2T8o+jp5ceiHVxfbqF+8tDDJHdb7WYk2kLWmemvF6F90IaifXNGo/248oHzlFJbgBXA7ZZcR6KHDkO8gm7HR1nX43baV2QfAe4Skf4AVv8SmoXZXn7ttcvIPvtx4CoRGW/17/Ei8lNLIfwM3WbnWNfqDLQjcohZaAfqQ211czQwSkQORTu/Hmr1qS708KVdkXgEuEVERljnmSwiZ7dTN/bzCLdxi18Ds0XkptAzSkRGicgLVvwatHV8tIh40XW3S3TlXrKOfQr4i4j0tvq1I61nAZYSE0Q7Eu/qy9Zb6HvrfOv+nIF+4XizhbQdfja2cz7ttf1W6ahS84bsuLbIvzooWADdOYxGOyaWohWZ0Foof0FXwmL0zfIk2pkNdKNYKHpNgHNayP4p9MX5yMq7Ee3Q2imUUl9bed1kBc1Em0rXoh/0r6DNj6Ab3jvohryKdh5eSqn7gV+indVK0G8R16KViNa4E31Rv0I7U6+ywgAGo73Ba9Gdw9+VUh+gncLmouu5CO3keUsbZfxaRGrQQ2SL0KbkoyLM8B3hNevY1ejO5sldPL41unINfod+a6kA/oh2xAXCD6Zp6DfN0PW4iQ7cD0qprWgHvRvRw3Sr0Y53If6FZeKPMJ3uCr9Cm9lr0OfZnpL4DvA2+gG5BX0vdGTYsDXaqvf30TN6ikSk1Aq7Ge2UuUxEqtFtc+gulFeP7myL0G3358CZSqmNAEqpH9Bt/WNrvxo94eCT0BCaNRw0Fe13s83KK+Sc3BEZi6xz3YZWXK9SSrU21HAe2lF2G/p6/0F1bnh+FvreLbL/0A/kkEXiAvQwW2j24YtoSxpKqW/Rfd4L6DfbWrSPRVMbZc5D+28ttu79ZWjfx47k1167vB1bn62UWoF2An0IXbfr0X4UKKWa0RbN2ej7aAbWPSwifdAWhQci6mYlup3PUkqVooen7rXqZji6vwzVzb/Q1/8F63p/Q8enX+/Uxi0LzwnWb6OIlKP9u96y4n9A+zq+h55R1dm1nLpyL/0K/az4Al2n97Bjn7YIrSTukgKulCpDP8dvRNf1r4FTrWsQyS49G9uh1bbfFiEvY4OhU4iIQpuj17ebePfKMQCt3Lq7YK3rLlk2oE3fnXnQGfYwIjIR7YDYEUtdVBHtG/GdUuoPLcQloP2NBiulNnVDWd2a3+5E9LpW+eip+B+0l74nIiIzgSss94R9jrbavp2esMCZwbDHEJEz0ePk70dbFsO+jzWEdqA1DHgy2sL4b1v8z0QPacejZ7V8jZ7519nyujW/3Yk1fJxiDbGE/HuWRVmsvRLRvinXoK1L+wTttf3WMEqNwdBNiMhStDPlz60xboOhq2Sjp8HWAn8DrlY7fvZlGj8u0DkYOFd1zfze3fntTo5Ez/YpRftbnK6Uamj7kJ6H5ZNTgvYV+kc7yfcm2mv7LWKGnwwGg8FgMOwXGEuNwWAwGAyG/YJ98QNnhlbo1auXGjBgQLTFMBgMhn2KlStXliqlMqIth6HrGKVmP2LAgAGsWLEi2mIYDAbDPoWI7MqK5Ia9GDP8ZDAYDAaDYb/AKDUGg8FgMBj2C4xSYzAYDAaDYb/A+NTs5/h8PvLz82lsbPUjyQbDHsXr9dK3b1/cbne0RTEYDPsZRqnZz8nPzycxMZEBAwYg0pmPNhsM3YdSirKyMvLz8xk4cGC0xTEYDPsZRqnZz2lsbDQKjWGvQURIT0+npKQk2qIYuonmskr8NbU7hbsSE/Ckp0RBIkNPxig1PQCj0Bj2Jkx73L/w19TyweDJO4VPyl1ilBrDHscoNQaDwWCIOpEWH4fHQ6C+ARyC0+vV24Ajzkuw3vIRdAji0PNdjGXIAEapMewBnE4nhx56KH6/n4EDB/LMM8+QktLxzuf2228nISGBX/3qVzvFLVq0iHvvvRcRweVyccEFF7SYrrsZMGAAiYmJAAQCAc444wxuu+02vF5vi+mPOuooPv300w7nP3HiRAoLC4mNjQXgtttu46yzzuq64AbDXoRdkVH+AEuHTQ3HTXhvEctOnNnmth1jGTKAmdJt2APExsayevVqvvnmG9LS0pg/f3635Pvf//6XBx54gMWLF/P111+zbNkykpOTd0rn9/u7pbxIPvjgA77++muWL1/Oxo0bufLKK1ste1cUmhDPPfccq1evZvXq1TspNEopgkHzIXDDvk1o6OqDwZNpLCiKtjiG/QCj1Bj2KEceeSQFBQXh/T//+c8cfvjhjBw5kj/84Q/h8LvuuoshQ4ZwzDHH8P3337eY19133819991H7969AYiJieHyyy8HtKXjhhtuYNy4ccybN4/NmzdzwgknMHLkSCZPnszWrVsBePnllznkkEMYNWoUxx13HADffvstRxxxBKNHj2bkyJHk5ua2eU4JCQk88sgj/Pvf/6a8vJylS5dy7LHHctpppzF8+PBwGoClS5dy3HHH8dOf/pShQ4dy1VVXdVg52bx5M0OHDmXmzJkccsgh5OXlsXjxYo488kjGjh3L2WefTW2tfut9++23Ofjggxk7dixz5szh1FNPBbTV67777gvnecghh7B582YAnn322fB5X3nllQQCgbDst956K6NGjWLChAkUFxcDUFxczPTp0xk1ahSjRo3i008/5fe//z0PPPBAOP9bb72VefPmdej8DPs+h7/+GBPeW8SE9xYhHjd167dQt34LDduKW9xW/kC3laf8Aeo351O/OZ/msspuOiPDvoZRagx7jEAgwJIlSzjttNMAWLx4Mbm5uSxfvpzVq1ezcuVKPvroI1auXMkLL7zA6tWreeutt/jiiy9azO+bb77hsMMOa7W85uZmVqxYwY033sh1113HrFmz+Oqrr7jggguYM2cOAHfccQfvvPMOa9as4fXXXwfgkUce4frrr2f16tWsWLGCvn37tntuSUlJDBw4MKwArVq1innz5vHDDz/slHb58uU8+OCDrF27lg0bNvDqq6+2mOcFF1zA6NGjGT16NGVlZQDk5uZyzTXX8O233xIfH8+dd97Je++9x6pVqxg3bhx/+ctfaGxs5PLLL+eNN95g5cqVFBW1/wa8bt06XnzxRT755BNWr16N0+nkueeeA6Curo4JEyawZs0ajjvuOB5//HEA5syZw/HHH8+aNWtYtWoVI0aM4JJLLmHRokUABINBXnjhBS688MJ2yzfsu7gSE5iUu4RJuUuIHzyAZSfOZNmJM6nP3czSYVNZOmxqq9tdtc4447zh8pYOmxq2+rQ0G8vQMzA+NYbdTkNDA6NHj6agoIBhw4YxZcoUQCs1ixcvZsyYMQDU1taSm5tLTU0N06dPJy4uDiCsBO0qM2bMCG9/9tlnYeXhoosu4te//jUARx99NLNnz+acc87hjDPOALQ16a677iI/P58zzjiDwYMHd6g8pVR4+4gjjmh1HZYjjjiCQYMGAXDeeefxv//9r0V/meeee45x48aF92tqaujfvz8TJkwAYNmyZaxdu5ajjz4a0ErckUceyXfffcfAgQPDcl944YU89thjbcq+ZMkSVq5cyeGHHw7oa5aZmQmAx+MJW3oOO+ww3n33XQDef//9sALjdDpJTk4mOTmZ9PR0vvzyS4qLixkzZgzp6eltlm3Yt/Gkp4R9Weo350dZGkNPxyg1ht1OyKemvr6ek046ifnz5zNnzhyUUtxyyy07+aLYhy/aYsSIEaxcuZITTjihxfj4+Ph283jkkUf4/PPP+c9//sNhhx3GypUrOf/88xk/fjz/+c9/OOWUU3j00UdbLSNETU0NmzdvZsiQIaxZs6bNsiOnNO/KFGd7vkoppkyZwvPPP79DmtWrV7d6vMvl2mG4K7TStFKKWbNmcffdd+90jNvtDsvodDrb9VG67LLLWLBgAUVFRVxyySXtn5TBAATqG5nwnlaSvX2yccbFMnHd4vDsp4nrFgN69lNo22CIxAw/GfYYcXFx/O1vf+P+++/H7/dz0kkn8dRTT4X9QAoKCti+fTvHHXcc//73v2loaKCmpoY33nijxfxuueUWbrrppvDwSnNzM0888USLaY866iheeOEFQFtAjj32WAA2bNjA+PHjueOOO8jIyCAvL4+NGzcyaNAg5syZw7Rp0/jqq6/aPK/a2lquueYaTj/9dFJTU9uth+XLl7Np0yaCwSAvvvgixxxzTLvHtMSECRP45JNPWL9+PaCHiX744QcOPvhgNm/ezIYNGwB2UHoGDBjAqlWrAD1EtmnTJgAmT57MK6+8wvbt2wEoLy9ny5YtbZY/efJkHn74YUAPLVZVVQEwffp03n77bb744gtOOumkTp2boWcQUmQmvLeI+MEDiO3fh9j+fXCnJuPtnUn8Qf2JH9Tvx+2D+hPbOyu8LS5ntE/BsJdhLDWGPcqYMWMYOXIkzz//PBdddBHr1q3jyCOPBLRD6rPPPsvYsWOZMWMGo0aNIjMzMzwkEskpp5xCcXExJ554IkopRKRVy8CDDz7IxRdfzJ///GcyMjJ4+umnAbjpppvIzc1FKcXkyZMZNWoU99xzD8888wxut5vs7Gx++9vftpjnpEmTwrOQpk+fzu9+97sO1cHhhx/Otddey/r165k0aRLTp0/v0HGRZGRksGDBAs477zyampoAuPPOOxkyZAiPPfYYP/3pT4mLi+PYY4+lpqYGgDPPPJNFixYxYsQIxo8fz5AhQwAYPnw4d955J1OnTiUYDOJ2u5k/fz79+/dvtfx58+ZxxRVX8OSTT+J0Onn44Yc58sgj8Xg8TJo0iZSUFJxO89AxtM4Xp10R3p6Uu4S4Ae37rxkMbSF2PwDDvs24cePUihUrdghbt24dw4YNi5JEhkiWLl3Kfffdx5tvvrnflhkMBhk7diwvv/xyq/5Ipl3un9jXnQkvnseOC+Z15+J53fWJBhFZqZQa135Kw96OsdR0EhE5AFgEZAEKeEwpNU9E0oAXgQHAZuAcpVSFaKeEecApQD0wWym1ysprFnCblfWdSqmFVvhhwAIgFngLuF4ZLdSwF7N27VpOPfVUpk+f3mEHa8P+g91peH8sz7D3Yyw1nUREcoAcpdQqEUkEVgKnA7OBcqXUXBH5DZCqlLpZRE4BrkMrNeOBeUqp8ZYStAIYh1aOVgKHWYrQcmAO8DlaqfmbUuq/rclkLDWGfQXTLg17E8ZSs/9gHIU7iVKqMGRpUUrVAOuAPsA0YKGVbCFa0cEKX6Q0y4AUSzE6CXhXKVWulKoA3gVOtuKSlFLLLOvMIlteBoPBYDAYIjBKTTcgIgOAMWiLSpZSqtCKKkIPT4FWePJsh+VbYW2F57cQHln2FSKyQkRWlJSUdPlcDAaDwWDYVzFKTRcRkQTgn8ANSqlqe5xlYdmt43tKqceUUuOUUuMyMjJ2Z1EGg8FgMOzVGKWmC4iIG63QPKeUCq11X2wNHYX8brZb4QXAAbbD+1phbYX3bSHcYDAYDAZDCxilppNYs5meBNYppf5ii3odmGVtzwJes4XPFM0EoMoapnoHmCoiqSKSCkwF3rHiqkVkglXWTFte+xSNjY0cccQRjBo1ihEjRoQ/XLlp0ybGjx/PQQcdxIwZM2hubo6ypAaDwWDYl+nxSo2IjG3hd6CItDfd/WjgIuAEEVlt/U4B5gJTRCQXONHaBz17aSOwHngcuAZAKVUO/An4wvrdYYVhpXnCOmYD0OrMp72ZmJgY3n//fdasWcPq1at5++23WbZsGTfffDO/+MUvWL9+PampqTz55JPRFtVgMBgM+zBmnRr4OzAW+AoQ4BDgWyBZRK5WSrX4kRGl1P+s9C0xuYX0Cvh5K3k9BTzVQvgKS549xuKlxTy6aBPbS5vI7BXDlTMHMnViVvsHtoGIkJCQAIDP58Pn8yEivP/++/zjH/8AYNasWdx+++1cffXVXT4Hg8FgMPRMerylBtgGjLGcbQ9Dz2LaCEwkaVkFAAAgAElEQVQB7o2qZHuYxUuLueehHyguaUIpKC5p4p6HfmDx0uIu5x0IBBg9ejSZmZlMmTKFAw88kJSUFFwurVf37duXggLjMmQwGAyGzmOUGhiilPo2tKOUWgscrJTaGEWZosKjizbR1BTcIaypKcijizZ1OW+n08nq1avJz89n+fLlfPfdd13O02AwGAwGO2b4Cb4VkYeBF6z9GcBaEYkBfNETa8+zvbRpl8I7Q0pKCpMmTeKzzz6jsrISv9+Py+UiPz+fPn12WobHYDAYDIYOYyw1+rMG64EbrN9GK8wHTIqaVFEgs1fMLoV3lJKSEiorKwFoaGjg3XffZdiwYUyaNIlXXnkFgIULFzJt2rQulWMwGAyGnk2Pt9QopRqA+61fJDt//nU/5sqZA7nnoR92GIKKiXFw5cyBXcq3sLCQWbNmEQgECAaDnHPOOZx66qkMHz6cc889l9tuu40xY8Zw6aWXdvUUDAaDwdCD6fFKjYgcDdwO9MdWH0qpQdGSKVqEZjl19+ynkSNH8uWXX+4UPmjQIJYvX96lvA0Gg8FgCNHjlRr0Anq/QH8dOxBlWaLO1IlZXVZiDAaDwWCIBkap0Sv77pOL2hkMBoPBYPgRo9TAByLyZ+BVIDzNRym1KnoiGQwGg8Fg2FWMUgPjrf9xtjAFnBAFWQwGg8FgMHSSHq/UKKV61LRtg8FgMBj2V3qsUiMiFyqlnhWRX7YUH/HlbYPBYDAYDHs5PXnxvXjrP7GVn6Ebqays5KyzzuLggw9m2LBhfPbZZ5SXlzNlyhQGDx7MlClTqKioiLaYBoPBYNiH6bFKjVLqUev/jy39oi3f/sb111/PySefzHfffceaNWsYNmwYc+fOZfLkyeTm5jJ58mTmzp0bbTENBoPBsA/Tk4ef/tZWvFJqzp6SZW9BKUVRYSEAWdnZFBcVAZCdk4OIdDrfqqoqPvroIxYsWACAx+PB4/Hw2muvsXTpUgBmzZrFxIkTueeee7p0DgaDYf9DKYVSCofDscO2wRBJT24VK62fFxgL5Fq/0YAninJFjaLCQhobG2lsbGTrli3h7ZCi01k2bdpERkYGF198MWPGjOGyyy6jrq6O4uJicnJyAMjOzqa4uLg7TsNgMOzlBAIBlFIA+P1+AoFAODwY2HENVKUUPp+PhoYGgsEgfr+foPXJlUAgED7WYIAerNQopRYqpRYCI4GJSqkHlVIPApPRik2PRSlFMBgMdzpdxe/3s2rVKq6++mq+/PJL4uPjdxpqEpEuWYMMBsPehVIqrLCElJHQfl1dHT6fD7/fT0VFBQ319eHwxqYmgpay4vf7CQaD1NXWUlxURENDA3W1tRQVFaGUorq6msJt24xiYwjTY5UaG6lAkm0/wQrrcWRlZ++kWIgIWdnZXcq3b9++9O3bl/Hj9ZJAZ511FqtWrSIrK4tCywpUWFhIZmZml8oxGAx7D8FgkLytW6mpqUEpRUF+PlWVlSilqKmuZtu2bTQ3N+NwONi+fTvVVVWEep+gUjQ1NdHU2AhAQmIicXFxVJSX442NJRAIsHXLFqoqK0lPTw+X2V0vYoZ9F6PUwFzgSxFZICILgVXA/7V3kIg8JSLbReQbW9iLIrLa+m0WkdVW+AARabDFPWI75jAR+VpE1ovI38TSKkQkTUTeFZFc63+3K1rF1tuPHaVU2Lems2RnZ3PAAQfw/fffA7BkyRKGDx/OaaedxsKFCwFYuHAh06ZN61I5BoMhOoQsJcFgkMbGxvB+eno65WVlVFRUkJaeTlVVFfn5+WRmZYHlw5ecnIzL5cLt8dDQ0EBRYSHNTU001NdTXFxMdVUVfr+fxsZGbe3x+YiNjUVEyM7JAcvKG0oTDAajWRWGKNNjHYVDKKWeFpH/8uPKwjcrpTryFF8APAQssuU1I7QtIvcDVbb0G5RSLQ1rPQxcDnwOvAWcDPwX+A2wRCk1V0R+Y+3f3NHz6gqhoaDufOt58MEHueCCC2hubmbQoEE8/fTTBINBzjnnHJ588kn69+/PSy+91G3lGQyGPYPf76eivJy4hBQ8bgfbCgpITEoiNjYWt0e7JzY1NpKYqFfKSElOpq62lmAwSGZWFhXl5fj9fmqqq0lLT6e5uZmioiL69OlDU1MT4nDQUF+PJyaGzMxMamtrqa2tJSs7m8bGRsrLyuiVkUFNdTV+v58D+vWLZnUYokyPVWpEZGxEUJ7131tEerf37Sel1EciMqCVvAU4h3Y+tSAiOUCSUmqZtb8IOB2t1EwDJlpJFwJL2c1KTXZOTquzn7rK6NGjWbFixU7hS5Ys6XLeBoMhegQCQerr62loaCQ+Pp6MzEzKy8pISUkhPy+PuLg4MjIzyc/LIyYmhviEBLYXF5Oeno7X66WpqYms7GxiYmJobGykubmZxKSksOXF5/ORlpZGYlISDoeD+Ph4XC4XsbGxxMTE4GtuprSkBBGhb9++xjevh9NjlRrg/jbiuvrtp2OBYqVUri1soIh8CVQDtymlPgb6APm2NPlWGECWUio07agIyGqpIBG5ArgCoF8X31BEhJzevcP79m2DwWBoic9XVTF8SC+qK4txOCQ8K6m2pobMrCzE4aZoewMZmZk4nW6+WlfNqOHZNDcHmP/0Zq6ePYDKqmZKyhqI9zaQlJRMUnIyNdXVJCQkkJLWi8qKchoaG0lPT8ftduN0OnE4HASDQZqbmwE9VN7s8+F0uYxi04PpsT41SqlJbfy6+jHL84DnbfuFQD+l1Bjgl8A/RCSpxSNbllWhFa2W4h5TSo1TSo3LyMjoiswGg8Gwy4wYmkBDXUXYClNWWkpqWhout4fa2loaG5pp9sF7H1dy4TUraW6GB5/cyDmXr2Rgv3h+c+dazrj4Cz5dUUFNvZdvfgjw7D8L8HgTcLqTOOX8T/lug6K6zkt9g/aXCSk0oVlUB/TrR3JyMqUlJVGuDUO06cmWGgBExA1cDRxnBS0FHlVK+TqZnws4AzgsFKaUagKarO2VIrIBGAIUAH1th/e1wgCKRSRHKVVoDVNt74w8BoPBsDuJj3PSUAcuTypKQd8DDsDvV2wtaCInM5nlqytxOh3c+1AuMTEO3C4H/3xTG6EH9Y/n3od+AODQYcnMmvMlSsFDd4/i1As/JxDQ73K//b91iMA/nxpPYoIbgEAAEhISiI+Px+l0kpKaSnJKirHS9HB6rKXGxsNoBeTv1u8wK6yznAh8p5QKDyuJSIaIOK3tQcBgYKM1vFQtIhMsP5yZwGvWYa8Ds6ztWbZwg8Fg2GtQOMjIyuHjzyv48NMyamqD3PXAerbkN3D9777hgcc24I1xAhAMKNzu9h87SoHTuaNyEuMWnA4H1TU+lq8q564HvuOl17ZRUxtERHA6nbjM0FOPxyg1cLhSapZS6n3rdzFweHsHicjzwGfAUBHJF5FLrahz2XHoCbQV6CtrivcrwFVKqXIr7hrgCWA9sAHtJAx6qvkUEclFK0rmw0gGg2GvI9brIsbj4qdTsmlsVkyb9TkfflZKeqqHQEBRVe3HH1CMGJqIz68oKGpg/Fi9QsWmrXWMG623v/q2ihOO0UPoHy0r5YxTfvTpm3ZyDo/eP5bikkYWf1jML//wNe99VMJzr+bxyRdlFJc0UlbehN9vpnP3dKSnL1YkIquAs5VSG6z9QcArSqnI2VF7PePGjVORM4zWrVvHsGHDoiSRwdAypl3un5SWNTF7zkoqq31kZcRw2y8OpqrGR2NjgLEjU9iwuY7S8iaOGJNG3rYGthU3MGFsGl9+Xcl3uTWc9bO+/LChlpVfVXDWqX0or/SxraielGQPv/2/b/n9jcN4eMFGikuaiIt1cv8fD2Xhi1tZtrKclCQ3v752MONGpxEX69wluUVkpVJq3G6qFsMepMf71AA3AR+IyEZAgP7AxdEVaf9j3rx5PP744yiluPzyy7nhhhsoLy9nxowZbN68mQEDBvDSSy+RmtojF3M2GPYL0lI9PP23w3jng2Lq6vxk9ophxMFJeKwhp8xe3nDarAwvocXbT5qUzUmT9MrlfXJimWRZbAb0gwEHxHH5jasIBsEfULhdOq+fTM7izXeLWLZSG70rq33cNnctLz8xfpeVGsP+Q48fflJKLUH7uMwBrgOGKqU+iK5U+xfffPMNjz/+OMuXL2fNmjW8+eabrF+/nrlz5zJ58mRyc3OZPHnyTt+DMhgM+xYOh5CRHsOFZ/XjylmD6JMTG1ZoOosCyir0tO13lxZz/pkHAHDQwAS++rZqh7TBIOQVNHSpPMO+TY+11IjIGa1EHWStpvvqHhVoL+DttLEEaup2CncmxnNyeZtrEbbJunXrGD9+PHFxcQAcf/zxvPrqq7z22mssXboUgFmzZjFx4kTuueeeTpdjMBj2P2K9DqYcn8l/lxTz+aoKhg1J4m93jaShMciwIYnkbdtRiemT420lJ0NPoMcqNcDPIrbfsO0roMcpNS0pNG2Fd5RDDjmEW2+9lbKyMmJjY3nrrbcYN24cxcXF5FirFWdnZ1NcXNylcgwGw/5HXKyLa2YPIisjhv8tK6OktJF+fXLolR7DkAMT2JxXzw8baomJcXDtJQeSlOiOtsiGKNJjlRprlhMAIvKlfd/QvQwbNoybb76ZqVOnEh8fz+jRo3E6dxzzDn1vymAwGCJJTfEwa0Z/zvxpH2K9Trxe3X9kpMdw/+2H0tgUxOUSEuNd4ThDz6TH+9RY9OwpYHuASy+9lJUrV/LRRx+RmprKkCFDyMrKotD61lRhYSGZmZlRltJgMOytuF0OUlM8OyktqSkecrK8ZKTHGIXGYJQaw55h+3a9IPLWrVt59dVXOf/88znttNNYuHAhAAsXLmTatGnRFNFgMBgM+zg9dvhJRN5AW2gEGCQir9vjlVKnRUWw/ZQzzzyTsrIy3G438+fPJyUlhd/85jecc845PPnkk/Tv35+XXnop2mIaDAaDYR+mxyo1wH2tbPdYnInxrc5+6ioff/zxTmHp6eksWbKky3kbDAaDwQA9WKlRSn0IICI/A/6jlOrx62t3Zdq2wWAwGAzRxvjUwAwgV0TuFZGDoy2MwWAwGAyGztFjLTUhlFIXikgScB6wQEQU8DTwvFKqJrrSdQ9KKTNd2rDX0NO/N7e301xWib+mdqdwV2ICnvSUKEhkMHQcY6kBlFLV6K9nvwDkANOBVSJyXVQF6wa8Xi9lZWXmQWLYK1BKUVZWhtdrVn3dW/HX1PLB4Ml8MHgytes20LClgIYtBfgqqqjfnE/95nyayyqjLabB0CI93lIjIqehP2B5ELAIOEIptV1E4oC1wIPRlK+r9O3bl/z8fEpKSqItisEAaEW7b9++0Rajx2O3yDg8HgL1O38zyRnnZdmJM3cKn5S7xFhtDHslPV6pAc4E/qqU+sgeqJSqF5FLoyRTt+F2uxk4cGC0xTAYDHsZIYsMwIT3FoWVlwnvLYqmWAZDlzBKDdwOFIZ2RCQWyFJKbba+4G0wGAwGg2EfwCg18DJwlG0/YIUdHh1xDAaDoXtodYjJIRDcNT+7w19/DGec9oUSj5u69VvCeYlDu2caZ2JDtDFKDbiUUs2hHaVUs4h4oimQwWAwdAetDTGF9lsiUN8YjvP2yQqH2/1rIvMKYXxtDNHGKDVQIiKnKaVeBxCRaUBpeweJyFPAqcB2pdQhVtjtwOVAyCv3t0qpt6y4W4BL0ZagOUqpd6zwk4F5gBN4Qik11wofiJ6NlQ6sBC6yK18Gg2H/pS0Ly+62inxx2hXh7clbPmZSrh6FV/5At5dlMHQ3RqmBq4DnROQh9Heg8oCdX0F2ZgHwEHrGlJ2/KqV2+OyCiAwHzgVGAL2B90RkiBU9H5gC5ANfiMjrSqm1wD1WXi+IyCNohejhTpyfwWDYx2jNwmIfAoobPCA8BOSI8xKsb9xpuy1CFhlvn2yccbFMXLdYR9gUJ0eMB2/vTADqN+d33wkaDLuJHq/UKKU2ABNEJMHa33nVqZaP+0hEBnSwmGnAC0qpJmCTiKwHjrDi1iulNgKIyAvANBFZB5wAnG+lWYh2aDZKjcHQg2ltCKit7dYIWWQm5S4JKy4Gw75Oj1dqRCQGPa17AOAKrbyrlLqjk1leKyIzgRXAjUqpCqAPsMyWJt8KA20ZsoePRw85VSql/C2kj5T/CuAKgH79+nVSZIPBEG3sQ05mqMdg6Bw9XqkBXgOq0H4rTV3M62HgT4Cy/u8HLulinm2ilHoMeAxg3LhxZtlgg2EfJXLIqTuwO/3GDR7Q4hCTKzGhQ3m5EhPC/jUOj6dLeRkMuwuj1EBfpdTJ3ZGRUqo4tC0ijwNvWrsFwAH2Mq0wWgkvA1JExGVZa+zpDQaDoUPYnX4n5S4h/qD+nc7Lk55iZjYZ9nqMUgOfisihSqmvu5qRiOQopUIL+U0HvrG2Xwf+ISJ/QTsKDwaWox2TB1sznQrQzsTnK6WUiHwAnIWeATULbVEyGAz7CK3NYOqIU2+rFhaDwdAm0tM/dCgia9HffdqEHn4SQCmlRrZz3PPARKAXUAz8wdofjR5+2gxcGVJyRORW9FCUH7hBKfVfK/wU4AH0lO6nlFJ3WeGD0ApNGvAlcKHlaNwq48aNUytWrNil8zcYDLuH+s35rX6GoL1tO5NylxA3QH8ra5cVJbMwXocQkZVKqXHRlsPQdYylBn7SmYOUUue1EPxkG+nvAu5qIfwt4K0Wwjfy4wwpg8GwD7C7nX3NEJDB0DY9XqlRSm0RkWOAwUqpp0UkAzDebgaDYZfpirPvjiv5ZiMuJ7BnnG+VUiilcDgcKKUIBoM4nbr8YDCIw7L2GAx7Oz1eqRGRPwDjgKHA04AbeBY4OppyGQyGzmG3ltjpyvBLR4Z9OvM9JTuRTr2hIae2CAQCiAgOh2OH7Y4Scj/w+Xw0NzcTFxeH3++nsaGB+IQEgsEgwUAAl9uN0+kkEAiElR2DYW+kxys1aIfeMcAqAKXUNhFJjK5IBoOhs9itJR1ZgbcjfietrfDb0e8pdRWlFKE1tEKWk4DfT2FhIenp6bg9HrYXF5OalkZMTEyrio3P5wPA5XLh9/tRSuF0Oqmvr6e8rIzMzEwCwSBlpaUEAgFi4+Koq6sjJTk5rPh4vV6cTqex4Bj2SoxSA83WbCMFICLx0RbIYDB0Dx1ZgdfO5C0fhz8HsMM3lzpBazOYHHHeFrdbW+8lEAjQ1NRETEwMSinq6+qIi9fdVIzXS2FhIV6vl14ZGWFLjd/vR0R2sKoEAgFKS0pobm6md58+lJeX01BfT2ZmJh63m/j4eLZv305GZiZJyck0Nzfj8XioqqzE7/ORnJwcVoT8fj/19fXEx8cby41hr8IoNfCSiDyKXhfmcvQMpcejLJPBYNhD2K05gfp6lg47Cej45wZao7vWiAkGgxQVFpKckkJSUhLl5eXU1NYS6/WSkpJCbU0NGZmZFG7bRkJCAknJyRTk55OSmkpiYmLYmuJ0OsnIzGTbtm0U5OeTnZODr7mZyspKUtPSaGhowOv14na7KS8rQymFx+MhNS2N5qYmAoEAZaWl+Hw+mhob8fv9xMXFdeqcDIbdRY9XapRS94nIFKAa7Vfze6XUu1EWy2Aw7CEirTldwf6RyKAIoId3dtXZNxgMhoecHA4HWdnZFBcV0dTYSE7v3hRu20avXr0oKizE4XTSUF9PSmoqpSUlVFVVkZ2Tg8vlClttQA85qWAQFeEEHJ+QQGNDAx6Ph6ysLOrq63E6neT07h0e4gJwezykpaVRXl5OfEICOTk5IEIwGARARMJDZAZDtOjRSo2IOIH3lFKTAKPIGAyGLhGyzhy77h1K8ZPTu3ebPi527LOOfD4f2woKyMrOxul00tio/X8SExOprakhGAzi8/mIi48nKSlpB0fh7OxsKisrSYiPR0QoKysjxuMhMTGR0tJSnE4n2Tk5lJWVISIkJCTQ1NiorS4ixMXFEW8dGwgEcLlcZGdnE1SK7cXFeL1ekpKSyMvLIycnh0AwyPbiYnr36YPb7d6t9WswtEePVmqUUgERCYpIslKqKtryGAyGrmP/RlF3rRXTkn+MQuGMiw1vI9onJhgMQmwMSW4nbrc7rHAopXC5XHpGUTCoLSdKhWcU+f1+ykpL6ZWRgdPpJD4hgfKyMjIyM6mqrCQrKwtPTAxlZWVkZmXh8XgI+P0EAgEcDgdFhYW43G4QISYmhpKSEtLS0vBax9TV1ZHeqxdOpxOHw0F6ejpKKdxud9jCEukfE+P1kp2Tg8PhoKmhAZ/PR+8+fRAR3G43BQUFKKVISEgwTsOGvYIerdRY1AJfi8i7QF0oUCk1J3oiGQyGzmJfoK65rLLFjzDu4KDbAez+MRN/WEJ5jAOX00lmVi+Ki4pQQGZmJpUVFdTU1NArIZVYp5O62loSEhPx+3zUNzSQmJhIMBiktqaG5JQUgoEAVVVVpKSkoJSiqamJwm3biI+PJyYmhtqaGqqrqujXv39Y8TigX7/wrCVXUlJYrl4ZGXg8HhwOBx6Ph5rqasrLyzmgXz+qq6tpamqiuqqK9F69cDgcOyghLlfLjwJ7Gq/XywH9+uGwFLfk5GSKi/Xn7pJTUoxSY9grMEoNvGr9DAbDfkbkCrwhPxVfczMFBQW43W6Smn605rT1VWus4RjldZOZloLT6cTpdJKZmQmW70tiUhIJiYl4PB5qa2vDQzyIUFFeDoDb7aayshLQikJNTQ0+nw+3201aejo1NTXExsVRuG0bycnJBJViW0EBOb177zS8Y/dhiY2NDQ8Zbd++nWAwSE7v3pSXl+Pz+YhPSKC2thZPTAyJiYm7PGsppLSEZj8VFxcTHx9PIBCgcNs2+vTta4afDFGnRys1lk/NVKXUBdGWxWAw7F4CgUB4mrLD6SQ7O5vCwkLcSSkc9927OJ0OK51ef8Xh8eDslRqeGp2fl0dcYgIpKSkUFxURHx9PUnKyHvKx8Hg8gFYAEiwH3NLSUjKzskhMSqKivJz0Xr1ISU2lsqKClJQU0tPTqa6uJjUtjeKiIm0JCQTIzMzEaykqjXFx7VpC7ApOXGwsaWlpOJ1OYi0fGI/HQ1xcHC6Xq0sOvSKCy+UiLT2dxES9pFdNTY2x1Bj2Cnp0K1RKBYD+IuKJtiwGg6F7CPmphLZDa6v4mpsp3LaNmpoa/H4/5eXl2lqRGEeFS1HhAmdOBpVuKHMGcaYksq2ggMrKSvx+P1nZ2eEp0lnZ2SRaDrp2QsM6wWAQX3NzeC0Xh8NBrWWB8Xg8VFdVERsbS1x8PBUVFTofpfDExJDTuzcejwefNWvJ6XQSFxfXqmWluTlIfYNO6/MFaWxSJCQm4nS6aPJBnDWUFcqno47LbeF0OklKSgpbq0LbBkO06dGWGouNwCci8jo7+tT8JXoiGQyGzqCUwufzactHairBQCC8DovT5SI1LY2amhq8Xi9+v5/snBxEhKzsbAry89leXExO795s3bKFivJyMjIzKS4qoqa6mrj4eDJa8EdpRRCam5uJj48nvVcv6uvr8cbGkpGRQVNTEx6Ph8ysLJqbm3G5XGRmZeH3+0lNTQXA5XbvoCi0ZFkJBBTbS5t45uWtOJ3CjGl9efn1fBoaA8yc0Z83FxeyflMdUydmMn5sGslJjm5VPOx1YKw0hr0Fo9TABuvnAMznEQyGfRilFMFAgOqqKlCKuPh4amtr8Vkr4vp8PnzNzZSVldGnb9/wt4/Kysr0jKBevSgtKQn7puz04O7gsI3Dmr0Un5Cgh4BiY4mNjdVDP4DXmqrt8XjIzskJz0gKOQDDzjORQlRUNVNW3kxcnJPLfrGK6ho/8+4cyXW/XU1JWTP/d+sIfvOnb9icVw/ADxtqSE50ceDABBLjXcTEdI9iU17RTHFpIy6ng17pHlKTjcHbEH16vFKjlPpjtGUwGAzdg8PhIMbrJS09nfKyMhChV0YGdbW1iDUElJ2Tg9/nY8vmzfTrr1f5DQYC9O7dG4fTiT8QCDvl5m3dSmxsLAkJiZSUbCcmJga3O46YGCfNzYrGpgAJCS4CAUVDQ4D4eBcoRV19gLhYZ1iBsM8ucrpc+P1ByiuacLsdxMU6Ka9oxuUS4uNclFc243BAcqKbyir9rabUFK0wVFQ287t71lJW0cyFZ/WjusZPcpKLhsYAJWX6uKQEV1ih6d83jt9eP5R//CuP3I21HDM+nZln9wMgPs6FCNTW+4n1unA5oabOT2yMs13Fp7S8iWtuXs22Ir1+zvAhicz93SGkpRjFxhBderxSIyIfADt9WlcpdUIUxDEYDF0gNPxUWVGBNzaWhISE8LTjpqYmDujXj8bGINV1QQ7o15+v1lZTWuZj0jG9cTgEp9OhV8oFlILsnBxq6xWff1nFUYf3obI6wONP5DLr7P4senkrVdU+rrvsQF56rYCtBfXcePVgXn+nkJVrKjlveh9GH5LC5rx6BhwQh8Mh4e233iti8dLt/PKqg9iwpY7X3i7kypkDqar28cobBZx7el9iYhw8+3IeDqcw57IDGdgvjh821rL6myoy0j3Ex2nFo9mn8FpKiFLgcv1oXbr8ogHc+cB35BU0kJriZtLRGSx6aSvrN9Vyw5WDWfpJCSvWVHDDFQfxxZoKPvyklCEHJnDJ+QMQwONxIAINjdpHKTbGiS8Q5PW3C8MKDcDaH2pY820Vk47O2BOX2WBolR6v1AC/sm17gTMBf5RkMRgMXSA0/BRa8t/n8+FyOsnKzsbn81NeVkaAROrqFT//zVes/aEGgL896eaZ+eNITfaEh31Ky5u4/+H1rPqqkrtvPYS5D27g81UV/O6XB3Pznd9QUNjIbb8Yyp1//Z7vcmu47rIDefCJDSz/soIjxqTicjk494rlDDkwkdnn9ue2u79l4tEZZGd6eeblrYwfm8qGzXU89NRGDh6cSH1DgD/Pz6VPjpekRDe33PUtAKdOzaahMcAzL28lLTUGgJKyZjxuB0MPTOD7DbVUVo++plAAACAASURBVPkYc2gKX35dSe7GWo6bkM5Hy8pITfaQV6A/yjl7Rn+efG4zK9ZUcsn5/Vnwwhbe/18JZ/2sD28sLuJfb23D7RIuPq8/r75ZwGcryvn1tUN4+Y0Clny8nfv+cChLPy3B5RTKK3071f3Wgvo9cYkNhjbp8UqNUmplRNAnIrI8KsIYDIYu4XA4UOImLT2Tp57fwk9OyCQnO4fcjXWsW1/D4aNTePaf+aQkucMKzdADE7jx6sG8/X4xSikmH5uJQ4SNW+r4eFkZcbFO/r+9O4+Pqj4XP/55ZstkspI9LGETFKWKEvcNFXerrVu1KtZabX9qrb1dXO69arX3tr1avdVr7XVrbXvVWhVFtCpSXKrFEiwqiAgICCEb2ffZnt8f5yQOMUESwJGZ5/16zWvO+Z5lnpOR+OS7hiNx/vq3LQDk5viprnFqKcpLM/lgtXOfvfbI4e4H1gJw+knl3HX/WmJx+PKJ5dz/x3VEosoB++bzyFMbAdj/S/m8+nfnnvtPz+PVN53tGfvk8/piZzsny8fJx5Zx9Q3L8Ps93Hnrvni9Qiym/OLuD/nX7+9JbzhOV2eUf/+XPdlY3U1tQw/fu3wPzjl9LHm5Pnw+IRpVpkzK5s7/XdP/2Q8/tgGAgw8YxU3/tRKA2UeX8Pa7LTw6dxMnHVvKS6/U88Jf6zjswAJWrGpn7vM1TKwIccn541n4ekP/z10EZh1mtTQm+dK+y7qIFCS8ikTkRCBvO657SETqRWR5QtltIvKBiLwrInNFJN8tnyAi3SKyzH39JuGamSLynoisEZG7xB3m4MazQERWu++jdsHjG5Ny3l/VzvHnvslzC+rY0hTlxPPe5NkFtaz4oJ3zvl1FZ2eUcMRZhNHrgR/8vylc99Pl3PPQR+TnBbj/j+uZ890qcPsEhyNxQpmf9DHxeWWr/sIBv7PTG46RneWcl5vtp7E5DEBejo8tjc52c0uYspKgux2htNipeWluTdwOU1rsnLPvPnm88Y9GYnHo6Y3z7Is1/OcN+7Dv3rnk5/lpaOxl/+l5nHhsGSVFQWbuN4pTZ5dTWhxk/y/lU1IU5P99YxLgjJbKyHB+5ff0OH2BADo6o4zKd+baqdxvFIvecJKVvfbIYek7zf3bVe72uo+72NIY5l++sweTxmex15Qc7rxlX4oLrT+NSb60T2qApUCV+/534AfApdtx3e+AkwaULQCmq+q+wIfA9QnH1qrqDPf1nYTye4HLgCnuq++e1wELVXUKsNDdN8ZsQ1t7hAcf2YAqzD6qhKee20xPb5w3lzRy8nGleD2wZFkzxxxeTMAvTJ+Wx7IVrTS1RCgsCJCX6+eFv9bR3hGltS3CoZUFRKPKh2s7OGFWCQCLlzZx9mljAPjr3+q56Fyns/FfFtZx2YUTAVj6bjPHHF4EQNU7LRx7pFOLMX9BLXPOrSA7y8tLr9Zx9pfHMirfz6tvNnDSsaWUFmfw1tvNHDyzgIqxmVslHADPL6zj/j+u49KvT+DOW/fl5GPLyM4aehbfUKaXU2eX8ucHDiI328e3L3Lie/7lWr51gbP97Eu1XHbBRDweaG2LUFzoJFeb67qZPDHL2a7tYfKErP773vXAWv72ViM/vW4at988ncoZowhlpn3Fv/kCkL4hjWb4RGQCMF9Vpw9y7KvA2ap6wVDniUg5sEhV93L3zwdmqeq3RWSVu13jnveKqu65rXgqKyu1qqpqJzyZMbun1rYI1/10Oe+tbOPir1Wwak0Hi5c6yxOcdkIZJxxdyl/+Wsv0vXKYsU8+i5c2EYvDr3/7EdOm5HDckcX8z0MfAU5C8MMrplBUECASVSZWhOjojFLX0MvkCdl0d8eoru1mj4lZ9PbG2bi5m8kTsojFlI2bu5lUkcWTz1WzZFkzP7pyKourGln0xhaOPqyIU2eXUdfQS3FhAK/XQ/2WHkbl+Qn4vTQ09ZIV8pIZ9NHcEiYv1881//Yum2qcvjGFBQEeuOOA/uRjONo7IjS3Rlj9UQd7T80hFoNVa9vZa48cRGDj5i5yc/xcdf07BPwebr/pS/zsrlVsruvh7v/cjzt+s5pVazoQga+eOppLz59AXu7uvzSCiCxV1cpkx2F2XNomNSJyIc7z/2FA+UVATFUf2Y57TGDopOZZ4E+q+kf3vBU4tTdtwL+p6usiUgn8XFVnu9ccCVyrqqeJSIuq9jVfCdDctz/gcy4HLgeoqKiYuWHDhu39ERiTkpYsa+b7//4ue0zMYs65Fdz4i5X9xyrGZHLPL2aQm+3D6/U4Q6tbwlx0ZRVxhV/e/CWuvG4Zib8Wr/vuVE6ZXYbHM/ylBSKROB2dUYJBL36f0N4RJSPDM+xajabmMB993Ek0GmfKpGwKRw0/odlekUiclrYI6z7upLw0SDDDSzgc72+6Cofj+HxCZtBHTnZq1M5YUpM60jmpeQs4TlU7BpRnAa+p6sztuMcEBq+B+VegEjhTVVVEMoBsVW0UkZnA08A+wFS2I6lxjzWr6jb71VhNjTHQ2Rllc10P816s6W8C+tMz1YzK8zPn3ApKi4N4vZ8kKLFYnIbGME88W83USVlkBH3c/cAa2tqjnH5SOReeNY58m1gupVlSkzpSI80eGf/AhAZAVTtFZMT1qSLyDeA0nIRJ3Xv2Ar3u9lIRWYuT0FQDYxMuH+uWAdSJSHlC81P9SGMyJtliMaWlzRkGnJPlpaMrhqqSneWjsyuGKoSCHjJ3Qr+MrCwfUyY5I5r6TJuSi9crBAKf7kbo9XooKwlyxSWT3BmGhS/tlYOqkJ312RPRGWO+ONI5qckUkSxV7UwsFJEcYER/lonIScCPgaNVtSuhvBhoUtWYiEzC6RD8kao2iUibiBwCvAXMAe52L5sHXAz83H1/ZiQxGZNsHZ1RFi9t4p6H1nLM4cXst08e9zz0Efvuk8vxR5fyq/vXUFvfywmzSrjiG5PICHjIyPASjyvhSLx/YrnP0toWpjccx+MR8nL9+BMmocvM/Ox7OM1LTg1OwS5s3jHG7DrpnNQ8CDwhIt9R1Q3Q35x0j3tsm0TkUWAWUCQim4CbcEY7ZQAL3JHZi92RTkcBt4hIBIgD31HVJvdWV+CMpMoE/uK+wElmHheRS4ENwLk79rjGfP46u6I0NPZy820rCQQ8HHNEMVdetwyAm06exndvWEY4opQWZ3Da8eX8eV41tQ09fOO88bz+9y28+34rxx5RzEEzR5GbvfXfGj29MVrbInxc3cXY8hA337aSFavayM3xcf3Ve1I5I5/MYDr/ijMm/aTtv3hVvV1EOoDXRCTbLe7A6eNy73Zcf/4gxYMmQ6r6JPDkEMeqgE91NFbVRuC4z4rD7N7icaWj0+k8mhHw0t4Rwe/3EA7H6emNISLkZPkIBnevJpCenhjrN3ax6I0GsrOcXzNjyzNZs66DeNwZwVPb0EM44vTpu/pbk7ntng9Zu76T66+eys9+tYply1vx+YSjDitm+cp23v+wjUNnFjK6LIiIsmZ9Fz+46T0uPGscBd4erj03h0/WpG0lurmbcF4OgcJP9a83xqSotE1qAFT1NyLyEtDg7rcDiMhEVV2X1OBMSurqjtHaFmbl6nb2nprLW2838dIr9Xzz/PFsaQrzl4W1XPnNydz/x3W8uaSJjAwPl10wgVOPLyMn+4sxdLarO0ptfS/zF9Qwc99RjB2dyXMLathzSg5TJ2Xzl5frOPrwIr79w7cpKXb6qoCz7MCY8kwA2ts/mQ/F64G8XD9r1zstwRVjQyxb3grA+V8dx4oP2pj7/GYKCwKcMyuXzg2NBINe9hwV4NlfVLjNRmFePeDUreJcCRyzeqElNcakkbROalxPqOoBA8uAzxz9ZMz2amuPEFdlxQftXP8fyzn+6BLWruvk4cc/5pCZBaxZ38ndD6zluCOLefm1et5c4rRO5uf6KS8NsqUpTHtHlFCml2jMqd3w+4RwWImrEvAL0SjE4s6ssdGoEospwQxP/8id9o4Ibe3OPCvjxmQSicSpre9lbHmQuEJ1bTdjyjLJyfaRFRr6V8Pa9Z1cce0ySooyOPzAQuZcVUVWyMuRhxRx8VVVHDyzgMircWJxqKnrIRZTjjuymIWvN7C5toevnFzOMy/UsGx5CxedM45H527cajRSRW6UJ382nlhMCYW8RCIeLjhiPJoZItLawT8rnfkpD3n59yyePad/2xhj0japEZG9cIZV54nImQmHcnEWtjRmp6it7+Gnd37AmaeO5te//Yh4HA6ZWcBvHnYqAw+ZWcBzL9cCMGl8Fm+97UxH7/MJP/nx3tx+z4esWd/JTT/ciw/WdDD3+c1cf/VU3n2/jXkvbOaqb02msSnMY09vYs45FWQEPDz46AZE4Cc/mkZRYQaqyptLmvjtoxv4ysnllJUE+c3D6zj2iGIq98vn9ntXE49DVsjLf904ndFlmWQGvQT87twqAS/Z2T46OqM8+H/rUYWjDi3imRdqiMWUwyoLeemVesIRpaMzRn6es4p0Z1eMn921imsum8w3zhtPcaCX2XvG+PaJk/BlBoh39XDBYRPwhnr4yy/Howre7g6q9j8RgAPn3Yc3FMQDBMeUjbALvzEmXaTzMgl74gy9zge+nPA6AGfZAmN2WEtrmBt/8T7LlreSFfLR0uoMa+7ojPXPxNrZFe3f/mhDJ1+algvA4QcV8sY/GlmzvrN/pto/Pb2J4sIAPq+Huc9vJifbT8WYEH98YiM+rzBzv1Hc+/A6wuE43710Mi8uquNb33+beAwe/pMzMePxR5fy0CPrATj1+DLu/d064nHIzfFx201f4vmFdXz/39+huqab+/6wju/8eBm33LmS+oYeenpigz5nXLV/PaR3VrRw+EGjmPu7gznt+FLO+8oYTpldSmmxH09PF6/uOZvX9ppN1+r1vDLtBF6ddgJdq9fz2j4n8vr0E+mpru2/rzcUZPHsOSyePYdXpp2w1TFjjBkobZMaVX1GVS8BTlPVSxJeV6vqm8mOz6SGSET7V4N+6+0mTjymFHDW3rnkvPF4vcILi+q48KxxBAIeXvv7Fg47sJBDKwsoKczg42pnZoA9Jmbxzgqnn8m40SE+WOPcc3RZkDXrnL4ohQUBNrrn+33CxIosFr3hrPYcjSnx+Cdx9XXQDWZ4ae+MAnDu6WN5bO5GnltQy4H7FzD3L5t57OlqtjT2ctYpY/jzs9X87O5VfO0rYxGB1/6+hTNOKsfrFd5c0siJs0oJZniYWJFFfq6X+tpNXPXNCuaclE/nuo1obR0aHTwpMsaYnSFtm58SrBGRG4AJJPw8VPWbSYvIpAyvVxhdGmRzXQ/PvFDDz/51HwpGBfjH2020tUd49DcHsmJVO4UFAR6590BWfNCGzydce9VUPF547/02Xn1zCxuruzlldhnPvlTLuo87OeOkcgA2bu5mrz2cwXsNW3oZPy6ECPj9Hrq6o/1xdHVHKS3OoK6hl4YtvUyekMXa9Z2sXd/B/tPz+OfyVvbbJ4+HHl0PwAFfyuc/f7UKgOOOLGHpuy08OncTAN/7WgnP3j6Rnt44uQVhnrt9PKqKL6ubp39e4Wx3tlEU80BtPVGE16c5zUm7qu9LrKun/94ZY0rB48Hj8eDLyf6MK40xqcSSGmdSu9eBlwH7M9LsVPl5fm7+0TR+cPN7tHdEufEX73Pnrfty5imjCYW8ZAS8jC7L7D+/rGTr7lwzpudz5Tcn8djTmxhTnsnso0pY+Ho9jc1hvnFeBY/N3cSKD9u46tJJPPTIBl59cwvXfncqv/7tRwT8HgpHBWhsDnPfH9Zz84+m8ehTG5m/oIabfjiNPzz+MS+9Wsdt14ynY0sewUAbz929J9rdg8fTwVO370GkoxuPB7yhTC48zFmN2uPp4dW9P0lSEjvrDrW9s/QlL8ExZXhCQY5e+SKCgAhxFK/Xiycrk+ZomJKSErze3WsovDFmx1hSAyFVvTbZQZjU5PEIUydn88d7KunqjpGZ6SU32z/odP2Dycv1c86Xx3DCrBIyI51MOyuHH5yZDRJD8HPeoRPwZGURz85h9lElqEJmhpdDZhbg8cC9/zWDB/9vPecem0sRLdxwfj7eYIB41xZ++NUQSBZ0dfD2zMFHFO3qJGUwibUuwTGlWx1bcvrlgDNU219SiB/w+XxEo06tlM/nIx6PU6JqCY0xaciSGpgvIqeo6vPJDsSkJp/PQ2FBBoXbOCfc2EK03VmKzBMIEOvqdg54BPF4yAQ0HufVPY8HPhkVBBCaMgGp2Uwm4AkFiTf39G9ndPXwL2eEgCivTDsB2DpB6dv/vCQmLKEpE5i18iVwY+3bxuPUvIDgCwU5ZvXCT93Hl5ONz/fJr6/EbY8nbbsKGpP2LKmB7wE3iEgYCOMs/qKqmpvcsEyqS0xkNBobNOlITF4Say36RgUNPD9ZtSvbq6+mBZzaluDEsf01KrFYrH87Ho9bcmKMGba0T2pUNeezzzJm5Hq3NBNt70RkQC0MbJXIDGZg8rI72ro5qQzxOYmLLyd7qyaixG1LaIwxI5H2SY04K09eAExU1VtFZBxQrqr/SHJoJgXEYjHCrW28ttena2FSIUkJTZnA0StfBJzOxLNWvoSi/dtAfxMaOImMLVtgjNlV0j6pAX6Ns3L2scCtOIta3gMcmMygTGrwer1f+A6rQ40oGmobEWIax+v1IX4/DZ5OxowdSzwep667g8KiIiLxOM3dHYyrqMDv/2KsWWWMSX2W1MDBqnqAiPwTQFWbRcQmYzdfONsaFTScaxM76OIR4qqoKpKbhWaHCBTm4/X5UNWtRhf5cZK0WMyZ+cDj8RCPxxk3KhcRwev1Mmbs2P5Ou6FQ6Auf0BljUoslNRARES+gACJSjFNzY8wOi8Vi/UnANs8bpElHkK3OSexke+yG1zh61QLi8Tj+QZp9Bm4jThOQiOAJBOjO8NHS0kJebh6ZoRAiQiAQIBqNElfF5yYpfbZ3pNFQfWSMMebzYEkN3AXMBUpE5D+As4F/S25IJlVsq/lpYAda9QgejwdPwE9PZoCcnBxiLe0cvWpBf/LQNyrIE/BT29NJSVkJ/mCQjR9/TEFBAcHsbGo2b0YVSgvzaaGRnp4egpmZdHd1UVpWhj8zk3ygq6uL1tZWECE/P9+ZuM7jQVWto64xZrckqprsGJLOXbH7OJzh3AtVdWWSQxqRyspKraqqSnYYZoDPmoMGwJeThTc/d9DhzYNtx+NxBv7bVVVEhI72dkJZWYgIba2tZGU7c7q0traSlZWFz+ejvb2dpsZGMjIy6O3tpaS0lFAoZMmMSUsislRVK5Mdh9lxaV9TIyIFQD3waEKZX1UjyYvKpJJAYf6wR/wM1YzTt72t5CMnN7f/eG5eHl6vFxEhLy+vvx9MPBajqLiY7OxsWpqbB02SjDFmd5P2SQ3wNjAOaMapqckHakWkDrhMVZcmMzhjhisx4Uns/9KXEHm9XvLy8/vP7du2PjDGmN2d1TXDAuAUVS1S1ULgZGA+cAXOcO9BichDIlIvIssTygpEZIGIrHbfR7nlIiJ3icgaEXlXRA5IuOZi9/zVInJxQvlMEXnPveYudz4dY3aKxL4+u8Owc2OM2R6W1MAhqvpi346qvgQcqqqLgYxtXPc74KQBZdfh9MmZAix098FJlKa4r8uBe6G/6esm4GDgIOCmvkTIPeeyhOsGfpYxxhhjElhSAzUicq2IjHdfPwbq3WHeQw7tVtXXgKYBxWcAD7vbDwNfSSj/vToWA/kiUg6cCCxQ1SZVbcapNTrJPZarqovV6ejw+4R7GWOMMWYQltTA14GxwNPuqwI4D/AC5w7zXqWqWuNu1wJ9M6SNATYmnLfJLdtW+aZByj9FRC4XkSoRqWpoaBhmuMYYY0zqSPuOwqq6Bfhu376IBIEvq+qfgTU7cF8VkV0+nERV7wPuA2dI967+PGOMMeaLympqABHxisgpIvIHYD3wtRHeqs5tOsJ9r3fLq3FGWPUZ65Ztq3zsIOXGGGOMGUJaJzUicrSI/C9OInMpcDwwSVXPHuEt5wF9I5guBp5JKJ/jjoI6BGh1m6leBE4QkVFuB+ETgBfdY20icog76mlOwr2MMcYYM4i0bX4SkU3AxzijjH6oqu0isk5Vu7bz+keBWUCRe6+bgJ8Dj4vIpcAGPumT8zxwCk5zVhdwCYCqNonIrcAS97xbVLWv8/EVOCOsMoG/uC9jjDHGDCFtkxrgCZwRRV8DYiLyDO6ilttDVc8f4tBxg5yrwJVD3Och4KFByquA6dsbjzHGGJPu0rb5SVWvASYCv8SpcVkFFIvIuSKSnczYjDHGGDN8aZvUgFODoqqLVPVynATn6zhzyqxPamDGGGOMGbZ0bn7airuA5bPAsyKSmex4jDHGGDM8aZvUiMh7DN2HRoH9PsdwjDHGGLOD0japAU5z3/s68P7Bfb+QYXQYNsYYY8wXQ9omNaq6AUBEjlfV/RMOXSsib/PJYpTGGGOM2Q2kdUdhl4jI4Qk7h2E/F2OMMWa3k7Y1NQkuBR4SkTx3vwX4ZhLjMcYYY8wIpH1So6pLgf36khpVbU1ySMYYY4wZgbRvZhGRUhF5EHhMVVtFZG93mQNjjDHG7EbSPqnBWV/pRWC0u/8hcE3SojHGGGPMiFhSA0Wq+jgQB1DVKBBLbkjGGGOMGS5LaqBTRApx56YRkUMA61djjDHG7GbSvqMw8C/APGCyiLwBFAPnJDckY4wxxgyXJTWwAjga2BMQnNW6rQbLGGOM2c3Y/7zh76oaVdUVqrrcXdjy78kOyhhjjDHDk7Y1NSJSBowBMkVkf5xaGoBcIJS0wIwxxhgzImmb1AAnAt8AxgJ3JJS3AzckIyBjjDHGjFzaJjWq+jDwsIicpapP7qz7isiewJ8SiiYBNwL5wGVAg1t+g6o+715zPc5yDTHgalV90S0/CfgV4AUeUNWf76w4jTHGmFSTtklNH1V9UkROBfYBggnlt4zwfquAGQAi4gWqgbnAJcCdqnp74vkisjdwnvv5o4GXRWSqe/ge4HhgE7BEROap6vsjicsYY4xJdWmf1IjIb3D60BwDPACcDfxjJ93+OGCtqm4QkaHOOQNniYZeYJ2IrAEOco+tUdWP3Dgfc8+1pMYYY4wZhI1+gsNUdQ7QrKo/AQ4Fpn7GNdvrPODRhP2rRORdEXlIREa5ZWOAjQnnbHLLhirfiohcLiJVIlLV0NAw8LAxxhiTNiypgW73vUtERgMRoHxHbyoiAeB04M9u0b3AZJymqRrglzv6GQCqep+qVqpqZXFx8c64pTHGGLNbSvvmJ2C+iOQDtwFv4yyX8MBOuO/JwNuqWgfQ9w4gIvcD893damBcwnVj3TK2UW6MMcaYAdI+qVHVW93NJ0VkPhBU1Z2x9tP5JDQ9iUi5qta4u18Flrvb84BHROQOnI7CU3D69AgwRUQm4iQz5wFf3wlxGWOMMSkp7ZMaETlzkLJW4D1VrR/hPbNwRi19O6H4v0RkBk5N0Pq+Y6q6QkQex+kAHAWuVNWYe5+rgBdxhnQ/pKorRhKPMcYYkw5EVZMdQ1KJyHM4nYMXuUWzgKXAROAWVf1DkkIbtsrKSq2qqkp2GMYYs1sRkaWqWpnsOMyOS/uaGpyfwbS+Pi8iUgr8HjgYeA3YbZIaY4wxJp3Z6CcYl9iJF6h3y5pwRkIZY4wxZjdgNTXwittBuG/o9dluWRbQkrywjDHGGDMcltTAlcCZwBHu/sPAk+p0NjomaVEZY4wxZljSPqlRVRWRKqBVVV8WkRCQjbNatzHGGGN2E2nfp0ZELgOeAP7XLRoDPJ28iIwxxhgzEmmf1OA0Px0OtAGo6mqgJKkRGWOMMWbYLKmBXlUN9+2IiA9ngjxjjDHG7EYsqYFXReQGIFNEjscZBfVskmMyxhhjzDBZUgPXAQ3AezhLFzwP/FtSIzLGGGPMsKX16CcR8QK/V9ULgPuTHY8xxhhjRi6ta2rchSPHi0gg2bEYY4wxZsekdU2N6yPgDRGZB3T2FarqHckLyRhjjDHDZUkNrHVfHiAnybEYY4wxZoTSPqlR1Z8kOwZjjDHG7Li0T2pE5Fk+PS9NK1AF/K+q9nz+URljjDFmuNK6o7DrI6ADZ/TT/TgzC7cDU7ERUcYYY8xuI+1raoDDVPXAhP1nRWSJqh4oIiuSFpUxxhhjhsVqaiBbRCr6dtztbHc3PPgl2yYi60XkPRFZ5q4AjogUiMgCEVntvo9yy0VE7hKRNSLyrogckHCfi93zV4vIxSN/RGOMMSb1WU0N/AD4m4isBQSYCFwhIlnAwztw32NUdUvC/nXAQlX9uYhc5+5fC5wMTHFfBwP3AgeLSAFwE1CJ0+dnqYjMU9XmHYjJGGOMSVlpn9So6vMiMgXYyy1aldA5+L934kedAcxytx8GXsFJas7AmdVYgcUiki8i5e65C1S1CUBEFgAnAY/uxJiMMcaYlJH2SY2InDmgaLKItALvqWr9CG+rwEsiojgjqO4DSlW1xj1eC5S622OAjQnXbnLLhiofGP/lwOUAFRUVAw8bY4wxaSPtkxrgUuBQ4K84zU+zgKXARBG5RVX/MIJ7HqGq1SJSAiwQkQ8SD6qqugnPDnMTpvsAKisrd8o9jTHGmN2RdRR2Ertpqnq2qp4F7I1T03IwTvPQsKlqtfteD8wFDgLq3GYl3Pe+WqBqYFzC5WPdsqHKjTHGGDMIS2pgnKrWJezXu2VNQGS4NxORLBHJ6dsGTgCWA/OAvhFMFwPPuNvzgDnuKKhDgFa3mepF4AQRGeWOlDrBLTPGGGPMIKz5CV4RkfnAn939s9yyLKBlBPcrBeaKCDg/30dU9QURWQI8LiKXAhuAc93znwdOAdYAXcAlAKraJCK3Akvc827p6zRskq+tPUIkquRm++jpjREOx8nJ9hGOKL3hGFkhH/G40t0TIzPoJZRp/9SMMWZXE2fQTfoSJ/s4EzjCLWrG6dR7VVwyEAAAEKJJREFUZfKiGpnKykqtqqpKdhi7tVgshtfrBSAajeLzOclIJBJh2Yo2mlsiHHVoIU89V0NLa4RvXVDBlqYwC17dwtfPHE00qtzz23Vc9c1JNLWE+fEt77PXlGy+M2cSRYUZyXw0Y8wQRGSpqlYmOw6z49I+qQEQkf2BrwPnAOuAJ1X1f5Ib1fBZUjMyfYlMNBqlqbGRgsJCAJqamsjPz0fEQ0tzEzm5+Xi8HtpamsnOycXv91G9aROBjAyKi4qpqdmMx+ulqKiIWCwGCP9c3s6ovAB+v1BcmElerj+5D2uM+RRLalJH2vapEZGpInKTOzLpbuBjnCTvmN0xoTHDFw7HiEQi1NfXE41GUVV6enqoq60lFovR627HYzF6w2HqajcTj0UJh8PU1mympaWFoqIiujo7qauvo7CoiN6eHiKRCG2trbS1tjJjej7ZmZ2EAl0ELJ8xxphdKm2TGuAD4FjgNFU9QlXvBmJJjsl8Djq7oqz8sI17f7eOzq4okXCYzdXVNDU2UlJaSm9vLw319ZSVlxOJRKirq6WsrIxYLEZtbS0lpWWoKt1dXXh9PjweD9FoFI/Hg8fjoaO9nZycHLq6Oqmr2Ug00oM/I5twxGpFjTFmV0rn3otnAucBi0TkBeAxnHlqTAppa4/Q2RUlEHDy93gcaut7+O/71rBqTQdTJ2dz5MHFbGmoIy8vj8YtW/C6TUgNDQ2ICEXFxWxxt4uLi2lqakRVKSsvZ3N1NT6fj9KycupqaxCPh8xQNh6vF7/fTzgcJiMjg2AwQGYwnf+5GWPMrpe2v2VV9WngaXeU0xnANUCJiNwLzFXVl5IaoNmmvr5gIoKqoqr9NSbxeNxNKKLE41HuenAtF51VwaI3GgA48uAC7vjJPry4qJ5jjyigrrYGfyAAzog1SstG4/UKGo9TPnoMHo+HeDxOWflovF4vsWgrZeXlxONKcUkJPp+PaHMbo6IAHjwdXUS7usgHRPzEeqJQV0ssLwdf0ajk/MCMMSYNWEfhBO58MOcAX1PV45Idz3ClS0dhVSUScaYQ8vv9RCIR4vE43T0Qj3bQ1tZGcUkpXo/g8XqJq4d4TPH7YcOmHspLvNTX1VJYXEoww09TYyNFRcVEYorPC82tEZ5+vo5LLxjP0neb2Vzby5dPcJqcPF4vaByAWEs70fYOJ6ZojFemnQDAIS//nsWz53wq7mNWLyQ0Yezn9FMyxmwv6yicOtK2pmYw7grY/csOmC+WSCRGR1eUYMBDa2sTPd3dlI8eTVtrKx0dHRQUFhHMyqK3t5dIuJeICK0tLZSVjyEW7aG+bgtjy8sByM7JobGhDr/fT3FpGU/Mr2HcmBB7TAhxzb8vp6a+l66eKJddOIn9x3cQ3uQs2+UJBIh1dffHlJjIGGOMSS5LasxuIRJxRiBFwnGq/tnOrMMLqautZXN1NeWjRxOJRGhpbqK0rIx4PE5rayulZWV0BwLUbN5EeU4+ReolUl2HP5RJVlcPIbx4fRlEN9Zw2nTFlxUj2lbPAz8uwxsKEu/qgZpqIjBoLYwlMsYY88ViSY1Jmkg0Tmub04wUyvTi8wqRqJIV8hGOxAmHY2Rn+YlE4sRVaW1uIhIJc9D+hUSjUaLRKH6/M046EomQP2oUnR0dxGIxRhU6i6B7PB5UlVh7J6/tNXhisj3bxhhjvvjSeUi3GaFwOE5jcy/tHRFUlda2MF3dUeCT0UYDtwfq6Izy0it1XHRlFTf+4n021/Zwx2/WMPf5zfT2Rqir7+Kvf2sgEokQi0WpreuluKTEGVXk89La2orP76e0rIxYSzsFUcHX1E4oHKMoKvjqG6C5jezOXkrV5wx7MsYYk9KspsYMS3NLmEee2siiNxr40RVTqd/Sy/wFtcw5dxzdPXGenF/NmaeOZkx5Jr/+7UdkZXq57nt7AhDwCZmZXnp7Y0hHO8fsEePgG8eSlRck3tXIVScHES/0bqwmX4QTZ+ZSW1ODz+ejvLSYaDRCLBqlvr6e0rIyPB4ft/96DVefnsNrQzQPfV61LbGunv7PCE2ZwKyV7uA5jyAe528HX072Lo3BGGPSnSU15jPF43FUlWgM3v+wlQNn5LFpczcbqrt4+50WPB5obY3w2DPVqCozpufikRhHHlzAyceW4vfHaG1XQkEfGz/+mOKSEujqYtFUZ4BZYvJx4Lz78IaCAPgygxSEFQ2HiW1pIt7VTTEeRDzQ3Eakq4fvnppFPDJ4bdCulpjIBMeUIT5nzShvRgaZo0uTEpMxxqQzS2rMoMKNLZ8MV1ZF44p4PMycFEJyspg4PotQ0MNXTirh3ZUdlBT6ue+o/VjxQTsBf5zGhjpmH1lEINxJuL6NbI+HeDSDwijEN9cjQ8xz6A0FP7OPy2DHdqXtrYUJFObv0jiMMcZsmyU1aU5Vicch0txCrL0TVafMo/H+ET+Jjl61gC3trYweM4auri7q65rYZ2o50tlNZFMT03K9SEeUUvWhzc3EEF6fdiKQ3M63QyUmnlDwM7cTkxerhTHGmC8uS2rSWLixmUhbB6pALM6re3+SxCQmHYlNQt5gBkVd3YQ/3kxGKJPiuIdYdR2CDNmv5YtgyemX928fs3ohWXuMT2I0xhhjdgVLatJYtL2TV6bOBradfGxPk1Ayk5ftqYWxDrvGGJP6LKlJY7F48pbIGLKfyghYLYwxxhiwpCatJXNJ8qESkXBjC8esXgg4SxIMVeviDbr7CTUwYLUwxhiTziyp2clEZBzwe6AUUOA+Vf2ViNwMXAY0uKfeoKrPu9dcD1wKxICrVfVFt/wk4FeAF3hAVX++M2P1eIZOa/pqUoJjylBGXqMz3PlbAoX5NorIGGPMiFhSs/NFgR+o6tsikgMsFZEF7rE7VfX2xJNFZG/gPGAfYDTwsohMdQ/fAxwPbAKWiMg8VX1/VwQ9cM4VvM6cK56sEPHOrmFdP1TyYiOHjDHG7EqW1OxkqloD1Ljb7SKyEhizjUvOAB5T1V5gnYisAQ5yj61R1Y8AROQx99ydltT4crL7m3oGlifWloQbPdvVJGTJizHGmGSypGYXEpEJwP7AW8DhwFUiMgeowqnNacZJeBYnXLaJT5KgjQPKDx7kMy4HLgeoqKgYVnzb29RjTULGGGN2B7ag5S4iItnAk8A1qtoG3AtMBmbg1OT8cmd8jqrep6qVqlpZXFy8M25pjDHG7JaspmYXEBE/TkLzf6r6FICq1iUcvx+Y7+5WA+MSLh/rlrGNcmOMMcYMYDU1O5mICPAgsFJV70goL0847avAcnd7HnCeiGSIyERgCvAPYAkwRUQmikgApzPxvM/jGYwxxpjdkdXU7HyHAxcB74nIMrfsBuB8EZmBM8x7PfBtAFVdISKP43QAjgJXqmoMQESuAl7EGdL9kKqu+DwfxBhjjNmdiGryZpU1O1dlZaVWVVUlOwxjjNmtiMhSVa1Mdhxmx1lSk0JEpAHYMIxLioAtuyicL7J0fO50fGZIz+dOx2eGHXvu8apqIy1SgCU1aUxEqtLxr5N0fO50fGZIz+dOx2eG9H1uszXrKGyMMcaYlGBJjTHGGGNSgiU16e2+ZAeQJOn43On4zJCez52Ozwzp+9wmgfWpMcYYY0xKsJoaY4wxxqQES2qMMcYYkxIsqUlTInKSiKwSkTUicl2y49kVRGSciCwSkfdFZIWIfM8tLxCRBSKy2n0flexYdzYR8YrIP0Vkvrs/UUTecr/vP7lLb6QUEckXkSdE5AMRWSkih6bJd/1997/v5SLyqIgEU+37FpGHRKReRJYnlA363YrjLvfZ3xWRA5IXufm8WVKThkTEC9wDnAzsjbOEw97JjWqXiAI/UNW9gUOAK93nvA5YqKpTgIXufqr5HrAyYf8XwJ2qugfQDFyalKh2rV8BL6jqXsB+OM+f0t+1iIwBrgYqVXU6zpIq55F63/fvgJMGlA313Z6Ms4beFOBy4N7PKUbzBWBJTXo6CFijqh+pahh4DDgjyTHtdKpao6pvu9vtOP+TG4PzrA+7pz0MfCU5Ee4aIjIWOBV4wN0X4FjgCfeUVHzmPOAonMVkUdWwqraQ4t+1ywdkiogPCAE1pNj3raqvAU0Diof6bs8Afq+OxUD+gAWFTQqzpCY9jQE2JuxvcstSlohMAPYH3gJKVbXGPVQLlCYprF3lv4EfA3F3vxBoUdWou5+K3/dEoAH4rdvs9oCIZJHi37WqVgO3Ax/jJDOtwFJS//uGob/btPv9Zj5hSY1JeSKSDTwJXKOqbYnH1JnTIGXmNRCR04B6VV2a7Fg+Zz7gAOBeVd0f6GRAU1OqfdcAbj+SM3CSutFAFp9upkl5qfjdmpGxpCY9VQPjEvbHumUpR0T8OAnN/6nqU25xXV91tPten6z4doHDgdNFZD1Os+KxOH1N8t3mCUjN73sTsElV33L3n8BJclL5uwaYDaxT1QZVjQBP4fw3kOrfNwz93abN7zfzaZbUpKclwBR3hEQAp2PhvCTHtNO5fUkeBFaq6h0Jh+YBF7vbFwPPfN6x7Sqqer2qjlXVCTjf619V9QJgEXC2e1pKPTOAqtYCG0VkT7foOOB9Uvi7dn0MHCIiIfe/977nTunv2zXUdzsPmOOOgjoEaE1opjIpzmYUTlMicgpO3wsv8JCq/keSQ9rpROQI4HXgPT7pX3IDTr+ax4EKYANwrqoO7IS42xORWcAPVfU0EZmEU3NTAPwTuFBVe5MZ384mIjNwOkcHgI+AS3D+cEvp71pEfgJ8DWe03z+Bb+H0IUmZ71tEHgVmAUVAHXAT8DSDfLducvc/OM1wXcAlqlqVjLjN58+SGmOMMcakBGt+MsYYY0xKsKTGGGOMMSnBkhpjjDHGpARLaowxxhiTEiypMcYYY0xKsKTGGLMVd7XrK9zt0SLyxGddswOfNcOdXsAYY3aYJTXGmIHygSsAVHWzqp79GefviBmAJTXGmJ3C5qkxxmxFRPpWbV8FrAamqep0EfkGzkrIWcAUnIUUA8BFQC9wijv52WTgHqAYZ/Kzy1T1AxE5B2fStBjOwouzgTVAJs409j8D5gN3A9MBP3Czqj7jfvZXgTycieX+qKo/2cU/CmPMbsb32acYY9LMdcB0VZ3hrm4+P+HYdJzVzoM4Ccm1qrq/iNwJzMGZpfo+4DuqulpEDgZ+jbMG1Y3AiapaLSL5qhoWkRuBSlW9CkBE/hNnaYdvikg+8A8Redn97IPcz+8ClojIczZTrDEmkSU1xpjhWKSq7UC7iLQCz7rl7wH7uiuiHwb82ZmtHoAM9/0N4Hci8jjOwouDOQFnQc4fuvtBnGnwARaoaiOAiDwFHAFYUmOM6WdJjTFmOBLXD4on7Mdxfp94gBZVnTHwQlX9jltzcyqwVERmDnJ/Ac5S1VVbFTrXDWwrt7ZzY8xWrKOwMWagdiBnJBeqahuwzu0/g7tS8n7u9mRVfUtVbwQagHGDfNaLwHfdRQkRkf0Tjh0vIgUikonTt+eNkcRojEldltQYY7biNvG8ISLLgdtGcIsLgEtF5B1gBU6nY4DbROQ9975vAu8Ai4C9RWSZiHwNuBWng/C7IrLC3e/zD+BJ4F3gSetPY4wZyEY/GWO+8NzRT/0dio0xZjBWU2OMMcaYlGA1NcYYY4xJCVZTY4wxxpiUYEmNMcYYY1KCJTXGGGOMSQmW1BhjjDEmJVhSY4wxxpiU8P8Bbl0YhP9SDDcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCurrencyHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEWCAYAAAD7KJTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYJUXVuN/TffO9cyfP7sxsYllYsoRFRKIRMMGn8gMVBFERBAXhQ0FRUFHUTxSUoAiIgIjoJ4r4qUQRkCBJEJaVBTZMzvHm7vr9UX1n79xJd/LcmX6fZ56pW51OV1dXnT7nVJUopXBxcXFxcXFZuhjzLYCLi4uLi4vL/OIqAy4uLi4uLkscVxlwcXFxcXFZ4rjKgIuLi4uLyxLHVQZcXFxcXFyWOK4y4OLi4uLissSZtjIgIpeJSIeItDi//0tEtovIgIjsN30RpyzXnMkhImtERImIZzavsxAQkY+JyL3zLYeLi8viQkRuFpHL5luOxYiIbBGRd463z4TKgHOSuNOpZv+udratAs4H9lBKLXcO+T5wtlIqopR6bhrCKxFZN9XjJ5LDOf+gcz+NIvIDETGncb1xEZGPisjTzvWaReTPInLobF2vAHluFpGUiPQ7f/8WkctFpHS845RSv1RKvXuK17xURNJ5demLU7uD4ian/AdEpEtE7hOR3eZbrokQkVNF5NEZPqdPRK4QkQanPLaIyJUzeY2FjGheF5GX51uW6TADbfZo59xJRGwRuW4mzzvBNUfU8am2l8VEoZaB9zudavbvbCd/FdCplGrL2Xc18NKMSjk1CpHjTUqpCHAEcAJw2mwIIiLnAVcC3waWocvtWuDYMfafKwvD95RSJUA18AngLcBjIhKeRbl+nVeXvjfKdUREloIL63tO/VsBtAE3T/YExWaNGkPei4ANwJuBEuBI4Nk5FGu+ORyoAdaKyIGzdZFiqysOHwe6gRNExD/PskyqvSw6lFLj/gFbgHeOkv9OIA7YwADwK+e/AgaB15z96oD/BdqBN4DP55zDBL4MvAb0A88AK4G/55xnADhhlOsbwMXAVnRDegtQCvhHk2OU4xWwLuf3ncA1Ob9LgRuBZqARuAwwc+T+PtABvA6c5ZzPM8p1Sh15jh+njC8FfgvcBvQBn3Lu40qgyfm7EvA7+1cB9wA9QBfwCGA4277kyNsPbALeMcY1bwYuy8srce73bOf3qcBjwA+BTqcMTgUezSvHzzvl0AH8T1aWMe7ztjG2/Q34lnO9OLBuOs+AvHqbf230i/wPpwz/BRyZJ8s3HVn6gXuBqpzth+Ycu90pkwOB1qx8zn4fBP5VSPkD7wUGnPSbgced8zcDVwO+vDI/C3gVeMPJu8qRpQ/9Hh2Wd++/QdevfuBFYFd0J9zmHPfuieo+sDuQACx0ne5x9vc7z2KbUwY/AYLOtiOBBnS9bAFuHaUs7gHOHaOcPgH8Mef3q8Bvcn5vB/Z10rsB96HfiU3A/8vZrxAZv4yuT1uAj43zvtYBdzvX2Qx8Oq+s70S3R/3oD5INE7SxNwG/BH4HXJ23bSd0e9gP3A9cw/B6/HF0G9gJfJWces/o7YoBXIhuczsdWSsKPN+Y9ZIx2mzgfcDzzjH/APbJudZ+aKWvH/g1cAfD3wlx5DzTeWYfziubdzvPuRf9cfUw8Kmc7acBG9HKxF+B1Xnv0Bno+tTjlKswdh2/mQnaywKv+Vnnmv3oNmZnp1z6nGeRLc9y9HvR7pzrHmDFJNqok3Oe41cYox8fdj/jbRytUc3bdiTQkJc31MmiK94zwNcAH7AW3XAf5Wy/AN0wrXcexJuAyvzzjHHt09Av4loggn6Rbh1NjjGOz5VzN+ehfiFn+13AT4EwWmt/CviMs+0M4BW04lIBPMTYysDRQGa0bXkNSBo4zimzIPAN4Ann2tVOhfmms//l6MbM6/wd5pTfenTjWOfstwbYeYxr3kxe5Xbyb0F/vYPu5DLA5wCPI9epjFQGHnLKYRXwH3JeyFHuczxlYBuwp3Mt73SeAeMoA0A9+iV5j1Pe73J+V+fI8hq6www6v7/jbFuNfvk+4shYyY7O6GXgmLw6dP5E5Y+uv7cDjzi/D0ArKx7nGW4kp7N07vM+576zHdpJjiwetOuuBQjk3HsCOMrZfgtaMf+Kcw+fxlEqCqj7w56/k/dDdOdYgW4g/whcntNGZIDvojvk4ChlcbHz7D8L7A1Izra16MbaQHfCW3HaHGdbt7MtjK77n3DucT90x77HJGT8gSPjEehObf0Yz+7v6M4nAOyLbrDfnlfW70ErUJcDT4zz7ofQHcF7gA85Mucqfo+jlRgfWgntY0c93gPdYR3qbP8+uh3JVQby25Vz0O3KCudefwr8qsDzFVIvcz+w9kMrmwc5ZXEK+r30O+ffCnwBXQc/7FwrVxk4DEiiO8YfM1wprHLK4oOOPOc4x3/K2X4sun/Y3dl+MfCPPFnvAcrQ7VY7cPQ4dfxmJm4vC7nmH4Aoup1LAg+g63Epuv04xdm30qkPIXR9/Q3w+7z2cqw2KvscD3fK+gfo+j0jysAA+oXM/n065yUaTxk4CNiWt/0i4OdOehNw7BjXnagzfwD4bM7v9U5l8BR4vHIq06CT/hU7vryXOQ8qmLP/R4CHnPSDwBk5297N2MrAx4CWCcr4UuDveXmvAe/J+X0UsMVJf8OpVOvyjlmHfvneCXgnuObNjF65vwPcl/NS5D+/UxmpDByd8/uzwAPj3Gcqry5lFZe/Ad/I2Xdaz4DxlYEvkfeFitbiT8mR5eK8e/pLTv29a4z7+xLwSyddAcSA2nHKP+GUQQu6oxpLcTs395rOfb59gufbjXaDZe/9vpxt70e/01krS4lzzrICyj3/+Qv6Hdo5J+9gdlgsjnSeeWAcWU20peMx59pN2WfhbN8O7A+cCFyPVk52Q3f8dzv7nICjTOUc91PgkgJlzADhnO13Al8dRdaV6K/Gkpy8y4Gbc8r6/pxtewDxce79JHRH5EErF73AfznbVjlyhXL2v40d9fhrOB258zvklHWuMpDfrmwkx1oI1OK0mxOdr8B6masMXIfzAZOTtwmtbB3uPOdcxe8fDFcGbsDpAJ3nlQZqnN8fBx7Pq4fb2aEM/Bn4ZM52A/0+rs6R9dC8533haHU8532dqL0s5JqH5Gx/BvhSzu8rgCvHKOt9ge6c339j7Dbqa8AdOdvC4z3H7F+hPqTjlFL3F7hvLquBOhHpyckz0WZt0C/Wa1M4L+z4SsiyFV2hl6FNm4Wwv3P949EPNYxujFajtdVmEcnua6ArW/ba23POkytHPp1AlYh4lFKZcfbbnvd7tPurc9L/g37R73Xku14p9R2l1GYROdfZtqeI/BU4TynVNM5186lHmz/Hkmsi2XPlHI07lVInFXCemXwG+awGjheR9+fkedHWhSwtOekY+usdxq+ztwEbHR/i/0N3Ts3jyPF9pdTF+Zkisitam9+AbpA96IYjl+15x/w38El0uSj010dVzi6tOek40KGUsnJ+g77HOsYv93yqHRmfydlf0O95lnalVGKM43HkuAa4RkSCaKvfTSLylFJqI9r8eyRa2X0YrUAdge4gHnZOsxo4KK+t8QC3Fihjt1JqMOf3WPW4DuhSSvXn7bsh53d+3QmM8/6fgn4nMkBGRP7Xybsr51qxnP23o+tgVpah56KUiolIZ97585/bauAuEbFz8ix0uznu+Qqsl/nXOkVEPpeT52NHHW1UTm/lMPQOO/XgeLRrA6XU4yKyDfgo2mWaL6sSkYa8a18lIlfk5Am6fcteZ6x3fDLktpeFXDP/Pcz/vRxAREJoa9bRaMsIQImImDnv7Vjy55fN4Cj1YgSzHaS1Ha19l+X8lSil3pOzfecpnrsJXfhZslp06+i7j47S3Ik2x30tR64k2geTlTuqlNrT2d7Mjhcye+2xeNw513ETiZL3e7T7a3Jk7ldKna+UWgt8ADhPRN7hbLtdKXWoc6xCm2cLQkQiaKvCIznZ+XKNRn5ZTEb5yCX3WtN9BoPoBivL8pz0drRlILdehpVS3ylAxjHrrFKqEf28P4j22d1awPlG4zq0C2QXpVQU7cuWvH2GykpEDgO+iFZAypVSZegvzPxjCmGics+vDx3oRmzPnP1LlQ6MHCHrRCil4kqpa9CWjT2c7KwycJiTfhitDBzBDmVgO/Bw3jONKKXOLFDG8rxAsLHqcRNQISIlefsW+gEyhIisAN4OnCQiLaKHZ38YeI+IVKHreIXTMWTJrfPNaHN/9nxBtHk5l/yy3452ZeWWU8CpuxOdr5B6mX+tb+VdK6SU+pVzrXrJ0c4Y/g7/F1qhvTanbOrRitJo9y65v51rfybv2kGl1D/GkTdLQfV1lPZyOtfM53y0tfsgp6wPz162gGOHtY1O/cmvFyOYbWXgKaBfRL4kIkERMUVkr5yI2RuAb4rILk4E+T4ikhW6Fe1LGYtfAV9whp5E0JH6v57g63s8vgN8WkSWO19z9wJXiEhURAwR2VlEjnD2vRP4vIisEJFydEDOqCiletFKxjUicpyIhETEKyLHiMiISPq8+7tYRKqdhuFr6C9PROR9IrLOeQF60Zq9LSLrReTtTtRtgh0BnuMiIn4ROQD4PboR/vlEx+RxgYiUi8hKtO/u15M8fgQz8AyeB050ynoDupHNchvwfhE5yqmTARE50mmcJ+KXwDtF5P+JiEdEKkVk35ztt6A75r3RcSxToQTtwhoQPdzwzAL2z+CYm0Xka+iGdNIUUO6twAoR8Tn728DPgB+KSA2AiNSLyFGFXlNEznXKP+iU6SnOPWWHBD8MvA3tumhAN75Hoxu47D73ALuKyMnOM/eKyIEisvskZPy66GGOh6ED334zSvlsR5uzL3fqzT5oi8xthd5vDiejY2zWo83A+6J9wA3AR5RSW4GngUsduQ5Gu3iy/BZdj9/qPI9Lmbiz+AnwLRFZDeC0L9lRTROdb6J6md9m/ww4Q0QOctr3sIi811GkHkfX2c87z+qD6ADFLKegAyv3zimbQ4A3icjewJ+AvZ021YN2M+Uq/D8BLhKRPZ37LBWR4ycom9z7GKrj+YzTXk7nmvmUoNvvHhGpQLu7CuW3wPtE5FDnHr5BAX19ocrAH2X42PC7CjnIMWe8D/0g30Br6DeggyVAm5zuRDc+fegI5qCz7VLgFyLSIyL/b5TT34T+8vq7c+4EOtBtSiilXnTOdYGT9XG0Setl9AP/Ldq/BrqS/xUdhf4sEzT6SqkrgPPQASXtaA3ybHRlGovL0A3BC+ggy2edPIBd0JHFA+iX6lql1EPoYJHvoMu5BR38ddE41/iiiPSjXRm3oE1+b80zlxbCH5xjn0e/pDdO8vixmM4z+Cr6C74b+Do6QA8YatCPRX/ZZJ/HBRTwPiiltqGDvc5HmwefRwe+ZrkLxxSbZ96dDP+NNof2o+9zIuXqr8Bf0B3LVvS7UIh7ZyzGK/cH0RHyLSLS4eR9CR049YSI9KHr5vpJXC+G9pe2oOvuWcCHlFKvAyil/oOu6484v/vQgciPZU2mjtn+3ei4gibnXNmgxUJkbHHutQmt8J2hlHplDHk/gg6ga0I/70um6EY9Bf3utuT+oTuV7Bfwx9DukOxonl+jLTcopV5Ct3l3oL8GB9AxQ8lxrnkVOj7lXufdfwId21XI+Saql5eS02YrpZ5GB6dejS7bzWh/PEqpFNqCdir6PToB5x0WkXrgHWj/eW7ZPIOu56copTrQboTvOWWzB7q9zJbNXejnf4fzvP8NHDNOueQyWh2HCdrLaV4znyvRfWEH+hn9pdADned4FrrNa0aXfcO4B+EEb7i4TBURUWiz4eZ5lmMNWin0TsM6NFOyvIY2F06lg3CZY0TkSHRQXiGWoXlFRH4NvKKUGvGlKNpC2oN+H9+YgWvN6PlmE9HzkjSgh4Q+NNH+LiNZChO7uLjMGSLyIbTP8cH5lsWl+HFcHTs77pqj0Rat3+dsf79o12MYPRTwRfRImqleb0bPN5s4br4yxy2ajV94Yp7FKlqKcUYqF5cFiYj8DW2uPNnxU7u4TJflaPN5JfrL90w1fHr1Y9HuUkGbyU9U0zP3zvT5ZpOD0abwrEvrOKVUfPxDXMbCdRO4uLi4uLgscVw3gYuLi4uLyxLHdRPMEVVVVWrNmjXzLYaLi4tLUfHMM890KKWq51uOxY6rDMwRa9as4emnn55vMVxcXFyKChGZzOyiLlPEdRO4uLi4uLgscVxlwMXFxcXFZYnjKgMuLi4uLi5LHFcZcHFxcXFxWeK4yoCLi4uLi8sSZ0kqA85Kdc+JyD3O751E5EkR2Swiv86uVuWsTvVrJ/9JZ/777DkucvI3TWaFtqWAbSs6u5I892IPr20ZoKc3Nd8iubi4uLiMw1IdWngOsJEdy7x+F/ihUuoOEfkJeknS65z/3UqpdSJyorPfCSKyB3p1tD2BOuB+Edk1u4LaUqelLcGnz3+W3j69XtBBB1Rw8RfWU1466oqgLi4uLi7zzJKzDIhes/696KWUEREB3o5ephXgF8BxTvpY5zfO9nc4+x8L3KGUSjqreW1m+FrcS5Z4wuKGX24ZUgQAnnymi6aWxDxK5eLi4uIyHktOGUCvE/1FILuQTCXQk7PsbQNQ76TrcdaFd7b3OvsP5Y9yzBAicrqIPC0iT7e3t8/0fSxIUmmblraRHX9bu6sMuLi4uCxUlpQyICLvA9qUUs/MxfWUUtcrpTYopTZUVy+N2TSjEQ/ve3ftsDyfz2DP3UrnSSIXFxcXl4lYajEDhwAfEJH3AAF0zMBVQJmIeJyv/xVAo7N/I7ASaBARD1AKdObkZ8k9ZkkjIhxyYCXnn7kLd/1fE2WlXj73yZ0pL11qVc3FxcWleFhSLbRS6iLgIgARORL4b6XUx0TkN8CHgTuAU4A/OIfc7fx+3Nn+oFJKicjdwO0i8gN0AOEuwFNzeS8LmdKolw8cVcuRb63C4xFKIt75FsnFxcXFZRyWlDIwDl8C7hCRy4DngBud/BuBW0VkM9CFHkGAUuolEbkTeBnIAGe5IwmGY5pCeZk7esDFxcWlGBCl1HzLsCTYsGGDclctdHFxcZkcIvKMUmrDfMux2FlSAYQuLi4uLi4uI3GVARcXF5dFhmVZWJY1Iu3iMhZuzIDLkqerJ8XAQAav1yAUMiktcQMeXRYmqc4eMv0DI/I9JRF8lWWA7vwbGhoojUaJlJTQ2NhIeXk5kUgEw3C//1xGx1UGXBYtSils28Y0zWHpXDo6k3zuK/9ie2McgHceXs25p6+jzJ062WUBkukf4KFd3jEi/22vPjCkDABUVFTQ3tZGV1cXXp+PUCjkKgIu4+LWDpdFiVKKVCrF4MAAtm0PpXPNpem0za9+3zCkCADc//d2Gprio53SxaUoME2TYDCInjmdYWkXl7FwlQGXRYlt2ySTSTo6Omhvb6epsZFYfHgnn0habH59pMn1je2xuRLTxWXGsSyLxsZGPF4v5RUV9PX2Mjg4iG3bEx/ssmRx3QQuixLTNImEwyTicQYGBjBNk5qammGm0kjYw7uPXMYzL/QM5YnAfnuXjXZKF5eioaqqCr/fj2EY+Hy+obSLy1i4tcNlUaKUIp3JMDg4iMfjwbIs+vv7h7kJRIRDDqrgtI+uprzMy8r6IN/72l5UlLkBhC7FS9ZN4PF4MAxjKO3iMh5uDXGZM5RSKKWG/JfZ9Gz4M7NugmAoRHV1NYMDA8TicSKRyLD9yqI+Tv7wKo49qg4xoLzUO+PyJFM2/f1p4gmLYNCkNOrF63H1cJfJ4ymJ8LZXHxg1P5dcK4BrEXApBFcZcJkzMuk0La2tLF++HKUUrU7a6535L/GsmyAcDut0JEI4EhkxmgDA6zWorJid0QPptMWzL/Tw1e+8TCJpEwmb/M8le7Pn+iiGUfxBXYmkRWdXiof/0c6ymgD77VVGRbk7EmO28FWWDRs14OIyU7jKgMucIYaBAI0NDSjA5/PNapSzkdPxG6MoARNhWdaQ8pCbzkcPW1SY5sgvsN6+DN/4/iskkjp4a2DQ4tL/2cj1V+xHZbl/0jItNN7YOsgZFzyH5cSmrV0d5srL9qHCXZfCxaWocJUBlznDNE0qq6pobmoCdJDTWB3sfJPJZOhob6equhpgKJ3re0119pDq7ScWt7AsRSjoweMRvNEdE8Ck0jb9g5lh525tT7IYJoTrH8jw01veGFIEAF7fOkhDU9xVBlxcigxXGXCZMzLpNK0tLfj8flCKluZm6urrZ8VNMBOk0mmaGht3ZOQt6pXqHeDh9e8ccVzuBDABv0nd8gBNLYmh7bvvUoLPW/wuAqUUqfTI4WrJ5CLQdFwmRf+AjokxRAiFTEJBt2spNtzIEpc5QwyDcCTC8uXLWV5bSygcXrCToXg8HpYtW0YmkyGTybBs2TI8eUpLxhp93HbucO7yMi9XXLo3e64vwTT0sMVvXrjHopjhMFri5aQPrxqWV1nuY+2ayBhHuCxGuntTfP/aV/nQaU9y/Kee5NbfbKe3Lz3fYrlMEld9c5kzPB4PlRUVQ/773PRCI5PJ0NbaimmaiAitbW3U1dUNcxMIEysyIsLK+hDf/dreWJaN12MQXURrH+yzeynXfndffvvHRuqWB/jQe+vdoZmjUMiaAsWIUoqH/9HBA4+0A5DOKG79zTYOeXMFpdHSeZbOZTIsKWVARALA3wE/+t5/q5S6RERuBo4Aep1dT1VKPS/6s/Uq4D1AzMl/1jnXKcDFzv6XKaV+MXd3UrxMN6hvLvF4PFRXV4MI7W1tI9wEpjm6MjDaSK6y6OLsICMRD/vsUcpu60owTUYNonQpfE2BYiOZsnny2a4R+c+92Mteu7nKQDGxpJQBIAm8XSk1ICJe4FER+bOz7QKl1G/z9j8G2MX5Owi4DjhIRCqAS4ANgAKeEZG7lVLdc3IXLrOOx+OhZtmyoQDH3HQWd/j2Dnw+tzCWIn6fwVsOqOCRJzqH5e/vzuJZdCwpZUAppYCsrc7r/Kmxj+BY4BbnuCdEpExEaoEjgfuUUl0AInIfcDTwq9mS3WXuye38Rxv1UOgEMC6zQ3Y2SdM0h6Vd5g4R4fCDq/jXS73c//c2PKZw0odXsaIuON+iuUySJaUMAIiICTwDrAOuUUo9KSJnAt8Ska8BDwAXKqWSQD2wPefwBidvrPwly2LziRZyP+4EMPOHZVl0d3djZTJU19TQ1dWFbdsLerjqYqW81Md5Z+zCmaeuRYBw2EMw4D6DYmPJKQNKKQvYV0TKgLtEZC/gIqAF8AHXA18CvjHda4nI6cDpAKtWrZpg7+JmsflEF9v9TIWF/OUtIkQiEZqbmti2dSu2bVNbW7tgR6csdiJhD5Hw8O5ksX0gLHaWnDKQRSnVIyIPAUcrpb7vZCdF5OfAfzu/G4GVOYetcPIa0a6C3Py/jXKN69HKBRs2bBjPHVGUDAxmaOtI8siTHXzgTW4jvJiwLIvBgQFSqRQVlZUMDAyQTqcpLy9fEAqBYRh4vV78fj+JRAKfz4dvAa/MN1mX0mLoSF2FurhYUsqAiFQDaUcRCALvAr4rIrVKqWZn9MBxwL+dQ+4GzhaRO9ABhL3Ofn8Fvi0i5c5+70ZbF5YMtq1obY+TTFrc9pttHLPnDp3pwLuvxwwFAFAZi9iWBqC4GrK5ILtwk2EYw9ILARHB4/XS0dFBPB4nnU5TWVU132INkXUTJBIJSsvK6OvtpaOjY8G6CSbrUnI7Upe5ZkkpA0At8AsnbsAA7lRK3SMiDzqKggDPA2c4+/8feljhZvTQwk8AKKW6ROSbwD+d/b6RDSacLQZjGZpbE9xzXzP1y4O8/dCaWVtcpxBisTQlIRu/J8Zt124g2Nc+tM0MBXjinR8fcYzbkO1AKUUmk8HKZPD5/ViWNZQeTyEYbdXH2cAwDAKBAKFQiFgshtfrpaSkZEEpK5FIhHAohD8QIBwOY9s2g3EL27IpK12cQzlBT/LT05tGKb3KZrk79bPLDLCklAGl1AvAfqPkv32M/RVw1hjbbgJumlEBx+GVV/s55+IXhn7/9p5GrvvufvO2QpylQAyTdCqBbbcTVKPPxucynFzzr23b2LZNxjBQAT99dprltbVjHmtZFol4nEBQR2pn07PxJZx1E8RisSGFoKuzk/KKigXx5W0YBj6fbyidTBnc/3A71/1iC2tXh7nonPWsqg+NORdEsWLbcOE3/81Lm/oB2HlNmB9+Yx93pUiXabOklIFipa8/zY23bxmW19icYHtTbN4agXDQQ09PimAoQmywHwlFOPI/D6AUiF3Y3PS2rfQXDorSEg8ej+nk2wV/gc6Wb3W2hg2OZf49bONfWb7TynFXRkylUrS2tlJWVkYqnSYei7FylgJTs26CqqoqIiUlJBIJMumFNcVsto4MDGb49lWbeOwpbZx7+T/9nPOVf/HzH22gcpF1ksmUNaQIALy2ZZAHHm3j+PevmEepXBYDrjJQxMxnRKJhQGUZtLX1EwgG6UgMEggGqampIbm9ecLjBwYzPPlMFzfdsYUvn7MryrKIRqOYpkFvby/RaHTY1L9jMZ5v1SiNoJSa0kJI8zFsMJVK4R/DTSAi+Hw+Kquq6OzoAKCuvn7WzPZZN4Fy5MmmF4JVIJ9kyuKJp4d76bp60sTimQWvDIylzCp7dEtbJjPyrd/8+gC2rTCMhWUFcefhKC5cZaAIiJZ4Oe2jazg3x01QXxtgVV1o3mQSEbw+L+UVFZSURLGsDLFYrODjm1sTXPI/G6mq8FFd6WNwsJ14bBCv10s8HicUCg2tCzAVlLMqooiwvLZ2QXZiuYgIXZ2d47oJAOLx+LD0bK74mKtoLJRYgdEQEVatCPHGth31z+sRAv6F/cxhbGX2HVsfGbUjzfhGTubznnctX3CKALjzcBQbrjJQJOy+Swk3/+gA7rm3mfpaHUA4GReBZVlDHWJueqpkv1Q9Hg+maWKaxlDaUxIe1pApBbZSqGCIeMIiGDB56DEdcNjRleKiyzZyxdf3pKujkXQ6TXVNDT6fb1rBcZZlkUFRv2LFgu7IspimyfLlyyd0E8RjMerr60ml03S0t1NSUjLHki48Ksp8fPW83TjnKy/QP5jB4xGCCVxrAAAgAElEQVQuOGvXEePeiwk7lSK0ZqTpf2Aww2UX7sHPbtuCbStOOWEVO60Kz4OELouN4n1blhjhkId1O0U49zO7TPpYy7Lo6emhtLQUERlKF2KGHw8RGeq8smmlFJSE6UslqK6pIZ3O0N3VxWAyzOfPfYHjP7CC4z+wgl3WalOh1yN87lM7MdCvl3UwDIOenh6CweC0O/GsMlEsE9GY4zyPrPK1avXqIX9+Nu0Ca1eHue3aDQwMWoRCJpHQ4pwFLxL2cMRbq9hnT70IUGmJd9EFSbrMD64ysARQSjE4OMjgwABen494LEY4HJ6WGX4iEokEzU1NZDIZPB5twUilFTfevpWDN1Sw756l7L9PKdsa4tQtD5CIDbC8tg6v10NzczOZTGZa8pmmiWEo2lpbF5SbYDp+1IVyDwsRj8egssJPZcV8SzL7iAgV7nBClxnGVQaWAB6Ph7q6OrZt3Uomk6GqunpUM7xt24gIIjIsPRlEBK/XS0VlJR3t2hVQVlHNJ855jkRSB0U9/1IvJx4X5Rtf3IOBQQsrA/X19YgIhmGwYsWKoXNNeG+jdK5KgTcapra0ZGgin4Uyo5vrR3VxcVmIFJUyICIvMk4QvVJqnzkUp2iwLIuuTr3EqGGa9HR3EwqFhpnhbdseCkjzeDxDaa/XOymFQClFOp2mq7MTn89HJpOhp6udy7+yO2dc8C8SSZt9HRNnWamPslGWPJ+Me6DQztWd0W1pEYtniMdtTFPXs4WIZdlFHXHf1ZMiFrPweoVg0CQaWbwTPS0FikoZAN7n/M9OBHSr8/9j8yBL0aCUIplKUVtXh9frHdUMr5Sit6eHVCpFSTRKb08P5RUVznC/ic3TlmU5LgEPKEUgEKCquppMxqK7qwsy4PMKJ31oNbXLF8fypkopLMsasmhk06Zp0teXYmtjnI2v9nPwARWUlXopcRvLOaGrO8VPb3mdhx/voL42yIWfW89Oq0J4PAsjkLS3P80rr/bzlwdb2WPXEt5xeM28mv3TaRuvd0fZFGJF6+hMcs7FL7C1QY/geP+7l/OZU9ZSFnXreLFSVMqAUmorgIi8SymVO5PghSLyLHDh/Ei2sPF4PNTX1YHTaWXTuV/8pmmybPlyGhsa6O3pIRQOF6wI2LbNQH8/XV1d1CxbRjwWI1paimEY+P0mlVXVePotfnH1gZSEPQQC5oIx208HpRQN27dTUlJCSTRKU2Mj5RUV+P1hbGUTCgqPPN7BEQeXY9s2lmVjmgujQ1qsJBIWN/xyC3+6vxWATZsHOPui57n9ugOprPDPs3SQydj85cFWfnzDawDc93Ab9/6tje9dshflc2zB6O5N8dhTnTz1bDeHHlTJm/cvpyzqm9CKlkrb/PJ324cUAYA/3tvCscfUucpAEVNUykAOIiKHKKUec368Fb3WgMsYGDmdujFKB2/bNol4nEwmgxgGiXgcy7IwDGNCN4FhGEOz1LW2tABQEo0OxRz4fB6qK4dXtcVitq+pqaGlpYXe3l78gQCRcBhbCf197fhM4dILdmWgrw3sED5fOcFFpgwsNKVuMJbh70905OVZdHanFoQy0Nuf5vb/3T4sb+Or/QwOWpSP4jKbLfoH0vzwJ5t58FEd1/Pgo+0ce3Qtn/3EWsZ7261MhlRS8Z/XRj7zLdsG2W2dO9S1WClWZeCTwE0iUopeXKgbOG1+RSpulFL09vZSVlZGWXk5Lc3NDA4OFmwdALByZk1Ttj2rC+ksBLJD/LL4fD4Qoac3jc9fTmygjd7uZrxeL2krRCJhEwxM7hoLrbPNZyaUumTKwrIUoWBhzVEiaRGLW4RDJn7f8Lrp8RqsXhGip7d3KE8EShfQF6vHM/KdyIbJ2LZN/6CFzyv4fcaszZERT9hDc31kuee+Fk49cTVjzVpg2zZNTU3U1dfzjsOq+ddLw8t4nz3mUJtxmXGKUhlQSj0DvMlRBlBK9U5wiMsEZN0EoL/0s+nJuAmSiQR19fX09fbS0tLCqtWrxzxGzfFcyrMRqKWUoqmxkUAgQEk0SntbGz6fj0goxGBMj8bQa13p2fBCocm/bovFgjIalqVobU/wi19vpbM7zUnHr2Tn1eFxYys6OpPccPsW/r2xjw37lnPy8auGTTlcWuLlgrN24ewL/0VPXxrDgM+cvBPhKZT9ZClEcSuL+vjUSWv41g83DW1/7zuXEY16SKXS9Pf309ZlsqzKRzwWL3ha7skiAoboBceyTDRfgW3bVFRWIyK8/dBqWtoS/OEvzZSWeDnn9HWLeqXIpUBRKgMi4gc+BKwBPDlBcN+YR7GKntyOfzJj2rNuglA4jMfjobKqinJnaOJYzLXBYLaG9C2vrcXr8SCGgbe+fijd0dGCx+MhFC6jr7cDZQ/gNZfAIPhRGKuTJBjitHNfZmDQYp89oqys85NKZVDKMywYM0tPb4ovf/slXv6PXqhny/YY25tiXPrfuw9TIFbWhfjFjw+gbyBDOGQSDnnmRBkoRHEzTeHQN1dy45X78/Bj7Rx5aDWxmMVzL3Szz+5henu6iYZCDPT1OMs0R2dF1lDQ5Lj31PG/9zQN5X30gyspCXuw+8c+Lrt2Rlmpj09+bA0nHLsCEaGs1Lsgp0R2KZyiVAaAPwC9wDNAcp5lcQFnSmJzRHoxowMk/UNKTzatlGLZsmUYhkHGgkhELyg0WqzGUmCsTvLgf9/HwKBFwG/w3a/uSWdHE35/iFTKpLmp0Vn3omTIVJ5I2kOKQJYnn+kmkbTJNfCYpjgTEM1/jMBolES8rI942WWnCA880sbXv/8KZ522lsGYxZv2KCM+2ANAVc0K/v1KP/vvUz7jMoRDHj5x4hoOf0sVz77Yw0H7VbB6ZVAH9+ZY0bLLbBuGAUE/zU1N1NfXY5jaReOvWJp1ejFSrMrACqXU0fMthMvUMSMhDtv4V0QMRHSjo9c1WPjjq3PJtX7kTn/s82nT9SxYeBcN2Q/JRNLmpl9t5YQP1BAb6KAx1o/f7yccDg/zmXtMwe83SCZ3xKZESzxzbmXKRw8xVZN2ffX2pbnlzm0AmIZw4L5lDPa3YRgGtm3T19vLzmtmzw9fVurlgDeVc8CbhisbuVa0TCZDKpUiEAhg2zaVqdTcm/Vc5oRibar+ISJ7K6VenMxBIhIA/g740ff+W6XUJSKyE3AHUIm2NpyslEo57ohbgAOATuAEpdQW51wXoQMZLeDzSqm/zsytLQ085aVkgn4CAR1Rl0gkCAQCS8KisJiYTiyGx2Owbqcwm98YZNPmAUxP3dA27ygzZEbCHs4+bWeuuO5VQPdJ552xy7wGB9q2TTKZIpmCTMKa3MHC0NwHTa0xfN5yYiKEo8ux0inSqV5Cwfl1LXk8Hm3VyvtzWXwUqzJwKHCqiLyBdhMIoAqYgTAJvF0pNSAiXuBREfkzcB7wQ6XUHSLyE3Qnf53zv1sptU5ETgS+C5wgInsAJwJ7AnXA/SKyq1Jqkq3BzLLQI89zMU2TUCg01ODnppc6g7EMLW0J/vJgKx8+soQjNj1Afvs7FQtKV0+Kx//ZyRvbYhz1tmXULvMTCU+vI51OLIZhwA++sQ+bX+9n371KaW5qwB8IEHWCMf1+/zA3QSBg8q4jqjlo/3K2NcZZszJEtMSDdx4nE7JtRUd7GwBlvsnV3/JSH6efvIYLvv5vfvvHZnZaGeaYd9Tx7Au9rKwPUFtXj8czc8rxVNuHYlnK2mV6FKsycMxUDlI6tDv7NnidPwW8Hfiok/8L4FK0MnCskwb4LXC16B7rWOAOpVQSeENENgNvBh6filwzRSEBTAtJYRjNxO4CL73Sx3mXaKPXr+6CnVaFuOpbb5rWLHXdPSnOv+RFXn1dP/s7ft/A5RfvyaFvrpzXsq8o8/Hm/SuxbZtly5cPfYl66+uH0rlEwl4iYS91C2QWy46uNL5AFfHBVggGOXzjvdgIpmEMKXDjKW777F7KLVdv4P6/txEKeRiI2bxlQ+WsyLqYR6a4TJ+iVAZyZiKsASY1cltETLQrYB1wDfAa0KOUyji7NAD1Troe2O5cMyMivWhXQj3wRM5pc4/JvdbpwOkAq1atmoyYs4bbICxsevpS/Oy2LcPy3tgWo7U9MS1loLM7NaQIZLnxti3stT5K+SxPhVuIK2GsYMyZZigYLi89VXw+IZ2yUErRHh/E6/PiD1YRCHiJlExsdQmHPawNezj95J2mJYeLy3QpSmVARD4AXIE20bcBq4GNaLP9uDim/H1FpAy4C9httuRUSl0PXA+wYcOGOR5ZPz0sS3s8TNMclp4tMhmb3r40AKGgh2BwicYOKLBHiUTLmc9paqcdpfZZthp71a8ZpFBXwmxbijKZDLHBQcKRCEqpofR06nU04qG5qRWvL0ikpJy+nlYMYnT3BpCBfoxEbES83UJ027m4FKUyAHwTeAtwv1JqPxF5G3DSZE6glOoRkYeAg4EyEfE41oEVQKOzWyOwEmgQEQ9Qig4kzOZnyT2m6LEsi472dgzTpLKykvb2djweD+Xl5bOiEAwMZvj74x1c8/PX+PbZK1kWsbHCnmF+8qXSgJaV+vjEiau58LKXhvJW1gWprZnk1IV5VFb42GlViDe27ZhP/hMnrqa81DvqYkuLzTeslCKVStHR0UEylSKZSGBZFuHwWPPtFYbHY7JseS3JlE1jc4raZcvZ3hjnnK8+x8++WMvGQ9474hjXCueyEClWZSCtlOoUEUNEDKXUQyJy5UQHiUi1c2yPiASBd6GDAh8CPoweUXAKeh4DgLud34872x9USikRuRu4XUR+gLZO7AI8NcP3OClSKXvGZvUTEaLRKM3NzQwODKCUoq6+ftY6iPbOJN++Ss/IVmKmeGb/4mxAMxmbnr40tq3Nx2XRqZnf992rjJ9dsR93/7WZ1StCvOuIZVSUT8+UX1Hm49rv7cujT3Tywsu9nPThlZRGvaQ6e0j39Q+tI2E7k0V5ohH8lTM/vn2+EBECgQCVlZV0Ost5r1q1CnOMsZ+2rV+mQibS8fm8+HxQUQ6fOOdZevoypFLTNOW4uMwxxaoM9IhIBD1M8Jci0gYMFnBcLfALJ27AAO5USt0jIi8Dd4jIZcBzwI3O/jcCtzoBgl3oEQQopV4SkTuBl4EMcNZ8jSSIxy0aW+Lc/rvtfPyYMg5/5X4MQ4aZJicbeW4YBj6/H6/PR9oZY+zxeKZkui0kYPHZF3smfd6FRiJp8ewLPXz7yk309KXZc32Ub164BzVVk5/4JhL2sPuuUXbbpWTGzOWWZWGoJO86oop3H1lNIh7H7xdS7YM8vP5dI/Z/26sPwAJTBqYb/GrbNv39/UMTQ/X19VFaVjbM2mVZNu2dKX73p0YSCZsPf6CeZVV+/P7RLWK5MgUtxffPrAagL+MDUlO4y9ljNqbkdlk8FKsycCyQAL4AfAxtvp9wKmKl1AvAfqPkv44eDZCfnwCOH+Nc3wK+NSmpZ4Gm1jinnfsMtg33/q2NgN/gl9cdyLLq0c3KhTQIWTdBJp2mtKyM3p4euru7p+QmKCRgsZCVzpJJm8GOJGWlHrzekTJkMjaxuEUoaM7LuvX9Axm+8u2XSGf0F+VLm/r40c9e5aJzdht3KtxUyqLfmYUvf7+Z9pt3dXWhlCJSUkJPdzdV1dVjNgC2rRiMZeZkGt9CmU7wa9ZNYFkWK1auJJlM0tnRQWnp8El9OrvTfPzsp4nFtW5/973N3PLjDaxaEZqUTLs/9qdCb2tGKERR8laUQkkIwzAwTZN0Oo1hGLOy9oFL8VGUtUApNQggIlHgj/MszryRztj8+vcNw4LLEkmbv/2jgxOOXTHqMYUEc2XdBGXl5Xi9XkLBIIZpzpqbYEVtkA++r467/tQ0LP/Au6/HDGmlxsSm+/UGfBU+guUlw+6hqyfFH/7cxNP/6mHDvuUcd3TtrEfI59PZlRpSBLI8/1IfiYQ1Zofa1ZPi1t9s4/F/drFubZizT9uZ5dOMDRgL0zSpratj+7Zt9HR3E41GCYfDJDr7Rt0/Frf40VWb+Pyn103JurHQEBHMeJJqPKQbWzGAajwkG1qGdZgPPdY+pAgAZDKKO37fwHlnrJuUkunzGmNaE2aDQhQl27Zpa21FKUVFZSVtbW1EwmEqKivdyb5cilMZEJHPAF9HWwdsnEmHgLXzKddcIzBq1H1ompH4hmHgDwSG/Mi56dmgNOrl9JN24qQPrSTY285GJ98MBXjinR8fsf8Rm3Y0cH39aS6/ahOPP90FwL9e6uU/m/v58rnrx139bqaprPBhmoKVswzcXrtFx+wQBmMZfnzDa9z3sJ6wpqE5zquvD3Ddd/ebdnzAaFiWRTweH1pWOhaL4QuUoKwdmmSu8uXzwWnv8JPc1kjcLiNYU/yLLFn9gxN2mN5RVu7zeGTEiICJKC/z4SkJLyizvGmaLK+tpbGhgdaWFvx+v6sIuAxRlMoA8N/AXkqpjvkWZD7xeAxOPG4F//dAK3Hna6aqwsdbN0y/4Z7rWcciYQ+RsIeUlOxYJCU9VhiGngu+py9NKmUNKQJZHn2qk3hi+OI1s00kbPL1L+7Od360iYFBi3U7hfnCZ9YRCY/+iiWSFg8+Onw9+cbmBLGExWx1uz3d3VRUVBApKaG5qYl4LI7kzPM/lvJ1+Cv3wyJQBgrh8IOruOlXW+lxhrn6/QYnHLcC05zcOyAC/qpyqFo4cRd6DQUL2zElWpblLLHt4lK8ysBrQGzCvZYANVV+fnntBh57qpOA3+TA/coX7GpthZDrxhh4vWHUfUSEVzb387XvvszF5+2Gz2cMi972+4wR0/fONsGAh0MOrOS2aw8kk1H4fca4rgpBqKny09yaGMozDfB7Z0dw0zSpq9fzYrV1pgmEqvnn893UhQx2f+xPGIbgLxu9OVhKk0NWlPv4+Y8O4MFH20kkLY46chmVs2CpmQ9s26a9rY1AIEBVdTXNTU10d3W51gEXoHiVgYvQixU9Sc4Sxkqpz8+fSPODaRrUVAX4r/eMmABxxrBtG6UUpmkOSxfCdCKYx+rQlVJc8PUX6evP8NAj7Xzsgyv5+R1bAbj6op2oL1MEe9uJ5bjD52KeAq/XoKpARays1MuFn9uV8y99kUxGsX7nCBd+fj2JpEV7Z5JI2EMwMLMN9NAzU2k+eubTxBM7FKhl1X5+cfHodWihTBU9F9HwhiFUV/rHjLmZD5lmiqybQADT46Guvl6nXUXAheJVBn4KPAi8iI4ZcJklbNse8jWHQiES8Ti2UgSDwYIakeksZDMWSkFfv549+q4/N3HmqWu58pv70NKeYG1Nhkd2H32o3FzNU1BIZLdhCHvtFuXOnx1Ea0eCaMTLeV97gdb2JF6P8IUz1vHOw2vw+2RURWw6HXQoaLLf3mX845873Cuf+fhOGEZ61P0XiC4wK3VpuiwUmQpVSnJHDkxnFIFlWWTSabw+H0qpofRim6xqKVGsyoBXKXXefAuxFFBKkUom6e7uJhyJMDgwQGlpKcHg1BaKGRjMEHeWeg0FzVEj7RNJi4HBDMFgaNQV+wiGKAl76B/MoBRc+/PX2XevUi7/yp6YHa1TkmuyWJaNbWtrQD6FDoHz+01q/CaBgMHFl79Ma7s2cqUziiuufZUj31qNbSVob2ujrq6OWCxGT08Pq1avHqGIWZY1lJebHo3SqJeLPr+eja/2s2nzAIe9pVIPRe1omVJZzBexeIa+/gxbG2KsrAsSLfGOGaMB0/+KtywLAQxniu5seiEwl0qJUop4PE5bayvVNTXEYzEGBwdZtXr1nFzfZXYoVmXgz84iQH9kuJuga+xDXKaCaZqUlpYSTyQYHBjA7/dTXl4+pUawpzfF1Te9xr1/a0OAY4+p47SPrKasdIdPtn8gw18fauG6X7xBMmmz396lXHrBHsP8tum0zeUX78nF33mZnt409bUBvnjWrpREvMQKCCmdzuQ1tq1o70zymz820tmV4vj317N6ZWha4/FTKZvXtgyXx7KhrSPJTquCBINBGhv1bNc1NTUjjs9kMnR0dFBVWQkiQ2mPd+zRFOVlPt56YCVvPXDHCnmp5OyYvLMWjaw1I5su5CtyrGdlRsI88UqaS763cWjmzfPP3IVj3r6MwBjulel0mJZl0djYSEVFBYFAgKamJiorKwkGg0vua1hECAaDREtLaW/To2Hq6uoWjDvJZWoUqzLwEef/RTl5S25oYaFkG9TsfAS5S6tO3PnZxBMJEvE4Hq+XZDJJLB4v2E2Qy9P/6uEvD7YN/f7dn5o45MBKDjpgR6R6T2+KK69/bej3cy/2cvvvtvGZj6/F53yFe70Ge+8e5eYfHUA6nQ3WK3wY4XQmr+nqSfHJc58dija/7+E2rr78Tey719S/ykJBkzfvVzE0zBAg4DcoK9X35M3p1McyxaZTKRqbmjCcKYWnEiM+W1+XViZDQ0MDy5YvR0RoaW6mfsUKfL6JA/PGelZHbLqfK67bNmwK7qtveo3DDqocUxmYLiWRCG2trXq6Zo8Hv9+/5BSBXLILmAFY011Jy2XeKUplQCnlrvc5CdJ9A/xt12nM3JZMUlpaSnlFBb09PSQTiUm7CWxb8cTTIw03/3y+a5gy8NqWkbNKP/9iL7FYBl+OBcE0Cw/Wm0le2tQ3pAhkueXObeyyNjJl60Ao6OGs09YSi2d4/Oku6pYF+coX1lMW9RCPx+nt7aWqqopYLEZTY+MIN4HH42HZ8uU0bN+OBdTW1o7rD57utL6TxTBNSkpKaGluBiASiWCIQTJpTXliHgX09mWG5SWTNhlrdobKmaZJNBqlu7t7aBbHpaoIZN0EscFBamtriTkuA9dNUNwUpTIgIiHgPGCVUup0EdkFWK+UumeeRVuQZBddmQqmaRJ1pmw1DGMoPVmrgGEIhxxUyV8eGu7Tf8sBlcN+r9tppEl6w77lBNODxLa0jdiW34HNdnR3wDfyvgN+gwLWsxmXqgo/Xz1vd5IpGxEoL/UOmWNr6+rw+XyEIxFSqZHz3WcyGdpaW/UskSK0t7dTV1c3pptgOpaRqSAihMJh+vr08I5gKMxD/+jgkSe6+OgHV7JqRZBQcHJNkYjwlgMqeOKZHQrmbruUEPDPTgeddRN4vF6CgQDdXV34fL4l7SZYsXIlpmni8/uJRqOum6DIKUplAPg58AzwVud3I/AbwFUGRiGVHt2EZyuwLQsxDL1iXU46l9yOfzrDkPbbu4zjjqnlj/e2YAh8+AP17LJ2eCddVurlS5/blR/f8BqxuMXBGyo44dgVWL1tBXVgE5m6bdsephzlzronPi+Dm/UQRQxBnEY+V+HYZW2ElXVBtjfF9TaP8MmPrSGY05lNVSHREy8NzzNNk4AzAyQwLJ2LYRjUO2b4ttbWKbkJZgsrk6GluZlwJIIgtLe1csDetdz1fy18+vxnueEH+7N+XQm9/Wn6BzL0D6SpqfQPiyXJxxC46Jz13HLnVp5+voe9do/yqY+tGfeY6VJaVkY4HEZE8Pn9S9pNYJrmjLULLguDYlUGdlZKnSAiHwFQSsXEVUvHxDPKFKugpzPu6+8nFArhMc2htNfrnRUtvyzq5cxT13LKCdqcGA6ZI74II2EPRx25jIM3VGDb+qs7WuIl1jszMhiGMWxZ2txZ995y/y2jzsCXq3BUlPu45jv78s/nu+nsTvG2Q6pHTB8807733Gcx2nPJugmyDXJuejaYrJvBME2qa2oIhUK0dyQpifrY0pBg43/6UApu/912zj19Hdff+gZ/vFePaCiNevjJ9/ajcsTZdlBZ7uOzn1jLYMwiFDBnLVYAdGdXkuMaKCliN8HAYIZk0iIc9hCYw/UTXBY2xaoMpEQkiHYdIiI7kzOqYLGTnU7UMIxh6bEYaypVEYgNDtLT3U0wGGRwcBCPxzPl5YoLIRzyTOhb9/lmNx7AjIQ5YtN92LbNVJrzinIfR71t2YzLNR3m8ittsm4G0zSJRCKICC++0s9Lr/Txh780k84oPvjeWkJBk97+NF6vUBr10NuXobcvw9U3vcalZ6wY18ri95n4R3HdzAZzPUX3bNDUGueq6zez+Y1BDt5QwWkfWTMra2G4FB/FqgxcAvwFWCkivwQOAU6dV4lmic7uFPGEhd9nEAl5CAQMkskkba2t1NXXk+npI93bPyJgLPcrzVca4YhND2ArhVJ62lvDEDwlEZaXR9m2dSuDg4NES0sJhUJF29AVgm3bpPwe2lWaiqpKpHOGTA6LnP6BDC1tCR59soPj9p98/cgql/vvU85Pb3mDdEZxwVnreOuGCNGSEH39GU7+0DL+65hazv7yC/T2ZWhsThD3hqlYs3Dm9y9murpTnPuVF2hypsD+/Z+b6etP86XPrR+moNuWhUIrcbnpsZjrgFSX2aEolQGl1H0i8izwFrS1+5zFuGhRU0uccy/WL6/XI3zuUztz9NuW4fN5MU2Thu3bqbQNHtn9qBHH5n6ljWW2tiyL3t5ebNvGNE0G+vuJRqOz5iZYCBiGQTAYZHltLYFAgETPyEZssTPZmAbLUjz2zw4u+8EmAI7YeepTX1eW+/jp9/fnpVd6efN+ZbQ0N5BK9BMIBunt7aGktIrDDqrknvtaedcRNUQjRdlELUhiCWtIEQC9uNZTz3UPW2bbtixi8TjxeJyKigriOemxFIK5Dkh1mR2K7k0TEQ9wDLCbk7UR6Cnw2JXALcAytIvheqXUVSJyKfBpILuM3JeVUv/nHHMR8EnAAj6vlPqrk380cBVgAjcopb4z/bvbwcBghh/+dPPQy5vOKH7408289cBKaqp8RKNROjqmr//EYzFqamoIhkK0trSQSqVm1U0wVWZylIDH45n2lL4LFaXUCDfSYMyiuydDScRDRblv0jENvX1pfnbrlqHf05lgCbRCcPjB1SilqK+vZ/v27SSTSUrLynnpP0n++XwPp56wimOPrsXjWbxWqrnG7zOGltkuL/Ny9bf3BsD0CJlMBgHEMDANg7pVIE0AACAASURBVP6+PpKJBKlUivJy1zKzFCgqZUBE6tFrEjQDz6GtAu8DrhCRtymlmiY4RQY4Xyn1rIiUAM+IyH3Oth8qpb6fd709gBOBPYE64H4R2dXZfA3wLqAB+KeI3K2Uenn6d6lJJi1efX34V6tSkEpbJJNJOjo6tB+2PzHGGSbGNE2WLV8+Ir0Q3QSzFZSXq2QYPh9HbrxX75A3mqBYsCyLhu3bqaqqwuvz0dzURKSkihtv38ZLm/q55rv7srw6MKlzKhRJZ1XI445ZTig4dv2wbbvg+qMVlR2LjyYScd5ywDL22r2UkrB31Kmei4ns8sAiMiw9X4RDJp89dS0/vvE1vn/JXniNfpRSlISX09LcjMfjoaq6Gr/fTyQSYWBgAI/HQ2lZ2ZTbhNz6MJm64TL3FJUyAHwLuE4pdWVupoh8HrgcOGW8g5VSzWhFAqVUv4hsBMazeR4L3KGUSgJviMhm4M3Ots1Kqded69/h7DtjykAo5OGgAyr403075ov3eYVw0IPXa1JZWUmkpIRkvHla11nqw4MWykIzuUzHBysilJaW0uZME+v1BejpUzz1XDcDgxY33PoG539210mtiBgt8fKRD67gup+/wRvb4hiRKg7b+NehKYWVUhiGgRkJM9DfTzgSGbMu5d+bkclQY/jwRsM09/eSTicpLw0VvdVGKUU6rSen8nq9w9JKqSmvAjodQkEP733XMg4/uIpYPE1FZSUtzU1s3bIFwzSHprqOxeMMDAwQDAaJx+N0dnaO6yYYC9tW9Pb2Ei0pARH6+/spiUQwp7FAksvsUWxP5S1KqVPzM5VSPxKRTZM5kYisAfYDnkQHIJ4tIh8HnkZbD7rRisITOYc1sEN52J6Xf9Ao1zgdOB1g1apVkxGPYMDk9JPX0N+f5tGnOllWHeAr564nEvGSziiUBLnhl1v50IFz34HHExaxWAa/zyQyhz7dhbxQzEwyHR+sYRiEIxG6u7v1bzPAU09pRQDgjW0xEklrUsqA12PwvnfWsmZFmP/P3nnHyVXVjfs5907vO9tLKiQhIY2QAtISQLp0AUFBUcEXeBELKihFEAVBJeJPmkaKSEek+VKCEQggEEBKKCGkbe+7M7s75d57fn/cmclsts32nc08n88k55655dzZmXu+51uf/VcdNR028gJedEPH5XRSX1+P1+0j0mmuNN2evjUp/d3blKlTEUJkvSAA5iq4ubmZSFcXwfx8mpuacDgcFBQWmim9OzoI5ucTiURS7f4m245Ojc4u82/YW0hupnjcVjxuK+BA17SUQGJRVZSE6UxVFPKCQXw+H7FolEh06IFaba2tdHZ2YlFVOjs7zSRNk9REl+1kmzDQ1c97nf281w0hhAd4FLhEStkuhLgVuBbTj+Ba4DfAucMZKICU8g7gDoClS5cOOg9Mfp6dyy/Zi2hURwhBXsB07Pt0c5hvf38DugEr9pzB3q89Q0HQ3q2632iptptaYtxx7xZe39DM7Jkevnf+npQW954IZyTRdZ36ujrcbjfuRI54j8eDy+3eLTUafaHrOtVVVTgcDmx2O+1trRxxSBEffxbmxVcaOfSgwiE55fl9Vg5Yns/yffzEY1Fqa1txuVxouk4gL4/WhPDRW0XFTJlMf0dVVSksLKSmuprGhgasNhuFRUUpbUooFCIajRKLxfAnsnr2RWtbjFvv3sL/ra1FUQSnnVjBmSdNwe/LvB7HrkQbW4i1teOXElWxoUd1OrdWYvP7sAf92Ox2VFXFnvge9fe3STe1CZsVvTMCEoSUFAoLelcc4VLxFBdPaufkbCfbhAG/EOLkXvoF4MvkBEIIK6YgcJ+U8jEAKWVd2vt3sjOTYRUwJe3wikQf/fSPKGZWup1/ps4ujbse2IqeSCp40a+2AHDd5fM4ZP/C0RhCinCHxu9u+5R1rzYB8FpzM1t3vMftN+4zJrHKLpeLxsZGREcEd2cMJdpGtLk99X4ulMk0E+QXFOB0OjEkWK12WtsFH20KccaJFRx7eEmfeScywWJRkdJKXl4ePr8fwzCoralJ2cVD7e34/P5JNbEPBSkluq6jaWb9BE3T0DUNq82G3W7H6/USCoVQVZW8YLBfW/p/3m5JmQt1Q3LfIzvYb0mQfRYM/buuhzt4aa8jevSv2rQWe8FOh8FMbPzpprbw5zv499ye5z3oo2dpkzoOux1yfgMTkmwTBv4NfKmP914a6OBElsI/Ax9JKX+b1l+a8CcAOAn4INF+AvibEOK3mA6Es4A3MIWPWUKIGZhCwBnAmYO/naHRm4pBjkH+2WjM4KXXm7r11dRF6IzoBPs4ZqRQVRWvz0drayuys2vAcMrdFVVVcbvdqYe4xetGonHbr/fB67FgG2aCHiEEVqsVn9+PEIJYLIaUkilTpxLp6qK5uTlVv2J3JmkmsNlsFJeUUFdbS3Nzc8pMEAqFzNDWSITGxkby+zATxDWDV99s6tH/5jstwxIGRou+nkOqaiEej6Ppes5MMEHJKmFASvkNACHEDCnllvT3EhPzQBwAfA14XwjxbqLvcuArQojFmPPsVuD8xPU+FEI8hOkYqAEXSin1xPUuAp7FDC1cI6X8cJi3lxEup4VzTp/G+jeaUiWJ8/NsLNgrI8XIsBACSoocVNfujGCwWAR22+hL+kkzgWEYCLF7rzoHYtdMeSOdr18IkZq4HA4H5RUVqKqK0+Wi3OXa7bUCYAplBQUFqc8qGamTNBP4AwECgQCxWIzOzr4tnFaLwn5Lg6x9uaFb/76LJ54gAHRL9Z2OEDAl4TeVEwQmJlklDKTxKLBkl75HgH37O0hK+Qrmqn5XnunnmOswoxh27X+mv+NGk2nlLu65ZSl/f6aaYJ6NYw4vGRM1fZ7fyk8vmcP3rnyfWKK63kXnzhx23HmmOF1uHM4AesOkyy/VjdGuvDiSDDYaJRvuTUqZmrDS24MlPSto+mdjt9ux2WymTT6t3Rf77xvkqFVFPPfveoQQnHpcGXtMd/e5/0QlF1Y4sckqYUAIsRdmzP+uvgM+YHDB01lAfyFm06cG+N53Zo3peIQQzJ3l46E7llPfGCU/aMPjsuByjuxKsLfY5NZ2nXXrQ7z6RjMXHuca9Dl1XcfQdSxWq1m5MNGeiKuU8Qx31HXTY11NRGwk2yPFRAnl7Ou3pXrcGC47NrtZGyMWjQ7oQDdYBlvjIOC3ccn5szjv7JkIAS6XinuI0QSjzQT8OeXIkIn5jeqbOZhJhgJ09x0IYWYQnFRMxDSfNptCQb6dgvzRKSSk6zqhUChV2CbZjnTp/O72zQADCgPxuEG4Q8PlVLHbzdCp9vZ2WltaKC0ro6WlhVg0mgplGwkmQ352XdfpCJv34PF6U+3+8gakk8x+qKpqt/ZgGYvPsq/f1spP11LX1ozP50NVVVpaWigrLx9308eujsTDZbQ0NNmg+cnRO1klDEgp/wH8Qwixv5TytfEeT45RQEra29pob2/HYbcTDoex2Wy40x6E7ZqNueufxmJRCAZsKedki9dDc2uMB/9RyX/eambeHB/f+Mo0CvPt+Hw+ujo7qa6qQghBWXn5iGoFJqLgNhQk0NTYSDgcJhKJkF9QkNlxiSQ7jQ0NFBUXY+g6jY2NFBUX9yiiNRDj+VkKQcrhDyC/oACbbXyr+o2GcDRaGpqJovnJMXiyShhI4zMhxOXAdNLuQUo57NwAOcYX1WKhrLyc7du2EY6bWdIcDge6oXPGieU88HgVF/1qC1aLYPV1i5g6c6fnerhD4+Y/fMqLr5jOVp9t7eDjz0L85ucL8HkmhgfzaKvhh4OqqngTGoFIJILD4cDr9Wakyk4mC4rH41RXVaHrOnbH6OefGA3isVi3thyLUJ1+mCyCZo6JTbYKA/8AXgZewCwglGOSkKykCKY9tb29HY/Hg9dj5ezTpvGlI8uorY8wc6ob3y5JVyJRnXWvdve6/nRzGIsK7e3tRCIRSsvKaG1pobamZkTNBJneW2dnJ4Zh4PV6U21Phmr4sRhfuiAQiUQGTC+cjsViIT8/P5UKuaioaELcVzrRmEG4I47d6P19KUmFAFosFmpravB4vd3uI9OVelwzaGuPE4kYOBwKfp8Va67wUo4JSrYKAy4p5Y/HexA5RgEp6ezooLikBLvdTk11NbFYDEVR8Hmt+LxWplX07jMghJkpr6U1nuqzWATRmCTP78PtdmO1WikqLjbTGY/DqlUaBk2NjXR0dBDp6iIvONoZGgaHxFSNJ5PiZLomTpkJGhux2e3omkZtTQ0lpaWDNhOMFm3tMR78RxVPPFvDH79X0us+QphZFJPakPR2kkxW6rou+fjTED+69gNCYbNi5A1XzGfvOT5UNfu0JZpuoCqTI1V0jt6ZGL/SwfOUEOKYZJnhycru6IyjWiyUl5dDIh47vT0QAZ+VH3xnFlfcsDGV/OSbZ03H5VRRVTW1uktvjyWqqpqOeR0ddHV1Ybfb8fv9EybkSlVVPIm6AoqipNqZfFZJM4HL5SK/oADDMGhpbp4wk4dhSNa+3MA9D20HoDlqYe76pynMt3ebnC1eTzfhZah/m9a2OD+7YSOhsJmBMBTWuOL6jay5eQn5wdFxvu2LtvYYDU0xauoizN7DQ8BnxW7v/jftS9shXC4+rBE8/Xwts2Z6OPbwEqSUWK3KmIUU5xgbsvWv+V3gciFEDIhh5g6QUsrRz7wzhuyuzjjpxYcGU4hIVRWW75PHQ3euYPPWMFMrXOT5rUMu6jIYMhHckmaCpCCQzEQ3UcwEMLwqllarlfyCgpSwlWwPll0/SynBkBLD7qKxOUqe3zbo1XW4Q+OFl+pT28k03lf+YC+OWFk86DEORFwzaGqOdetraokR18bW/6A9FOe2u7fw5HOmQ6SqCm755SIWzuueJTLWFubfc3pqO1a89xyX/GwrigIHLM/nmbW1vPBSPcWFdv7nnJmUlTgBo9cokoki5ObIjKwUBqSU3vEeQ46JictlweWyUFo8tmknMhXcpGGQFwzi9/sJh0LoRh/G6yxlJEpip3+WkajO+v80cd3qT4jFDAJ+Kzdfu5A9ZwxOO+awK+wx3c17G9u79U8tH3zOikyw2RSmT3GxdcfO7IJTyp3YhpCtczgawo5OPSUIgGm++O2tm/jdLxaSl8hMGYnqdHZpfRxv9n9hWT41dRFuv8cUoj75LMzb77Xy4J3LsVl0aqqrKS4uJhaP09Lc3Kt5JcfEJiv/WsLkq0KIKxLbU4QQy8d7XDly9Ieqqrg9Hnw+X6rUcDKefSTp7NJoaIpS1xChrT0+8AEZEGtqpXNrZY9XrKl1RM7fF+GwlhIEwFS/X/vbj2lpjQ1wZHdsNpWvfXka5aU7hcSjDy2mpHh0VPbBgI3rfzafOXuaE/acPTz8+sr5BAODD1O05QdwTa/o8cpE+OyK9PSvbm6NYeg7NRThDo2Ozt79sEUiYeuKJXmsTdOsmMfpbNrcgc1mw+f3U1dXR0tzM4WFhRPGPJQjc7JSMwD8ETCAQzFLDoeB/wcsG89B7W5MhkQ7Y81IrJz7oy0U5+EnKvnrIzvQNMmKJXn89Ht7DWkSSme8wtu6onpKEEiyZXsHxhDC/YoK7Nx6wz6Ewho2m4LbpeLzDr4McKYr9YoyJ7+5egGaLrGoYtA1InRdT31H0tuDwe+zUlRgp74xmuo77osleHe5774+Tk+i3HV7SDNTnm/t6PZ+wG+eR03PqpgrRJSVZKswsEJKuUQI8Q6AlLJFCDG+mUF2QyZ6/LOUkpbWOJGojs2m4PNYh6SmHW+aW2KEOzVsVgWXs/8JrLY+wl0PbE9t/+ftFp5+roYzT5kyrNLF44XLqRLwW2lt26nhWLY4D5t1aPcSzLOl6niEwnHqG6MIAR6XBaczM6c6i9eDa3pFRtcbapEoTdNoaWkhGAya3+NEOxOBIH3cTuDun5UT7tBo02y8u93gqFXF3T4/l1NF6yOluN2mcPct+7Lh3RbOP3sG73/URlfEFM6+sDxISZGdWCxGS0sLBYWFxGIx6mprc2aCLCRbhYG4MEvXSQAhRCGmpiBHjhRVNV18/6r3qa6N4HKq/Ox7c1ixJNjDk3oi0NfEI50uLrjiMyprugD40hElnH/OTAK+3gWCjZ+EevRteL+Nk44tx+POvoez32dj9S8Wcu1vP+bzbR0sW5zHTy6eg9cz+BV9Oi1tMW6+/TNefKUBiyo465QpfPn4Cvxpn+t4CbtSSnRdJxwKEY/F0DQNIUTGyY/6Gvchn6xl1qKKHs6XLqcFUexj/w+eJxLVsdsU7DYVRTEFnz3yPewx3UNcM/jbbcvZ9HmY/KCN4gI7HrcVXTejfixWK263G28ilXiO7CJbhYHfA38HioQQ1wGnAj8b3yFNHiaD+r+tPc4vV3+aKrfc2aVz9Y0f8eCdKyicgMJAXw/wfd9+NiUIADz5XC0nHlPWpzCwcF7PgJr9lwZxOsb+nnsrODVYLKpgj+kefnftQgxDYrMqwxYEDEOy7pXGVFnguCa568Ht7L8sv5swMF4IIbDZbBQWFVFfVweY+Q6Gm69BUegzCsNZFMRZFETXjT41SFaLQmG+ncJd6pLsGqo7USJjcgyOrBQGpJT3CSE2AIdhhhWeKKX8aJyHlVWEOzTicQOf19rjATHR1f+ZoOkGH3/WfZUci0s6u7IrYWVc66nw2l7ZxZw9eg+oKSqwc/G39+DOv27lxu9Npcit4/NAdEdVap+xEOp0Xae9vR2fzxROku2hThR5Q1S390Y0ZvD6huYe/e9+0MrecyZGdLKu6zQ3NaGqZqGthoaGMcnomI2mpBwjQ1YKA0KIIFAP3J/WZ5VSjozr9CRG0wwqq7u4Zc1mGptiHPfFEo5YWTwhVkRDxUiE5ymKkmrbrAr7LPDznw0tqf2cThW3a+KsWtI1MFLrXUhx7qLFUBSYv1ffkbVej5UTjizl0AMKsbfV89Kco3rsMxShLlOnuZa2GLou8RgdqK3tdDaboXyqlERaO7D6xl+7ZLcp7LdvkPVvNnXr32fBxBB0k2YCRVEoKS1F13Ua6uvHvUZCjslNVgoDwNvAFKAFUzMQAGqFEHXAt6WUG3o7SAgxBbgHKMb0N7hDSrk6IVw8iFn4aCtwWsIpUQCrgWOATuDrUsq3E+c6h52miV9IKe8ejRsdaVrb43z7h+/QlVghr75zM0LASceUDzqRy3hmSNQ0M/5ZURQiEdMUkMynLwC3y8GPLpzNz2/6iPc2tlNcaOeqH87F7x37r3xfxYnSNTD7vXBPr8c6HCpnnTKFJ56tIeCzcsn5exLwdV8l92bWcQEy42TCA5NJHoXmlhiXXfcBH34S4pFfTmPDkiN77DMRtEuKIlh1YAHvbmzlxZcbsFoEZ506lfIS57iOK0nSTFBaVpZSwSfbOXKMFtkqDDwPPCKlfBZACHEEcArwF8ywwxV9HKcBP5BSvi2E8AIbhBDPA18H1koprxdC/AT4CfBj4GhgVuK1ArgVWJEQHq4ClmIKFRuEEE9IKVt6XHGYjITdNZ0t2zpSgkCSp56r5bCDisgbZPjZeGVI1HU9VWK2qLiYjnCYUCiE1+cj1N6O3+/HZrdTXOjglz+dTzxuoCimqllRhubYFO7Q6OzScOud0NnJrv5Rfane9UQpX1VRCObn09jQgMViIZCXl9F1FQW+eeY0Tju+AqFAnt/awzmrL7POyo+ey/wGh4mmGTz2dBUffhLC67bg6sM7faIQ8Nu49ILZXPiNPcxoArelh1/FeAq7QojU5J/ezoTdMY15juGTrcLAflLKbyc3pJTPCSFuklKeL4ToM4uIlLIGqEm0Q0KIj4By4ARgZWK3u4F1mMLACcA90tTPvS6ECAghShP7Pi+lbAZICBRHkWa2GAk0TSMajeJ0OjEMw2w7HINK0bsrybCqdAoL7FiHGKo1HiiKQmFREdVVVezYvp3yigpisRih9nbsDgeBvLzUw7MvR7vB0NoeY83923jh33U8cO00Xt7r8B779LXiFULg9XqprakhHA4jpaS0rKzHhK53RlLaAXt5MUK1IERCyLCp5AeHN7kue+IOVJeZcEdqOp1bK4GR8x+IRHU++Ng0CcyY5iYboso8bgsed9+PwGxNB56t484xvmSrMFAjhPgx8EBi+3SgPhFumFGIoRBiOrAP8B+gOCEoANRimhHAFBR2pB1Wmejrq3/Xa5wHnAcwderUTIaVwjAMOjo6aGpsJC8YJNTejhCCsvIelxkU+UEbh+yfz79fM+2lLqfKRefO7PZQnOgrCyEESqIwjtfrJR6PE41GUVWVaCRCLBrF7nCMWJzzth2dPPZUNXa7gjQGp3pXFAW73Y7NZiMWi+FwOLBarT3G9ubx56XaB3/8HM2KTsWUKX3eg2EYSCkzDuFSXQ5eP/zsHv0jpbZ3OS0cvH8Bb/23lfc2ttEe8g98UI4cOSYM2SoMnImppn88sb0eOANQgdMGOlgI4QEeBS6RUranP1CllFIIMSLGVinlHcAdAEuXLh3UOZNV42LRqFn9TVGYMmVKv+pCKSVNLTHefs9MEbtkYYD8PFu3CSPgs3HphbM598wYLa1xpk9xkRfovnqe6CsLXdepq6tDURT8gQBtra14vV7yCwpoamqis7MTm31k0sx2dum8n8hnH40atA4yvW/STBCPx/H7/bS1tdHa0tKvmUBVVYpL+k/pqsXjVFVVUVJa2qdjmepypoS6vhwURwpFERx6YCFbd3Ty1HM1PbIG5siRY2KTlcKAlLIR+N/kthDCAXxJSvkw8Fl/xwohrJiCwH1SyscS3XVCiFIpZU3CDJBMwl2F6aiYpCLRV8VOs0Kyf92Qb6gPpJR0dZkx5tIwiEQiuJzOPs0Ejc0xvnnJBppbzQkr4Lfyl9X79ogLDvhtQ86MNhFImgkURUFVVQJ5eaa2QFEIBoPA8GOdO7s0Nm/t4OEnKjn+yDIAPG61X7+KZHIYVVVT7aT2wu/3Y7PZcLpcKIqCEKJfDYzVZutXGFAtFtxuNzXV1RTI3u/ViMVSmfKSZoHRJOC38T/nzOSc06fijHdQNE7apcmQJyNHjrEmK4UBgIRJ4EjgK8AXgVeAhwc4RgB/Bj6SUv427a0ngHOA6xP//yOt/yIhxAOYDoRtCYHhWeCXQojk8u4I4LIRubEESTMBQjBt+nTa29poaW7G2Y+Z4Ll1dSlBAMyiLs+sreWc06aN5NDGnaS3dRKrdadmY6Q8rusbo1zw43eREubv5edbZ03n0aeq+g3vqq6qwuFwkBcMUl1Vhc/nwx8I4HCYtnpFUbq1h6OBEULgdrsJh8MIl4OVn77QQ3gYD7OO06km0vrageCYXx8mR56MHDnGmqwTBoQQh2CaCY4B3gAOAGZKKTv7PdDkAOBrwPtCiHcTfZdjCgEPCSG+CWxjp6nhmcR1PsMMLfwGgJSyWQhxLfBmYr9rks6EI0XSTJCsde/z+/H5/f1Odm3tPcuQjlTVut2Np56vTRVvueXPmznm8BJuunoBVm+clZ+u7RFNoHrdFLoc1FRXEw6HsdlseBPVCdMZKT8GLR6nrq4Or9dLp5R0GDGmTJmC1Za9Gp8cOXKMH1klDAghKoHtmCF+P0xEBGzJUBBASvkK0JfutcdSIhFFcGEf51oDrMlo4ENksCk+v3RkCQ/+oxI9UZ5UVeDEo8tGbXyTmZLCnaYVKeHp52uZVu5izilT6GvFG4/HUznkLdaeIYAjiWqxUFhUhMvlAsDlcvUbZTLRnUJz5MgxvmSVMAA8ApyIGT2gCyH+ASOYWSXLKcy385ebl3DPw9uREs4+bSpFBaNTr30wjHSuhLFg1QGFPPSPKqrrzIRGxYV2jlhV1Of+hmFQU12N1WolEAhQX19Pu82GPxAYlftVVRVPWkEYzwDFYSa6U2iOHDnGF5FtKS4Tdv+VmL4CxwB+4JvAM1LKnl5DE4SlS5fKt956a0yuFYmanuOOCVCQR9d1Ojs7UyvYZDsbsqk1t8T4fFsHUkpmTveQ30uOhiSGYRCLxbBYLCiKkmoPt7hMfzS1xNhW2YEiBFPLXQTzbOPqPDdRHPc6t1b26TOQaenhHBMHIcQGKeXS8R7HZCfbNANJ1f2/gH8lIgOOwgwr/CNQMJ5jmyiMphCQjG9PFlBJtntDSkksFqOhvh6/308sFiMSiTBlkDkXxotgnq3XJE29kcwnkFydp7dHg8bmKN+59B1q66MATClz8ofrF+McR+e5TBz3DMPAMAyEEGit7eihjh77D1d4yJlEcuQYPFknDKSTKEz0JPCkEGJiJBafxCRXv/F4HLfbnWr3tdIXQmC32ykoKKCxsRGA8oqKrNAKDIX0yX+067k/+2JdShAA2FHdxcuvN3LE3FG97LAxDIPt27aRX1CApT3MutmZZ3PMlJxJJEeOwZNVwoAQ4n369hGQwKIxHM5uh5SSSCRCc1MTXV4vHeEwLpcrZQLo65iOjp2rv45wGEsgMGkFgrFASklVbVeP/uq6CMyd2NEEQggzOVRjY5/5EXLkyDH2ZJUwAByX+D/p4X9v4v+vknMkHHVUVcXn9RKNRAiHQlgsFgoKCwc0E0SiUcorKojH4zQ0NODz51LVDgchBCceXcYTz9am9cHRhxaDMeK1skaUXXNE5MiRY2KQVcKAlHIbgBDii1LKfdLe+rEQ4m3MaoM5Rph0xzApJU5dx4mKsNr7dQhMmgmmTp2KoihYrdZUO8fwKC9xcvMvFrLmb9tQFfjWV6dTXGiHuvEeWf8koy48Hg9KR3TgA3LkyDEmZJUwkIYQQhwgpVyf2PgCkJthRom+HMMO+eR5OhT6NROkT/yjbUffnXC7LSxdlMfsmR6EAK/HzMIYG0fnuUwc94QQlJaWYrPbiXbV9Ni3N5IOh0KIbu1MaW6J0RXRsVkVXC4VtytbH3s5cowe2fqr+CawRgiR1De3AueO43h2SxRF6ddMkGP08XknTpGpTK6tqioOp7NHdodkiQAAIABJREFUbQbFZkPv3FmHI1lLQfW6kS4HaiJMMxaNptqZCAR1DREuueI9dlR1oSpw7lnTOfmYspTwNNmZKOGeOSY+WSkMSCk3AIuSwoCUsm2ch7TbkhMEcgyW5CSeLjx0bq1k3dwjeuy7atNaWro60DSNQCBAU1MTfr+fQF7egN+9zi6N2+7ewo4qU8jQDbjz3q0cdlDRsIWB9PLRgyklPdLn6i+hVzxuEG8Ps252rk5DjoHJSmFACFEM/BIok1IeLYSYB+wvpfzzOA8tRz/kVik5hkJJaSmVlZU0NTXhdDozEgQAIlGDTzaHevTX1HZRUdp7JHIm31HDMIhFo1isVjPBVKI9lARTmqYRi8VwOByp0F2Hw5GRX42u63R0dOB2uwFSbUVRqG+M8rdHd3Dafln5iM8xDmTrN+Uu4C/ATxPbnwIPYlYknJRMhok0V00ux1CIxWLompZqJ1fAA62g3S4LByzLZ3vlzvLNqiqYVtG3j0t/31G8pqOsEIK6ujpUVcXv99PQ0EAwPx9fL4Wp+sMwDDrCYZqamsjPz6c9FEIaBhVTpgx8MKYWobmpiXAohNVmI9Tejs1mIxpXOe+H79DUHOOEJX1XOc2RI51sFQYKpJQPCSEuA5BSakIIfbwHNZqM5EQ6WLXkZMro1tWlY7UKLJacv2m20NzUhMfrJT8/n5rqatrb2jLSDthtCl85eQpNLTHWvtxAQdDGj/93Nl7v4E0EUkoqd+yguKQEp9NJWXk5lTt20NDQgNvjwev1DjpKRlEUPF4vsViMpqYmhBBMmTIl4/OoqpoaRyQSoaCwEJvNxqbPQzQ1xwZ9jzl2b7JVGOgQQuSTyC0ghNgPyPkNZEBSFWm1WBCJHPpWiwW1HxXnZMjo1haK897GNp56rpbpU12celw5hfnjX8Qpx8CUlJYC5uRXWlaWamdCMGDjB/8ziwvPnYlAEPBbUZTB2/d1Xcft8WKxmDkS4vE4ybou8Vgs1R4sUkoi0WiqHY3FUFQ1I4HAMAxC7e2p7c6EmcDtVvH7LL2WNM+Roy+yVRj4PvAEsIcQYj1QCHx5fIc0MdE0AynBat35cKmtqcFms+H1+WiorycvWIAMxVFjXaiqIP1ZmU1miL7QdcmLLzfwm1s3AbD+jSb+9XIDt924T8a1B3KMLv1pnwZbyntX3C7LiIQTxjVJKKwRzFNpqK/H5/PhDwSorqoiHA4P2Uxg6DpTp02jra2NpsbGQZkJQqEQxSUlWBMls3Vdp7jAzoN3LOOfL9TRrknmrn+G/DwbVuvOH3Y2avVyjC7ZKgx8CBwCzAEE8AkZ5BkQQqzBzGJYL6Wcn+i7Gvg20JDY7XIp5TOJ9y7DDGPUgYullM8m+o8CVgMq8Ccp5fUjdmcjhKZpaJrO9qoo9Y0R9l3oQ7VYsFq6qxYdDg8ffRajRLbx0QHH9jjPZLDnt7XHefDxym591XURGpujOWFggjDRtU9CKMSiYVxuF7G4hfKKCoQQKIrSrT0YkmYCt8eDxWIhEAjg9/sHZSaYOm0aYAoGO7ZvJxgM4nS5qKqs4shVhWzeHsdZ6MQRsGKfAFVMc0xcslUYeE1KuQRTKAAgkYFwyQDH3QX8Abhnl/7fSSlvSu9IRCicAewNlAEvCCFmJ97+f8AXgUrgTSHEE1LKjUO8l1FBbw0Ra22jVCiUFkC8qhNDVZFeD5pz5wSoG3GKCnyIxtFPCDRevgdCAZer54PQZsv5DeToTvp3VNMkimJqBFo1G4GiAlraNDxuBYtl5/dpOGWqh6P1SE++pOs6ecFgqiCY3W7H5XKwz/ycBiBHZmSVMCCEKAHKAacQYh9MrQCAD+jbRTiBlPIlIcT0DC93AvCAlDIKbBFCfAYsT7z3mZTy88SYHkjsO6rCwGAn0q6WEOvnHdmjf9WmtTSEWvH7/bg9XmprqvF7dIyO0V81jNfqL89v48JvzOR7V76HYZh9SxcFCPgycySbDJEcOTIj/Tva0hrj9vu28tTztei65AvLgnzv/FnYbGO7wpZS9ur0m+74qygKLpeLpsS2y+1GyWX8zDEIskoYAI4Evg5UAL9N6w8Blw/jvBcJIc4G3gJ+IKVswRQ6Xk/bpzLRB7Bjl/4Vw7h2Rgx2Iu0rQkACFVOmIISgo1MnECzlg49DlInJ7Ww0d7aPv926nNfeamJqhYvZMz0E/JmZCHIhkUMjHjdoD8cBQcBnQVWzSxOTF7DxrbOmc/RhxYQ7dPac4SYYGHuzUjwep662lpLSUqRhYBiGafKzWtF1HVVVMQyDqsrKhEbARUtzMzarFZfbnUsDniMjskoYkFLeDdwthDhFSvnoCJ32VuBazHnyWuA3jFBqYyHEecB5AFOnTh2JU2aMRe39ASDYqdb0eVVa2mJU10bYY8bktie6nCoup5MvH18x3kPZLWhrj/PUCzXc/1glVovg21+bwUEr8sc8DbCU0pw8VbVbe1fimkF7exwE+L3WVOhpXsBG3jgIAOkkcyrU1tRQWFRES0sLBYWFaJpGQ309hYWFiERqcIfDgRACq82GPdHOkSMTskoYSCKlfFQIcSymPd+R1n/NEM6VqvMmhLgTeCqxWQWku/VWJProp3/Xc98B3AGwdOnSUSmx3NfDLtNnQJ7fxmknTCHa1DJpcgnkGH8+/LidW/+yJbX9y5s/Yc3NS0ZNGOjLlKN6XHQq4PP7MQyDcCiEz+/vJhC0h+L888U67n1oO0KBb5wxjcMPLupR92G8UFWVYH4+DfX1gOkcXF1V1W2iV1UVl8uVcj5Mbw+FSFSno0PDblfxuHdOE/2lP86R3WSlMCCEuA3TR2AV8CfgVOCNIZ6rVEqZLJ92EvBBov0E8DchxG8xHQhnJa4hgFlCiBmYQsAZwJlDvJVho2kaDQ0NFBUVIaVMtQeLPT8P8vNGYYQTl2hUR1UnbwKipHAI5uoy2R7tehLxuMGz63rWUn7p9UZm7+EdlWv2ZcpZ+ekLtBgxotEo0USRI5/f322fTZ+HueVPm1Pbv73tM2bN9LBgrn/X040L8Xicuro6bIksg4WFhVRXVwNQVl6OxWoKLekT83Am6ebWGHc9sI31bzSxx3Q3l5y3J6XFDnRdJ9LVhdPlMvMjJNq5+iSTg6wUBoAvSCkXCiHek1L+XAjxG+CfAx0khLgfWAkUCCEqgauAlUKIxZhmgq3A+QBSyg+FEA9hOgZqwIVSSj1xnouAZzFDC9dIKT9kHNHicaqrqjCkxJL4YY61576UkubWOB2dGg67gstp6baimEiEwnE2fd7Bo09XUVrk4LQTKijMt006laphGOzYvp1AIIDb46GqspL8goJU/vrRwmIRzJvjY+3LDd36584aHUGgP4QQ5AWDtDQ3I4SgorS0x+T13L/rexy39uWGCSMMKIqC1+slEAggpaS2piaVFrm+ro6ysrKUQDBcOjo1/vDnzTy3zvxM6hqibN76X+6+ZV8wItTX1xMIBOjo6EBKSXk/5ctzZBcT82k9MF2J/zuFEGVAE1A60EFSyq/00t1nPQMp5XXAdb30PwM8k9lQRxeLxUJBYSG1NaZyo7i83PQJGGPP/Zq6CBdd9l/qG6MIAWefNpUzTqyYkKVi3/2gjcuu2ym/Pbeujr/8fin5feQcmCjpmAcb1SCEIJifT2NDA83NzdjtdpxO56irdoUQfPGQIta+VM/GT81CQV9YFmTeHN+oXrc3pIT2tjZUVUXXdVpbWnqkMl6wl4+nn6/tdtz8vcZ+rH1hsVjIS4xZ0zQsViuFBQUgBA0NDQOfYBBEojr/eqX7OesaorS0xSkrdhEIBGhtbQVg6rRpOa3AJCJbhYGnhBAB4EbgbcxV/Z/Gd0jjQ9KJyGq1YhgGtTU1lJaVDSv2ebAkVxP1jcm0qnD3g9s5+tCSCScMtLXH+esjO7r1NbfG2bKto09hYKIkxBlsVIMQAqdzZ3U+h9M5ZtqPYMDGDVfOp7NTR1EELqeKP8NQzpFFYrFYKCktJRqJ0NLS0mOPA5bns88CP++8b2Y0X75PgH0Xjv/fO53kpGuxWCgqKkptp7dHAiEEJcWOVNlnAFUBp8P0Sero6Ej1d3Z04PZ4cgLBJCErhQEp5bWJ5qNCiKcAh5Ryt61NYLfbKSgsREpJUyLpyFgSjRps2d7Zo7+uMUJFWe+lYscLRQGno+fK2GGffH4D6eFmbreb5uZmbDYbbrc7FauuKAq6rg+YQU/XdaQ0J9b0dn/k+W3kjbOmXQhBScI04HA6KXE4ekxeeQEb1/54Hl0R06fC6VQI+CZuZsrhpmfujzy/lcsunsMlV7xHLGZ+HuedPQOPWyXe3IY/ZmCx2DEMA6OhhWhLKJdvY5KQlcKAEOLkXvragPellD0NgJMYq9VKYdrqoHCEVwqZ4PFYOHj/fO57dGfKX5tVMLV8ePZEwzDQNA1VURCKkmr3V1RpILweK+efM4N3Ln0XXTcDPPac4aasj/r22YwQgsKiIux2O4qimOFmdrvp39HcjMvlwuFwpNp9mRCS6vVwOExZeTmNjY1o8TjlFRUTxps8k9oG/Y014LcRmBguAuOKEII5e3p46I7l1NRFKMi34/VYcNgtdHZ28fLc3hOZ5YSB7CcrhQHMegH7A/9KbK8ENgAzhBDXSCnvHa+BjQejuVLIBJtV4YwTpxAK6zz/Uj0lhXZ+dOHsEQnNqqmuxmaz4Q8EqKutJS8vD98g8rf3xoypbu6/bRkv/6eJkiIHC+b6xiWZzGiTzEqXNA0k27quowhBXW0tdrudaDSKx+3u8zyqquIPBOjs6mLH9u0IISgrL59QDpcTxZQzGbDbVOz5KgX5dtNPpSFMZwNIbVJXid/tyVZhwALMTeYIEEIUY9YbWAG8BOxWwkA6vaUtHQvyAjb+95t7cO6Z01AUMSKTa1LFW11VRVdNDS6XC+8gK8P1hsOuUlbi5PQTJn8CovS/f7Ktqip5wSDhcJhoNIrX68XucPT7uQohUBWFeKKdTIQznvSZW8DrxhLwpTLzSSlzdu0hku6nst8Lu5Z0yTGZyFZhYEp6siCgPtHXLISIj9egxhtd14lGo9jtdoBUe6wehE6nitM5ctdK5mRP1oo3DMP0TtxNGamoBl3XaW5qQtd1HA4HoVAIl9s9oJkgGo1SXFJCS3MztTU1424m6C+3QHMsQlFREV1dXYRCoRF3tMuRY7KRrcLAuoTj4MOJ7VMTfW6gdfyGNb7ouk5tTQ0+vx8BtLW1UTFlSlY/BOtqa3G73fgDAWqqqwklMshNFFv1WDKSqnBFVSktLcVmt9Pa2tpvUZukmcDr9ab8DoyE02GmRKM6oQ4NAXjcllEvpxvp6qKqshJN0wgEcuaDHDkGIluFgQuBk4EDE9t3A49Kcwm5atxGNc5YLBaKiouprzOVJkVFRWMaYjjSJG3TiqKgKAoVU6ak2pkw2aoNxmIGDc1R/u/FOjwuC4ceVEhBcPDJklRVJRAIpNT96e2+sFgsyESim/R2JrSF4vzjn9Xc+8gOpCE548QpfPn48lELNRRC4PX6aG9rM+8vL2+3FB5HGr0zkjIVOMpLEJadCc5yZD9ZOVNIKaUQ4i2gTUr5ghDCBXgwqxfutkgpiUajqe1oNIozizOECSGwpmVWsw4yy9pkqzZYUx/h6//7FnHNNJXc9+h21qzel4KgfdDnGorTaW/+B5nw+dYO7rh3a2r7rge3MX+uj/32DWZ8jsEgpaS9rQ2Xy0VXVxd1tbUUFRdntYZstNE1DYkp9KW303nz+PNS7VWb1uKaPvl9bnYnslIYEEJ8G7MaYBDYA7O08G1Azyf/boSu67S1tlJcXAxAXV0dXp8v9xCcBMTiBn99ZHtKEAAzWdKb77Rw9GEl4ziygXnptZ65L9a+XM+KJXmj5oSYjDrRNI3OtEQ5OXqi6zqNTU3EYzFKSktTmsXikpIJk30zx+iTlcIApplgOfAfACnlJiHE4KvzTDIsFgvTpk1DJFSi6e0cvZNMoKMoSspZcTCmiDFDgqH3dJ7Ue+mbaCxe4OfhJ7sX9ly6aPiCQPpEJQ2JISWqqqC4ndgSTrQ2mw2LxZITiPtBVVWCwSDVVVVs37YNRVFS5jk1F7K525CtwkBUShlLPkyEEBbMlMRZRTwep7KykkgkMt5DmZQYmkbpk/+vR/+WUAvKR6ZFyTCMPkpAT5wY+iQnHmFw4NKdOfMVIcgPtvDRRyPnM+twOKioqBi0SaY/Fs3zc9iBhaxN5Lw/cEU+y5f0XyFT182Y9mRNgWQ7naRDpWEYRCMR6mpqsKk2Yu2t5FmCOBwOMyQyJwgMiKIoqc86KQxPxN9AjtEjW4WBfwshLgecQogvAhcAT47zmAZNZWUlXq+X6dOn5354o4AejRGK9fxcvbNno9rNPAhSSjRNw0hMOBardcI+CA1DEtcMWlrjqKog4LNisYgRG6uUkqamJiorK5kxY8aInBPM7H4/uGAWF5w7EynNPPf9OQ/quk59XR1erxeny2W2fT5cLlevGhtFUbA7HLg9HjrCYSwWC/7dMOKktT1OW1ucji6N4kIHwYA1o++GrutmVklNo7i4mMbGRurr6iguKckJUrsR2SoM/AQzC+H7mCWHnyELCxVFIpGcIDCKCFXBO392r/3dtofoGDfWKIrAblMpLhwdYUUIQX5+fkaV8Nra40SjOooq8HutWK39T7w+r3VQGSkdTif19fWmQ5thELT2PbHpuk5XZycd4TBOp5Ouri6ampoIBoMZT2ZDSdal6wZxTeIY5TDJTGhti/HrP3zKS683ARAMWLn9piWUFjsGPDZpJpB5eVitVsoSKat3N2FqdyfrhAEhhArcI6U8C7hzvMczXCby5JPtKBZLv9/wpFlA1zRUiwUpJfF4HJttYqcmHs3vTCbnbmiKctWvN/LexnZ8Xgs/vmg2y/cJjljCKVVV8fv9tLW2omkaPp8Pa0IY0DQNMP1jku2kijsvGMTn8xGLRokkomoyCS+NNraghcI9hIFdQ1A7OjU6OnUz8ZWAx5+pYeuODo47opT5e/lGJP32UKmpi6QEATCdS9fcv5Uf/M+sjIQVq9Wauu/0do7dh6wTBqSUuhBimhDCJqWMjfd4JhuaboBMpJ9VJ/fDIBlbb7XZuk0EOfqms0vj1rs+572N7QC0hzSuvGEjD/95vxETBpJmAgm43W7a29txOJ04nU7q6+owDIPi4mJqa2ux2mwUFhZidziwJbJtprejGYSXaqEw62Yf3u8+7aE4Dz9ZxT0PbuPXVy3gN7duorrW9PV56fUmfnTRLI49vHTcfjM1dT39jqpquohGjYw1F9miIcsxOmSrHuhzYL0Q4gohxPeTr4EOEkKsEULUCyE+SOsLCiGeF0JsSvyfl+gXQojfCyE+E0K8J4RYknbMOYn9NwkhzhmVOxwjVFVl8eLFzJ8/n2OPPY6NH9WweVsHtfUR4pox4PFXX301N910U6/v3XPPPcyfP58FCxawzz779LnfSDN9+nQWLFjAggULmDdvHj/72c/6dNIUQnDggQcihOj26o+VK1cyZ84cFi9ezOLFi3nkkUdG4zYmJF0Rnf9+2L1auG5Abf3IOsE6nU7KysooKCwkGAymNAOFRUVous6OHTswpKQgPx9VVVPaAaBbOxMymfhaWuP85f5tOBwqUpISBJLc/1glbe3jlwl97718WC3d7+Pow0rwebNuvZdjnMhWYWAz8BTm+L1pr4G4Czhql76fAGullLOAtYltgKOBWYnXecCtYAoPwFWYRZGWA1clBYhsxOl08u677/Luu+9hs/tYs+Z2pAGhsEZdQ3TIoWv//Oc/ufnmm3nuued4//33ef311/H7e9aITap6R5p//etfvP/++7zxxht8/vnnnH/++X1e+9VXX031Zboiuu+++xKf27uceuqp3d5Lmh/AjGjQo7EeL6Of+06vx5DeTmco5x0JnA6V+XN93foUBYoLB5/4qC9UVcXr82Gz2bq1k46dydTJihAwRivYHdWdgBnKabH0vKbTqTKeJvaA38b/u2Ex8/fyUVHq5KJzZ3LwfgW5FX6OjMlKYUBK+fPeXhkc9xLQvEv3CZjpjEn8f2Ja/z3S5HUgIIQoBY4EnpdSNkspW4Dn6SlgZAXJiUOPxhCaxmGH7E9XqI6ppabN/Pc3/4YVK5azcOFCrrrqqtRx1113HbNnz+bAAw/kk08+6fXcv/rVr7jpppsoKysDwG638+1vfxswV9aXXHIJS5cuZfXq1WzdupVDDz2UhQsXcthhh7F9+3YAHn74YebPn8+iRYs4+OCDAfjwww9Zvnw5ixcvZuHChWzatKnfe/R4PNx22208/vjjNDc3s27dOg466CCOP/545s2bl9oHYN26dRx88MEce+yxzJkzh+985zupSX0gtm7dypw5czj77LOZP38+O3bs4LnnnuMLBx7IkkWLOeXY46h5411CH3zK3+9Yw7y992bJkiVcfPHFHHfccYCpZbnxxhtTvgvz589ny5YtxONx7r333tR9n3/++WixOKEPPsWfF+BH/3MRixYsYL+ly6itrgHMhFMnnXQSixYtYtGiRbz66qtceeWV3Hzzzakx//SnP2X16tUZ3V8Sl9PCRd/Yg7mzTNnb7VK54vtz8XpGdgWaHt6ZbCfNBwClpaUYhkFjY2Mq9HCoZGIa2nOGB0WBSNSgtS3Oor13CrZCwAVfn0nAP36+JnabwrzZPm64Yj5/vGHxqKZ7zjE5yUodkhDiSXrmFWgD3gJul1IORmdZLKWsSbRrgeJEuxzYkbZfZaKvr/7exnkeplaBqVOnDmJIPUk+sIQQ3drDOqdugGEQ+uBTdF3nhSef5KsnnIwqJOtfWcuOHZt57bXXUVXB8ccfz0svvYTb7eaBBx7g3XffRdM0lixZwr777tvj3B988EGv/UlisRhvvfUWAF/60pc455xzOOecc1izZg0XX3wxjz/+ONdccw3PPvss5eXltLaasfS33XYb3/3udznrrLOIxWIZTQQ+n48ZM2akBIe3336bDz74oNfwuTfeeIONGzcybdo0jjrqKB577LEeK3+As846C6fTCcDatWbim02bNnH33Xez33770djYyC9+8Quee+afGFuquPmuP/PH++7m4rPP5bvXXc3atWuZM28ep59+eq9jTmoE4vE4H3/8MQ899BDr16/HarVywQUX8Lf77+fExcvp6Opi6YKFXHHhxVy5+rf8ac0arrz6Ki6++GIOOeQQ/v73v6PrOuFwmLKyMk4++WQuueQSDMPggQce4I033hjw89uVwgI7N141n0jUwGIR+DxWbLbRX1coikJhURECUC0WysrLzfYww98y+R35vFZ+9dO9uemPm/j9nZ9x/c/m09IWY0d1Fwcsyyc/ODGcTnMCQI6hkpXCAKbPQCFwf2L7dMy6BLMxIwy+NpSTJmoejJgHmZTyDuAOgKVLlw75vFJKpGGg6TpWq9X0gE+0hysQdEWjHHTmqdTU1zN7xgxWrdgfgFfXv8ir6//FsmXmhB4Oh9m0aROhUIiTTjoJV6LmwfHHHz+k66ZPgq+99hqPPfYYAF/72tf40Y9+BMABBxzA17/+dU477TROPvlkAPbff3+uu+46KisrOfnkk5k1a1ZG10tf/S1fvrzPOPrly5czc+ZMAL7yla/wyiuv9CoM3HfffSxdujS1HQqFmDZtGvvttx8Ar7/+Ohs3buTgVSvRI1Hi8TjLFixi09YtTCsrZ9aesxBC8NWvfpU77rgjdZ6kz0L6BPfvf/+bDRs2sGzZMgC6urooCObD4uXYrFaOOugQABbPncf6TzcC8OKLL3LPPWZRmaR3vt/vJz8/n3feeYe6ujr22Wcf8vPzM/r8dmU8VsFDqVWRSTrdTPZxOVX22zefP//Oh5QSp1NlntPX45gcObKVbBUGviClXJa2/aQQ4k0p5TIhxIeDPFedEKJUSlmTMAPUJ/qrgClp+1Uk+qqAlbv0rxvkNQeFEAKZ0AjEYjGQEmWEkoE47XZe/tsjdEa6OOWi7/Cnhx/ghwt/js9r4bLLfsJ3vvOdbvunq5n7Y++992bDhg0ceuihvb7vdrsHPMdtt93Gf/7zH55++mn23XdfNmzYwJlnnsmKFSt4+umnOeaYY7j99tv7vEaSUCjE1q1bmT17Nv/973/7vfauwtVghK3080op+eIXv8hf77qb0Aefpvrf/+TjPo+3WCyp9Mi6pqWcHjVN4+yzz+b6669P7atHY4Q++BSrxbJTna4oA/pgfOtb3+Kuu+6itraWc889t999J0PVx0zKPmdaGlpVBcG8oQtBbe1x4pqBqgjyAv2fJxLRqWuM8vg/qwn4rBxzeMmQKlTmyJEpWekzAHiEECm9e6KdFOMHG274BJCMCDgH+Eda/9mJqIL9MCsk1gDPAkcIIfISjoNHJPpGldRqMbHCtaRNAiOBy+Hkhh/+hD/89W40XePoo49izZq/0NLajqYbVFVVUV9fz8EHH8zjjz9OV1cXoVCIJ5/sPfHjZZddxqWXXkptbS1gmgX+9Kfe80J94Qtf4IEHHgDMFfdBBx0EwObNm1mxYgXXXHMNhYWF7Nixg88//5yZM2dy8cUXc8IJJ/Dee+/1e1/hcJgLLriAE088kby8gf0833jjDbZs2YJhGDz44IMceOCBAx7TG/vttx/r16/ns82fAdDR1cln27Yya/oMtldXs3nzZgDuv//+1DHTp0/nnXfeAeC/773H1q1bsVqtHHrooTz66KPU15tyanNzM9u2bev3+ocddhi33norkChg1WZGAJx00kn83//9H2+++SZHHnlkv+dIVn3c9dWbgJCjf2rrI1x23YeceM7rXPzT/7J5a7hf59zKmi7OvvBNHn6iijv/upVzL9lAU8vEiaSONbXSubWyxyvWtDM1tpSSpuYoz7xQy2NPV1HfGEHLIEIpx/iQrZqBHwCvCCE2AwKYAVwghHCz0xmwB0LJALNQAAAaVElEQVSI+zFX9QVCiErMqIDrgYeEEN8EtgGnJXZ/BjgG+AzoBL4BIKVsFkJcC7yZ2O8aKeWuTokjStJMoGsaiqJgJGzJI2EmSGfhXnPZe9ZsHnjwQc4462yOPPpdVqzYH0VAIODjvvv+yuKFC/nyKaeyaOFCCguLWLpkXwxNw9A0M8lPgmOOOYa6ujoOP/zwVAKTvlait9xyC9/4xje48cYbKSws5C9/+QsAl156KZs2bUJKyWGHHcaiRYu44YYbuPfee7FarZSUlHD55Zf3es5Vq1alvPpPOukkrrjiiow+g2XLlnHRRRfx2WefsWrVKk466aRBfoomhYWF3HXXXXz17LNTZaWvufpq9tl3AbffeQfHn2yaWg466CBCIbNOwimnnMI999zDggULWL58ObNnz0YIwcKFC/nFL37BEUccgWEYWK1Wblm9mmnLloOyM8ui89MP4MN3AVi9ejXnnXcef/7zn1FVlVtvvZX9998fm83GqlWrCAQCuVSzY0Rbe4xrfvNRKjfDlu2dfP/K91mzel/ye9E0RKI6dz+0DT1t3mxpjfPu+60cfkhxj/3Hg0zKgze3xPjm996msdkUYm69ewv33LIvpcXOMR1rjswQ2ZpkRQhhB/ZKbH4ySKfBMWfp0qUy6TCX5KOPPmLu3LkZHT8aBXUMTTOdCHdFUdhSFUGL7/xuOOwKFWVOhK51U3sn8c7fme8/W1m3bh033XQTTz311KS9pmEYLFmyhIcffrhPf4vk97Jza2WfD/xcLfvMaWyOcuI5r/fof/CO5ZSX9pwYI1GdX978MS++0r30888vncthB0+M4qyZfDeeeLaGX/+h+7Pi1C+V87/fnImqZq6UFkJskFIuHXjPHMMhK80EQoiTgWOBPRKvY4QQh03mMsbJRCrJrHkjUVlPsVhQ7bYeLx2lmyAAZkhVlsqNI0K60JytAvTGjRvZc889OeywwzJ2vMwxfBRFMK3C1a3P5VSx23t//DrsKuecPq1bNsP8PBuL5/fM0zGR6erqGenT2alhZOfPZ9KTrWaCbwL7Ay9imglWAhuAGUKIa6SU947j2EaNsUoXKgQoqsBIs2larWKs8ruMGytXrmTlypU9+pMOfWrCDJJsj8TfoK9rjgbz5s3j888/H5Nr5dhJMGDj6kvn8v2r3qOlNY7TqXL1pXPxefqOhigvdfLXPy7lyedqCfisfPGQoiE5LyarcibLEifbY2EiWnlAAXf+dQuRqKl9VBQ446QKrJasXINOerJVGLAAc6WUdQBCiGLgHsysgC8Bk1IYGCtUVVBe4qCqpgvDSG47UVWBMbz8LlmLbhgYsRgkojqUEcr1MJHJJOQuR2bMmObmrt8vpatLx+FQBszN4LCrTClzccHXZw7rulJKaqqrsVqtBPPzqamuxufzEcjLG/WqhME8G3ffspT7/76DrojOmSdPyaiKYo7xIVuFgSlJQSBBfaKvWQgxfgnCJwmKEDgdKjOmuZGGKdGr6sA5+ycryfj2eCKs05Jw3Jwsn4emG8TjkkhUx+VQMRJ63ExD7nIMjEUVprPgGCcuF0JQXFJCdVUVVZWV2O12fH7/sAWBTARFq0WhvNTJd8/bEynBNkCZ6xzjS7YKA+uEEE8BDye2T0n0uYHWvg/LkSmKIlCUnpOdUHd6r+/aP1mRUpqZDhOTv67rE7LWuxmqJgflnKXrkqbmGC2tO2XoaNQgrhk5de4oMdb5G3Y1L46EEDsYQTH3PcoOslUYuBA4GUgGgb+FmVa4A1g1bqPaDVAsluz91gwDmQjpA9Di8RFLCT0SGIYkGjNobIoiJeQHbTjsakbldA1D0tLWXZkWCmu0t2sTJsXuZCCZXlpRlIzC8kbyurU1NdhsNvKCQepqa2lrbR0TM0GO7CIrvw3SfBJ/DmjASZgCwEfjOqgsJRKJsHz5chYtWsTee++dKki0ZcsWVqxYwZ577snpp59uZj7cTRFCYLXZUpEcyfZEEAQANM1gW2UnHZ06nV06O6q6iMUzS+4iU//sxJAS2aP0x/9v796joyzvBI5/f5nJZSYJBAK5QEDBooI5NihHbGsrlMJS65FaqXXrrqh0aW2t1NOewnrcXs6e7eJpz1YWra2XKp7tjSIVSz1UFqTSLojIRbGAUGNJICQxFyDkOpnf/vG+iUMShGRmMpf39zknJ/M+zLzv8/LMzPvL+zzP7zFD1ZM5tL2tjXA4PKyzUUSEktJSiktKCAQCjC8ri0k3gUk/KfWOEJFLReS7InIQWAUcxcmVMFtVH0lw9eLupa213HL3Dj5+05+45e4dvLS19vwvOo/s7Gy2bNnCvn372Lt3Lxs3bmTHjh0sW7aM+++/nyNHjjCyoIDHfvoEDY0dtLaFCA2UmyDNRV78ow0EQiHnNnyssrGdagn1u6A3NXde0EUnQ5zldyMFAj6CAUtIFCvhcJgzLS2cOHGCpsbGqFdZ7CsUCtN1juBPRMjKyurNWNrz2Ji+UioYAA4CnwRuVNXrVHUV4Inx7S9treWhR96mtt65FVxb38FDj7wddUAgIr1L+HZ1ddHV1YWIsGXLFhYuXEg4rNz8uS/y29+uo76hk6PVbTQ2dX5gKlVzbp1dYapr2vhb5RmqjrfR0dkd9V+KA/XJZl7gYC2/P4PxJTmMGZ1FMOijeGw2+bl+ggG7YMSKz+djZEEBgUDATQsdmztK3d1hamrbWfXU31ix6hCH32mhdYC5/cZciFQLBj4H1AAvi8gTIjKHWH2yktzPnq2ko+Ps6L+jI8zPnq2Met/d3d1UVFRQVFTE3LlzueSSSygoKHAWzgkrgWARtbU1vc9vbO7qHXFuLlwoFOZYTRvt7U47dnSEqT7eFnVglRv0nTVNze8XCkZeeKpqvz+DwtFZjC8JUDAyc8CBo2boeub6t7e3u7fnY/PZaWjq4s77dvHchuP88eU67v7G61Qfb43Jvo33pFT4r6rPA8+7swYWAN8AikTkMeB3qvpSQisYR3XvdQyqfDB8Ph979+6lubmZm2++mYMHz15Zr99Xl8UBQ6JKv4Cuq0ujzsjm92cwcXyAjk4nS2ROdgb+QY7gdhbC6l/e0dnNmdZucrIz7G7BEPV0E+Tk5FBcUkJ7fQOfOPhSv8Q/g83fsOP1Bs60vn8nQBV+8VwVDyy9jOxs6+Yxg5OSn2531sAvgV+6Kwd+HlgGpG0wUDQmm9r6/hf+ojHZMTtGQUEBs2fPZvv27TQ3NzvZysRHy6laiotLe5+Xl+fHxh8NnoiTybErItWzk78h+n37/YMPAM6nsamT1Wv+zs7dTVw+JZ97Fk2iaKwljRmsnm4CcNKKZ48ZDWNGR50F8COXZfLsv40/qyyQ44PTpyB7mBMamJSX8l/pqtqkqo+rav+5Omnky3dM6pfLPDs7gy/fMSmq/dbX19Pc7KRmaGtrY9OmTUydOpXZs2ezdu1afD7h9+t/xWc/u4C8XD9FY7MpGZs9qLnsxuHzCePcTI7gJHMaV5KD/wKmAA63ljMhfvSTt3luw3Gqjrex6U91fPN7b9LYnB6zSnoW/upZ9Cveo/x9Pl/vxT/ycTQC4XYOfOwzZ/3svno+3S1not638Z6UvDPgRfNmOUuX/uzZSure66BoTDZfvmNSb/lQ1dTUsGjRIrq7uwmHw9x6663ceOONTJs2jdtuu40HH3yQ6dOnc+/XlpCVlY1IcsytT0UiQk52BpMmBgmHQTLAl5E8UxQjtXd08+edDWeVVR5tpb099Qeo9Uz1O1FTw7jx4wmFQtTV1lI2YUJKjbS3sR0mllLnnW+YN6s46ot/X1deeSV79uzpVz558mR27twZ02MZJyDw+5P/S1zEWWCnZy16gEy/XPAshWTWk146KyuL6qoqAEaMGJGUQZkxwyX1P9nGxFg4rJ6fLVEwIotlX7+UyN6gr9w5mdxgevz9ICLkjxjRu22JeIzXpccnOwZE5F3gNE7egpCqzhCR0cBvgIuBd4FbVbVJnD8hVgI3AK3Anaq6e7jqGg6F0AES/4gvw0kXbIYkHFY6u8I0NnUiIhSOysTvz/Dk7VifT6goH8maJ2dSdbyNccU55Of50yIZUU83QX1dHXl5eYRCIY4fO5Zy3QTGxJK98882W1Xfi9heDmxW1RUistzdXgZ8Gpji/swEHnN/DwvtDnN6/9v9yvPLL7UWjUJnV5h3q1p7p06eauli8sRcTwYDAIEcP4EcP8VpNoOgp5ugcMyY3oRbLS0tKddNYEtMm1iyS8cHWwDMch+vBrbiBAMLgGfdNRJ2iEiBiJSqas2AezFJL6xKU3PnWTkUNOyk+i0cZQv2pBufz0d+fn5v10Dk41RhS0ybWEqtd398KfCSiLwuIkvcsuKIC/wJoGf03nigKuK11W7ZWURkiYjsEpFd9fX18aq3iQFh4NHZNoMyfUVe/FMtEDAm1uzOwPuuU9VjIlIEbHIXQ+qlqioigxpVpqqPA48DzJgxw9sj0pKciDC6IIuTp7oIu8Mx/H4hL9c+IsaY9GfhsEtVj7m/64DfAdcAtSJSCuD+rnOffgyYEPHyMrcsJTU3N7Nw4UIuv/xypk6dyvbt22lsbGTu3LlMmTKFuXPn0tTUlOhqxp3fL0yamEtJUTalxTlcPCEY86x+xhiTjOybDhCRXBHJ73kMzAP2Ay8Ai9ynLQLWu49fAO4Qx7XAyXiPF1BVao4fp+b4cVSgtXgUrcWjyLtiCvnll5JffikyxHvaS5cuZf78+Rw8eJB9+/YxdepUVqxYwZw5czh8+DBz5sxhxYoVMT6j5OMMLMugYGQWI0dkWiBgjPEMuwfqKAZ+544m9gO/VNWNIvIasEZEFgN/B251n/8izrTCIzhTC++KdwVP1NTQ3t4OQPWxY72pU+sbGygdN27I+z158iSvvPIKzzzzDABZWVlkZWWxfv16tm7dCsCiRYuYNWsWDz30UFTnYIwxJjlZMACo6jvAhwcobwD6rXngziL42jBUrR9V7Q0EYjEVqrKykrFjx3LXXXexb98+rr76alauXEltbS2lpc7iRCUlJdTW1kZ9LGOMMcnJ7oOmiOKSkn4XfxGhuKQkqv2GQiF2797NPffcw549e8jNze3XJSCSnPnzjTHGxIYFAymi9sSJfquqqSq1J05Etd+ysjLKysqYOdPJmbRw4UJ2795NcXExNTXOMIiamhqKioqiOs4HCYdCdHd09vsJh0JxO6Yxxpj3WTCQYkSEjIyMmP2lXlJSwoQJEzh06BAAmzdvZtq0adx0002sXr0agNWrV7NgwYKYHG8gPRkV+/4MlHLZGGNM7NmYgRRRUlrKCfcv9eKSkt47AiVuv340Vq1axe23305nZyeTJ0/m6aef7l3O+KmnnuKiiy5izZo1UR/HGGNMcrJgIEWIyFmzBqKZQdBXRUUFu3bt6le+eXP/vOfGGGPSj3UTGGOMMR5nwYAxxhjjcdZNYBJOfBnO8ssDlBtjjIk/CwZMwmX4/fZONMaYBLKvYGNMUmps7kRVycn2kRtMja+q7u5uAHw+31mPjUl2qfEJM8Z4RldXmCOVLfxg5SGqj7fx8WvHsHTJhygclZXoqn2g7u5uGhoayMrMZMTIkb2P80eMsIDAJD3rlDWsXLmS8vJyrrjiCh5++GEATy5hbJLDydNd3PfgG1QebaUrpGz5cz0/Xf0OrW3Jn5EyEAjQ2NhIdVUVLadPk52TY6m8TUqwYCBFbBx9FX/IvKzfz8bRV0W13/379/PEE0+wc+dO9u3bx4YNGzhy5IgnlzA2yaGxqYu2tu6zyra/1khrn7Jk4/P5CAaDZGZmEgqFCASDZGdnk5FhX7Mm+dm7NEV0nz4zqPILdeDAAWbOnEkwGMTv93P99dezbt061q9fz6JFiwBnCePnn38+quMYc6FGjvDT9/o5aWKQrMzk/rrq6Sbo6uoiLy+PttZWTp082Tt2wJhkltyfLhN35eXlbNu2jYaGBlpbW3nxxRepqqqyJYxNwuTl+rnvS5fg8zm31wtHZ/Htey9lRH5mgmt2fsFAgNJx4xgzdixFRUXWTWBShg0g9LipU6eybNky5s2bR25uLhUVFf0GO9kSxmY45Qb93PCpEq7/6Fja27sJBn2MGpncgwfB6SYIBIO9i4lFPjYm2VkwEAURmQ+sBHzAk6qakh3rixcvZvHixQA88MADlJWV9S5hXFpaGvcljI3pKxjwEwwkz9dTZ0MzodMt/cr9+XlkFRb0bkcG0oOdQXChxzAmHpLn05ZiRMQHPArMBaqB10TkBVX9a2JrNnh1dXUUFRVx9OhR1q1bx44dO6isrGT16tUsX7487ksYG5PsQqdbeHnKnH7lsw9vjtmFejiOYcy5WDAwdNcAR1T1HQAR+TWwAIhLMODLzx1wsKAvPzfqfd9yyy00NDSQmZnJo48+SkFBAcuXL7cljI0xxiMsGBi68UBVxHY1MDPyCSKyBFgCMHHixKgONr9xd1Sv/yDbtm3rV1ZYWGhLGBtjjEfYyJY4UtXHVXWGqs4YO3ZsoqtjjDHGDMiCgaE7BkyI2C5zy4wxxpiUYt0EQ/caMEVEJuEEAbcBXxzsTlTVpu2ZpKGqia5CUvLn5zH7cP9uM39+Xkodw5hzsWBgiFQ1JCL3An/EmVr4c1V9azD7yMnJoaGhgcLCQgsITMKpKg0NDeTk5CS6Kkknq7Ag7iP6h+MYxpyLBQNRUNUXgReH+vqysjKqq6upr6+PYa2MGbqcnBzKysoSXQ1jzDCzYCCBMjMzmTRpUqKrYYwxxuNsAKExxhjjcRYMGGOMMR5nwYAxxhjjcWJTiYaHiNQDfx/ky8YA78WhOsnMi+cM3jxvL54zePO8oznni1TVsrbFmQUDSUxEdqnqjETXYzh58ZzBm+ftxXMGb563F8851Vg3gTHGGONxFgwYY4wxHmfBQHJ7PNEVSAAvnjN487y9eM7gzfP24jmnFBszYIwxxnic3RkwxhhjPM6CAWOMMcbjLBhIQiIyX0QOicgREVme6PrEi4hMEJGXReSvIvKWiCx1y0eLyCYROez+HpXousaaiPhEZI+IbHC3J4nIq26b/0ZEshJdx1gTkQIRWSsiB0XkgIh8JN3bWkTud9/b+0XkVyKSk45tLSI/F5E6EdkfUTZg24rjv93zf0NErkpczU0PCwaSjIj4gEeBTwPTgH8UkWmJrVXchIBvquo04Frga+65Lgc2q+oUYLO7nW6WAgcith8CfqyqHwKagMUJqVV8rQQ2qurlwIdxzj9t21pExgP3ATNUtRxnqfPbSM+2fgaY36fsXG37aWCK+7MEeGyY6mg+gAUDyeca4IiqvqOqncCvgQUJrlNcqGqNqu52H5/GuTiMxznf1e7TVgOfTUwN40NEyoDPAE+62wJ8EljrPiUdz3kk8AngKQBV7VTVZtK8rXFWhg2IiB8IAjWkYVur6itAY5/ic7XtAuBZdewACkSkdHhqas7FgoHkMx6oitiudsvSmohcDEwHXgWKVbXG/acTQHGCqhUvDwPfBsLudiHQrKohdzsd23wSUA887XaPPCkiuaRxW6vqMeBHwFGcIOAk8Drp39Y9ztW2nvyOS3YWDJiEE5E84DngG6p6KvLf1Jn7mjbzX0XkRqBOVV9PdF2GmR+4CnhMVacDZ+jTJZCGbT0K56/gScA4IJf+t9I9Id3aNh1ZMJB8jgETIrbL3LK0JCKZOIHAL1R1nVtc23Pb0P1dl6j6xcHHgJtE5F2cLqBP4vSlF7i3kiE927waqFbVV93ttTjBQTq39aeASlWtV9UuYB1O+6d7W/c4V9t66jsuVVgwkHxeA6a4I46zcAYcvZDgOsWF21f+FHBAVf8r4p9eABa5jxcB64e7bvGiqv+qqmWqejFO225R1duBl4GF7tPS6pwBVPUEUCUil7lFc4C/ksZtjdM9cK2IBN33es85p3VbRzhX274A3OHOKrgWOBnRnWASxDIQJiERuQGnX9kH/FxV/yPBVYoLEbkO2Aa8yfv95w/gjBtYA0zEWfb5VlXtOzgp5YnILOBbqnqjiEzGuVMwGtgD/JOqdiSyfrEmIhU4gyazgHeAu3D+IEnbthaR7wNfwJk5swf4Ek7/eFq1tYj8CpiFs1RxLfBd4HkGaFs3MHoEp8ukFbhLVXclot7mfRYMGGOMMR5n3QTGGGOMx1kwYIwxxnicBQPGGGOMx1kwYIwxxnicBQPGGGOMx1kwYEwKcVf++6r7eJyIrD3fa6I4VoU7zdUYk+YsGDAmtRQAXwVQ1eOquvA8z49GBWDBgDEeYHkGjEkhItKziuUh4DAwVVXLReROnFXhcnGWhv0RTnKffwY6gBvchC+X4CyRPRYn4cu/qOpBEfk8TqKYbpwFdT4FHAECOKli/xPYAKwCyoFM4Huqut499s3ASJyEOv+jqt+P83+FMSaG/Od/ijEmiSwHylW1wl3pcUPEv5XjrPyYg3MhX6aq00Xkx8AdOFktHwe+oqqHRWQm8BOc9RG+A/yDqh4TkQJV7RSR7wAzVPVeABH5AU765LtFpADYKSL/6x77Gvf4rcBrIvIHyypnTOqwYMCY9PGyqp4GTovISeD3bvmbwJXu6pAfBX7rZIQFINv9/RfgGRFZg7OgzkDm4Syy9C13Owcn1SzAJlVtABCRdcB1gAUDxqQICwaMSR+R+e3DEdthnM96BtCsqhV9X6iqX3HvFHwGeF1Erh5g/wLcoqqHzip0Xte3v9H6H41JITaA0JjUchrIH8oLVfUUUOmOD8BdNe7D7uNLVPVVVf0OUI+zxGzfY/0R+Lq70AwiMj3i3+aKyGgRCeCMXfjLUOpojEkMCwaMSSHurfi/iMh+4IdD2MXtwGIR2Qe8hTMYEeCHIvKmu9//A/bhLLU7TUT2isgXgH/HGTj4hoi85W732Ak8B7wBPGfjBYxJLTabwBgTFXc2Qe9AQ2NM6rE7A8YYY4zH2Z0BY4wxxuPszoAxxhjjcRYMGGOMMR5nwYAxxhjjcRYMGGOMMR5nwYAxxhjjcf8PtHsE5ur7a1UAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentDemand',swept)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Colab/images/graph.png b/Colab/images/graph.png index 237c46c5f5714e5f6373f502f74ff9558b03544d..76d72e42ce0afa2f813c986078cd4427a8e5c66e 100644 GIT binary patch literal 74538 zcmb?@cR1E<{PvBg&>)$KtU@xP(y(PmD4WcPvNddym6eR9tV$xJLbj~ROd*OANh&MZ z-t&5X?|Zz*`~TbVJV(dv&iDR)uj@0;^ZcCG9jSLrZ38_gJ%vKqprNj!PoYp1;D6qA zboj~pT|!RyYmKLphT%H=@mpsXf!FKZ)J;4o6b5GUKUL?afF=A;)=Smc%fQva>%6sx zJ>{&mmz#^Lmy44PuaCWlr<3bBUa37&dt`R=I(m7z9TXS;zyDy5tH)_^^|oD^6bdgz zLq*Z>!tL=-=M9sLKG02sGob-_n-={&uD3Y0x5+KuHj0f{$5)@KhMTbC(C#iq&RSAaS{FDe(Co1{(>j_O@sSxyinvVKJG-LdQtWF;@@kRuD?$T zR+v+oqfMSQr$3?kev@}8KH#m|x6qd0q^{&sUrQrPk}fj*GVD`)neFp*f|?>oD_HE> zyWRAWX-Pr=O=7E#l8HsHbK28;_bAF&7=sN({NKGfO_rwMALps=CsvJ1^V7$7=G2{+ z_YZ#@wcGJU7oG0!IPuV(jiJwP?(2NhDf#_@?8B6#vm$ZO;sx!gtQ=y2<<oymImb&{LAd(FRrz_^SIzPZIk zWg{cDr>EPl#Kmpe#?5_PUq2)(OJKaGkVZsABvsOuE_P{g-OQCyMXeJIlz9K0T;AE< z1)Q$5vKM8uEVWfzKW+2!`n8U-*(iEPUSh_(>&GZTuWxH!Pf6kz7GJNZs2C9yRr~Ro z^Ovt*Lz2bJluS%GJV)LJEAT2fI0!8*FIzi0u47|Mc`?)U-#ykiCv8r=c1_RHGPWaA zO<7Tq>f^_cqXSj)=LRZcKIEC%F3kMsDY9pn{r!o-%F62D!-sD2w+s?!IGTBP?p({K zr07L8cYO3A+gQA8~v+K@88n2f>LLOAp=mxKqm6Z)z`>-#UTzlijje5tA zD;_(xky8EfBd1dOW)BaK&GccTy-#;y3kSx9B}ru8>E;aH%F3FNm9-{QEpBAxm`IY6 z05cWk_U+pRr`xuV{`gVT*;&-v_Cftjb;@@dioi4GrdLw0xMPMY#S@$3Q*MQ`HjA}e z<{X(5@ta_|`TcQ75w#{~0D~;zpzFg2Y6|m~E$(v@)^-jKN_+_lyIC`R|NVaAdF#KR zAAd%zZD6qFSKo`q&lSE_^UM5du?o7no95@|OZ*r2nOj&``Fm`oMVu7ebfi^%*1&q{ z8q*$&vdgb7s|Y0ROusYN#&slOUEAFwp@t%=r%v(GZQ6cy_)UuP@#9R3v%i#8RqKED z3z34tZ1JI!h%ifZP|5xu9zi4>p{O1)3NSd`9 z2a!CRqwCw>y$gN$@({K^dUB}IGc*6*J>IPQ_iYf>@tWBaCZnP6UK~?4QRMKE^NH86 zyAbeCHfl@Mj+`Wg!fd|cgU;zms-otbUT%CvGv~Uh`tw8H4i~XkPr2H7_1Fd{b>nVX zBr5P$SNboyO?}faJbAJfQDJIo`Y=Dgp}*AgxSn1RZewV?_i21eN?_*NMhV6`KjT0C zqQZQ&Mm1LH<(1pSwwkScIV~zG>i)fzyD6(^U`4;w{fP0C49gO)N#-+W&Xl<3)X#eGAoKoxI$XV=uuw5>`;qo+EjD&8uF$sc zReu+4u$G_GHZh;_zIIT%;=oq-Fn7m+qUE#zIeBrOI6fZ5`@3nTsLZJ+qJA+7GOxdu zn8?J$6g)BECM_*p{q`**c2-?iSIx^y`t|GA)!(PB&zy-OcWn0JTtPvBLhi}D&kO#f z1^j7U+ZR(={G7!={Fth#31_k4vlTaa6^`c3DNNzxsV?fR>Olj&^o8C(Kcvbyvo0+y z-OI|lJU;GnIXs-7kB=H<%gxO#2q7rIy#Dv+is2KTjVIEYIEN+xh=#t^f-V1 z7oQ(`!?`xa?;ROsxS}?m;oiJu3k?_7E%_tc)7rvs-`;jTDM>P5>B3|4Qf5w0&i;S7 zj~ym6nBtMZ%>=;<04~Cw1^(w(T1`saK7S zo;tiLmr=#4u?(!NtVlOCZ*Q5eU%z4*S-ZF} zqM)U;qMp^2m+J1RMzIRz*z0g=tShId(*F>8+CAjV&6}LNgk@UOWPWX&vWb|S_ZuA@ z<&~G`IlO%n4IN|k>m*U@bLUoGPj6YiOWLPEJNzoU&I#&wcSNkwM~yHeHS(ye6?4_QMw> z#(w@x&&UXwn)2ASYnK8phCa~${o>*62#VuoW^cs2j%jJp#5IQI=8B$tY)p0N&`bHl zuIN{Me0-acnq6InUSnPBNr;Aq(sXrom9)u7OY=%fGU=wtsoL2IY?lvU#2(@5_ww^M zav$<>VRgK8>C)rzCX{(jxl+oaReE}Qsrf5|p0jXSsj`cA$YH zC=m~CPtI$g;Q0F=+3ztlc|p&>Ak=vGQM|+kpv{Mmjyh5l9vr(f`2Bl$FwNSPY|rlZ z?{|oZ(0}>z<-)`u)yEgEZ8E{5KYvz9mtE7$R@c%}#;v2FGjVXN&oPW*6*E=fOCU?* z;NW0>&&1TU=)XJ`UE-%^q>QxO3in@}br*aU5<=b8-Cftzv<~-$su2pnBqAzWGc<`R zn4X;-R$hJ>Kd$@qi5u-z+0bz4;9mTBd*=`v|Iw?1BONPO4MpnTJ-ww5+kTd1zvDlkUWC_kv}J4r?o zEcW(-#l^*^oSY(&1Y~!fKWAl*T!XlM^yrae-*Yh(tkOG&&-IrC@6^4k0A#bUu#kGh zci-V7M^-)JsbX|^ot&J^QU3gwYAju@82g8^!D_3o-L;ohWrdxSC*N!Zl$%iw?`Gq%*dcd%mH_Xp+PGt zEAL3sBvFnv%da8b4gLAT>^R5Ot5?as0mbm{+sBGeL4Qp>=q*xSQBfM!5~z0W+#WWE z8#itgJbR`}%ABh!?&JNyvMisHrR8=uM<9`hj~`#Ye_!a^@G!C^x~NEM-5Tn1mmRFF zgMl5Ynlnjf7+ub!W_0Yg&qUd5di^>COT2#|>Bf!q$U`89p|SV5O>J#zKmh3Klt>kF z?^w^;4vjnX2P63$T5g8rnZ4lKvuESf)Rg1Y!+1GXE^U@bP2D ze}4wlR8-a=xKJ@-NyWmlp8Z%n|1M2@*RE=8J`>7BPml5SloVwxEe6y(B=l^^LsttPdNCY^H^v4IfX(5e6*5DBj^YZF(JNV%m zRE%#UBT5v3ZwLGIk)#->w6s)QgDZIPA6FV1mayLJuLZXF)keW>Bf;-9MTvu1wW z&z?QIurw!$VlpxDMR{~=%wyW2tgI~X2Rp7B5fd}4lvh&1e(>Ny$BqnIJ1Gu&28QD& zPS7F{_Oxs3=#+YUqSvQo1lk2rDIl*_{yqs*1Z+he^ONHNT%Y^fZAC?S{`~o9_Y)rQ z4=PkY8X6juY}9M_U$clK$4_N4`BqgMw{G3)(qF=a+C*+w-@qUp&vrxmN&>%HZCl%> zvwhF~Go6#w1;}0bw7cSdx;q@toLNXw(;FThCe6{v<1G@ivQqBf>r@~iJ9~RYE2}gH zX$FSqD(MB#;d$dFTN*|RSsc(L%3y6hYBYj^mPrxB=S{L$U6K78JyTP9F)^_&l#xS+ zxR6Td^yoQ_gEgV0$>#w#ZXfif$Lf%~l#-IV_vlg7$B(9r+Yhrxvx#4cjcw(!I>hAu zXJ2$ggaY~$o5P0>9|E1X=RbNxk7zQ#hZL!)uBIR^f>AS2LlSP^W<*#!1Pg6mXN=^{rgwYa%O(K zTf4HdA|WMp$@yPGVq#s)TfF&YaFD{r#@5r<2SPCH%AJe4GC4VEelPpM17+ULxSjC6 zWKlsuTI`s(_o2$)Y1sY$NV$ zZnBYwD#&cjoy0^MZ*T9-Oepj1rJko}MmuP@_McNh8SL-x-^{{t`Av$r?NCEZQ%g%2 z7zkpoqr&$*p{WAQ74H{?g@wO-KFi9((^fH3-`t$j>ukI7XkpoztFCD>qVP#1cV6o7#gYUq>gOz_5AAv}KLXsxl7{{ZGNbOUsLT!BF ztzBr`@3NTt>Xk~d>%ewEo_^||Z{KQ@q)}DP?#2*`^;titG{&1-qWqGP=FLwNFtv5Tpqc!5wvTn~#%%MU$P3H;+Zod-R#V4Y~lOPeyr~7WJW27PfS$y@!9uv zXz2LKlXPf*d)oht_VdF}*Gt@Ue=tWyLr36cSXdZgF4(Sp=la+2@bDm}6;bYSi39!% z(y`lQLqPP<0IRXL+y}j?=cm8dpa)eC0>Y6f zFF;J_5u`CAcLGlT(^OGcS0A)o%g-8Jns6gKd)Qg5;T#{hdO|`lTHu~8!bd^k@Jnb4 zd`LDV1HloEvD~-vG<@Hk(}CnOxR(JB!Q`GM=igpruVr`obX{xfM*Pd33g7(>Z&Pb3 z#I>=|VA-K6e8JFHE*#ztW>a2X?lv)~h!{~smcM`hUeCx#4b>CBL4`W0ohHYfot-_} z_d;ArNvSSNxb2@H;oHdXYE z>!_)#Tt<15F*9!gRkOFJ#i}DlGEgDbuU{V#7Z?5?2HUc3&40~&V78Z*opRWBmT`IU zU%1{b6-`Zg=o*{1ZVjso-()*G-iybkp-fyjOyV0qYV0YrO-M?jEi}Fgo=orux)!b} z1ze(MWwmL0T)5A#kJi&8EhQeq^wiYUyot>c-eZPq)~umWj@>>Gj1ESAYh+}k|8OU& zk)-?ASO2D>%K^(7oFK$rm9odp%j?^RsEYM`wbS3*Zi(e5H`{HFRKb6a-TB<; zqVe(ZK_w*z5GXZWUDp|;@t6cUjp+I(BfaBzTUte?j^y&VpK%SbK8d6+A zaez&BU{m++-|zCdoC6=A=IFS~@WhF96n2e7A?v?m?{|rdhX)5!;gi~*pEbLloSYH3 zx?=q7%vNkuFsi;1D5TkQml{;;9f{3u<2{ltea|=86tbiAqg~N5SxerNOk(TS3a(?SR^tjP}M z$j#ffUClLmV)MEDVtaeL0s`^A&aEpTEQ1fy0tgUcQG|7pxJ|8m*cAkk9VdZ{8d?GFr>U#l^^d zkOi$y1sei*LJAFeBtt_5-p!|wucVWtq_9m*Pk$L7zuMle2d)bs@})gpx!?2|SU>;4 zgPa#HUSyX!!@|1Tc;cj{Z(ulX*xY>z62i;s!&sU^@dk5$LP9A6xajO|F`93aZor_pfWTwY5RD*X-Q6)4bx+RwQTr zjlHJ}Y#TQstBTLOr$?hdaAAVC%;(qZJTd2i$|C>>lXaWqPYqQ1mw0~Ph`_XVaA*)) z@dtiB8p9cOBKM><7zZie;F4fH!5}P(&@iNKFk*whwRS(yci^<4r z1rBUE>h$a5GvA-x^%8FzLuq>gb#6$}LS<5V>GKPrMKLooGq3dHu(r02h={0$rh?Mk zfw~0&&E`jEcIx4aQn5Vpu^^2ktk5tfW@awy?Rr%k#z3|Zbr!n?lB0}@4{$(|>%62B+sqUmj__!*I`i=Bev|+&Fq0pk^rD1|>s778@HIiBr`S0ugj||AZdN z1=Tud2Nr&%_0FL>=m)W}v985?S9x;s^N%ViQNJhwOWQ(6M_2It`4#M9WaRq0@`0_i zrr7W~zksI}%9oXPpr;Qs|CMB%UMZw3iUW~8sa&8(zen)tojf_RZ)N#k)oRSljMv*# z$xu-P6!99cz@Obu)DY+3S||x9hH<14E-(C@n4Ydf;~`CgB(9JU5ed{aG=ia8JU`n< zhu8wx7(y(zcXrl-(vk=IeG|nu)Z(R&B2w4N|L<0m4!6}6|CzD(3w{pq(z{3Lzh)lS6_$vMgvY*Qd$}e`VB0E#!F-< zyoJK)K3GjfB&$0Iy_K}J88MXz?R|Q>uCMP_Utxw?+;${Fkh%bAUFb7$K|z#~va+vD z3H+&hPj5taOS%mzY?BYTE&4`7fO-6L1y^uzFk#N9Q+E$v3_;n>FnDmxxY&{D_MJQO z6I)ya64YW z4K#tCm>S2zP++94qf-xXC+Rb8d^s#E-ROy>65PcP3aLxmu4dz1W9wf72nVC1jw?07I#xXR^OvsVobUonqEK-b`}4)EPgODuuP zDx?Hit~IcIV0+v$7P- z%wC#!MkFV*g5A7bTTMN_3C~G~+aT@XL%v0{Yvnv0%E1AjarR?razr$~%CVPDLqh}e z6jB->8A)E6aU|gkIp&bhxPpQL<wZc<{cbEhqOhFac909fQo-?Z> zN{4H)iBz3L;0A^Q`9kOJJp|Wb@x#*6c!;3)^{dS`IX`y52O?L$c(MQ7r!vB2i(Pt| zQGEd`4|sfA2jDabNksdm^m?>ClI@o+9YhTe!{pKiaIUGf^(bPSG+fZsOfWpq=vr_k z39nJT$7U}!ikTJ@YVzgR#QUvq7yOSG;8zSj-RtLv4FEDNAHpEjo`URjz-^F%rTcQwUE$v95}#E$R0*70` z4WfV+bfLfe;uiGD1AcQ7P;({0YlvRWMQc^!Mn#zzPOmY146+KnG+V_59qYsB71lFI>7rCagTmqd^hzco>;r zjEHL?DiXOrDe3)M(e9+{*LnBsi4~P)-MY1=wl?Iahcu*jz#jAjqW>zOC#+?XVUSi< zRwnhoDiTW|kk~x&BygF5GB`XOh8_QcW^iF{Vh0(eqQ=#BbT9$;6HI39>>Q1@OQe|> zt^*C2xeb2#LPhzHXaJK{cXhGg0f@?1c<$3dB7$MF6hWZKaA0hV9-n$!&Y#nNVFt#F z`j%V!zu*(IwNjKY!GN$!a5f)5e@CUiFBYJpE7;h`C>-+kmx(WR?eE`{jKy<+IF^Xz z1CLWSY>4@{Vs51d9bv!J8w`&y^XOhPwZp1T|M>9^7x_lSb{#07^QZkXGGUOLBi2Dq zXkj(^K0I90)04^|?ddsv{(0{Dx+Q}G$|6zs2+YA&lSXa)(npLm!M+!+{6HQ%kKGP> z`gAYGn^$rS9@K))gSWj(u?mPpF|n?_yq*+QiW~nusJjQv*sbJlnUgzs#Ef zZB7Z215!xBwtt*M~`0w!4m zd_xv*kC)Hy{`G-@fk>EBqwVR?)!MaIuRY1hsR1J;>>A@7+sUu>M1=qF*d(;6Nqy#L zcU<4Vq=7yj3=6j7@ZoI<2??9mtufyc@%;I0c;#WD=gP_5Wq>pxO=bieTaYcH-}mL2 z`4-Bmh$QV}kml#-M~cWf@2<8~_VYUo-a!pt35wBIREClZlYDskaEv_(cpLqY#|4dA z(&p7VGW!IP0bNo>RKM_4GZ;00>9Yai(`AGwnmKV$lzM)*8F_o-faeG!=|QM@m@5z& zz7b2r#LXRp5c>++d|_sk30+ab`NM87LQI8D0r{_^rw@Tv?C0-~S~`_dwh0BWz`BkO zuyGsO9ni2EDkquU_E-3_9l119eN9m7l!L?Uj_uQ2Owsibv9TkXF%Vluo~elY znZbC50o|3%wxCoJ0CMpBZ^nD>cK-;tLcfPP+1L=nWsP|jJRS-{iPjKY3FQrH_!qVT z$ck&9OAweMnNlN4pkvvfbwV0i(_Z4d1VrVIJ1Rc+i4*DjedLQJm~t4h<;%C`L zS6GpIxw+BrbB%_O!od|4N0N7&)LQ&}a8xJ}8I|Bn?euYdJt!hy!f0l%h~{oqejqpi zUNTt#VZe;UOT`@LR5S>_N0WTCI$sh)A=Cqq3j#W^Nk=gd zLVg6JJ3;EB5V{xCU{wsAsR2PEfwoQhEAUm%GiSC-f5*aX8)It*26)h40cDNLFOYGL z+uyMh+IJ6gfQ=rwI3+;G$R32c>YiP9-@^ew29r0~TAGcnAUprdAyRd?xNMuR36jME zJP(5IrYOK{{iQZ+^mE0cuYarS7N#AdqR|XbAszqz}r(81&K=>+wuJwe8lDayyCfAY6B2hmfWQM#yH z=qA4GPjHa4+Fkv*9r?k;&K`l!w}xWS)YMe{%(>eQ0R`C*y6?LD{QUl#7)u=>gKtuK zz(pY%QCwYJ=jP|#8_SWYNVU+rM|^8xSs~6k{0j`vga5m6drU+|KRy%vcLd@1_SXJQ zFjx@?$trHih^f%;66i#AsCRIKQ5hK-A;*@IHgEwS8b5W|KtQvBfx&K*qBYRvNyDhE ztvz+>RM4NQ)$Q2YK=HOY3z6Nszug2((m!QuOM^+u0a@9KVUPY>iOqI+n!yk07(1ag zWSiVu{_k)JA7gDt$k-}YeLs{?spa?Y)A^E1e?`c)1E*O7uMv!g znRx*;lXLnjpc4>YQ~(=U_n1dONK^v;R*T&hj820oK%qkmC&b90#v$w8B6|qMjgeb+ z4vvh_q2#;t6i{IRL8#0AIKd>%FMs~T0n(F%{rV~rOz?vJ;zd~dNM#0aM8C0}pBe_L zCbOYqcMnIRJPf`3Q(0$($nN<4d-6O)fv>Pff+s6L!$D}4oWJFN_0A2Q%x1QKo*0&X z_hE3llvo=bd=k@5$ijQt;gUl_2H)7rlc^kjW|zpAb;DJaw>Jeszp ze0llu_?7u1ugWEJ3^liJ-`<7kk%*XBww(V$dk__k`fgSO5E-~y+EIf`+n$&{i(=fc zp?P2+4XRI`abXBlI87_RN!qP!Z2J%Wer)ozsl7dZBafUmTAL8M1^xQIGmGS~L@^t5B8oiI)k*t`y~JPs0FsclMfawp0+$YrGIi*q^% zP=Or7h1ZLsVq$`5IL!26(vI!CQ4taMFjzFj#O}teTZx&O{3xc&zuN+%a1miXz7T*! zO{9J{X3!lN^a>w2a>q`pH@vdk=vuSgbxd32SC{tEu36I#;q1rHCsp@R4LiaZ*eoyp zVvfA*;SsCnlp`s)^Ok{K*7gltA3|F1Zf&3bK5KZqBRZ>7QAK+0eC4*trqv^#?T;{R zWj?-0a!NUnNB zD};R&;zmV^kf}ak2XWPbQU30M`-CX*bQ`z9{K>Z4>^UP;vO2(WVrUaHdrk;a|E@EL zAu{tp@O&8?dz~jQDlXo5Q^r~1!o;cHJs^MVdmR`dD&Nb@428@|M*UC98-bw-l|9{h zI~WQKgo+N#838(M{(P<=YL%2d{eA5lQ*mehBx`0P%)k4zf1kVn%n%k@ zN@%uZs`fZ94@x=&`*qu0`GTY=oIT~T8}^@LQ95>v{)To)rGHZVP1ESpZ4|zX>>ST7 z$Hhrry?XO?F0*v&9Sg;w+r2LpDA%YiQkE5*xA@90X1cV^(DgS26x+WXu?m2(hi-E1%8QW`<{qvX5YWR^4lL}uk-wXzZ!LL z(3OqcnqYi<$S#RtEG_JpCK%8PTKGJqaBAv!sJc&vE+PM)%?tdF5dFG4V|BTIu@SgL5POiWR}xqDWB z|GDdTKi@d{xSelP94iZVp01MRg_&6iDk}e$En6^$GC!_YZl+(^`)*RMC7nQjxp^g#p#EghO$WwwMae@0~&`?1xG0dd=nLK##lc4{gE$8B#U z%x^1T{(1;AK|+CvoB-BZk7_CbB)l|Hw}}AxWO1ulh}G7E)xne?T(1^-I9{t>yeNyw z?0*Ati!v6Xoq=54Ov=G(T>&YqZE4v+avz@BQW;y!q~RA2fj$GvE0K>eGaZ?fxYBRKA`vZzIkEJZD04cYZ#W& z(1bdOEd{zdKjEX?bsYCu`W3jBmiBMzVOh@8Z3mSsR{{?Su8*;}u1wiYW9GKZG1tC+ zLDw5_j(Oc0ulXtasOaebq5;^0i3u$sL2p+U6e!QMwzqFdt}l$`K0z*-kfesj1tP9u z6)-QDl$^ZpPypr{y?uQKD1SfT$drcJvZ$co9^Ma&h=6q4k|v*q9tK_3J+lzX^EGI# zrDbLM@cW8cRo-4hO{H`Dz+|?kot>Q?mRtS!@dQ+T;R6TeHvN%>80E~#A!)P5=yN%e z36MPkztEB@Ig~v$EPotw((=O3CoG#cE7&$%O_%i?(Q|W?K!FNrx* z{PmghF=-zc=Q4jY1^pkq=hnl0I|>7g1GHdxv)C1Z?>2%NIphchk`& z+S}0W*zVR{`dwyOes^gpK>9)ftA;?;em*W_X#MDme-Wv1tPBO`(L^H9<$plXnSozX zN?JM#(ZtNufgfn>V!^~JrKAlV`Wif6e}8|vg+@eDopgPYm7stIKz2`ux<7ol28sSg zYHGW#{IUuHPzZ?&HO$;;0>c|SXJ;)`L$rNI00QtIRj9D!74Y=+YuA)O;02M>uqO^^ zeY%XbD9_T~|BKDbp&p%u4O~owGAZ^q7it>K+S^tQ&j7W=0dJ zva@?T^DRz3Str59H?>&z6ysb?UEK%3+#SdV$IdJbX@|G$riC`NVV5uKxwwoo*f)ys zjVb9&TLg+%(``xE!X)OGs~b6gppfF*c=Cy*4(6TL6A~23lcejZtHtd*c42>557Moq z4NKLD32SplN5ZYWX23HocMhch=G|;blL0*1goZTr@81J-pah5rWYIA~D6xg|l{hmq z^AOXIe#dbD#4b45;cdwT!85?<1zt^k1afJ+6JL_16No?;q(|&c28L$(mX@D+KKo+Y zfcaz?!m#w^O9KQylT7UP#uzR&09a{otd!Qjx4A z_6e%|har}X3>h^nOdT;o+U@+CHgO;HejR%qrcHx(>gZ&%Jg%U(UnE(P(h6 zmK>Ry>B=rB7~xmX2<~FHQFR?&FUcd$dg@ON8YC3wSWPW0#Jv{U(vP<{_Nu6OeSNha zcoBlT?C)v)oa-bCU>${7qzN(@>$QDwkqgSjQE&Q0l@-kXwq z8LNv`tEgrwn0JwON5VBNO&1VO5F0rVuz2?A#yVtcd6x!U&02dM-rj>2r5DXAMygEU z$Fneyst))~Z}{=^XJUBxT0sGU&BtvcryzCy*UG{-J-{5ge0J}O;qbR_dcZIKtIPjL z>VnBUAbaWU{nxiVif1%X&HBlL$nJ5ajt=T;>Xt6!b0HCxSuZ-4yA6G`HOJIAI2L9m z(l@HA{z!cJlFp*)oT`kB|1R+-?rWY~htj_PurX_9M%;1S_>O}`VpUA79$(x z@guOC&b&9WI{w76;$dawUC?kilm>+Xgqm4yZ2#1z_!AKOY>K zl-m!p;SB6%IGymO>C>k>7(g6F<4VUR&ijoBT=I@ycw^Pv%zFLqxxWMQtI-iIk)vl{ zwEJ#8?s~16&cORGo3z7Kp*!-fDA(LSK0cf6%1sgZRN>re@vbKHj$_}xj#cyABTQix z!#{20_JM&Xf_8X#duPLW>G87`6Tn?y8xawh5THQn8yiorzJq%)lDu)?Kx*aOSB5e0 zX;l@Kc&I8U`=d#}K4MBlb{|ocjTs%TCb)L(+Wef5h*7j)yL0D``S|$QojRp}(N7je zbswt&Viji!3yax9h!D)Z0t-KI?>slf?yaC9pQdq;pEhWwc*d`)wK^L zuhO;i(54z6j_2b)r0?Xk|BOrW+?CG(eG9wJm=FB*Fwi)8QhZ@bYeU(^r(*BBW_D!M zcui*TiY%a8RqBS>+I}odiCn^hbLCLDk{J!I{~LOj~x@@%Ygj`rK@EmKO$m}RpnbT zx!LJykZS(2faQZ&(Ri3KK9ygb&i0h~b$%CfBnd*2vKV=zs(yHEzXDa3;Bk~(JJ_gV z8d}rjbs;5p!SJG~t(}E391qs~-!i}5$r|khA4=B!`$ypioq^_PaB)6uHAG8CM-U~y zv%7mI#GltqO}rTm$A4l0nmRkLfr2?=~nPfWdoWhp{JTkGbD+MyPuP!g1V_}kvMRS~rE!$Q1(B12whmoB@P@a|R zF(#%m7M_8yhM0HRjd51DX}IPFe(v^L+uh)&Z5-rJAu*3AfD(nXP(%`lR59;9^^O&- z@XnCrJ4On1Emlzyf)n_`{D|e|b|S0HoR6(h>vkk^`<%45_h- zH`z-bO%5+u0E6go&3QdNb&oGv7GDp|Xd^$f+ktyXWSkc2VZ)0R<+~aBy@%#5# zr%^o_`VGqidsIFgT`k36BG|mdjfDFPt>qU30a{QX;lEW-Q31cdXdi(xnE(^b#Y>ku zp|&?wR|gSXf~m#u^Q=oJj4_jmhIzFa6%?)uVP4+BY#CdXm_7>*PEG>$K>h%FG3WMh zbK_N0QzQBdo`m2nytVxM*eoy@sq>&CS(%yBuN~rzG&D6cP_^SLE9C%;3r*s=k?lA+ zOS%P`<8)lV>!dfN!w#UzCg@6NBu@2FTfKnhaSy&bzrSg1y1BXf(~_^1 z{*S6%QbqhH49ktD>=c&;bqYv>rBu{~j19J@LWpm&_1zhgLFtMqwE);V;1#DnCq>LAr z?tZ3Z=rvHZ8&ayTFcNuqK;QG5lDVv=nCE5RxVLxik1X6AX)4lgVKK^< z^%(r1!o;%X`o-RVpQjgx#&kLt-tYhETt7WINaZ)@_c_g7-mmrh?SHaQo_b`X2y5U7 zwg3ao`||(e1(1*^=qbNdb1EJTHR8#WC-5H>rS8XYS?1!8>=c0m2aM4R`C+e;f=}nE zweLxXEc|1Hc2sC+sG~He(?I32Ye1@HsfQ|(Sp*7;lwV_Kgt3~lHwc1ncbX61|Q?#zx|z;*E(xb_`>km-NTcz*Sj zUrfVu<}E{F92^^7T@RAd*L>x-dgMBL0b5YO@`46DfP#k(nc)y&l*}s@rrrwQ7bYji zH1IkL974b1l6R@ca1_i%8WorR3hdaSh?B;ToPy94mdV2A&imC&s?{#ia z(Vo`Fd?E>B2qz?tq^k?c(bqqJ#K8}*13ork1Rx+SZ75>+aKdnOS`v}U%)udSns?IW z?AhU#{R2xa*46lA4IC4KPhJflXZ|)Gva~kD$DL$p?3&``g&+U@*LX^z33`n^off}*+Quj-RnGbfJ-J3W~C zlkqC3g2K*7w|>*66d0z2MMRkI9NUS-yN>>O>w7ZB=%QeIx)nb-8R<9}<2Ev*K`{{YE5D*zxMZd(fBFg7yk9xz{2<-XTSpy<)e<4{fQ;AD})F$b{XaA-Q}n1b)X zw7SaqF`T%Hn9#3g?UOpnR4T-`xBfbZiJG>h$yp{Rv7|+j&os=EwWo6f6=>@1>YNJ9C4}CMp8-Pe3UY?&#>K z`nct{#>sqhVd#R3iL_A+ucYODj8vpvU6*uv-Oi2gbf~I)`*q-GB$aP4oFmED@g__s zRbO@8%{ue`krXtS>4Qko)%xr6jX!2!c#4;C{*W4-CT>wCaN?0+0zl4+P08d`BvI!uc&MEL1Z))Dwkt0#d#c%J`$FFmrBht_hH!<;HD3 zq4#l(SBjxbI1DE;2i!qZki9T*@9j+)EtF~@d`=2b=T={hIayQ_DJTsCSq)R=lAJM8 zpwfYPjJ;J!%rvth?xZmh--Sdzt-h!q7~k z@3``}TvI-)_e_yD_#Wu`iDLb(!#bf3fiLQ!Eo@TBIMSyD2hv-Mn{2y{dGR5gP#dkZ zKf{fh2#Ob-mzU@G%rx@qRli4Sy-(an-g5kCPY)$)f!ThvpqIeToo_&3g^|Y0tgJ$0 z+b{M99zsrdfZ~}HJ0?JjQ9c^GO&CNc0VGy__$;P+nrJ|)1IK6s=`c7Z)%Y4`O(2sX z-8k*HKG!O-`wi~kf;Jl@RkhRi1J;>5JM-S4k4MhW7-wGXfulSozpCaK7iOp&Jqk%Z znEZucjuNe6%Zm2vv#@j3k=*9O&z3x|IU|tQzgTj=>5Gqt=UG8ni4N2JJbLD#^bc4T z7TN7PXv@|*3@=~=$~xVEs%+O^;*KFUziZX;0AO)ziWDo8~|g*uaHV?oiJTkZJy*W*hq ztx3hDXET2Wtmrmy3Lt@!fb?(4XEu&4te(|x;vtj4DKPNm;YG18fyzh?#f#$_{)@j} z@Y&oH2rSxhKcZO=i`xueTFV<8%CLu51T#MVts;i;XzZFwN+DgjM!F~@f}n2>g2c=a zH9D;ts}|*V!t9%#Swh_}m5nbFU*2+7$I_Vl4H#Vw@6&8x)A=^)4$+zM@$QF9)o4NffRm7=+`i+eA-PM6!&*q-s8uw-n{uK zd@*k|4(MCs!i5r?t9lI+Lexc1RJsw%vly!-k>2$-ZRyz6qnT)_ufZR_#q9qak5f{Z zsB3+L2SEy_7_8o^EblE1ST38l&$}EbN8-W(at<>)yW{V)zdd_>rS7a0GWojnZ0C|- zGMFpG<96c91)AT!y^ak62v0_DdviL?Unn3TpvXSpd_sjx6vvZBtFj~F%`f(H5BIp7 zZvND#G_$sDxc_UBhg;Ff-)Hl!KmPu0$t1~f8S~+2U;+|VXuiE%d)XPMKKuTOL?4n&j5FrwnGcVJ0n_F!x+gJD?1a=d`S))U zL{qlCb|?o$IM)W314+C$aLj5l_6BMo$YAd^fT`p3Z@xm9DpF4fI6AFvyJD$JNaH8vO^Ak#x-b!Y&r!oa8AE`<%*_*!+jWR)d2x` zG2Kh@Jl*y>xcRxq#mJZJ8^h%7tG~G&lH5k0GOeY3^ykX+k8$Ns$C!_3h<2x>ur7Dx z^Xa|~9sl&wNaW<>U9e`x17~fWZh%)Eg#I}TDBwJX7xe%K01WkYb;>ZE1w3Pae(#<_ zLmZFz?Ch)!v}XVczghFoPlyT0=~LM=ObnV)+oL&jLTh-@D$~0j9#@7=Vvo!cbe#+g z!fe>2#4Ww+v55ic+go-XyADLt6uLIhA>~^iU(wOd&ZEt(capLT-0ntfyLPR1BybNs z6O-lzYm`;k2g6}=AO~Vj<_;(7%2}fY5~&KOB;7CxfYx~+aOE&;)oQu#_0yGT(Ldv$ z*n zrhX3j8U&zEh0Knn5$6SPK`<(uOexoZmQ38{P>M!=R`@Ua5V#KS3S!g&>+JaK=cK`*2AC?1GfjtY$lTLx|rGQrr(M|e}dwIJmUh4JpWiSbH;FD&Roqp zO65gozB0I?c_Dqy%B-DvB@k0Mf!({caekuZOCF3u(a3`G>DEKg`FA43r#jSlBE!SO z4fD-Sz;$<`!4iOuvj-X7KeNFznKy6d#Zk@_n1Elm@0;y>p8TwT?qSYt6XT;FHa<(< z=WTBHCTmQeg?rE9$oqu5Vuy!6)oc|!Z^czw{ybkgCoB2W&>cZntB3tPUD~m4-4b3L zl6?crW{(MNz0&?Pzo|%=BsJh4&n7ds@C_V{rvg;zFt+~U}&0-jt_B0<_%(0M}2#y5hdGYy@7EV5YLq2#cPJfn?HWd7`Nm#6* z?(A@Mvs~xH5dGih_Sy4{j5~|{4Y@w`S6jY$uDoz`)0H<7t(8UAmv3#m?ZPjd*0p8+ zQLOnuuNA2vaD1e!-y+0v=r_)TUK~y`648B`+xZ0_c|5lH{Q*LZp?6`v<8bsm)#$MFhYzQX+t)lo2h`INs z51H?dpu=?nyQbQNSU{Lfi+7B9HG$^&r}1mO)>vj&XHVAN2Mp)XdWOru80 zKpq?QI*3!DbK_6j+JFAV7(SH@%uvChZ@GJW52J!%m=G@dLch6nOY!S%w|DP#_xLx| zAJ;qgQOFvR~lY-h`5pKELzA47#TUE%RBI+$Q(^oRzoh&e^t2lhz$( zBshEs=bMmn!aJk}v_j22bQ`IKfN(=B0o~`DA30Ff@Ay zFD~W&u{*EPR-AeYcA)C&TBP9gkQ9c?U1wx~nor|AIQ&lWs6~hAd6rkvjB)x$F-hda z+}u#yjs33MF&cx&u@-vA($W$+G>@%54YBUO(^*FOo0*wWpzEd=<5$z+xl2e(Yr`jl zbaK##QB%T{$RQSpw>Sfx3`mK|a1FQ;aeZS_cT~mA+q=HD_Uq})b2R%X*;HF;=w1yD z+3Ni0ln=Z1%#`cv*K}(Vg8ayl`f8|!@Y~fTRhhJLy*tTw!^qqBqm#q#wCuiu6j++TBRWKFg zPj>)CY0eD*z984ZsSJ`hYIDjdy}^+MBF%9#WAd#aCv)vrRkvTci}YVpDLH}cvILAa^wb(P!^zCv)nn>n4ubt;8=@0%s@3Ir_ji1M zg5N~VTBO+i%a<=poc$<`Mnd(_?8Tn6z!h1fgb>VyzzXkPo_EFfL9DEm?+uhghuFD) ze~LKF4Q$;ooHITtpQ6XDpN5KNn4=#CZ#vlN4SZ(^SPnnFu%?~nCq*sb7n6g%eI#}= zGEzf#w>O=Buxr|zi%Anz*{_0@TOOL1N@2L|02+#~G@D9WT?)t70_lNA0&x8u<>{X( zz+0kV6MXnu5=w=oE{;<|K4N5-ptRlem-UuOEH3sM>wXfanJs{0ky=`!d2%c$z}{H>?E7bWAKW!)OItb_7mhrGaxBVAmS+;x6lbz2L9f;bB9zFU}1aA!;2j|LU7)eoOwwW zkK+~lwQqj@eq(oS*b8+XF}sGVJU>4EWlRgW`6@}Y_bP{Hn53;fhuo4{<-(W-zXPqy zl0oa!%T>wOcE73;CeQ(3- zc($2KN4(E;3mtM0zS1vXdG<@p=hulExvf$~GKNnqxw*IwnO;5os_$2qA^jAeuyEwo zMGq&_`s9<|N7U6@?SG_fD!q1+F7Kok+}`j&j)41Ns;UYzW4ijU!Ldr-~apmt^2s^m)k#H-uhs8h_!L(Kc|l& zaST2z1{<;r92{NvpwM;F;D~R2CQ3*Ay^s6zmSt9d?8`MSarf|m$G~RPPc-gZKgTIe z;jxtg3CSDJBzCjOEl|4qddvEKPNS79=^h;N|<}V4x%~`uNK$FP@S(dA+;0} zy8|J?Pn0V}Kb`@N4{C{%BQ@hK`QLPkrZ$Je)#j=g-v zhDC(iBu^una4N#6k#_tRWsc#oqbZg$Y^G2+p!eiP;1Mq7DtK}L(X6~E$9?gFxJ=sH z+cDK<$$q)PjB6I{iaI!Cm~;qn0%2VQQuQW=^Gr(hVV4oAed2*VR3b_3mUAoFhQZ1E z)YMewKU!YidJ#MK<90Y9+(rpzh1n}WUh8}|1LJOac?EcM{*#;#D1Yg6;`8%-IX^>P z)!?8A=8hc&ZLjbf3QAT}B>qu?u@&?TGo9G@bg?k)5Dxq0vx`yl3nS^&mqRMyu2#=EVG z!?XCRx0jmm=l%_wtv>!p?m|)=+f^be1eTX6V)DR?0houc`87UQEu0rvdIxS$w8CdZ9Cyr+c4|#g}egH46{ryQW z;Oy;6JyAq|EZb3^vCP8a8990OT5bHE9T{|$RR@Hq?j0nPefs65Vt_124??0u(9S52 z+bvWQR@7ww?hf`e1kje(Ps0wF`L*Lpo*s+jB@O8+&-9d(Q?9O@(C)?7oZ4ZxIN3?6-33E3b7D&RY8P_tdllepYqrLh!O7! z5+TfzF`PS7}EB3iAtRQXf*@il^CU zEp+kaW?t@ZSYET6e#z%B{S(AF2_S*_i+Ceo^Nwx(K8q#=Odd!Heay!C%Daq{LZ3f=TxL3TV4yNmgyz(E9DQ>YSPO zN&&A0am2?(@)qF)NrWT^MXCMWyJ?`c z#LtT^A4MuG98OBjA%lFk=N=RCILmT;Cz-FZZ#MY$3I@I?w zUJ0Spwz#=s1XRl62KVR7cb1QaD^&)L+}92cersiwGyS$YoxOfRL+yi(82eU{ejX*5 zGU7af@|c*JX+;wYR!SB=#woB(g@Ai-wZDfn0J51`B&HJ5&-V5RqECV&3}34{CW|PJ zV2g5lnDJb`yv#sPh0bg@h#Ml+0In($qN?3tmuIRr>jJ7LbiPIm9P6}83k+>&yMc$< zf?)+FG`_ePGg<5T3`amxI?+5Y{<;E(@u=Y%{mCm=?tlIqrIex`f`Bh{w681=>D9QHVzkjy zqB|Iwa%b>O^b(DM*)|{03&Kvxq2R?WBlG*3i!ZwmvyiQY$4?st(Q~5*B)U(nE^^)# zweJX~*ypoEVs7p-`*}Dj*}`KQckW%$nHb~q6lXb1cLmsM(GDty6CyU`jDZRxFc=a{ zC-7FK!8(m5`@pYM(`Zq*`#Cd>b? zFcKSxsS{urF{l#h7f#jM=|^^B!T=#vWLU(6H{XnNgS?$(i0_y&73FIs5$V}L-iZzj zoTKEG(Yit=Noa-NKur*X3{Ff1QV7KqnvR}Z@xyoW4h^v{su^){6FM98)VS&rlafLq zE5wm(g}ZCx=7s~#EsKN9LnOC4Rhu|hgAZc7ws8a;607>-9;an5x5nb^z*sWU@KWF^YC=F5tUpiv@)R&v?iloV0IpG}?`Ly+nz(aEi0iFA8z%vN@1MY7=2y1X3 zVnkOaJ}p#fgnwn@iNn>Oj5(hX-nQ4Mo3>O8vGK-BrXekYJj+?e!{ z4}c%I8C+e;mxA3A9P+_u^%(xRx|*1n0bgr>`<n12wgqmxt;d4KI252lHMI-@ngV zUOqE9VDYNn_@G({zD0L%+@3wv;m8*1##0a$6MHaz?xIzZ-k4bd?MJrVFztcb$*Xxx zWPDRR7L`w(#tRk{qC$2M(~r-Sb}nL|A>{6ggnoOwXLgk1(IfvayW{SXpDSyORZjC4 z7nA8KtZy7Yg@=wbBY2}|fF-ZBxb#j4N%Fh1le+}kXJv(krUeJ9dOdgXeE8{;Le?`m zj-sNQ!baa#1()tFS?gOj{EMXpk$I5DC;2O@C*^Zc8a^ zpfxstd-wzdj$M9zXpdU5h*2aEl1tE{;4=XB2?Yt9zp7|)p%I-1WEf6`<3spzAY3Qn zOn{!5)Ozrv1JA?Y2CzR7Z=eG26<3!Eu9g1)!Q!NW`V9v>2pT9Ha4qD^5Br^PVo&48 zBIXqcM2R!y`)hg`fWiAZUr$(7&~4E3G()FFMMr0c2SWVKF%<0C>FgZ5Poe;q(VG?u z^v)=dXd`e0LwobJ^otFJf%U;{uX4#&9V%UVX=#900@t?v#f{4D6ejNjzJ;1dN6Z4S zA3rfW2w@j~n(r=`9j~p3$jRsE3B7ladG@^4YGp9)b3-h2ARASc59eo3IYv|BWfE=7 zt$L-^#Dq1;BYV{?I77SAtmYSXH)5h9Qay%-*5~L)ECbILT8=9E{7@Qf;L6QA^F?`` zoQ?~BUg-SZ58sqmMmMeqpDSYr3OWPG(y-KQMb_15*D3OM)<2swFRuXw2}en8Z{Jm| zus^gp_}Md|8doJ12Zz}o_pghNtLFi2AVUWL?|2NZk{-;1U{j*Q!gd0=agQ0XVe#aaG&Q*2zSg(6S5B{5%Eqm~eG8z-j@O%nA?qM&BL)In1- z6U)+msY3#{RrBJ%y1TpRX!EsLW>*vn=70W-zi;EmkN2j2d&wwpaNXEAm|R&&xKRo4 z1+ywTC2Pp!0Xz@}Fvic%o1R|{&)`7O1j3b&k))0cC~9sPh~~j}aEnG!Yw_ooKEi;j zmZO*5@3j2$C$bPyJ2zJUtMn8+S!R)s*$tsA$#_8cA!85_q|2qPMNP{_&K2N7t@Qj^ z%AKU>-44|SKj=AAXg}F!9WOPLut|HVn#0Y<7ee47fEp+Mq{ry*kfD?c?AyGXWHQ2C zWGKQCN$TM_Sy3fQ_ULtAl_Z`894#5R8Wd-$gvZMt*wB6F>I85>z$hqova1&e69y}k zcfdv-;KWT|Ex*{H134cwJ4!!ZZY)Z-9z_F)o+29ukvMjM%N3`v_d2ILpL##RR6+rdl4=>S4Qm?#VTP#x%r+pk?|E2{NbN;EsZC(=uJ-)@3bfIfaDMK1M`0;z)UV zcs#CtY-zUs(?mF_^O^fCkw1TaFaMOvs?ra+zE6TFBcXZe~R!Q)4S9TC=;;oigWTfS8X#ZeJgfYei*u{2c`ANx2Zcu7!TEuGy$^eC zyiG2rCsK*JVel}m^Kp;Z_eZusjb@pv6HkM{Hu2%}h>Fq#f+i+1Nih4jz*x{Z4|7u{ zdgo<`xPKD)ES`02hn*f@`(Z&i2;fI3GOZH07_fC1z9#_$4&bCe#`Q?d2tZn&UHid_ z)>j**1T>9ACxHeC%*+fXyha>T;F;nUb*FG~)?%Rp)CcVH9w89QR#|I+_gN>tsza6} zz>f>`^EB?uxs$?>3kp|>h-0w)Xh@#u^Bv>elBfIl$HmVhH~2(c?43`49kXQTU~lVe z%g)patul+wFgqiwtNYS-jiKr8fx^DIQ@W>5e4S8r-nY-C-wDv`J193$*NC@xs|nO& zK7?s?&>@Q(l^Be6(45@4(`#sG#Q!e40n$&YDV&n1MNgkL6xl;>a8}spxy(Bq9UD7a z0--K5uWP$?m&Mi2mO!>xs3}Zi|NWUO%u0KASb~1khfGS!|Ha9#VGa?vKfb+k4-Lb_8(! z^!s|I+O7a${sXTAF73Q{_!n`GWh&M(ekIh*n|1} zZ_zT6CkPIRxFd;v6~g;$WG@rme55r)_TPeb|8Z5-CAiaOSNuSQx8tk9gQi2@0-*7; z`A%rfyD;?rD4jRp{iX@QJ5 zj?i2b;29H_E991GGjHzSzfV zG7(_{=iaZI>%;CO#XF({?NlykU$qcHK_k3Bcz{0FujlCrxm~+vkH?EDIxQ;@dv_^U zpGkFdUmV6>q{&!VSRlk{XtVn{U;)s;&6olrHUHuQA&5G_)*ykGrCUGDdDZ=VD+;=c zFeLy;pG9*5Av+P6t(~EeglT|a7x02!p>7Vsb3kO2AUfgD9!q69cM$DyNJRlAWs`Z< zKqLwDV-FZ9_)e61XV5{PE-9kB!^TIhyUNzeQk13*7czTx9oK zi@O_4>Le$(bgx1Ap6;>xQIXo?ueUbNyycbPCcFnIKt#gIbllP}Vy6N6egYfCXu#8q z!P;@C@~bp+ik8o^@N(ln3fw$IdAt6j{vTp;GTa5 zVLyx`zE0Zc2O$}2LWgJa%&qbEWdP;YR}A$c$plZ7X=?W2D42O;jejb9#E z;6pP_mq#EA7FOKG zorpgvh|`GypO6~pWE?xQ5k{|%ChIWEkCEC}utCeG5MkKb!D@QN{ojwU?J^Kr5)vX| z#26^Fk0s>fT<@SLi%)mztNJM$v}lMbWsTOrz0JUge*xObXK!Pfk$$>=^M=%lA93q- zcNb!&0|WQmznhg((iKlCtuJa&3R6&M3!jV8;pDuLa5p61K=XZK1eeGj8{1SvRS~1V zeLw2ADWPuwF+$L4V37h`Jq=ONr@;^70|TfOtD4i;*O!Q=%go97@8O*7t^h%d{0-zF zLg3EAkto1p{kw7|aR?qUaG{7>-axMd&c_6Qt~H7D*;)@q-bV#ubeS zy9|ur%y313FaxaKh`ty71(dq&AkvBM=ttczI-HvmCH)XRQKfL2fRw^qQ;7sDjXSJF z+AV>`1FJ-05I8kmaKkCe0mlf63wm@!l20x!>R`@+mq#8DB|b9GyiNcT44w;Ydkb|Z z%}m0hqiFE?BRM$k@7RtoPtPJsb^{T4N2{P%E%k@0L1sC`PqoqB{`zz6Eh!}q+YALm zzZni98Cs{1$fc0JZmB$jJMK-jON5aDljHijiKC1VSLm+3-d-#s0NynjZy+@VxMbYS8iu7>S2N&PKF1P>KLFT!YGXA5lK;FC z(SES81|pgV#rX0c$0;aZkw0tVP>f8@>#nN@7qoCE zqWgUffEC0mm}^~p+?m7vT5C~pO#h6~4yY39T0GyDd-R-&CO9Xk2kq$|ApfaHE~kZuqbfO$*44_%$+h8)*}Ts_UJ2b6knWZ@ z5z)~}0xvQ#rkG8ODF0y}Mh(d{s35jJ5K`b_`K?Jk{7eWM2Qg?p#GK=$4j- zG#SSKvw%Dx1|vI z4RM4Oray?7$dGSNf)gbVau7k;`5goq}fIL)nF4_Lm_4cw}T?)L?;& z*+qw8sMb>uRT{}#L3m>r8i<+>Mu-h^uIUAwXXxc2&3_LJ0uk(OF_WzkADr6T+s6FO z*w9DueQD^vrmjwY-fW`S5Z;rhaHPpbm!$8f%!_{#Mt{8U#FfikF7=t4!KA;|p@2u< z2d56?NraTd+q>Y#`cDj=31OiKBj?h(wN4qJR`g-5f za=dNz_ZRzAM|2|LAnOCv!6h|n=AJk-$K}}z`{ci&h zB_fdaqZcHe1&FT)y)twsG#1nv#Grv;oek#UBnC*#-~f~#T2d*u5-9$O260QwPv(41aS4}lO2 z%}&bEYvSJG;&*)37hY3aOV}v}2Y|ItVumvLQ1iui$D}neXxj!b-kY{lyd+ zNAt{|#mS#ZdvDpr_8c)o&>d3V8ZVk>+rQsg{OGKL4b?u0i__mzrAH!S1(go&&g(Jx zo=-s7Vjjd9U}&*>E2hm~ z0=IKk&oytSAZ?VWWx!#7Rf6_{ej<_ZV8GU2pCO; zX|PS!+uLKL-zcW`S=)|i4R6sTChAJ_(tG6}oa7fLcsg#}{Cej4bxr3FvxQ4m!!1T#kUWbRrS1g)8vb-&tP3{4sDD zzrqwZ+APIyvhjT(|fYw`&*JU%C6VpuEnvZ%DY6CBas)w&nxn@f~cO0M!2)%?lK5D15}Ii{1+=(OY=>ygY=?l~4x} zS{4k+N{2I>EXRIzE8F8WAu~A^EpuMq9Dx#Hv<6g9^mKsgwJ&SAxKQ=aJLVc#X`jw( zw9Nh-xZ_dn^<==TQm>nW7;XjKIXQlMe>7#0QB;Mbq}Tb!f&a?u|8)NPS^aoSxu)jB zpQXl62t==~eSKd!7L-2b?v^E?*G@EpWbWePb$JHv()?e~Dbry3ZQCQiaVi>^ykJOfc5t=dX>otF&GgjR^rFsxy1LYynz}9bm30AL10u)IfA+bT zqt<@fL+(6Yi<>2_KY9LF`Go>=2zTpDg4vZrtgMg*K+pT3^!&a+`eSP(=;8jtsT0;J zG2UGWl<#7UK@lN`z-qMmLFH0tO`uzw#;dFQ_jkUf1~Z=x9uGlb11{d4xSxUn8n`;a zmk^NAWUMlzU%D_3{RjUyF~0x{fS{WTqz>9G4OBu?Xq^bdj+0`NR*PtPT{FnJ<^T0X z-$J#6{G}_5%l{PgED))#6&q?FVH^6rbbyhbYa$~v=DI#((i5|vd3la?*CZx`Uahao zyz8E^4GliaEci3>#ZfESD?h7sR-@i@>|VpmsWdibZ@8K6d~K1z^PghARP04)%JtMMEo{-ZIhFi~G+vK?o4#n2)HO6HF$vlL z1i-3HX~3u`tj|DHA}AvVP!I9)KnSCE&SV?FqyW|)S@G85JjbxTfv8!xp30^_F)KDT zV=C{97gjaaXLKsP$6lYg_QBADB-)^TEOO7Tw$7;W3Sner?z~N zzW<}6;{(>{!Qr9QG|OYfbALx2USBK^`|YJhzLMA3#;zT#q0@LR_Dy9?%^Uo~>rPso zJXF;0Ty18^^T^#jCz?v*+_^<)7T5NS9}pP&)bHq+t*3XcBtQEh)xJDNxS#2%so$HO zNBsV+q@+F9CMJcy&W5Y|DWutTIk^9o@!Ts8?A#LD(Mn3@zZ3+XD>5YHWyk;|V7IK( zDcz6{V*o_R!zozZ(QiT^2{7XX1YlXO^pltD4JLw;NK)#GF(X$&l8=Gi%3^V0p$ige zqOHV}6{~?9Hh<{p6)t!&K_5@-Q<8*O5jQQw3q&=?9g)*FH;Df=#NZ!ao?g zINqE$?J>`9=9f!(aB{<^b2a78xLo7O9BzxerfkDBgHG&|mO9wQ$6=%wC?FAQz++QT z;8E*->D}+euHO_i7!U1XkD%Rui!AL-egut<74mtnj6=I=A)ggfC zuGFUx364YR#lLPp@G@jyEED}Ba%rf3z(pm2_QMo*8V)fM2&nP_gdmPL$55o}7lq}| zUNAmH=;<0f7?2nDNh?*Lbs|%P+Udqi?z?WL1C?^17l9jTRh;Rn$VhlQ`N zoYIX`Mb}q_uFdZi#(I%U&Qa=m42lN5kPS^iDGnF`Xzz)?tM=|1l&j24dJ6J69qj}j z7*6%a+k1BR?d?lHx+e2Px>vVXvRGlv0Ex<_&oq&~T7{4DyD75fK@;05y1EsEFs7 zk50Dkpqsf#!88y44h=mbXt1{e%X6AOzi-^L z@kg>CH(2EoZ);jwo3M!L6BD=Fs^m}1oRl~dv;{Vu2doEcc6X`oWBf2*`>nVHE09|4 zsu*c0=VrV;^DSae=MhVD42_I)`<-gXf@x-Z^Jz>|Q?WfL@Ab&It*HPDZ7zv_F6T6t zolRU^f+{M~jZw4Gdn(+4!c613P29($_&@Dc&x_c1kS6!kK(neh6=_U?KmvaRiti17 zWo%P0yswD7ncSlM&>%bM^0^i0caS1FQBZlA@vB^6;%Ko}Np2u_cApbS{o{E(OOL+j zQt0=M#|Cn$U1xlu#97R?f0uxO!9Z{D@70FHrAD%6x9RP_E`AmZShq#g;;yh)hzK5E z@tdURQ^<&ME~_oLnb(;mM}9mTE*EULLSEK$0ET}`TTypx0C~V#!=Bi#hRe5GX_XyP zug!Ocu^elQJ;yCM)<}_-q0bWfV)1!YhxiMz(YMFY8RP0XWdDvGqQl|Zy(wLGcpsh6 z)W17rjh~swtj5%Uczf*+xhXeK|GyT%EyeZpy|{DwK~O*$czC)$HwVFS=lgy3&b>6) zs6}3q^zFF@@W0osrrzjw;ZT}eHBION;Bf>q7Wd}~^vl?HF zeKf#JMT(I#KetlKV$l5T*;gO+!rxVDTUhfTH`k}mqE}kVO^zLb^t}@+3B^J;221z< z;`9l`WRP(8Zb+A1UcmN0Lw2RNb$V1!i>;rSJRVwj7})W(d2;#vNd~!H_vy`#->vg9 zyF7AOnSm-h$(Hp?r}?<;<$ShR?Lq~gD|NptTZ+wDTv z575McJ|onqFk?e*yWb5PK5RNuXK-<0dO#npFf1QyQKAd#3y86Qrnb*T_ z?QLx<;08BTKOlHCT~AJXCYV&G|HIf}R-xhg^sFC4ugWrx{s)%q%$YMOW@fW{=_Y#| z9-EcQ$jX9D56l%}mynoQ{$wUr*;yLgctLivR%qa`7S2j}_DcP671+8wrQw(AYSJIE*r znS7@I-#O`zJvYx1geE31Pgp}p00FlGD3tf#Tzks-g6s>u0@Wk3i;+k?cn?|{q`(Iq z5=of<7wcCoTwku+5#mShR>*Ry{I~pIA8H38@=n{@U-^;AaRaLZ89#r@vCa48GktdY zZf0_74yy|4EpXSn)jW9*=_FzJJ6*z`Qx@~0HF`4DKC@|lC4q-3#Awgcfzu~0@&1>Z z%J<0yzmV^tQ_&qQma#iCxU)lE{eEIr@y5@pJ)TM=`;0c6Q_od)?$qiH(UHc6dnv#Qs8nBgYT>3{I#_i0>*CqwLyH)jrXNl*J!d@-s(PTaQ9p~m z{7b-_@TO@uz%)Rrj z71VY7fGEEuzp(g(woNa0J@IkUt{;>M|>uui4UEiMcO0R=8hNkNuoZ3 zQB>VBrEY1U1CNe$H!{ou5djyBj8+1~6}AE>h?}=OL?h1%#R*FZ++bmPdi}?>h7FE} z&94%va36tWbX>LA9|6%oBu>#2*`k}v>WA1SFQ#?bX`MJw&>_`89XhCI@$P183_{qO z4(2fA=!F~Hd_p_u`m~Rhc30@&`n#hz>SXqhoTV7{39fDVo88yBdv7nBZECmKR1M=D z^aHT-v8HLu6*^VNZ6V(W;yKIEU~SNn~` zEl*p`En1NHmP8xK!{k!15xU|V@llY*Ns~JUq%}qX4_36Ec}5_ zz#5;Qme$|kNGS%Yr7N*JcO3dJno8{{HNU=ENk0!Y>1yGF_rop%$`Y~vw*IQuQ&Q~6 z`Vz}V$GqcXOAXWTPvZo>oPH<5WO4$2DJbDTa2%yn<9!3F)64AOu84>Se1duLe6)T_ zY|#Q1Zl!&5Zq+rUaa1lfX6|zAsB?=ie`+~t#DwhLf9UI!9&?0>D(PH?!uYN*#~3wk zC64djCJmV-1ErI5!>*GMqs(Bdz_vHd%+A+@9MnOk?$0OZFMf~klrBl7PQ=fu@4KLO z`gF%WZ#IRc$-EPxgF)q?_*rmMzR9>Y8qs2%gG+mPRUC}=v!QQj=qE30LjUp_a#!5- zgdV~^)0a}7eR}ie#(M>JbYxiH^p3JHF)ATZ)6l4nlRoRo6K>yno7Rw>D=G)y?|<(k zBNQ1N;UM_+Y_S$YTTDGy&-`5f3)#I@|A7E)cX*(pFXveO(~euEs3*MNW%_Lbli3Av z(kAX;?)UAkf?ux$@LnEM!Pp+!@6@v3O{U+H&P}yOOG!EJHAQ~Q=Tbapv6h-Xep5WF z%^;Glt}b-Bc(lm(SX1P5$zhNnOShFTyYEu6z(gK|Ull&shpw)64~ly~nhP+{@`UqH z)^n=s&zAS-IaEtIj1jT@4@=5pX9Ou4X*Y!##%5%{bcXnErBq*+efQVTtlG>&;p)Wg zUW1de%_8KiaLwu5CLu1de&~e+=#PH1&I8QMD+V`&KdIGxT$-A z-m}xSK4lX{ZwT?LCvu)p#~u&45V8exk9Phq5%iaKzTEG{Fc`brh~nba-+LbJ9NNhy zN~K&sCI@;Lf)*+GhzNHNB>eD3V~aC>VuD%?*ckpYh^KQ& zwz^><(WFOpnCSq&aiAi7ZqFsYUf0t``YfCN%F)r$AE-#rMetlWdaa8uiTk&?Xx=KaYih@7t*4|$1ao+p})g2joLao z(~!{;#v35q=sHXgyNoMz`BNL+=GrXxV=kJ?eNG>n|GgMnV|wVj-|3@Dzq4Mwf|g~0 zOWYlMuKArR=R0CB^bE|~B7PE3P$E)qG63*$cSvD^n1X`~3l5-BZy{PHcrTV&+oZfR zVy-(oyW7|UrhT}yKD*N^k&mgWlGx*lZRTq?j)@tIuKW5vd2SBy*h{jIBDrG^KkISJ z9HGi>+Ah95>R8mNPH`ZfDy*Z!SC^%hM|R)oOT0KoR27@%7cO7^pna}{pD7|PTWB!C z_2TGpuZ^EBx<458UuR_MY!{1kMntRyAMf0I`pHIBzgE_0y?d=W9=(XDh{M$v2(aX1 zJWT(RV=0P9$uP;;HdR6Wc=^Dks^Mkd`Z_EK7aMJ(eJ#3zwz2+fB zi2szARA2$eHP_6d|xdjMj@&mzON?4wB7LBKdc;n$4rb_k~pxMD$p0Fi8ubq086W%tt2 z1}JZ@cMsKEm%a7bm3re3KTdgcY3ZHzj#o^)aSI0zo*F;2Z{J=XDpK*hc&X&5(O?x< z9lANQgIDA;>T-mhnU_5a`)q9aKqz6CA(jc9PZ(S<_i3VlF_hRB)#B9RT9wm3N40)K z&L&lMH|40C-1`=uM(OdYU7I6|pXKjobsr6*>yc+VpngyC_A6GB#A53hwL?3?f+!kk z64Yk*Q<2bB*W|W$+oudiv(p;v=e0i0ko%ydc=oqn!gp_41rEyCowA3b9Q<{Sj9laS z6hx^%!Yg}Jv$HS{^G39-7AyYhVsn3v3^ zXCU>9WeoyFGL~}!o2Aq#SQ0|`SxD8#eaB3*uVo#>)~_)yg~>}1lKkT{-4y}b{_yo) zUab42gTJv7FXP`fDdF639;y%OJU6I9Dk}-@7A~*CBQ^c&rcc(zGk0Mt>)mi3<`_;82MWLYazSlh{^f zS-(&Rot)Bk*prEqf~yVj_yjx;|1S3O#3G9ahi!Oh{h7JAcSmq~9o z=EWMID#-1oq@-mF;fuseSe}dL1>j+*-jo)nVy8igvd4Nxz@xINXs{}5OGmKbz0@7g+T`j38e7<7?Z{?g5nB@(%L(x@o9eQDS~z{=F_ zxX^38?2w1tZxZ91{Kn=omE_%)xIaJl-pZ1&zNu8Vbp$g{Px?B<{Uq2&bf)gss_q^L z5P6_^`wAiOma+ci{wsCIv2A;G#FL)EXp|0E^J$6t-!IafcD`feAoq@0dqZB(_V{b% zY(v@=hx^4L+~04p%baHC`u}Xj!7Uiw;D-+8;*qa6u zFh)RN2)HGIIL!`K34+<;2dobf0uJ27?Mi!v0jMjn5ekZ03&(Slh8Hh(<1Y{~KOkk~ z5gcv}dJ?x#oNY5kC}<1&tPdS>d(Vv}WN2Pa(1iiHn!2{Aec|%KBk9q)vFryH zi~QDcY%`?`%eyd~SffyNWYFcvckiPR?GX2|O;l)*g~R}9hS44)1_m|BZ})aU2JLIa zFt|VB_4&s)IDrsnOFo{w<%4ksimZc zw_ZZFqXqGVFNRAn9!m3mn-zdN*Cx5PiG03VZ1?E)z3(R1NeC&w-aAha286T~qGH93 z?^Rzu-Krq_Lic~~*LeHD_tf3DJ-y!1eNgQ_%6(01^L%kJcH<%wMv&NUN-!@FEufe- zkGnl-JIoTf_nVUpa;nkd5Mo7yFA(q~Jf_4u)!mx;`QX#YNGAdk{=+&q-DB%EFII79 zBHU7_QY;aa@|W#@tK03BWII#?HhBfN*L8#0b}MxsB{oBi(UU`+p~9pNB1!nD8%g^@ zf$F{W=wgFI*5sJ#02x0$n#`w33G|%^}FbUc;8ps(hM}8o9-9ZIds&Da`VJ3uu-AW+VRuZ#Gd*Z}e^OxsKY+IvL{tlPICaF6LkF zPmyk~>GGEzOVxbUo9d_kyM5ImDa?N0uD(83uEiX6u*xCU2gSwIS>5}t@eVl1%z8av zi!Q~BKzcn&Ar<8uQ>wR5-s>An?EPb1BI->XN3~1(H8Q3y z$@4|E1f!TjA-|k+Re=M|1F=?AU0;ud;xJPV$!t>cN$lDbH~LEcIz!H!Pqfz+|W+W^ojVHn}O{=H&t?;qLF;$kA4sY9aSJ|nLNu{G=8=8W>M*nrJR zK`h7KmR6{Yvk%G@8bLY&VIY7e1kfeU6*05m!j*FRAVeez0VG2b-2oiahRM((;&K29 z$gZIG_M%;Mwwo~*wRP^pz1LFQ)W*MD`)&1WQDbkZ!tpQS5sJ&hJjMG*Mt<4|dlyl1 z_`lWNn7hY19ci7iX~P`7_;9lp-L}{K$7mpd2-#)8fQ@C{&QJRxK?IvSs3ON+08jz; zZvXZq|D#xuyEG9cA%*xKV#x=5QajufG6omC)%2&}uC7~Zrs;W;Qb~LMX>)J>EIn7j zgU4~qVRYlJPCR|%+?IzP_qhm6#-B{_n~Y}Pqi%RSaIi}OBenY8hOLDw;4^n4ZF^yw zg*p@)?=7KVulw66-FBtEg|?BBDk;gmq`-LWYF_;69gUd7vIsP_wzv($)=bb&PHqOO z8$op>3c}P;D}Fo)YG)rA)8xi*C`Cms`PO3);5o_j0NNV27xGi9iRJy3Qc4+`yLaFC zJ68zj3hKn?cYPA9v^*VB0*MjmNKqVz89%1Boi6Nip9rRTHkPRCz@YwUFHNwJ_0u6e zCnq5TmPL6Fa(ljJ%k=1rSAXc(n*Il*w0CQxy{+@Xzt_7e1GYCLqT7bG1Ajc97e~NK zBiw1MP+bj}iYUv$E!u@MM+9Vmb5|^s{G=c&Ve&W-h(iK)RYQeBJPc@iw_@x^g36=l z{@XHjLwEz;NF(H200?nwLO}}jVhlLX=CMB~Gt<*MXe8KHzmlwLn`5* zmuMTGvS73+{bpFxzB>@6ies_c9q^mdND9LEHmMrYZ4LUH;0-{MSxTj1%5Gi#V~P(~ zAJZHFC*p!bp(fN^xDL{wD!#8H2)Ru`a=Y5<`Y)?4Hn$f|<0?-~P>cp~DPL6yZdY3x zlnl{Tw#{gL6}~*#@YtxJScE7#38%#&c)M(W#M8(q0esnhdiHESb^&b}`e`Gh8-bQm zR{is}rxI8PK1Dw2uhi9NP?yYpkB=Emat3jd2?X6I8K4>6G52qJ+R;hEX_+M4sSUe(pV=_pfykiF{beeW#OQ`VQm zpv9+p`UF`*uAYJ;6NP=mBO-=Ij(r*>fEP+dC`ZTA#ZtM*FYi8-% z3%>{~A2#IIe*E^d#h+~tapOcv{X54#f0NNyu75y|p-si8DLXcsnkkrD&uC_{cDF0r zdEW1(wdDUP0URMJ4|H0Hw!wdZf8fBsO0!a&63Zj$2$_WrnJ~nmuRuq*wED*v1uq8w zIM-+6lt`^S0qX$tT2S>#Bj^54{if94^R7+lNule~hZW*a;q7j*9A}B&6WaUDX|p); znLT~^>TFZekA{FZ3zhiLexkZetZp>K4Un$oceg%yqoE^AT`83NrtJg+d8eH;<*gm{ zJ#EWp3r`(NUr!Y3ZLymy=cKRqTeZWPS@x{)rLW=OicouI_0#4yWPi&ky#D83117v0 z+~{Olpm|T2+$%wikNpjDG~zR3N~-tRpQb6=e}ua*->PcpQ~TPAUpBl0(t$C7+jJyzz0=HFEOEdo1y3d9;v3B8< z?nxGP2nP(bTo^$5QhtGA;?=0zm zd->_-H_W<zYw&6+x?P|v_LxrNBFXD%3#SQ-a~fc#4m0swB5`zN zbE%<{2$;yZ{xagfecy(18ltMxpL#Bh5#2U|Hy&UGPO(gsI{9UNlXU5)U3R>%JLCP` zg+3Ai?d*cjx)Ux8H|&l2>U?oN)vfQ0tp0@yUGNtSVN+=8Ws#b{et-W>a`{wN$s3$I zc`p5+c#Ak>2tQWy`kW+ZSKK{6X{d;ZPFh8U4o5`|owMM4>Px!hS5M%mBi_T8vHn)R ztk|p8TsvItS?|1hXQz#gyQFPvtY_ULF_D7<4peJfA;HJZ#rFy1F&ZT>^!BdhwTBEW zOgEvw?R7RZN;<_CeC?~&hm_MALhLb#8M(!E;+nss)L8kbHqRNEa?nZNb?8Vgn4X^f zSlq9rdHLYw2FIw&GL1sZb1BR41ebK)X+ZC6DQTIS*d@>lwAX3ZkA0V!>hMTMCYF-I5W1e**H zQMb>+=KztNAv@~Bd+x&3J*N>7bQlBy-@7#fgXjp4UpO#Efi_L@Lr_D zWAhDE9Ontny&&XR))BQp?RRuIQgTM=bgz zrnL47whR?+m9uA=fkdO`c)-(zF%u*Z)?2$_Ul|lI@8?$t3BLQ>jp2Le(z$t9s2Qoq zVWhekKKnBAHvr~|+Nbb;px?L0$`T@b4K8ZeyALgVDa^&iOijIxq|5t#XZ`%*Dla=7 z7W6V-9udN{8no8M&qD34z+`3VBy#Qdx0dcdKen4^s-avX^p@NVWAM5YS-HP|3^9Mf z{DAwzNjIyYWud^+|5&gPzbr9(=(X2~@BB{3vc6*SW2FhnYN+Do|#!>j|1PCgvVLO&ZwSc z-nye9(rne78{RsZ1EIcJ

ZSA^^kbU%Fih(i&Zv+4=K8bD>{*WGsqC5h&du z?A8Fy0G-3vCUD1t3H;##%n99L?KX(O4dXo-Yu(vymDK;1v5+~cSc-=!=a9f-2J5Sa zt>3;qez{C(`rm&aJ`Ow`)_P(hMkqbdLP0bgE7tJ=xM#}w^X@jbj0!i?jFY2oZmjZB zlb&hfo;OUQR-vJdP-89bfd^Pch^6^nd{9|!s(Wsmg8meQ*pnFOcI5V;bd=n?fEFGbk^V@_BN-bw3#<#g+V$KDZ@r!m{4q-0QAjSE~*HT$2lfe zH40`xOiTdGvcVHI{97si;!q#(#lblcs*!6NPj#iGUM{m@&eKkl5f(p{2B;iunKb}i zAhS2uRb53Y%pEz!0HEc9iLi$#l?~E zEXn0$9K7Z}?O6Qm^P&X9$V>xW*ef}9I_UktoB~T|Nf#@_rYn?k!qydi8$pTy6< zwC-@2ZC9(!cBR-P4Y|+j$?;||phDC}!Hrcqg0h-SF(xHUL9@5iUberkYH8Ul%n8Dt zZJ(DFyOCat2&3R2lJ4i9ZFZ4Xwue0E(c`L$Pq_3)|8tJ@@6NBk$3vrS52i^FK{1L{0)%E*jOQ1X%Su|Iyke(N5n0lM&MQr+gm?~ z|6Ej35|y^=ycnSq!StAQm4gFeeS|U%sk@ne--;x{qx@X}JKY9aLFE2qCGr~zu}l=C zyH3z!f=7ylCB}T9wEn9vzTBj*TEN@9)#!if31`s4z{$%GWG?pI7Gw&1%uK0B(SGsZ zO9+-AG*2cXJmI89PlmHiq%6XZd$UlhsQZek|DSERawuCbb#s(Lx=;JX4QWU-6zv>mx9}0H=FGKFw;}R zVRkpUwF8l~5|M53r*51!$m`MLq+Vuo6Xm8RjV%5d&;6dQLmTGEd6VH9oU@FXuG)uucVL}}?D~o3?ogjmOn+Pzr{2!jK1Dxx& zZObNPC1fXrtR$tfx5`c>yE0O;TJ~OrWJG0UuM~>PNJuJsgpw%IK+&?k^M1bL`<~-{ zkMDcyQUCw%ci-1Iuk$)jp+*ObkGpQEIF?qlP534;_PHpIo~-OD?)Cs~dhf#ghlerq zKmTTes&XG${qfvdHhNek+-lwPFdAJ2?3?9QR!i#Qvk={4pfgJgI_+9_n4?F@YnYB1FA8VJ@j8A zb$Vrn{M{5qdbj%5s#g?;jPh>1`|hXE&)9l508k$~iiOCA8r(&i(1H?`E|j;>{n>HQ z8Nkd~M#&$vkh^_mIDwX6YD!wwyo_C5Kk`yNygzFM1OzOfdZ4tkvaTj&q}1|PY6|6D z9(sz@HuF#nj7>Nz!!;hu&@X?JcAxO_-t(^d=zN-yV&7nHw<~-Q?f^JFzF$xZq!`m$ z%1O!{4k?FRUsj7)us(e4Fz(?d1;7{%cogU^tYDXnu-?*OPqp)~?SW7sR>nwu{exF^ z3uTg`9|ZL_2_1KsGDtWfBVtf($imnrv*cplTcwIR}GVUQGKGHMrQw~Hp-Bx3`k!HU{D+Qc&K>#0SHyd zf5|FXn!fqM(A?r<4Okv8q$-@SUPyijs6>s_lLOTi5$9-8=K`D23&^&wKb&Z@j`B+3CcoTrH8b zeFC>Pg#Q^yt=h}xIAC_`J$%bC);0}vq9g}C{9?!NHqgzB=tg5PduV*w_=8*;j-PF^wu&k`bNdb$a6C-yH zrmhbzysiQnU-(mERv>o&hN8uZ=#G|H+ zI|)t?94n8$S)FeSYqqaLw-~rV;2B%=+}#$9idwIUlU26iM8pi5ncq=Vo_VrpNn|py z)$L?cC$G347=SQat|qDPv07er^BV|1~He`#SPBjK==_ z!4v-3XLe{F%9xlT*3P$XCZr~n;j(45X$hxQ`KM*BM zJL&$+26nIgZs3M5#PZl0#uG$}z@@tMtg}$51XKH~k9Ugi?dEj2X&Ea&Kw(zVYp;;e zUis#((e0P9OTV(8#atP=-2e?XR_#Qvp(D!oT{2#17r)@d+E%O6GC7;tp*&Rv}^Gbrvb|+Za1364MlV?Bt#uUpjW|mktIL+V2YnXH=&$UQnIwHtAECTG4R*YysP4c z<$y^&>da1ES64~Y4uI^(=P#tq{yCZWFryDcWw_NT~Y4nh|~z6TQ8?NRt~-Q6jjB>N`Ly!}`K_ z_*nC4mAQ+AxkIBK#eQUl#(2(9B8}mA0L}3;VGAa9Mr-fVt!j3reeKSr`%jFxgD~pP zp&25gPsET7olUfs2pGX$zvA8KGMHgko-XjDoOI0C-NxY9pM&Fw+2OXBRvi}QTh^I3 z^c~_TK;mYlfA8Y1E#9$QUY9OeaQ~K6c#8w^URS<#kPs9uSt4RhEIhDsW}ybvXyNnQ z3_CfZ019)*uUE8&O8b9g7xy^JC2Z>$iu&{s<2{$7+cQGd2iP}8Rwe6Hsb3StCYH0S z>xV*#p2H^7Mt#RMuWl3F5)(4=?W)QM9M{KxF6EBoT+@=AyP*7%>ks8c9wu50lDHv6 z^&mSq!Y%>KAxRNrf+Uy*FAm9=t(2e^4eoJ)aR98M9!nlagU!mU9f_REVLx+3^2RGiN_Jw3iQ}8m# zJ6v6wy>Hh<`5#}TD1+Dlg5unK=0RqX{QN2Y-2~w$_ZukF<7atPV}i(f1(fR4W z4a^9SFd1Tk8Vtr6M91~9jVuOYM0pD$8gvD{Fr~oG$gN}EpFA23LItlFYiBBG>qf2whH`N!65mWBm|_Z3#lg?hvp?k}w?)U&F$qbjYzF8g z5Krf*{L;^&#l0FPphzsA;7^j5lM@173Zmng2b;A`=(jOm=3t-R%xEGM^M{jW|0zbM zpkkd0an?q5rXM$@e{RUx^}F+|V2!)#J6mJ5kPhvnv3Q#b-Q0fm#E;HTtmX8SQ|Lyv z>T^mkn*K)z$Gi~RzlK^S9+u__{@vP6aRRS2H|%?c;R0OJmQ&B%Ub*U>K2ZgNz|DEcgRIk;2kaB7CA~T3yr5X!_xxx89~yn&F!!V#AB;@A-eBu!r>7U>^QG~$*zT?2Aj?TgN>z%9 z8rKD?$`o*@b4EW`xb#FI!VwWWhs{)Y}UW_p^YIVsO_5=H$A|=6+;6o5^=*1L1&An*Ny@WVF5bKgYda< zLkTYgD+~KGD~|K0i|SjMnGW6Qwo4JE)noV7*GN1u?5r_^ zBPaQ3mJ1%=EZZ*_zwZ}!Mg2cXXv{T^dw?3#u!H@o5Iw?-2S9n{@#E*;`VjprjKAVR zaFl~JAmQL1J<3b0D=?0JjNd_#xoWtvB18xr;8fr}ZIDBL1wLE*YFr+IU}Up8Kxzm@ zIzh63?2j-R8y4KY6tiCDVGwFlQb7V2^FEj-&Hv{gm~aOrK{MewXDkv#ww-!Jh8(tO1Bzf@mq*JMn-kE}fVVc5tw31yV z57W&0`|p%UUd=dra^ZfbXI+hwjO^J^$gptkXg+`%j%3Zq57Q%?*2bHaMH!NcbM)9BStO@=dRapakheDCSh4<^sEv~G0 z<mAH0Rk)49Cz1?|ddZDR;uZ=n@D|PUbJ^Y$qeNBD#>^-w($bzg#_wyzP3gqgq*J04KMGO%N_0~&i+GCnLpbRH4ViGC!IB_L zdF>}&6cNp!wP6UKCFZFW6`@9@5kiStMt6raQ5kj_D2d_(n~&Z1V41VA>fJY{WpDJ^(Y2dA2@L35;g&gkWO5ox!VtE z$J;*4`{1wUYGZS|4hjorAO5Qs1V5?>uiH2tm-b5h;?l|t2F@j@l+3SaiOk@ZmVO_q zoVc8Jf^N8rE!gM%O<{d@42Vfvp1Jb%6xmqS6D6{1#Ee5QaQWP0HpdJD)+@9+@gPvI z{raXSv*{A{UzphEmfAbpg_}={$#XwrXUt9&HKkg|J{FMibi;nT>(Ub}w7Z2noV;hA zVao?Y@CUDlwisGixCWIqQpAS)S!i!&WHaaF%%SPnBQ)k9-0ONGzO!xi#EliLt$(>< z!-4coc<&kU!M?h=MT}FKwB!Y-rb;k|QU@as{u=0?Z%yB+ zR&~1+s1bBQ?|DrfqzqQ;%QYdSalLC{?c;V~gR$b4nJG7K8d>`Kj!yJU{R|emTU4FQ zcH@S`t5=0F8py|q%^-X&eh}Tn6$Z(uEt3ISkhe%Ii5pf>k*&$fN>+fH@ z(%IEf{vJ7i0pQ~qxMYNj8_p*CWQ8sJQ77(Mh0YuxiMI7ga|?+w6f5UPkYvOE&QOoJYzn6 z@j}oM3z`UH`p>b7-urGaNixyK%*-^_RBPL7QpLHSZhY_2nAjmKA^B9=-Q6nvhW)$p z;|a^<;V))gdb%2erk$-1n`wfSSb9QXdfj`91WIM?Fk5~;kHI%QyLRl@cu!wlU0u(> zAjC+_Eb4DfB$y|>yu8L{rXh_3meQr=5$9dDeRWdce(_O`#_kaH$f$LibpuO;H4EgF zOW#&80Cysz3TWk2Oy66+SC9&|k(ZYjH6GmLn=UR=7fr^V6AzOZ2VCjol;qd7e=IC6 z*6_Qy+vv-eaXSa1`UNaM8@g1KGMjEuQqH|u{6bjyQ0It(bYN~?9t|R_rnfgCTcJD( z0z@&6AZ~185}cIOE5&Xo&1G0=^he=H)6=JvVq#(sp+$s6Fa~J4LGi#2)=lVJo?-p| z9E3xF06gvNoV_A@4k|Pd6CQ_YtQuNH=rXT0_Wqti#g&+t7!1@B<@3)cSF7*c(|~=- z!r~&4s7K)QP`;^p{cYjoTM7QOYYo(5NetL7hG?{qkPrnLSh~v>Wo3*X6Ryp;Uf-$ov{rY+(DmzT zS@{t=4jj0Up%iH@sjZDgVV_iX36m80Ug$rLIAJx`^97Xnxs;aAr zjJNe8UuHz0gm$Ndj*oH*3Qu7TI|qi#;n%WB?OBFl;WRYUhs~%QDvdiGvV-YGs)}Nw zD4thW330^Amzs$$Bc37bp|(&t66B%JOu^e>j3k=w~w|!`whJb zD`U8`i%S!RC6#D4`1bp8W5N3=Xc}{q?Ho7vUStOcCQMD}f;JZ^J0W8E2RYQl+L{S3 z6Otj;h@CmS5s0ogK`#R`=@;hSuft*oD<|iI&RcaiH#c~7*rNfF*uFhH zGjl9(VR=RT@#!F*&70SIdHwu-E#lJOQFx@RU$<_ZoRU&2;v^d@>zwM=yv0N6MbEM) z8?G9OX~IEMBkUpYgD39pYysnxeY~3!58H0QE60@D&fQHa#7a8s!UeTs$2JcpU4zUA z1Bz|V$tlf>JQ{Juo%4U!C&xX=e(GSKaDyks=Nsdj{t{ysm*ARmnXhl(3iIscuKzMP z;d@RV(&*WUx7cSrd`%l|yD)pSjf(8%Mggw%mK3g5(#jAF$jTzyI_?ZY4NJ1EP72*T z6fSO#K=0y;B_Z>dd*_Z;ws8ALPn=+4;xk?OCN1G6)1ACvCg%CQs)9$}yuraJv^d;` z9&v#}?t$T^>Cd0DtE)Hew6I9vGT@ zu@Tt}&zBm1DP|?jFJCf2KBPrg(ErZ#ZrUoBGZ5nC77!4iU%$Q?0uW_4TjaK``J@?%F)=Z9J-K`ytQT$&9K*Ez_L|SW)l@fJ ze@B4_GY~b3GmocFzAP*W{TE9cfAZ5O2)^r-n8%1w$gnfqyK=>(ujj|nwv$=gE#4l} zq)NSYOaAUd?t3qd=<`hbII?Xd!|SiIq|4Yw95P{}eEG^`w04KU$Ek*VU)f}X?6NXu zZ0SP+O;egnQzq3h9L=7yv)V~J3Q(FL=Jx!fr}O!lFpSYy*{o#EHSuXdq&2UuZgO!C zkIWbItn-18&xWq$oL5X;md6&Lb|V5}gC-@Fz4A#W*bH%Byx6rvKA0wRL!usat#OpV z_U(61$k{nM_KHzTCx`ToGTo|lv}fgKrrNTF-2N+9+*hWtqhE< zhlu($QDKAS$Dbb^vWaPFQJ`@lux{=e9E^m(1!&5+)#Km3T|wqnm*&dFCISi67$nxO ztzIU|<0!kprV@g18kqrFKfb_*KaJ!zXr*p+4-ANh=?^5I2#`xY3?Q3-BfsLAn3>5k z27sl;!NCX3zJML){`x_jmIq&*HomPH2SW~C^J@@ox;ALCM{aAN3aYNBeb- zJ9bP16V1=3WnNs=6AqzDVhFC^k70OLS=kkYm#7wpu2?6!^13~H+}tMgv|DtuM{oZh z7r<@m6X36wDaY-h>+Fy4^cfv65l_y^E@B8%s*b~!zIn8kv%SJN_yoe9yI&9XXIo2# zqXxQ!T~=&H-~!Za`?NkBoZ_gsxMv`EbgevNm{d}dWXxEnh9|Vz@*8-qoSa;cmZUb6 z&aS6i&q7ozJ$TEm!wG;w+3>K3uWtmN3h0kbC-0NY4*15S*4liRl7^Bqt2Z~(-Jaei zSJ#l}O8EsQCd64r7dI)_pFgvQN12o&sjytzSdbZ#n@e^6{CT{M90+`CWZ%VxjCl;i zlxzAwe4J`-YFY>BJ@dYHeiR(IsP8?Li8>F+f^(QKK$tQMJ$F}ER}geup)E>_vzfR> z*8%#*WS$Krn<&f(9X`gK9Y1|4uH4c(EPjKA??D!U{jZ;a8)xV0$|x>g;G0Ru&(9By zeMj(aiG)8g@S1T)k}4IHnBdMq)u^&lFfbM?6<||AgLnhf$3`0h1yKjxy?=kH#AxMk zjdsQ^11TNy z*IP7t*C)PBO-yUZ7aK4TExgt)WML9qSGR{=?aO)>vDWo1mmf#jNxyuRn0SqnflYF- ztT`x}gN>Uz3clu&ebaAFE8*f{kX>2sc9`kXD&Gmu-Jp#Nr*2Oziy8r zt2&)p!c`VOW+nu|EUOn22BH$5yQ%h1bxO_TJ1Ov3Npr!UDjqCd0u@45L=$uk0o8!G znNe$LUoXvyuczfYUQiTq;>26aN;L_M7^u|mP}2J-DOzQTUlAzq14533d_zG zhV(m9TO4>ljosaBgg=ee)7Z)?3WE+@5wLN103Jku6NEoe9^$;PI-->3T8}xrRh2Uv z1eeItFxd$@HW0Y}O0l6tT_tVu)>@?g2n+(%JV#$Uj(<6R=v;#u4VW&iU?nWIwgEe2 zL&1j<0V+_DH8sC7m*4xu0bc+ynHBn^vliaRj~t1PS6$_XB|8$fRlOg?Hix?BKLl=_ z)#3@>_IK&c-F1a!Gy%C$75IBNI5?J%np3+)Q!kd44T&e($pw|m{?bPH?K8K?ZXYM| zB{qiZdot3qP#7a573$>;y|Pma?Fg^W+e%6aWImZ+zvSe1YM-#!SXx?|1^Jl#PbZ_& zGZK?;U9qI4dh+d?{r2RX&hul!aF1l7)yximKJM{;a*~=h=tga=Gr5in%uIGaG{j0! zxA>TD`&UwEClpJg6lALNSeb+sR(@-^I3<-?qn?H<VUDW!f=EuCM0u7Od`Wxi@{>=HN4%oy{WTKb?1Z(lNbLBzzzyR63g9S5P zVBi|dY)9pr)7na(5`;BT9-3i4e>r<#yTP#T=f>;HE6WQULR?f0NrDb?+{%ZKtv}+m z;~;88`k?pP9D0aJ-wxi&DlQ%#STK=z#xKV4Mp7~+eS4q?)5*%lzFtj>6I-2R(~ntN zSg0R3&To;Nj51x_!eZmYOP2~c81beVEq3mlOunAA*v`R;&~(4LT4VouXSYvpK>z$` zm?9)3yFrYFMQ-Pg(3Jd>BeypVn=9^#*0M9mL-isDDBn@U%Ee7Hw}^o~nmU4(wrik2 zJUE5RIz^`Cb#o+1J$o4I77G5a>|u*h4Q4Yc}B!nH$j3Cd#C8 zyLLr}hEjR^_{`%`z&L3$4n4`4$fEXhPn%Ezhk%BstjrBN6)Sj$f~HI?-MD#pgq4)I zpy?cpjR#!CMkj@H{}x<8kWm9k3e_Yjz#&HpeGJk$*z7xQ;_XVg_obAvu`s1>C#UPo zX=hjGr+t0YU=ux;l?bYr->}EpjN8XDH1Y_~2lmW~wv|(?+}uOuUYE8}`T_Q6u%I3q z7~nepeH7Ps9aMey_}v6c3mi)WKz;Y(GahT2I zR(eXr%)d+1jN#k`IXMz@7Kpuo?96SHrFAauw%l<;c{Sr`Sty0HmGs?**3WILgfHG; zx6R85+2SDY%EL57LBY1CVLD~`-d2NC(bTFO!gc&f7+HK}Vm^0NMEzCl!ucE4EVV|o zZ(=J(9OTbDcVf*c+hnEbCY7SBl1rBqjTomUk_a)IoRZ*m2Dv$RWq0$yutE(pl{==} z>U_TyC!9-%P#pp_6qg!5dY%I(k{I8j6Fl}v!59|?0;kX5IEl*G&dDhZ?$24c>6b2D zx?58df%*k*Irh%ZQE=9T85j?OG!04%sCjku^iaa|1<71PQ!}?r@6p}6WpA0-j1C+i zB@x+I{j1FEkx~9Z-)1|yJYmj(TwEKwdObfORubIN4SRq2M88E-vr1|3y^GGC{O{)K zPpkzo*1weNg(yl~l!$UMsfE&z6@;F($R4M zyAVf11C}?o&Yv6TPEhAh&Q3k0$-4I=dF!*(n-a3RVQN7DRSUT{HxIrn-Ch#k5^}p- z1}Ai6xLi?DNL`!ejVxcP6i#(@(*xB|dE0I;#TwLnQgdi1s%-oAX-u=EDa3*@ zq`AIg1ele*PAqiY7Dq>qD_6P;yiVQRp@5Z`ekosg>qc#5e`#`<&g|G`2yuiUeKRpJ z+au*4aCH27+NH^L*RGczevUH>)#lUUGbvAhRu@Zx3mgM>#0rs0@1GfMtPG<@6&7A@ zgKJLei)>^1V6`CB`K)Znn&9T5sANW!03EF-DZ*`ba`4}a#>j~@G!WfZ1I>2y?b~_m z4FYA!L4<(wLo49D?%`oZNEl+mL7ysX3r@s7q6|e`RROiMf;(t`;zan17Y3Z0HfbI> zz>LukMmiDa&ucCitHxi77Bf2V%GlJDi7S@jh7s+zO|O&J(ISs#=M;yayVuK8;O5R~ zN+_YJPm~O(HxIWB_)7!zzHc&>PxPrF9KesFDcndb^#1*yne&SEiK*MqV2Sbl?CjXM z#0!Y>Vv{WR#tj~HYARAs{vXf?}vA0-8va7{-R^NtRS*mOibC_ zGD6J4g6ZD z6MJk^?;zdabNW4d_P7`SN>6vD_NXsr%#FL!eZ+9Ri`GNqBMd5H9IpNS&hG9o5TY?s zIUiA8qjas#SKD5n0ki_#Lg8cswv8KU(C(7uAuP3a_4l{HGt>C^@hd3Z+)cv6BQ{=(2IsH8-S zq)J?H==t*_qqYElxO;YNKTI3f<5$Dru8ARg*U%8XOlqvao}#-SYSct6f{m@{{QdpG z0?Dnnp+9p<#@u4HBJ<|e8kRj?DqEzaIB-Vg6h1b+)?=x8t8A@bM|2uBWKx^k+6vz4 zetaO(2t-QRdzv*aF3#@s>E%=vISM&!k)z{*kZ-qr3oF1K`~}P4BfzRl=fsJv@S`4+ ztjxRPD3QvVyu3mm-bg1%ap{u#(dY(y*Q30j=Kp$hcdLh*$Fv;Ee0u!wrg2%mWS|Hi zlf)lBwX@Ul*@-#wZd!Zs+-n*E-@#o4F(<8_SNdb~q8cBQzCwKg9JBHI%(Ho8`=B^)mjVEPrin z<)0sTsTLN`Jt(AK)zO(Q$PF#%yd7MYM{_%0Y|nvAmVQX20&szx3@2!#;lQZ@f}@-Y zYi-pbnr%Rl=6?JLxq6iak~AS0JyJTC94e`(&^>;f9}C0idWKi(f!LuV)WrHRt~set zK~P2d%c=wBRa^{P^iTkSq+&)Wz)K>1N<>5ifJRE7pZG1*;3fc;(u+N{!WD$%u4_mq zX5Wnn|8v=h$>Y=e520d(B}I1gPMZqvrA6(t2>N$&o6bLOM<+q5JNfT459;suKIxWa z$mwqd|GmbSkEa~(fWb1<)A0&0jo=r{%rvE_@MlgC(NThc%|LgO0= z?8s-DTjVLY|G3v1;6e*8tW7AnX;V8^+^(!d=91gI%c`Ca7F@~Z|5$`msWxs@-tR3D z@bDZJhLPmv+=^igxMnb}XxHe*pVx~uH~%v-zm!!%ql}N6g~}=@*fl%Y$5iiRvhnVD zrFSTjCz9%n4lTudXjh;w3N@Fc!D0f0P3Bu(-WW15rr4>eX*KdDxc4CE-)oSsB^|h~ zF5T|h+PmXFO;VG?i-w0KEKP!8)Q+-^^mo`gQiuK$c5aB~3;|0@k5)4h9Yh)1`Z$;x|YgYrM z0NuU)*|YKgo^E~~m=ZI$U)qYt?Y({g$FJjbevjn39!PO)_`&ngtTFifd5)L-?Ybw9 zOYML2gIo3G`4Hj5%v0=wIpz6$HsAMUeHM&|*z`CaJ>s8-rzdH5hW*f6p}9a&%F4HZ%V!wu`h=7fDl)#yxTx&!%$D4lEFEdt!tZ& zGFhglDSUkRRU_ynq^O`o9DhU_R9Q77CA3Vt%gUTZH4Gd?1n%Tzf8RCr?dfgwt))aAJ87$;KJTC*ThVu^nP8l+jD5+Hqq=z?`?4(JhL#!L3ryuH0y zH*O5aQW)glHvsc|{``3(w!zm?5EK=!Ob){I&;}kyS1~=?z3~hs%Zr)*u2E@M!+Z9W z{&lQso`wc^f^I^_n28%z?ibdMhg zS(Lp0_$3y5>bd#(`3C}78}Ds3w6m~|OCPW#P12n^)a*r^bwE~n23ni0v47nr8Db?9 zSrkDVS6%hKW1>mTRuB>_g|d=Q&uD6D!I%e39FI>gc}U%W$2hmRNYf?u_qr&1Q(X~5 z`DrEI=!7KLJ6&U!OEUskcSr9oZnZWRSG}vMg=Hi|Y~lqPBbYrry+V;AG5sT*Ja(_h zWC2|9G&y@p7+A#s;*++m=R;>|qP!RUmuD?4_AN0RA(02vWy-Dl(+C=AV@N`Resd0a zav3Cl>{|vwe;BhC&R5*qrKLR(jxck6%d zyQ#ML#dV=B($w^~ekiN)hi>ommul^T)LDz*v!ygr9NRe$$K3sCP4oKBI=X|R6QI^1 z$~5D~kS_`0?)T6W2o4Pm)nJ%FH;ApbHt3HO8oyJ;Iv~hYC~oIH!DO zreGu;UO{^!Bq5<^a@iLv2#2eL&>Ee5nHEfpmC0k)(`$s7bEW%Rhq>DA&tG*=MZO9y zaobQ>Se#Q+!*cTENoQ!Od`Vi2pqv!^@YDX?5t>I0KeW;0y+jm%$l>0LKd9lt@dt-S z7?BU?{^`+&Y!t+s34T6s)LO?OW~3Gnupdp~96)3T%-;F0My;9w)Fu7_#P$x;ZvH*3 zLqptP6BEo9=0U;0{eURW$<{1n#wt*n{b&fkdN9NB#~ej^MsQpF$SPi?$POPLyBF7M z_T5(x4H}a`1MoQ*qG!nQ@Hg(7n)mqfVxz|ng{=GnI)5rE;9HH2jTFCKU5yu(cN?r< zf3B>YrCo&WHFz(FP zhd-<+h`h}q9&*Hn<&4kH3w3o}022INwn@UCzN|vGvRHCY#nJHo#YOJ$R#7X>1 ztf0DjkI}We&zQ=qoUhM3NGw|N-issjOO3ppnW~W~T$>qO9ITv^LrQWPFk%UNl+2oT z-~L2ScyIg1_g^@ymrvywxDtaVJyCWN_ghh?S@$%>DWmQB$LY`~0u9)Nt$B|6rck zCOZlpouEuXR$fMGnsr-rD3Zjgza`h!Rv%knqQJEv&k`uC{mGLNGUMYCk9^j@+P2ME zlyWMZ)qQ_#cqltVxnACLH|Iu*MEawPi^iBR_V8*#jR^o?|s2xC&d+h-5fx7*8Txka}hapoDL`E%4d0)PKDR=IJ7B=pQlO{U6 zCIa9j>d8S700&*!T!1ltB5j{%~9gWe@6A!zSw=B*nS8}QzcTuzSmAUl$JF}0E54O2!An&4qGVA2) zo6&%XQN+>0)n3oYNJ~$T9$kNSQBgFxsOU%Me*e~mIRl#P2y7p&4Qd4eUWbWKI8t;D z7|pYM73JmSU3E8MQ|&wZjv3x#_}D8SYgT)WPXZ2_+LDy*@`_jS^w`x;`C`sL|4yHF zWo()95{W7|Q$MqRXf$-8TtP_>%Ru?pxA(=Olv>=v$ z=G|kM(X7W5URXha9rZK}!ka-+ZJe0*K<$GC&}>v>m?TZV|zs5R0H-#EShV=a*;Z2rJHI2iT&o&0d1_on>QOO+=#>Bn1;xJ2-q8NYL$4~5V-c_>1l1;nibz9)t%|B~`H#!2>z1o&KYpDt&|W(Jxo7Zn-Ti^EXH#@0KY3IQY;q4B zuK%p{dsn*I)5GcJbGcjFW&d&POnovx49b8aE}y5j_Z@VR*V>(6?knBX-@g^1r4CG{ zM{SVcBy#cCgff8}{N>KS@q|jixM4#9DPFD|GBUb@QAXM`2l)d~PPmO!y6M=TPE7)J ze@Tedx_u>+q!;jENYv9JdSjR| zKUT02WrsEOeQa~aAvd_ZzPbDQty>3hf+uHY3_gAO13^hDv;poHDT zO+383rntcU0|PxE{OO{~Er1PmH?-%6Z|R~#2#<_RLX`wK#svSX-AQ2>o)12=?{1+Y zbV2G7O=>T!t4oKOj_zK8_||yALr|%o_36YbDuYBZ7RrF^^FlUiBNx}|r~DVu0=kKF zn~v30h8);sd9LVR+NQTh+%!__PnvZH9KL4DV{k-;Ut(N}`NinyjcbSRx%5cL0&KYS z?GgY0PCh=PrluxEXbOZ=eM6>UV{?CVFC2ddgbLwtKC;=J1y31BcQ2mHm|K0|b%cQ% z*r3Y)zq&~bqzSw90K^c5apK0Z-Ymq&u{|9?UM~#SkNJ0YZ9=|_w(Jdba zTe0XEO;(JtH!A|zPeD;p6u9j$GBaM>$DLCmiF(e%RW4QNJa~7V;X7hwMYM))q^Dmi zFPA}Op9pUmW*&vf8(6l@x!!MSij zo3jAiAHQDZ^Tl!oEz2TU^8tT9Zo)5_!_xy?UQvN~T@V2;%ue6AckddySKZS}83@du zGjQotmnJ=P9^2|&dL8-W!DiDJj6Rp@j%P)+elOdRGmuo?=UuwF#ot9Objh~>!=VIt ze(^)Y;npDVYsEK1L$HMZsVA1y4FsV5*|RV-coHHaId7NnqG8y0u`kbXlfj`wffco@ zY@+N8|2pj5*n+!{zEGk!38#kgU5jkr7K{=*qoC_3EhXs zt)+#d!U@m&@$qq(h3jCPA<9Z`bNMeAQ$6CDej1*&H?cX{J~o!Qu&@x-Jf094Nmqt_ zQ2e7Ok|=R?o1|opev()s9xjX}O(3>}f62HZU}YNJCV#pv%1?5`$WsMD{W?4r*rUTh z;?jd3hcFEI00eKzsrgtA;Ez4CvjAt_R8zD0^4t5wXb7dCzL{APUX{)97fCTu1~SIl z%XAA)Pq^|b9L?U!Qoe}#Y*ZrdoBwBJGd@ih8k^|036l#Kl*vQHYW6!9U0+`%RNt}7 z%gcoj9|Li($fWs8-T!j|2Fvf1l^sAKa&~V3mM@*)qmDc~yR%c3a2zniGeu<_*;;|G zjAbSREM3J+>FBo^gOFfgi5{vYa4j*K!U-LpF9~e!dl{9=tCGgF*zyz^nza?gj%-Fd&?e6XZ zk&16R*=IjI=!iLb^e87cw;q0=A}%pXoAdADl+!6k^-Mp7Ow_@el)*u8ST4d*#y{9G zi1zdIE5y(e-L)3J^w}rndZIai-;>Y-=H0ntjC}16eGB02;(&B7O?Zx@utHjm0n|1) zzI)X~#`>We<}G6H)zt;|C^DjgIg|^q)f>1hs!WNZB$etHf4xL3MMmKV5)o+g`t!_|Jj^} z57SU^=_88jT;8`a5iF-9WXU!}t}97iSb7{GQiki%LuHV5W=K zi|g~uOb>#(zGQMeyFQ$e%t*X>^X3NlEIJ6BxLwmIR>?aCofUYr6fe+7yv?Ir5L`BtpgnlhDvAN9<*QKK*WtgB zDOZxKvH?$CuhIl2>;CTX4PZ*2v20WE#2C4*47&E1wR??{W4;ck!t+wta% zjEtP&=45{Cn4y*y1_tm-6itUhM0i-3G42Ae;HyYD(aqys_yb)4b3iyl8-M%dSNW+o zBHq1wM-FqQ|F0vFzwR0s8j}3?Y+~LS3}0^;{-Bx50djW@FX->m5(L)Rk;wjmN#Bl# zL#hZeI;*(s3%JA6!$Sxk5ht4Xcs}{?j3lz-k5c~l)jMR)J?OSVQI5qT7`F=6K7445 z2P~nYvQ#$s*kha$Th8Qq=!>%BFhz>gI^xWH6Y%;vB>&;(Up%K@zthK-Ol@t6BkoLB zy(JzK`F^Ohw?p-*9H?mO@UKJaCZz_X8@8RFVp}@afO(*=X#d0jm<$6vE=DN{wC(*1LR2*^c!iYsk=~g=_55DCl=x~ zPEJhxY&Bo}b>Z_J#AkFuu|O;iVCYp5cX4%jH#0<^z?IfOrx37}x1_wB*xe_p31tau zMkFLB_p9Wl!J6{N!h$GZMoAf&d??A*B(C-3M(5Bo>I=TTNW!Eg+n@AtXUReD^B z0sxI>{{AZ}Z30+t$NreMi;D|mWa;ELa9`QC&XVT@0gMB;_ui<-KJ1{)^K<9Uk+bxo zy*(S$@gDFxIb~mAv#A$Z6VWgPSp4TNU(9gJol!-{OmBk~D|G&}$eqTBvA&1>L5e5G%<+DtjwbHU8JZd*)U<5Ba%6 zw~Y?n-kZJEFlG7hubI_A(rrt8hEiu#!0O*qj0_Cf_%ij^=3uF$1@wzt7z6})cPPc9 zWCBWWf(E32a4^Y8EEmroN|9`k744xD^iv~G7kf;YX7G{Yg?V-nq8lmCp$&i}Olm^% z_v0;{tttblrhfT{AvWD6;Q);e*KcaS0k9Tw`oXbrhEp*_YjzfwmYVm)lBa}y;v$Fx z?_XIkgL0|j$(P(OUcUS~x6jbPKm>NjaAPtSJ-(a*auUf$Z-$3Wjf`GObz33vLyyG- z%kqWb45Im%J4m=<2k>byF~!t38lIx0pa6EZanq&-rByT?eZYDUm0E3UW<|MTUA~Xj zUQbAvdtFHqKP|Cnr_O*a2|R_nhzdI;5t3lcnOR}kszJ|rz-ObErGI2f87 zAPETnlbx*_#jy*@2`$gvTW=2;xSd?gV)o*jE;zB`Vwtt=$PLfuFg6EEaimP}QY}-< z#C##~Q$zmSRe!q0K^}c(0_Kssm6cINO{$pnf=KKFC!?5^yB(>rW{8fju(D(F=O(05 zk!uuvX3WXM@|o%L<=43U+(`jS5+cw=2kM*yd$A{62l%m}hxXG2_ZtfwV%mL+KWu&? zr-Mm}NT046xOyyg5JD5AKO?6OCk5+!Y8c0hczJmt*kh#@U2=PWe==^-@6_!h&<-Gn zB>DRF$3CMSOap+|W8&h>ukVv^5&SRFZn&0`qC=ht7G$o0j~7+wuKKBYgX$fup(K(M zf}vmDOpL=(j&Z}BSoJ=?(Zt)@=W|ZU5BISTUUA(pY&vjK#y!1Q|Mo9lMUO1iZ(|J& z$LXL8M4tcThYuPk>9V1r`{9bL)(s;aESlwFae)I>9d@l6?#mRBq%Lb?L@p!1@H#~6 zjhvia=sfkv5j9FvLoEui*`nuM1XsnWE7$y8f{Fy7WOl;TFfahApHL)Jy!gWjG{zi~ z0>L-j*gb?-T!?;r^6OWl*RNmWV6P7NH(;sw$Kv8vSy|Z^5MsqjRsuQ#bTHK!!B!R) z+F+4$va)t%GojLhL#qF;H>WC`@@v{~51p~&1-802YU02f`_`zjoDqF(jRLJU+TeUN ze*eZJ1q`pC#6@$Zsa-fm~1q#Wb0f#$c0V(M>onbckkf?V*Y&hkAv{YHUQ zb^!Z-zouQ;^Ouf9fhf~EAzb%8S<%s%D6HV=H7YC4!<`tyit z-O3ZT)P#fZajUMjLXf&QABV#3}|XU$|FQbq7OR6SN7B zSVUmIOw_i)((Qwj_%Nhh(Xdy$IU*jtf?5P}#3FXFP>uZ>@XrMO?H}wu@FqwVF%1Dn z()S?=Jl2RQ#`C}ze%{s=Nm3{XV6&r!*E&9;37bY5GNTs*O|ao!-!}GW&dcWjUioe1 zH8e5;>?=Nlz8HlFAdu-}9SmrSb^P{c=H%oQVs#V1ZPcriy*RkGBaZB`Es79_LA^NW zru`<67Tg3*xXxnx`7Hl$j0s8c0O*&Inc4qr-u1xs26Xva`g9L3%!~N1{+*iTONB%w z#tHemy-u2aEK-wv=dON!@P_Hkr5%z(Q=?qxR_qR>rdAd$*d40dctUSb#HVoFNi|2R zIZ9@Oi73PaPt-vPjSxs8 zAp+v#ok!FFcp#f2?Ion9Zh}N{9I}NA&Mv83(5RXpIie2`G9Lr7g!}h*tStZRJnQY` zS!-Q+)(W^i{<%|Bq>scIu>Hg;4i@P^u_;i66#;Fip<2*m)*w;-Su2$2Lw8~k(!@e&0CAqCJg zGCqYUjXcy|!@|Pe0}X_@v@V)$JdqHrAH7W9xgL5NVQ6~*#V!s1g?M_-v3uZ{1E2I5 ze@X+kyaVcSGQ9#uyp94WtsZuFgVs^q#a=5016WjO1|tXlON*EAc5s9G5OVRtg2FmVu^Oa!C@?E zg_ujKWAciZjCd=Q+F|eLxH7|Fl^#^ZR`~eui}<&1-;%*I5r~wQW@=ddC&kCl&n6&n z6%a!6vuD(T0e^(Ck|rYy1DszbsS_ImN{$@<-&LD+I{mIZhotw;gH zVU3{hsPZqn+sI~|&dh_a%qQ0PEM9SYyKbdWPzD4kKNhdk0`nL}`bGPdNyLq^H=T z0YQQ6J%N?_{oRwL;hn&r6B80B0Gg1k7XN<>O_(B*B?_$YzsJr@#b^f1e&aUpVnOSn zg+5nz^|Q)LG;sf~q9K9Rq1{xC;B z^=K+KCWdJ4kvV6(cxDz#w{P#nqqRb?J0t`;E}#!W$FzstGKipf*did7czt@=1o;Z= z>D%Lml3_IV9=;r#4aBQKa~1L5QXe0gsG=T^sVzPJhzl5YIBpmiN)WJjBySZHTH>^o zRZ$TS%Ap@tw#gbzlT-cbZhs&Y#4}b7g(=)s=*c_5$N?5w<7jlEfkm`VA?{wl_d|z% z|4CRlEhq_NM3gJ__XS9@z$HOEiU&?vh#K-gfd5xE+IJTqOC+rz+Ef7@^i9$v)p}D1 z4M7S37@RHJmjoCb^)H}&Q82BB0d#B?6(#uL^MQdBku6)csjAwV99F_u<#2|5eK3kz zSUQWLhQapIkySme4JgXaxlV+C6&Dsr{J69)K#kn7!qIC~k&MCiBwD+89|sG6*1? zHUNV4mL*;w_5x+7`>=%8pI7O$)zY^KDKiProZT%I(?uS3x&OG6zV;XsDE*Kle^KgA z=P9QCnrBy}nx`kaEw4XrIX1uVxPXRtP1%wMungd-In7>Vc?0ch0yuD}%es*m7LRsU z0(ApuoA~I_qa6K7!^Nes_+xNRBH%xQ94WldzVy7_?zDh99%K#<;2~Z32A_e;0UFQ* zm63onXu$FSziIzy8=1_ux$T9+PEb!|8DMB}hxxvvM0pM|sBHOdfTu9G%ZK1WB1R76 z?*aBWmR4s2R7eo6CyUeFq3B{b8Ma~@BH&fc!-vY@|5h@=iOt2<_Dxb(waS|oU5B!z zHtE`+A;PjLVQsT97(OOHHY0-DIXlyH#V!ud0xaJccok7f%C%NNhSALEI*${3}0izh-vk4@XegtLWKN!rRJ&N*R-wI#}= zl69y0fj%oauD&5ThtlX)_Kr@sxEPzSgXLik>Ip16#(r-YdkHO;T6q)A(ah?5mIF6; zOntq7#7*G$o6dk5CetEncD?tLSwX;XLR4zH1qPG!jjfAmDV+97wtijQCFj(%k3>z( zi$SVbU0Y`2;^HDpjp#$jHHG21!1kk6YB*>lr$RoEo15DXptmwWeW;O2}J z+L9_zSF(O`5j0f(kd704Z=QI7KOa{;0Z^4<4^B@KG`p$6|~lKJi2E z&+NQAUBdthxptBn5K5p(6jz+cgKL><0u4Hn$wZTKc(w2<$f6M&1g~OtMizCEU02P% zubda6OcPp;wEc9b&vkKa8P24hqyTzyX_44MRr>Vq`J>DelAd}<_RF+hw%MyuCJN~> zpAEh~c~%>z;_+uO@$cdE3omjlGLHcb)nTmOpFCvpnGlqozJ1G&0ZrekUCo)dyg>5_ zyAi`7!t7`SWep6u;g`Gcqv%d2P)d>g4P@9@L}CZPAIS=T0(Spi`90PKDkK{}{}sd> zQeUAeKqb6m4nn^67+#YtIY7vSJxq9TWL%F&pFBljBWed$*&&rRWw0{H3qmIr4Db%i zQo*DIfvN}w1g~}mM*h|&;f5c@a@!cyX}BClBF`ZX-S?i zr3J|Y9(h1TThKQDd9)_hUu4^`ACu+;tZt$ycI^ZKM;+OMY(1bSAuA_=FP^yVVQZuw zS0$w=3JcUlx_~S|CYM~1db|hd5`1oT0WDI;L2fykO0>zOsls5RSUu}#Oml#5r~>0 z5O_a0 zJNlqm>0s*}Y)L}KfH0{&w0Chz>Crbt0-GjNDEvF+*MF^LVz3g5Cu@)Q_3+Z7B#3Eb zHI?WIz(L{9e48NI5g=q9ggN+#b3vpa9@w;oNFoesh#~beT%M9q;=D{$8Bu0MA_x+uGI^8}R{<$Qt7=!Wx>5TQJqeIW0hmznNmpJo7lsNNr!FJjlB%3 z+)f7@KDhlpwr}Ku!w|cq?k22DkE4l5{(k%x0t_D-v+{)_5KsW@RkCjlC>$0w$w(4s9Rb^OmyuRt!>CNJUN^p-fj-S-SOp8_S3oNly- zL*NzsnjMQr5S{?Up^4P7?(rX8A_8Xe$k!e8GqVxf3dw!@_yNr~f+}K+l{(2b!F`v) z@YuG9ic$k#OGC#fSZ8}c95Mc}49$b!z%VN6tW*Co3PPz3?o*hZ&3dDtrn^?XYrX;S zpB+jVbfW6`{J?`TQ54LA;l?oW`3XbGI6hkI<=k_J0T~cmty60km`JcEtmksuhO6Lf zp}wzqp+`qSqAR8(;{eA=P(W=_2~lups5l}_koW}qRcf?Ouuo|0=qMTXbyMWU|1Tsj z&ju4N!-VdL9$eTy`_;*@pO#W#I%A79?w zeSdi5@l{D?OemTGzYz8~iL;7|oMj)J_lsN5wA^7UY<1h;D;~H-m{`W;DpQ`D zO+x@b`O8pa(lT)e0TWlpLIZgGgY~ypPO!+Ju|_h%24BC_@5{I^=whOi7iG zAB21MT1alh#J2+x&hnAmB?Q6Kz4^?yZr$1qVCEpW6<|W09xUg7;6Bottr=;WZR~-T zqv2@qD!z2pg9ioJq+3~8sdg(MBWv(jE?u~Q5L)By>-*_crhhBS!{Ik?u;ErW%)BF0 zHSjggU+>$uxA1r7f+KPzE>3d0^lGO_BX9w~uU|B(c=}9KppvjEZ@3$bLinYN8m;o zz^Hlz4jCFcfGZkooS2w^jg}EM#twoE;#!@K{~#9Snie_P*$H7R z^rqmDAo(pNC8etS_Z=Z>UVJ*O$g*VjUlF&TZ zU~Il&aS>IZP2JLh?B!c{H&+qXm--C^0#AtqF@(%LN={Av309f|f|c{xvz_QMzQ4Jz zyQFzLHMI?g`X0U&;>E}7+sq`tRpeQg)MCZ@-`~Gz&=WBwF8-g^&it?E^n2sknuZ1w zGnTT2kxkxDAm=XuQI z`yYJg;fHz1s;qL*S%`eN-kGWR8+Kzw$g!5gg`sV7e}%6^z`hTw0I2- z43@!mYQI$Z4Pl(WzyIUByeN#EI?=yt7p@aK}7T?`Em z;SaUu?U%=H-yd}g!rD+G|B65Uh=MrfE`nq6V|iIA3m^7|1`VNi2{zUCqeoy~G!`{y zDiH)8&DA$M zu~Jd&Xin`zWQU&mJ((>E(+t_pgXSKH{u8^F*?ikMvuEp!8kKDBbCqGD!^6Gq@Wy1R zd7&$Oe2T$(iDg4)pAV#jXJV^m$mc2$AHg(7Gr{d{w^mv-gQ0|6Nq!+U3qQ1GSC4O) z6_fADAjo-O6vt|zrKM$b${7O2a#*w#%a_k*{}A&_%o92#IHca;ThENN{9Qw1E7wb$ zUM^0IXCd;eHAB>fdv@)wt{!8lQNRYIYk!oM=P@`QhE1DuN6 z^|)*Yu~dk;7<(8R8U4X^t!$lWnk>E4)J{DfGE_^elz3ZSS}J#wKRIQy108>e=|muR z%T1GweoYmFxFR&HUAuNR!8oey0``RIFWS4xtx@aeR?|8Mj&$W{?!13D=n#j}X z%x`-$Jzbs-hXHvQT55HlKl@ee{u5ag$D7GLhr;L2y_`OYR)pSJ-N%oSD13mmcS&hn za6!-T0O;H;#2{5#?CpaBC@>hCK0yZ>8f$9RM;>Elto3rbRS7SS(hXfmdp9YA9?V1D zfIKV}LxS(_LsNiKogGz^=44Yzq2t?+v z@#2`1Co^V*8|uIl(Op!gpE6HtA@QN&&6`_fote_F%H0c@_?5h<=}-nkOf+^U0ICl6 zgs@wW>TAxIp=`8h^XL-Lh*NAITHm8QAIE4WIGLf(*+;$b2K<*o55?~ChUo*rJxbn_ z=*Tf<@DM6d!iKJ{)#2FBNKipp``*8Q51Ecf=4jB{v>KDnFVH>7YD8PzCFfcn@=|xY z;@*KEIw7){FZ3*RwfDWZ%QpuFEkhr{l>sop@guG}#M{dLqg8SI+&P^tDk_QVuBD`= z=H0w0Z-*MtRRW%i%XoB?4-V>`%+0JOpVZaXMlt)qVVN;z%oqwvkI5o+h$1o(#GPVW zpssI&SL_Z~)}S}iH8ws1zFc5tc6W%w_1{!vla723ekdI7z&S4g1Tx++g;h5aI)((z01h`ouMA-Uz`hVl;|EJzF>rCA7zzz+oOffYHCZ2)}-4p=)9AVrLF4{oezm33JND2GB&M!`p0s`-6Pt#@NQ>RGU+X)kvC@9 z*~y(DZjO$<$2K>(f;eYJTk(g^O0d43UKGwkuS-f2pEg8S?&GupKBvmgRaB(Wz90Q4 zt0z{Rap9p~hC?yE!ANChh2AdHsCauW+&pAgQPa~z4pVat$dA2q58zIcxj+o1ykD?( zt-;78g|{G8yvlM!C|7fPbb)q7HP@dM^A!@GrqZjB;|wkV5RdSBvJ+TM>uC_*qN1$K zE;?ZIocPk?X8Syxozo~xu-UkMW!Y;*X08@3TsRp{stJLiR_F!dKHeSi`#&YqP_9y6 zLNo`e>44GL6J*}&sY*UrjQ{{N2d3O zRYK(25C4pzPsMmgfO+)ZC54HvXd~G>IzFI%L(;e8MdD`qB6(TVsue5vw@ZfaCQ{|G z3d~O_Gn7D&7tYpx;5fNnowf;c6QF1=BW<}W5^Cgg{E4;Bir0%*`L&WUKn+m5x?d3~2R26qa2(5K1V)H%m_;>s=M~8bc=)fHZ1pyzZ7c5}H4*mVN zyg3|k5aWDwYH8|5CYZuNmaGDtN-?$8S|}w}$|K7{#NEC#vzCc) zKI?5=efXD$H-`iGVslTX)7&VsHBhCLl%$K4i(p8%df>bKxC}Y|k00-cS}j35 zl=$vC%p|J@OJjC$+8roZuS(s>VL)|aPBC0NuBvl*$zB~=IbB|{jk5IdfiN)1zEySm!o#y6QrI*UxjB?l zOijuo@aDjJj)OziQ?H)3OXy9aH$V;soF`)h0XGp=L|erQrlHjm^KwKfp|^0a4UC^4 zGjJ6^>s#t}1-9iL+E=mGIjf0LWSGun*@r(5s;_j~^8IaBg&X{_8IUMdCU2;L{-9hu zUbx(r5>56SW?1Ps&OGAR!m_&}NzTg3Y6PUoF^;sv)g*)y&i7tiaJHYrJSyK;>E@}r z+{JyMsj2Dotdkw>xDc3=A$yoJzW_+#fi{XMBrW8W1Q{SFq?sNiHaU9=!ac{7Sd?!L2`RN&&mKL_!ABIXXkzRu_rZf;Rt0?d=BblkHd`}~Po;SJnq8Ll@Zmx* zvi7{>h;NlSkrOK!W1?(vvb%I``1eY52AU}qLQpyL1B@krKesT#GvCMO>_z)(!aPT0 z>8kRa@pGS7bGq+mWw`=nsG-Ws%cl^*FQe<`DX@mLnsA%Tkp#v9SIJ;|5Mm{sJ&P~e zU=lG9Vs?V#n5xYO;rpW}MCNFP1@GAL8s@1S;D(uz|0kVp#(M)3%lGlB*z=Qo?!%MFWJd@`FEL?STyS$B}#Vy4cw-k`K5%4NCe>^Mg4#vh61!8aZwk>L3GG&(uJei5#o%|02e&7a&xWd zjJyK5mUB&yxLl%4ab`S`CDIaCPsGLSLsxDeP*8y0XJ-91-q)s_teI9;0qln~8X=rp zl4oCf3DVDDoKkLN(qL+=LXRFJ3dtTaJgOl5H)CUCA!MPz8cdr$P47%e(e_o#9}G_e zSH%WFM)}d5+h6lFkl9T-YuKs-ob!3Hf4SB7zzW5C9oaxa!P>%gsQjFMY_``b%GQ zck=z%j;j=;BL(2H`JzS$`kR3WS_(Tz_6p;Gru-aMrp;dO^K+e4e{9jRP*)15?)ep^ zn{-pe@R^;(Z1%X{_Pv6-+G8FqwgQYpom*S$F4h$Uv+f9|p{D~OQX^twl=#Y64@;K- z1G(QRW?`|#!7UA(0leMHO1aXC($Lb{jEfM@AwF3+&li&rMNvW*G2)R2T#cgij)>wJ zGyxG!&06wYs9t_7=DURC8x(JHa~wRlOyYSb4{Gt1!`t_3Cmu_bNPMGWT$#nMRP2~u zB#VwHf`B12xfn<8K)NP_=Z1zoWgm*Ne6(M)nmmENejp7zLW2&HC;3aEYl#VnbdYzf z7lki&3N#+Kpi(pbQmNO_*eKR}(&sTZHy7CqqA~^HxXDvE)7VF651=|$)?ZxESz2^? zCoOdFT`4FmoKFv7kGWU<)KTH2qzAswcX2=(;*gf`#ZA$YFe)DW;>A2M5N1Sa0?-&B z;E!IBRf$Bria6``*T!10-Rz;~4h^9QVr&onFw@#P5RC1@92K!BgRTDxmog4kF+mH3 zqX9{gVU3P^i74F|T;4`+TDs~uuik<(cJcD+K=9+1GF4(NY_?6v2zhojBTbi99N*$BEircexOiJKRyQ&f(O40SzhG(v zX&JN+YAwcx+1dHOIf)d-p16k5fReduHsCF>ZX_w#E-GRNk5i$l6#E}JDx!cu zhQ2n>;nPVW)Y`tXScSCVwEel(kmUHE4hEfU;(yaKGnGKH(lDf5g71Se7j5z2Ok|0Z zD!D%hxX+!>JET>stEu=p_S)8jt(rM(C(}d zgT!)a7ROt(BkcJI(27#Wjv`RROm{aiXmQcCUJxb_`2E?gsHA=@fA{VtejXgbHT9J} zP(W;l)D=^1rXOyiHx!EtumF%CQW|X|NF$1wdVW+R9s;4l6@O>Wl_=l)3tk?;M52CRE$mBuei#5WCKrB%@i|mIJAbQCUq^X zj%+ZoTBJQaC7m~g;3ns{tr}h113e;GZ2M%N$ogi_q@Ji?2y@~-#j|h0DU57dIjsI( z+9W#04ZoBC)yZpCN@*#%jD0l2Hxc?*?0<5Mlz36g%x>O>8*ZYD(IBn|m!YQ8=%=q`| z=zMu9=&cO82coG}7zd`s%~=Rz1?_)}kbF5pKT z2xS{ZTS=eS^!~Q|7Xu3<9J`{$qG(W3R=&l@OAwP#2Y1%WOdcQeOS~U>K*=tgSo*3F zwsA=|<$8L0NHi@kEp?Do&nDrmW{|(h#%-v5MGHpvSpnF%is1hn|s1fH4J}x z=6%e(OlrzbOS+;!pRB3&l69M&Un_jO7@620Yb|>2Xiu!lI(z>A}V1|7-pf zhXemf>W@ym@k7iiI@~!?cWTdIVefCExm=uiqgwgXt&3BiTiQD+#ZGGf z)9~MOhfnbP++1E!*kwf0siIAl(}ibl`^x*+>C?)T4e1m);v*?Gy6S(Sin8vp^4lc_ zarC`ks#UmGj5@ly_W&1n55+dmt`AwU-*&(Hr2*YkrgV-_PTP4=&-vKr`X|BP-$eDu z6|iKWz4>s5NLHV^54=`4s7RqaF}ceT^CRiG1u9l|vqq*qw%in!t`;-R#{Suof%lcO z9rI>=y?p3uuakXwo5Ps!5X}dY2LaZEnaHTxy^TY9DTHslS=MQyl}2pWE4`i8?tC}+ z>5y=(kSQ(;<_8%)eD9p@|D#5%#@byLHOuF>WnHR+Mdw4srJ5-LQnoBy=m;`Dp&)Bj7MW$g1KJ=MP* ztw>(p*uGlzrYgecIZa7to70;@uOIT=bxTQJWiOE|zre_tynjYjX6 z>jIArGD(}RuvYuQNUNSVvL1FYs4(yt71K{4qG6fN`#veV(<>)TIj&+q;#}bUS(|NM z+TD15@5?UZ-7&ZN$y4A=jcC#&`r(7IhPy9+`Zs-Ig@0oHqRdN~ll{F~DMZ9XD2+YR z_;W|ajtUAZ5B7X&b>_yYgTI8WGuqVi7{B01t-*{JM*SqP1XP!f*4m)#5UbT*uYfrr!XoZS~3K(E(=uKT--t*iG$ZamKdS zBAb{Y&Ms~<-_|~zzEiUJKQ6%mB)*$f0z*;R-L`k8!Ms>RknU2@#A|eOHHV{ zbK3QSvqM(X>URD1W)97~HMzM@GM<1Q}d^w{G|L z-Z!ouF$xIZT8`a zVV3{bT;HxC-ELUAZ#7h0*>_*_$^)HteE;d=DeBuM^6O*%`koUzdk*;i4g!0cNup>Q jY5F~k{D1xUc*_s>Tpi*wV{c7U;6F2y8I#UTa1Qt%)vcMI literal 70203 zcmb@ucUX>p7&iViv?od>Ep1H_($Y{e+5_!KrL8DU+C@pFvRb0F38lRk8rnvKC`Cgw zG=As(ec$)@zQ^(Y`#KKaFHeu>x$n>C`drs}o#%PoQF^De80om^NF);DF>MV45{axB zzximW@JgSkup|CQc}eY<5efXE}!?jg<%qj zk917qh>_3znNPmvH>dtl&vg!cNMH}u>Ct&6&-LNJjb{u7+lOfP|E;45dDA+`*)gCz z^z7tI(dKu9uSy*Re9D&Wh7Ct}Zh{%f4zK?Z{D1S~&2rsQ zV}tVTJ{6I%dv`-7Eq{c^}A-L8#|`m$eP%$Q%6Qkd3~!D zt-3^nb^3~`T))Fwxo!fkY~{MU^7rsNE7>b%p66)`o2|B7)3Yj94pqz;_sK0KzJQNq z=H|@&#aC7t;zsM{Pdady{zsJ0k~*Z`g|~dESWhv)6xReZae&omDX z2krSG*5~&`d7$7dwTp|(4G!6H3*CFf7pnR99OItuFKGB&<)<$oS+_VkrTyl(hWd-} z{Z!JVQO`1moX;#CNE>HONtrIdU3?EcOSb#---ND@}n++$;7 z_;82*d`?9rB^zt&Ih$YXh>qV)K2KOVSnFC^sNde*ACi{F8@RcC<^Dkra#>l~6nPh} zjkVvpkxjPFBh|ZzH&j(AadUHbRry^hec=`({N-M4`w*Q*Xi6}L=(Ko){WHcl;VJxo z0>v9WY&ES8>0Z(sDODamBxo~GJKKQ!@Z}Tw)fN?(2Vc7E z{QL7m#J9Ki?E0P>&juwE@hbi9@Rs7qNe6s;+3VNWJHKbyG=xunsyI++SrsksGMs+t z`@0mCAmv}5Dk9PXS95JYY2dv?Gt^A zed&E_^xRC;=E^%pNlxFKe1rq2GV~&)EMD`;%bVy|n-*E>nV5vD^3@jGG_dU05m8@X zf2C6Ce{A;y9)A0C=lHOl*sAExb9*`S^YclhD!-+p*4BLC44mZN-hb%4e;@zNKT1m? z-BzS+r|X!rZU~|K`H1bw5qp6UIwL-#9pl~t`&swK?CaQ+*qTvR#zEps?kKr3YiV8+ zxXZSL!`#)^|6NB%$W!rqft}c){k~5~kF&Bus2I7dKfH8FifxXzio619SFb9(OH+wM9FDyj z2@HAokS97iTAcDUGQzj%`BQN$Cr_Tt$j`r#r4^?p5U(ngyjxkB2QhHae_00M`1s^K zDiINp{L{~=Jj=OB>Dk#^wv!A}x0BL`wb{)1ceK4q;7@Kp;;DAbgmxzXXZv9RzF()g zr7SBW6+Iqi2Bn%)xzg^aS^vB9j>PHfKR>)`Xl$hX{q1dtDqryH*9tnvkC$BNe7N-g zFElwvaz|69W(=_d9$%Vm28(T$e|M^|ZrytQOG}*Hw>PPyp5^YBFH=P{)OBZRk*&?H z87(t41=A&qrur~?kDtT)zfMdLJ3>VI%a`(4)-Afax+$rt0mVC;h$M4b*;klJpgvta zginf1{bY`b-B4z|fO)kir)TQgrpk6Q1#yMB-ai_XU-T%csIEuyCA6hyWl>mISl~l4 z44<5u?8&A_(1=$>{Fi&HJ8$d!F#9UIc6s7}oPir9Q-q=2P-Ug!+P~SFTgT2%@a9mI zQSv?Z97<2;n_KZWFLNim^6TRfY$o>PuDnb1sRs(g#}+?(riK9dJSa_^>GS_2$nrJL zTt9X#fhC^x8kG~{XES9)?W@_3;U@$s49M=2@#UGHl3?G%E=Mu(T!>fMKXQ+0;V8~v zYg-#xM8mZ^ci5d>Tx>30q(6TAI0q-^wU#ddW%TE8ER|n(-g$H2$wBG_auI&{120Y5 z{OxYr&aKs5O5C-F;_0!l9Nh1fD_7PQI;0)C(rv8;1s*+qEFdUIdBF8!?b~|?^!4;e zJaN>@X>pf-4ri!GFcp`UhUVsqAvG$0ogiuj@8E?`r?OQINNIbN%huNR(ojkYNk%RU zG|g{yr1gxsR5#|{^}b9b^Q9L5sGjOgmuL+E2M33AtC~O}9o#+OW_kXQKz+;(>AB^3 zyN~6Us9(8$x~?HW7S|GDBp#NO#5P>&NP+t@J98$}vg%4lFiu&6KX=;x;Ht#?X*ag% zi@1xPXVx z+b5*duRS7Zp4Zf4%~3s>L&cLEG0~CyWoaa+rS=*HBL5~`ZkFZNC=F3b$t}446T*h) z#&WD`ltb0{@qsc|ewlmy9DZ^6yFdcJygWNUKflk~vh1&s8fN9RqSm#Hr%&lFUc9KO zx=&u7Ds5BK+5IiTU2pckT%A^B?gzVQRXAlarG~+P80?hNdPN zNls4gR$5vS&AHXpRh&1Xc-X&5xyBo`Hec}Wh%MOv$t0>HfD2lbTljX6q0uy z3`U}ta~a-#?AWneI@!f9Umo@HlGD-ANzcz`kV=k0h1BHRCo6m8^l8r0($dk1i7?jP zM@3_+7^5_ae@ICot~LVj@R$s=O#YV#Ka^z-J~XPojKqlE~EOi zw?ObNMIRRW9a5B}#n}gsBiC=KmXr@|jR*tK=rw(d+#`bwX9^02V5uI}z5zy%&- z^;<~6+1WywSy^>o=8>=Q->yQ7!>CQ}2f0tA$dGLlITfmBcF4osB`GnHPe4G8wQKy# zmyEnTdSZo>lK7RBb|GY!(+c=4<%|k5rW5#(P{{=Uj6eU z?9n4ZToJ=gd4_!#-i6*h^OjT1DXX}c1#gTFzH{deRX{*MPF|imwoX!#5rN6ZbNFsb ziYgyV<&_a!&d7BI)>_Ly-_wF{Fs^dQ+J=rlzjwgRwk!Qe>zg+k_vBq_zyJ1_?w7<( zI}a9RA*JH$*4-E}X4wme`aq}jDC|FqWeKJ0C)(pE8w(m`4VC0gk z?aELuarq#R%blE@BDGJ`=g%%azb93$o4<4-j@S(!QaB0Nk^5x56!6rsV zl$S1D>diA{)(A~Z+}_yOm=4qt9c=IDNNZv7i8)XT%jB*9fZm!kH?q001LqruG;eO@ z-GjqpKY!kwnQ*vZS0$@l;Fd%PS`u3&{h{1hj;XJNM z6#*R;6(u7hQ%jV)?b}1K-kCr)bASJuI1jGKo;!C=l;?ml;v02W^6bmd!a^zJ{@V!& ztUNqS*HqJeB8Y3Fpa{8gH?&@c!Em6jjdbV114e0SX#yo+H`rp=H~!5IR{HMidH=rq z#YNK_ocpMFcz8smq{6XFYU=79-`;Tg`1&4^N>;bB;;pzc+uRtnEj}fMX3w5IU%!4O z77iO?_S~M4X_rFi@9&*i-qZcWes<*=K8d>;ApPF5imMAb>C6kKu;!aPLt4I!HO1_R zjEq!ub(MPa_AT3PIYYzuOLuP&S7_SXMxr8BT>h!%=qM(v`_O!9us7GxW4w`8P(-BR z^Jg9agND(%kobfI3ZA$KyO!7tEJ$%l$q|2lMcjMf`XAHDsVSRZAInAe>{0K0sN}Kq z%i`RH3l07K>;O1TvAYhtQ>NK2(%)DDpZaWtjmqXvvBwI3X zH8pYp0Ra|X-Z=ZWca42!T3@37_;#`JERO$pXTa9k`oTdCY{*e$dGV881o*_4hK!Hf zD*7+8AbSz$h@65V{@y+Mpr9aN?I5=qHwJA+aP0h?|`I8=Kkb(*eCxa|n>TckjyV-~V4>`T8~Vj^tVK!r7Uj z=dFN*s9oH%7{_R2fMD3)uN%n zGKOHAOcaEZbh=-;Sz(cP@7=pKV0Ez$1;6`=E^laPsH%8Urr*-9GWRj^ty{NRU%VKz zxaig7`W}lPmX)>pp`tH2DyG+TKO^?-I^z1?y`4mB;QZm`f3E;Ahth5v9UGfJ-E*w! z?q6}Nv+hI1BUwjpcD?q#*cAQ{+oZ0cL5cMyrPtHkbP;KgIbmV+gu?8|5i&(Z#bT#E z@yY3FQ{PHJa6W;LH9@=-R1CGK7o#&XH;9lcE!}=|=Yga645WA@!6=*t66wZ`8}7fq zo%~qoyKS5B2~|r=p8F3T@UzgkPj>Oo`6wc)ZHAtmpZop00V}CzWE2{|Tg!HJaVpLG z@STD8mYP~x4P9L<{r&w23AWM~FWAT=6&1NtQ&VO3?K3>VVDq635xb*zibR!oVM<#^ zrydaasp7+j4`UxH`Kh5|;&Q{DKi~Ivb|em~T;JKrjJly`U{H@j-d$p+rFeCb22eeE z>HP6K5_M}Uzh&*38JvfnZBff$K|*UNzx17jo0|b4u(mo~l%gDdCIDt#}RojuzyJj{in?6bOG^RK<9!?9#GGlL~WTU%&V z6ALi7d-rY%At52a^m;5JU=n4N2Dz4&mU*QQE6EzLfLLr@U1nsB#_^_@BO2IsDWakS z-nK~F#Y?tiM|cmDkOY#Ik-b(HJI z1QA^p9-dgh3n1|N-rhvw%)Jr$ZA>XcI_UjlI}c#LRnYp2X3xODK(lA(Xo)X;aQI4n zLjwho^Z=%)n7AVWD!zXIu5M_!4av-qvN433*|s-FA8f+t?-jGxUSfeO6Fbn(A3S{c z%i`2~K&ERoH7bp^vPkVXoeYD6gQK%Go8i~4k)djhO;5+v)~cr5y=(jK{-Me4td=Kb zO0(HdOHB*Tym>RFIQH6CWQR%{u)4iEc(wQRjbwlC|PQjtt3(ke=(1uBn`t{S?i% zr`WEAX>n#~8@l2KU6u7v6ea$B`?j4rbt;-+hawO2#>R%brzg3d^4^kHuUgjsEdi)l z+uMg@l~u9WB_$=3@1HO~R1S!K>GDC~;6V;Y~CFB+UfEtD{m ze6wo}5zJZoSw{&{8l|Gh#PjEY)dR-)$Nyt%RdC^z?*TE;Em6Dg{DQ*W?KTb=-%6x>ed*m{fK z$jnSzLj!r|>-6+-RO((p)8XoX!)@oDF?$_QW-K>9)z;Rwotyi_9+P}NbZ1}CPc9A_LRbo-l zT}9u$K%(JDsr_aqQpt8WrapgXIEhnx@}9g6cGm2rGv`;&L#V4^=<)au9N3Yaojp1H zVvm%0SvrSM_T$Hyi22BOPH%ib_sSjx~@KkqfY7aNE@#micPf{s}Dm9b*p3IpyyW_qT#{GAb{%g3!ONw%`Fu+yqv83Qc_GA85uOR zv`0|pyu7@&$2>jz(mA)a&&=HXMox}sQ{yc(N-rM(g!ZleAWt!uibzi0fm6|i?Kp5p zT3lSM$g--d)X~tv(b4AL-=AicKCA0N?S20FU>AANcAGei3rxDT=bz8RL9Cif-&ZAY0x`vpdgN>4d6&|8V?zk@-i z{Gp*E4#99y4z=)h$HWWqwD|ZV2*}4s@?B*fUm{z+#1|D6jW1*ETN@igkw=IFlGgbI zXWZC9T{xkecvr(1OGE>IytYQ3Nx@S+do*s39zD_!7Z;CSvd8HrjseaQlGScH8k!uv z@BIa5<*aK-d*$RFp$c~)!;DPa@h`#A6-Ah@t*^Iz_;3&S!4a?#IZun3SNRdqdY;As zLT9?zsj}I%`e)j4yfI47Yf|q_sRQdS1+PdT=-krM#eJ5H4KisxrU%F=+Ii2O1f%=w z*RSFiFA9tw0H5KPHI4})zHVdvACU&rf;Ko+edU?Kt8L%0;|l;Yy8JMdE++1SdN!2q z|Ngox{`|1x^y$;1?gt%)o(X}#E8|e(v&Uqg#nIL zHkNk-ZK8<~xvv}mSk6U*A{r4vZD43<+fWME)$9Y;e`H6}Xx`pcJ>!=(LY_}nLuEczQwU~+F?A2y{MZPoU)*^lK3IJk&bJv0rXva%&=RXFOa zE8o-F1_x6BH%^J1y6=-Wou5ZXM>mNDE)Dp1`R?BHbc~#PL)j(IXpoVSZQr)d(2?`H zk$5&((eAbc5yzE<2|3TN+FXY`1tqPj?<27s(@j$r$~9U|EkvnVn(w2M5yS5#e-;OP@yQ06KbRY{HJ9_l!IcMh+s3%|!b{%w2H#obp zveJv9r^#YyVp6!cfrY*i&dhs?{8}(j@zmG0gy=w|$fH;S6rJ3l&5gu_1jF3*?BmI| zLGyS|c3s;5epPsNXC?p~#40E(M z6Q{DF?XR46dG@nK#+z`)ovpRC!63!7H8sP06nRjG3fljIW7Nd)Zu~Njl%fwZ`XsvO$3xFAyhkJJhyq3I zGO;Lo)_ZCp9gXENS!-w@*UJU2`H1h?<2U^pJ+2V?ZIE69K!(U$rC4OT^FYVMMpkcb z_!*d*itxl~S-kejeO7~@dR9`xPr|KfpFW+6lA@RU5gmy3*|Ya3$;m(&i4BWONIXI* ziq{qt01HLL;2x!o+imBF+_vlRWkC>qXMp=AzJIUz^CCzR^uQDvlv4Y*TwF?5Xn42)cp)rv zBOr1&Vx(Hs5?o10Z0xBpPnFHJee$j!X&~Js?J>1QJ|+dD(mCB|2a3Fg2Sn#aOT;#{DsI zaTn0;z1i{Y9*woWzP?$t{~@q(bQyZfCf*aChX^o?bVRvjOI=+Z*+7w13+QVZBtFe@ zBEKI#tPUowGfhRy#Dsm>Um3hWH(-Iz&*qkvESzHkAR*>}=?DnXbfYDCVPT=G$V%m7 znFj^JuPJJqh_#DLfkQ)IAKTLGh*s6rKLiT7!F}kNffc?kqNqq3*nDhsl;q|%>vUjq z?M~O(M^#rXjvl2V>Z;3N@DxGzF zbRz+W?z4jw%{Vj z&Q&Nkj#E9^U%!1j3jCVYmuG6Ir^g~BC`d5AzaLhovT~4?_cMv^{$E~z)z$isA1mv# zYF@?Px)qE%PV9dSyQCTtHX(RH`WgK2VNW|`Kcc-2+FU;XMvY)$k!Mpd+9f$%&j`qwN z$I$`cDO>sd`}YJg0hwJ3=Igor+v{0bUk-n|=XT9VT+_>|bUfY;T_FP_BM3cudiqF> zO!4WSO&-(gRh|Oy%)k%PtaqcLj)h6=hVh{80#kaL5lA~^$;#%D`y+_3P_VU*DCQa( zy)RwPZlw$JLTS@Ef52r}14W5gHBhvITcf~^#h~~&bguyqDl;0#W+?y0xv#P86iJSqgnonGu z4&@>LRt<}28ZBg7FRx!8IROyVTwM!oH>Iy!SrY#M^nM-a4@@%kHPzr}&-P+#_(Vl> z+E0g4GxLOkT%e<;mjw!N{`A^dcDKHG5&`JY9}ubt6$3{wbXC(sbP{4>b-3VSza>{R zDFjaruGjgpg`{!P-}a9m&1J>FYEvrm6b-LBALb1AJ)U;>dZ3fEWhLK%1Fx1WcY1$q zW!<}XZ)Top(d`q$VD$Gue**JYpmTl}!ESGF|8;y^?c29+(cAUGgYEz8u{>wf)78ZX z$%*4;759qqc^p`Pgky$=34ecmIy+`&W5a)wbKlW;#-N3-ZGHCl(Q=idcPF;)w3*p0 z1$GTzuemi3KYlyay7xERGJlq#5 z>Uj4q93&}Zw>a=IU*4qdbNF0YKJH_0FWelvD+Y!Ai0F2cLA~GJ;P8=q&1wRb5SxT% zf*eFhEwkPu)yBTQzBKgohBIMzz}VtW#Xo0oa&YvfoJ)zkb^Er#n9`a5lT3eQDZcP` zf$aX4QEEQ6Um$*%eU~s{zf?EmJZT8b0bPzm>KEWW3)lZ&eM8E>ofo5U0c6GJP z$Tt#i0_{X(R@YCj$G|DD#59qDgM&##q3rvcfF!IOuu7a*qA!$^Its=c{Joh=I6)2& zUK+H?$j?tpd47T`;Q%BDshyse7en->t$P<2OdY==3o-87_k8%X_+u)_ zt8C9gE6sN-FYG$wa{22<*@reka*i$Ol(m}|B#!AyH?RQTLOsbC7)e{JzYM zH4xo8Vp-4JoG9{P^gC>UviJXe;WKZWZ(hC?ccKC6lwe7%>qBXc`vDa>WUNVqRRn&M z(bo9glh9_u_9jbPHAAyNg(6W?gi2$*+GWC zqVX%Ys;5Z8>@l*AJ%agGHPt3@7d{ID0Rve<>#Bnaz!$G=?d*I5Ih)Y8amz_R0L-Z1 z9IHcDK{WOF#@({AtoRY=kfS%V)Is6Hv9k7OzzUM~|DVffK8P<_^R1+VfJL{3rF}ygF7Z_`;2*m){|(Y zrFSp?6A6iwanMs|;Od>67|L9GFyu;-RB2zgu0A>9g%b>1qAI~|*PbZG`=|=rxA>!v zo`RaG5!7)kP%Ol}J%QSCjy;bI9uSZdoc;p^Z?#jWnAFtNZb8}x&jx6gjw-zWF9Pu- zfm7jmLGHo%Ca7}s0jGaDoDfg41>gpo9s%RgOScgw+?mdK^fNcmdJyI*YmkkOOwC{9f+IcTIt6q*2 zOS3&C=TE7e-LK=dH2&jSGI^tz0BzCja^*K-J;|_m`KH-m+_^AQA{XXsi`?oH{jn7 zeOp^*fgf5L>kb2j{iT6bN#nB`oBRUb<2(!AyqdnpjP@A(eJL~v=HYMX`iUl(iAPae zW8#RascAAS19^z&Q zc@}Us(k6_;!G;|zvD=O_DX*->F7k=`Q^E>#9O!Kj(i9xKl^*-_jk5+m;m(9>4_>SRkbVN zD`7g*1PNOT_~z7|x#flP&~3Ey-ZO*oKz}2HZix6llieYJxL~N_ff94`^4>$&`fPRu zv^#;EPo69ozOg(%KYz~6jks}8vs!?pMaJ$*m%cF&{}^yQca`@|T?ruPztUv;Kh?YuQ`zihT?90fF4! z_{i1nU!RKNYG zBNtjf*bgEwkOQ7d?BL?k0hBYOY)7K&6~FbV%p(M_SQY%b+~pawtE-ES1%(kSK9(o_ z{(!eM*7i%fE}1ZL~|5#va|nW2Cgpx!clGKbUZdcujH^i*St7- zWXI|z>F+Mqx6A%JTK$vENdMAc1mKdjr9|qQ33>JN%NKQ^;zgKm1;jhm3UP-}kDkDk z;xz3tQvCp36Tygmot)Ih+l-1Vl?;rHvr&Zlp3XvJb3%%u4O4UKc|BpuSnu z1U`^=`+Oon_~fICD?1I%&G+dXn^Fx6Q=0ttcGhumQdrI_M|lfnX%=o)RHj(z&-4>D z^@tzc-B~{;`&iGe>~0NGncgpJ#mio6NtiRvy!M*Xa{TcAeF9-+%PIsserj68Gc`Hc zn_`Ayn?iJU=pw&PO&vo)BCZeoA_7S-uNv$LL0b~-_sNqt@5(u<;YZ*F)|$IHSi3g15{p{fp*bRvQJ7&V~vb@6TU7is3tvFS5mrqPSwDX_v!L-@d4Ij7k`W^onzJK zW^LN4Pn9IXXV152=T;iZuV6eTLSvqygC)4oC=G$VvaU?;*ry=6xWL=0bGOSSclMe>x9*H%zoHg{F`=PGk5;<85 zhoymd(18QjBZs%eOD3s2o>856zKbGi^6hL)>g%8Ptf>FK9v!tN$R}lGW!}o4NF@gq z6x0N_jsfvOt0D|>Xt6LEi58JIJpP|A`nH~p-bP=(IgNY4-|g)^;K^< zhpy3^-{Fsw_516rDW%QG$Vh0<@a3TG=_}mnH-(%>h^{cw*|@meg!*Mtu9Z|O$h*^2 zvbJu$;+84jwcHoG`rS6@vA%AKE!VG;=UY^;gV~ONSE;hHQpUEC=H;E4=YEvd0wlIX zkp)RDN+dEqASYkn71Vl`m`fQ&BQ&e4=5s4dditj$7Eb)(tv4pckhYVvkaaa~URdT! zywD*{#YZW#vo@HySNeCh4cW|ogWT;nEA?oXx}Qx%baLtG=>-Ei!@!jA^yWcg4M|AYM%WRc z^8+tIz9hVJaK>Dk}YYp~NR6?Q=V58UrilsTyx-6p>u`h#rT`dT6}A$9>E&M)vvcT1YdqwrNS2nC zXvL_#eu#~w^*yl8P1q7lLGyz2Ytt&^Q7K2K9gl$S{gCge<{y(QY&K@kIwk$mhVDF4 z9WYqxxDDwJU4A&cE&U3{TYqOXQ4CUyGPEcBq0_IXPT`)o#>nRs-VkBT7r#dR>(_1- zz2UrRl0B)5obTzaxRR^V3AECbGIJKvDJyDNf-R{hsNkLh-pg&)csaWpoglmeEg&If zE`2*eszuNeo~GU+D_&?Y1s;z|&b4htM@{@2iAD{W-*3zV@85vU@x0tVZ zLM1&q(DnV?bWu(JRU>a$A8{T`N{&pz*?f`BAvNyEjfI<%vzxP>IwUTNNs8L7hYppe zKu?0x-he;#PepdsZL-OT1$|@R;yepd!{(3e6bB;~TGHMOT;EdcWL|ZZO+@#hk@MLF z*^ku$J6&B}3FjhY-{6JXeo%CiKYomZhhdY?@PB|J4TUNcF(Lp%%jWuQkPTuQc8YWm z3}s$Z1_cN9z3J?1K{ay!J98R~fPXCjVHp?-y0`Y9BWjjZAOBE#^6=+rM^ZEY$|^M? zS5mSlbsHi3==96N<`;daa#X`;Uz2E<0xCx^^o)LmNf0D#@ElYBZ}OY#0Ofh*xZ}xE z{AdT^BPjUmcN(Tv1%)%LUADHi)(#Fit{p1N7|%h1R>QzK(-ZN5qBmpiHUD2X=xmy?K-IdPqn{Zf+C=tNQxPzaL&h6W|3p zB~l0+Jad!XyJ^DI^3T31{LyVTEHpaitlG=6Y*ifX%N3H6!a-7vVSnskV{71jK}gI; zcsi8#yLlsFhQSO7JY{x(kbRcV%_N$^jDv9vM{@)lcs_11P90~3SThKzIpb!Wn0-}d7*bt6!h)8(Fp`fz`#!rw=>hN^T zkJeGZ3#fklI6Zoj<<6ju5ZppEo9zSJlYH~ID)uJF7- z?jpBCSS-p&<%ql82j;qPEt}5?LI-C5_b_y zMgb$?+cQ@Ce$T@%4C5eC2Yoiyd<%Y5ek^;Bdxm)ihRTZW*WR)^I!3orQi8$D3hdoW zhelCUT%4SBtUXC$aL^(BqN&T=ig`}nZ!20$QaTeK*+hauO3{{`*ZP7Zi5vp0=nHg$ z&76RBC|rcW4cD0EW97cN5kL^bD1GqG=6DF+xqCPINC?#tb#)3vPJN239VSX{B_)M{ zxx~nrv8>J4Z0KHu3lj<(p8$pd*d))C)&gMIxVpxoxfg)W4l5LT<$BP=gaHcPPKes- zhG7)n+2cm%s>Eu?_~hi7^O##QgPu?wysX4#&Ls2t6;GzXZujw1VvhuC2g&Ym^k<2Y z_!LS=A7WMN=yN$k?}iiUn?wS3K&B4^P{pfPuoJ$(9+5xfDZhExJz=l>lU8J6-03wFb@mOED5P`0L43QL3Q?seH$+fp{ zx-V}B5S#nj^8A$?i}{xAX`LY$=0Q{2l^I5xUvM_-*f#IR#&dn+7vJ#k2A(t{`Gp{l zsDUR1u3ni8D1eh2WNIVEPxQ^qXh`s{G&RLc%tiwAJFQVa&CI-xmL&t&m2h4XFpnTw zpshk5DGOXz06@aQh=dgbY73!)zzTa^Pc#(66C}cP2fYP(FbwqtjX2@r1tNlVIh`;c zU;57U*Y!_WsxtqYZ}m9$vLaKs*8p`|i{?Q8un&70d0zMyhtK(9N0~f=^>^?87^kf< zH}qU@>|5O%ySUdhS9p%&wh7#|4-P9w%2QI2>Zt3dNwzhx!=m>r&Tc+jrbY;NpCbLw{bEZf92 zEt4@rNl7xWIQ%SgV_$p8OG-j(YY(=b3tjUUv$dnQ5<9t>XH{|R*;^*5K=0lOvU7($;vf1as=07Mev2gbnhERv1%C^sigGei!8-Bs}Z5h`^2&M2(j zn8u()cL0U>X3)k8HEz~e`CYDQ(Zlghfp{7axd0i>5WnClxCRVIc)@qnpDW{(YF=-N z2jxd1d9x{(eOwsv4D*+Yq&YnmML6MjR00_+c1f0&x>B>TonN~&p)6cjMmwL#_A!b`I_Dc{{C1fF} zt0FjhB^dT;a!6c}hAGDV&ktil$ANir8GZ;4{1qHC*9Tv4 zTLoR<(g>ay`Fzq^K<%O(D`*Cf`5vK1kDnMn-Mv)|hGqg}u|OvZ zIlbhD6T6u-LP2qu`dTO`C=6Cyk%lZlSdg(;>97D2r-QJT8XR`AS#sUUtvJXYLbV?eeRcWI zfbd{(2JPk9m%iuel=P}=uYUb!Mf$C2LzaKXGPWM1iSkt|OavUfJi`GomDrx9?;x#f zVKvx3d*yQ@iW=6G(~ZgbDHpSW%dF_P-QK(t)x( z_ra}(Uq*)I)t68oZc{pAHe=|F8d{n#IjhTZQIIn9NExam%#%(|?GM&IMwwg6AS>Ig zeXJuq_Kx^L#;c<+6A`{nXf%2*o2YffL_Q@&U~;R(;#4J1Ju z=#M^gqh!cJ#PAn}QqH`nt2~ThU&3@hGQx{3anpa!ND4^QjVQ7Nkchv1dtq4GUQ;xP zVdzgmXY$H3KzqU*i;r(a@lie&gfoPJ|5~&S#7tV#cP1t#!ktOzc(9{Zmh8d=78;9qdN&-iN5Bx7L z!1--pTfbE;eYOMd1(aY{Vg{{>8jdmO9>G8Y9;3C_Mv}6-9f)**sb?_=QR6GDUuc-- zG;H@YxV{1mh;4Hg2<+t9>-O%FXp+ti;cd{WTPOB%%P}EUkHKLzV&e2y_+HA=IxYHX z_bXQ}phu;oroMzm^l&W99bs7TZg@z~ymUUzd1HKbwiA>@pjBZmoCeP^PDQXEmoLjB zXup zoGa>U{B~31X~X1f2*$Y{pL);^2&tEA6x61?ZR=J-e*!iNWVoa*+Xh zsGq1FN3*(#$phkFL2R8GdM;uWxFUq=gS7c`Z|z}Im*rq6b?Ckh zU(;vy^!c-B);clYg1I(G?)Ts|PedyDJmR6JzhxppSJ?)_I7STTU_XRIdZyqGHdz16nX3c*;7KCTfMK`& zCD`euE9b}|23NRUJR~7;18vGBwEA$KPJMVK4eV))2wS>x>gkF)tXyC|h}n}@A}yOz zF2S0?)NGnpFXeJQaL_7{65&%ldg_#{OoY?KpUq^aEtk_6xa1K5MQoiewuhF9$sV24 z4X*t^K3jNfrR`0N6e!*%nd#J(ZppzOlLV2?KVV%?^y{RT0=Syu56+?ebQv4Nerd*Xdz!chFvYnasJot2phV=efaSWJ4Ucs+nw70wnNAcWb<-%Ps7D}vyi zgz#hVflhr-oA8;n$itjCh;(7&anvI5*E$pUk}_Xd^0f|xc?NJE@(s%|5{K?ne79Y6 zk9Lc`WOif57W%mU@!Uc}&)EeKE^+!^$H~ z48ozpjKK;~QQ?Zu2Bqfp zh0{1%Td~=MmYxa2x#Ifb`|*+%o^4o0Hm4V7u*#7@-2dP^F^{|b$?ky z{8XR-+hJjyrW~F^fm%Z$3`~du6G&G7`&H5Y7HSh8RChs~Y{^iTdTW_Th=6r zCXxmA?>DZTZ{DevYeWZ%84POEap@{S*eCg+SM3INm_2wO&km3U88PH> z&u!@k_3}79(L(6g1O~{W54Dlu*htKG3M6_Z0@-Dzr;lc|ONxrJbSnSL zZ|&?1%JIxw`KMPeK_%R z=(!e*_h*rij+jZX%Yv@ef8}a1KXf6D7S`&FKBp!$92+04e_oDH^wH=o+9CDGAU8)p zE1Uy9WB_;;P*9jGKMFMRa^VXk05<8GwP(xYG18$;wybJ2P^%;$*Gj-zB?^10P;^X; zCWZ^cP6%(qMKJIvn!$jhMXXvSR@HW(&_b0` z6c#83cAIE`?MTp(RsgbV<(G_ZvZxW}(r5q-x{6O5dJ~vC9U!)x+1P%65bsmA!8F0c zhtJ}R=Hfq=Im_R}Ktmpc<|>)g6UO}*uEso_6t>f=a{*=_jdSN7`Jk4CwVm4vn&`jq zftn#8Dyr=u$2H$3lD0NAe@22G(-=Zu@obArm$un8-(ZE=k=SnxmwF&&ws*n{6@?3m zhVjHyUj~K{TkO3pMu2R=T?nYCSV6kg#{4}I0GKitge{m4rBWO^7#|FOVi3W_oaN6Z zl?Vz6MZuUx16KvHB{+t>t+xrkttOZqO>ON+m?=u(zg&6$Y$I9r-rMm$Q!6&G@Q4U+ zg$Kk|!G94*gohu(gC`h3JF*B3bNtK)#4Vcs|H9$ry+v#Wad3bumn5V`M6?v)e$7Nz zotcxPjp;sSxw1HuCp2dwsC;l0eWJxE3NRKrpkz!^5tVZGZ(U z@tkOH?;QSlxddiqR(JzYv-4Vy9Y4MeQ*Z3j)ytUx;6;NqK{a!K{;(P38ZH0(7lZN~ z4dSE(RtZ`AHyp%2BPvAv!-tld@8Fvu9FAQMa`o@u8~U%!x4cqf__$5s0n6#roKlDY;~eeHhek>m=VtVD9q1)gg6DxpDS17 z2M~I<;S0_8`Th0);V^ClJ_$XV#foJt1!2R$t89*w_rrT{PNLOnnX? zYKuv!IOk1N5CKI+bBHPvFTDYTSofx$s9b2@vn0`pBYWVpk2Me?AUW8_4WleTvgb)cwFRu@K{k;97?d8ia z|63ra-=W^ZRO-u+``cAOPVvwlBx{e&t zBZb)zA^XmUlEf(kQy@Sj@)N=d#Y4`vxFZ1>89nHukr;b~RZ9YDiuXVN;n-bjr7n9K z?c!+Xm%pfa{S?=D<;n&?rB>=BM7$bs;zr8ntO(*d@z9un)qBFRD&jT zn!HaxLNkv>uAa$g&;QnKh=X_wMs8X6(OU644OS;@Z8LL>^ZIwOO@SklKDRd&X0@*Y zZRjgsL#ASdUa^BcMiXs)Gz?ND&O`s*9FZJv3myM;+#a^5Ca5-hHlU4@OT@#n@4v;!!`Fkb@OOe%KnRY@ac~Lkzb!I>~msMSzk;5RAM6@%|x8T9K$EE z@O@?;OAscu*cO{$3y3lfi&G;XqvOr&5@P+Goho8#_y6#6&qLwdoh(tmp6p-;I&cmfs)$fKj1&9+R zFaP%?Up93eauX=$XpApM2tU88rR&WzNRerh2gMyes(3(0rQ5PV$Xhu%+kp46_*5X( zlcu3iN7PyK0U|;2e+Wgu?>6VQZN%fUh@o@gg!!o_X$D3{jnHILF&hbY@_C?P;0a74 zB>S~TwYRp8!W)c}OPP~Xa1fZt-`}6$ePIYhvAl=ag%#-?K*s#il8A!B>u2PfU|#@Q zn@2`!3<@y`1SsS+)e{DsYEo!^3|lh=svnKod1A^2y$1l>b0jt-d{tEXk4lab5L76JZqE8f1c*;^BJ zdi|CbdIw7?5Bly!k%8Ck9{gbGM&eP?(W{rrgFb^pe2Uxhg})%wNt3O`NT6&0c> z0SZB*V0J$F7qupyA(haEn>0QDrQd0TcP?lDoN^~ zO9bKRGhOiN*YR(N0S&Z5O%Mdb-r8@&O|lVa3(5@fi~?lDDA?ZpqMH?c7arl^Gi)Y# ze_nbMKmi@;c3=P^RiUYmhN<&IehKWiQQsf>oyxbYS}o)sPH#reheY9AHt6WRpPpNgP!(nRS`!BdHnM&n^g9Z{;R$v+XvxHA-w zlc*0H%0JyS^6l-O4JIz5vGKK=d4JL(>#SMOPhE$((Z^x$N#O(zdFK>ZSbZJ#=J}Qy z?f4y_jeEHZLo()yervZ7Ef~J41&ipGw|y_XTOdDcLDIZM8TRkoD{b*w141b}OXBHj zDEzYjV|MWfv`T_B?C6Mb`S8-XWFs)9&q)aF8_3=6^dli3`ak@<{Mq;WE>t)@@gz*E zCL;O)8jwSGdw6(Y32$K@2H9sHo=U+9oNN)Z4r|M^tACs@*5|W2^#r@X1j-abN(Acn z__uG(pb%DYSirlaqm_fk8ij-v$^sX+-QLu}^>>GTTADnniy@U>2O&1b%IXk!KB~%R zRn9Fmv`ag$Du8cjNXCt))cN#;85rv}G*f8ti6#*Ve_`f%=lJw=2hx|Gc#yG@(jm^H zH_0C`aqp^Y%YFJnh%zxTxQ)`%5}u>b(2whx8x+J7)DR%&0qd}_irZ5mKYhVTg}Cx3 zqc!haw}A!yJU@XOaYvvF{2zVs`Ev8XR>o*o9NIay}ghY5N?or4vj0${+5bQ@35mcV3!9p!~=!aV;4~AIN^Hb4OnC)tU;Jj zA$)*(dISp&6eIv;>pW_%*N@&P!s+?qj3aDDsO@&((*(IyP8rz>1oHEjMn_>BIOTf1 z8XjZOnfmqIo24G!QyIZ-HB~>&()@lM0_o6O&EHcmJS?BC z#>0kAp$!&KipD|M%FEk{RwfSXd-(E;m zFpm-Z@h?x=ac}Q((M!nPfq5Lb6xz}zE2)^om@^1-+ZPse#z?4hcxb+=VUxw-xM{g= znxRecpiyv85OG-1yQpJcMkOYa86ogZ2gSQOPjmSDg#O#kZ%Ky|D&CEF`LNP`UoO11 z-($|ZMY_U=2B^sudyEr&fD4zhmb@lYL0|F0QL)yD%)2EXhcKzb|2qqSttNVqp zu>u=V!noN#W}izL6r2$=c};Y<1i6dcFV`-KK8NFg8_4iZXW-DFsVheJjl_#)RO)y* z;h~^{Y&r&dzu_V)AG~5fx`yVAIO5cK!`Wo_!7PYUf@Gs_=zKYkACJZR#1q$X0KVnn zcQ+796aDbiIx%w<+q6Z?8oj7d!S70Zsp$JvGxah1IwSs~>5_Am3a&Ufc@#4Bj}qlh z)bs%!nk&b>#?smTBb7gl0%>g7nVD5ezID2;%oBf7_9%q)Eqqx(%(Y3)54naod9$o0n$hf`x7gx#EUOs%W4R_|MR&s*< zd+eX1;+0oalmIPy{_#bZ5IW3hG-g*&#>3g=*Q;$X#wJ1_C5bk6{lDKGn9A4SNgxh5 z{H2$1@_;N9;@yV8K&VVeP!NKL1n2^{$M@c_vf@S~Fp2VEjjoEYG6*oy095b5wD{%S z4Ix-t-Y3h(p-Yg&;E!3^xoUYIChZ!bLAw%&-@EWFgn@AaCc`Tvv@1gO3?APPV9%)A zS#LChiqz8t%J}{W8X->f7g_lHE%PWgx7my3+rOaopsu zKan*l9IO!(IZxeZr>2{p`IFL!>@z8U_t!+7s@=k3^6%eJ`_}wRbM|XnF+}_Vpx?@+ zk6QF9Bk*__!&-y!`o)|2?K;B>1`Y{We68RxBg8uN^bgf!_Q6dIK?0Gq22`D(9nXJW zLDj$uum`G$ii(YUnIxEuqS37*Yr}WgX$F&TCeC~1%E%q!BEz3j0x}GUfhxXnq2W8M z5%-;Iww~11)}D4$n}oF%**j2#UdCgE2B;V=2J~)0MtRf8H%ADh7-%1WIPz25tJVm< zTtiSIH7H(3X?K2rqoD5y1wc%jGU^hZk7@PYcuWO=I8VW6`~gps#j13InbE(*NDGWL z0Bbmyk_oGl4BL(tU-1xf`gq#BCjU;S7FbZu(bGRy;yfZW*%U~=n@w5?s6CK4031|@XZwG?N#~Y`P~B$Ur|N8B z@#fo9)D@}T`3p{}kK1X4gav8*{r{|e-DbOr5EP4h%gkUPR{9ucoIq<5@c`qn^jTVt zong6r{Gq?Y&i|qwwb`KIBB~;~Y8;FJll&}vLSo_uWjrc%q7UpBF3~1bZ%C2S@YSyf zS3m=F%y}dU&)^|A1M}NI4kP%q4KGpK`}a1e`~>n#L?{0I*>3$%o}v~rgtm^(2l?aU z5IfsIkASWh=KBvQ@LlLi2<~qHUcb5O4N;mPe+)OoP>X5iy#a0&jDeU9(U@1X?|oxl zz%L>af%~om&%k?gK@H6_eC*AZ;u!IRmC_Un`mM_b51hWrNT;R6C3`Se^^CEXG({DA zSd-F^vvH~L&?)lqDDgF1N>kvD<&J5?D4&It8=q3vl@G}Sx%!Xd<3kuo5zL{?O$437 zxkLO(?HwIQL`0@h0|+FwFoxf?y)*NRqpD!c_=`TPvVqo0@8o0|w&AKu`-vYRnu1Md z(=4|l4ld0v=ies1A(L}{S9-?W+PiHwJ%AsOzuNb3KfC?&hz-5Ho+d9NLV%5tya;HX zI4WrvzWv^xin1Sb zxI6dcBHXQTq!VxZudk(Hp!1PIF#y{HDv1poz`sUuoV{25@Q9()rFV04Bjz4Fo=uMS zIL%B5cnA>z(9DI!MeAB$63B!K-Dh+#4(Z@0Lt03%Q^b*hf=U9`TtI*CVUcWWZMDSl zgC^0R_~~H0L97V*^QLDIMT=;Ch`)$5IHxiL;Ey|qsVPfGts|OIbhup6+ngPGPkiT{ zc6pAgUfp&XX-a;HhM{>zVde!bqh0h>bqZddQUc3nZ6IW>E@bj;J%IP8NSX^1b_$Y6GETMv8$N9yTELG0-OrYiwWRzO$$JY9-%! zVg_kHN>0(>@6CZGHWZX71(Q9mw$_ z)IEe(-qz3-_HsB*xZyL3)g;0I2qp-12j9iByMHwR?n@;`oEW_uL(sR=)5{h8*0}Xx zMYAlrh!JKCXO!iJ%o{S36DQm{+Mz`F^4k+_D;T!1sYc4RwQxN_y+mzbmZYR)ZSTC< zPG7l_R8<8VL*{$SS{Uu~jkI9MgxKcF()S*41q9~x-cC}9YU#E-*n+dmKYP@(&rFQ_ z_1L7B=KzkgTB0B;!IeRBc1ONZn4EC9?FpyC^2-e`C_N@Az*ANJXEJ@M%=@oT+}!jQ zoN@1Q&l6Mojh{msD~nD*M-uSv_~Wk$zx;O&+qYkc6#iob(_@J)1ufy^#-*|kJir2< zQuvYfFFH?{cvHoGqSd62lJy-T5gWBEc3&)-PEkny$8kvbz}WIhb!H!dOZi5U82dec zeW^o&91&YdG&Q1elK3=$@D)KU5K30U%_|uD5yDwP684)7b|q>;~U12p46%X-Li^epke1GqSU9S8O2if#}OnIPvBl zjn`IIQFAvFohgE))l=4}f-PSAevdt`7FD%){4J%7w6|fqU=i!I19YjU#rs7|lg0ev z19?v0zkl8E#Uu9wFxb~O*TdjQ1|x{F0k2YIlU43(Du=|*Tc#DwO)rI!Z6MG;TlCfO z%S)q3D#hL1>KS!5MTIX4qn?z(wU&3U&9q~z)2(^Pr$tWx6H+L zRLr52740Gc&!TGO4wAk{1Iv%e5~DJTM#&_50PjD5jH@AOwcbr53`3i ztv?Aq4bgtZ`J?`Z+&xm=+!x=dc9N639?$drv?MIYEN$N&Q#*GgN^p*QX+J`|yW|#W zL7jaIpg%>(+2t1BOQKy!xjEt$3`$_WU8n$hRtm_{AZkoQU{vg2Vy7LXI49wzfv#u* zGuaf;#-Z2|*?DNs34ROT|AAxn4CrrYS;T!&7N2>2I{*VyE3R;LZEYK&H zB!lPrdpk$p9w#-ZGAUHoQvOcsK2> zt)ZcqZv?|A0)!5Vv(Qp;i6?d<6vX<5>*Yd|i1z~rVpWlq++-<^-~(xH@*e#ovO$(9 z!#Zb!{68BBF;=ks&UfIHI>-|7KB~iO@^{%lnKK9G|5P|B5MZ#EnR&U^B3Df@g7x@G zufM$bFPst*fBmK*fhxg01oe*o^`NbW98a$8{U}WYtA!-Nmp?0e&sd_`L)M-Q$?@nQ zMP}T%i(?RXw5;p+gi3MotKM|4u=eg>7Va=f;0}I%-sAd^!%hDzSI)O9*~3KZjJxF2 z){+76n_9?}2`vF}t--KLbX8U6=dyK@5p}Q=LnKsZW3cQ%<{x_)D&oFQrMIYRcjxOU zaaIXG8sbKaj8)#1hk zEsiB=y1C*9Xj@5gwVM?aBdQb?H=ibI?TQI`XejuYZ?By~fo}JvUD|lkFUO(7j5O}< zZNg$RJVE{`*QI`b%5}f==MwO0X?$xCA(bUpTv~jL@=7mi(Ogx|5?~V1P3)ti5{&{(2Rm;3LFH9gW8kc+{>qvxj8~{)z4ix=mkG{?GL~kI0>zWw%iOf~{ zKAH;Wot|!TQ|voRZ%$v*xbgu-R2eOnUTfYv>YYULrlw}-gRAq1pkd`w($ z<$0mc&LgJM-a$%!7#I1vDeZY4jUge`(}Q=^X{O?@+Z!rH1We;Ca46N!P^DvK-uKtZ z_2__tdcMg}Ydg2Nz=O&m)1N2o6@F%Fu|zbt&)?2f_E*hNoc;bFqetD;hL>9+8u`PB z7pcSeEVxJ-6CF*Q6ewNnOTTK`eg^y|*mr6B712@w)r4~EWrer%pIDUe|6ea7$noUG z+6Ey1?G7p~kafpU^iv^Xqd)uS-Vt$Y(OjY6ix=n zqp5<`q7?Jj{k~)4tjaXvaq$D~N=S4$Sjdh&pBPu5ytTIG$8f9S9k-^|+uK_* zvc6slY0COni?*~xv&*zqvznA#)T!)B4rH`}sp?dhxyKsN^I-eiW6$iyD>j@`qtPbFa z*fr#|GjWd%Yt+b}uX~jU`~)y?UU~XIVL)#@a&k%dQcoAYbl7Ia4Q8PLUlC4^HIh?( z96m||vd5Dmdcr`4*G|I;xPuB29)$-ofH+y(wq)?SJDAU96D>hoSC^VlTb8ro?qqg) zvN7$1NaNGbd#W<&XX!^$3sZfo^A9};ec2NI&nC6^(vPijv8};19)`PRm&Hy$6PS5X zb>zbhEy5_JjB9~~-^>0mcRJ3lv8n+D9WjZM+TwQ*N#8{>2g)bG@9`J)WhUe56_vGl{7} z%KYB)c|v_eMKy*|?82ZMv}|5Z|@NIuNCS>K@131L@DZ~_-slB^Fq>J!G4 z^1DA6P2MIM(Xr}&t~gN&3_RDc^1pVW*Is`$;7<+28-tn(;?z*E6xsshl?XDM;KqY& zVg}VTNzN-83Kqi23N<2n`#pbZ=$O2ovbb}(?=szB*A8NKx^|f|J3&`+-`&B0&A8S+ za66cy8nRQoHM`09u31!gMu2>bLoncIPriBQ=tGRp`#A&0^2bnrJs zO`*8RQ6w2q=2*`8E`%f~FU0iv3Xz2m`XM?d6gILimbw27m}dYNN?)@_kX!NRE7I63mcxzkO#Y7axD zcxs3cP2!`$m5E%g&>s7#8?m89IyyENg&z;U{)M3;7ld61E(BKGeiB1^q}Mcz{3w@ct|js?TmsP<#IQ;^($#_f#@FJ@!F{ zb(7odHzD$Y+}tl7GMm>vEC2mdF`uWgiqHmej8IH8JE4xit9>Z1t`_nJ$}3mu)6;>p zyn4TpaJ}^J^E{yoW~KtgCe)<^_W8ZzsfI@7Tbh~-zGC7#%H7;gQCSiPaC4{+4@=+u%L{Pmi0YBxq&M>Daf1 zg$t>hf;p8h%HKLSI8hj!T74a$+No2tOMS?!NHA4&91(_(!b03Av2elE6ydItV0=U z!3DABEx&ktc;MEKi%HWJ&=p`}4stv%c#QR|EoT#?S3+dRk)x`JrWZW@ICcuyfuw{& zmywOF6YuItk9p4CGiMG={t6#zq09~2r5{gwMAz%iWA%CP=8qR=9>v9uFV<0Fs|@0t zmv0k%r6^i)2E=hlAlp&*ki2G{dzWiwWfFAwxPxq8Q`aRW&X|eDSxY5?qr;~F#d#G$c*V)G3uK~kv6uJzqbI;? zhmeX-VGk@XY0@mmY93>yo1UIlQ0ZghaCR2W&icqYPw|(R5xNt>jS9A%I*;Q@E@f~T z=T3#pyJX#*y?+5~6b63VeEmIz!M*AM)sVbgYso<2S4SJ;d~&Z_oFW3gk9fud=mo## z50PN71Z*dCiOe|P2;B*88%<3biU2<}2yk5gk9HR;M;ihxjewHGxVCOKya?W#kt#>_ zX(dYR$a$l?qF3m7eMld1AX$dcyMVJjgodS|t84Dz^w3TyGa>nI!&L&|##XP}i?wSx zMwUK%P)7+G2n7a+?aeMd1Nb`#*G0*|p8+>G5dli^gWq`qE`;Z_bo9gO)sTvTuR4*D zfHKo=98HV*zDFtbvw*9o(fCZZZNm|^(g1QXwPqJNGhze5QPv2oV)F-omeFI6*8@{= zbV|y(p3cxc7yuy0#iasw9khwQXh1^krE_2Zyx4d#OYK2BV2xdX=yLt zdM88A8U}w(R8o?uo*xgVFPbC<|68X|Yu=EVqStL6v_D5PrW}!xqIGQo7N$gCQCc_`%zDNr|Y0LP%?;E3|qbL@OuavC72he zW%n+0o)~q3zXSaiynvMq*YwS=7#G4Pf=o z*v}IX770UDn+`nE=cR9+*K>@5HBrzn?O|eS1SJezQiuF?0$qg~f=J5*OsFIn>$XNO z^V=lf2(oaK{C)A-%_06&j0Qfb_x}y^j~-^E#&kLUby|{Xf1KqpmW8FImX;Q>n733R z3^{i%iRYYW(aekn=_KJiB1aHxfKw3^Vqa-+j*K{D%^n}2}*X3eW#^puBd-Oq79;S>8yn*2Z4k;LkU^f}~9jN0rc z4Pg*?tVyG(St!7yytTAfno+~{z!BU94F2F~zRi65cv?15Sdgh|E6WI|n;PKv!!cai ze2$*79~7#4)DZ-CyNbP3wEMMLm0_gUv&QS=o!`-lwEJ zW$6wcuLnZ&yf+)wPLVJ6qaxKSvIrZAXCCeieVq~Lk3`MO6~4v_agvK_9zJ6$QGGNK zKu7iD4N2Ar+O7|LU5?GEhV`9>BwXZ1dCWnkI)HGX=>dwY=RHZG7Rf$cly%nilf(Gd z3i7{0`JS$Xz-xyQ^7(Y9Oqfw#EJ`jxOcIKIpKUopmw;~*kR%1@3XDVqID%oEe07ae z= z--r;hBxn{^PP}s1)+a`s_W-QdRwp0+=uT^pKkKcPsefv9j10VOE1Uy66mU=Yl>LH= z>@o!LchNpv%r{Cn9+Kr1_=a0}?PgTR6d;R0P%u2P-(1(+SdT83hR+^s95UN&y4vOG z_=W=@60n4rgapD#auRqcrb%4ehWESq4<9ZnU?l?H~oxIS2WBwzu`O3h2GrYHYb{GIS4xjQeccw&_IXoyz4 zaKy0oO=4J`y|RgZ{SSj|L1C>B@>xm{90Vl*L(_-eA2hSPC2Uy-fSJFzkjHE74YBz znB@r@0Zw%jdWTnuIQc}3^~H-{*!ovy`yUcgez132lhKv`;&OIR+#)BaJ|Zc^k3VTH z?D5I+V$x&VKC5~$1IliHjj@)n&^SUlXy-)V9eTIxK_7*|f`Mcq-a4FgtD=iUraijV zs{E64`Eo_D-U3-du$=1jwJP&2yovxZFgpStUvr%`O8D^9PxN@~-u+?|fBxt|PXIX* z*W~(*ed?K&x&`d=o0}(%Oy6J0&3$boU{ATaw(f@1L%HYrPWGj*mDyJljw-l!75Tx z7Z*3er|jY`j1mpXH#;MB@^RLs z>1h^P3Q{vu@po^FUR=9i=x|&!laY%YQH!ZC>_E_%ZYYSn(AdR_AlJ zP6O0HklMi57$IT-F5&9tHi7uK0`0jkKzU$!A47hW{q@|X2ZD#+*G$OS#R{yg=pB?# znZMGa!6p$B*nc~SGfv~;X3DkmA7yul+C46^pY)OtxuN^+^K;xbP#7mcdgQjgbai{V zz-PEGwjBBgAOb+s>lzv|LU($GL3vDpXLqeeFwnGfGz?=dl{&Z$ET_2w{j85!6PebL zLtZ3H{R%f$_#lI#HXSAsO& zq|YcPfcFP`c#w_Ngv$YvGyg+u8d$TihrzeU2HWpQ;!Sms{_-X9N%Q-TI4`w~G#nB1 z9(-7kVHO)I>TrDewmd-fk{)#tO3HWkrKTU=zbrnNpTU!OU8-_u_-LCAG5&V6qk+*D z63c$XkVMk%`%d9R2>C$%&)+BZpNQSL0zDok&BG9SA!tBI-B!Xb zLEFRg<`rd+V=bDRPm`bNh&ek`tgl@z8*F>uI`*|M@7Vl*-%Lyoy`|ZS9v=p|2!us| zo~5RvYqF7m%pSu2*n+csdkGULVCASN23*<*@JBMkBSa5i9)oTKp}ate)q#B>o(voi zBv(+$FXhCyuAd32{5o*JLgcv(%f-qLwpsItGpwEo? zA}&}S)o@Et{62~PLw$ys@1D-_)Z!rm3WeJAU!l;#nKN0WDQ}pkpVRg`fBP~de?`^r zzzH?kL9w;s^&B3&3q&L*RT(`yVZ9&tzxh6f)#>-d7e>iA(HIYk4TSGU%+Ku1*LW zjwH+$sfAYm7VwpIFuP!S=%A_gFz&9+$>p7~vM;iF?U~JkRWF>HLTQAf?x z#(96P>ig)uPetgWu)lzjo`UUO5|J?9%hY}hoYa0%fxqJ0eo4-3Z9i>OCl@iN-<{*AUtGMpbQ`4iu5gE|PFY21B#Hf6EOjrt z=J=0`M3{yJktav8A32i$p-V7syerz)ZB3(iizdav( z`t|x2ud`J-gPDI>O3weEax;OW{*2!T%`NoptI!|8ZO$FXN;IvG!>3tf5$_@x0=EE#D z{o^dW<6GG82pei57)MMeJEkt6=19TyP8cd+n!W?__`T1srJiQ`E}zeDMw(anfX%`0 zUkI&O%766<;@|({r5)Ij%uX6{K#p$g1$hly`YV5PpP*}}?>`1y^C?7)-HZ2AFLbNy z;CJfI(91JLg;5@*M9Mq`83Z|L)z!}+q$kEGLO2G4*AZdiDHsh2p5gB5crX$)FBe^8 z0Y?p{5s4X8^!y@6LSBM=y!D;oN_)p6-jEN{(zL(3{hHTr@6PFC>9o^PXJjUqno9ib z2@jbRzc(DnZ=;z>oUo^GwKM61ClOBP+Mb)$2nEH+ySywSwvYEdH^k^`+mcGBh&M zhkA~xF*?wg%8{J(>40O_^YW+ZF9hXgb}sJYZm3@!J*+G1o&DvoKimrKAi2p|GNpd);- z&==}tf*YVaF;olDTr+YR2t+8FcMtd={DFAop97kP<^}@MhemmsSV%&w9xCWRXm2?3 zHii(+BB>YmfJ?WjU|si1^Lr+v9XRj-yy0p z_w9k$^s$9o=po97ow)CviadOHydZ~4y1T4ZBx#d|MK`}*c5kV~9J7+{#NtATd6$?! zci1GqPO4EZp|wF!rkYW1;qen>413wmTAv{+a&`5<-IbQ}Ae)u-l^CJnUZw)n{ynOjwTC; ziCw|)ADDderAfXW%qwzhQ!y~9B_ld2s>^N{@grqq67VDMP2K>n&@y~;^eiN!$eF2m zURt`)+r6*WTNSnj7U<_;G(LsjW239$sZVb(kv{^rXdB+N3lQ=Ug8;P3fK)_?DJ+=% z_5*Bq(q-sqZ%>D$8Be}U!lw@{A#}7TVW|G#z^Tw=-)^CFV~Brj{2NRk^3iSqCvAW zc@eO{{$B<^JY-ZI2bAJYjHEgY%j|w88{9QJ?V_mIT17@`tPfxf%S5Qk5}PNiM#3Lh z<_VuEG#!}uw9wbV{AK^8KMUPzRL2~SBgqn%AfeK8v>)58VdZsC{-Ez}1s&bvUK6XX zI0B>tRt9^Ad`{=|5jHIZFgyk1jtHezR9&Zh< zS`nL;uq^=K1mWk+|11+63eI%nZ4g6;Du9#rY=i_j$z!Sslr`!*iTv0J(!=^tw;m2)*U#;mg^hKa-% zFBs}Yuiv}A$@@B&!N<F?9138v3}U|@$A#Zz0+sC>kQ+ES#cY0V;GZPG({(={ zU0=VAPaMUI8lkg!iEo1V{Ucpaa8Px$`uBgOk+cn#O$X_Ozz`(-ZWe^&6po^ZDvTd<;4y=7ebW2r{3ldItIx zhYQCY(KTNZ6Bl-->?$=m3-#nxC#PnI(&*?Y-<-V3QY6t9pu4drsfcM9TzhS7kS(R|05E~PKZy%Cogx?p)E@2!paArNz*h5)6c*x$qnkjI{ ziu8kD)c4FO)&^^W@5r&U-Is>dV_T5Z{O^2T|wbNDoSh4KqZdG1LpzQ+?g9Uj`Mu%{o(VCw&s(=0(pKKxu13c z^)0nbtNhV(W-j@dWS8`9353?~u;j8-*Wo+D6F^2u{}G#wP&L6@WWFe7 zyi+)Z-zQ{rreV@^@8n|9siTk1kWmD-S3~EWiF49g{2ma;!~R)Ys95&j`&~`VMGkq1 z9m*+D;7G_Q#F0se4?}ppAl94uAUj8!YkXDIPhOI=`oY)l&IJ@yJBRu#+wNBv_<#GT zIfto-uufwe?DsoyvoLrQ_&7m?*7Pr2-<*HFv#`S#`L*7QiKFu$wZzPhn*AdT7^tX| zs1F2+jbDwhFB8Oe!?-1MR*g+fdf4ucZ>!s(6l#LvKK7mD%FIMYtwX6B0u`}k0E!Sw zs9B_(RX4l-71k6+$vmXA=$@fZMdXQcOQXy8F-2iJ$>nSvuC=>z*Nf)$40?CY#`?!Z zHZ(Nkp1K(sS$kH2qclNWqyEpLo+$Yo>75%gFP%;}lqSgjDJM(TX%Q-@WTY_^ITbFl zdugWkV?*DB*?@$#cBVe!mFm&J9i>*}=Nz%AcPPtt8!|GFgX7g-eJhKskaUra{rbLC~F^ zO(`*^p|s?R`}qR%G_gYrtuj!&C_@hhSo!dgAA^Zw`9?xS_7U9a3faAcmH$5N0VRaW zB7i`qv$GQm29xtdrD{4|_x<-zis3!)5th~ui`#~BBt?5jC+;hh@tbt+luZF2=u-42 z6}L1z+x3|KtCvqzQ>S#b+*=uLff!UB(GfNM(qC6EU)^OHM}5JhzlOmdI#tl;G}wpL z0TWXz;j%>Aggr!rya7(1I0T5Ga$)J-ZcuY*u*`3b@BD*Ar>Lnl@D)QS`ye+z;(~?3 zeY-CRx9f741=c($>*v}>@!k#f@1H#^!|iXcp_HNj$QjHv!`-#xy@UJkv~yp+v*{Qw+@l?7cYL!n71F!5D2}s(6nC#+>A1S zCuMK%>T+01nqa_IxqLYdwe|k3ADMB19n*{$^kE*PN!H;<>WmmDi!VP-Vd#2>vTg-g z>3-8}pBnG<0wbZ353LO64;)CB5jo2g6cjQX&HIFpKkQXBZ?S}=iklm*OAUqxXY;)w z_~ZMti+=xx!d;5=ll*FjI@=i&J!Fb@n`}9f7Fk3$jvm%f&M`#%i>b@0j2?mX^mJwL zl1=z{DhLM(1gBOkY_YWN+wIS?%c@lK@P8W7tuees7oMo-DF@D5+=zAY{4F>_e$?bi z5KSPj29YKKi@*1zG&pvlrQ2H}+rBhiK*nUXxHwQeKJZfZ-q@m|`V)>% z877;lk2)n4(jDM_6W?i-C>*vW7<)4M314MPWa;hgE$^E0-){zqKoi2(&%izJZB}9z z@xSj6Pk|rlVEjl!L3#?xJrOG4+96U#xcX?ad)J0XO`q{`Ic6#y+eg!5$`?3yCux!! zu~zCst}SfoZ{M!nVVhgoXd-?NbgLa4HuBduue`RkjN5~hVMK}FNAvmp|9gTo5KNE# z23=FoU*h@Oga{_q%$)F}WFJF5R4Py@*}2LX>b-or=g$X$Swcn%>d}!U5hJR)WP>cr zmoKMcXHw{shO92Pymb#}k)+7zX~n!0?>3vy+tR3e>lcexF#RN*og6go*9xlkW%ss$ zXb=_neU|*0ex7u;K&uR!XxuL2C$NG{Ne2g{?WSxK-A}5!vx+)n%X{%{#L!OemyFr%emea5{*vtMf*e1X)>6MvY%>o5^Nj@Qk8oXYHmh=IG|3T-&u5)bZBl?kNs}K8E!c!%Hj#KZL&uhJrPOMt9-l6V-sZPWsZH zvF(q5N)G6XJd>s5@P1J2c9O($+2Tijmaht%nejSVkQ zS!@`Hx~25Q7SM4Q+Uj_KK0x7ikSg-&QH^+<%(=iMr=V}etHY#fd%oyexavdHejISr0*-NqI_cL!w*@tb1<6;|I#}3lc zvPzH}KN*1YQnV})eGqS`HuWs=-bqiy;-vu$8fW za-k4P9c;^@C9l4Vm3{wX(C{O&&ZV#mDw;Pwi?x}u$MH{M{#(wRBtl2S*AA6svKn3$?t6|>dn?8BV!K2S_8*{qJW4iT_3x@ zJm~#FYb>TXc4iv)1UTgTfG=*Z{D~0mK>U@sir)91E7pe@csE0pf?o^#HCbM4WW(-}s4MKnHD3?pmm3F!V0=PyiBOWo}M{0V|nm0QZ> z&|`mpZ2}ol4iL!doCm5gAr|s~sc>Z>g9tb;scI8smLRtGqTNJvjhN5cE{nShJ8ur( z*pJqG)^>DvdXGJ!BPN7R@Gr&5nZDVn5sfT~%W$PaH1h_B=m2qu4gevp{O{{EEVN&g z)rj+Pg1iN+909Krd4rg<37;Ik#9K=}Y74ikpvX=WputHP{Se>a>$4RWcsB6?R$_%d z@J)@mKlqyuk+LbH=g!`fXOG|;D>pX|netpznQu6aaMCGK5JJinVMC8Mgo>+mWldl^LE%hx zZx0F^C?%NVhzy6a!83J205Ti{{3w%jUYdxQr_cvC>=9o)|Jb*pikHBV`X{+$_$Z*5 z7~kCV&ATt$OZJ70qia{#eo5$8F}@IS2}C33v)aG`D*u+iq{ETPwJqAr204To;7AhNYH%{pt`C+us}=OeJbJXyAXXTmm5!0i zE~oFOZtjdeotoHwNW6e9)1l$NiwA-J)#>f@K0>yO>8kwCyV-K=ry-nLcddD99PLw6 zv+jrfbkOhpNGfq7_06luspq_4XQ>GJ^m0VR#VYglwXH9&O@@9CLX4+^ExmaX={ngN zm6b`^&u)i8`fDvLztV zW|EH4r%&^)XUIxVacJu8aVkrMH(`jK-cCVTdA{~q0pZ&utmI%r2#gdFrFMYM>qwrv z#eOr+}>V**Y;Pm(D1i1zPGRXcze5O8GLefs zAZZs>Y)SI-Da(X`0oj1=d1eg1ILUxR&j6t&)TwZbAdCm1qf;t%r* z<-ZaM9DAh3&V}7sapt!}(9h^^{K%#yIaF6IQl+#1`%y9|^l=J){oQCYWa3`c)OGdF zEj-ut%;wFtmhnh7SOskInx`>sfMNw%f_Z@zvj(Czv1lc0Y1Q=^*)K@?0!XUNAD;d$ zGk2cJ+`U4h|3~@xCqJea)4u%XP1Ii9^1kbR+7*`hAt#AsozDrKOMiwFF=P<&FGSi1 zteUXNegiU0ZEFcbNG&3g^LjNNs|I|qQq*GtctQ;>XZDK+(eI!kp%)tZ!N zH%Ho>0Tp2s-9e18h_sM|bLdsY9~pQP>-L_L!%oa`<_kK#6k1sY)$4*#g{^^W^e#e(R?u>uk&6_QmC+4zvp}5qO z6M{kuYj^XTGu5LB>j&nUKSR<^QMTKR%qpeA1_qb3I$H8z%b8ip=yO<$>1aC1De2c&*cC}$su}cBe|&N6 zfdSL~9j{Uso7ejHDVZAjm78R6eVlC))j;~>rniq}Ry;#mTeleLxuu^?wT+EoFL#{0 zvu|O(;bq^C^4V7v4}j zEFLdB^pD$HB-b}nO^xSX|Kr9Mb8KxMpJSN(aPjU}L`#3SU#L%6YoAl%6jVTMV1=s zKUchJq}Y|oDf!;Wea;d%HsA=+wZung6Z({uRnzrzv52%`W;tCi?+lqx5Cg;|FpfU5 zjV~+|Pj6_rO7+efHl?VOWTd0@?(Xhl>xZ8DAJ*eiwmdDuVsE2SPZPL!et!M-$i(8t zf>#xZm%Jb6ZSPbE>QAGAvL|^&-dibBzw_V0wSSLsv~HUOk;=RIYar}d!}Q|9=bwFq z=Zi33Vky?2w=?W7^71api$XOH3$TH{em!1N*L!Cq*QVP6Xm^6YfH-vhL(8|RDX8t( z-L$VxW@n;iXW?8ErFrD;VrR;oBclXUL2POV-iwI9ENm;zEqY`a8~SC*15k~sb@zX5 zkmUDfPWroA^v#l2<}DhT*{j!6%PtBlFZ~GU znoLWtO#1rO#Kt(Q`ql2T!L!!ZJfZ1h@?GgPq}DPfoAkgco@McQu5IPFJBu8+0F(l= zZS{AVO;);M-aX80XA#3d9TEbxhBMDFki{aMeGGNsizX z7G^qz2o{7A+W|O2*4eiItY)-wNP6mS9R(>C+SPy+d#S{ti^8VzmOG$xYHV(FIe9vT z$ddolHo2gyZ=&g?vh(-)f3}EuA#^#2ehq{;0O<1vwB#mck_b4%zauXj?8H=H|L#F@ z|FkA_ACSnMfWy9WY*$aFIGWTE%xAk)S6(kn_U@|{wZ6ZbO%s@D9^Yr72qaMuPJ8@M zuta=UiSLsPSUUy|Fe<=aI9G!fpXb+Y%K)3wD$C3S0e z$@^iCKaAz=$TG@XLknnqTi&jQqhdJHB$MXx2$hX@=&H$?BH;|0Z3RpAr#gAI&Pw$v z1%3LW9i5#j`9?e%j0D~Z-u7J-3U6=>H298Tzr8OD=~Z>HjRyiS_Liq8mosx z3_|@|W+8(i0(KY~_g;OKZ~HG~uc1kP+K%2#t^G&=Q$bL_K#2?o7r9q%Zevq36jFWz zj;i@Rz6|J9YVrGC*J?) zJ!vLt$hY^>LDq7UXr)m*dJV<}6Op%elA-CA67lM1wRn20xZFMq|76>Zb9RQ~4|GEC z=M(-5B+1pnyZ=M#mbeBbz5a~nq=(Fp$1wpDE4^Pn1!_L|!A~xdtOX%kviZaQnKOqw zlm%&mA;AB;;aV}A=6l1t!DSZ|Q}Ep4ND!BX3jaAP&x!+%;<|l9+V1X>jD8BJf@k0G z7WLXqcC@PR{;^zcCR$8ob0czWQ*z@+ukc>~%Ef10U>mSTx&zTQ0KjOaXUkIi9IkfT zm$y0cq2)Hkq+51Sk+Y1 zoPSIP9R(RG^IIsaxA!Andv|E?FP7NR;rsvhnQqgK4^cu;A1*eBGKVASROUGI5rM79$dI(GcdR`_ z@7Yrxt~M&yJ4$KZJ9Uaob=Mw&;3G7UsVb|fa=$fwFC=ofCUu8Kv{GjUm_y_-paX}x zrWrD=KVKfbE4`+7-q5#Ac>quJP^1C_cOidY`h&u4hA7c>L%6 z0l-Wy?@R&5w`*!0rK#InyVj(yqKC22COdN>ame)kfr#fx@>*&d^|YU^l@8tfx3yIH zjkS{Fo^o=>&S)mL9&ALIz!-?1fG8UNu&{-VEh4n+n!(=lhYypKeoNUV&kB>RUcq8^ zNT=AnS1$u##~uLt@6OS@M5qHHV?daC8yF{z)%&#nxd8%WfcCA}wu8v6yvdk>zQi3m zb}aCyc0Knxg5#MK^8|A(M!MCR)BoBaC3b1DyDWlK*`R3Zy(};LJ|dIGNQV^=-l4p_ z$$N2O>CLL|mBh)vzv$uAV0<>Vqm|q^D_v{<_CWqY^MW|2&SCy>l}QGxAqfHir|c}Q z3t%bTfB=5-}f$}G3V}}m11#ustrWW?R6o;^=`8>d3_&WnaTb<$cn+Y z30=Bl$@ucx1Ikl7*{Pq&!YrDV#mBKd_4EI<0MWjb2KrB9qWxR!Cbh3#wH&!Hf2xvi zuaIs0L#CjI&5=zQKt8?b`|j^|LSCLNpr;jFD<<&%AydYfXi}wp!2yy0zSYdwTCA+S zCPMfL3L3iQ{hgX1P@W#U%7~DCBByn~dJj>mkaN_GC-CY)wJH}mkrfWt9%B1`$g*8B zHg0qF*|>y6md&awk);d6=*lnb_%~YF|3?0w-1x&&p^u-oo}cmRp(fN(k5i=gt~PlY z>51&qHHo-?u_mRW&*48a<=^O!R8cVz@~T+SKk0H3x&ea5E+(VArAT%A`|_709fu(M z!y_PK8hg8azfLRdIuvJ18|rTyJ)hI}DJXa`&AiJfIN;~{dbevdZ(9HC9wqXGjINl8 zJVU{H=Ah|f?L)fx0_uu!yRmtO|KtoUSND(Q=b2en*Bz7q4$*8T)Oy(aA_5gGpWH=* z0Acb7-){Q{;o-`eMh3>lDDh8sgfRpHn1bRYfR(kp$-eOr$GM1(rue^ZpIGTMu!Z;Y zXE(H>GIm#D(tCH>xyo+{`^evYiVcaJ9TJ#NRG!!(=ev^wLZn^K7GJy&bSfXG02hXC zz1s5IAZQjsltf_CVuCVnhwvuYf(RyX8eS2R-?D6j65@;h4LbjOWYpih_BxiKV8?ci zS3&7P@f}?oa|RarN+n&v7JAs?%!zRpZ8_Ln*PY4Z=oX0Z`O3;eT;y#OWX2fxU21py z$8oazXJs@mvG)}_OwfQ5o4Dwuejo(uNnSABAuf0$6k>0N;Zt(j$ zb4G>pX+n?!Nu{r*-h&$_S?o(CKKyQ`KV*=r8_0Yr&^jn=D&?M ztj!iUR$;nYX)bK%-Wsa8u;B{Av}{nCMsCNK53*gyMfX4a`upU0LDn5APxJy6^7Z!s zN*Q))LHC(sc+yaisUn$Vc{zNj^1$#|o#EYW=~oCbP12FUrCVO7kTjr8u6y33-7iN# z;)%$azW>ECW}|h0rR!kw;&ixOe2`@B&-@A%o%DTjpCkqX>QHMfLjMo3tT7pMZ<;f7>SukPp@We z^3LSeP^M)MuXJKVok@E2vT@o2xI3 zb!#T2_k*MAZ%-amQ8^=_%L?IjzK3}NvS(-4EJ)+y060L)q-=P;h{2w;(&0wyx&WU{ z!n^g`sL;Bb-p5Qtyi>%+)&x2l0XjiN94sU#z#;QEZ>BTj`;><8!otPqn6!I$bUglq zFE#FcKl(Pt=jElAD6TUPLPNPBC4_9F7yX@?85_80$Rf;^*zsn9$wXp#3Iuu4aE!m9 z@gx{@d@IPQ+wY5;)MsU-^PDW`U+<@HjjX!eh) zM=L`z{BO18^tR8ff~Ka0gb>vNzv$m+7bwc2$}#_6it=N}#k;zOJSzxj0X`@d=U?bb6o1EnAoSCGEEFhU1P8e|RNKwV`$XvCSOuMrx~o-OuUkGoHCmdl~ODArt}VQi7=*Wu^g6a?uyBV|YU_x}rul zVXK5T`VXQ0Na&Zk3oK5vdrdvs703~HFq*dqy)nUQt|JRx(RgW)Sgnp+a0votQO#IT zGqpWpZDgY~C0^Oqo7Ht=+~T7xK8Fg8!4|#uP&n@UPGFJv$gS5+z8~Q~XOWw1*z+iX6?* z9zsJft|JUO*nxuW3>IN$_jY7z56P>t@~Va|uu#c_3Q9i_4578ihmQ5lUxFAT?!sDX z<`ExX-%YBaL?s=%=PIFsf~u?=y@{E@bqxLjuweePX86 zwG7haaE+}24&?K7k^^%}EK;4q6eSS%LQ5z>fLI)m$s>XMHBC(q^x73-w8kvGAd8lL z%g&u*k02eHl|79Cj0i-DYU0;d#x}3%Vnc*{rzsfe4E|g8Sdi>wevipx4Mg=YV(R}{ z1U8pHmOoZiGHsH5MOLn^cx*!%Mw&a<@vO()6A=LrzQaZZr^ni%&2Mj61&IEB-Wm8N zcgx&w*ihx`=q$j*k%3#qMT_UIHSRFY^Juh>PY9n z&;EGZh=?!6M*7w7{2vC7Im=T|J)k=sTH{!mJUhFx`leIvuD%!qkHi771IYm|F7Zko za9*@lDG3d>C&ag>|6P>2V8n1r(zT-hTyjgjTCkr?$v06pbYP7IUX||37WI$1{!I?Y z)F|L9%m0#(JBt;}+VOdqnAZY8Nq_aK?$WZ_6MnBOYO$#Wj=Q!QO7znWN9WJTQ;Rasg4-3LB;cLa8b$89;z;O;`HM@ z7I%BbsAlJ?nnI{x$@A1%a|5n@24ae5&MfTS1Tkh)H|dU%F(mdaJK0Gr0Kb%$>(1~{ z5!$H|+SgAIDZt&6=Ol`hbx`y{Gqv6Odxg2VIR?T&w}YTy(KEmkX{srOwG{Vw<~Wmc zn9w<&OXgQiwRj{b!Pu3Bb)3VDiBw_E3~W4=1u9+uS~)= zUHMyBVTH{cp#U#XP(i#PL?!~=p(Xpg!dM;-dX*)p%D9w=+!khZIaQIQkr7}+Dh@^A zKxxTHYFylvUwRco*xN1n@#UVq1zgB*x2``=6-x=?eOf?qYeQ&U+!-_p=_`NMy=nso z|6H+fyaClRaH3dan>mEO?W1R}nots=4@hF+;ke&!muB)LI!mY*7IVl4ps)B+-2u-H zM~2WyiKsNL->0{??Sb-xq?%k@9KB$6At$vrGB#HImLJno4ys7eLzQFlv&);dc|DWO zt&(+NjnFE1|*&QGH^h^aLMDgEk)H+7%88~5bpxSL`s3l%Ul zunCS`xS(o#^9WN~7+QL?*mC;?gx|#cNEfoOw3u03#ej0_Hr^Khu)SCiHF9h|g05u9 z+V1;c+B0I2MM03iCr^~1e(i#FeX=(ITfl7*?&qQp`a=042SQEQ)>lGAr6ALG>_3y* z7n@OF?e3T2pknO$zk0rbFtW%mY2jF}!DI)J{%l;{)A&$KtcDz<%EQJ>aS$UbR(2B- zd2mtQx*fRzP%}TTk1a$iL)XQ#U6VPN7;9?yC?^jdeC*kF`6FM$K^)llPIdfjKLSEM zsvDjkx=}2ythj}f=h2m~N5O|bAaptU^d2(P!zvYVs>1|!FIH|rr#RZ`c{+jn$6seE z%CrPe`NhR>$s^|MUSn*&8!D;Hf|b0*x#UO7I95FAE*Xu*ju+7IpKpEi(}H^IyXtBZ zH4$LKkI7Yj8b-7o!$@J^!M8^jl3^1-xyeB)4ucZd*K(e4CQ^ue`;R{P63)ipdXnjF z975^|lLH7Wg1|bN;*Oga>Jz}8SUzKjpLkG!=He7|IQpZ^$qoP>>cf{WMFDU&B6HDH z0&|0vIpL{-Bltfe-yi2U2F<8LsxbOh$AqI*m<8K3WV;y>LWF_~G;-U?`WAn+R6^|~ zdZi#^s!L;1_-Yuj4O+Y_4>FghQ_m=Q_!8R*92)BHnWj6$oojR5PhRV18XT16+vWe@ zVG33l;@o94h1th<`_J1+rWx&LoxJ75#VC=R3z5YMlLL1TbM?)*E-u+UY#Do7$^UN9 zL4*6x`UlFT&plUL$L2r(xS=`p@6e9zLaGd(tba`Z4*BV%rDqt}_R}YUHd&R9iSj=> zniR5yfKBURAa!`mcUf6~7#TEzmRof4P#C4A=0lz%0cC0DpjRdbnPZ^7cuZR;fG4qd zp>!wKIw@WHQ{u7LDT0E6@FbXGPoMtL74pZd*#5RWwK*3f^?5B~(B+}Hp}jH+Op0?) zWu41TV-@*r{X1-;FMjP`Q$mH>4Ut$d0BS69iSy{Il3&8r-r4UuH8b0Z(;ZGR0gwO$ zZHIU`8aoKUT(Db?c}+f#`XO@2XjQCpgJA_xf~-t zv!WsWw;bh1pK9*@K!A4FxJLruOXeF~Dl&RHzxbXxX6oqC!!)k1zt}hhR1X9$w6uTu zqG4zl*gsuAKA$8+55PM@4V0uoAs?@2HF~d$Ln*}WC8WGRczt#j-d|_qba#laMOXnd z_Y_rqU%57LEG8zV2pWkOa@~$~Dk>fP^X+!@zuIjlcCgoq$vMn-zkVp=cwg19Ftq>G zPFkM3Y_=K+pT2x?I^_`$k%WAM=F9W*LX3NyA&^NbkihZ(e~1w!i{^4b_6L+ z0g_8Q?gYy3CyAp^jN$CSbutFOH4n05NMOXofn;J_UfS};>b0F@VF97$G9o)s?g$8= z2bBhzvSjW!h=1>auK&{SiGq(~ofT_GvdjK*d8`ccx?o%`UlC~)jnzs}@d_PC$%8ZF z@%Bl4%>UyfffMQ8P!IWKuw*_@9}#~YWKSs1RbYO7&eS^qYS}->1EVs@&o_P)iGO3( zI=(6RK|*1YtmC2M{O>n@Tyk4jaW9oN6?z>ixapf>V+I=euXb;PCMK?>BUA|f|~%}cHa=I3ZM_7i!fcc83Z$hD{qE-hJ?Cb9k_{tqHGZ`klUTWV#^ z(|4YM9$lw7gCI!%fNJY_T> z`YXMTPV>$SzTHg@uQ}^IDHSrcjoOoGr7L7cY|JU`D85rLyOcFOwknBfcD^eO*i(be zS7;#K^JJIz9?D=5`cC~U1*cyMa%Y*a`?_?0BQ7}sMlZe5GB$3WeSJBDW+PVY6eIVq zB%O;7oI15Sb-Ti{YU-OCH@o7einZE|&`|aB?~1=!+a3)yy&JLMz6z2SElMG5eG}9T zi(H@s01lA2yX3?JHD{75FI-9M9Cty<4x<*Hip6Go=aCR)d@%TR#DE<_wq!65QDpSw zZ)Ke$Wg&LUQ`9#GJU_C(HyaO)!pCteE!F&Y~!~-R;J#n?2t_AE|2TGdGq3bae_;$ z+u3~Sp(1hQh-`ve+S5*MF?Cjyold{HwiMQTS0qwO&ajyttLvxirP8Lm_hE9+LE!)r z^kPkQ(q-6~odRO4`&6o%%tmG=njHI6RCwh-9!Ds`odd@(^s|MmXf)C9z3Bc+hVIh;Vb|QunIpL|vY(L9{`5w>-2b8fY3JO~U8Vl&>>`}_CvD2nGle776-yP9}s{I_YFS{NK zsDzX+-(BaM+Tre*B*E3}{;@mx&h+{3eIL4u54AL%XjMI{wA00SM2PmqRF?||-dSG@-(8uv>Eby- zcP~p!E8A50#%Tun^XKpN8u9(N10G4eyT2Am;ktluxyAhZm24UE@65IEN9sMmZAZ$%_NO?4W_^=suT>JAKDlQ%= z99?>z0RfGX#*|-MS-MKtHFRH%sP#rZ*?1c+)vM9*PKORK`wEtHe|^{bo(^{Ei@`kR zx6d+t?=9JotIq%$%VT24(3GE_BXocnZs}$n>05kydKM&3?)<2v)T-c8?SNmOQxr&H zuX+~tO?J5NygK0 z^b3oW>sxCt12+RDf*4}}`>h4J;`++Mb!S)CA<${TXp|9$*gn9u0pub5T#F41jEry^ z)K0F)-XSxjxZ(K?1qV+2a5#bGpA3tzR(c?Gl&t*AMnG~ifXS<_+AiBB8?QbJxX7f;ZI^u!55!v{pzbhb>))8 zQ9YvNRldG<2XjDqb@g$_z~5^$8>u>9QTFsqcLw`N9bvaTayaMDmwgT9_hc!o5?P|x z*51q9r0;wtqx{WvK0z;ysU+^WuRjx$xbVIz@8y4*nYV1&wz2bzi7_hOzpv5oL4LCI z#E6hcvi2#;;$z2zwg&Q3I51b5+uCx!Z&BXT=q=he@v>C;{MHf|7mY(l@2iN`eP}w( z78wq)RfL4)))OFDaJ((lmMu!0sXYX)Y$0l zEk+<)`fxe{q1+GselkK>SAp%0{Qlu?qYC$(=y^QL%cYU9D0c4L3D~Fd-8*UoQ(zo! zZ?0Oty**6~d&r_GF=@TA0yZAJOGTh?my3$oqxKO4niedfRs*xJ85tUhk8MMf|5{1y zT;tcp6%R@+X?m!qDFLd08BIZpSfk$-HtjY0Q>U7jA6Eu$W0ABC5ZS$39OIADc4*9e z5fhece6*A0%9W~*eLR~A?RSZt+$opH(tY8Ab6k8d((=WWv|X505+M!Anu?Yu6H9CEkPDRl;dODjKi3mfvGKCa*MvYQS1{ z7_8nvOp<{9E18+`F)%QY4LLv=%wVs3`S~fod254gO%Aw*y=8Z{NlQzw2MD@jM-H9?mS79FKWSSc5bqCoYD431 zy$t=EsX-pE974>n(BFD(h0Nd)98hmb$t`MLJ#Knv;UiK9P6Tz1;sy z$`wwzop@xbV+fK&@gzy?SP6FGSNm5AvNaeysgc2eXpNcAu%Xch>s+TCxxy$%yy z5=JFXs#|VUBCC#0&c~)fC z@#9%Kg%Lj;5B2%Q@uPqrK;zk#oJfwss-)B?EA14S`%?$!$B=nhtCg-gin~o;oj& z&+FOC|IY=;W1*wbXl_w1P2Q!OnNFT|k;l3;1QVgkOC(CL*ugI&!;5lLLr(z zLb7LteDp=@FnQL{*QX1K;i|5+Sh;qY*7CxIiz%t*t~SEG8>pn7Jdrar+ySTpLQH-- zSq2*Y`J2)QOSV!F)D6>0MJ!9m$;q`=cz7UJn?rAaq-{(X?xS5)d(o$-jH^T<8S*m( z7vD8EGlKL=^p}v&uP@G7K`eyP{eHDzg^M5LNq;Q0 zmn)68l4}P(8pwYpR{j$Ej>y~GyKCh%-oc1)Q1iM%n`b@A;pPS=-i?<&iZV~BoTEK> zXnj2_cJsm#RqW9S!)xp3-E{d_%pgmufAoeRpU7s#M3(0s99eG)3;hZTjv{f}mAm@( z-?%Zuxaq6pojW0;?LXMr5|UmrY!DOcx_Al3>r8NO-QUl9n$J^3Q11HmT*1RVSh+#6 z%(45%_3`LY=+}6Lg>8i$-J|Evo;}vlAcV4K{cmYGDO&R1grud=;BHu3+du@95c^mn zBKRj49j^uZyBzqZg*JQ(%t!$oS%R=+jU^}4-1jlSwjh&h==gwDmgBZKSNLf8`OzT^ znp#U;9HIX|fVl5)<3=^Osj~xB)Wo|2UcXfs+xC6ny4sb)Phwo6#slPIzN1GuIyyR> z=SDU`4a^U6ZaRyfQ?bkfZsEI+ADL`>@6%QE7vEiJu4$s8IqEeKfTCRmw}5FJLS ztXF4k;aPl2Svl?Vqam$6<|}MNdiSxjtRSEnv@3Zn;(Y_9uCDCADcR+}qfd0d7L4|L zdo@;6?AA~Or#a8xzcS-|WxTE*F8CL1oy4^4;ACVEA=WAlLAkBr+kUgZZ z>93DNLhivg4P&T>Pz=F{W-Ae!KyDO=59;>q+s&Y0rVp>xrsigJV47DL@Fu}<-2!gm zgTTOdNW`CBUN}TnW%1!DJV{)t_SuxKm(7C%4puzfkDou=g=ldBww!eRBa46GefYrT z1}VfGK7N>n)C91L5CwLuQC7%lUc~A%beAFFvz3_jUAuM-Us~+gv+!^qT+QkaAI4vI zocq$&CJ*&kyS~y*l9GkD3nUL8uEEkp0A9IXk;%U4s=eL+E;Q~O_c5zutPptag)AR7tmk~(4O2ovtL09j?@mqq1g?rvQ zg)m%z!w!mj{LPVM{SzY#k&lZ@N4irsb-yx>`2G27?Czb%#T)AG@72-Xem;`}Y7iQ* zwlyuZslBYEG;#Ur2e?9Lo;r08xdvQ}lTe*s?~9C&i)#k*0cK}7${jPPhM zfxdogeZ3!SL^4~IML8Vth+qWv9mlrV>H|mUMZ^Yx{_4O_mKGLT>+0^qh;pDIZ0{9& z`*Tn}bA^q>u3gD>b0~pwan3=`5PALjwQ493uoR@Zn@&zqPncxrhFX>}@1dC_sY)k!{_6TK-R3 zt;WvAygdE3k|T4dsJzOhU%q^qkeN))dEvqdHPtGx6&%Jo#4fIlHtT~T1>M~!sp|qr zwIYTRjg6ia9>tljV^XbLjvedj>8eD_vvFyu$YYx4V_gm3SQWMPv13(vm(M*=5b%$k z!%2fONF~x&CU^GIht3+Xx*V`Z4&Rq#a5AD`1t$0cIOPsx*gDXE1wT2W*dXELW4sKr zvT{BBR0#&gMBD~vj_3`b3KNH?5&Uf^2vm#JXfrD-Up$z073qI6>V}k_(8hxK9|hV4 z*v_8fW2r>cLvW8+num-GJS||mx|zs#`>X%Sp5MyMb7H~d-!DtdNxTrdc|dZ`)C|8! zN+z^5VAXk0{VbPG*j>gL(s1-3=Er+KhhP2wjkfT|lCU;J`0 zHu8*>y!YSjMq~eW!OX_B=r1^V^r=G@Cz{{O22Wg@Kn4UTB_t-cLBnKKUXYa^t5)#& z$;r?62?@~*vWKn|jpt_HqL;tVan?z9-}>W$`AyecOrbPR5>C0knDQ zxtc3+_^<-dNC>X=bGB+`>WYE=ON*?$GFPa$#O-FcRija+9=se*F0Q5G+66ZSrBKEl zy5k@3d`(Ny5xLa$^}L~?uaN1UT@?6KP)hkd`Mccx%p)$vqt>!V?a$ttGMYbO+w=I< zD@<=kR+ot^7U<$aEOhA!30O{a0UtUZAua*B8UX0d+`W4jZdoCCu)I#{0ER!JOlX7d zADLOIPGN`+X~Ju;RS4#l`G}?aS$r~vO`FVNtQ|27!dDKoIP&xIEPyvz+t@VXhX01K zLJ}%b0CL5c3v+#7-?~-)&Ye5xN)LkQAb9M`XFy=R+q7bhCiJecitz(e2|RFR1X!#N zq8yC(+i%>s)w{p*q`cf(yNEUO&HzWfY$z5ehVqGV1YV!)Ig)Svi3*r{_Q5UN8XGIC zeJdYwj*dS4+;;EFmpNf5AdmL9efG>dX!fIZ?t$9o&7{}HQOL>7B^m>y;KSU{<@fhN zJR}qoqsUYEGe3zPLs-1bB?Zh&TLQ6<0x$s29oAdVk#=0g{F z{dY@g@j8^Q$$Xg9Yot8b&dEtc5~ZAeu;4{8TUuH|J&OVDdA4Rs67D&60Kq4Gh~zYY zYCQ@w114@MPg-Uk_+lo6isG!10ufQNHA!)^>c?0(Ug4gTtuDwltd>o+)RP2`>+%k3 zF3|9t>nOmEFFNF^$O^H~V*`#?HTJEGLRe%J+Bys5{7v+oDJd#Fl9TkgzBy>3JFKZ? zuc}F@GlVN+v^6vm&{v}J&qzwD##pHhc>==u5mW+#4{ArU3`ahvj*K*1RG~X|mBVF- z206+q5?eW~eSObxZc?+d#BfTwvmi}bU+)MVi2Qto=8_>Ga*J zz>cMWli)|@!GIjTTIMKMR##TiU%Y5Uz3PZPxoK|5#`>WKONx%>{F;A79==-}H*UPq zlYeE}HppK=0NZC_&!0bM-7LIom-n7Md+_1Y*-B@hw~!qSTU%rP2fIKmzjf;t0~6D8 z6~PzXXBOY%rTC%lyL0(1(qUVFe>`Y5@v<+nX)~yn8;Nfus<;<7H>~b`5FmWJy{tKI zY|?nD(edW)JAe4r_a@n4)e#|yJj(a5@WzND0><5J^u8~3GC6Sh$Xd+}gkO*4`Z*+w z6K)IQ4Rd2eblt$vkT_gVU@@T(`Zi=rgrju$=+WoCz8e@B7=Db7)&i&~|L1n@*$F~5 zyMoJybNCy7%>*`}5dGBfTJ~SaOHt~CE%m;m)~%kfaCN$QGZhV1=gSN7um=(r63PKa za^#WriJQOJCMPDk;K2QTbW~H2H5UR$;bCExkV1G7P8Q!UUAokpe5Q8>)2p%4hoM8UsrxnxkkMLL>WF2Cu%Kb|5wud75zDGSiT2oK9h>^69hJ2p8% zE%*SQ7O4jygKUM51_?^*M;K$_sUALbDEZz!%9AHg79&Xidp3;YNa~oZmoH)IcpEMw zxp?B_fI+AmW(%_)B``WC>w+;+QLQj%#}}MvOJhzu9W9Vs2dLouE*C^sd{kNzF>yF| zsX~q<7Dq8ZH`g3dF;yD(mTXPq=ZPJA^5jXKQV>@z&b7{~)YUdL$N@miFJ8Iw)9@?y z8d`CBE?l?}uab9w7pI4rkJVoa(2z;F+oEIOoXeKLh6U$2KiQ!~Di9x$F9G7Gi z1<@5ND@9abT-&#|zI*45ja!fDVq||6yn34}SFVq|4>2lpJ%W#a28sR_4!Y~@pQc4O z$2kmP6=7&-c+}?0gQG`}8UfOXd-@cJB)kz?xGq=muiw{P69N|HVAOwA;xv;lCYb+$N_-Rsg@Z}?rWuPPNPL)y41YAW%4k9QB zIIH~y)zXv}xlxGom%(BX)Qtu&CMzpz5j;r*(Ruq8SO?eR+&Lielh1@-%ScSDLR6K& zC=@ivGz1jny7cVq7VtH0K*eu5^*y5Y4|o&p+O-RFxr2N5+(+Tg4LL>>D#xH{qndAa z6P25ifV-o*u@^6j?Qt_gl}#pna?095Z2+eGy> zGVUVz0M8)r#Q!PM*`L3E$@yyg{Mp9sfb>Qzn`2}r$t&%)&~XcY^v}P49@!}~>j$+q z{N+6*%5ew+xfqQ-8?g#KugWCY9XsL>DxzAx@Q~I0F8X~5K|vopDFh5G`lp}?e(UtJ z8W(d_EK^iOBoO5=H~f8opEO}o-vNDTATlcuB8!TSZU9=}k*ODa|NedSRSCdRI$uxsVUxdGcd@)0>E-Rp^zjKqHTH<45+UylGGg%Zp$N&4!5m>{t_6Z1bT!fpa$HE{j&#@am zh;Pp`GWPi~?x;hpdV^5lZrn)n^P@$iT|Db@d$LCn)eQc4TVrDYI`Tm@_PaZ}paj-; z?7oWN5N5nrz^1;!%fX?9PA4WhdKSn`L=P@r6z)do&BGxoHTXz9-QBZzdecvTTk>-R z9)kj%9WeT=NvKx*oStq$!toGjC^sTE1Fge@1zS%`kVa{NaQAI2Q_jEqbL*S>o%oR|LW!=V2ihScO!z@lbXSy@?kfvq8; zUXE#nJ4!1vh@}8ZRYBxPu&>SCXcUz20grcETLh>40~u+#|3|Hqgk z>Uq+C2dcaa8)G6P>jA2^*3|fbDwX2zziIF3DA~)G$NuHjp-5J^di5%tH{)?PN^eba zkxz$Gq2FV@Olui^@@E_^^l*{fvBz%;Bkjvb?OTyoQCClfCU*P@m${Bx0CvB_Z9p1_ zWIql``+227;@JzeN8#1paUM>{+;w4H^e5-WhY7?a{EBtqFA|7Q_eAV^b2m6Vix z>Fi7^D?14$)Qg9qfe#)Ggzi?~&dqH!xPX2UF0$uQpF{$?wjf%XOx*gz^SOvYZ4mgz zYbI9-6jmvq6CiS)*U>=<_{weU2rRfB5}OEI$gQlbQFwR&^R&*MeS~0@`9&Hg!N@}o zAuY*m2*?fx*cqMm?T`O*r5pw*kPZLoZeD;z5CaU|u=yzyZDcAyp2}c{?~#VBOxQ(570#M@T3Oi-hB_y1Pxamjig^6E z5?99&yGW&X{_V%w>_4Q*ZHvhg#rp25 zB^1NlAa;S)`Bm-H9V7>`=K-l`+?n8=|J9M;f_#mvIS2%$Z)ukpQXjfBRCAxZyQ5Kl zVithl0{MFPv?F`)i;$y;0ZH&iI)ro7fg=@QMD=+E0(XfK5$uo<5FG0hDnJqPucVVV z05>1$u`l`;>0UoZ9~ujL|0h*I$ISGImEeDmuQf;pTp5tHtg9)STe@i(pkV*Hy7a=7 zTKFDacVRf%7DFEa6C4eTh>Xn4Hhdi5RqkmzzX@oD7A_o2{z24Ki(us(LNrF7b`kFG z|0@z)iSi&iax$HPK4L1?qET!}K?#_HgCh@(0@?6VQK4&zmod%iwXdG|@8+)>9OwUq z6ep(?j65RtmsQ;OH)Tvz`|yYGh!P=24$dPkiI(NnYhWazxf;TNNFNfH0Ijq%HA4{b zA_QbW4f`=NQUfxrZqm#CFXxaDF9c1^_K%(!4JyoX#K0yO*E^zcGDP6i{g;>eY4@2@ zZlicelR!(cFd9jV7qEL|)M{qwCf;caDPg^#D9?G|h5AN}w!SjlG9YaPGbR2-(>WKpHwB9;$m3%8$6K z@LtU9?aAm#)U=!%Km_Tc2pq4htlShY!wcgCPYgJK_mGJR;B$1}RgI1GNO4)W%2C9a zL!6B0!(+tY&w1#Q8ENxTu^1T{5$&F+*jT-<9th%5pq}~2@q-FTx}M(hyE~BA)Cw3-oYb4Yd zi38aivW*W7h3v8u75ec$H1zDlhfWtY9&?HqmLt9zS+W0^3;^i$7o^?+KBqs8>IS z9_zl3PwCCoEX)P_@BZ6~4s2cXLb*0lSmyI>AKs0Kh=_lVy*<@6^RsPZsN>?|&L5Lm zA68bFUj9&WTVHb3lHQN<53i0O>KDLcXfTMz#0kyqN{7Qt#r>~1HiyK;A476CBd23G ztAEj*e|A6;Nqqvh0W;K*cjkX7A~d0~fkVU%>;ULIad<&|*Kt=vQOYuG-aL#*EI4in zL~-1Zy#~n7kAVT%9Xob#adLjDuUF1H`h99@?c#U0ptx0 zWJI`*O>dEeUY3E*DT&nxl%^P+etLS)DxgL;K_(v95xGKR}86jQ2F*? zqxP72wGWrF8o_a36nYJV@Y~aU#^!e?fFmNYx5@9{|Em7l3njz|(i0S@J<8|1 zJ+H#vrFVum)a2#ad#h`2Y5f=vjV3EMM?Lxe(Xeo$yR?`!nER8JMbeRY>6_;6?k736 zO)o#)#-GZCE+N~fxEhFXF4|vhEv+PMq0P_Fb7E3&wc!sqVs;Q6yu0*g5MR0rP>@Yl zA@(r;f?A1|9@ZOTsA2%@HQ>&w$jtzPHr(e@B&;A1lJdeG4Gt$d2vT%xKAk#;Oh6?1Gp&8dooJ1_#tt0n- zZrcWURgvUWM|qf64i*~T-roHNqKhC1e)j6s;Uh_Cv;MP|`E`0x!5S|=W=Vmc&EB-% zwzFNV>&*TyFDGYLj|*j2q0JtyrxQBxm0zn$&NGkk_2T;Dnf?E*Rd{n{iV zys>oOP92oI=t(pc6@3X%50XxDQj&0SHF#7~0Ey3nwTsN&3*pN*GLO(9liUFli7OW` z*5ITbl#+@faRNCU*$R2aM%z>zpd3nx$ca<8;D5-pU3?&JoOF1gOQwR&kYbh_AJ40! ztxf7SY=)HH>;rO5>Ne8dA|4Q^;n=ZawQ*PU$jNbWJ82oY6cDIzx-eRaMn|=7y;_4J z58z!wPb4LN3BIT%@cHEp8&p@|@?FsRO(A=Z;-&`A89Hz?gG@cnoH9?`{;lNa;MBLy z2f;1AF)`dre@CZhIDKEsPb`d9ehfU|JAi$sUU_2058~>A7M>ni4 zcagalGp}?FU?+Vm?IGA|5N|H17pL^3*RFGsdhrm8>_JZh-qwE`Ji94+bfwf-QKdu* zy~d_jsp~v_K|uj|gcFmK=1`SbJoR|a1v6zuY%voK1pou|uJT|BA=VK2W0>6XBW2;! z!F8D%;|xp-j>5WZFQ{g^T+><;r&f5_z1D2=HNs;9^7FR|vF?*I>*DY@(IMaU>zk0M zs1Kea5M?5I0syp3rw;w1C5GJy@cXe9Ko1xcP#i7B0R-`ck)@_p1=fB5Y3>A#4Da3H z`t>S^_?%(|HKYdkY376;{NtfAF$l^5(W^#z04^9G8~v6YJ2s<#qmae)2xLfqcnX8@ zxD`Q=EGH1a9}4mb2td>S#BF48r?F7(VB;wJ|G5A`n1Uw(0*?3?R)hT93hejrmCqx| zE$h2U(RnhG;vq%ChJ;^|<1ZQ%ibo6BJ%|1?92*%?5zWWL1;odKK*j2N33U-NzsLIx zDvPn`SOhToMd?|G`Fcof?B;v2o*2hf_4o544tRk;gWiLMmzS9gRpXAcqXRg=n;_1v zV!$vPc)lnsoW_dLI4b7CsnY}9ZOZQ(oT=VZq}rT)(CqXs>HR7u7Jf+fm}hOlOyO+i zC>{`TIY2Q)*k>o)SGJ=z1Gvwa17AAfSwPsE{5$jV|2QSrftmx56>{%E^_ zB}Q&F2y$dem9W!Zy?TYCEDMztKms%rEP=Ij3=B2611xYp1rjrakw7&R4zOdeUUwmUX0?>xNd(&)8 zEna42NgyhNA7YLf9HC`^bU!mQC{I{sHnJDC#D5sJ&aLh_4T)dCzj`ntx7F6_=E( z2g#R@BarM)cJ=gB_w+0!ON*ev#&-7ruF}k(KQEn3Oig)lmqG1WF$}9-7f}(*S!Y<* zm||k1Ob=@8*iJb@DMVpL!ADj3^_$Ezwd#qxOZi@3B|uChIL4d9J9fm{beg8P8Q~xi z<4fq9vq9Jf-!?>F0=z16CZ+;uL?@u8Hlox=^)w;ygQJVAOw8yS7&xGQk3?UAoN0n9|8EW4u|AAjH;WWB&f0KR^+yL z5Sk2>6l7TrxDC;`CM+=2eB^#$Q`sAV;O>lLdH{M9{0jN$IuLia?;~Sfusv?PZ&)o9 z89}+@5wMry7Ihb80-fhVOEAUgDV|FdOVrjIWHWy8OA7$|WAA+gFE(&&!-{s|TNI-*LiL}&>B@l zLF;9>W;+R{<=OVIi0^#=RWNubJ2@;i-ps$&&5F0v1)%4d^j&%iYnbU`Nq4Q|O$s92 z>F9$SP!plQ+S!Ul9PoZm!2$p!#;Y55C-9lbwMCf#Y?_QiQCK~$0TGYTBu9-9lIwvf zlcWif0X!ae;Bi;1ul)zgG6e-B9%?J^QGY6SyiD>e@Q_Myw8Y`|Xj8wcfgu@S2_qj6 zO3$3h`n-sInSdB--TCU9a@;?4c}xt#*eD;!7iZ?sj84gIrkJ1EV=(Kefk_w0v;JD@ zYHD6UWCTBd>g(gd?bj+Crqzg}S{4D&_y0z)nvdPLesHxC5ThmeyR?+*>3F9fW=XH= zO+ja&fK6`uIsNdBMf_&|)Hm zmz%G4Ra8P^3l6j|idjHv_poU)glt77*5GbYhASVuHQl!p69n?wh^;aTOiPTW7q9{$ zJkHHaCp=PYJSm3!)TC$hP;yJ|k@WN|!q0 zh9YHcw^fQ!$+}oCq0S~IRrlc^p5)~B{q@Q3UcMRg6 zK0r<_(6bg@AKnOW^dJ#P5yV2ertO+Ok!vx3n8euE~rl6 z*+Ddo8~7&)emOTr)h7BYc(K)8g~x`9E)cjtRcGfm@Z7o}Y4}XW;}J>8Xg>5Y-BsTF ziVXAtN=RT8Rya@+<2`D$J_`_^l5TV(XxX08Ks4By)yI2KshNSOqG=5@9GPOh*TP+w z&=eqzf?kmDuaVF8Ns~CdkPf?{w$zNRYR* z41aLZ;cuhmO5Un8SJVTRJIXW{I1|DSnb}x8u#~iVY$~KAdG6#N>kH48BUS`?Lzd6a z92TRcue1GB^LhiwO$`8fbz+KqBP)BA4HLC9Bh`CofT>A2io1&fZ8PQ>qyRxvNpQ)CjxJ;+~n4n%K-XyJgdRz!YSP-wY$pEte*v`?54n!eqli%k z>4dyelCX~)VaF)+9r9Ky;AujWBZPUNqkNdxVyag4{yiOfm!iAF!p}DpRISKv)8~3I z@ZHy;spmE z?A%tLCiIVAu`x|fkd^Q;P5>Ilb!j2+4rpXgk6h)zlmf&8g(u#)k8KrMV@??#BMqbjmyA(inT; zj$y8U7Pll#hWI62F`gJ9Gd(>{B?he_?>F=Mw~}_@x11O{^AJvBm)14HLL#hdjw!%Kq*728JpLou#ymD2*55z>180er{Jq1x>;6*;@Pz12qj#Fq2C>FdLjf@IR0s$R*0rC*ow{H_n zEWCh*5JOUQI(!EYvRdSBr{Dwe1n4xWs|hIxCmY=+=w2+WtW=jTUsmnw*#R+tdtf74 z5>_AN2EoU3fKzW&OpE{)GSG0=pj;qLI>~$phQ8pipgSa6C!I5@+UM}_2eG_`0h{*m zvFYhx00g@Z9GJFm`JKwIW2Uv{NJ3M0Hz#g?6mI`foJ5$+;;$!o1`(S>Z1aOkniRCC z9%u~?f((kQTzp40OAz;lF+3%yA7CE=Wyt-*izmBh7~1Uuqv2{G^4AbtM(%3}!9PSA zqawkME))jB55ZS?2*#eZwKZOZ7VCF(OplV4gR9Xc!K0uOh-fRSQAhz$VQhU0r|>%d z`>!NYN5Xl=44!GPKIKd71i>393hh#hVW5rdHniEs_xh&+0C4P7mo z)d`_LwwE8o?n~9rpQP+Kb7La~GEvL9$Q)O<;>}wq_N>HsKAI}A{+SeH`0w?WauLo0 zzCq@f%)K#co#-nwwBSeeWdV*89UWb|hN?wF=x!-|s~~`V$(SIZ`ZV`l$wgN{e6xtFgDUijB00N%t{x)qSrD zE&L3PjURe@OB>As4s2vqG1+)RpIOL;I&Ye8b6R>Sm7j@W!di>xwf0UE{2`1~&2bWn zP+h4cp-m-n9pxCo-u|vJ3OEFAA61xfCBQKhv26fYpe(>z5H%#gG=SAy_Gc-NZ{AH< zSp)K?jFy`u4`3Cl%b0wgek!#ExGoX*&Her@VOB|j^PhlZM<#C| zVmM&a1i&2uIYRH&gTVlxDF9D`@MVuUQ|Mrv;Z2?qa3C)TR*WoQEe3To@i(-|obj+l z1H-nDmogNS|IC3~r?Crz-&He-(Vbz2K}`h@t1}y8?lS}@1DiPQ0 z7CW`HNbto_JwivRTuoYeqMU8t`UX5c7yPhSrWMcd$WxGSP$(54F+anc2WLFquqNjG zj92N~&=Y;3Cx+G{gK1sz_eB>yXu7jd^)3=q3wYI$@(HmRo{QaBW}NDN?I#fOBkQiB zz!uC42p>vBLB?e1p_9G z@E5E8sbgON*vi94k6t;PfC&MRIXAfF(gv^YCfO{-O#sZi=0856PtN;q_k zZd3gg@puCsW5M&6(_Th3m7IMZx4Z4*;{yl6QnO`#v7wnHidI+KUnnMOKnc!0jpwm|4!%wC|_C!vUvJIt%WrBA;|h;$lJ%@!~6Hg zCvPaW4&o-Gg1rfjfV-W9%ntjP2f^W^_mu;;1hd94;5n{i!E4a4u0r?r8C)EYDF`7b zB0O9lJtSxmei-Gl_YlV5;lttJOa7UgO9E33Nwf&f8NFi`NMYd1YHMmHVsyBHigFwm zq=Acc9)u}}lqtM#pQgHcAi}j3zPRBVn_94t#qsL#A8v88N?MUzoL6xvsUj~6_wy%5 zkV1G5e~8cR&C|5~$Qzs};ldBkGxiwYvgmsqI_0zH4e~Y7rZ{Oe8X>>?D`a4GNe^G}_*O|H9B^E3}JS|z*4X`Q7K$m^bHTXmm_ zJK4$erfEyW%DS{&$KZu=>VK|l<1Wu?ks&3(twim85gZOo6$ulRm}PA{$wzE=fa9T3 zndr>s9UdNbso!}!Cq4cBn==sKJcM-)D7|%#8<*um+@^U_9}NO{Rs*nPdk^B*FQ?9{n1+{75l2C!2z%$?k*)Hy^GUjbCC@^B}htm+U4FKpbHgC4g*Ksq^nz}Dq-G>zi478x(LgWLX>4sUmBAm)l!^}eY z?jrW@_0OOGojF}gjLoqKUVO3%%VhqqFEuZ<*W0LH++N0FYa}o4ef5Vs*aBpXgf^)2 zX+G?Z$ZCL+n7`7ri0KO{WZ{J@WTx(GUczPBln3Z;g$*HLu zz^nz*^FJIFAWh+PBm52TkYUcdK~ICM`w&otb{NrO5Q- zzO@ua`om~>w*r*HETW?4>mA3pRg}U$MRf)S2KrbyL#0RpG!ph0W?}jo8kNNP2OWgd z@i@tn=&Wk!{zJ_Md|ik=SpirbYmU9$-4X=tdvq3|WDVt$wbT52^g8tzh~}1;_r1w# zzGR6)A8D!!ivc)##bvyXQrvE^RQx$Mri`~7qy$;SvA_FYU^5c29S8EFh6c+U12K}q zP@ah+ilAe%1Pc=!JLiGQd!{!hflOXP?S3xq_~?=?Vu>3ZQrz3G_pst9x(~yV7B~sEClQ8t@IFXSncUBTH`+zBDEVH$a%tN^8^1?j)LsBWTcXH%#tiqV3E! zZ2>tMrA0W1xnF)dfeZW{wCrzu6H|jjjTWS^;#Ubu79zDAz0AVm+gLvwQRJ{T?)ER~Hj&C(rpQDaG zcVdkxe=@u>%3wuMu2HpgUQ9`I!rWSJnrfEs#snJS>otHJP>%}7SM^bwf=8DA$vRyt14cSzT{Cps)I1O^ z?36(w;y*1II6x8_Me<>;Akc{D@zV8P>R+$zEQAUiih~lKIrcSxh&vt8pKkx|7< zc=a9wT_WrTn#4h1wm_#WPzOK(%bTamh@q|6=C^`*|Sr&a)PEH8qG#c|h>7I6#McX#KjIG`OI4X{KsvCTfTu zJ=&r3WMw4moY6AgjP%OPI|y)`#HS`YP@J4U>B~%EDL{g|``_-%f(J@z<8a>y#p|lm zm>mj5WzPbiw0cF>i|nua1<^W7`QgDerv{Y z_r(SUJn>SLk`t@U9OjeO9N$XzIeViXzz#whZYebDNP0RqLx6Pi0vaqIGmF^U-<3Tj^+9BdLJJj5fd5maLJQ` z8wUQtLT@ofnYzXHl3p}XEJ^L!dU}q)5{!Tt!8X8gmjwKLY0Ox6Ewl_6248l&Q9)JPlJYTsXySZOq@@~E~?AUU0j6MsS-qQ15&f5;1 z8d7_&2DRYvx@$*=(W<}Fkq2-3At+0Q2QJ)(77)GfkdkD35V9|7^jvVD0mxRiwQWV> zA+pab+}smAb~p&&c2=T@fifaAtV7UL!Zc?y66*p^8z>%uhzIX}IwcW;DMA7UfI;9S zU=&A50U(J;Uqg?Vz=5DYDnM5io}At|Em)M^>{`YHG^W0PeeJgMojaxllZ0yvU?vxf zV+)ImgV1=D!(e5mlA1Yx>F(8=lE+W^vJ~!zlrCaR2xb-|&|7N+X@90+Z~O=`MF6k} zR>C_;WBWvi_u_Vv?m#Ko9K|WtM#efs@aioP^iU==_BbFSGK{LYyZr7QD6_xN7DoPbM2Z8eWR%#@ zd3bn$`#blqV*Mn9FFs-(iNMZ6p(D(Gxhbj&z1R%qacL&mX%Iy>9L%+i%*( z)>>eyMG2J;2#*UxcN*p^!x4HW_pm+z32O3ip-lXL8oTy?sM9w5bqHl6$5PuY5u&1^ z-4`1Md3oP7*&^q|mMDi*4u#D)4XK0&Ndw_Xd=qSoSV#ej=tpf(GT9Dl&93DOzmRV!fOM}S20r6KtnfrFT^>FVl=MFs<_-XAby z0JNyiv+Dh=OiGDf5ukOz#br#@A4!`fM9=iQpur{>8$0XKUx_{uAfA;-SrT51Sz}M5 z@@B!Bl7go@;auSyAHZ{lx~f3n4R<06-;fC3!8qjQabqx*;sJ?x<6mq##>0aIJp@r> z2c{H&g>c*2q;cJ0=8V35)M?Z6rsa0gfTF+LCSbpk^*E{^L{7RXj+&_vWk{};g(wCE2Y4}wW2 zfEhMO^zbNH$eRNdfCDx>X5F=+)*U1%CFP6F-ZSdyeu7+{gJxMBNhmLBh20gdg$1nZ zU|Vu{GWm}DM<07JV6N?uoeZ$1CaKo|%LjVyV?e7rkayr3laXUd0O28h2{eRCp~{35 zh=!{bkFN!R=mH@%K0N4)z969dX2?9r7QDKEx(Tt6spZ$1odR$mwXYPJH|)Uhao1t4 zh6}kgNPoHt``qGjwG3akQbd9uE?WVqb)4oJ`ZnuNe0L@Q{i9X!EN?svYc#eBAA2rBS7`CLq(OwBz2OE#mj2MJC5ue!g)r^ zE==DPqxN5K-HAX?gy4e&v!+Nx4Xz|Im-Z6ndLIyV@MoaF9SOx(2I!0ijSJ$(E7!~a z{CN#Bv(wmobT)&i5Rjto6H0FM<0Wu8K=~G(2ku01(^NPx?|EM|56SYQCvX7}of2-u zo~1?COe`GTJq{NcpjmgO-_DyjFDbAC#E&}qV5mWQ0$+if5r;XxUr{t*t}KxtsyGm! z%@ZkcE>4n9IX|~&B0VSPGLRcib@e)_crgghp#YV%!#)~D3~Ix#St^2X4d(zN4h6@j zk51Yi75)lvY=YA(Vk$H&qxKbzo&&}~Pu90kG++Ll>BgTy5J%-1A?(K7JNw1h*NM{~ zLDnQ20AGyF(1jv>9DG7oqB_t(sKCxyB`+@z^7}BvEp6cf2!0JjdK2K73>NeNBq@6v zV@y%V!Sgtmq1y$PEonc(?45!XQUa<8Rm^OXn}v|Suy*i?Q$sl|5{6amMh2EpZI93v zChWwyJ&8s-7)^B@cC$iZ!}y5XR@M52;nc|aHxY1s}`kzZY?0x$sVusmvDW8 z9UX}YS<2ev<0r-}KJcJ8emST~j#|=${ z>oq@K0Xj3(!t!8-V;~2>erdX651ceYIsj(ntTvNzrg=Ga+V*yy9COh^SLKG6 zQ@fqcqpU{?V;fRbmYtiQ&$j+M_BwfByYJQ1r~#ZlrEiLLdt5l#`|uYXXMQM>7{X3? zcBJ-<+JO}U9}AVc^t1&UB;Ys``;Xao=FVAc8 zH&Ye$8aEYreS424OB_0Q-ux8#NgdZbc8j~%{2gU0j8iKg?Z$rmjg9lH&3?w95( zG}0OuzFcYYDnD9TboJX>iK8(@_)a8rARyyuz@j~W~H++u1{+rRTn zaIRikJ2!P)rj?88nlc7^E^I9{69d&=IM|kUHk1!BM zHNi44Ck6zL=*a~G95n+W2U#7KSPJ_3!FMul+Bqie^v2Gi=%uq%?BDfjgHwyD>9ll; zV!dK^hvk2GS+3+uOB1_oJ$uv7s7%4;s0|4j8m>gRnn?M98sJ7#hA7e(h%j|5fF-*e*W4`XrsK)zix@BV?gQNkcln%n1}$ePZ#-S9TK>Oi*y zHig?^jBiXjn3}E5Dak31bD*=ABATH;#{E+NBiz_4q_!R3w|2f_QqI&QGORkMLrVQ; z5_t39(9W46DXcd+Ysu-!jkf*A_fFE;;X3R08`lO+Y#5bw%UpdeN^hvbbg0CnEAkNv zHSrkkqWk=x?Yh=@ePX(GU#(Ggz#a*YR5=~d{9XO(C8Z_y^aER=yoi?QU$kT7-Jh9; z&NtZ%eZh+kX#yJJe;9nTJmp{hiSM?*e}B3zT#H*_`9)MX3Db+{mRMrBoTPB&EfuQAD?l$^}^oV zvQk9{lk?$GI=3H~d8KrPvm-Tymo}8iZBpNi&$~uc{H!m5-+zqr$y!5(`@BWoq_R^u ze?G=x1+|zoZ{s;=w(d+)`^KVI 0 takes on non-binary values, representing the intensity of the interaction, so we refer to (N, g) as a weighted graph.\n", + "E is the set of “directed” edges, i.e., (i, j) ∈ E\n", + "\n", + "#### Edge types\n", + "* Demand\n", + "* Fraction of demand in CIC\n", + "* Utility - stack ranking. Food/Water is first, shopping, etc farther down\n", + "* Spend\n", + "* Fraction of actual in CIC\n", + "\n", + "![](images/dualoperator.png)\n", + "\n", + "\n", + "![](images/v3differentialspec.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assumptions\n", + "(Defining data structures, not just initialization. Baking in degrees of freedom for future experimentation)\n", + "\n", + "* agents = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p\n", + "* Agent starting native currency is picked from a uniform distribution with a range of 20 to 500. Starting tokens is 400.\n", + "* system = external,cic\n", + "* chama = chama_1,chama_2,chama_3,chama_4\n", + "\n", + "Chamas are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* traders = ta,tb,tc\n", + "\n", + "Traders are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* Utility Types Ordered:\n", + " * Food/Water\n", + " * Fuel/Energy\n", + " * Health\n", + " * Education\n", + " * Savings Group\n", + " * Shop\n", + "* Utility Types Probability \n", + " * 0.6\n", + " * 0.10\n", + " * 0.03\n", + " * 0.015\n", + " * 0.065\n", + " * 0.19\n", + "* R0 = 500\n", + "* S0 = 200000\n", + "* P = 1\n", + "* priceLevel = 100\n", + "* fractionOfDemandInCIC = 0.5\n", + "* fractionOfActualSpendInCIC = 0.5 # if an agent is interacting with the external environment, then the actual spend is 100% shilling.\n", + "* kappa = 4\n", + "\n", + "\n", + "## Initial State Values\n", + "\n", + "# Equations\n", + "\n", + "## Generators\n", + "* Agent generation for each time step: Random choice of all agents minus 2 for both paying and receiving. \n", + "\n", + "* Agent demand each time: Uniform distribution with a low value of 1 and a high of 500. \n", + " \n", + "### Red Cross Drip\n", + "Every 30 days, the Red Cross drips 4000 shilling to the grassroots operator fiat balance. \n", + "\n", + "### Spend Allocation \n", + "\n", + "#### Parameters:\n", + "* Agent to pay: $i$\n", + "* Agent to receive: $j$\n", + "* Rank Order Demand: $\\frac{v_{i,j}}{d_{i,j}}$\n", + "* Amount of currency agent $i$ has to spend, $\\gamma$\n", + "* Amount of cic agent $i$ has to spend, $\\gamma_\\textrm{cic}$\n", + "* Percentage of transaction in cic, $\\phi$\n", + "* Spend, $\\zeta$\n", + "\n", + "\n", + "if $\\frac{v_{i,j}}{d_{i,j}} * 1-\\phi > \\gamma_{i} \\textrm{and} \\frac{v_{i,j}}{d_{i,j}} * \\phi > \\gamma_\\textrm{cic} \\Rightarrow \\zeta = \\frac{v_{i,j}}{d_{i,j}}$ \n", + "\n", + "else $ \\Rightarrow \\zeta = \\gamma$\n", + "\n", + "Allocate utility type by stack ranking in. Allocate remaining fiat and cic until all demand is met or i runs out.\n", + "\n", + "\n", + "### Withdraw calculation\n", + "\n", + "The user is able to withdraw up to 50% of the their CIC balance if they have spent 50% of their balance within the last 30 days at a conversion ratio of 1:1, meaning that for every one token withdraw, they receive 1 in native currency. We are assuming that agents want what to withdraw as much as they can.\n", + "This is one of the most important control points for Grassroots economics. The more people withdraw CIC from the system, the more difficult it is on the system. The more people can withdraw, the better the adoption however. The inverse also holds true: the less individuals can withdraw, the lower the adoption.\n", + "\n", + "## Distribution to agents\n", + "#### Parameters\n", + "FrequencyOfAllocation = 45 # frequency of allocation of drip to agents\n", + "* idealFiat = 5000\n", + "* idealCIC = 200000\n", + "* varianceCIC = 50000\n", + "* varianceFiat = 1000\n", + "* unadjustedPerAgent = 50\n", + "\n", + "```\n", + "# agent:[centrality,allocationValue]\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], \n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "```\n", + "\n", + "Every 15 days, a total of unadjustedPerAgent * agents will be distributed among the agents. Allocation will occur based off of the the agent allocation dictionary allocation value. We can optimize the allocation overtime and make a state variable for adjustment overtime as a result of centrality. We are currently assuming that all agents have the same centrality and allocation.\n", + "\n", + "Internal velocity is better than external velocity of the system. Point of leverage to make more internal cycles. Canbe used for tuning system effiency.\n", + "![](images/agentDistribution.png)\n", + "\n", + "### Inventory Controller\n", + "Heuristic Monetary policy hysteresis conservation allocation between fiat and cic reserves. We've created an inventory control function to test if the current balance is in an acceptable tolarance. For the calculation, we use the following 2 variables, current CIC balance and current fiat balance, along with 2 parameters, desired cic and variance.\n", + "\n", + "Below is \n", + "```\n", + "if idealCIC - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + "else:\n", + " \n", + " if (ideal + variance) > actual :\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + "if decision == 'mint':\n", + " if fiat < (ideal - variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + "if decision == 'none':\n", + " if fiat < (ideal - variance):\n", + " decision = 'mint'\n", + " amount = (ideal-variance)\n", + " else:\n", + " pass\n", + " \n", + "\n", + "```\n", + "\n", + "If the controller wants to mint, the amount decided from the inventory controller, $\\Delta R$ is inserted into the following minting equation:\n", + "\n", + "- Conservation equation, V0: $V(R+ \\Delta R', S+\\Delta S) = \\frac{(S+\\Delta S)^\\kappa}{R+\\Delta R'} =\\frac{S^\\kappa}{R}$\n", + "- Derived Mint equation: $\\Delta S = mint\\big(\\Delta R ; (R,S)\\big)= S\\big(\\sqrt[\\kappa]{(1+\\frac{\\Delta R}{R})}-1\\big)$\n", + " \n", + "\n", + "\n", + "If the controller wants to burn, the amount decided from the inventory controller, $\\Delta S$ is inserted into the following minting equation:\n", + " - Derived Withdraw equation: $\\Delta R = withdraw\\big(\\Delta S ; (R,S)\\big)= R\\big(1-(1-\\frac{\\Delta S}{S})^\\kappa \\big)$\n", + " \n", + "\n", + "There is a built in process lag of 7 days before the newly minted or burned CIC is added to the respective operator accounts.\n", + "\n", + "### Velocity of Money \n", + "\n", + "Indirect measurement of velocity of money per timestep:\n", + "\n", + "$V_t = \\frac{PT}{M}$\n", + "\n", + "Where\n", + "\n", + "* $V_t$ is the velocity of money for all agent transaction in the time period examined\n", + "* $P$ is the price level\n", + "* $T$ is the aggregated real value of all agent transactions in the time period examined\n", + "* $M$ is the average money supply in the economy in the time period examined.\n", + "\n", + "\n", + "\n", + "## Simulation run\n", + "* 5 monte carlo runs with 100 timesteps. Each timestep is equal to 1 day.\n", + "\n", + "\n", + "## Proposed Experiments\n", + "![](images/experiments.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run cadCAD model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", + " import pandas.util.testing as tm\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAFCCAYAAACn2kcMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XdUVNfaBvBnht5EjWJnht6kqIiKBCsWQOK1RIUrGksMdrERJYKoIMaCvRuMGPVijUaNvUdjQQFpioAISJcyDMMw5/3+4OPEsWuwJfu3FisrM3P2nHOSxcPeZ+93C4iIwDAMwzDM3yb82CfAMAzDMP8ULFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqiOrHPoGPgYhwv+g+8ivyIVfIoa2mDaMGRmik3ehjnxrDMAzzGftXhaqkSoLTD05j+53tyCzNhIpABQSCAAJw4NBV3BXDWg+DfRN7CASCj326DMMwzGdGQET0sU/iQ7iRfQMzTsyApEoCbXVt6KnrKQWnglOgSFoEjjjYN7XHUrel0NfU/4hnzDAMw3xu/hWhejHjImacmAFtdW3oquu+8rNEhDxJHlrVa4WtX21Ffc36H+gsGYZhmM/dP36iUnJBMmadnAVdDd3XBioACAQCNNFtgszSTEw7Pg3VXPU7fW9eXh769esHhULxTsczDMMwn59/7DPV06dP4/fff0d1j2oQCNpq2m91vIGOAeLz4nHt0TV0Nuz8ns6SYRiG+Sf5R/dUJVUSXHp4CV9of/H2BxOgrqqOqNiouj8xhmEY5h/ps+ipFhUVYePGjYiPj4empib69++Pfv36ITg4GK1atcLo0aMBAEuWLIGGhgYGDBiAtWvXIrUgFZkXM5GlnoW2k9uCq+bw6NIjFCUVgRSEBmYNYNjdEEJVIUofluLB0QcwaGOA3Ju50Bfpo2HrhojeEo22T9ri/PHzEAqF8PX1Rc+ePQEA169fR1RUFHJycqCjowM3Nzd4e3t/zFvFMAzDfESffKgSEUJCQtCxY0fMnDkTBQUFCAwMRIsWLTBlyhRMmjQJ7du3R1FREVJSUrB69WpoaWlhwoQJmLJmCmxH2aKeRj0AwKOLj1BZXInWI1pDoCJA6pFUZF3JQivXVgAAuUQORaUC9t/aAwDKs8uhqFAgNS8VkZGRuH37NsLCwtCxY0fo6upCU1MT06ZNg0gkQkZGBgIDA2FsbIyOHTt+tPvFMAzDfDyf/PBvSkoKSkpKMHToUKiqqqJp06bo3bs3Lly4gAYNGmD8+PFYsWIFNm3aBH9/f2hpafHHVimqoCqs+buBiJB3Jw+G3QyhqqUKFXUVVDauxJ0Td/Dnn3/WHCAAWnRuAaGqEELV/781QsCxlyNUVVXh6OgILS0tZGVlAQBsbW0hFoshEAggFovRpUsXxMfHf9D7wzAMw3w6Pvmean5+PoqKijB06FD+NYVCARsbGwCAk5MTNm7ciJYtW8La2lrpWKFAiNoVQ9XSanByDgk7Ev5qh1MAciAvNw95yXnQr9aHUEX57wwVTRVoqGkAqAlmuVyOffv2oWPHjmjRogW2b9+OjIwMVFdXQy6Xw8XF5b3cB4ZhGObT98mHaqNGjdCkSRNs2rTphe///PPPaNmyJXJzc3HhwgW4urry7+mo6UCmkEEHOlDVUoVQVYjW37SGup46/xm5XI7fj/8OACgpKcHRY0dhYWEBIyMjAIAAAvx+6HfM/998ZGdno6CgAPv374eXlxcaNmwIT09PBAcHQ11dHZs3b0Zpael7vBsMwzDMp+yTH/41NzeHlpYW9u7di6qqKnAch4yMDNy7dw/x8fE4deoU/P39MW3aNGzYsAGFhYUAgPr166OJsAmqqqoA1Kw/bWzXGA/PPoS8Qg4AqCqrQsWjCvTu3RtCYc2t4BQcEhMSceLECaRlpEEAAe5fuI9bt27h8ePHqK6uBhFBU1MTubm50NTUhLq6OlJSUnD+/PmPc5MYhmGYT8JnUVGpqKgIW7duRWxsLORyOVq2bInBgwdj06ZNGDFiBN87jYyMRGpqKkJCQqBQKBCyIAQbf98IgUCA9pPbg6vmkH0lG4VJhaiWVkNdVx0GDgZo0q4JCu4X4Nr2ayCnp26HDBBeEqJ+dX3o6uri0aNH4DgOAGBtbQ2pVIqSkhLo6OjAzs4OrVu3Rr169TBnzhzk5eVh9OjROHjwIFRUVD7GbWMYhmE+sM8iVP+OLbe2YN31dWiu1/y1RfIlEgkuX76MKllVTR9eC8D/ALxgRLe6uhoPHz7E9evXcf78edy6dQtyuRxEBENDQ3Tq1Alt27aFlZUVmjd//XczDMMwn79/fKhWVldi3JFxSMhPQBOdJq8Nt9KSUly7fg0yNRlwCcDdF38uOjoaAwYM+GvYmOOQmpqKO3fu4OLFi7h58yaAmslNenp6cHJygoODA6ysrGBqago1NbW6vEyGYRjmE/CPD1UAeFL5BJOPTcbd/LtopN0I6irqL/wcEaG8qhw5RTl4tP8RKi5XvLRNFRUViEQi+Pv7Y+zYsVBXV26zuroa9+/fR2xsLK5evYpbt25BVVUVAoEAHMfB3t4ednZ2sLKygpWVFerVq1en18wwDMN8eP+KUAUAqVyK9TfWY1/iPlRVV0FLTQtaaloQCoSo5qpRKisFEaG5XnNMdpqMldNW4tdff31tu2pqamjSpAlGjRoFf39/6Ou/eLs4uVyO5ORkxMbGIiYmBrdv34ampiaEQiEqKythaGgIW1tbWFlZwdramg0ZMwzDfIb+NaFaS1IlwZm0M9hzdw9yy3Nrltyo6cC+qT2Gth6KsKlhEAqEmDp1Kjp37vzcLjMCgYBf+6qhoQG5XA6O46CpqQl9fX0MHDgQs2fPhqGh4SvPQyaTITExEXFxcbhz5w4SEhKgo6MDdXV1VFRUQFNTEzY2NnzIsiFjhmGYT9+/LlRfZ8KECdixYwc6deqE5ORkZGRk8O/V9hxVVVUhl9csy1FRUYG+vj5KSkrAcRy0tbWho6OD7t27Y/bs2XBwcHij75VKpUhISEBsbCxiY2ORmpqKBg0aQFNTE5WVlSgvL4eJiQkfspaWli/tFTMMwzAfBwvVZwQHB2Pbtm3Q0dFBUVER8vLyAACampqoqqqCqqoqqqurIRAIoKKiwq+D1dXVha6uLvLz88FxHPT09KClpQUHBwf4+/ujV69eb3UeEokE8fHxfMjm5OSgcePG0NbWhkwmQ15eHho2bMiHrJWVFVq0aMGGjBmGYT4iFqrPCA0Nxf/+9z9kZmaicePGaNSoEXbu3ImhQ4ciKSkJZWVlUFdXR3V1NTiOg4GBAXJycgDU9GCbN2+O6upq5Obmgoj43marVq3w3XffYfjw4fyM4bdRWlqKuLg4xMbGIi4uDkVFRWjRogV0dHRQXV2Nx48fo7Kykp/4VDtk/OwEKoZhGOb9YaH6jB9//BE///wzmjZtin79+mHy5MkAgLy8PPTs2RO5ubkoKiqCmpoaP8nIwMAAJSUlqKiogEAggJaWFuzs7JCWlobCwkIQERo3bgwdHR1oampixIgRmDRpEjQ1Nd/5PIuKipR6shKJBCYmJtDT0wPHccjJycGjR49gZGSk1JtlQ8YMwzDvDwvVZzx8+BDV1dXQ1dXF1KlTsX79ej6IHjx4gN69e6OyshK5ublQV1eHtrY2iouL+YlF165dg0AggLq6OurVqwcnJydcvXoVpaWl4DgOLVq0QP369SGRSDBgwADMmDEDBgYGf/u8CwoK+ICNjY2FQqGAhYUFGjZsCCJCTk4OUlJSoK+vD2trazZkzDAM8x6wUH2FDRs2QF1dHaNGjeJfu3XrFgYOHAiBQICsrCx+SU12djaICL169cK5c+dQVlYGFRUVaGpqwsTEBDY2Njh+/DgkEgk4joNYLEaTJk3w6NEjdO/eHQEBATA3N6+T8yYi5Obm8jOL4+LiIBQKYWdnBwMDAwiFQmRnZyMhIQFSqZQNGTMMw9QRFqqvUFRUhIkTJ2L16tX44osv+NdPnTqF0aNHQ1tbG+np6VBRUYGZmRnu3bsHuVwOMzMziMVi/Pbbb/xwsLq6Orp16wYtLS0cO3YMFRUV4DgOZmZmMDQ0REJCAtq2bYuZM2fC2dm5Tq+DiJCdnc33YuPi4qCtrc3vB6uiooKsrCwkJibi4cOHbMiYYRjmHbFQfY3IyEhUVFRg/PjxSq/v2bMHs2bNgr6+PlJTU6GiogJbW1skJiaioqICOjo6CAoKwty5c1FeXg5NTU1oaGhAR0cH//3vf3H//n2cOXMGUqkURAQrKyvY2Njg6tWrMDQ0xKRJk9C/f/93mtT0OkSEhw8f8iEbHx+P+vXrw87ODhYWFtDU1ERmZiYSExORlJQEfX19pZBt2bIlGzJmGIZ5ARaqr1FWVoZx48Zh2bJlaNasmdJ7q1evRkREBOrXr4/k5GSoqKigdevWSE9Px5MnTyAQCPDNN98gNzcX0dHREAqF0NXVhbq6Olq1aoWxY8di//79uHnzJqRSKTiOg4ODA9q3b48zZ85AS0sLo0ePxrfffgtV1fe39S3HcUhLS+N7sXfv3oWBgQFsbW1hZ2cHPT09PHz4EImJiUhISEBFRQUsLS35kDUzM2NDxgzDMGCh+kZ2796N7Oxs+Pv7P/fe3LlzsX//fujr6yMhIQFCoRCWlpYoLS1FdnY25HI5bG1tsWjRIvTv3x/l5eXQ1dWFhoYGhEIhevToAQ8PD6xevRqpqamQSCQgIjg6OqJHjx44evQoysvLMXToUPj7+0NPT++9X69CocD9+/f5JTyJiYlo0aIF7OzsYGdnh2bNmiE9PZ0P2YcPH0IsFvMha21tzYaMGYb5V2Kh+gakUinGjh2L0NDQF5YfHDt2LG7dugVtbW1+UpChoSEaNmyI2NhYVFZWol69eti8eTN++ukn7Nu3DyoqKmjQoAEfruPGjUOLFi2wdOlSFBQUoLS0phaxk5MTBg8ejIMHDyI1NRWenp6YPXs2WrZs+cGuv7q6GikpKfxw8b179yASifiQNTIyUurJJiUloV69ekohy4aMGYb5N2Ch+oYOHDiAxMREzJkz57n3OI7DwIEDUVhYCKFQiLi4OAgEAjRq1AgdO3bEsWPHUFlZCYFAgO+++w6DBw9G165dUV5ejgYNGkBVVRUaGhpo3LgxFi1ahISEBKxfvx5SqRRPnjwBx3Ho2LEjvv32W+zbtw/Xr1+Hs7MzAgICYG9v/8HvRVVVFZKSkviQTUtLg4mJCT9cbG5ujsePH/Mhm5iYCIlEAktLS36msbm5ORsyZhjmH4eF6huqqqrCt99+i7lz58LMzOy59ysrK9G3b1/o6OjwJQaFQiF0dHQwdOhQREZGorq6GlVVVWjXrh127tyJCRMmYP/+/VBRUeHXi8rlcjg7O2PhwoXYvn07du7cCYFAgPz8fBARnJ2dMX36dBw4cAAnTpyAlZUV/P394ebm9hHuyl/XnpCQwA8XP3z4EObm5nxP1szMDKWlpUhKSkJCQoLSkPHTy3nq16//0a6BYRimLrBQfQvHjx/HlStXEBIS8sL3S0pK0KNHD7Ru3RqZmZm4e/cuBAIB1NTUMHHiRGzYsAHV1dUoKytD/fr18dNPP0FfXx+urq4oLy9HkyZNIBQKUa9ePUilUowePRpjxoxBSEgIjhw5Ak1NTeTk5ICI8OWXXyIoKAhHjhxBdHQ0DAwM4OfnB29v7/cyY/htSCQSpc0BcnJyYGVlxYessbExP6T87JDx0yHbqlUrNmTMMMxnhYXqW6iuroafnx+mTJmC1q1bv/Az2dnZcHNzg7u7O27evInk5GQQEYRCIWbMmIGdO3eioKAAJSUlUFVVxeTJkxEQEIBBgwbh0KFDUFVVhbm5OSoqKqCmpgYdHR2EhobC3Nwc33//Pa5cuYJ69erh4cOHICJ06dIFCxcuxLlz5xAZGQkA8PX1xcSJE/9WGcS6VFZWhvj4eL4YRWFhIWxsbGBnZwdbW1sYGRkBgNJz2cTERJSXl/NDxtbW1jAzM4OGhsZHvhqGYZiXY6H6ls6ePYtjx44hPDz8pb2oxMREeHl5YezYsfj9999x//59fmebCRMm4M8//0RMTAy/jKZDhw6IiorCvXv30K1bN0gkEhgaGkIoFEJPTw8lJSVo164dIiIikJeXh8DAQCQlJUFPTw9paWkgInTr1g2LFy9GXFwc1q5di9zcXAwYMAAzZ85Eo0aNPvBderWSkhKlak+lpaWwtbXln8nW9lCLi4uVQjYjIwMikUhpzWyDBg0+9uUwDMPwWKi+JY7jMHHiRIwaNQqOjo4v/dyVK1fg4+OD4OBg/Pzzz3jw4AHkcjmEQiGGDBkCoVCIX375BWpqapBIJGjQoAEiIyPh5OSEr776CkeOHIGamhqcnJzw6NEjGBgYIDc3FyNGjEBgYCBOnz6NBQsWIC8vD3p6erh37x4AoFu3bliyZAlycnKwbNky3L17Fz179sT3338PExOTD3Wb3kphYSH/PDY2NhYymYwP2NolPAKBADKZDPfu3eNDNikpCbq6ukoha2hoyIaMGYb5aFiovoM//vgDu3fvRkRExCt/gf/666+YPHkyXyTi4cOHkEqlUFdXh6urK7p27YqgoCDUr18fjx8/hlAoxMyZM+Hv748///wT3bt353ef0dTUhIqKCt/2ggUL4OnpiV9++QVLliwBx3HQ1NREcnIyAKBHjx4IDw9HdXU1wsLCcPHiRbRr1w6zZ89Ghw4d3vs9+jvy8vKUSioSER+wtfWLgZrKUJmZmXzIJiYmorS0VKkwhbm5ORsyZhjmg2Gh+g6ICNOnT8eAAQPg4uLyys9u3boVoaGh+PnnnzFv3jxkZWVBIpFAW1sb5ubmmDFjBsaNGwddXV1kZWUBAFxcXPDTTz9BW1sbXl5e+O2336Cmpoa+ffvi9u3bMDIyQmZmJlq3bo2IiAiIRCJERERgw4YN0NfXh0AgQGJiIgQCAXr27ImwsDDo6ekhPDwchw8fhlgsxuTJk+Hl5fXRJzW9Tu0OO7UBe+fOHWhoaCiF7NN1mWuHjGt/0tPTYWhoyIeslZUVGjZs+BGviGGYfzIWqu8oJiYGmzZtwpo1a5R6kC8SFhaGyMhI7N27F1OnTkVOTg7KysrQsGFD6OvrY8OGDRgzZgwkEglKSkrAcRzq16+PyMhItG3bFpcvX0avXr1QUVHBh0JRURFatmyJlJQUeHt7Y968eeA4DosWLcIvv/wCQ0NDyGQyfgaym5sbQkND0aJFC0RERGDnzp3Q0dHB2LFjMXr06PdaBrEuEREePXqk1JPV09PjA9bW1lZpaU5VVRU/y7j2R0dHRylkRSIRGzJmGKZOsFB9R0SEOXPmoGfPnujRo8drPz916lScPXsWhw4dwqhRo5Cfn4+SkhI0bdoUCoUCu3fvxty5c3Hnzh1oamryRR++//57jB8/HhzHwcPDA8ePH4eamhqGDx+Oc+fOwcjICGVlZZBKpZg/fz7+85//IC8vD0FBQTh27Bisra1RVFSEhIQECAQC9OrVCwsXLoSJiQm2bt2KzZs3QyKRYNiwYfD394euru4HuHt1h4iQnp7Oh+zdu3fxxRdf8AFra2urVNqxNpRrh4wTEhL4IeOnC1N8KjOnGYb5vLBQ/RsSExOxdOlSbNiwAWpqaq/8LMdxGD58ONLS0nDw4EEMHToURUVFKC4uhpGREfLy8rBnzx7s3bsX27dvh7GxMVJSUiAQCNClSxds2bIFmpqauHjxIvr06YOKigrY2trCzMwMt2/fRvv27XHjxg1YWFhg1apVMDExQWpqKgIDA/HHH3/A0dGR33lGKBSid+/efLgeOXIEK1euxIMHD9CvXz8EBASgefPmH+gu1i2O45Camsr3YhMSEtCsWTN+4pONjQ10dHSUjnny5Anfi01ISOCHjJ9eM8uGjBmGeRMsVP+m+fPnw9HRER4eHq/9bHV1Nfr16weO4xAdHY3+/fujtLQUBQUFsLS0xP379xEZGYmsrCwEBATA1tYWMTEx0NTUhL6+PrZv3w4bGxtUV1fDw8MDJ06cgLq6OqZMmYLjx4+jXr16aNasGa5fv46vv/4aISEh0NTUxI0bN/DDDz8gJSUFLi4uSEhI4HfV6dOnD0JCQmBmZoZr165hyZIluHHjBr788ksEBAS8dD3u56K6uhr37t3jZxcnJyejVatW/HCxtbX1c73Sqqoq3Lt3T6kwhZaWllItYzZkzDDMi7BQ/ZsePHiA+fPnY9OmTW80y7SiogJubm5o1aoVtmzZAi8vL5SXl6OgoAB2dna4c+cOli9fjlatWsHX1xeGhoZIS0uDiooKJBIJQkJCMGLECAA1a2Y9PT1RUVEBBwcHuLi44PDhw3B1dUV6ejoKCwsRFBSEr7/+GgBw8uRJBAcHo7i4GF27dsXVq1fx4MEDCAQC9O3bFwsWLOB7uIsXL8bJkydhY2MDf3//Nxri/hzI5XIkJyfzw8WpqakwMjLiQ9bS0vK5msS1Q8ZPr5ktKSmBpaUlP9OYDRkzDAOwUK0T4eHhMDU1xcCBA9/o8/n5+XBzc4OrqysWL14MT09PSKVS5OXlwcHBAbdu3UJAQAD69++PwYMHQyaTQUNDA48fP4ZMJkOvXr2wdu1aqKuro6qqCv369eN7rfPnz8fRo0fx5MkTdO/eHUePHoWJiQkiIiJgYWEBjuOwa9cu/PjjjxAKhejWrRtOnTqFhw8f8uEaEhICExMTFBQUYNmyZdi7dy8MDAwwfvx4DBs27JOfMfw2ZDIZEhMT+ZnFGRkZMDMz45/JWlhYvHASV0lJiVLIpqWlsSFjhmFYqNaFR48eISAgABs3bnzued3LpKWloW/fvvjvf/8Lf39/eHp6QiaTIT8/H/b29rh16xZGjBiBgIAAjB49Gjdu3ICDgwOuXLkCXV1d6OnpYefOnXxBh1OnTsHLywtSqRRt2rSBt7c31q9fjzZt2kBPTw9nz57FgAEDsHDhQmhra4PjOKxatQrr169HkyZN4OrqigMHDiAnJ4cP1/nz58PExASVlZVYt24dXwZx5MiRGD9+/D+yZyaVSpGQkMBXe3r06BEsLS35nqypqekLZ3tXVVXh/v37Smtmnx0yrq2SxTDMPxcL1ToSERGBxo0bw8fH542PuX37NgYOHIiAgAD4+PjA09MTcrkchYWFsLa2RlxcHHr16oWVK1ciLCwMW7Zsgbu7O44ePYrGjRujoKAAYWFhGDJkCICa3WI8PDxw5swZqKurY9myZTh//jxiYmIwdOhQXL58GY8fP0ZgYCB/nhUVFQgLC0NUVBRat24NJycn7Ny5E/n5+Xy4BgcHw8TEBBzH4ZdffsH69euRl5eHQYMGYebMmf/oHll5eTnu3r3LDxfn5eXB2tpaaS/ZFwUlESErK0upN/vkyRNYWFjwIcuGjBnmn4eFah3Jy8vD1KlTsX79eujr67/xcadPn8aYMWOwfPly9O7dG56enlAoFCguLoapqSlSU1NhaWmJnTt34vDhw5g+fTp69uyJq1evQkNDAwUFBfD09MSKFSv4Ycpjx45h4MCBkEqlaNu2LWbPno2QkBAYGBigR48eiIqKQsuWLREREQEbGxsAQEFBAebNm4ejR4/iyy+/hKWlJSIjI1FcXAwA8PDwQHBwMF/8/vTp01i2bBkSEhLg5uaGgICAT7YMYl0qKSlBfHw8P7u4uLgYNjY2sLe3h62t7SsnMJWUlPDb3yUmJuLBgwdo1aqVUpnFpwtZMAzz+WGhWodql9aMHj36rY7bs2cPAgICsGPHDrRt25afSVxaWormzZujsLAQenp62LdvH9LS0uDt7Q1TU1NUVVUhNTUV6urq0NfXx86dO2FoaAjgr/1dz58/DzU1Naxbtw7x8fE4cOAABgwYgKqqKhw5cgReXl4IDQ3l16empaVhzpw5+OOPP+Dl5YUmTZpg27ZtKCsrAxHB3d1dKVxjY2MRHh6OS5cuwdHREbNnz4aTk1Md3tVPW1FRER+ysbGxkEgk/PNYOzs7fp/cF6n97/f0mlktLS2lkBWJRGzImGE+IyxU61BRUREmTpyIVatWvfXOMKtXr8aqVatw8OBBGBkZwcPDA0KhEBUVFdDX1wfHcSgrK8OhQ4cgFArx9ddfQyqVokOHDjh48CCMjY2RmZmJZcuWwcvLi2/38OHDGDJkCP+sddWqVQgICEB5eTkmTJiA6OhoZGZmIiAggJ9VDNQMTc+ZMwfJycnw8fGBuro6tm7dioqKCgDgn7mKRCIANc+VlyxZgsOHD8PY2BhTpkyBp6fnvy4QCgoK+ICNjY2FQqHgA9bW1hZNmzZ9acgSEbKzs5VCtri4GBYWFnzIWlhYsCFjhvmEsVCtY5GRkZBIJJgwYcJbHzt37lwcOHAAJ06cQMOGDeHh4QEVFRXI5XKoqqqiUaNGSEpKwv79+yESifDdd9/h0qVLGDVqFDZu3AgTExOkpKTg66+/xuLFi/lAq6iogLu7Oy5cuAA1NTVs3LgRRUVFWLNmDZydneHi4oJVq1ahadOmiIiIgJ2dHX9Op0+fRlBQEAoLCzFu3Dg8efIEP/30E2QymVLPtTZcy8rKsGLFCuzatQs6Ojr49ttvMWrUqM+mDGJdIiLk5uYqlVRUUVHhA9be3v61f3yVlpYqFaZIS0tDixYtlMosfmpb+zHMvxkL1TpWVlaGcePGYdmyZWjWrNlbHz927FjExMTg1KlTUFdXh4eHBx9IUqkUdnZ2OH36NHbu3AlHR0csX74cq1evhp+fH6Kjo6GqqoqKigo0atQIUVFRSudw4MABeHt7QyaToU2bNti9ezdmz56NuLg4TJs2Dampqdi3bx/c3d2xZMkSpZKFe/bsQVhYGFRUVDBt2jQkJCRgx44dUCjQQV+TAAAgAElEQVQU4DiO77nWDj9XV1djy5Yt2LJlCyQSCXx8fDB16tTPrgxiXaqdvFQbsHFxcdDW1uYD1tbW9rX7w8rlcty/f19pApSGhobSkLFYLP7XjRAwzKeChep7sHv3bmRnZ8Pf3/+tj+U4DgMHDkRxcTGOHz8OhUIBT09PqKmpQUNDA/n5+ejZsyd27dqFDRs2wM3NDUePHsWkSZPQv39/ZGVl8TvZpKamYu3atXBzc+PbLy8vR9++fXH58mWoqalh8+bN0NXVRWBgIJo3b44ZM2Zg5cqVSE1NxaxZszBq1Cj+FzTHcVi7di3Wrl2LJk2aYNasWTh37hx27doFIuLDNTg4mA9XjuNw6NAhrF69Gunp6fDy8sKsWbM+2zKIdYmIkJGRwVd7io+PR/369ZU2B6hXr95r28jOzlYK2aKiIpibmysNGWtpaX2gq2KYfzcWqu+BVCrF2LFjERoayofL25DJZOjbty/09PRw4MABVFRUoF+/ftDQ0ICenh4ePHgAb29vrFmzBosWLYK3tzcSExMxbNgwGBkZwdHREZs3b0bHjh1x7do1+Pr6IigoSKn38r///Q8jRoyATCaDg4MDjh49ikWLFuHw4cPw8fFB69atsWjRIjRq1AjLly9H27Zt+WMrKysRGhqKqKgo2NjYYObMmdi3bx/27t0LoVAIhUKBvn37IigoSOn6//jjDyxZsgS3bt2Cq6srAgIC+NnHTM0fIGlpafxwcUJCAgwMDPiQbd269Rutgy4tLeVnGSckJODBgwdKQ8bW1tZsyJhh3hMWqu/JgQMHkJiYiDlz5rzT8aWlpejevTvs7Oywbds2lJeX88HapEkTxMTEYMqUKVi4cCGmTJmCqVOn4smTJxgyZAiKi4sxbdo0BAUFwdramv+lumPHDqVfpqWlpXB3d8eVK1egpqaG9evXw9bWFlOmTEFlZSUWLVqEc+fOYc+ePejTpw8WL16stK1aUVERfvjhB/z222/48ssvMWXKFGzduhW//vorVFRUUF1dDXd3d8ybN08pXO/du4fw8HCcOnWKD+WuXbu+873+p1IoFLh//z4fsklJSWjZsqXS5gBv0gN9dsg4KSkJampqSiHLhowZpo4Q817IZDIaMWIEpaSkvHMbWVlZZGNjQwEBAUREVFZWRl26dKHevXuTn58fWVpa0q5du8jU1JS+//57IiJSKBTk5+dHZmZmtHfvXnJxcaEOHTqQh4cHWVlZ0YULF577nqioKNLU1CSBQEAODg5UXFxMS5YsIbFYTCNGjKCbN2+Sh4cHmZmZ0bp160ihUCgdn56eTt7e3iQSiWjSpEkUHx9Po0aNoubNm5NYLKYWLVrQmDFjKDMzU+m4vLw8mjVrFpmYmFDnzp3pl19+ea5t5i9VVVUUHx9Pu3btou+//54GDRpE06dPp+3bt1NMTAxVVla+UTscx9GjR4/o5MmTtHLlSvruu+9o8ODBFBgYSDt37qSYmBiqqKh4z1fDMP9MrKf6Hh0/fhxXrlxBSEjIO7eRlJSEfv36YcKECZg6dSrKy8vh6ekJLS0ttG7dGocOHUJ4eDgCAwPRqVMnbNq0CUKhEGvWrMHSpUsxe/ZsxMTE4Ny5c+jevTuOHz+O7777DrNnz1Za2vHkyRO4u7vj6tWr/LpWNzc3TJo0ie9x6+vrIygoCPr6+li+fDnat2+vdK63b9/G3LlzkZSUBF9fX3z99dcICwvD6dOnoa6uDrlczg8Lt2zZkj+usrISq1evxs8//wyhUIiRI0fCz8+PLR15jaqqKiQlJfE92bS0NJiYmPDDxRYWFq/dkrBWWVmZUmGK1NRUNG/eXGkCVOPGjd/zFb0KB+AmgDsAigGoATAA0AVAi494XgyjjIXqe1RdXQ0/Pz9MmTLlb22h9scff8Db2xsLFy6Ej4+PUrB26NABUVFRiIiIQHBwMFq2bIndu3dDU1MTJ0+exPjx4+Hp6Qlzc3OEh4fzS2vMzMwQGRn5XPWnqKgojB07FjKZDPb29jh//jyOHz/OPx9dvnw5fvnlF+zcuRPdu3fH0qVLnytTeObMGQQFBaGgoAATJ05E9+7dMX/+fFy8eBGampqQyWRwd3dHUFAQWrT46xcix3GIiorChg0bUFBQwJdBfN2MWKZGZWUlEhIS+M0BMjMzYWFhwU96MjMze+OlTdXV1XxhitqgVVNTU9owQCwWv7AOct0qA3AUwM8A8gEoAKgCINQErQCAEwAfAJ3+/98Z5uNhofqenT17FseOHUN4ePjf2n/zyJEjmDhxIjZv3gw3NzelYO3evTs2bNiAFStWICIiAhzH4eDBg6hfvz5SU1Px9ddfo2nTppg+fTomTZoEc3NzVFVV4eHDh9i2bdtzPc6ioiL07dsX169fh5qaGtauXYuhQ4di5syZOHbsGEaOHAkfHx/MnDkTd+/exeTJkzFhwoTnnsnt2bMHixcvhkAg4CclzZs3D3/88Qd0dHQglUrh4eGBoKCg52YDnzx5EsuXL0diYiJ69+6NgIAAvooT82YkEonS5gA5OTmwtrbmn8mamJi88XNUIkJOTo7SLOOCggKYm5vzIWthYQFtbe06vIIsAOP//596AF60HItDTc+1CkB/AAGoCV2G+ThYqL5nHMdh4sSJGDVqFBwdHf9WW1u3bkVoaCj27NkDR0dHpWDt168ffvzxRyxbtgw7duxAZmYmfv31VzRv3hzl5eUYOnQocnJysH79egQGBqKwsBBdunTB/v37+bB91vbt2/Hdd9/xvdazZ88iOTkZkydPhkKhwPLly1FaWoq5c+dCV1cXS5cuRadOnZ67/nXr1mHt2rVo3LgxQkJCUK9ePcyfPx83btyArq4upFIpP6Hp2XC9ffs2wsPDceXKFTg5OWH27Nl/+z7+W5WVlfHrY2NjY1FYWAgbGxt+uFgsFr/VH34vGjJu1qzZc0PG7/bH5GMAI1DTU32TesgKALkA+gIIAcAmXTEfBwvVD+CPP/7A7t27ERER8bd6qwCwePFibNu2DceOHYOJiYlSsH799dcICQlBeHg4Tp48iStXrmDv3r2wsrICx3GYMWMGDh8+jDVr1uDEiRM4ePAgRowYgV27dsHe3h5btmx5rjhDXl4ePD09cePGDaipqWHNmjUYPXo0wsPDsWnTJnTr1g2LFy/GunXrsH37dri6umLZsmXPLdmorKzE4sWLsWPHDlhZWSE0NBRSqRTBwcGIj4+Hrq4uJBLJS8M1MzMT4eHh+O2332BiYoKpU6fC09Pzb93Lf7snT57wARsbG4uysjK+F2tnZ4eWLVu+1f+vTw8Z1/ZoVVVVlULWyMjoDYaMOQDDADwEoPz/UV6eDKNH38HBg+2hovLsuXEAcgD4A/jvG583w9QlFqofABFh+vTpGDBgAFxcXP52e9OmTcPp06dx6tQpGBgYKAXrN998g9mzZyM4OBjJycmIjo5GZGQkOnfuDADYsmULFi5ciOnTp8PAwADff/89+vXrh8TEROTn52P79u1KZQprbdmyBZMmTeJ7rWfOnEFpaSkmTJiAlJQUzJs3D66urpg2bRpu377NT6x6dnjxyZMnmDdvHn799Ve4uLggNDQU6enpCAkJQUpKCnR1dVFeXg4PDw/MmzfvuapUpaWlfBnEevXqYdy4cfjmm2/YcpA6UFhYqFS3uKqqSmlzgGbNmr1VyBIRHj9+rBSyBQUFMDMz40PW0tLyBUPG1wBMAtAEADB69B1MmiSGg4P+a0IVAKSoCdffUTOZiWE+LBaqH0hMTAw2btyItWvX/u3JHRzHYfjw4Xjw4AFOnjzJB1FtsI4fPx6TJ0/GzJkzIZfLERERgZUrV/KF9i9cuIAxY8agR48emDBhAoYPH45mzZrBxsYGe/fuxZw5czB27Njnvvfx48fw9PTErVu3oKamhpUrV+K7777Drl27MH/+fBgbG2PNmjVITk7GnDlzoK6ujh9//BGurq7PtfXw4UPMmTMHly5dQr9+/TB//nzcvHkTixYtQlpaGvT09FBaWgpPT0/MmzcPTZs2VTq+uroamzZtwtatWyGVSvHf//4XkydP/leXQaxrtXWLa3uzAoFAqSdrYGDw1m3WDhnX1jO+f/8+mjZtqrRmtnHjhRAIrqO2l/p2oQrUDAMvAdD1Ha+cYf6GD76I51+K4zgKCAigU6dO1Ul7crmc+vTpQ7169SK5XE5ENetYXV1dqW/fvnTy5EkyNjamJUuW0C+//EJisZi2bNnCH5+RkUHt27enXr16UWZmJvXv359sbW1p9erVZGZmRiNGjCCpVPrC7163bh2/rtXe3p4KCwuppKSExo4dS2KxmEJCQkgmk9GCBQtILBaTj48P5ebmvrCtO3fukIeHBxkbG9O8efNIKpXS4cOHydnZmcRiMdna2lKrVq3Iz8+PcnJynjteoVDQ3r17qWvXrmRsbExTp0594eeYv4fjOMrKyqJjx45ReHg4+fj40OjRo2nlypV05swZKigoeKd25XI5JSUl0YEDByg0NJTGjx9Eqalf0L17FpST057CwkyoXz8DGjCgKQ0a1Iz27m1Hnp4GdOyYE/n6tqThw1vQ/v3tiMjzqZ/ORDSm7i6eYd4CC9UP6O7duzRq1Ciqqqqqk/YkEgk5OzvTkCFD+KIJTwfr5cuXydTUlIKCgujEiRNkbGxMoaGhSsf/5z//IXt7e4qLi6Pg4GASi8W0YsUK6tatGzk6OlJSUtILvzsrK4vatGlDQqGQ1NXVad26dUREdPHiRXJ0dKT27dvTpUuXKCsriwYPHkzGxsYUHh7+0uIOZ8+eJVdXV7KwsKBVq1bxYenk5EQmJiZkb29PrVq1ovHjx780oC9dukT9+/cnQ0ND8vX1pbt37/6d28u8AsdxlJGRQYcPH6bQ0FAaNmwYjRs3jtasWUMXL16kJ0+evGO7N0kma0v5+R3pwYPWFBsrIi8vLdq/vxVlZrahlJQO5OHRmJYssSKptC+lpXUnb+/mFBPzJf0Vqr2IqFsdXi3DvDkWqh9YcHAwHTlypM7ay8/PJ3t7e5o0aRL/2tPBevPmTbKwsKAZM2bQjRs3yNzcnKZMmcKHm0KhoICAADI2NqYjR47Q4cOHycTEhPz8/GjatGlkZGREO3bseOn3r169mjQ0NEggEJCdnR0VFhaSQqGg+fPnk0gkorFjx1JZWRmdOHGC2rVrR46OjnT69OmXthcdHU1t27YlBwcH2r17NykUCoqKiqK2bduSqakptWnT5rXhmpSURCNHjiSRSESenp507ty5d7y7zJviOI5SU1Pp4MGDFBISQkOGDKHx48fTxo0b6cqVK1RaWvqGLV0moo70dM9z5MgWdOGCA2VmOtDFiyJydlalP/+04d/fts2eVq60eeqYvkTk9B6ukmFej4XqB5aamkq+vr4vHVp9Fw8ePCALCwtasGAB/1ptsLq7u1N8fDxZW1uTn58fpaSkkJ2dHXl7e/PDxkRE27dvJ7FYTD/++CM9ePCAOnToQF27dqVt27aRiYkJjRs37qU97IyMDLK3t+d7rWvWrCEiovv371OfPn3IwsKCD8iwsDAyMjKiIUOGUFZW1gvbUygUtHbtWrK0tCQXFxc6deoUKRQK2rp1K9nb25OlpSW1bduWWrVqRRMnTnxpuObm5tKMGTPI2NiYXFxc+HNg3r/q6mpKSUmh6OhomjdvHg0ePJgmT55MW7ZsoT///JMkEslLjrxJz4bqqFGt+J5obq4b9e37BV250oxksl5E5ElHjrSnoCCzp47pTURdP8BVMszzWKh+BIsXL6bo6Og6bTMmJoaMjY1p48aN/GtPB+v9+/fJ3t6efH19KScnhzp16kR9+vRR+uV29epVsrS0pG+++YbKysrIx8eHLC0tKTo6mjp37kzOzs704MGDl57DihUrlHqt+fn5RFQT2GZmZuTh4UEZGRmUnZ1Nw4YNI7FYTAsXLnxp0EmlUgoODiZjY2Nyd3enmJgYUigUtH79erKxsSFra2tq3749GRoa0qRJk14arhUVFRQeHk42NjZkb29PK1euJJlM9i63mXlHcrmcEhISaPfu3TRnzhwaNGgQ+fv7U2RkJN28efOpPzKziKg9EbnTy0LV09OA/vzThpKTzYnjPOmnn57tqboQke/HuEyGYaH6MWRmZpKPjw+Vl5fXabunTp0isVhM+/fv5197OlgzMjKoXbt2NHjwYCouLqbevXuTs7MzH35ENc9KnZ2dqWvXrpSfn0/Lly8nkUhEK1asoPHjx5OxsTHt3bv3peeQnp5Otra2fK911apVRERUXFxM33zzDYnFYgoNDSWFQkFnz56l9u3bU9u2ben3339/aZvFxcU0efJkEolE5O3tTenp6SSXy2nFihVkaWlJtra25OTkxBf0f1m4KhQKioyMpI4dO5KZmRnNnTuXiouL3/Y2M3VAJpNRbGwsRUVF0ezZs2nQoEE0c+ZM2rFjBxUUDCSF4q/e6vTpxnTsmBM9HapLlljSjRsiun27Lfn4tKBbt55+ptqeiE58xKtj/s1YqH4kK1asoKioqDpvd/fu3SQWi+nixYv8a2VlZfTll1+Su7s730v19PQkiURCQ4cOJXt7e6UeqFQqpSFDhpCNjQ3dvn2bzp8/TxYWFuTr60uRkZH8LNuX9TAVCgUtWbKE77Xa2tryQXf+/Hlq164ddejQga5evUoKhYJ+/PFHMjY2pkGDBj23k83TMjIyyNfXl0QiEY0fP54KCwtJJpNReHg4mZmZkYODA3Xo0IFEIhFNnjxZ6Y+FZx07dox69+5NIpGIxo0bR+np6W97q5k6JJVKKSYmhrZv306rVw+hlJQGlJBgSo8etaXTp9vQiBEtaciQ5rR//1+zf4cNa0ru7lq0e7c9/RWobkTkSkRvtmMPw9Q1FqofSW5uLg0bNuydZ0m+yqpVq8jExITi4+P5154O1sLCQurSpQv17NmTysrKaNKkSWRhYUExMTFK7QQFBZGRkRHt27ePsrKyqEuXLtSxY0e+h9mlSxd69OjRS8/j/v37ZG1tzfdaV65cSUQ1Q4FBQUEkEonIz8+PysrKKDc3l4YPH05isZiCg4OVnvc+Ky4ujry8vMjIyIgCAwNJKpWSVCqlBQsWkKmpKTk6OpKzs/MbhWtMTAwNHTqUDA0NafDgwXT9+vU3vc3MeyMnudydSkttKSPDnuLijOj69WaUlGRGWVntqKysK3GcBxF5UkaGPd27Z0U1gepBRG2JaOMrW383EiI6QkRLiegHIgojop1ElPcevov5nLFQ/YjWr1+vtHa0LgUGBpKVlZVSz+/pYC0pKaFevXqRq6srlZSU0IIFC8jY2Pi5mbm1Pd8FCxaQXC4nPz8/MjU1pYMHD9KoUaPI1NSUfvvtt5eeh0KhoNDQUKVe6+PHj4mIKCUlhXr16sU/tyWqWZLTsWNHcnBweGW7RETnzp2jLl26kLm5Oa1cuZIUCgWVlZVRYGAgGRsbU8eOHcnFxYVEIhFNnTr1leGakZFBfn5+JBaLyc3N7bXfzbxvaUTUhWrWnHqSXN6Hioo6U3q6LcXGiunGjWaUnGxOWVlt6caN5lRY6ExE7YhoMhG9/A+yt5dJRMuIyJlqhpXbU81EKqf//z4nIppJRLfr8DuZzxkL1Y+osLCQhg0b9spf9n/H2LFjqV27dkrPDZ8O1rKyMvLy8qKOHTtSQUEBbdy4kcRiMe3evVupnZs3b5KVlRX5+PiQTCajrVu38kG7efNmEovF9P33379yZm1ycjJZWVnxvdbly5fz723bto3MzMzoq6++ooyMDFIoFBQREUHGxsbUv39/ysjIeOV11i7Dsbe3p507d5JCoaCSkhKaNWsWicVi6ty5M7m4uJBYLKapU6dSYWHhS9sqLi6mH374gczNzcnJyYm2bNnCZgx/NClUM5zbjoh60tMzgquqelNhoTOlpdnQ3buNKC5OnS5d6kRHjuyl9PR04jiuDr7/KtWEenuqWfvq+YKfvkTUgYgciegnIqqL72U+Z6xM4UcWGRkJiUSCCRMm1HnbHMdh0KBBKCwsxO+//85v+l1eXo6+fftCX18fe/fuxciRI3Hv3j0cPnwY165dg7+/P/z9/ZV2rsnLy8PgwYPBcRyio6Px6NEjfPPNNzA3N8fs2bPh5+eHL774AlFRUS8tX8dxHBYuXIjQ0FBUVVXBxsYGJ0+eRNOmTfHkyRNMmTIFFy5cwPjx4zF9+nQUFRVh5syZOHv2LIYPH44ffvgB6urqL21748aNWL16NRo0aIDg4GC4ubmhqKgICxYswIEDByAWi8FxHDIzM/Gf//wHgYGBz+0FW6uqqgqbN2/G1q1bIZPJMHz4cEyePLmOtzZjXq8AwF4AuwFUoGa/1Nr9VOX//xlTREdr49IlLZiaWiA2NhZSqVSppGLz5s3fcjOL6wAmANDBi7ece5YcNfu9TgAw6i2+h/nH+dip/m9XWlpKw4YNo+zs7PfSvkwmo27dupGXl5dSj6usrIxcXFzIw8ODpFIpjRw5kmxtbSk9PZ0uXrxIJiYmFBgY+Fxbvr6+ZGVlRdevX6fi4mLq06cPtWnThm7evEne3t5kYWHxyuIOREQJCQlkaWlJQqGQNDQ0aNmyZfx7p0+fpjZt2lCnTp3455tXr14lZ2dnsrW1pUOHDr2y7dpnq8bGxtSnTx+6efMmEdU8w/bz8yORSEQ9evSgLl26kFgsJn9//1f2XBUKBUVHR1OXLl3I2NiY/P39+eFr5kOSEdFJIlpENcOtc4hoFRElEBFHEomERo4cyc8LyMvLo1OnTtHy5ctp5MiR5OvrS0uXLqUTJ05QTk7Oa3qyeVSzLKcrvbh3+rKf3lTTq75ax9fOfE5YqH4Cdu3apRQsda2kpIQcHR1p5MiRSq8/G6wTJ04kKysrSkpKovj4eLKysqJvv/32ueHP0NBQEovFtGvXLlIoFDRr1iwyMjKiPXv20OrVq0kkElFISMgrh00VCgX98MMP/LPW1q1b8zV7ZTIZzZkzh0QiEU2cOJEkEglfEMLU1JS8vLzo/v37r7zm4uJimjp1KolEIho6dCg/uzkrK4vGjBlDhoaG1Lt3b+ratSsfrq9bXnPx4kXy8vLiyyAmJia+8vPMh3Xjxg0aNWrUc4VVOI6j7OxsOn78OC1ZsoSGDx9Oo0aNohUrVtDp06df8PhlK9UM5z6/Tvb1P85ENPZ9XibziWOh+gmoqKggHx+f97qsIysri2xsbGjWrFlKrz8drFVVVTRr1iwyNzen27dvU2ZmJrVr144GDBjwXLGE/fv387Nva3tzxsbGNGPGDLp27RrZ2tqSh4fHa4MqLi6OzM3N+V7rjz/+yL+XlJREPXr0ICsrK37tbXFxMY0ZM4ZEIhEFBAS8tjJVZmYmvwzHz8+P/wWanp5Ovr6+ZGhoSB4eHm8VrrVlEA0NDcnLy0tp+RLzcS1btkypAMqLcBxHmZmZ9Ntvv1FYWBh5e3vT2LFjafXq1XThwmmqqvqSiHrQu4WqO9UEctp7ukLmU8dC9ROxf/9+WrRo0Xv9jqSkJDI1NX2uV/x0sMrlcpo/fz6ZmprS1atXqbi4mFxdXalbt25UUlKidFxcXBzZ2trS4MGDSSqVUlJSErVt25Z69+5N6enpNGDAALK2tqbLly+/8rxq6w9ramqSUCgkGxsbpRKGmzZtIlNTUxowYAD/+vXr18nFxYVat279ymIUteLj4+mrr74isVhMc+fO5StJ3bt3j4YOHUoikYi++uor6tatG4nFYpoxY8ZrwzU3N5f8/f3J2NiYXF1dKTo6mk1q+shKS0vJ19eXEhIS3vgYjuMoLS2NDh06RJGRY+jevYYUGyuitLTWtGCBmDw8GivtknP3bheaMcOYhgxpTiNHtqRTp5TLKtaE6sr3c4HMJ4+F6idCJpPRiBEjKCUl5b1+z5UrV0gsFj9XJP/ZYF26dCkZGxvT2bNnSSqVkpeXF7Vv3/65er2FhYXUvXt36tixI2VmZlJZWRkNHDiQbGxs6Pr167RkyRISiUS0dOnS155bTEwMmZqa8jOEw8PD+ffy8/PJx8eHjIyMaNmyZaRQKEihUNCGDRvIzMyM3N3d3+jeXbx4kbp160ZmZma0fPlyPgTj4+Np4MCBJBKJaODAgdS9e3cSi8U0c+bM14arRCKhsLAwsra2JgcHB1q1ahUrg/gRXbp0icaNG/eO/w32EMe1ofLybpSd7UhJSebk5aVF//tfM8rIsKPk5PY0cGBTOn++0/+vpe1DqandSDlUXYhoYl1eEvMZYaH6CTl27Nhzk4Peh8OHD5NIJKLjx48rvf5ssG7YsIHEYjEdPXqUFAoFjRw5kmxsbJ7bDk4ul9OYMWPI3Nyc75UuXLiQxGIxbd68mS5evEhWVlY0YMAAKisre+W5VVdX0/Tp0/leq7W1tdJa2xMnTpC9vT117tyZbt26RUQ1z4zHjRtHIpGIZsyY8UabFezfv5/atWtHdnZ2tGPHDj5cY2Ji+B7tkCFDqHv37mRkZESzZs16bbgqFAratm0bdejQgczMzCgwMJCVQfxIQkNDafv27e9w5FaqKSDxV0h+801Luny5HWVltaUVK5rS6NEaVFb2qklMXYhoRB1cBfM5YqH6CakNp9jY2Pf+Xdu2bSNjY+PnKgjVBqunpyfJ5XL6+eefSSwW80Oss2bNIjMzM7p69fkZjsuWLSOxWEyRkZFERHT8+HEyNTWlcePGUW5uLrm7u5OtrS3duHHjted3/fp1MjExIRUVFdLQ0KCwsDD+PZlMRrNmzeKLOtSG6K1bt6hLly5kbW393FrbF1EoFLRx40aysrIiZ2dnOnHir3qxf/75J/Xt25eMjIzIx8eHevbs+cbhSkR09OhR6tWrF4nFYvLz83vtWlumbhUVFZGPj89rJ7Q9bw89G6pPP1Ndt641LV8upuRkc3p5qLKe6r8ZC9VPzJkzZ2iKGSYAACAASURBVGjmzJl1tHj91cLCwsjMzOy5XzylpaVKwbp3714Si8X8X/614fmiqkNHjx4lY2NjmjlzJikUCsrIyKBOnTqRq6srZWZm0vz580ksFtPatWtfe35yuZymTp3K91qfrRAVHx9P3bp1IxsbG36pTe0Wcebm5tS7d+83mqErk8lo4cKFZGJiQr1791b6Q+PixYvk5uZGxsbGNHLkSOrRowcfrs8+Y36RGzf+j70zj7Op/v/48+539sUYs5kZs5nF2DXWiSzZJUtIIsmWRPlKVOLbQiUpFVEUFdLC11JEGxUhjH0bxsww+3bv3P39++PO3ExG8c1P9J3n43Efs5xzPudz7sw9r/NeP7/IgAEDJDw8XO65557LWkHW8P/H1q1b5ZFHHvnDlpeX8704uyRVL6qrVzeV2bPjZN++sD+wVmtiqv/L1IjqTYbdbpexY8fesB60jz76aJWG95UUFxdXEdaNGzdKZGSkvP322yIi8sEHH1SxSi/l6NGj0qhRI+nTp4+UlZWJ2WyW4cOHS1xcnGzfvl22bt0qcXFxcu+99/7Bupq/8dNPP0lUVJTLar00oauy1CYqKkoGDBjgKsspLS2V8ePHu6zZqzlPcXGxTJ48WSIiIuSee+6p8rCxdetWad++vcTExMiDDz4od9xxh0RFRckTTzxxVeKanp4uY8aMkYiICOnSpYts3LjxT4+p4a/hcDjkmWeekVWrVl3DURYRuUMuzf69dJWcnJzO0r9/sKxblyhpadHVxFRrsn//16kR1ZuQnTt3yiOPPHJDrFW73S733nuvtGzZ8rJ4Z3FxsbRp08YlrNu3b5eoqChX0lGlVXppQlElhYWF0qVLF2nevLmcOXNGRMRVw/rKK6/IhQsXpGPHjtK0adMqjf+vhNlslocffthltcbHx1dxqV68eFEGDRokUVFRsmDBAleM9MCBA9KxY0eJj4+/LDnrSmRmZsrw4cNdK9hc+sCxYcMGadu2rdSvX1/Gjh0rnTp1kqioKJk2bdpViWthYaHMmDFDYmNjpWXLlrJs2bKajOH/R3JycmTw4MFy7ty5aziqap3qTz+1keHDf1slJy3tdpk0qZ507uwu995b53fZvzV1qv/r1IjqTYjD4ZBJkybdsPpHu90uXbt2lS5dulzmKqsU1l69eonVapWffvpJYmJi5NlnnxURZ+wzNjZWJk+efJk42O12GTdunMTGxsr27dtFxJmZGR8fL0OGDBGDwSBPPPHEFS3e6vj+++8lMjLSZbXOnj27yvaNGzdKcnKypKamVolNL1++XOLj46Vjx45XJeIizs5Pd911l6u38aXW7qeffiopKSmSkJAgjzzyiHTs2NElrn+WjCXifEhYsGCBNGrUSJKSkuTFF1+8Kmu6hmtnw4YN8vjjj1/Dw8vVdVTKzW0lhw5FicPx+45KP17vS6jhFqJGVG9S9u7dK6NHjxabzXZDzmcwGKRNmzYyYMCAy24+lcLau3dvsVqtsn//fomLi3M1kjh+/LgkJyfLfffdV+2Na+HChRIREeFyHV+8eFHuuOMOadGihZw8eVLWr18vMTExMnLkSDGZ/nwdzPLychk9erTLaq1fv77LGq7c/thjj0lERIRMnjzZlchUWlrq6rI0YcKEqxI/kaplOK+88orrwcNut8vHH38szZo1k+TkZJk8ebJLXJ988smrGt9ut8uqVaukXbt2rjaIV1pkvYb/DofDIU888cSftrisyi5xNtK/srA6HD3kwIEIKSxsK05BbSpOK7eG/2VqRPUmpfJGsGXLlht2ztzcXGnUqJE8/PDlmYu/F9ajR49KQkKCjB8/Xux2u1y8eFFSUlKke/fu1Za0bN26VWJiYuSRRx5x1ZhOmDBBoqOjZd26dZKRkSGpqamSkpJy1bW627dvl/DwcFGr1aLT6VzWcyX79++X1NRUSU5OrhLDTEtLky5dukj9+vXlvffeu+r357PPPpPmzZtLcnKyvP/++64HCLvdLsuWLZNGjRpJ48aNZerUqa6Y69WKq4hzAfdevXpJRESEDB8+/LLSpRr+ezIzM2Xw4MGumPvVUblKTXO50io1+fmt5PTpOuJw1KxSU4OTGlG9iTl06JA88MADYrFYbtg509PTJT4+/jKBEnEKa+vWrV3Cmp6eLsnJyTJ8+HDXWqadOnWStm3bVtuk/uTJk9KsWTPp3r27lJSUiIjTLRsZGSlPP/20WK1WmThxokRFRV1VSYyI0yp98MEHr2i12u12WbBggURFRcmgQYOqWIEffvihJCQkSIcOHa46K9dut8s777wjiYmJ0rJlyypiXVmik5ycLM2aNZOnnnpKOnToIFFRUTJjxoyrFtfDhw+7Wij26dOnpg3idWLt2rUyffr0a8xVqFxPtVJcq66n6nDcJlu3NpW9e68ufFHDP58aUb3JmTlzpqxfv/6GnnPfvn0SFRXlctdeyu+FNTMzU5o1ayb33HOP2O12sVqtMmDAAGnSpEm1tZmlpaXSs2dPadKkicsi3bdvnyQnJ0vv3r2lpKTE1Ud43LhxV10OsWXLFqlbt67Lan3mmWequKKzs7NlwIABEhUVJQsXLnRtKy8vd2X8jh079qqSjUScMdHnn39eoqOjpUuXLlWytSuFPCEhQVq2bCnPPvusyy1cnbheKZaanZ0tkyZNklbh4fJqTIykt2snjl69RPr3Fxk/XmTrVpGazk1Xjc1mk0mTJsmXX375XxxtEJH/iMjLIjJDRF4QkZUikiO//PKLjB07tibhrAYRqRHVm55Tp07JsGHDrqpL0PXk66+/lsjISFcj+0v5vbDm5+dLy5YtpXfv3mI2m11lQfHx8bJ///7Ljrfb7TJp0iSJjo523eCKioqkR48e0qhRIzl48KCcPHlSWrZsKW3btr3qxgkGg0FGjBhRxWqtXJ2mknXr1klSUpK0b9++SsLS0aNHpWvXrhIbGyuLFy++6hvkpWU4AwYMqFKGYzab5aWXXpK4uDhp06aNPPfcc3LHHXdIdHS0PPXUU1JaWiq7d++Wjh07yvnz5y8fPC1NZNw4sTVtKpmhofKTu7v85OkpGXFxYm/VSqRFC5H27UXeflvkBv9/3KqcOXNGhgwZInl5eddtTIfDIVOmTPnTJQ9r+N+gRlRvAV588UVZs2bNDT/vqlWrJDIyUr777rvLtv1eWIuLiyU1NVW6dOkiRqNRRJxWdmX/4OpYsmSJREREyIIFC0TEKbbTp0+XyMhIWbFihZjNZhk9erTExMTI559/ftXz3rRpUxWr9emnn64ikuXl5a6EpX/9619VesSuWrVKkpKSJDU19ZpqhTMzM2XEiBHVluGUl5fLv//9b4mJiZH27dvL3LlzXW7hhg0bSlxcnAwZMqRqr9qtW0Vuu02kZUuR7t1FevYUR48ecrZhQ/nOx0e+9vCQo3FxYmnfXqRpU5Hhw0VqWiJeFStWrJBZs2Zd15K1gwcPysiRI6+x0UQN/0RqRPUWICMjQ4YMGSJlZWU3/NxvvPGGREdHV1uG8nthNRgM0rlzZ7n99ttdLs4333xTIiMjr/hQ8P3330tsbKyMHj3aJXyffvqpREVFyaOPPip2u10++OADqVev3jWVRZSWlsrQoUPFzc1NlEpltZ2j9u3bJ23atJFGjRpVcQmWl5e72iCOGjXqmvr3Hj16VPr27SuRkZHyxBNPVHH1GgwGefrppyUqKko6deokEydOFC8vL3Fzc5Pg4ODfmlrs2CHSvLlIx44iPXtW+7rQooXsDAiQrW5uciA8XEwNG4oMG1ZjsV4FVqtVxo0bJ99+++11HXfGjBmyadOm6zpmDbceNaJ6i/Dqq6/KihUr/pZzz5gxQxISEqp1w1YKa58+fcRqtYrZbJaePXtKq1atXMlKlW0Or9Sa8OzZs3LbbbdJp06dXAJ2/PhxadasmXTq1Elyc3PlyJEj0qxZM+nQocNlK+X8EevXr5ewsDDRaDSi0+lc679WYrfbZd68ea4ev5cuWH3y5Enp0aOHxMTEVInDXg07d+6Ujh07SmxsrMydO7eKBVNaWipPPPGEeHl5iYeHh4SHh4unp6doNBqZ8cgjYm/TRqRDh2rFdGxEhBxITXX9XNi2rfwSHCxbdDo55ecnGVOmXPUc/5c5duyYDB06VIqKiq7bmJXr7NasUPS/TY2o3iJcvHhRBg8efF1vAtfC6NGjpWnTptVabb8XVrvdLgMGDJBmzZq5ShgquzHNnDmz2vENBoP07dtXGjZs6LKKjUajDBo0SBISEuSnn36S8vJyGTZsmMTGxl62ws4fUVxcLEOGDBE3NzdRqVQSGxt7WdlOZmam3H333RITEyOLFi2q4hr89NNPJTk5Wdq0aVPtQgJ/xLp166RFixaSnJx8Wfekr776Svr27SuBgYGSkpIi48aNk7c7dZJTtWrJhdtuE3uF2/dqXoaOHSUtNFR+1umkV6dO/2Uyzv8WS5culblz517XMWfNmnVNoYoa/nnUiOotxFtvvSVLliz5W85tt9vl7rvvltTU1GqTpqoT1mHDhknDhg1dFu7BgwclPj7+ipmSdrtdpk2bJlFRUVUynufOnSuRkZHy1ltviYjIokWLJDIy8jKr88/49NNPJSQkxGW1Pvnkk5cd/+mnn0piYqJ07NixSp2o2WyWJ598UiIiImTEiBHVlgxdCbvdLkuWLJGkpKTLynBEnA9MDz/8sESEh8vuoCDJTU6Wo3Fxsi8sTC5eo7hamzSRZQMH1rRBvApMJpOMGjXqmh+U/ojTp0/L0KFDb3hiYQ03DzWieguRn58vgwcPruKivJGYzWbp0KGD9O7du9obdXXCOnbsWElMTHRZhmfPnpUmTZpI//79r+gmq2zWf6kVsXXrVomNjZWRI0eK2WyWffv2SaNGjaRr167X9H4UFhbKwIEDxd3dXVQqlcTExFxmtRoMBpkwYYJERETItGnTqtQJnz59Wu666y6Jjo6u0mP4ajCbzfLCCy9ITEyMdO7cWXbt2lVl+8Xt2+VU7dqyRa+XX0JCJCclxSmudes6xbVHD3mgbl3Z167dlYW1bVuR4cOlvLxc5s+fL40aNZIGDRrI3Llz//qN/vx5kX37RH78UWT/fpGCgr823k3AwYMH5f7777+u+Qpz5syR1atXX7fxari1qBHVW4z33ntP3njjjb/t/MXFxdKiRQsZPnx4tdsLCwuldevWctddd7niiFOmTJG4uDg5ePCgiDgfDtq2bSudOnW6YkOEn376SeLj42X48OGucTIyMqRt27bSpk0bOXfunJSWlsrAgQMlPj7+mpNO1qxZI8HBwS6rderUqZcJ5O7du6V169bSuHFj2bp1a5Vt69evl0aNGkmrVq3khx9+uKZzl5aWypQpUyQiIkL69+//m6h/+61ISooYO3aUfWFhskWvl71hYZLbqpVLXHvp9bKjefMri2rnziJdu7rOVdlKsW3bthIdHS1Tpky5rA1iYWHhlTNhLRaR7dtFHnjAmTzVsuVvr9tuE3nySafA3oDFH/6/WLhwobz22vVbqu3vTCys4e+nRlRvMUpKSmTw4MGSlZX1t80hMzNTkpKSXL1/f091wjpz5kyJiYlxWWfl5eXSvXt3SUlJuWKv28zMTGndurW0b99ecnJyROS3hdxjY2Ndi4q/+uqrEhERIS+88MI1WY75+fnSt29fl9UaHR19WWtAu93ucj8PGzZMCgsL5dy5czJs2DDJy8uTZ555xrWtynUcPy7y3nsic+eKzJkjsmSJyIEDVcQnOztbRo4cKREREfLggw9KwZo1TqGqEMiyDh1kT2iobHFzk11BQbLNw0M6gcwH+blOHTndoIHktmwpps6dxVEpql26OJOcfofNZpPt27dLjx49XC7s48ePS3l5udx5552ydGk1PWuPH3cKdIsWIm3aiPToUVXAu3Vzzrd5c5GRI2/Zkh6DwSDDhw+/rmvd/p2JhTX8vShERKjhluLjjz8mMzOTxx577G+bw7Fjx+jVqxdjxoxh8uTJl20vKiqiR48eBAYGsmbNGtRqNS+99BJvv/02y5Yto127djgcDkaMGMG+fftYu3YtsbGxl41jMpkYMWIEBw8eZMWKFTRu3BiARYsW8eKLLzJmzBimTp3Kzz//zIMPPkh0dDTLli3D19f3qq/lo48+YvLkyRQUFKBQKJg4cSIvvPACSqXStc/58+eZMGECaWlphIaGkpmZyYgRI3jyySc5d+4ckyZN4uC+fTzXpQv9DQYUR4+CwwEqFSgUYLOBUgkREXD//WywWFi7YQOtW7fG29ubFStWoN69m+dNJiKaN8dNr0eA4qIijh49Sn5+Pg4RFgA9gViVCn8/P7y8vLBYLKBQ4OXpibdOh3utWuS/+y5fffUVW7ZsYdeuXRQXF3P48GGCg4M5dOgQc+bM4dtvvyU4OJiCggK8vb157bXXaNOmjfOCDx6EsWOd3/v5/fEbKAI5ORASAu++C/7+V/3e3yzs2bOHN998k4ULF6LX6//yeDk5OTz66KO89dZb+Pj4XIcZ1nCrUCOqtyDl5eWMGjWK5557joiIiL9tHj///DODBg1i9uzZDB069LLtRUVFdO/enTp16riE9c033+Sll17irbfeomvXrjgcDqZMmcL69etZuXIlLVq0qPZczz77LMuXL+ell16iX79+rvOPGDGC5ORk3nvvPSwWC8OHD+fUqVMsWbKElJSUq76WnJwcRo0axdatWzGbzURGRrJ+/XoSEhKq7DdjxgxefvllPD09CQ4O5qOPPqJBgwZgMJA+ZAjGLVswq1SEN2hArYCAqicRgdJSKCsj08+P/hkZlKjVWCwWysrKiPf356UjRyhQqwkOCcFisVBcUoJSqUSjVlNaVsY8q5VeCgVRgFanw9vLCxQKQkJCcNPrsWdl8a2HB/ccOQKAUqlErVaj0+koKiqq8qBw8uRJUlJSMBgMuLm5ERQUxMaNG6mn1cK99zrn6+3t2n/k/v1MiIyk8ZVEIicH4uJg6VLQaq/6vb9ZmDdvHp6enjz00EPXZby33noLnU7HAw88cF3Gq+HWQDVz5syZf/ckarg2NBoNCoWCr7/+mtTU1L9tHmFhYcTExPD4449Tv379yyxNvV5Pv379WLx4MRs3bqR///6kpKTg5+fHlClTCA8PJzExkTvvvBOTycTUqVOJi4ur1mJt3749wcHB/Otf/6KsrIzU1FTCwsK45557WLlyJW+++SZdu3Zl7NixlJaW8sQTT6BQKGjZsuVVXYuHhweDBw8mPDycnTt3cvHiRRYtWkRJSQkdO3ZEoVBQXl7Oiy++iFqtxmw2c/78ebZt28aDw4ahnjQJ3xMnqNWgAWU2G8ePH6eouBh/f3/UajUADhFKLRbyTCasp08Tl5XFFpUKo91OYGAgRVYrcSLUNRq5UFKC0WhEp9MRHBxMSUkJep2O7y0WWtaqhbfdjtlsxmQyYTKZKC4qwsvLiyBPT5I/+ghtaCg//PADDocDm82G1Wrl9ddfZ/Xq1ezfvx83Nzf279/P559/jl6vx83NjaysLN5//33uycnB59w5FLVqVXmP1l28SIqvL0FXsuTc3SE9HWJjISrqqt73m4kGDRqwaNEi4uPjqV279l8eLzo6mtdff5077rgDNze36zDDGm4FakT1FiU6Oprly5eTlJRErd/d/G4kcXFx+Pj4MHXqVNq0aUNISEiV7dUJa9OmTQkLC+Pxxx8nICCAhg0b0qZNG3x9fZkyZYrrd78nKSmJ1NRUZs2axY8//kjPnj3x8vLi3nvv5fjx4zz11FNEREQwatQomjZtysyZM/n+++/p1q0b2qu0nBo1asTQoUM5dOgQ586d4/vvv2f58uV06tSJwMBAgoODadiwIQkJCfj6+nL06FGi1q4l+tw51KGhKJRKatWqRUhICBcvXuTYsWMUFRVRVFzMuYwMysvL0Wi1eAcFYT9/npCyMjbhdC/n5uaSa7fTw+HAIzAQlUqFxWymID8ftVpNUFAQmwoLaeLuTucWLTifmYndZsPhcCAOBwFaLccMBmZkZpKamkqzpk3J37mTSJuNyX37MrxnT/LKy/nu55955513WLduHSKCSqXCzc2NWbNm0fP224l8913OGwygVOLu5oZCoQCuQlQVCrDb4dw56Nv3mv6PbgZ0Oh2BgYEsXryYLl26oFKp/tJ4bm5uFBcXc+DAgSt6YGr451Hj/r2F2bRpEzt37mT27Nl/91SYO3cuS5YsYdOmTURHR1+2vTpX8MaNGxk/fjzTpk1zudw2btzIww8/zPjx468YM87JyWHAgAE4HA7WrFlDUFAQ4IyNTp8+nUGDBvHvf/+bgoIC7rvvPi5cuMCyZcto1KjRNV3T0qVLmT59OoWFhSgUCsaPH89LL71UxYUqBQUUt25NekkJvrVq4e3tTZnBQGlpKeXl5SgUCooKC1GqVCQlJhIYGOg6dvu2bXgajdwDnKn4naeHB4tFSBIhplUrTp06RV5eHiaTCQ8PD8xmMz4+Pvj4+nLmzBnE4XAKo8NBoELBlz168MZ339HGYGCkVksQUG42ExcTg19lrLN7dxz9+9Nt4kR+3b8fg8FAeXk5IsKEkBAeNZuxBwRgsVoxmUzUCQwksE4dxhw6RM/AQLbl55NjNtPUx4dJUVFoL3k/EIGLF2HlSqcr+BbkhRdeIDQ0lGHDhv3lsYqLixk7dizz58+v8rev4Z9LjajewthsNsaOHcsjjzxCcnLy3z0dJk+ezNatW9m6dWu1N5BLhfWTTz5BpVLxzTffMHLkSMaPH+9KePr555+577776Nu3L3PmzKn2XBaLhVGjRrFr1y7ef/99lyVw6NAh7r33XkJDQ1m5ciXe3t7MnDmTDz74oIp4Xy1ZWVk88MAD7NixA5PJRN26dfniiy9ITk6mpKSE7Hnz8Fu2jAsiFBYWOuObwcHUCQrC08MDpVKJiHDq1CnOnj2Lr58fsTExFBYWkp2djTIvj1XAfKUSb29vzGYzHZo25X21Gsvp01yw21FrtdisVpQqFRkZGeh0OjRqNSgUzvHNZrwtFhbqdBwvL+d5QK9QUCaCUaEgKDiYpk2bOi/IZoOCAnA4eOPQIV5wc+O21FQGDBhA7dq1CZs3D82+fVy0WDCWl6NSqVwW2wIRQv38mBkfj0ap5F9HjtC7Th26/f5vnZ0N06ffktYqQGFhIRMmTGDWrFlEXQc39ooVK8jPz2fixInXYXY13OzUiOotzvbt29m0aRNz5sxxuen+LhwOB8OGDePkyZNs3boVT0/Py/YpKiqiW7duBAcH88knn6BUKvn555+59957GT58ODNmzACc2cX9+vWjRYsWLF26tIp1eCkvvvgiixYt4rnnnmPIkCEAlJWVMXToUE6fPs37779P48aN+fLLL5kwYQKtWrVi0aJF15zhuWjRIp566imKiooQERITE6lfvz7/3rcPH70ej4AA3D08KC0tJT09nX8XF3N3ZCTfFxVRYLXS0teXIb6+HE1Lo8xgwMvTE5vNhsVoxEOE7hoNZoUCb29vbr/9dvZ/+y2vazTEmEzovLxQ1qqFp5cXv+zejcPhwGyx4KnREKBSodXpWFK7NqfPn+eJ8nKKgPJL5q7X6fD09CQ6Oho3Nzfsdjt2m43sX3/lqEbDU/7+qDw9adeuHdNPn8YtM5NsgwEPT09MJhOlJSWUlZXxotHI7UBDoEnjxqwrL8euUjHh98KTmQkTJ8L991/Te3wz8fXXX7Nu3TpeeeUVV0z8v8VgMPDQQw8xd+5cQkNDr9MMa7hZqRHVWxyHw8HDDz/MiBEjboq4jcPhoGfPnthsNjZu3FjtDak6Yf31118ZOHAg/fr144UXXgCcVuJdd91FcHAwq1atuqIQrlu3jkmTJjF48GBmzZqFUqnE4XAwe/Zsli1bxsyZM7n//vvJyspi6NChlJaW8sEHHxAfH/+H15KTk0NaWprrdfHiRdLS0sjKysJqtVIvNJT9Hh64/87d7XA4GPLTTzhMJmbWr4+vuztPHz5MhAgDa9cmKzsbo9GIVqMhPCKCouPH6a9QkKfToVQqsVckIXm7u9M/PJwOWVm0Uqux2GwYS0txAAKUi/AhsEGpJNDh4G2gCDBfMpcFQC8gWqFwxU91Oh0qlYrS0lKCgO9VKqZrNNQODOSzwECUx49zwWjEy8sLpUqFwWDAarEwz26nJxAFeHt785NWS7bZzKiAALy8vPD09MTTywttTg48/jhUPOTciogIM2fOJCkpiYEDB/7l8VavXs3Zs2eZMmXKdZhdDTczNaL6D+DHH3/k448/Zv78+X+7tQpgNBrp0qULISEhfPzxx9VamdUJ67Fjx7jrrrvo3Lkz8+fPR6lUUlJSQt++fbHZbHzxxRdXrD89dOgQgwcPpn79+nzwwQcuAf7Pf/7Do48+Srdu3XjttdcAmDp1KmvXrmXWrFmuUiARITs7u4qIWiwWGjRo4HpFRESgUChYuHAhs2bNgqIi/mO14hYZSVJiYpX3fuT+/XTz8UGXlgbAKWAzMEGhQKfX4+3tTXl5OaUlJQQAIzUaDlutKCrEr5KAgADMZjOPDxpE6S+/kH7oELWCgrhosaBt2ZKcoiIOHjzIvPx86uEU1Ut5W6NhfHg4nrm52B0O1CoVZrOZ0NBQzp49i81mo45CwRidjmMqFc+p1bQuKyNfqUQcDjQaDXaHA5vVymtAb4WCxj4+iMPBDyoVyoAAxgYHU1ZaSllZGWVlZfhZLOzr0wf93XeTmJhIeHj4FT0NNzOVtaZz5syhbt26f2ksk8nEqFGjmD17NpGRkddngjXclNSI6j8AEeGxxx7j7rvvpm3btn/3dADIy8ujc+fOtG7dmoULF1a7T3XCeubMGfr06UPz5s1ZsmQJSqUSi8XC4MGDSU9P57PPPiM8PLza8QoKChg4cCAGg4E1a9YQFhYGwJkzZxg0aBAeHh58/PHH7K4KxQAAIABJREFUeHt788gjj7B582YaNGhA27ZtOXbsGAqFooqIhoaGXvEhJT09nVHDhjF3xw4yRXDT62neogU+3t4IMPTnn0k1GgkzGnGIkAssBZ7z9HTFKEvLylCpVNQG+tpsnHM4qpyjMp6ZnJzM7t27CQ0NJTs7Gz8/P4xGIydPniQsLIyTmzZR1qcPGVZrleODg4J4KjeXu9RqeiYlkZuTw8WLF7Hb7YgIjoqPfiBOwX9WoSBFhNeVSnIrRFBZIfIeHh48X1bGQHd3Gvv4EBERwWu//kqZRsMLKSloNRoAxGbDcuECO6ZP52BmJkeOHKGoqIi4uDgSExNJSEigfv3616XBwo1gw4YNfPPNN8yZM+cvPxh88cUXHDx40BXiqOGfSY2o/kPYt28fixYtYuHChX+5FOC6YDeTceYod/cfQO+7B/PU089Wu1t1wpqVlUWvXr2Ii4tj5cqVLnfuuHHj+O6771izZg1JSUnVjudwOBgzZgzffvst7777rqtDkNFoZPDgwezZs4c6depw4sQJGjVqRGZmJm5ubixdupSUlBSniIpAVhYUFTlLRDw9ITwcfufKdtjtZCQmkn76NKU2GwqFgrC6ddHr9TyWnk5bhYLkim5HZ5RKNtjt/MvdHbVajcFoxN/PD71Gg7a8nK5qNWdzcqq9Jjc3NyIjIzlySUMHh8NBdHQ033zzDT4LF3JuwQLSTSYcFcKsUavRarXMNZlo4nCwHzCpVDTz8qKfXk9ZcTFmkwmHCCrAH+gK6AMC+Nxmw1RSQpnDgaenJ94+PiiAp/PyGODmRnN/fxITE3nt119JLylhuI8P8fHx6HQ6Z+Zv164wa5Zr/sXFxRw9epQjR45w+PBhzpw5Q2hoKAkJCSQkJJCYmEjA7xtl3CSICNOmTaN169b07t37L41lsVgYPXo006ZNI+4WzYyu4c+pEdV/CCLCk08+SceOHenUqdPfMwm7GXK/h9PvQ/FhUCgxGA2cOHEKe+AdNOs7F3ySnPWMl1CdsObl5dGzZ0+CgoJYvXq1q870qaee4qOPPmLZsmV/aJW//PLLzJ8/n7vuuovAwEAOHz6Mn58fe/fuZc+ePdStW5f4+Hg+++wzpkyZwsaNG3lp1izu9vWF5cudTQwqRdThAC8vZ5ehnj3hUgFYtoz0qVNJy8mh8oOkVCpZIIIOGOnujpebGx9YLITabLSxWHDY7fj5+eHl7U2kmxuKu+5i4K+/smnTpsvcv76+vtSuXZuysjKys7Mvu061Ws1Wd3dspaWYcDaY0Gq12Gw2VCoVC0Tw1OkYrtViLivjM62WJA8Pbnc4KC4uxlJh3QYAjyoU7Abu12h4TKGAoCAEqFOnDgcPHiQ+IYH8vDy0Wi3x8fE4HA4OHTqETqfDaDQSGhxMgAiK996DBg2u+LexWq2cPHmSo0ePcvjwYY4cOYJGo6kispGRkTfHwyGQmZnJlClTmDdvnqt8679l8+bN7Nix46Yog6vh/4caUf0HcfjwYV555RXefvttNBXuuBuCCJz/Ao7NB5sRlDrQ+LjEMy8vh/OnfiU8vC7+dZtBw3+Dd9WuSdUJa0lJCT179sTd3d3V+Qdg4cKFvPzyy8ybN4++FWUbVquV48ePc+jQIQ4ePMixY8cwmUz8+OOPdOrUiYULF5Kfn0///v2xWCycO3cOvV7PihUr6NatG9ueeQaPuXMJ8vEhPC4Ohbd3VfEvL4fiYmf/3uHDYcwYUCg4vnMnpo4dyTSZsF1yPa8D7dzd2Wu3Y1araajX06akBC3OJB+TyUStWrXwMZmYEhzMxpMnadiwIfv378dkMqFQKLDb7ahUKqer9neuYQCFQoFer+dHvR6bSoW7jw9lBgMFBQX4+vqSl5fH60BLh4NmgE6r5bDVymbgMZ0Ofz8/siqEujYwDfgG8NJq+SoujrC8PAIbNmTX7t3UqlULD3d3zBYLDoeD+hWWlrG8nCOHDzvjr3l5aB96iISFCy97cPrjfx9nPPvIkSMuazYvL4/Y2NgqLmMPD4+rHvN6s3btWvbt28fs2bP/Ut6CzWZjzJgxPProo872ljX846gR1X8Yzz77LM2aNaNnz5435oQicOItOLUUtH6gqr4dW1Z2NkeOHKJ5w2h8vH2h+evg36TKPtUJq9FopHfv3tjtdtavX+8q01mxYgVTp06la9euBAYGuuKLlfHQxMREvLy8OHbsGIMGDSI8PJzXXnuNbdu2sXv3bvbu3UtaWhqenp6cevVVPOfNw6DRsPfoUVRKJU2aNsWtmrif2GzYs7IoateOQ/368eBDD3HfqVN0E+FCxT7e3t48V1JCT5xZtyGhoVzIziYgIACVSoVarUalVuO4cIFzvr7cZzRSVFyMWq3GZrO5uieVlJRgt9sxGo0ukb0UHx8fWrZsybvnz2O12TDabJhMJnJyctBoNChVKp4rLaUbEAsogFyFgiUiPOfpScOGDdmzdy8mk4kA4F/ADxVj+ymVbE5IILSggPSyMlq2a8eRCmvfaDS6WkmWlpVxeO9e9AYDW3x9eba8nF59+jBmzBiaNm1abVnV1VBWVlbFZXzy5EmCgoKqWLOBgYE3LDHPbrfz+OOP061bN7p06fKXxtq2bRtffvklL7744k2RWFjD9aVGVP9hnD59mpkzZ7J48eIbkwySvgqOzAFdHVD+cT1f+tl0Tp8+zW1NEvH00EOr5eBZtcaxUlhDQkJYs2YNSqUSk8lE3759ycrKYvTo0aSnp3PmzBmUSiXbt2+nX79+vPLKK7i7u1d73uLiYgYNGkRubi5r1qyhXr16iAgZGRn856mn6LZhA4H16+Ph74/d4SDt4EHy8/NJSkriyQsXqjSR37t3L4bSUgJsNt5VqXi5rAw3YAkQp1BQqNEQEhrKE9nZdLPZqGtz2q86rZa2bds6E4UcDhT5+eDvT6sTJ8i12y9z++r1eho2bEhqaip79uzh22+/rdZa1Wg0fAjUVatReHuj0+kwm83k5uaiAF51OGiD02p2OBxkubmx1mhktNWKw+FAqVDgEKE2MAo4ptGgVCrx8fHBVlbGCKORsXXqEBESwrGMDALr1aO4tJSYiAikpIQTR46QZ7GwXKfjQ4uFOkFBnD17lsjISPz8/GjevDnPP//8Na0aVB02m40zZ8643MWV8eX4+HiXNRsVFfWXa0r/iPT0dKZPn86CBQv+UmtQh8PB+PHjefDBB2nWrNl1nGENNwM1ovoPZM6cOURHR9O/f/9rOu7rr7/myy+/ZO7cuVd3gLkAvukOah9QXV1v3aPHjpGdnUWrZnHoA5tDyuLL9ikqKqJLly54eHgwZMgQDh8+TEZGhqvMZcmSJbRu3Rq9Xs+vv/7K4MGDq5ThVIfD4WDixIls3ryZd955h/bt2zut7L59KTl7lpO5uYSFhlI7MBAFcC4jgxPHj/OmWs2MRo1oUiEKmVlZHDt2DIfFgo/dzmBPT3JECPHwYF1sLKoDB7hgNLKoVi06mkz4FxWhqkgsUqlUhPr5QXEx5zUaHiwvJ7uaj1+lxapSqahTpw6JiYmcPXuWEydOAM6YrZeXFxEREXz++ecUL12K55tvctZkwmqzYbNaXfHdN1Uq1A4Hozw80CmVLDOZCLFa6aRUYquwfH21WsosFnoC3r6+hIeHY7PZOHz4MADBXl5012oZodeT6OuLpaQE75AQLPXqobjvPpYeOsSipUs5duwY7u7uuLu7U1pSwh0BAdwXGsqAdu1Qg3MJudatoW3bv7yKjYiQm5vrEtnDhw9z4cIFYmJiXNZsfHw8Xl5ef+k8v2flypWcPn2aGTNmXNnKtBRB1iY49wlY8sBhBbUn1EqBiHvAJ4kfduxg7dq1zJs3r8Za/YdRI6r/QM6fP8/UqVNZvHjxNcWhrllUz6yAY6+B/tqSNw4cPEBRUSGtm8agbv8ZeERQVFTEoUOHXDWi58+fZ9euXYSFhbFkyRLq16+PwWCgU6dOnDlzhjZt2pCQkMDIkSPR6/X06dOH+Ph457qkf2CtvPnmm8ydO5dp06YxOiUFHnoIAgMpN5s5eeIEnp6eREREoFQqKS0tZdDOnQz08GBQixaoVCpOnDhB+tmzOOx26gDL3NxYYrczb9481n/yCZ7ffcdQu50IjQYRwVRhhSorrMwCYJVGwxqrFcMV5li5es+wYcN49dVXMRgM3HnnncyfPx/A1cQBnAKbEBrKh/n5ZBmN2HCW4iiUSixmMwuApiIcAEqBOKCXQoFKBHcPD9zd3NAVFTHP4WBFNZZw48aNad26NW+//TYOhwOdTkdiYiLFxcW4ubmxY8cOfHx8OHz4MO3atcNQVERvtZohNhuhItQNDSWosgTKZnM+yHh4wODB0L//dV171WAwcPz4cZfQHj9+nICAAJe7OCEhgeDg4L8cE504cSL33HPP5StEWYrg6KuQvRnE4RRSpQ5QgtjAWgw4wCMCqT+JR59bzaBBg2jVqtVfuu4abi5qRPUfyvz586lduzb33nvvVR9zTaLqsME3PZxf1dW7Xa+EIOzevRs3RSn5Xl1Y9WswhYWFJCYmkpSURIMGDYiOjqasrIyuXbsSGhrKmjVryMnJYefOnaxfv55du3bx2GOPsXXrVt59913Kysro06cPnp6erF279g9jedu2bWP06NG85e1NR7UaRUXvWrvDwZnTpzGbzcTExqLTanng11/pbDYTUFqKWqVCo9E4Y7inTqEXQQEM9vOjqKwMs/m3XkbN1Wo6qdV4mkx4ubtjdHPji/x89qnVmG2/pTT5+vpSXFzscv3q9XqsVitJSUl8+umn1KtXjzVr1jBnzhz27duHUql0uXgrrd+QkBCmKxQ0z8ggV63Gw8MDlUpFdHQ0v/zyCyql0lXvW/lhd3NzQ61Wo7ZaUZvNjAwKQlmrFmkVzSoq8ff3JyQkhLS0NFcpD/yWJDV06FAWLVoEQOdWrRh5/DjxRUWUazTUjY/n+MmTREREEHNp1ymTCQoLITAQFi6EevWu6f/narHb7Zw9e7aKNWu1Wqu4jGNiYq45qe/48ePMnj2bN95447cFyMuzYdcYKM8CbcCVQyEiYCsFu4GT2v68ujaD119//ZZsjlFD9dSI6j+Uym4wb7311m8f/EvIy8tj8eLFHDp0CBEhNTWV2NhYvvzyS+Lj4/nqq6/w8PBg3LhxrrjP1q1bWbt2LXl5efi4Qf/6B+jaxpkFevB0Ca+sPk2vVnX47IcLKBUw7q5I1CoFi/9zjqIyM12aeHNHsobS0lJOZZtZ/W0B+WXgGd2Tzp0789BDD11mZRYVFVUR1sqbz2OPPcaGDRuIjIzkjTfeICYmBqPRSL9+/SgqKuKLL774w1VBTp06RWmjRlj1ehq3aOFsUI+z/d+FCxe4kJ1NVHQ0j546xZ1WK36FhdgdDvz8/HB3cyP7wgWsViuBwH1KJSd+Z+VV1sfu2LGDvXv3Eh8fj7+/PxEREZw4caLa+KiXlxcNGjRg79691K5dG6VSyZNPPklqairPPvUUG9euxULVNoRarRaLxYIP8JFeT22bjRyHg7C6dTGUlZFfUIBCoUBV0f5QoVDg6+uLVqvFbjKhLipyZv1qNC6vRlGRsy+TSqVCr9djMFzJpna6qj/88EMG9O7NNw0aEJCZSbFOR0RkJGFhYRQVFbF3715CQ0OpX79+1YMLCkCvh/ffhxvUEzcvL69KlvH58+eJiopyWbPx8fHVfl5+z7vvvkt+fr6z7aClCH4cDqYLoLvKdVjtFsSSxzu76lG//QRuv/32v3ZhNdw01IjqP5jK0pqRI0dW+X1lfLFy7VClUsnJkyfJzs7m9ddfZ+zYsXTu3JnNmzezatUqli1bhkKhYPfu3YSFhREUFMShnat5Zuo45o5tRHSoBwdPlzBj6TEGdwyh/+3BfL0nj1dW7iO8lp1+LfWUmZW8tcXG88PrUi/Ml6xCsNttqEqP8syOTtSqVYs777yTvn37otVqq7joKoU1LCyM1atXu4R1woQJvPfee2zatIl27dq5ru2+++4jLS2NTz/9tNpl6ACw27E3b86erCxMJhNNmzXD8xJXeUlJCTt37uQVm41eQIxKhVqlwlphZapUKiIiIjBnZfFcaChfpKdjraj5VCgUdO/ene3bt2M0GpkwYQIPPfQQHTp0wGQyYbFYsFqtlyUmVR47YcIETp8+zfdbttDcYOBeu51ElQqLzYZeq8UIfGSx8DlwtuJ4rVaLv8XCWwoFYUCOCHoPD2xWK2aLBZ1OR9u2bcnLzSUtLY0ArRaV2cxCT08+U6lcQnoparUajUZDeXn5ZdsuRaFQcHD4cMJ++AFH7dq4eXhw+NAh6sfH4+HuTmlpKUN37GB4nTr0bVI145u8PKhbF1atuqYynOuFyWSq4jI+duwYPj4+VVzGYWFhl7mMzWYzEyZMYOTIkaS4fwXn14HbNdaw2ssxlOQyfUtjXl6w9P81yaqGG0eNqP6DKSgo4OGHH2bBggVVOtYcPXqU2bNn8/7771cpsP/6669ZtWoVixc7k4fMZjP9+/fn/fffx8/Pr+rg+bv59+S7aRgXRO82QRw8XcLMZcdZM7MZSqWCcrOdOyZ8ybC2DsL8nffLd7bD7QkKEkJVKJVKVEoFAV5CytNOUfHy8iIyMhKtVouHhwceHh5otVqXe27Dhg34+PjQv39/FAoF27Ztw2w2c/bsWR544AGSkpLQarWo1WpWrFjBnj17eOqpp2jQoAFarRadTodWq3W+NBrq9OyJBAVx/PhxLubkkNyggcu6dTgcbP36a14ym+kJxCiVzpZ9ODspKZVK/P398bJYGFRSQlWn6W/JRvBbJm9aWhpGo9HZeaji/b0Ud3d3jEYjjRs1ok1GBoOLitA4HJiBUoUClVpNUoMGuKvVnNy9GwXwCzATqOzF5A08CvRUqcBuxwB4BgRQajDQqnlztCYTv+7bx0mbjVeBgx4edO3alXXr1rkeCgA8PT1p0qQJRRW9ha+Em5sbCWFhLMnIwO7hQXRCAn6+vuTn55OZmUlSgwaolEoMBgO7d+/Gz8+Phg0b/iZSIpCTA2+9BTdBJqzD4eCjjz7is88+o3Xr1hw+fBij0Uh8fLwrASo2NhadTkdaWhoL5z/PG/1OotLV+tPs92oxXWDV/lD8m46nc+fO1/+Carjh1Dwa/YPx9/enS5curFq1ivHjx7t+n5eXR2BgYLUday4tfai8+ZtMJgD27NnDRx99RGZmJmIpxnzBQGTYb/FBL3c1SqXzZqlVKwkICKBDu3Cyzx7BbLag0zhwoESn01JoVLL1oJ3z+Q5q167FhQsXXHWpWVlZmM1m1BXxQW9vb3x8fGjdujU//PADn3zyCWFhYURHR9O3b1+++uorli9fzqhRo0hISKCsrIzu3bvjcDh48skn6dOnD+Hh4VitVsxmMxaLBYvFwsScHKw5OVgVCtRqNb/88gsenp54eXq6FhhXKZUoHQ4UOG+4glNIrDYbuXl5KIFSpdLZdekSLnXv2mw2srOzq1h81T3LGo1GALrs389AoFCpxKDVuqxji9XKgQMHnAuTV7RTbAJ8AIwG0gGVnx+zCguZb7fTFRjt709iVBTnz5wh7cgRDuh0vKFQsK/ypAYDO3bsIDw8nNOnTyMiaDQa+vTpw969e0lMTOTo0aN06NCBM2fOuDKQFRVruWo0Gnrr9Xi7uZGrULBnzx78fH2pHx+Pp6cn586epV69enh4eJDSsiW7du1i7759NG3SxCmsCoWzocaHH14mqpUZ0DcyO1apVBIUFERUVJRrfd+CggJX96f33nuPs2fPEhERQUJCAq0jS7h4IYuQenX+uxOqveiRmM/Ej1bSvn37a47vpqWlMW3aNAYOHMh99933382hhutKjaj+w+nXrx+jR4/m7rvvJjg4GHCufJKbm+vq2HM1WK1Wnn/+eSZPnkxKSgpqpfDvkfURu+UPj/P39SM8qCVHjhxBqy1EqRS0Wg0bdliJCrCTFBOM8UgUfn5+nDhxgg4dOjBhwgTq1KnDhQsXSE9PJyMjg8zMTLKzs2nVqhWbN2/m3LlzhISE8MMPznYFGo2Gl19+mYYNG9KwYUPq1KlDt27diIyMZO3atUyfPp3hw4fj7u7+2006NhY+/hgqWs/l5+ezf/9+7HY7Or0evV6Pd3k5bhYLyopOQhq1Gp1ej91oxEehIEupJLOa6/59zPTixYu4u7uj0WiIiYmhoKCAjIwMRMRl0QI8BAwE8pRK/AMDUatU2Gw2cnNzAVwNIPR6PRazmVwR/IA3gWFAXmEhACXAamB1QQG1Tp3Cw8ODc+fOuWpQqdgPnDFkvV6PiNBQp6OrRoP/6tX0DAkh76efKFcqmfLYY7y5ZAknTpxAoVDg7u5OQMWSbz2KizEoFChVKnRaLcUlJezcsYPatZ3xxYKCAqZkZDAhMpKWKSns2r2bX375hWbNmjld+f7+8MMPzhirvz8mk4kvvviCd955hxkzZjjLn/5G/P39ad26Na1btwacHoYTJ05w5MgR6ltPcy4zj8z83fj718LLyxNPT0/c3NxQcBUPA2oPPLU5NIt1Z/PmzfTq1euq52Wz2Vi8ePHlseoa/lZqRPUfjpeXF7179+bDDz/kscceAyAuLg4/Pz+WL1/OkCFDUCqVnDp16g/HsdlsWK1WfHx8UKlU7Nm7l31ZfkQEFP7hcQDubm4kJyej3fQT/v4eeHoqMZTn4KFXoYq4mxRvHR9//DG1atVi0aJF7Nmzh6CgIBITE2nQoAEpKSmu2Ojzzz9PgwYN2LJlC+Hh4SxdutQlUKtXr2blypX4+flhMBj4+eefKSwsRKFQ8OijjzJz5kxq166Nr68v/v7+xOv1TDx/HpvRiN7d3eWm3bNnD3o3N9z0ejw9PXHk5eFwOKhduzYBtWtztKLxQETt2nzi4YHtzJnLrtnNzc1lmSoUCmw2G54VC5MfOXIEg8GAQqFAq9Wi1+vRaDTUNhqZ6ulJhtGItaIzUnz9+pjNZnIqRBXA08MDo9HosnYLgSBgHPBOcDBlZWWUlpa69i8rKyM/Px9wir2+4oGh0gOhANqaTNwPJNrtYLNhtttxnD1LJJACGO68kwClEn+gQASj0UhGRgYx0dFEqFSUh4ZisVqdi5qXlmJwOMi+cAERISc3F0tF+ECn07mEddeuXbSoKFVCqaQ8PZ1V69bx7rvvUlpaisVi4eLFi+Tm5rquVURcr0t/rry2P9vn99vy8/NZtWoVJ0+eRERo1qwZERER5OXlMXv2bHbu3ImbmxsDBw4kMTEREeHHH3/k66+/pqioiGBy6dy4DjFqA3a7je/2nOO9LYW0jFXxwzEbSgUM71KH6HoRvPOfc5QYbfRtG8TADiEAHM8oY/EX5zhRqiJtyZecPXuWMWPGXFV89fPPP6dJkyYUFxf/6b413DhqRPV/gD59+jBq1CiX20qpVPL000+zaNEiHnjgAQDat29/5aQenCIxevRoXnzxRWw2G7fddhspqT2gaKWzuP1P0Go0+PvXQq22otVqeaRvGHM/yeGnTSvw9vamU6dOGAwGdDoda9asoV27dpSXl3PgwAG2bdvGxYsX8ff355dffsHPz486deqwbds2kpKS2LRpE6mpqaSmptK1a1cmTJjA9OnTefDBBwHnzfarr75i9OjRNGvWjK5du3L+/HmysrI47u5O8PnznDCZUCqVzputQoHBYKC0pITBOh0WqxUvLy8KCgqcmc++vngoFOSVlvJJRZ/eS925Go2GBg0asH//ftfvExMTOXbsWJW45aVWqt1up6fFgogQGBKCqqCAkuJiDh85gkqpRFExrrubGyUlJWg0GhwOB7aK+G6+w8G9/v58HxzMmYICbDab61XpSq88V2lpKe3atSMtLY387GyeBToDARER1IqMxCHi7KV84gT5+fmoVCp89XoeKCujD/AwcLLiusrLyrCKUGC1UlJSglqtdpb72O2Iw4FDBIvFwoWLF7FWlM5oNBpapqSwe/dufv75Z1rcdhsahYLlixYxbfVqADw8PDCZTLzzzjts3rwZcD6cVHoZKr+v/PnSkhSHw3HZy7XcXcX3lV8PHDiAp6cnwcHBOBwOvvzyS8xmMxkZGQQFBeHt7c2ZM2cYN24cgYGBWCwWysrKsNvt2O12XhtcwqJ1edyfCsH5BVzME/KLodQA4+6A/Wdh8YYsurbxZP7DSeQWWZi08BC3N6pFHX8dSqWCUV0Diek+i2fe/Ib169dTt25d+vTp84efp5ycHLZs2cJrr73G22+//aefvxpuHDWJSv8jfPbZZxw+fJjp06df34FPLnH2/tXXAcWfu5IFyD5/kvLSAvTtP2TvSSPLly9HrVZjtVrp0KEDFy5cYOXKlTz88MOkp6dTVFREkyZNXAt2Hzt2jPT0dEJCQtiwYQP16tXj888/R6FQcObMGS5evMioUaOYOHEiEydOdJ37yJEj9O/fn9atW7No0SLnjfjsWexDh/Lrvn2UKBQ47HYSEhIoLy/nxMmT2KxWfP38KCsrw2azoQA8tFr87HamKhR8aa3+gUKlUrlctV5eXjgcDlejfNslGcQi4rRY7XZ+cHenwGRC4+GBsby8ils4G/gPUKrR0NjLi+KiInwdjv9j7zwDo6rztn2dOVMyJWWSSa8kIYFAQiihg4CAgOAiVQVEVx8r6i4Lij6uiLsqNgSXJlYQRUUFVEQpgiAQejckQALpvU+fOef9MJNZIrArz+qKr7m+UJKZ+c/MSX7za/fNYEApiiQnJxPscrFYo2F+fj5Op7OVVvCPA79erycpPp47fviBgUClIBAaHo7RaPT0nJ1OnA6Hr00ge+8jUJZxA3fgmTwWRZGDSiVlDgduPAFTwFPZaOlBK5VK3tbrGadWMzI11feBwO12c+qHH3A6HKRHRXFi5kwOm81s3LiR/Px8nzxlSkpKq1745f7e8qckSa2G0i4eTmv5e0sWWFLCXjcnAAAgAElEQVRSwvbt2xkwYAAWiwWz2YzZbKakpISKigpCQkKwWq3YbDYaGxsJCwsjKCiIwMBAjEYjJpOJ2T138uY39SRHaegY1khxvZJ3vrXz1sxkgoODUaq1TJ53mJfvSyM1zrM7/afFp7hlSBS907zDf/Yq6PEPiiwRTJ06lUGDBjFv3uWtElv4+9//znXXXceAAQNYuHAhISEhbT3Va4S2TPV3wo033siGDRs4c+aMTwz9ZyHpLrBXQ+Fa0JhA8a/l5wRnA1Ghgew33sNrz77Do48+ysqVK/n444/ZuHEjOTk51NTUEBMTw4oVK9i5cyeSJJGdnc3evXspLCyke/fujBw5Er1eT6dOnZg3bx6pqakEBgbidrt58803ef3117n//vtpbm72fZDo2LEjW7Zs4aabbmL8+PGsWbMGv/h4qubORbj5ZgIcDipdLo4fP45Wq0UURZKTksg7cwZkmU5paVgrK7HX1vKavz8HRRF/h6NVqRU8Aevi3c6mpiYCAwNblVxb0Gg0qFQqerhc+Gu1VLtcPgF9rVaL3W7HKUl8DPQGspxOztTWkg30wVO6jY2NpaSkBItSyfT0dF48f/6S1/3Hn53NZjO9cnMZAJQCaqWSispKGpuaEEWRSpeLDxwOqtxuhioUdJckZFmmHjACi4DxeALtOVkmDGgAnA4HQovBuUKBSq1G6+eH0+HApVBw+MgRjEFBaPz8UAgCJpOJytJSLhQUcKikhMC4OKZPn055eTk7d+4kNTXVN9Xdanr7on+LoojdbsdisVBXV+frv1dWVlJVVUVFRQV1dXU0NDTQ1NTkK507nU4cDgc//PADQUFBGI1G2rVrR2xsLKWlpTzyyCNERUURGxvLtGnTeOONN4iMjOTQoUO89957nDp1ihknLIiORkIDg4iMjKKiuZ6YCD0J8fEAuN2e193o/88BJLXSMx0PUFLRzFsbizmz6mXsTpm6ujqOHPGNkV2W/fv3Y7VafWtkbVxbtAXV3wlqtZrJkyezatWqn9fLURAg7THQRUHecpC9Oqei/p97h7IEjjqPVJvGBJnz6WnM4NHY47z44ovccccd3Hnnndx444288MIL7N27F4PBQElJCQkJCfTp04eQkBDWrl1LXV0d+/btY+fOneTk5NC5c2deeuklZsyYQXNzM6GhoaxatYrGxka6devGokWLyMnJYeHChZhMJqKioti6dSs333wzI0eOZN26dVzw9+c+lYpZbjcdnE4kt5vapiZiExMpLysjQKdDa7PRdO4cZZLEM243e7x7nT169KC6upri4mJfZnlxQG3xQy0sLPTtpiqVStxuNzqdzldObBcdTXNFBZIs45YkRIUCu92OQhCo1WqRrFZ64gmiqUAUHpF+HA4Kzp/3ZMBA0a5dWK7wVrX0UkVRpLm2ltvcbmq8X5MkCWQZi9mMSqViuyQRD/yPQoEgCEjedSJZln093D7A9y4XbwLPCAJN3mElrU6HWqUiPj6eyqoqMtLTCTlxgvSEBBJkmfz8fKKiogjyiiykBAbypcPBu+vWsWHDBuLj42lsbGTSpEk0NDRQUlJCYWEhFRUVVFZWUlNTQ21tLXV1da2CpOz1km2ZFm/JJlNTUwkPDycyMpLIyEhiYmIIDg6msLCQZ599lpUrV16yWvbNN98wYsSIiy5zgcbGRo4ePcqsWbMIDw+nT58+DO01kZ1r5xIdGU5KSixnSk9isf70HufSdbkkpfVk9ux30Wq1vPPOO7z44os0NTVdUbf42LFjnDlzxpeZWiwWFAoFFy5c4Mknn/zJj93GL0NbUP0dMWzYMD777DNOnDhBenr6z3fHggDtboeYm6FsCxSs9Mi2Cd4+lyyBqSckTIXgLFB4foFlZGQwf/585s2bR2lpKdOmTeOVV17hnnvu4a233qK5uZldu3aRl5fHuHHj2L17N3369GHEiBGMGDHCt/s4e/ZsXC6Xp3dXXo7RaGT58uWcP3+eTV99xbqnnmL9V1/RU6/HqNGgDQpiQ1ISLxcXc12fPtgkiby6Ol7p2hUKChhSX89owJqfT0xICPHt21OflsaIlSs5DEgXrdAcOnTIE3Qkia7ALQoFHQGNJGFXKLhgNtPYvz+j1qyhR69evr6tLMsMGDCAI0eOUF1dTWR4OO6SEtR+fricTlxuNzqt1tMvtdkIgFazpAF4SqwqlcpXOld5M7YrYbPZcLlcJCQkMEqjQVdaSjOg8NrKabVabDYbkiRhVatpr1QSGxJCu4QETp8+TXJyMru809ZOYCoeq7jdSiUKlQqV3Y7d5ULr50eXLl3Iy8sjLi7O9/pYbTYErRZTaCgnT54kICAApSiibWxkc+fO1J05Q1paGhEREb51LlmW0el0BAYG+gbMIiIiyMjIICIigqioKCIjIwkODvZVA34qqamp/3Zgr7S0lH379pGTk8Ojjz5KVlYWQUFBzJ8/n6ysLA4fPszxIhWJkRYEICoqCputErPFgv4Krkk+ZAmrQ0IXMwA/Pz+Ki4vZt28fMTExfPbZZ0yfPv2yN5s6dWors4wVK1YQEhLC5MmTf/Jzb+OXo62n+jtj+/btbNq0iRdeeOGX2/+TZbDXgKsZFCpQBYDqym4hDQ0NPPvss4SEhPDnP/8ZtVrtm7J866232Lx5M7GxsfTp04fm5mbGjRvHkCFDUKlUvP/+++zfv5/6+nqys7N9lnB333UXE/39yTp4EEVlJblnzkBgIJHR0ViamrDW1uI0m6l3OHhPklgfGEhYdDS5ubm+gRZTcDC3Tp7MwsWLWbFiBQ899JBvDenifucI4AFB4Lr27dH6+7Pn+HGcbjeCLGMQBDRKJQ2iyOEuXZixYwcTJ09mw4YNrV6DfsAChYIK73SugKdfKYoiP1gsfOxyMVupRHK7UavVvG63EwcMwVNmFUURtdNJOXDbT3iL3gKSgUZBwGg0Ul9Xh6hUEhQYyD/q66nQasHlwt9g4KnISKpzc3FL0j9Vo/AYm4/DUz6+T6Hgf2SZSkEgODTU0+e02VCr1bjcbl602ZikUpEgigjgE/yPVqloiI1ly+TJRERGsmXLFrKzs1m8eDH9+/cnMDDwF1Uaqqqq4vXXX/c58lx33XX4+fnx8ccfEx8fj9lspmfPnnz00UesXr2auLg4Nm7cyJo1a3wDe67GC0Sav2DaiCROXHDw7KofeHKigbS0TsgSjP3rAd6a3YUwo+eDwqPLf2Bkz1AGp7k42dSZxVs11NTWkpiYSEZGBtnZ2VRXV7N06dJLRVcuQ1tP9dqiLaj+zpAkiRkzZnDnnXeSlZX1ax/Hh8PhYNGiRVRUVPDkk0/6RChcLhcfffQRDz30EGlpabzwwgts2bKFgoICbrjhBpYsWYLVamXBggV07tyZr7/+msfnzGFBYiKDzp+n2unEoVJh8PensLCQwIAAunbtSll5OadPn0Z0uQhwONgjy/yvSoX5ooncxMRESktLWbBgAcnJyUycOLHV+oIA/BlPEIvv3JmQuDgOHDyIQqEgNCyMUydPeoKdWo1sNhMsCOS0a8drQUHsO3KkVZ8zAPgGUIWG4pAkFAoF1dXVni8qFLzqdtMXyBIECkSRD91uessyg723V4oiYbLMx0Yj73pLmRevovyYbwGnIOASBETRo3DldLnQqNXY7XbekSQyFQq6ezWD8fZ4LWazT5Q/BHgIOAwogJeAIQoF1qAg7A4HkZGRGPz9sYsifyooYHHHjkTq9SiVSgTAWVpKTlUVr/XowRMvv0y7du0QBIH58+fzxhtvsHLlSvr37/8fXVc/BadXVGPfvn3s27cPvV5P79696dWrFykpKT/tw2fJRjgxF5SByEodeXm5+Pv7ExUZden3yhLYKyCoC2QtAfHS7PqNN95AlmXuueeen+EZtvHfpC2o/g7Zu3cvH374IQsXLrymvBxlWeaDDz7g22+/Ze7cucS1WIbhmdwdMmQIJpOJ//3f/yUzM5O//e1vbNq0iYiICPz9/fnwww9p164djqVLqZw3D5fJRHy7dp4Blvp6qqurqfAKHWRkZGCxWvnh1CkATE4newSBx9VqnLLsm5x1uVzodDpEUaSxsRH45yTt/cDdgDs0FKck4W8wUFNbS5cuXSgqKqK0tBRkGafL5VEgkmXCgT3BwTxcW3vJ838SGM0/JQfBE7j9tFrOWa1sEkVsWi3pWi3G4GAigLjCQqxWKwrABNxmMGDW66msrMRgMCBepOsreJWjAHa6XLj9/bE5nVitVk8J+aLseyWQAQwzmRAVCurq6lB5xfv1Oh31DQ2EArOA3Xh6x4LTyWybjYkGA/4mE+GpqZyxWPhrXh43hIZyZ2ysp4rR3AzNzTjj46l+6ilS+vdHoVDQo0cPhgwZwqBBgzh8+DALFixg2bJlrXqbPxdms5mDBw+SnZ3NkSNHiIuLo0+fPvTq1YuoqMsEwp9CxU449gRIdhySmpO5BXTsmIbWT+v5uuQERy0gQ/gQyJh32YAKHr3rBx54gEWLFvlENNr4bdAWVH+HyLLMX/7yF8aNG/dfyQSulu3bt/PWW28xa9YsMjMzff9//PhxxowZQ7du3TAYDJw6dQqn0+kTN0hISGDXG28QOGMG7qAgcgsK0Gq1JCQk+PqRTc3NHDxwwDOYIwjodTqazWaUCgUxosjjzc185efnkwxswWQyYbVacTqdOJ1OJiYn85rNRk5VlcczFY+MoFqlQqlSoRAE7A4HAQEBOL0rKpLbjex2Y5IkHsOTLV5MR0HgA6WSYq/JuEatxuVyofCu5wQHB+Pn50dlRQVvSBJdJYkM749vGLATeBTPUJrL5WolcvBjdogiKp0OQaOhsaHhn98PiAoFq4AuokimJCEqlYSFhZGRkcHmzZsRFQpcLhdBbjcPCwInvf3P4cOHc/TIERJKS1kzejRRpaXgdntkCAXB83dRhJgYuP12ZnzxBduzs+nRoweffvoparWa0NBQYmNj2bBhA2vXruXpp59mwYIFjBs37j+6psAjz7lv3z6ys7PJzc0lPT2d3r17+/qkPwvOJt9cQV3ZaRobm3x9ZQCix0DcBPBv/y8NBE6dOsWdd96J0+kkOTm51dfWrl3785y1jV+EtqD6O+XIkSO8/vrrLFmy5CdLFf43OXXqFPPnz2fKlCmtMpUdO3Zw5513cv/99/PZZ5/hdDrp1q0bERERFBcXszA4mMBduyA8HLfbTW5e3iWB1eVy8f3333vcW9Rqj56vnx8GQaC0qYkbfrT2AtCuXTuSkpLYs2cPdrudV1Uqetnt1IgibpfLF4xUajV6nQ6z2Yzd4fCtxmi9og1OhwOjQsE5SeJyYyhzgfFqNUVOJ+6LfjQv4Cm36oCTwFfAg4BRFNG63YjANP7pWtNCy77sxV6oSqWSvenpqM6codS7O+t2udDqdJ6sV6FglSzTRRQZGxfnEYBQKnHY7TQ2NdE+OZnSkhL8rVbuj4oiqX9/SkpK2L9/Pw6Hg4SEBEpLS/nHo49yT1qax4nG6fTIEWZmQpcuIAh88skn/M///A9Go5G6ujqfoMLGjRt90oSffPIJs2fP5plnnrnqnqEsy1y4cIHs7Gz27dtHRUUFWVlZ9O7dm65du17VUNNVI8vIjXksXfgsXTLS6D9oBBiS/uVswY9pamri3nvv5ZVXXvFJjLZx7SM+/fTTT//ah2jjv09ERAR79uxBEAQSExN/7eNcQlhYGH369OH111+nsrKSLl26IAgCCV6fzueee47FixczevRojh49SlBQEDPvuouwJUs8v7y9xtzBwcGUV1RgNps9JUrAarVSVVWFzWZDlmVSU1KwWq1U1tcTJssclCQqvcIMLdTX11NVVYXT6SRWo+EvDgfNGg2Sd6ipBcntxulyefxLvVrBClGkqanJV1K2yjLtgO3Aj4vAu4FUWSZNln2rMQpB4CzwKZ5p2xpgFJDo50e0Xo/scvFnpZJO48aRl5fX6jzR0dGYzebWZ5Qk8srLGQFoTSYC/P0xGo1UV1WBLKMQBEpMJqKVSgKtVhoaGzE3N+NwOkH27FKaFAqSbr2VjTodAwcO5Pjx41RWVuJyuWhqakKpVLL/9Gkqw8K4/vHHEfr29QTUiAhfhuZyudixYwcNDQ04HA5cLhdZWVl8+umnXH/99ZhMJtLS0khNTWXWrFmo1ep/Owfgdrv54Ycf+Pzzz1m+fDnfffcd4eHhjBkzhnvvvZe+ffsSGxv7y9usCQKCn4no9j15buFq+g0djyEw5KruQqPR4HQ62bNnj093uI1rn7ag+jtFEASioqJYsWIFo0aNuiazVX9/f6677jo2bNjA/v376dmzJ0qlkrS0NNRqNXPmzOGOO+5g+vTpNDU1sWPuXJKLitCYTL7nc3FgPVNXx9KKChacOsU+q5VIgwF/u53y8nLUGg1GoxG104nD6WTHZUzEXS4Xfn5+jJBlejkcNHozvBa1IVmWaQLWSxJfuFwckGVkt5swpxOFIKBUqUCWCTYaEa1WmoADP3oMCdguigQqFHSTJExaLWqtliCHg2F6PYNVKro4naQAQaJIqcPBw6LISW9wlySpVem6sbHxkhKwRqNBjopiRGMjgiThxiP4jyD4ytW7mpoIsFoJslqRZZmIyEhsNhtur2JRSlQUIfPnM/SOO7j11luprq7G4fCYK7TIL95666189913PqF4tVp9yTnef/99ZG8P+9lnn2Xp0qVcuHCBv/71r/Tq1YuYmBjat29PZmYmc+bMweFw+AzgW7Db7Rw8eJBPPvmEJUuWkJubS2JiIrfeeiu333473bt3Jzw8vJWU4X+LgIAAAD7//HMGDx581TMMSUlJrFixgu7du/98Jeo2flHagurvmNDQUI4ePYrFYiElJeXXPs5l0Wg0DBo0iKNHj/Lpp5/Ss2dPtFotWVlZ1NbW8vTTTzN27Fh69epFN5cL586dnPEKuev0ehRei7KAoCAezckhpLKScW43JlnmA7udjnhKqlaLBZvdjuR0YgW+vExXpEVc4ObAQJLNZiS9HrckkZaWRvvkZJqbm1kpyyQqlYxzu+kAbALClUoCJcnjwyqK2G02lLJMLZf2VcETWM+GhWG66y6aFQpS7Xa0djvYbPhJEkGiyD5B4DmXixfdbiolCaVSSUJCAnFxcVy4cOGKvVTwZHPhUVEEhITQsayMSosFnU5HYlISJcXFyLJMFzwCDy2TwaIoetSgZJlQhQKLycTKwEAEUWT//v1UVlZit9sRBAGVSoVCoeD48eNMmDCBiooKli5dyvXXX09wcHCr93b9+vX06NHDNyCUmZnJsGHDcLlcPProo6SkpNC+fXsSEhLo27cvTzzxBNXV1XTr1o1du3axZs0ali9fTk1NDRkZGdx9992MHz+ezp07YzQar4lBvNTUVDZu3IhCofiX+tqXQ6VSIQiCT06xjWuftqD6OycuLo4lS5YwcuTIX74k9n9EoVDQq1cvGhsbWbp0KRkZGRiNRgYPHsypU6dYsGABkyZNwj83F/2pUxi9fcDioiKUSiVanY5ci4W9zc2MaGpCgUdqr0oQsCgUdPSKLLhdLrRKJZK/P9u8gu4XI4oiGo2G0QEBxDQ2Um21otfrPSVlm41SQWBnfT23+/nhcjjQAi5B4Lws08Pfn86dOuGw22k2m9EKAoakJL7hn4bmLdmuLMvo9Xr+On8++51O3rRYWFJQwNcKBWsFgTcVCnYEBnLOZiMgIMCTQbrdPqu8ljJzSkoKEydO5ODBg62ehyAIHjk/o5H2Wi2d7HbqnE5qvXZwkjcgq5RKFN6hJP+AAOJiY5Gqq4lLS+OJkBBee/ddPvzwQyorK3E4HGi1WlQqFQaDAb1ej8Fg4MCBA8TFxdG5c2fmzZtHx44dfYFFEASGDh3KhAkT6NmzJ8uXLyc+Pp7IyEj69OmDyWRi1qxZGI1GMjMzUSgU6PV6Xn75Zd5//30iIiLo27cv999/PyNGjCAlJQW9Xv8LXon/NxQKBR06dGDBggUMGjQI3b8ThfgRSUlJvPPOO6Snp7f6UNLGtUlbUP2dYzQaycvLo7q6mrS0tF/7OFdEEAQ6depEcHAwL730EnFxcURFRTFq1Ci2bt3Km2++ydQ+fRD37kVpNBIcHIzeYKCstJTKigqKgXK3mz/ExuKWJBwOB5WiiKTVkun9RSxLEqLdznlRZJ3ZfEm2FxwczIcffsiEzp1p3LqVBrfb14+22myUK5Xstdn4zmZjv0rFLkniPKAXBHpoNFwoLMRsNqMQBFKiotD06MEuQcBms+F0OlsJSuh0OtasWYNSqWTz1q3UOBzY9HrMKhUqgwGlUklTU5MvO7z4dZIkCX9/fx588EGWLFnSyhnn4u+rrq5mU3MzPRITSWloQHS7MUuS7/7klhK4IDCoRw/0Nhtn6utJ27WLMffdx7Jly1pZ0AUHB3PXXXcxa9YspkyZQmJiItXV1Zw4cYKamhqmTZvGvHnzEASB3r17A2AwGBAEAT8/PxITE3n11VcZPHgwfn5+pKenYzAYeOyxx1i/fj2HDx8mLi6OadOmsX37dvR6PTNmzPCpL13LBAUFYbPZ2Lx5MwMHDryqDLrlw9ymTZt+dW/ZNv49bdO/bVBcXMxjjz3GihUrrslP+j/m9OnTPPfcc0yaNInRo0fjcDgYNWoUqU4ni81mhIuGYWSgrraW7fn5rDKbeT01lbq6OiIjI3n8wAGMksQfgoKIjY3FYDBw5vvvWaRSscbtbhXkAEJCQmhsbKSvIPCy00mtWo1SFImOiUGtUrG/rIz3m5t5WKHA6s1y4+PiKCsrw+F0olAoPCLwKhWdw8JYl57OjE2bsHlt51qGiVQqFSEhIZjNZiwWiy/zDAgIICIignPnznnEGrzBUqFQoBAEGiorEZRKAk0m1Gp1Kw3iFjnDFo/XH9MXuM/fn4FaLbVVVTi86zUR/v4EAUEqFW69nuLmZuI7doQ+fVirVHLbyy/jcrsRBIGZM2dSWFjIqlWrfJO1Bw8e5IknniA3NxdJknj44Yd58803GThwIMuWLbukOvLuu++ye/duunbtyr59+9DpdISFhbFy5UomTJjASy+9hCAIFBcXM2bMGDp27Mjq1at/lX7p1eJyuXjkkUeYPHkyAwcOvOrb3nvvvfzlL3+5pj/8ttEWVNvwsnDhQkJDQ5kyZcqvfZSfREVFBfPmzSMzM5O7774bi8XC9UOG8I+KCrLi4xG8Yu0tOFwu7jh4kC5uN1kuFwGdOjH//HnuU6kQamrQarWoBQG5ro5ts2ezZPVqAgMDOXv2LHa7HZPJhE6no7a2FktzM7sDA9Gr1RTX1hJiMtHQ0IDL7eZ1t5uOkkQWIALVgAtIUKuJCA+npLSU0MBADILAzE6dcKnVbNu2zZftmUwmtFotpaWlrazbLkegwUDH5mZmBAeTbrEQFx1NZUUFVRYL+8PDWVpRQYFX1zcgIICgoCAKCwuveH9RUVFsffdd1j70EEJeHiMEgWilEkGvR46MJDgqitzTp+nSuTPU1eG029ly4gQvArVpaRQWFhIfH8+6detaTZSfP3+emTNncurUKerr6/njH//Ijh070Gq1fPzxx2i1Wg4dOkR2djaHDh2ioKCAQYMG8cgjjxAdHQ1Abm4uEyZMoEePHrz11lsoFAoqKysZPXo00dHRfPTRR5cMQl2L5OXl8be//Y3FixcT+KNr9N+xdetWtm3bxnPPPXdN9IrbuDxtQbUNwGN6/Kc//Ylly5Zd9Q/7r4XZbGb+/PmoVCpmz55NQ0MDz/TqxeN2O7GXWb0otFpZkp/PodJSAoCJJhNjUlJoqK/n9OnTBLtcbBQEnlcqEQTBY7btLYe++OKLjBw5kuuvv574+Hg6Hj7Mn4AipxPBOzWrUqkorKtjh0rFD1Yrbjy7pUNFkWRvZikD0aLIZxoNC2S5VeaoUChYu3YtiYmJTJo0ibKyMpqbmy95HiaTiaymJv7kcGAE1FotFQ4HEp7+LE4nIYKAn0ZDaUgIiStX8sHu3Tz11FOtVmsuh1arZXrPnixyOsk9doxCsxmNnx+SJJHRpQuVlZVkeM0YigoLaS4vJ1CpJPzVV+m3YAFnz54lPj6eOXPmMH78eM6cOUNSUhKNjY3MmTOHvXv3UlNTQ/fu3amtreXMmTNkZmbSv39/evfuTc+ePXE4HMycOZO5c+e2siksLy/npptuIiIigo8//hg/Pz/q6+sZM2YMOp2ODRs2/LK7pz8Tb7/9NjU1NcyePfuqbud2u3nwwQe57777WomitHFt0RZU2/CxfPlyVCoVd9111699lJ+My+Vi+fLl5OXl8dRTT1FbWkp+v36kBwcTnZHR6nsdTidFhYWUlJRg9xpaBwYEEBsbS9Hp07htNm6VZYp+9BjBwcHk5ORw4403MnDgQF555RW+WL0a/d13Y5Bl6rzDRS6vspL04xUWtdpj8+Z0onU6CQoK4m69nr3nz1/St1WpVD51o8sxfPhwupw8yS1lZdTLMi0FXkEQfCL8LfcRHBxMvMGAKSqKR/V6Vuze7evfXok4QeC7+Hhio6Nx6XR89913nlUZQcCg1xMQEEC3bt2w2mzk/PADndPTUcsytpISlsTF0fPxx7nrrrtQKBSkpKRQUFDAkiVLGDBgAGfOnOGJJ55g586dWCwWgoOD6du3L3v37uWll15i0qRJvnPs3r2blStXsnDhwlaDPY2Njdx88824XC42bNhAUFAQFouFP/zhDzidTj7//HPfGsu1it1u56GHHuKuu+6iV69eV3XbnTt3smHDBl5++eW2bPUa5dpvRLTxX2PSpEls27btn0LuvwGUSiUPPvgggwYNYtasWSh0OsI++ogzlZVUeZ1HnE4nbrcbye2mzLtuIwB6nY7ExESsFRWo3W6eNBguCagAtbW1pKenI4oizzzzDAcOHGDt5s08qtNhcTgwOJ1IXqGHlvu+GIfDQV19PUqzGYXbzT02Gy+sWmzd/mMAACAASURBVEXXrl0veawWz9Ur/cJUb9nCnfX11CuVrQKqRqNBp9cjCAIW725pbW0tOVVVHDxwgCl79xLvzZb9/f0vWyoVBIHHZJnqoiIOnzuHJMueQSKvp6rZbKayshKz2UxhYSGRUVGoVSpQq6lyOrn93DkGdO1KdnY2Wq2Wr7/+mvz8fGbNmsU999zDCy+8wLBhw7j//vt9pvIHDx5k+vTpzJkzp1Um3a9fP7p06cLSpUtbGw8EBLBp0yZMJhNDhw6luLgYnU7Hl19+SUBAADfccMM1f/1qNBoeeughli1b1qrv/VMYMGAADoeD/fv3/0Kna+M/pS2otuEjODiY4cOH89FHH/3aR7kqBEFg3Lhx3HPPPcydOxdnSAjut99mb3k5FcePk5edTVFRkUdI3xscJbcbP6cTk9tNUocOfD1uHLssFvz9/S8b0CorK33Tp6NGjeKDDz7AGhnJ3aJIDWCSJHROJxnp6Zi8AugCkBAfj1GpJFIQcAAPajR839jIgAEDOHz48CWPYzQaGT58+CVBLzo6mr/Nns0TQJHFgrnFgs27hmO323E6HLglyTMM5TXrdjgc1Lpc2BsauL+hgfDwcIxG4yXZqk6nI0WrJQuocLupqKhgz+7dHqs7hcKXBbvdbo4eO4bVaiU8PBzwKDRVNTcTpNXC1q0sW7aMyspK1Go1NpuNkydPotfreeWVV7j33nuZN28ezz77LFqtluDgYN555x3Gjx/P+vXrmTx5sm+V6e677yY/P59vv229zatWq1m7di3dunVj+PDhnDp1yrfzGh8fzw033OAxM7iGSU9PJysri7fffvuqbicIAlOnTmX16tX/che5jV+PtqDaRivGjx/P7t27KSsr+7WPctX07duXp59+mqVLl9Kk1fLlLbdwc2EhByUJV0kJVFcTYLORERVFKNCo1aKYNw/hyy8Z+uc/A/CHP/zhih6WTqeThoYGqqurkSSJuro6zKGhTAAeB2oCAohRq0kzmQgHQgWBDkYjhnbteEqW+QOQ9yPlqpZyLeDTCN61a9clZuMlJSWcWrAAFeDyBrmAgAD69+tHWFgYKpXKl5H7aTQgCB6tYe+qTq0gMFCrJT0o6LLlZZVKxTf33090dDQKpRJkGYvVSkNDA1qdDpVKhVanIz4+HovFQm1NDXVep536+np0Oh2qoCDklSvZ/f33hIaGkpycTIcOHXC73WzdupUHHniAAwc8GlIjRoxgxYoV+Pn5ERUVxWeffUZaWho1NTVcd911FBYWotFoePTRR3n77bcpKSlpdV6FQsGKFSu4+eabGTt2LLt370ahUPDBBx/QpUsXRowYQUFBwdVeQv9V7rzzTg4fPsyxY8eu6nY9e/ZErVbzvdcwvo1ri7Y91TZa8VvXGw0JCaF///48/fTTfLZuHaUKBV+4XByLiWHsCy/gN2wYmptv5i2Hg2UVFdwxZQqK8+cRyso4eeAAH23dSk5ODsePH0fpLedeTMu/BUGgqakJq9XKPfffz5enTrFZp+OEycToRx/lte3bKenQgSGrVvGX/HzWnTyJE3xSfhffX0REBH/+859pbm5m1qxZVFRUUFTUuhAtAK9qNAQEBmKTJE9pVq+npKSEkOBgapxOPrbZ+FoQ2O5w0KxQ0M07cKb186Nzejo6ICw2lh0WC3VeoYcWnE4nk0+epMnpJDA4GFGpxG6zIePpAe6SJNba7Wy0WDij1RIfEkL9uXPYbDasVqtnOjooCKGiginvvst9c+Ywbdo0Ro4cSb9+/cjJySE3N5ecnByf+lFMTAxDhw5l+/btuN1uqqqqUCgUJCcn8/zzz5ORkUFmZiZarZZVq1YxdOjQS+Q0r7/+egRBYPbs2SQmJtKhQwfGjBlDbm4uzzzzDIMHDyYsLOw/vq5+CVQqFTExMSxdupThw4f/ZPEVQRAIDw/nnXfeYeTIkb+JdaLfE21BtY1L+K3rjdpsNt577z2qqqqQJAlZlimqryd95Eg6jx4NtbUEfv45Iw4dgq+/xn/fPoQtW7ihuZmg3bspqqyk/eDBFJaXY7fbfVZqP6Zz586MHz+ejRs3kmYycW9gIFMuXKD+k0/o0NxMx+pqLixbRumJEzTp9dh0uksyUKVSiU6nY8KECWzYsIE33ngDi8XCd9991+oxuwcFca9OR7NSicPhwO12o9V6fDqrqqtZbrUSAdyl19NbllE6nWgdDpRKJX379iUwMBB9QACaCxdYVFPjO4cgCOj1ep54/HFGnjuH7O+Pw2tv53a7fT3OJmAgMNDtJi0ujg/MZm5LS6PswgWqqqqIj4/3TN7abDB0KEREoFarMZlMdOrUiWnTplFdXc3XX3+Ny+Vi+/btpKSkkJiYyI033siRI0coKyvDaDSSk5PDyJEjmT9/PlqtlltuuYUjR45w5swZunfvfsn70KtXL8LDw5k9ezb+/v50796dkSNHUlpayty5c+nbt+//3SP1FyYqKoqzZ89y+vTpyz63KxEeHs6ePXtQKBTXpCHG75m2oNrGJbTojW7btu2ql9SvBXbv3s2WLVswmUxIkoTT6USv15N38CB3HjuG4o03sHttz+pcLhQGA06VClmnQ2E2E5OXx8jGRgoNBh547jnWr19/2VUUt9vNtq++4r66Om7Yu5eQggLqHQ6qHA7MQLMkYYqMpJco8lhyMgN1Oj6vqqJliUar1ZKamsr58+d95129ejXvv/8+brebzMxMX0DJCg2ld10dYfHx1NTUoNfr0Wq1CILAWbudA243twKS00mYyYRJo8FqteJ2u6mpqaG5uZlTOTnItbW86w3MLTidTnbv3s1Ui4WypiYsNhtOr2sMAIJAKKDBkzGHAQcsFkIVClJDQnC6XJy/cAFJljFqNAgjR8KPrMoEQWDw4MF07tyZd955B0EQ2LdvH3a7na5duzJ69GhKSko4dOgQmZmZbN68mbFjx7Jy5Ury8vKYM2cOb775JlFRUb7d1YtJT0+nU6dOPPbYY1itVvr378/111+P2Wzm8ccfp3v37q1M768lOnfuzLJly+jQocNPNiQXBIHIyEhWrFjBjTfe2JatXkO0BdU2LktSUhIrV66kU6dOhIRcnWXVr01SUhJTp06lT58+pKWlUVdXR7ekJF5paMB54gT+SUnkFhcjeSd16+rqkCSJkNBQymtq0IWGUlVeziSNhg/272fvFfrLSoeDdgsWoD90iPzGRuolCedFwVcAAo1GVEFBGMLCaDp2jBtkme2yjFmh4O9//zsVFRUUFxdjtVqprq6mqqqKtLQ0RFEkMDCQ8vJyioqKePfZZwnZt4+cwkLsdjv+BgN19fW43W7OWq1UCQLd8Xi6gscgICo6Go1GQ0N9PVXV1bhdLowqFe+IIvbLlKHv1mrx0+sJCg4mPCICWZLQGwwYjUZKTSY+tFrZ4naz1WqlQZLoqNEgl5URFBREZEQEhUVF2GpqcI8fjyE+/orvzcSJE/n000+5cMHj/rp9+3a6dOnC2LFjEUWRzz//nP79+7Nt2zaysrI4duwYGzduZNasWSxevJhBgwb5svQf33e/fv148sknKSgoYNiwYQwYMABRFJk9ezYdO3a8xPD7WkCj0RAaGsqbb77J8OHDf7JjVFhYGIcPH8Zut7fa523j16UtqLZxWURRxM/Pjy+//JIhQ4b82se5apRKJREREWRmZnL7lCnc/O23BNfUUCZJNDY2UltXx4s2GyFuN52iorDZ7QQGBlJXW4vVZsMYFkZxWRndKir4XpKolGVCQkJwuVxIkoQCmC/LZLpcXHA4EFUqMrt0obGpCaUo4nK7kcEz6KPVUlxcjKTVEqZUMkyt5qDJxOEffuDgwYOtyrwBAQEolUouXLhASUkJRUVFSJLEvq1bGeVw0CxJyF57txarNztwWBAYqFaDLGOz25HxBFar1YqzxXpOlnFKEl+GhNDU1AR4Mp4W0YkhMTGE19SAwUCtN7ttl5BAQGwsLxQX80yXLkwwGOhcX89Jl4sAs5lErZZ2CQk0NjaikWUcLhejvvqKoJAQMjIysFgsNDY2tto1NRgMTJ06leLiYj777DNSUlJYv349Op2OW265xfeBrnv37pw9exatVoufnx8ffPABw4YNY/v27Ve0UWvRg37++efZs2ePz8EoKCiI2bNne4Q7Onb8ZS++/wOxsbEcP36coqIiunTp8pNvFxMTw/Lly69Z+8bfI201gzauyNChQykvL+fEiRO/9lH+Mw4cgGPHUISH0z45GavVSkhwMCHBwfgHBJCcnIwA1FRXe6zLlEoKCgqobGrC6XLx0aBB1NfX+yZsAfoA/QWBaoXCY3UmCJw+fRqVUklkVBR+Gg0x0dGoVSqKioupra3FarUiBweTpFYzsKSE06dPX1JWrq+v5/z585c8hRy7nRqLBcHhQBRF9AYDoijidDqJkmX8gc1uN1a3G0GlokqjQZIkXE4noWFhZGVlMTAjA3OPHpSXl/vu12g0+rKct8xmCvLzqautJT4hAb1eT3h4OA7v3myQSkVCQgLOTp2oU6mQJInGpiZy8/KIiYkhNSyM4gEDKKup4Y9//COBgYH07duXm266ifr6+lbPR6FQ8Nxzz7Fs2TI2bdqE0+nk66+/Zt68efTs2ZPVq1eTm5tLeHg44eHhFBQU0LVrV5YtW0Zubi6ffPLJFd/upKQktm7dytmzZxkzZgw2m4077riDF198kZkzZ7J69er/02X0SyIIAvfddx/ffPMN+fn5P/l27du3JyUlhY0bN/6Cp2vjamgLqm1cEaVSyW233cZ77733296Je/99UCpBEBBFkdTUVNyShNvtRq/XU1VVhSiK1NfXY7PbKSkpodlsJshoJK5rV/QnT9I9IoLy8nJfZjcVcAI9e/VCo9Hg8ApANJvNFBUWetZY6upoedUkWaapqYn8/HzyqquZJMuornDcy2n+SqLIJ0olRsDpctHU1OTJQL3rNZNlmSq3m5VBQbxvMpGnVnucXjIyPCXghgaUCgU3rlzJpk2bfJOm9fX1nDlzhokTJ/LMunUo4+OJNxrReu3wRFEkVqvl5ogIZuXkMPXIEcrcbvrGxKDTalEplTQ1NrJ/zx5q6+oYumgRQ4YMQafTYbFYOHHiBA0NDVcUsxg5ciQ7duygpqaG3bt3o9PpePjhhzGbzWzYsAGLxeKTJ/zuu+8YNmwY+/fv57nnniMnJ+eKb3lYWBhbt27F4XAwbNgwamtrmThxIkuXLuWvf/0rS5cu/alXz3+N4OBg7rzzThYtWnTZwbgrMWXKFD799NMrmiW08d+lrfzbxr8kPj6e9evXEx4eftkBkWue0lJ45RUwmXzONaIoEhQUxJr8fLoZDPhZrZxrbGRBYyOC2UyYIGAKCcFms1FcUoJelhk3ZQpDHnuM7OxsAhsbeQSPWH59fT1Oh4MFLhc2l4svJYlvJIkaSSLM6eRjSeIroFAQSAaPaL8oEiwI5Moy5y9zZIVCccngSVxcHGfMZm6RZVyiiOR1kWkxY9fIMllaLb1cLrparXTWaunVqxfBRiNhYWHIdXUca2jgnkOHiImNRaVSkZOT4/Nv7dmzJy+9/DJn3W6CduygsKwMq8OBWq1GEAS6h4QwISqK8ZGRdAsMpKtCQYxSSZcuXWhsaMDfYuF1i4XxS5diMpl8AhQul4uKigqWL19Ofn4+sbGxhIeHtwqy/v7+TJs2jXPnzrFq1SpGjRrF9u3bqaioYO7cuWRnZ5Odnc2MGTNYs2YNvXr14uzZs3z44YdMmzbtsv1V8IhE3HLLLWzevJnXXnuNkSNH0qNHDzIzM5kzZw4Oh4N+/fr9DBfZz0e7du3Izs6mpqaGTp06/aTbBAUFkZ+fT3l5OZ07d/6FT9jGv6MtqLbxLxEEgeDgYD744ANGjBjx29MbPXAAtm0Dg6HVfyuVSjbV1hJrtVJeV8cbZjMjZJlOXmNu8KgMSZLkkeU7fpzJH31EY2Mjg/GslzTjGQzy02o5IAjYNBpukSR6yDKbgTPASGCEUkmOUoms0xHtdKIQRZReneCLtYIEQUDwZtPjx48nKSmJM2fOoNVqeffdd3ljzRo6JSeT3tRE3UWZTIv0YIeOHSkrLUWSJE+JWKfzyAzabOgB9YIFzFm0iLVr13L69GlPluvdebRYLJjNZu595hlievTAb8cO3ICgUvmGqZqamnxTw2Xl5YSGhhKg0xGjVFKemcmc+noam5o4f/48DocDs9mMUqlk+/btbN++nezsbNatW8cXX3yBLMu0b9/epxwlCALDhw8nKSmJ+fPnEx0dTWRkJGvWrGHmzJmYzWZWr17NY489xubNmwkPD6ehoYFly5YxadKkK+r9iqLIhAkTOH78OH/7298YNGgQPXv2pG/fvjzxxBNUV1czePDg//w6+5lo8Q1euHAhPXv2/MnmFgkJCfzjH//ghhtu+E249fz/TFv5t41/S+/evRFFkd27d//aR7l6zGa4gjOLUqnEYjLxjs3GH4D2eCT3kGUcTifNZjMOhwNJEAjwBjtBEAgCn75vu3btiIuNxc/PjzEREXRNTSVMqyUOiAbCAVwu2ksSZbJMVFQULqcTtyAQqVK1MthWe4X30yMjWT52LA+YTNyh07Fg6FBs588THh7OzVu28LnLRSQea7kWGhoaOHr0KB07dmTY8OFERkVx6tQpju7eTVNpKZ9068YNc+YQGhqKyWRCr9cjyzImk4ktW7bw/fffYzab6dOnDy+dPs3h227DaDCQoNWSHh9PRkYGYWFhuFwuCgoKqC4qwlxQQHVeHsXDhtFh7VoOHz3qM+BuaGjAZrMxadIkevXqxfHjx3nkkUd8Zc1FixaRlZXFww8/zA9ejWaAMWPGsG3bNgoKClizZg2jRo3i1VdfpWPHjtx///08//zzTJ8+neDgYDQaDaIo0rt3b7Kzs694CSgUCpYuXcrEiRMZO3YsO3fuJCsri3Xr1vHxxx8zc+bMq76sfknCwsKYMmUKr7322r91FWohKiqK3r17s27dul/4dG38O9oy1Tb+LYIgEBYW9ttUcCkogB07LslUAT6vqOCc3U6E3c4QPz9EUUStVmMwGDyDTCEhSLKM6HLhUKn4OiAAjUZDHz8/ujmdNAkCsd5S6pbGRvoGBBCl02EKCeG78nKCBIEk7xR1lUJBkdNJfEMDMqAVBKqAfaGh2Gw2JEkiE3jQ6eQJWcb/wAE61daSUFZGh8pKEvftY2r37uQ3NPDHLVsQ8AxL+QNuPJ6tKqXSI/yvUBCsUBCl11NeW8vU8nJWFRTw0EMPsXr1ajQaDfn5+TQ1NeHv78/Ro0cZNGgQM2bMIC0tjUWLFvHB7t343XEH/W67Dc6eRSwrQwsEqtUo7XZ0gYHI06eze9gw1jc08PY773Dq1CmGDh1KXV0dRUVFCILAiRMnOHnyJDfeeCPDhg1j4MCBfPrppxgMBh588EEOHTrEwoUL+eKLLxBFkZSUFEJCQpg+fTo5OTksXryY2267jYqKCgoLC5k4cSILFixg4MCBZGRkcPDgQURR5KOPPiI4ONhjiWYugrKvoWIHVO+FpjMgKBg8YjJKr01gfHw81113HSNHjuTZZ5/lyJEjjB49+pqpxLRv355vv/0Wq9VKamrqT7pNYmIi//jHPxg6dOhvwgLv/1fagmobP4mIiAj27NmDIAi/LQWXmhr4+mvQ6y/50ucVFdwXH885hQIxIoKbOndG6+eHxWLxrMR412+UNhsNISHkJicTGBhISGMj3SwWLIJA165d8ff356uaGgZHRdHeZCIgIICzoki7iAg6arXU1dVR7HJRLkmkewe+/IFcpZL1TU1EhYbymMPBIy4X7USRMrudC7W1VFgs1DocWEWRisZGAquqEL74gmSFgjcMBrYajZRarXRRKIjQaFDY7Tjq6tBLEgfq65lVVsbmrCzufuYZZFlm7dq1FBYW8sADD7B3717CwsJYtWoV58+fZ+7cuZw+fZrp06czY8YMvvjiC77asoW91dW8Z7USevvtJN13H/KoUfz93Dk6LV1K0uTJdOrZk2HDhjF27Fji4uKor69HkiSKi4sJCAjAbDZz8uRJVqxYQUZGBgMHDmT69OkcOXKEt99+m+nTp/P8889TXV3NW2+9xdKlSzl37hzJycncdtttxMbG8vTTTxMSEsJNN93Ehg0buOmmm/jwww/RaDTMmDGDjRs3otX60VzwDVENq4ht/gShahfUHYeGE1C9B0q+gPLNZPUeSExqX2bNnoNOp2PYsGHcdNNNvPLKK3z//ffcfPPN10RgFQSBjh078uqrr9KvXz8Ml/lQ+GP0ej3V1dXk5OTQrVu3/8Ip27gcv6GUo41fE0EQmDZtGmvWrPmXfpzXHF27glbrkc+7DFqFgnkpKZxsamJNeTnR0dF0696dxMREVCoVBr2ehMhIDLffTnFxMceOHWNLfT2SLKNSKikqKrri1KVSqaRTp04MHTqUIKOx1QS1AjgZEcGo4cN5VaNhgkZDlSDQrNVy3fXXE2Q0giB4yqWyjM3pJK+2lnJZZrAksUyjobCujo/9/JiZmsodWi0P63SMra8ns6iIJ2Ji2KlS4RZF+vfvz6pVq1i/fj2nT5+mX79+dOvWjT59+mCz2Xjttdf45ptvKCkpoUePHrz66qu0a9eOTZs2ceHCBTZ+9RXPv/cerg4dOK1WU2c0kvKjIRq1Wk3nzp2ZPHkyCxYsID8/n61bt3Lfffeh1Wqprq5m1KhRdO/enW+//ZannnqKxYsXs3DhQmbMmMGDDz7IwYMHeemllzh//jzDhg1jxIgRvlWbU6dO8cwzz/DQQw9RXl7O4MGD/x97Zx5XY97+8U+nvaRVKHVOe0mobEmb7BqkQglZwwwTRmNfxjIa+zqWzCCMJmPskSUj20hEIUkkW7tKe+d8fn/0OM80Qgzm+c2c9+t1vxrn/i7XfZ97znVf3++1ICUlBeHh4di/72d84ZKN2b3zoV6RhvjkDFQrNQZUmwAqjQFVQ0C5MVCeAyTPh2+zaOzYsgJhYWFYuHAhmjVrhuPHj+Pu3bvw8fF5JT/z34WhoSF8fHywbt26envfDxgwAKdPn/6fL3/3T0ZmqcqoN40aNUJiYiJKS0thaWn5d4tTP+TlgbIy4OLFV5aAD2Zlob2WFozV1OCso4OIx4+RX1mJVpqaUFVVhZ6eHrTV1VFWXg6fq1eR+/x5TXgKiRbV1bBQUEBeWRnS09NxoqgITYqLoVZRAYFAgKtlZdBQUIBdw4Y1/37yBA9KS9ESNen+qgFMKyrCqKoqdC4uxmOJBMoqKigvL4eOjg4qKypgZW2Np0+fQkJiX1UVHpEwlZdHhYICmisoYEJgIGZER+PnvXuR8vQpnlZXo0BeHvYuLujVqxfOnj2L9PR07NmzBzExMUhKSoKRkRF0dHTw66+/Ii4uDo8ePYKxsTHU1NTg7++PFi1aYO3atbhw4QI0NDSQnJyM8vJy5OTkYM+ePXj48CG6du36Vs9UgUAAXV1d9OjRA2PGjMHdu3elCS3279+PK1euICMjA66urkhOTsby5cthYmKCPn36YODAgRgwYACePXuGzZs3Y9euXdIsSqtWrUJgYCBMTEzw9OlTFBbkQfT8ewR4NkFqxnOUVdWEAWVkZEBXT++/TjtycoC8MiDfACh9BKHyPXQe/B1mz1uE1NRU9O/fHwMGDMDWrVuxd+9e+Pn51TvB/cfEysoKR44cgUAggJmZ2Vvbq6qqori4GNeuXUO7du0+gYQy/owc/18HIMr41KSnp2PevHnSsl3/L3jyBPD2BjQ1gT84Br0VsqbvqFG47uyMvn37Ijs7G2KxGO3FYuwzMoJe8+aQyMmhID8fuXl5KHz+HC9KSiCRSKCurg7Nhg2hq6uLBw8eIC8vDwoKCjAUCLBBIkFEZSWOA3gOQCwnB5BopK+P8vJyNDM0hLy8PO7duwdNTU1sKyiAUkUFPAAoyMujo5MTBHl5GKimhtPJydDV1YWBgQFKSkpQVVWFS5cuoVu3bsjKykKjRo2gqamJ5cuXQ0NDAwUFBcjNzcWKFStw5coVaGlpoW3btlBXV0dhYSEEAgF+++03FBYWQl5eHg0bNoS2tja6dOmC7du3o3379li/fv07ZyaKiopCSEgI8vLyQBJeXl4YOXIkUlNTpYrWysoKoaGhcHBwkG4zREdHIzw8HImJiTUpE588ga+vL7788ktc+WkU7BtexdPnhJWVFe7evYvq6mo0bKiJFy+K0aJFC+g3qqNKTXkWoGOP+3pfo5+3N2xtbbFjxw5UVlaib9++qKqqwsGDB1/rVfwpuX//PmbNmoU1a9bUK2VocXExgoODsWLFCjRp0uQTSCjjj8iUqox3JiwsDGZmZvD19f27Rak/+/YBixYBjRoBiq9Lu/AHSCA7G7CyAjZvBlRVce3aNQQHByM/Px/FhYWYV16OboqK0LaxgY6OTq3uL168QE5uLgoKClBcXIwXL15AICeHRnJyyFdVxSJzcxgkJWFSdTWy/tBPW0sLEokEqqqqUFBURP5/kudvKyiAnrIyuisp4UVxMUhCqKyM8hEjYDx3LsRiMSorK1FRUYGffvoJurq6+PHHH5Gfnw+JRAJXV1fMnj27Vo7Ys2fP4uzZsxCLxdi+fTvs7OywePFi5OXl4fvvv4dYLMaRI0dQXl4OFRUVeHh4IDs7G4WFhcjMzIRQKISrqyv09PSgq6sLbW1t6OjovPL3j3Gkz58/R3BwMI4cOYLKykro6elh9+7dcHd3x+bNmzF79mwoKiqiffv2UFBQgJWVFVq0aAFbW1uoq6tj69atiIyMxKNHj2DYWAtXluqiqFSM+xlPUFFRDgMDQ5SUlKCoqAgNGzZEcXERRCIRzEz/ZOWRQEUW4BSB7Aod9OvXD5qamvjll18gLy8PPz8/5OTk4NChQ9DT03ufJ+6DsmvXLqSnp2PWrFn12vPdvXs3srKyW1JO+QAAIABJREFUMOk/dYJlfDpkSlXGO/Po0SN8/fXX2Lx5M9TrcAD6nyUiAli1qmYZWENDmgziFSoraxycrKyAtWuBPyjMY8eOYdq0afjuu+9gZmiIJwMGQDMtDS9UVWFgZAQjY2NpUvuXVFRU4NLFi9CqqsIzEuPl5fEMQFRlJVTFYrz4Tzt5gQD8T0rAZwAOCwTIFYthBkBRXh4iTU30+E8YSUlJCVQAlJaUYNeQIZg5dy6aNWuG7Oxs7NixA6dOnUJxcTFcXV2RlJSEqKioV1YWbt++jfDwcCxfvhx5eXmYNWsWoqOjYW1tjU6dOmHWrFkIDg6Gq6srVq9ejdTUVAwdOhSrVq3C1atXERISgqysLIwYMQLt2rVDQUEB8vPzpX9fHgKBADo6OrUU7Z07d7Bt2zY8f/4cAoEAPj4+CAwMRGxsLHR1dbFx40b0798ffn5+uHXrFm7evInMzEyYmZnBxsYGOTk5uBmzBONd81BGTTRrZohnz56hqKgYmpoNoafXCE+ePIaioiLKyyugo6ODli1bQvDH77w8CzD8DLCbjRcvXsDHxwcvXrzAgQMHoKOjA39/f6SlpeHQoUPS0nE7d+7EpUuXkJmZiYEDByIgIOAvPZL1paqqCl9++SUGDRpUr8pRpaWlGDNmDL799lsYGRl9AgllvESmVGW8F6tWrUKjRo0wePDgv1uUd+PsWWDNGiAjAxAIgIYNa/ZdyRpnptJSQEkJ6N8fGDcO+EMi+JckJCSgZcuWUFRUBCorURUWhvytW5GXm4sCsRgNGzeGqalpzQtHZSVKnzxB5sOHyDU1RcGkSbBycoJIXx9PLS2RWlSEsv84UTVQV69Jm5iXh5ViMdoDaAvgrpwcDikooJ++PsZZW0NVVRVZ2dnIevYMpg0a4Etzcxy7cgWNGzeWlrrr168fGjdujIkTJ2Lx4sWwt7dHz549a11HXl4eQkJCEBERIf0sLS0N/v7+ePDgAYYMGYLMzExERkYiNzcXfn5+KCoqgry8PBYsWIDu3btj+/btCAsLg1AoxIoVK17ZayWJ0v8URf+zwn38+DEiIyORmpoKsVgMBQUFGBkZoX///qisrMSBAwegrKyMr7/+Gq1atYKamhpycnLw4MED3Lp1C310dkFNUIzH2cUQCARQVlaGgkLNC4eSkhLs7e2RmpqKiooKyMnJQUFBAY6OjlBW+s8WgKQaqHoOdI4BFDVQXV2NwMBApKSk4MCBAzAyMsLIkSORkJCAAwcOwMTEBKdOnYKWlhaio6Nhamr6yZQqANy5cwcLFy7EunXr6pUUYu/evbh37x6+/vrrTyCdjJfIlKqM9yI7OxshISH4/vvv65315X8GEkhOBiIjgWvXgBcvahRp48bAwIFA5851huC8kbw84OhRFKxdi/y0NBSVlEBNRQW6hobQGTUKAh8f4I/l0HJzUdWtG35/8ACUSKDfuDGys7JAAPkNGmBjdjbGV1VBDjXxp5Hq6nA1NsbwP4zx6NEjVD97hj19+2JpVBRKS0tRVVUFJSUl9OrVC/fu3UP37t1RXl6O+Ph49O/fH/Ly8tKcvnJyctiyZQtGjx4NJSUl6efR0dFQVlbGb7/9hry8PAwYMAAaGhooKytDjx49cPDgQRw7dgxCoRBjxoyBnp4etm3bhgsXLqBjx44IDg5GgwYNpOkWXx4v5xYIBCgsLERUVBTu3buHrKws3LlzBy9e1NjsNjY20NTUhEAgQFlZGe7du4fWrVtDRUUFqampKCsrg5qaGmb3yoWDpSbKyytx5XYOfrkshpOFAs7dqYYcAC8HAdq1bYM1P99G7vNSeNipopMVYG/fGtlFCth8+CEeZRVCqWkndHTrgVGjRkEgEODLL7/EyZMn8dNPP6Fly5YICQnBiRMnsHfvXulLw/Lly9G0adNPqlQBYOvWrcjPz8fUqVPf2ra8vBzBwcGYO3fu/68wuP/nyLx/ZbwXLxPRp6Sk/P+LiZOTq1GgnTsDgwcDw4cDQ4fWWKdWVjUK9l1RUwNatYLqqFHQ+fxzKAwciAhFRYSmpuL769eRU1mJli1b/nd/USyGfEQElHR1oa+vD2MjI+jp6aG4qAjJhYV4oaqKIDs7aGhoAACuFxXhRW4u9EtK0LBhQygqKkKjYUOU5+bijKEhDK2tUVpaCk1NTVRUVCAjIwPq6uqQk5NDUFAQEhMT0apVK1hYWEBXVxdaWlrQ1NREcnIyWrduLc1QpKCggPj4eLRv3x4aGhrQ1tbGpUuXcOHCBZiamkJfXx+GhoZo06YNUlNTsWvXLqSlpcHV1RWWlpY4d+4cdu3ahSdPnqC0tBRpaWlITU1FSkoKbt68iaSkJCQmJmLdunUoKSmBhYWFNCXh8+fPUVRUhOzsbOTm5kJXVxcFBQVo0aIFEhISkJWVBTs7O5ibm0NZUYCbKekw0pVATVGMojIBLt2phqGOBP4d5aGsSBxLJB5kPsaWmZ5oYSyPjUeeoYO1OrKfPUSFRAkurQ0wumtDuPjMxJ79p0ESNjY26NWrF/Lz8zFjxgy0bt0a48aNw5MnTzB37lw4OzujadOmuHjxIjQ0NGBnZ/cBH8y3Y2tri507d9YrF7eCggIUFBQQExMDNze3TyShDFCGjPckLy+P/v7+zMnJ+btF+Z9FLBbz559/Zrdu3WhsbEx/f39eunSJFItJZ2eyWzfSy0t6iHv3ZoylJbsrKvKCnh6fu7hQ0rs3Jxga8httbZ5UU+MxJSVebtKEBU5OFLdrxwUzZ3LlypVMTU3lpEmT6ODgwMOHD3PkyJFUV1enp6cnV61axSVLlrwi34wZM3j16tVanwUEBDA/P58TJ05kSkoKr1+/TmdnZ5qbm9PT05OXL1+Wtk1OTmaPHj1oYWHBNWvWUCwWMzIykra2tnR1dWV8fPwrc96+fZsBAQGsrq6u9fnJkyfZo0cPGhkZUUlJiUpKSjQyMuKzZ89YXFzMIUOG0NzcnHv27CElEi4YYsADCxzJWC/e2OrK/i5NeH9bS56YpcorK4Xs1b4Rb/7oQsZ6kbFeHOtlwHUjVXlukTZPzlblre/NKTnWgSy8w/3793PhwoW15Nm4cSNFIhGjoqJIkosXL6apqSnj4uK4bNky7tq1672fi7/CjRs3OGzYML548eKtbSsrKzl8+HCmpKR8AslkkKQs+YOM90ZHRwfdunVDZGTk3y3K/ywCgQB+fn44fvw4YmJioKmpCX9/fzi7uOBC06aQ5OXVbi8nBw9zczTS1cVFsRhXEhOx9+ZNZFRXQygUol3btjBq1gzFxcW4Fx+P7VlZaO7ggMzMTFy6dAkrVqzAvn370K1bN4SHh2PHjh3Izc3FsmXLsGbNGsTExNSaT19fH9nZ2dJ/l5eXo7y8HIqKinjy5AnMzMxw+vRpTJkyBdeuXYOjoyMGDBiAgQMH4v79+7C1tUV0dDTCwsKwdetWdOjQAdra2rhy5QqcnZ3h6+uLUaNGIT8/XzpHbm4u9PX16yyqbWdnh1u3bsHf3x8K/0mu0bp1ayQlJeHLL7+ElZUVRo0aBZGJCa6ki1H0okTaV0NNASKhMdq3b4+iwgIUFj5HA9U/VMNRV4G5ZXMIBAIUlAqwNDID/WYlwGfYFOzYsQNFRUW1ZAkODsayZcswdepUbNiwAdOnT0dISAiGDh2KO3fuvN8D8QGws7ND27Zt8cMPP7y1raKiIgYNGoQdO3Z8AslkALKMSjL+Ij4+Pjh//jyePn36d4vyP4+VlRW+//573Lp1C4MGDcJ3d+8iOTkZyUlJKC0tlbZTEAgwx9oaDzQ1sUIgwKmnT2H04gUqysuhoaGB5s2bw6lDBxg0aYIfS0owcOBAbNq0CRMnTkTz5s2xYsWKGicqAN7e3nB3d8eGDRtgZWWFwYMHo2fPnjh37hyAV5Xqs2fP0LhxY9y+fRuWlpaorq7GpUuX4O7ujgYNGiAsLExa99TDwwMTJkzA8+fP4e3tjStXrqB///4YO3Ys/P39MXLkSMTGxiI3Nxft2rXD6tWrIZFIoKenh5ycnDrrxgJAgwYNsG3bNuzfvx8qKirIzc2Fm5sbfH19MXXqVNy6dQu2trbIKShFyYvnr/TXaNAAzh2dIS8vj/j4K8jO+e/1KSkqokOHDjieJA8jXcKrgzYyH2ehe/fudWYt8vHxwbZt27B8+XLMnz8fEyZMwOzZs7F3717Ex8e/34PwARg+fDiuXr2K69evv7Vt586dkZOTgxs3bnwCyWTIlKqMv4SGhgb69OmD3bt3/92i/L9BRUUFEyZMwP7EROj27Anl4mJcuHABv//+O549e1ZTFq1BA6xp0QJHXFyw3NkZQRoasHz8GA8yMiAhoVpSgqbu7lhx9Ch0/1P7taioCCkpKUhMTJQ6/cjJyWH48OE4dOgQNm/ejK5du6JFixYYNmwYunTpgkePHiEnJ0cqW1ZWFpo0aYKbN2+iRYsWOH/+PJo3bw5tbW1pGwMDA/z44484fPgw0tPT4ejoiEWLFkEikWDatGm4fPky9PT04OnpiTVr1mDnzp1YtWoVfvzxR3Ts2BFZWVnQ1tbG9u3bUV5ejsrKyjoLjnft2hUeHh7S7EYPHjzAgAED8OTJE3zzzTcoUxQiOzsHt28lQcLa1VzkBQI0bNgQJiYiJCUl4XZKirRgvBzkoNFQFwb6Wth3WQ4kMXXqVGRkZNT5fbm5ueHXX3/Fnj17pC8MvXr1QkREBLZt21bvSjIfEjU1NXz++edYu3Ytyl+TgvMlCgoKCAgIQERERL3THcp4f2RKVcZfpm/fvrh27dprf5RkvB7DLVtg0b49XG1toampidspKTh79ixS796V5lhWV1ODg6MjRCIRMh48wJ2LF1EmL4+pAObMnYvRo0fD1NQUTZs2hZycHC5cuAAjIyNMnDgRT58+RatWrWBgYIDbt2/D2NgY/fr1w/Xr1+Hk5IQ1a9Zg1apVOHr0KID/WqrJycmwtbXFyZMn0aVLlzplb9GiBY4cOYKNGzfiyJEjcHBwwPbt26GtrY0tW7bg4MGDuHXrFhwcHPDw4UNcvnwZXl5eCAoKwpMnT3Dnzh2MGDECQUFBiIuLq3MOeXl5LF++HEeOHIG+vj5ycnLQsWNHfPHFFxgwaDB0zLtArjIX165dQ2UdOambGRiibdt2yMnJxtOnT6VtRnTVwLUnmihXs0F6ejoaNWqE6OhorF+/vk45WrZsiWPHjuHQoUMwNTXF8+fPYWZmhvHjx/9tCRbatGmD5s2b1wqJeh2urq4oLS1FQkLCJ5DsX87fu6Ur45/Cvn37XnH0kFFPMjPJPn1IBwdKunThIwcHXtDT4wlVVSYYGrKgU6caR6Zu3VjWogWv6Ouzh5UVx40bRy0tLRoaGtLMzIzKysr09fXljBkzqKGhQTU1NWpqanLQoEE8fvw4AwMDGRMTw+nTp0unTk9Pp729PS0sLNixY0eOHTuWUVFR9PX15YMHDxgQEMCqqqq3XoJYLOa2bdtoa2tLJycnxsTESM/t3buXLVu2ZPv27Xnq1Ck+fvyYgwYNoomJCRctWvSKw9LrKCsr45gxY6impkZ5eXk2a9aMly+epeT8UGZuacITs1SYusWaktjeUuekl0f1yZ5MWGHIU3PUWRDZnDzZhSx9QpJ8/PgxO3XqRDs7O5qYmDA4OJhisbhOGXJzc+ns7MyuXbuyuLiYsbGxNDU15XfffVeva/jQFBUVcciQIbx169Zb254/f54TJ06kRCL5BJL9e5GF1Mj4IJiZmWH79u2wtbWtV35SGX+gYUOgZ09ATg5ySUloKJHASF8fjfX0UF5YiKdpaSh8+BDiyko0GD4cTTZuRKmWFiIjI1FdXQ0lJSWUl5ejcePG2LRpEwYOHAgnJyekp6dDTU0NFy9exM8//4zCwkKoqKjgyZMncHR0hKamJjQ0NBATE4Pjx4+juLgY4eHhOHfuHLS1tdGgQQMYGhqibdu2b70EOTk5tG7dGqNGjUJOTg4WLFiAmJgYtGrVCu7u7hg9ejRycnLwzTff4Nq1awgLC4O7uzvWrl2LzZs3w9jYuFYKxbpQUFDAZ599BhcXF8TGxuLp06f4cVsE8pXt4dfFGo3VniMz8xEyHz+Dnq6edF8ZqHEYa6qvDXWFUlxPeYJfn3RHew9fyMnJQUNDA4GBgUhISKiV9N/Ly6tWikWgZtl10KBB2Lt3LzZv3oyJEyeia9eumDFjBvLy8uDh4fF+z8B7oqysjEaNGiE8PBzdunWr0/nrJc2aNUNMTAw0NDRgbGz8CaX8l/F3a3UZ/xyio6M5a9asv1uM/9+UlZFHj5IhIeSQIWRgICvHjuX+kSPZyd6e5ubmDAkJ4YMHD3j37l06OjpSRUWFTZs2ZY8ePXju3DnpUPv37+e4ceMYGxvL3r17U11dXWrhjRgxQmqNBQUFMSsriyQZHBzMfv360cDAgLq6uvzuu+9ea7W9iYKCAk6YMIFCoZDDhg3j48ePSZJZWVkcPnw4hUIhJ0+ezMLCQi5fvpympqb09vbmgwcP6nmbyjhu3Dip1WpmYsS02KWsPt2b6d/rMTFMiU93mJPHncno9mR0W/KEB3l3M29c+Y2tWrVijx49pNf9ktDQUKqqqlJLS4sNGzZk165d6evrS19f31rtxGIxBw8eTDs7O6alpTEpKYlWVlacPHnyO9+rv4pEIuGiRYu4Y8eOt7a9cuUKx40b917fqYz6IVOqMj4YVVVVHDVqFG/cuPF3i/KP5fTp0/Tx8aGRkRF79+7NqKgo2trasmnTpvT29mZAQADDw8OlS7Zbt27l1KlTWVFRwfT0dLq4uFBFRYXy8vIUCoVctWoVp0yZwqSkJEokEvr4+HDq1KmMiIigm5sbW7RowVatWnHjxo3v9UN8//59Dhw4kEKhkKGhoSwuLiZJXrt2jZ6enrS0tOTGjRuZlZXFoKAgCoVCzpgxg+Xl5fUa/9y5czQzM6OCggKVlJT4+efjKc69wuSoYdwyXpsH55mz9PIM8ukpsrpC2q+4uJgDBw6ktbU1Y2Nja4158uRJmpmZ0d7eniKRiHv37q1zbrFYzJCQEFpaWjIhIYFpaWm0tbXl6NGjP7nSysvL4+DBg3nv3r03tpNIJJw6dSpPnz79iST79yFTqjI+KKdPn+bUqVNl+zYfmadPn3LatGm0tramnZ0dQ0JC2LlzZ9ra2tLf35+hoaHMy8ujRCLhsmXLuGDBAlZXV/PFixf08/Njhw4dqKmpSXV1dTZo0ID+/v588OABBw0aRF9fX3777bfcv38/xWIxw8PDaW9vTzs7O65Zs6Zee6x/5vfff6enpyctLCy4cuVKqdKJjIyknZ0dnZycGBsby0uXLrFTp05s0aLFa5XZn6moqOCECROoqqpKeXl5Ghsb89q1a8zJyaG3tzetra15+PDhOvuuWbOGQqGQ8+fPr6UIMzIy2KFDBzZv3pxGRkacP3/+a+d/mRQiJiaGmZmZbN26NQMCAj65Yj158iQnTpz41u8nKSmJo0aNeq/vUcbbkSlVGR8UsVjMcePG1cq6I+PjIRaLuXPnTnbu3JnGxsZ0dHSkkZERO3fuzEGDBjEpKYlVVVWcNWsW161bR4lEwl9//ZWff/45x4wZw63rv+UQD02O8JDn2G5KHP9ZY04e05cDBw7k8+fPa80TERHBNm3a0MbGhsuWLWNFRcUbJKubffv20dHRka1bt5ZmKqqoqOD8+fNpYmJCX19fpqenc+PGjbSwsGDPnj3rnQ3o0qVLNDc3l1qtEydOpFgs5qZNm6QOSGVlZa/0i4+Pp52dHXv16sW8vDzp52VlZfT396eJiQlNTEw4cODAOvuTZHh4OEUiEffs2cOsrCy2bduW/fr1e6979L5IJBLOmTOHkZGRb207a9YsRkdHfwKp/n3IlKqMD86FCxdkXoZ/A8nJyRw1ahQNDAyoqanJxo0b08PDg7/88gtLSkr45Zdf8qeffmJlRQXnTfyMh+ZbsWSfLQt+suCD73WZtFSZ8QvB+AXgL1MbMuW370lxZa05XqZddHJyopWVFRcvXvxaRfM6xGIx161bR0tLS7q5ufH8+fMka/Zbhw4dSqFQyKlTp/Lp06ccN24chUIhQ0JCWFJS8taxq6qqOGnSJKqqqlIgEFAoFPLGjRtMT0+nu7s7W7duXZMm8k8UFRXRx8eHNjY2jIuLq3Xu22+/pZGREa2trenk5MTMzMw6596/fz9FIhHXrFnDgoICdurUid27d3/n+/NXyMrKor+/Px8+fPjGdnfu3GFQUNAnVfr/FmRKVcYHRyKRcNKkSa/8OMn4NBQXFzMsLIwGBgZUUFBgo0aNOGnSJD569IjBo0cwdd9QFv5syZQ12ry7xYLP97vw9kZzPtrlwPOLdRgzU4lxc+WYsEiO+6c34vHDP9c5z/79+9mpUyeam5tz3rx50v3S+lJaWsoZM2ZQJBKxf//+vHv3Lskay9HDw4PW1tYMDw+X7r9aW1tz27Zt9Ro7Pj6elpaWlJeXp5KSEkNCQlhVVcUFCxZQKBRy9uzZdS7PLl++nEKhkN9++22t80ePHqWpqSltbW1pYWHx2mc7Li6OZmZmnDVrFktKStilSxe6ubmxqKjone7NX+Hw4cP86quv3rr8vGDBAu7fv/8TSfXvQaZUZXwUrl69yuDg4HrHIMr4OISHh1NXV5fy8vJs2kSflzd7MH2DDvP3OfHGWiEvfKvHwoOuTFxtzHs/2DJuoRavLG/K4sPuvLbKkFcWCRgVIs/WtuYMDw+v84f66NGj9PDwoKmpKadPn87CwsJ3kjErK4sjR46kUCjk2LFjpUuwu3fvpq2tLZ2dnRkXF8eIiAhaW1vTw8OD165de+u41dXVnDp1qtRqFYlEvHHjBhMSEujo6MhOnToxNTX1lX6XLl2ira0t+/Tpw4KCAunnaWlpdHR0pKWlJY2MjLhly5Y6501OTqaNjQ2Dg4NZUlJCLy8vdujQ4ZMVnpBIJAwNDeWBAwfe2C49PZ2BgYGf1JL+NyBTqjI+ChKJhNOmTeOJEyf+blH+9VRVVfGrr77i590VmbAIPDFTmWfmN2TmTnueW6TNjB2teHlpE95YK+TZBZrM2NFSmjSh8kR3PtzShBtHq1BNTY1Nmzbl4sWL61yKjY2NZbdu3WhiYsLJkyfX2p+sD7du3WKfPn1oYmLCefPmsaysjBUVFZw7dy5FIhEHDhzIlJQUTp48mUKhkMHBwbWU3uu4du0arayspFbr5MmTWVZWxgkTJlAkEnH9+vWv9CkoKGDfvn1pa2vLixcvSj8vKSlh//79KRKJ2KxZM+m+7Z/JyMigg4MD+/fvz7KyMvr5+dHBwUEaWvSxefToEf39/fn06dM3tgsLC+PPP9e9EiHj/ZApVRkfjZs3b3LEiBGsrHy5L5dHMo3kbZIPSVa+tq+MN3Py5ElOnTq1/h2qSlj8a2ueX9iAR7+W5/EZSjwSKuCpOWo8u0CTCSsMeH6xDn/7piFLjnaunZHodG+Kjzpw29rZFIlEVFVVpY6ODr/44os6f7TPnTvHXr16USQSccKECa/Egr6N2NhYOjs708bGhps3b6ZYLObjx48ZGBhIoVDIadOmMSkpib169aK5uTnXr1//1qVOsVjMGTNmSK1WExMT3rp1izExMbSxseFnn332ipwSiYRLliyhUCjk0qVLa401d+5cGhoa0sTEhD169KjTOi8oKKCLiws9PT1ZWFjIoKAg2tnZMT09/Z3ux/sSFRXFmTNnvtG34dGjRwwICKhXGTkZ9UOW+1fGR6N58+YQCg1x+fIqAOMB9AAQCGA4AD8A3QGEA8j6+4T8t5AViwYqiujQ0RVCoQgSiQTKysoQiyUoLCxCdnYOioqKoaqqCjVVtdp95eQgkJPHsM4NcO/ePURERMDY2Bhbt26FpaUl/Pz8aiXEd3Z2xpEjR+Du7o5ff/0VJiYmsLOzw+HDh+slqru7O86ePYuZM2di7dq1cHJywvXr1xEREYGff/4ZFy9exIABA+Dn54clS5Zg48aNcHFxwaVLl147pkAgwKJFi3D58mVYWlri4cOHaN26NU6cOIELFy5AXV0dnTp1wt69e/9w2XL4+uuvsXPnTvzwww/w8fFBUVERBAIB5s2bh7Vr10IikeDu3btwdXV9pRyclpYWYmJioKKigq5du2LRokVwd3dHr169cOvWrXrdi7+Ct7c3SkpKcPLkyde2eZkxa//+/R9dnn8Nf7dWl/FP5hZfvHBnWpouq6s7kOxF0usPRxeSbUi2JRlGUhY3V1/e2VKNG0DGuEqtz4L9nXhqjhqPfi3PmJkqjJ6myENfgcdnKPHmBlOWRnepba2e6kYe70hW/XfZ98KFC+zSpQvV1dWppqZGNze3Wg489+/fZ3V1NRMTE9mtWzeqqakxMDCQGRkZ9Ra7qqqKYWFhNDMzY/fu3aV7qREREWzevDk7derEM2fOcNasWRSJRBw6dOhbLWOxWMzZs2dTRUVFarXevn2bERERNDU1ZVBQ0CtOV/n5+ezduzft7OxqhYvdunWLLVu2pKmpKUUiEQ8dOlTnfEOHDqWdnR1TU1M5ffp0WlhYMCEhod734X1JT09nQEDAG5fiX3oM/zGESsb7I8v9K+MjcQXAOCgpAfn5cqislIeGRsM/tVEA0ACAKoDfAaQA6ALg9flL/43k5uZi1apV2LhxI3755Rfk5ORAV1cX9+7dQ2ZmJsLCwhAdHY1mzZrBwMAAAHDy5EksXboU27dvR8zx41B6fhHmIkNATg5J6UWYu/0+mhkbY/Ox54hNKkNDFQmelwLHU7Sx71wu0u8/gIZ8AZQUlfA4n/j2p/v44dhjHDyZgKycArRu3RpCoRBDhw7FwIED8ezZM5w5cwbbt29HZGQk9PT04OTkBHl5eTRp0gTt27dHUlISKisrERYWhsTERLRs2RI6OjpvvHaBQABnZ2cEBQUhOTkZ8+ZsDLVZAAAgAElEQVTNw5UrVzBq1ChMmjQJmZmZ+Oabb6Cmpobly5fjzJkzWLhwISorK+Hk5AQ5OblXxpSTk4OHhwd8fHxw+vRppKenY9OmTTA3N8e6deuwe/durFq1Ci1atIBQKAQAqKqqYtCgQcjPz8f06dMhJyeHDh06oFGjRhg8eDDOnj2LZ8+e4dChQ6iuroazs3Ot+fr27Yt79+5h7ty5mDlzJjQ1NTF9+nQ4Ojp+1Dy82traKC8vx4kTJ+Di4lLn/VBXV0d2djZSU1Nhb2//0WT51/B3a3UZ/0TSSDqTdCfpxdLSLkxIMGBVVU/WtlT/ePQm6UByPklZfOtLxGIxv/jiC27ZskXquHPz5k2ePHmSffv25bFjxygWi3nkyBEOHTpUun92+fJlPnnyhBKJhEnX4tm/oxbTdnqQsV68sdWVfTo25k+z7Vl1shf3zLCkmzUY5AqWHuvJjD2e7OvciL8tMeapOerc9WUDHl9oyopDbZiVeoZjx46tMxQjLy+PU6ZMoY6ODlVVVWlsbMyePXuyb9++9PLy4pw5cyiRSJiWlsahQ4fS2NiYgwYNqleFlZdkZGRw8ODBFAqFnDRpEouLi/n48WMGBARQJBJxxowZPHjwIB0cHNimTRuePHnyrfd3/vz5UqvV1NSUKSkpXLZsGYVCIb/66qtXMg/FxsbS2tqafn5+UotWLBYzNDSUBgYGNDQ05NChQ+uMAQ0LC6OJiQmPHTvGNWvWUCQS8fjx4/W+/vehsrKS48aN42+//fbaNnl5efT3939n5zIZryLbU5XxEVgDoApAA4wceR137lRAS0sLz549e0MfOQBNABwCkPophPx/QWpqKvLz8zF8+HCoqKhASUkJzZs3BwDo6+uje/fuEAgE8PT0RH5+Pp4/fw4AaNu2rbS+aotWDrA3U8XN+8XScRXk5TDA3QAK8gL0cTVDA61GmBDQHqrK8jBurApRkwZQ0jCCu7s7XNqYoYHgOZKTb2DFqrWwsbFBcnLyK7Lq6Ohg2bJlePr0Kb799luQRGxsLOLi4qCtrQ1LS0vIyclJKxrFxcVBXV0dPXv2hK+vL27cuPHW+2FsbIydO3fil19+wc2bN2Fvb49du3Zh+/bt2L17N+Li4jBt2jRMnDgRPj4+GDNmDAYMGIBHjx7VOZ5AIMCcOXOQmJiI5s2b48GDB2jZsiXy8/Nx+PBhnDt3Di4uLrh586a0j7u7O+Li4lBcXIxOnTohMTERAoEAYWFhWL58OeTk5BAbGwtPT89XnvnQ0FDMnTsXwcHB0NbWxpw5cxAcHIxff/317Q/De6KoqIgvv/wSW7ZsQWFhYZ1tdHR00KVLF0RGRn40Of4tyJSqjA/MUwAXAejV+tTQ0BDZ2VnSwtt1I0CNct37hjb/LnJzc6Gvr19nSS8tLS3pfysrKwMAysvLAQAJCQn46quv4O/vj0H+AUhIF6PoRam0vYaaAgSCmqVAJQUB5OTk0Ez/v8vzSgpyKKsQQyAnB4GyHk6m6mBptCr2Rl/G9OnTsWnTJkREREAikbwil5KSEr788ks8ePAAERERMDAwQFRUFEaMGIFevXrh4cOHAGoUZHh4OC5cuIBGjRqhT58+6NevH65cufLW++Lo6Ijjx49j1apViIqKgqOjI+7fv48zZ84gNDQUYWFhOHbsGNatWwclJSW4uLhg/vz5qK6urnM8KysrXL9+HQsXLoS8vDyWLFmCfv36Ydu2bXB1dUXv3r2xdOlS6fXq6enhyJEj6NevH/r164cNGzYAAAYNGoRDhw6hYcOGePjwIdzd3REfH19rrmHDhmHdunWYPXs2CgsLERYWhsmTJ2Pnzp1vve73xcrKCu7u7ti8efNr2/j4+CAuLg7Z2dkfTY5/AzKlKuMDcwAAAQiwYkU6cnIqsWDBXQQGJuP33xUwe/Z1DBlyDQMHJmDatNt4+LDsT/11ARwGUPzKyP9G9PT0kJOTA7FYXO8+VVVVWLx4Mby9vREREYE9e/bAsV0nUPzne10/NhzIQDMtMX74Nghp6Q8RHh4OExMTLF++HM2bN8fXX3+NJ0+evNJPIBDA19cXSUlJOHHiBJo0aYJTp07BxsYGPXr0QGJiIgDAwMAA33//PS5fvgyhUAg/Pz/06tUL58+ff6tsvXv3xqVLl/D5559jwYIFcHNzg4mJCa5evYqOHTti3LhxAIAVK1bg2LFjaNOmDQ4ePFjnWAKBANOnT0dSUhLs7Oxw//592NnZQVlZGdu3b0dERAR69uwptXpfegGHh4dj9erVCAgIQGlpKVq3bo1z587B2toaxcXF8Pb2fkVhenl5Yffu3Vi/fj0SExOxfv16zJ49Gxs3bnyn7+ZdCAwMxN27d3H58uU6z2tqaqJXr1746aefPpoM/wZkSlXGB+Y0apyPgMmTTdGokRJmz7ZAVJQjRo60gbFxJdats8bOnfYwM1PDsmX3/tRfATVK+dXlxX8jlpaW0NbWxvbt21FeXo7Kyspa4St1UV1djaqqKmhqakJeXh4JCQm4ll4BQA5g/ZXzS8oqxFBTloOKVSAePXqE3377De3bt8fVq1excuVKpKSkoEOHDujfvz9OnToFAHj06BESEhJQWVkplcfBwQFHjx6Fl5cXzp8/DycnJ7Rp0wbR0dEAapazV69ejYSEBNja2mLIkCHo1q0bzpw580b5BAIBxowZg2vXrsHT0xNBQUEYNGgQhg0bhrNnz0IsFmPy5Mno0qULgoKCMGXKFKnjUF2YmZnh6tWrWLJkCeTl5bFw4UKMGjUKu3btgoGBAdzc3GopyS5duiAuLg65ubno1KkTbty4AS0tLURHR2PAgAEQi8WYOnUqvv7661qWvZOTEw4ePIgDBw5g37592Lp1K5YuXYqlS5e+83dUH5SVlTFhwgRs2LABJSUldbbx9vbG5cuX8fjx448iw78BmVKV8YEpBKBY5xklJUX06mWA+/dT8eJFIfz89HH/filKSv68JEcALz62oP8veLnn9+TJE4wYMQJBQUGIi4t7Yx9VVVUEBwdjyZIl8Pf3r1GCHV0BLTugIuedZRjRRQNnbgMDxoZh7dq1cHFxkcrWs2dPHDhwAOfOnYNIJMK4cePQpk0bbNq0Cdu2bcPgwYMRGBiIQ4cOITQ0FJ6enoiMjMT9+/cxduxYpKeno3///jA3N8ePP/4IiUQCHR0dLF26FImJiWjTpg1GjhyJzp07S5Xv61BRUcG8efNw+fJlNGnSBN27d8eCBQuwevVqREREIDY2FuHh4QgNDYW+vj48PT3x9ddfS5fM/3zfp06ditu3b6NVq1ZIT0+Ho6MjhEIhlixZgm+++Qb+/v7SPWx9fX0cO3YMPXv2RN++fbF582YIBAKsXLkSixcvhkAgQEREBLy9vfHixX+fbRsbG5w4cQKJiYlYu3Yttm3bhs2bN+NjBWXY2dmhbdu2+OGHH+o8r66ujr59+2L37t0fZf5/BX+3p5SMfxo9WBN/WuPVO2KEEa9dcyHpRbG4N8PDW3DAAC326NGAXbuq0NVVhRcvWjArqx1LSjpTIulNsh3JN3ttyngPKotr4lWPtSVP964dh/q647gzecKdfPHmqicvqaqqYnh4OF1cXCgSiThq1CgmJye/tn1ZWRm/++47GhgYUFlZmfr6+vzmm29qpUEsLi7mvHnzaGFhwU6dOtU7CfydO3ekKQVnzpzJkpIShoeHS/MHb9++nW5ubmzevDl/+umn144jFou5cuVKqqioUE5Ojubm5oyPj2efPn1oY2PDY8eO1WofHR1NCwsLDh06VJpX9/Lly7S0tGTTpk1pb2/PtLS0Wn0KCgro5uZGd3d3nj9/nlZWVpw8eXK9rvNdKSkpYVBQEBMTE+s8X1ZWxsDAQN6/f/+jzP9PR6ZUZXxgAki6si6levp0B44dK+SzZ10pkfRmcXEP9uypxxs37HnvXnNev27MK1cM+PChAY8dW8Br167Vq9yXjHegPI88P4Q8ak+e6Px6ZXqyGxntWJP0oejue00VHx8vLeXWuXNn7ty587XpBMViMXfv3k1ra2uqqKhQU1OTY8eOrZXIoaysjIsXL6aVlRU7dOjAyMjIehUCj4uLo5ubG62trbl+/XoWFxczNDSUQqGQgYGBXLlyJa2srNitW7c3vgBkZGTQ3t6eAoGAioqKnD9/PtevX0+RSMQvvviC5eXl0raPHz+mh4cHHR0dpWNmZWXRzc2NTZo0oVAoZExMTK3xy8rK2KdPH7Zp04bnzp2jra0tR48e/VGKncfHx3PkyJGvTaa/f/9+Lliw4IPP+29AplRlfGB2syZLUo1SnTLFlNHR7Uh68ciRtpwwQcSSkp4sK+vJDRta0MtLn0+e/Neyraz0YGFha+7YsZnTpk2jr68vv/jiC65fv56nT5+Wxl7K+AtUlZL3tpOnupLRbcno9uRxFzLGhTzmVPNZTCfy9kqy7PWVVZKTk+nr61vn8UcKCgq4cOFCtmzZktbW1pw+ffobE73HxcWxY8eOVFFRobq6Ovv161erUHlFRQWXLVtGGxsbtmnThhEREfVSPHv27GGrVq3o6OjIAwcOMCMjg35+fhSJRJw+fTq/+OILCoVCfvHFF28sY7dmzRqqqqpSTk6OFhYWPHPmDF1cXOjo6Mj4+Hhpu5exqyKRiD/88IP0s+DgYDZq1IiNGzfmqlWrao0tFosZFBREW1tbnjlzhq1bt+bgwYM/imJdvnw5N2/eXOe5iooKBgUF8c6dOx983n86MqUq4wOTT7I9a5aBvXjpkjODgppx4EAD7tnjwAULrOjr25TDhxvx1KkOryjVGoW8VjpaVVUVU1NTeeDAAS5ZsoTDhg1jYGAgFy1axH379vHWrVuyQsvvi7iKzD5HJs4ifx9LXhpNXg0lHx2uUbwfejqxmIcOHWLv3r1pZGREHx8fxsbGvrZ9SkoKvb29qaamRhUVFWkJuJdUVVVxzZo1bNGiBR0cHF5bmu7PMixfvpwWFhb09PRkfHw8z5w5QycnJ9rZ2XHZsmXs3r07LSws3jjeo0eP2KZNm1pW65w5cygUCjl//vxa/Q4dOkRzc3MOHz5cahlu2LCBjRs3ZqNGjThq1KhXSiSGhobS3NycR48eZdu2bdmvX78/FKb4MBQVFXHIkCGvTb4RHR3NWbNmfdA5/w3IlKqMj8Ac/tFarf/RnTV5gDPfOHpOTg5/++03btq0iSEhIfTx8eFXX33FrVu38vz587KsMP8PePDgAUNCQmhubs42bdpw5cqVr13qz8rK4vjx46mlpUVlZWVaWVnx559/liousVjMjRs3slWrVrSzs6tX1Zri4mJOnTqVQqGQgwYNYnp6Ojdt2kRLS0t6enpyyZIltLW1pauray3r889s2LBBarVaWlry0KFDtLe3p5ubW61qNJmZmXRzc2Pbtm2lVndcXBxNTU2pp6dHNze3V+qtLl++nCKRiJGRkezUqRN79OjxwWufxsXFcezYsXW+mFZVVXHUqFFMSkr6oHP+05EpVRkfgWzWWKodWX+F2pM1aQp/eOfZysrKeOPGDUZGRnL+/Pn09/fnyJEjuWzZMh45coT37t2TFUv/H6WiooKbNm2is7MzRSIRg4ODX2s5lZWVcdGiRWzcuDGVlJRoaGjIlStXSi04sVjMbdu20dHRkba2tlyxYsVbVzEeP34s3fedMGECMzMzpfVaAwMDOWHCBAqFQo4cOfK1L2tPnjxh27Zta1mtY8eOpYmJCTdt2iRtJxaLOWnSJJqYmDAiIkI6f8eOHamnp0dLS8tXiq9HRERQKBRy48aN9PT0pJubG4uKiup9f9+GRCLhokWLuGPHjjrPnzp1iqGhobItl3dAplRlfCTukezKGk/eP1en+fPRhTUKdRk/RN5fiUTCzMxMxsTEcPXq1Rw3bhz9/Pw4c+ZM7ty5k1euXJHVj/wf5PLlyxw8eDCNjY3p6enJPXv21GlxisVi7tq1i+bm5lRSUqK2tja/+uoraU1TsVjMPXv2sH379rS2tuaSJUveauFdv36dvXr1oqmpKRcvXiz1HDYxMeGkSZP42Wef0czMjKtWrXqtFbxp0yap1WplZcVt27bR2tqa/fr1q2WF7tu3j2ZmZhwzZgwrKiqk+5e6urps0qQJIyMja4179OhRmpiYcPHixfTy8mKHDh2Ym5v7rrf3teTl5XHw4MG8d+/eK+fEYjHHjh3LK1eufLD5/unIlKqMj8gzkuNYsxTchjVKtjf/m0DfmTXLve4kf+bHTKRfVFTE+Ph47tixgzNmzKCvry/Hjx/PtWvX8uTJk3z8+LHsbfx/hIKCAn7zzTe0s7OjjY0NZ86c+dpybmfOnGG7du2orKxMdXV1BgQE8OHD/4b/7Nu3j87OzrSwsOD8+fPf6k1+7NgxdujQgS1atOC2bdt44sQJtm/fni1btuS0adPYqlUrtm/fnmfPnq2zf1ZWFtu3b1/LavXz86OFhUWtUKCMjAx26tSJHTp0kIbXrFixgnp6etTV1eXs2bNrKe/ff/+dFhYWnDJlCv38/Ojg4MDHjx/X+56+jZMnT3LixImvFA8ga5aIQ0JCZP9/1BOZUpXxCcgguYo1oTYOJB3/83cYa+JRP72jUXV1NdPS0njo0CF+9913HDFiBAMCArhgwQJGRUUxOTlZ5gD1NyMWi7l//3727NmTRkZG9PPzq+Wo9EdSUlLo5eVFVVVVqqio0MPDo9ZS6pEjR+jm5kYzMzPOmjXrjd69YrGYW7duZfPmzdmxY0fGxMRw/fr1Uuem8ePHUyQSMSAg4LVezOHh4bWs1hUrVtDU1JSjRo1iaWmNE1hVVRUnTJhAU1NT7tmzh2SNcjMyMqKOjg59fHxqWdgpKSm0tbXl0KFDOWzYMNrZ2X2wWFKJRMLZs2fz559/rvPcxIkTeeHChQ8y1z8dmVKV8YmpIPmC/4vl3XJychgXF8ctW7Zw8uTJ9PHx4eTJk7llyxbGxcV90CU3Ge9GWlqaVAG1a9eOa9asqXNJNysri6NHj6aGhgaVlZXZsmXLWskZYmJi6OnpSVNTU4aGhrKgoOC1c1ZUVHDBggU0NTVl7969+fvvvzMkJIRCoZD+/v709vamiYkJFy1aVOeefU5ODjt27Eg5OTkqKipy5syZ9PT0ZMuWLXn+/Hlpu6ioKJqamnL8+PGsqqpiRkYG27RpQy0tLTo4ONQq6v5y/9bLy4vjxo2jtbX1O5XOexMvi5VnZr7qKHj58mWOHz/+o4T2/NOQKVUZMl5DRUUFk5OTGRUVxQULFjAgIIDDhw/nd999x4MHD/Lu3bsyB6hPTFlZGTdu3MiOHTvS1NSUY8eOrRXD+sd28+fPZ6NGjaikpERjY2Nu2bJFqhTi4uLYo0cPikQihoSEMDs7+7VzFhQU8PPPP6dQKGRQUBAvXLjAfv360dTUlKNHj2abNm3o4ODAo0eP1tl/+/bttazWGTNmUCgUcvr06VJ50tPT6eTkxI4dOzI9PZ1lZWUcOHAgtbS0aGRkxDNnzkjHKywspIeHB11dXTlp0iRaWFgwISHhr9xWKYcOHeLUqVNfUZ4SiYRTpkypJYeMupEpVRky6olEIuHjx4958uRJrlu3jp9//jl9fX05ffp07tixg/Hx8R/UM1PGm7l06RL9/f1pbGzMbt261QqzeYlYLOYPP/xAkUhEJSUl6unpcc6cOVIr99KlS/Ty8qJQKOT48ePfmJQiLS1NmiwiNDSUBw8eZNu2bdmyZUsGBQXR1NSU3t7efPDgwSt98/Pza1mtU6ZMYdu2bdmxY0fpS0FVVRXHjRtHU1NTRkVFkSQXL15MHR0d6urqcuPGjdLxKioq6O3tTUdHR4aGhtLU1PS1S+PvgkQikV7bn7l+/TpHjx5d576rjP8iU6oyZPwFXrx4wYSEBO7cuZOzZs2in58fx40bx9WrVzMmJoaZmZkyB4+PTF5eHufNm0dbW1s2b96cs2fPfiXmk6wJD7G3t6eysjI1NDQ4cuRIqYWakJBAb29vCoVCjh49utaS65+5dOkSO3fuTAsLC65cuZKrV6+mhYUFPTw82K9fPwqFQs6YMaNW2sKX7Ny5k2pqalKrdfTo0RSJRFy1apX0Odm9ezdNTU05ceJEisViHjlyhE2bNqWmpmatJVixWMzRo0fTxsaG06dPp0gk4vHjx//y/Xz06BH9/f357NmzV87NmDHjlfSKMmojU6oyZHxAqquree/ePR45coTLli3jyJEj6e/vz/nz5zMyMpI3btz44AH8MmoQi8Xct28fe/ToQWNjYw4cOJDnzp17pd2tW7fYvXt3qqioUFVVlb169eLduzX5jZOTkzlgwAAaGxszKCjolcT3f+SXX36hg4MD7e3tGRERIY1p7du3r9SDeO/eva/0KygooKurq9Rq/fzzz2lra8tevXpJPXpTU1PZvn17uri4MCMjg2lpaWzRogUbNmxIDw+PWnvBM2bMoLm5uVSx7tu376/eSkZFRXHWrFmvvBDevn2bw4cP/+DZnf5JyJSqDBkfmby8PJ4/f55bt27lV199xf9r707Dmry2t4HfIQnzJCAoU8IQBBQHUGuxda5VbK1UcK5Vj4pDpU5Uj8KlnuqxKipYQS2o1TpXcUBruSrWqXWuQ6sMIiAiCChjQiAkWe+H/pv3pGoHGwV1/a7LLyHDfvaX27Wf/aw9ePBgmj59Om3YsIFOnjz5h/fz2NPJycmhKVOmkKenJ3Xp0oXWrl37yH9mSkpK6MMPPyRLS0syNjamjh076jYQZWZm6p6ZHTFixGPv2xL9GuRr1qwhHx8f6tmzJ+3atYsGDhxIHh4eFBoaSjKZjPr37//Yz+/evVuvag0LCyNvb2/dTuD6+noaP348eXt704EDB0ihUNDAgQPJ2tqaZDKZXvP/+Ph4kkqlFBUVRVKpVNdc4mmp1WqaPn36Y6vSRYsWPXZ5mP2KQ5Wx56y+vp5u3rxJKSkptGTJEho5ciSNGTOGPvvsMzp48CBlZ2fzfSsDUSqVlJCQQF26dNHtsP2tKv3f90RHR5O9vT2JxWLy8vKinTt3kkajodzcXBozZgy5u7tTeHj4E1v2KRQKXaU4ePBg2rhxIwUFBVFAQAD179+fJBIJTZ8+/ZHnZKuqqqhHjx66qnXMmDHk7e1NI0eO1D32s2XLFpJKpTRz5kxqaGigmJgYsrGxoebNm+s9+7pjxw6SSqUUGRlJUqlU7x7s08jNzaURI0Y80knq9u3bNHr06McubzMOVcYanVarpeLiYjp+/DglJibSRx99RGFhYTR37lz68ssv6fz587puQezpnT59moYNG0bu7u7Ur18/2rdvn97GJo1GQ0lJSeTm5kZisZicnJxoxYoV1NDQQHfv3qWIiAiSSCQ0aNCgJ+62LS4uprFjx5JEIqFJkybRkiVLyNvbm7p27UpdunQhX19f+vLLLx/53L59+3RVq0wmo169epG/vz+lp6cT0a/Lrh07dqQePXrQvXv3KCUlhZo3b042NjZ6R7SlpaWRh4cHTZgwgTw9PWn58uX/aM62bdtGn3766SPLwEuXLn3s0jbjUGWsSVIoFHTlyhXasWMHxcTE0JAhQygiIoJWr15N3377Ld25c4c3QD2lsrIyiomJIX9/f2rTpg0tXLjwkWosLS2N2rRpQ8bGxmRjY6M7Dq64uFh3RNyAAQPo3Llzj/2NX375hd59913y9PSkuXPn0sSJE3Xnyv62VPz7Pr81NTXUs2dPXdUaFhame+RHpVKRUqmkMWPGkEwmoyNHjtCNGzdIJpORpaUlhYeH6yrHixcvkkwmo+HDh5OnpyctWLDgqedKpVLR5MmT6eTJk3qvFxQU0MiRI7nd52NwqDL2AtBoNJSXl0dHjx6lVatW0YQJE2jo0KG0YMEC2rlzJ129epU3QP1NGo2Gvv76a+rbty+5u7vTsGHDHgnJ69evU8+ePcnExITMzMxo8ODBdO/ePSorK6MZM2aQVCqlt99++5HQ+c3x48cpODiY/Pz8aPHixRQSEkIeHh7UvXt3cnd3p4iIiEcaUBw8eFBXtXp5eVGnTp2oU6dOdPXqVSL6tVuTVCqlOXPmUEVFBfXp04csLCyoQ4cOuo1OOTk5FBAQQAMGDCCZTEYzZ8586nnKzMykUaNGUWVlpd7rK1eupB07djz1976sOFQZe0FVVlbSuXPnaPPmzfTJJ59QWFgYRUZG0rp16+jEiRNUUlLC1exflJmZqTtZJjg4mNatW6d3z7C4uJiGDx9O5ubmZGJiQl27dqVr165RRUWF7jnR3r17P3Zjj0ajoa+++ooCAgLotddeo0WLFlFgYCC1bt2aOnbsSDKZ7JHj6hQKBfXu3ZsEAgGJRCLq27cvSSQSWrp0KWk0Gvrll18oMDCQevfuTffu3aPZs2eTpaUlubi40NmzZ4no//ch7t69O/n5+dHEiROfuiNScnLyI0vJv80JP5utT0BEBMbYC0+tVuP27dvIzMxERkYGMjIyAAC+vr7w8/ODn58fPD09IRaLG3mkTVddXR2SkpKwbds2PHz4ECEhIZg+fTo8PT0BALW1tVi4cCGSkpKgUCjg5eWFlStXolu3bli2bBl27doFZ2dnREVF4Z133tH7brVajdjYWCQnJ8Pb2xv+/v44dOgQbG1tUVNTAwcHB8TGxuL111/XfebIkSMYMmQIamtrIZVKYW5ujpYtW2LTpk1wdHTEhAkTcP78eSQkJODBgweYOnUqiAgrV67EuHHjIJfLERoaiqqqKiiVSrRr1w5bt26FkZHR35qX+vp6TJs2DePHj0fnzp11ryckJMDS0hIffvjhP5j1l0wjhzpj7BnRarVUUlJCJ06coHXr1lFkZCSFhYVRVFQUbdq0ic6ePfuHvW9fdSdPnqTw8HByc3Oj/v370/79+/UaL6xdu5acnZ1JJBKRs7MzJSYmUk1NDX366ackk8koODiY9u7d+1h9WwAAABtjSURBVEh1WFlZqeshPGTIEBo1ahS5ublRUFAQubm50ejRo/VO5VEqldS3b19d1dq1a1fy9PSkTZt+PXt4/fr1JJVKKTo6mi5fvkwSiYQsLCxo2rRppNFoqL6+nsLCwiggIIDatWtHgwYNeqrd5devX6cPP/xQ7z5qWVkZDR8+nMrLy59mil9KXKky9gqpq6tDdna2rpLNzMyEtbW1XjXr7u7+tyuZl1lpaSnWrFmDlJQUiEQihIeHY9q0abC1tQUAHD58GFFRUbh9+zYsLS0RERGBOXPmICkpCZs2bYK1tTU+/vhjDBs2TG9eCwoKMGfOHJw9exY9evRAUVERbt26BWtra8jlckyaNAmzZs3SfSYtLQ3vv/8+amtr4ebmBrFYjMDAQCQlJSE/Px9jx46Fo6Mj1q5di7Fjx+LKlSvo3LkzUlNTYW5ujo8++gjp6emwsLCAk5MT9u/fD1NT0781FwkJCdBqtZg2bZruteTkZGi1WkycONEAs/0SaOxUZ4w1Hq1WSwUFBZSWlkZxcXEUERFBQ4YMoejoaNq+fTtduXLlT88gfVX8dvh5nz59yN3dnUaOHEkXLlzQ/f369esUHBxMxsbGurNdi4qKKC4ujlq3bk1BQUG0efPmRyrXixcvUt++fcnb25vGjh1L7dq1I29vb/Ly8qKgoCA6duyY7r2/r1rbt29Pvr6+dOTIEaqpqaFhw4ZRq1at6NixYzR58mQyNzcnLy8vys7OJiKimJgY8vDwoMDAQOrevfsfHoH3OAqFgsaMGaPbNEX0a+U9fPhwbmLyf7hSZYzpqa6uRlZWlq6azcnJQYsWLXSVrK+vL1q0aAGBQNDYQ200GRkZiI+PR1paGlxcXDB69GiMGTMGxsbGKCoqwrRp03D06FFotVp07doViYmJOH78ONavXw+BQIDJkydjwoQJepXr4cOHsWjRItTX1yMgIABnz56FiYkJ5HI5Xn/9daxatQqurq4AgPT0dLz33ntQKBRwdnaGSCRCSEgIVq9ejeTkZMTGxmLs2LFwdnbG7NmzIRKJsG3bNvTv3x+JiYlYvnw5HBwcYGxsjMOHD8POzu4vX/ulS5ewfv16rF27Vlfpbt26FVVVVXoV7KuKQ5Ux9ofUajXy8vJ0IZuRkQG1Wq0LWT8/P3h5ecHY2Lixh/rc1dbW4osvvsCOHTtQUVGBAQMGYMaMGZBIJFAoFJg3bx6+/PJLKJVK+Pn5Yc2aNcjJyUFiYiJUKhUmTpyIyZMnQyQSAQC0Wi2SkpIQFxeHZs2awd7eHleuXIGlpSWUSiXGjRuH+fPnQyQSQaVS4b333kNaWhqEQiE8PT1hYWGB9evXw8jICOPGjYOrqytmzpyJ0aNHo7q6GjExMZgzZw727NmDOXPmwN7eHgBw6NAhODs7/+XrXrVqFaysrDBhwgQAgFwuR0REBFasWPG3vuel1LiFMmPsRVRWVkanTp2iDRs20IwZM2jw4ME0a9YsSk5Oph9++OGRZgqvgu+//54GDx5Mbm5uNGDAAEpNTSWNRkMajYZWrVpFTk5OJBKJSCKR0NatW2nLli3UqVMn8vPzo+XLl+s9Z6xUKikmJoakUin16tWLunbtSi4uLiSVSqlt27Z08OBBvd+1sLAgAOTo6Eiurq4UExNDVVVVFBYWRn5+fnTw4EEKDAwkU1NTCg8Pp4aGBkpPTydPT0/q0KEDBQQEPPbIuieprq6mDz74gDIyMnSv7dq1i2JjYw0zmS8wrlQZY/9YXV0dcnJy9DZAmZmZwd/fX7dkLJFIIBQKG3uoz9z9+/exZs0a7N+/HyYmJggPD8fUqVNha2uLAwcOICoqCvn5+bC1tUVkZCR8fHwQHx+Phw8fYvTo0Zg1a5ZuWbW0tBQxMTFIS0uDj48PCgsLoVAooFar0bFjR6xatQpeXl5Qq9UYNGgQvvnmGwiFQjg7O0MikWDTpk1ITU1FfHw8xo8fj4yMDKSkpMDHxwffffcdioqKMHToUJiamqK+vh779++Hn5/fX7rOM2fOYMeOHYiPj4dYLIZSqcSECROwZMkSSCSSZznFTRqHKmPM4IgIRUVFekvGDx48gI+Pjy5kfX19YWFh0dhDfWa0Wi127tyJzZs3IycnB926dUNkZCQ6duyIn376CZMnT8aVK1dgYmKC4cOHo0+fPli7di2Ki4sxcuRIzJ49G5aWlgCArKwszJ07F1evXoWHhwdu374NANBoNBg5ciQWLVoEU1NTnDp1CiEhIVAoFLC3t4e5uTnmzp2Ljh074l//+hc8PT3x+uuvY/HixbC0tMThw4dhb2+P0NBQNDQ0QKVSYc+ePejQocOfXh8RYenSpXBzc8MHH3wAANi/fz8yMjIwb968ZzexTV1jlsmMsVdHdXU1Xbx4kb766iuaN28ehYWF0ZQpU+jzzz+nY8eOUWFh4UvbAeqXX36h8ePHk1QqpTfeeIOSk5NJpVLR3bt3acCAAWRqakqmpqbUv39/2rZtG/Xq1UvXN/h/2wOeOnWKunXrRt7e3hQcHExOTk7k4uJCrVq10rUMbGhooHfeeYcEAgEJhUJq2bIlDRw4kHJycig0NJT8/f0pMTGRHBwcyNLSkrZs2UKlpaUUHBxMMpmMPDw86PTp03/puh4+fEgjR46k27dvE9GvJzCNHj36kZOAXiVcqTLGGoVGo0F+fr7eknFdXZ3umVlfX1/4+Pi8VBug5HK5bmNTdXW1bmOTnZ0dZs+eje3bt6O+vh7t2rVDREQEvv76a2RnZ+P999/H/Pnzdbt0d+/ejaVLl0KlUkEsFuP+/fsAgLZt2yIuLg6tW7fGjz/+iLfffhtyuRw2Njawt7fH8uXLkZubi4SEBIwaNQr79u1DXl4eJk6ciMWLF2PIkCHIzs6GWq3Gxo0b8dZbb/3pNR07dgypqalYuXIlRCIRvvnmG1y4cAELFy58llPZZHGoMsaajIcPH+raLGZmZiI/Px8SiUQXsn5+frodqy+69PR0JCQk4NKlS2jfvj0mT56Mt956CytWrMDq1atRUVEBiUSCiIgInDhxAjdu3MDAgQMRHR0NR0dHaLVarF69GuvXr4e5uTlqampQW1sLAAgPD8fSpUthbm6O0NBQpKamwsjICHZ2dhgwYABGjBiB6dOnQyaToaGhAceOHUOXLl2QmpqKiRMn4ocffgAArFmzBqGhoX94HUSEBQsWICAgAOHh4VCr1YiIiMCsWbPg7+//zOexqeFQZYw1WSqV6pENUMbGxnohK5VKdY+kvIiKiooQHx+PgwcPwszMDEOHDsWUKVNw5MgRzJs3D4WFhbC3t8eIESOQm5uLq1evol+/foiJiYGLiwvkcjkWLlyIr7/+GtbW1igrKwMRwdzcHNHR0Rg7diwuXryIPn36QC6Xw9LSEu7u7lixYgXWrVuHO3fuIDg4GFu2bIGTkxOOHz+O1atXIyUlBUSE5cuXY9SoUX94DaWlpZg+fTqWL18OV1dXHDt2DOnp6fjvf//7yj3PzKHKGHthEBHu37+Pmzdv6irakpISyGQyvQ1QVlZWjT3Uv02r1WLHjh3YtGkTcnNz0aNHD0yfPh11dXWYNGkSbt68CXNzc7zzzjuora3F5cuX0bt3byxYsAASiQSFhYWYN28evv/+e1hZWaGkpAQCgQC+vr6Ii4tDYGAgwsLCsH//fhgZGaFZs2YYO3YsrK2tsXHjRvTr1w87d+4EAKSkpODHH39EYmIiiAiLFi1CRETEH47/8OHDOHXqFD777DMQEaZOnYpJkyahffv2z2P6mgwOVcbYC02hUOg6QGVmZiIrKwv29vZ6HaBcXV1fqIrp+vXriI+Px/Hjx+Hu7o6xY8eie/fumDhxIk6fPg0jIyN07doV1tbWuHTpErp3746YmBjIZDJcvXoV8+bNw88//wyxWIzKykoIBAK89957iI2NRU5ODnr37g25XA4zMzO0adMGU6ZMwbJly+Dl5YWff/4ZJSUlWLBgAezs7LBw4UJotVpERUVh9uzZTxwzEWHu3Ll444038O677+L06dM4cOAAYmNjX6i5/6c4VBljLxWtVos7d+7oQjYjIwNyuVzv0ACZTPa3m8k3BrlcjnXr1mHXrl2oqanBwIEDMWHCBCxduhR79+6FSqVC27Zt4erqiitXriA4OBjR0dFo3bo1jh49ikWLFqGoqAgqlQr19fUwNzfHJ598gqlTp2Lo0KFISUnRVa3Tpk3DuXPncO/ePZiYmODatWt49913MXz4cERGRqKhoQEfffQRFixY8MTx3rt3D1FRUVi9ejUcHR0RGRmJUaNG4bXXXnuOs9a4OFQZYy+9iooKvQ1QeXl5cHV11bs36+Dg0KQrqu+++w6JiYm4fPkyAgMDERERgfPnz+Pzzz9HdXU1JBIJWrVqhRs3biAoKAgxMTFo27YtNm/ejNjYWCgUClRXVwMAPD09ERcXB0tLS3Tv3h1yuRwmJibo2rUr2rdvj5SUFHh5eeH06dPw8vLCsmXLMGXKFCiVSowZMwaxsbFPHOfevXtx7do1/Oc//8GFCxewbds2rFmzpknPrSFxqDLGXjkNDQ24ffu2LmRv3rwJoVCoF7Kenp5NcgNUYWEh4uPjcejQIVhaWmLo0KGwsbHBkiVLUFRUBAcHB/j6+iI/Px/t2rVDdHQ02rZti2XLlmHjxo3QaDSoqqqCUChE3759ERcXh8jISOzbtw8CgQDNmzfHuHHjcODAATg4OOCnn36CmZkZ1q9fjzlz5qCiogJhYWG6HsO/p9FoMHv2bISEhKBPnz6YPXs2Bg0ahDfffLMRZuv541BljL3yiAglJSV6S8bFxcXw8vLS2wBlY2PT2EPVUavV2L59OzZv3oz8/Hz06tUL3bt3x4oVK5CVlQULCwu0atUKpaWl8PX1xfz58+Hv74+YmBikpKRArVZDqVTCzMwMH3/8Mfr374+ePXuipqYGxsbG6Nu3LxQKBYqLi1FWVoba2losWbIEycnJuHfvHkJCQrBt27bHBmteXh6io6Px+eefo6CgAOvXr0dCQsIr0aaSQ5Uxxh6jtrYW2dnZupDNysqCjY2NXjXr7u7eJJY1r169ivj4eHz//ffw8PBASEgIUlNTcf78eQiFQkilUigUCvj4+ODf//43JBIJ5s6dixMnTkClUkGj0cDFxQWrV6/Gli1bsGfPHggEArRo0QI9e/bEmTNnAEDXQvHGjRvIyspCt27dsH///sdW9Nu3b0deXh7mzZuH+fPno3fv3ujTp8/znprnjkOVMcb+Aq1Wi7t37+pVs1VVVboq1s/PDz4+PjAzM2u0MVZXVyMxMRG7d+9GbW0t+vXrh7y8PBw7dgxqtVp3LJuHhwc++eQTNGvWDHPnzsX169ehVCohFArxxhtvYMaMGQgPD0dNTQ3EYjH69u2LzMxMCAQC5Ofno0OHDrC0tMSlS5fQqVMnHDly5JGNXw0NDfj4448xbNgwODg4YOXKldiwYUOTXFI3JA5Vxhh7SlVVVcjMzNTdl83NzYWzs7PeTmNHR8fnXs1qtVqkpaVh/fr1uHLlCgIDA2FsbIzvvvsONTU1sLe3h4mJCSQSCWbOnAmtVouFCxfi7t27qKurg4mJCSIiIpCXl4e9e/cCANzc3NCiRQuUlpaiuLgYdnZ2CAoKwokTJ9C6dWukp6frDgD4TVZWFhYvXoy1a9di9erV6Ny5M0JCQp7rXDxvHKqMMWYgarUat2/f1lWyGRkZICK9JWMvLy+IxeLnNqaCggLEx8cjNTUV1tbWcHd3x9mzZ1FaWgorKyuYm5tDIpEgMjISpaWlWLlyJcrLy6FWq9G8eXPMmjULMTExkMvlEIvF6NixI/Ly8lBTUwMiQu/evXH8+HF4enrixIkTuv7Ev9m4cSPKy8sRGhqKTz/9FElJSS9VP+ff41BljLFnhIhQVlamF7L37t2Dh4eHXjVra2v7zMeiVquxZcsWbNmyBXfv3kWrVq2QlZWFgoICmJqawsLCAu7u7oiIiMCtW7ewadMmyOVyAEBgYCDs7Oxw5MgRANA106iqqoJSqcSbb76J8+fPo2XLljh58qRumRkA6uvrMW3aNIwfPx7Hjh2Dn5/fn/YTfpFxqDLG2HNUV1entwEqMzMTVlZWeiHr7u7+2F21hnL58mWsWbMGJ0+ehJOTEx4+fIj8/HwIhUJYWFjAzc0No0aNwrVr13Do0CHU1dVBLBYjJCQE3377LeRyOUQiEaRSKR4+fIjq6mr4+/sjNzcXdnZ2OH36tN5B5T///DNWrVqFOXPmYPHixUhKSmrUe8/PEocqY4w1IiJCYWGhXjVbXl6uO9D9tw1Qz+JA98rKSqxbtw67d++GQqGAQCDAnTt3oNFoYG5uDjc3N4SGhuLHH3/EuXPnoFKpYGNjAy8vL1y8eBEA4OjoiPr6esjlcjg4OEChUMDc3BwnT56Er6+v7rcSEhJARKivr4erqyuGDh1q8OtpCjhUGWOsiampqdEL2ZycHLRo0UKvmm3RooXBNkBptVp888032LBhA65duwaRSIT79++jvr4epqamaNmyJd566y2cPn0a2dnZICK4ubmhpKQEtbW1EAqFsLKyglwuh7GxMYRCIcRiMdLT03UN9WtrazF16lSMGjUKGzduxPvvv4/z588jMjISbm5uBrmOpoBDlTHGmji1Wo28vDy9oG1oaNALWW9vb4NsALpz5w7i4uKQmpqK+vp6lJeXQ6lUwtjYGA4ODujSpQvOnDmDBw8ewMjICE5OTigsLAQAWFlZoa6uDlqtFmZmZhAIBDhy5Iium9KlS5ewYMECXLp0CVVVVfDy8sLWrVsRFBT0j8fdVHCoMsbYC+jBgwd6IVtQUACpVKoXtL/fift3qFQqbN26FVu2bEF2djaUSqXuXqqNjQ3atGmDixcvQqlUQiwWQ6vVoqGhAUKhEEZGRlCr1br7pnv27EGfPn0wZMgQHD16FL/FTuvWrfHFF1+gc+fOBpmTpoBDlTHGXgL19fW4deuWXtCamZnpAtbPzw8SieSpWgVeunQJcXFxOH78OORyOeRyOYyMjGBubg6pVIrMzEyo1WqIxWKoVCoAgFAohEaj0VXPRISGhgbY29vrHsdxdHTE3r170aVLF4PORWPiUGWMsZcQEaGoqEgXsBkZGXjw4IHuQHc/Pz+0atXqkYYNf6SyshJr167F9u3bcffuXdTW1gIATE1NYWdnh6KiIhARBAIBnhQtdnZ2aNasGe7evQuRSIQ9e/YgJCQEeZV5eFD7APXqepiLzSG1lcLe3N4gc/E8cagyxtgrQi6X6w50z8jIwK1bt+Dg4KBXzTo7O//pBiitVovDhw8jMTERZ86cQW1tLYgIYrEYJiYmuudbH0cgEGDr1q1YvHgxnN2dER4VjpNVJ5FbkQuhQAgCQQABtNCil7QXhrYZinZO7ZpEj+W/gkOVMcZeURqNRneg+2//lEolfH194e/vD19fX8hkMpiYmDzxO/Ly8rBq1Sps374dVVVV0Gq1MDIygkAggEajeexn2rdvj+TDyYj6LgryBjlMRaawNrHWC06NVoNyZTm0pEU7p3aI7RsLG9Omc0rQk3CoMsYY0ykvL9e7L5ufnw93d3ddJevr6wsHB4dHPqdSqbB582asWrUKOTk50Gq1T/wNIzcjSCZJ4ObsBmsT6z8cDxGhrLYMLlYu2DhwI5qZNfvH1/gscagyxhh7IpVKpTvQ/bd/YrFYL2Q9PDz0Tp85f/48ZsyYgbNnzz76hc0AhAICrQA+Hj6QyWS6Pz24+QAPf3mIVkNaPfKxUnkp/Jr7IXlgMkRGTfekGw5VxhhjfxkR4f79+7qAzczMxP379+Ht7a0XtCEhIbpzWPX0AuAJQAFAAEgkEgS0CQD+5JYpEaFEXoKVb69EN0m3Z3BlhsGhyhhj7B9RKBTIzs7WBW12djYuXLiAwsJCiEQimJiYwMXFBQ+VD1H6VilITsD/JE/z5s3x2muv/WmwlivL0bp5a3zx7hfP9oL+AQ5VxhhjBqXVahEWFobMzEwolUpUVFRALBZj6hdTcbD4ICrvVaIguwDabC1Q9etnRC4iBHUPQtnPZfAf4Q8AUD5QouB4ARQlCgiMBHAMdIQwQIivw7+G1FbaeBf4B5ruwjRjjLEXkkAgQGVlJWxtbdGjRw+8+eab8Pb2RlJxEqzMrODi7wK6SGjwbMB98/vQqrVQy9U4f+48pGZSAIBGpUHmnky06NQCsvdlIC1B+UAJBRS4WXaTQ5UxxtirQSAQYOfOnbC3t9fbwLRy70oIjYRQFCvQoGhAhw87QGAkQGlpKS5evAhSEvJz89EGbVB5uxJiCzFadmqp+7ylsyWqa6ohVz35OdjG9uwO7GOMMfbKcnJy0gtUABALxSAiqGpUMLExgcDo15uojo6OGDBgAGQ+MojEv35GVaOCqa3pI98rgABiI/Gzv4CnxKHKGGPsuXCycEK9ph7GVsZQVatAWv0tPfb29nCXuAMAjK2MUVdZ98h3CAVC2JraPpfxPg0OVcYYY8/FwFYDodFqYNHSAmILMe6euguNSgOtWouaezV677X1skWDogH3L/16z1Wj0qCisAIiIxE6uzTdU234nipjjLHn4nXX12FtYo06TR1k78tQkF6Aa19cAwDY+9nDwslC916hsRCtwluh4HgBin4sgkAkgGlrU0QER8DC2OJJP9Ho+JEaxhhjz83mK5ux9sJatLRq+bea5DdoGlCuLMeusF3wbOb5DEf4z/DyL2OMsedmeMBwtHVqi1JF6ROPh/s9tVaNMkUZpnaa2qQDFeBQZYwx9hyZikwR1y8Ovg6+KJYXQ6VR/eH75So5SuQlGNdhHEa3G/2cRvn0ePmXMcbYc1enrkPChQSkZKRApVHB3NgcZiIzGAmMoCENquqqoCUtHC0cMaXTFITIQhp7yH8JhypjjLFGo1ApkJ6bjl03dqFYXox6dT0sjS0R4BiAYW2GIcg5CEaCF2dRlUOVMcYYM5AXJ/4ZY4yxJo5DlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQP4foTpy+Hz8+b8AAAAASUVORK5CYII=\n", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n" + ] + } + ], + "source": [ + "import math\n", + "import pandas as pd\n", + "from tabulate import tabulate\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "from model.parts.supportingFunctions import *\n", + "\n", + "pd.options.display.float_format = '{:.2f}'.format\n", + "\n", + "%matplotlib inline\n", + "from tabulate import tabulate\n", + "from typing import Dict, List\n", + "\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "from IPython.display import clear_output\n", + "\n", + "# The following imports NEED to be in the exact order\n", + "from cadCAD.engine import ExecutionMode, ExecutionContext, Executor\n", + "from model import economyconfig\n", + "from cadCAD import configs\n", + "\n", + "exec_mode = ExecutionMode()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " __________ ____ \n", + " ________ __ _____/ ____/ | / __ \\\n", + " / ___/ __` / __ / / / /| | / / / /\n", + " / /__/ /_/ / /_/ / /___/ ___ |/ /_/ / \n", + " \\___/\\__,_/\\__,_/\\____/_/ |_/_____/ \n", + " by BlockScience\n", + " \n", + "Execution Mode: multi_proc: [, , ]\n", + "Configurations: [, , ]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/cadCAD/utils/__init__.py:113: FutureWarning: The use of a dictionary to describe Partial State Update Blocks will be deprecated. Use a list instead.\n", + " FutureWarning)\n" + ] + } + ], + "source": [ + "exec_mode = ExecutionMode()\n", + "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", + "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", + "\n", + "i = 0\n", + "results = {}\n", + "for raw_result, tensor_field in run.execute():\n", + " result = pd.DataFrame(raw_result)\n", + " results[i] = {}\n", + " results[i]['result'] = result\n", + " i += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networkKPIDemandKPISpendKPISpendOverDemandVelocityOfMoneystartingBalance30_day_spendwithdrawoutboundAgentsinboundAgentsoperatorFiatBalanceoperatorCICBalancefundsInProcesstotalDistributedToAgentstotalMintedtotalBurnedrunsubsteptimestep
4000(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000054100
4001(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000055100
4002(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000056100
4003(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,...{'a': 352.69163522161693, 'b': 850.37760837978...{'a': 1.0687625309745967, 'b': 1.4413179803047...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000057100
4004(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,...{'a': 352.69163522161693, 'b': 850.37760837978...{'a': 1.0687625309745967, 'b': 1.4413179803047...20.94{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000058100
\n", + "
" + ], + "text/plain": [ + " network \\\n", + "4000 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4001 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4002 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4003 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4004 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "\n", + " KPIDemand \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4003 {'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,... \n", + "4004 {'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,... \n", + "\n", + " KPISpend \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4003 {'a': 352.69163522161693, 'b': 850.37760837978... \n", + "4004 {'a': 352.69163522161693, 'b': 850.37760837978... \n", + "\n", + " KPISpendOverDemand VelocityOfMoney \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4003 {'a': 1.0687625309745967, 'b': 1.4413179803047... 0.72 \n", + "4004 {'a': 1.0687625309745967, 'b': 1.4413179803047... 20.94 \n", + "\n", + " startingBalance \\\n", + "4000 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4001 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4002 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4003 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4004 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "\n", + " 30_day_spend withdraw \\\n", + "4000 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4001 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4002 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4003 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4004 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "\n", + " outboundAgents \\\n", + "4000 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4001 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4002 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4003 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4004 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "\n", + " inboundAgents operatorFiatBalance \\\n", + "4000 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4001 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4002 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4003 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4004 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "\n", + " operatorCICBalance fundsInProcess \\\n", + "4000 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4001 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4002 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4003 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4004 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "4000 1500 0 0 5 4 \n", + "4001 1500 0 0 5 5 \n", + "4002 1500 0 0 5 6 \n", + "4003 1500 0 0 5 7 \n", + "4004 1500 0 0 5 8 \n", + "\n", + " timestep \n", + "4000 100 \n", + "4001 100 \n", + "4002 100 \n", + "4003 100 \n", + "4004 100 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[0]['result'].tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(0,len(results)):\n", + " results[i]['result']['agents'] = results[i]['result'].network.apply(lambda g: np.array([get_nodes_by_type(g,'Agent')][0]))\n", + " results[i]['result']['agent_tokens'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['tokens'] for j in get_nodes_by_type(g,'Agent')]))\n", + " results[i]['result']['agent_native_currency'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['native_currency'] for j in get_nodes_by_type(g,'Agent')]))\n", + " # Create dataframe variables \n", + " tokens = []\n", + " for j in results[i]['result'].index:\n", + " tokens.append(sum(results[i]['result']['agent_tokens'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCICHolding'] = tokens \n", + "\n", + " currency = []\n", + " for j in results[i]['result'].index:\n", + " currency.append(sum(results[i]['result']['agent_native_currency'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCurrencyHolding'] = currency \n", + "\n", + " AggregatedSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedSpend.append(sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentSpend'] = AggregatedSpend \n", + "\n", + " AggregatedDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedDemand.append(sum(results[i]['result']['KPIDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentDemand'] = AggregatedDemand \n", + "\n", + "\n", + " AggregatedKPISpendOverDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedKPISpendOverDemand.append(sum(results[i]['result']['KPISpendOverDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedKPISpendOverDemand'] = AggregatedKPISpendOverDemand \n", + "\n", + "\n", + " AggregatedGapOfDemandMinusSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedGapOfDemandMinusSpend.append(sum(results[i]['result']['KPIDemand'][j].values())- sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedGapOfDemandMinusSpend'] = AggregatedGapOfDemandMinusSpend " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestepVelocityOfMoneyoperatorFiatBalanceoperatorCICBalancetotalDistributedToAgentstotalMintedtotalBurnedrunsubstepAggregatedAgentCICHoldingAggregatedAgentCurrencyHoldingAggregatedAgentSpendAggregatedAgentDemandAggregatedKPISpendOverDemandAggregatedGapOfDemandMinusSpendRed Cross Drip Frequency
0110.514500200000.00000386000.004869.001189.0013893.20138.0030
129.724500200000.00000386350.505219.501057.0010574.000.0030
2319.574500200000.00000386323.005192.002333.2532757.14941.7530
3415.674500200000.00000386435.005304.001734.3837376.85789.7530
4520.014500200000.00000386435.005304.002227.0631406.99498.2530
\n", + "
" + ], + "text/plain": [ + " timestep VelocityOfMoney operatorFiatBalance operatorCICBalance \\\n", + "0 1 10.51 4500 200000.00 \n", + "1 2 9.72 4500 200000.00 \n", + "2 3 19.57 4500 200000.00 \n", + "3 4 15.67 4500 200000.00 \n", + "4 5 20.01 4500 200000.00 \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "0 0 0 0 3 8 \n", + "1 0 0 0 3 8 \n", + "2 0 0 0 3 8 \n", + "3 0 0 0 3 8 \n", + "4 0 0 0 3 8 \n", + "\n", + " AggregatedAgentCICHolding AggregatedAgentCurrencyHolding \\\n", + "0 6000.00 4869.00 \n", + "1 6350.50 5219.50 \n", + "2 6323.00 5192.00 \n", + "3 6435.00 5304.00 \n", + "4 6435.00 5304.00 \n", + "\n", + " AggregatedAgentSpend AggregatedAgentDemand AggregatedKPISpendOverDemand \\\n", + "0 1189.00 1389 3.20 \n", + "1 1057.00 1057 4.00 \n", + "2 2333.25 3275 7.14 \n", + "3 1734.38 3737 6.85 \n", + "4 2227.06 3140 6.99 \n", + "\n", + " AggregatedGapOfDemandMinusSpend Red Cross Drip Frequency \n", + "0 138.00 30 \n", + "1 0.00 30 \n", + "2 941.75 30 \n", + "3 789.75 30 \n", + "4 498.25 30 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "params = [30,60,90]\n", + "swept = 'Red Cross Drip Frequency'\n", + "mean_df,median_df = param_dfs(results,params,swept)\n", + "median_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEWCAYAAACUr7U+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXl4VcX5+D/vvdlDSMK+hFVR9k0EcUfEFcUFxaWK1aq1tXa1Ym3VulSttuq3Wpe6a+tat/ZnFVTUVqUIiFVBBQUhEELIHrLc3Nz398ecG272AAn35vJ+nuc+95w5s7xnzpx5Z96ZMyOqimEYhmEY8YEv2gIYhmEYhtFxmGI3DMMwjDjCFLthGIZhxBGm2A3DMAwjjjDFbhiGYRhxhCl2wzAMw4gjdluxi8hNIrJNRLZ456eKyEYRqRCRSbsv4i7LtcfkEJGhIqIiktCZ6cQCInKuiCyMthyGYcQXIvKYiNwUbTliGRE5UkRy2/LXpmIXkfUiUuUpyPDvHu/aYODnwGhV7ecFuQO4XFW7qerHu3EDKiL77mr4tuTw4t/u3c8mEfmjiPh3I71WEZFzRGSZl16eiPxLRA7trPTaIc9jIhIQkXLv95mI3CIima2FU9W/quoxu5jm9SJS26gs/XLX7qBrE5H/FSJSJCKLRGRktOVqCxG5QET+08FxJonIH0Qk18uP9SJyV0emEcuI4xsRWRVtWXaHDqizm4tzmIiEROS+joy3jTSblHERyRGRv3ud2FKvvrxgT8m0s7S3x36SpyDDv8s998FAoapujfA7BPi8Q6XcNdojxwRV7QYcAcwDLuwMQUTkZ8BdwO+Avrh8+zMwpwX/e6rn/3tVzQB6A98FDgLeF5H0TpTr2UZl6ffNpCMisjcME/3eK385wFbgsZ2NoKtZiVqQ92pgCjAVyACOBFbsQbGizeFAH2C4iBzYWYl0tbLicT5QDMwTkeQoyvEksBGnV3oC5wH5UZSndVS11R+wHji6GfejgSogBFQAT3v/CmwHvvb8DQD+DhQA64ArIuLwA78CvgbKgeXAIOC9iHgqgHnNpO8Dfg18i6sUnwAygeTm5GgmvAL7Rpw/B9wbcZ4JPAzkAZuAmwB/hNx3ANuAb4AfevElNJNOpifPGa3k8fXAC8BTQBnwPe8+7gI2e7+7gGTPfy/gn0AJUAT8G/B5167y5C0HvgRmtpDmY8BNjdwyvPu93Du/AHgfuBMo9PLgAuA/jfLxCi8ftgG3h2Vp4T6fauHaO8DNXnpVwL678wxoVG4bp41rxHzg5eEnwJGNZLnRk6UcWAj0irh+aETYjV6eHIh70f0R/k4DPmlP/gMnAhXe8VTgQy/+POAeIKlRnv8QWAOs89zu9mQpw71HhzW69+dx5asc+BTYD6dQt3rhjmmr7AOjgGqgDlemSzz/yd6z2ODlwf1AqnftSCAXVy63AE82kxf/BH7SQj59F/hHxPka4PmI843ARO94JLAI9058CZwZ4a89Mv4KV57WA+e28r4OAF710lkLXNwor5/D1UfluM7FlDbq2EeAvwIvAvc0ujYMVx+WA28C99KwHJ+PqwMLgd8QUe5pvl7xAQtwdW6hJ2uPdsbXYrmkhTobmA2s9MJ8AIyPSGsSrgFXDjwLPEPDd0I8OS/zntncRnlzjPecS3EdpXeB70VcvxBYjWsYvAEMafQOfR9Xnkq8fBVaLuMVeOWsmec31IvvElxdnQf8IuJ6i3keEXY+rmxuA66JCJuKqyuKgVXAlUBua+VJVXddsUe+EI3c6hWmd0PLgWuBJGA4rhI+1rt+Ja6S2d/L1AlAz8bxtJD2hbiXajjQDfdSPNmcHC2Ej5RzpPcwfhpx/SXgASAd15peClzqXfs+8AWuEdIDWEzLiv04INjctUaVQS1wipdnqcANwBIv7d64l+JGz/8tuIop0fsd5uXf/riKbkBEodmnhTQfo5Fi99yfwPWqwSmsIPAjIMGT6wKaKvbFXj4MBr4i4uVq5j5bU+wbgDFeWom78wxoRbEDA3Ev2Alefs/yzntHyPI1Tvmleue3eteG4Cqisz0Ze7JDsawCjm9Uhn7eVv7jyu/fgH975wfgGh4J3jNcTYTi8+5zkXffYeX0HU+WBNzw2BYgJeLeq4FjvetP4BrZ13j3cDFeA6EdZb/B8/fc7sQpuh64xuE/gFsi6oggcBtOuaY2kxe/9p79D4BxgERcG46reH04hfotXp3jXSv2rqXjyv53vXuchKskR++EjH/0ZDwCp6D2b+HZvYdTJCnARFyn5ahGeX0CrjF0C7CklXc/Dad0TwBO92SObMR9iGuQJOEalGXsKMejcQrnUO/6Hbh6JFKxN65XfoyrV3K8e30AeLqd8bWnXEZ2libhGo7TvLyYj3svk734vwV+iiuDc720IhX7YUANkA38iYYNvF5eXpzmyfNjL/z3vOtzcPphlHf918AHjWT9J5CFq7cKgONaKeNv4hr6ZwGDG10b6sX3NK4cjvPiC+dba3keDvsX7/lM8O55lHf9VlzHrQeurvuMDlTsFbiXK/y7OOKFaE2xTwM2NLp+NfCod/wlMKeFdNtSzG8BP4g43997sAntDK9ewdge8VDCPeK+XuamRvg/G1jsHb8NfD/i2jG0rNjPBba0kcfXA+81cvsaOCHi/FhgvXd8A/BK4/vD9XK34qwpiW2k+RjNK/ZbgUURBbzx87uApor9uIjzHwBvtXKfgUZlKdwIeQe4IcLvbj0DWlfsV9Go54hr0c+PkOXXje7p9Yjy+1IL93cV8FfvuAdQCfRvJf+rvTzYglM6LTXCfhKZpnefR7XxfItxQ03he18Uce0k3Dsdtn5keHFmtSPfGz9/wb1D+0S4TWeHJeFI75mntCKrH2eBeN9Le3P4WXjXNwKTcZXqg7iGxkicEn/V8zMPr2EUEe4B4Lp2yhgE0iOuPwf8phlZB+F6cxkRbrcAj0Xk9ZsR10YDVa3c+3dwSiAB11AoBU71rg325EqL8P8UO8rxtXgKwjtP8/I6UrE3rldWE2HFA/rj1ZttxdfOchmp2O/D64xEuH2Jazgd7j3nyEbcBzRU7A8BL0c8r1qgj3d+PvBho3K4kR2K/V/ARRHXfbj3cUiErIc2et4Lmivjnls2rm783Hv+K4EDvWtDvfhGRvj/PfBwO/I8HDYn4vpS4Czv+Bsa1q+X0A7F3t4xl1NU9c12+o1kCDBAREoi3Py4Fgi4l+TrXYgXdrTew3yLy6i+OPNhe5jspX8G7qGl4yqWIbhWZJ6IhP36cAUnnPbGiHgi5WhMIdBLRBJUNdiKv42Nzpu7vwHe8e24l3ahJ9+Dqnqrqq4VkZ9418aIyBvAz1R1cyvpNmYgzsTYklxtyR4pZ3M8p6rfaUc8HfkMGjMEOENETopwS8T1+sNsiTiuxPWqofUy+xSw2pujcCZO0eS1Iscdqvrrxo4ish+u9zgFV7km4CxfkWxsFOYXwEW4fFGgO65XEyZyPLAK2KaqdRHn4O5xAK3ne2N6ezIuj/AvuPc8TIGqVrcQHk+Oe4F7RSQVZ417RESWqupqnIn1SFzD9V1cY+gIXGX/rhfNEGBao7omATc22h4Zi1V1e8R5S+V4AFCkquWN/E6JOG9cdlJaef/n496JIBAUkb97bi9FpFUZ4X8jrgyGZal/LqpaKSKFjeJv/NyGAC+JSCjCrQ5Xb7YaXzvLZeO05ovIjyLckthRRjepp6086t9hrxycgRs+QFU/FJENwDm4YcnGsmqj2eJDgLtF5A8RboKr38LptPSON0FVi3Hm9AUi0gtnzXhZRHIivDWuj8ZFyNJSnodpSZZdquc6e4LSRlyrOCvil6GqJ0Rc32cX496My7Aw4dbtTk1oUMdzOJPXtRFy1eDGVcNyd1fVMd71PHa8XOG0W+JDL65T2hKl0Xlz97fZk7lcVX+uqsOBk4GfichM79rfVPVQL6ziTKDtQkS64Xr7/45wbixXczTOi51pSEQSmdbuPoPtuMonTL+I4424HntkuUxX1VvbIWOLZVZVN+Ge92m4yTVPtiO+5rgPN8wwQlW748Z+pZGf+rwSkcOAX+IaE9mqmoXr+TUO0x7ayvfG5WEbrmEwJsJ/prpJgU1kbQtVrVLVe3EWh9Gec1ixH+Ydv4tT7EewQ7FvBN5t9Ey7qepl7ZQxu9Gk0ZbK8Wagh4hkNPLb3s5EPZ5SOAr4johsEffJ8FzgBE955HlpRZbjyDKfhzPvhuNLxQ3HRNI47zfihosi8ynFK7ttxdeectk4rZsbpZWmqk97aQ2UiJYWDd/hU3GN0z9H5M1AXKOnuXuXyHMv7UsbpZ2qqh+0Im+YVsurqm7DKfYBOMtcmJbqwdbyvC12RtfU09mKfSlQLiJXiUiqiPhFZGzEzM+HgBtFZIQ3E3q8iIQLUj5uDK0lngZ+6n0O0Q034/zZNnrFrXErcLGI9PN6WQuBP4hIdxHxicg+InKE5/c54ArvE4hsXEuuWVS1FNdguFdEThGRNBFJFJHjRaTJjPBG9/drEentveTX4nqEiMhsEdnXK8yluNZfSET2F5GjvNmj1eyY3NgqIpIsIgcAL+Mq1EfbCtOIK0UkW0QG4caTnt3J8E3ogGewEjjLy+spuAozzFPASSJyrFcmU8R9H5pD2/wVOFpEzhSRBBHpKSITI64/gVOy43DzPnaFDNwwUYW4T+Aua4f/IJ5JV0SuxVWKO0078j0fyBGRJM9/CDc+eKeI9AEQkYEicmx70xSRn3j5n+rl6XzvnsKfqb4LzMAND+TiGp7H4ZRO2M8/gf1E5DzvmSeKyIEiMmonZPytuE/vDsNN+nq+mfzZiDMZ3+KVm/E4S8lT7b3fCM7DzUnZHzdWPxE3ryMXOFtVvwWWAdd7ck3HDaOEeQFXjg/2nsf1tN2Yux+4WUSGAHj1S/jrnLbia6tcNq6z/wJ8X0SmefV7uoic6DWKPsSV2Su8Z3UabnJemPm4SYXjIvLmEGCCiIwD/h8wzqtTE3BDOZGN9/uBq0VkjHefmSJyRht5E3kf9WXcC3+bp7sSPPkvA9aqaqSF5Dde/T4GN0wUrgdby/O2eM67j2yvfvpRWwGg/Yr9H9Lw2+OX2hPIM7HNxj2UdbiW80O4WbfgzDrP4SqSMtxM3FTv2vXA4yJSIiJnNhP9I7ge0Xte3NW086ZbkPVTL64rPafzcWajVThl9wJubARcgX0DN5t6BW1U4Kr6B+BnuAkcBbgW3OU4RdoSN+Fe6v/hJhiu8NwARuAmc1TgXpA/q+pi3MSMW3H5vAU38enqVtL4pYiU44YLnsCZ1Q5uZJJsD694YVfiXriHdzJ8S+zOM/gNrmddDPwWNzkNqK+c5+B6HOHncSXteB9UdQNuotPPcUMWK3ETXsK8hGd6a2RC3Rl+gTM5luPus62G0hvA6zgl8S3uXWjPEEpLtJbvb+PGGbeIyDbP7SrcRKUlIlKGK5v770R6lcAfcGV2G66SPl1VvwFQ1a9wZf3f3nkZbuzx/fBwgmcaPwY3Dr/Ziys8Ya89Mm7x7nUzrvH2fVX9ogV5z8aNjW7GPe/rdnGocj7u3d0S+cMpgnDP9FzckEP4q5RncRYVVPVzXJ33DK5nV4GbY1PTSpp34+ZzLPTe/SW4uVDtia+tcnk9EXW2qi7DTcy8B5e3a3Hj16hqAGfZugD3Hs3De4dFZCAwE7irUd4sx5Xz+V6v+QzcWHYhzrqzLCJvXsI9/2e85/0ZcHwr+RJJc2U8DfesS3BlbwjOWhrJu949voUbZgsv5NVinreD3+Le6XU4PdkuK6A0HOIwjJ1DRBRnmlsbZTmG4gp/4m5YbTpKlq9xZsBdqeyNPYyIHImbkNYei01UEZFngS9U9bpmrnXDKZ4RqrquA9Lq0Pg6E3HrXuTiPlNc3Jb/Dk57KDFS94TZGxYBMYw9hoicjhujezvashhdH284YR9vSOQ4nKXp5YjrJ3nm33TcuO+nuC9CdjW9Do2vM/GG0rLEDT2Gx/uXRFmsmKArrkRkGDGJiLyDMwme543rGsbu0g9nou6J65Fepg2XyJ6DM88KzhR9lu6eGbaj4+tMpuOG2MLDRqeoalXrQfYOzBRvGIZhGHGEmeINwzAMI44wU3wH06tXLx06dGi0xTAMw+hSLF++fJuq9o62HPGAKfYOZujQoSxbtizaYhiGYXQpRGRnVo80WsFM8YZhGIYRR5hiNwzDMIw4whS7YRiGYcQRNsZuGHFMbW0tubm5VFe3uLmaYexRUlJSyMnJITExMdqixC2m2A0jjsnNzSUjI4OhQ4cisiubvRlGx6GqFBYWkpuby7Bhw6ItTtxiit3YawkUlhAsr2jinpDRjaSeWVGQqOOprq42pW7EDCJCz549KSgoiLYocY0pdmOvJVheweIRM5u4z1jzVtwodsCUuhFTWHnsfGzynGEYhmHEEabYDcPoVPx+PxMnTmTs2LGcdNJJlJSU7FT466+/njvuuKPZa0888QRjx45l3LhxTJo0qUV/Hc3QoUMZN24c48aNY/To0fz6179udYLiwQcfvFPxH3nkkey///5MnDiRiRMn8sILL+yuyMZeRFwqdhH5qYh8LiKficjTIpIiIsNE5L8islZEnhWRJM9vsne+1rs+NCKeqz33L0Xk2Gjdj2F0ZVJTU1m5ciWfffYZPXr04N577+2QeP/1r39x1113sXDhQj799FOWLFlCZmZmE3/BYOdskb148WI+/fRTli5dyjfffMOll17aYtoffPDBTsf/17/+lZUrV7Jy5Urmzp3b4JqqEgrZBoJG88SdYheRgcAVwBRVHQv4gbOA24A7VXVfoBi4yAtyEVDsud/p+UNERnvhxgDHAX8WEf+evBfDiDemT5/Opk2b6s9vv/12DjzwQMaPH891111X737zzTez3377ceihh/Lll182G9ctt9zCHXfcwYABAwBITk7m4osvBlyP9yc/+QlTpkzh7rvvZv369Rx11FGMHz+emTNnsmHDBgCef/55xo4dy4QJEzj88MMB+Pzzz5k6dSoTJ05k/PjxrFmzptV76tatG/fffz8vv/wyRUVFvPPOOxx22GGcfPLJjB49ut4PwDvvvMPhhx/OiSeeyP7778/3v//9divo9evXs//++3P++eczduxYNm7cyMKFC5k+fTqTJ0/mjDPOoKLCTQZ9/fXXGTlyJJMnT+aKK65g9uzZQFPrx9ixY1m/fj0ATz31VP19X3rppdTV1dXLfs011zBhwgQOOugg8vPzAcjPz+fUU09lwoQJTJgwgQ8++IBrr72Wu+66qz7+a665hrvvvrtd92d0IKoaVz9gILAR6IGbHPhP4FhgG5Dg+ZkOvOEdvwFM944TPH8CXA1cHRFvvb/WfgcccIAaXYOabcW6fd3GJr+abcXRFq3DWLVqVbRF0PT0dA2FQhoMBnXu3Ln62muvqarqG2+8oRdffLGGQiGtq6vTE088Ud99911dtmyZjh07Vrdv366lpaW6zz776O23394k3uzsbC0pKWk2zSOOOEIvu+yy+vPZs2frY489pqqqDz/8sM6ZM0dVVceOHau5ubmqqlpc7J775Zdfrk899ZSqqtbU1GhlZWWT+IcMGaIFBQUN3CZMmKBLlizRxYsXa1pamn7zzTcN8kBVdfHixZqcnKxff/21BoNBPfroo/X5559vVv799ttPJ0yYoBMmTNBt27bpunXrVET0ww8/VFXVgoICPeyww7SiokJVVW+99Vb97W9/q1VVVZqTk6NfffWVhkIhPeOMM/TEE09UVdXrrruuQV6OGTNG161bp6tWrdLZs2drIBBQVdXLLrtMH3/8cVVVBfTVV19VVdUrr7xSb7zxRlVVPfPMM/XOO+9UVdVgMKglJSW6bt06nTRpkqqq1tXV6fDhw3Xbtm1N7q+5cgks0xjQIfHwi7tZ8aq6SUTuADYAVcBCYDlQoqphm1wurgEAOxoCqGpQREqBnp77koioI8M0QEQuAS4BGDx4cIfej9F5JPXMiqvZ77GIqlJVVcWkSZPYtGkTI0eOZObMmagqCxcuZOHChUyaNAmAiooK1qxZQ3l5OaeeeippaWkAnHzyybuU9rx58+qPP/zwQ1588UUAzjvvPH75y18CcMghh3DBBRdw5plnctpppwHOqnDzzTeTm5vLaaedxogRI9p9r2GmTp3a4nfaU6dOZfjw4QCcffbZ/Oc//2liagdnip8yZUr9eXl5OUOGDOGggw4CYMmSJaxatYpDDjkEgEAgwPTp0/niiy8YNmxYvdzf+c53ePDBB1uV/a233mL58uUceOCBAFRVVdGnTx8AkpKS6nv8BxxwAIsWLQLg7bff5oknngDcPIrMzEwyMzPp2bMnH3/8Mfn5+UyaNImePXu2mrbR8cSjKT4bmAMMAwYA6ThTeqehqg+q6hRVndK7t+06aBiRpKam8t8lS1izZg2hUIg/e2PsqsrVV19dP468du1aLrroojZi28GYMWNYvnx5i9fT09PbjOP+++/npptuYuPGjRxwwAEUFhZyzjnn8Oqrr5KamsoJJ5zA22+/3WY85eXlrF+/nv3226/NtBt/7rUzn39FxquqzJo1qz7/Vq1axcMPP9xq+ISEhAam//CEP1Vl/vz59XF9+eWXXH/99QAkJibWy+j3+9ucs/C9732Pxx57jEcffZQLL7yw3fdmdBxxp9iBo4F1qlqgqrXAi8AhQJaIhC0UOUB4oG8TMAjAu54JFEa6NxPGMIx2EFYI4vORmpLCnXfeyZ133UVdXR3HHnssjzzySP248KZNm9i6dSuHH344L7/8MlVVVZSXl/OPf/yj2bivvvpqrrzySrZs2QK4HutDDz3UrN+DDz6YZ555BnA94cMOOwyAr7/+mmnTpnHDDTfQu3dvNm7cyDfffMPw4cO54oormDNnDv/73/9avceKigp+8IMfcMopp5Cdnd1mnixdupR169YRCoV49tlnOfTQQ9sM0xwHHXQQ77//PmvXrgVg+/btfPXVV4wcOZL169fz9ddfA/D000/Xhxk6dCgrVqwAYMWKFaxbtw6AmTNn8sILL7B161YAioqK+Pbb1ndRnTlzJvfddx8AdXV1lJaWAnDqqafy+uuv89FHH3HssTbnOBrEo2LfABwkImniapWZwCpgMRC2d80HXvGOX/XO8a6/7Y33vAqc5c2aHwaMAJbuoXswjLggbJ7WUAjx+Zgwfjzjxo3jb3/7G8cccwznnHMO06dPZ9y4ccydO5fy8nImT57MvHnzmDBhAscff3y9ebgxJ5xwApdffjlHH300Y8aMYfLkyZSVlTXr909/+hOPPvoo48eP58knn6yf0HXllVcybtw4xo4dy8EHH8yECRN47rnnGDt2LBMnTuSzzz7j/PPPbzbOGTNmMHbsWKZOncrgwYN54IEH2pUnBx54IJdffjmjRo1i2LBhnHrqqe0K15jevXvz2GOPcfbZZzN+/Ph6M3xKSgoPPvggJ554IpMnT643qQOcfvrpFBUVMWbMGO655556C8Po0aO56aabOOaYYxg/fjyzZs0iLy+v1fTvvvtuFi9ezLhx4zjggANYtWoV4Ez3M2bM4Mwzz8Tvt/nGUSHag/yd8QN+C3wBfAY8CSQDw3GKeS3wPJDs+U3xztd614dHxHMN8DXwJXB8e9K2yXNGLBHtyXOhUEhra2s1WFvb5HhvZPHixfUT2eI1zbq6Op0wYYJ+9dVXLfqxyXOd+4u7yXMAqnodcF0j52+Aqc34rQbOaCGem4GbO1xAw9hLEJH6XlvjYyP+WLVqFbNnz+bUU09t96RDo+MR11AyOoopU6bosmXLoi2GYQCwevVqRo0aFW0xDKMBzZVLEVmuqlNaCGLsBPE4xm4YhmEYey2m2A3DMAwjjjDFbhiGYRhxhCl2wzAMw4gjTLEbhtFpVFdXM3XqVCZMmMCYMWPqN3pZt24d06ZNY99992XevHkEAoEoS2oY8YMpdsMwOo3k5GTefvttPvnkE1auXMnrr7/OkiVLuOqqq/jpT3/K2rVryc7ObnMpVMMw2o8pdsMw6ln4Tj6nX7iEw05+l9MvXMLCd/J3Kz4Rqd+ytLa2ltraWkSEt99+u37jk/nz5/Pyyy/vtuyGYThMsRuGATilfts9X5FfUIMq5BfUcNs9X+22cq+rq2PixIn06dOHWbNmsc8++5CVlUVCglsfKycnp8Ee7YZh7B6m2A3DAOCBJ9ZRUxNq4FZTE+KBJ9btVrx+v5+VK1eSm5vL0qVL+eKLL3YrPsMwWscUu2EYAGzdVrNT7jtLVlYWM2bM4MMPP6SkpKR++8/c3FwGDhzYIWkYhmGK3TAMjz69knfKvT0UFBRQUlICQFVVFYsWLWLUqFHMmDGDF154AYDHH3+cOXPm7HIahmE0xBS7YRgAXHr+MJKTG1YJyck+Lj1/2C7HmZeXx4wZMxg/fjwHHnggs2bNYvbs2dx222388Y9/ZN9996WwsJCLLrpod8U3DMMjLnd3Mwxj5znmyL6AG2vfuq2GPr2SufT8YfXuu8L48eP5+OOPm7gPHz6cpUuX7nK8hmG0jCl2wzDqOebIvrulyA3DiD5mijcMwzCMOCLuFLuI7C8iKyN+ZSLyExHpISKLRGSN95/t+RcR+T8RWSsi/xORyRFxzff8rxGR+dG7K8MwDMNoH3Gn2FX1S1WdqKoTgQOASuAlYAHwlqqOAN7yzgGOB0Z4v0uA+wBEpAdwHTANmApcF24MGIZhGEasEneKvREzga9V9VtgDvC45/44cIp3PAd4Qh1LgCwR6Q8cCyxS1SJVLQYWAcftWfENwzAMY+eId8V+FvC0d9xXVfO84y1AeIbQQGBjRJhcz60ld8MwDMOIWeJWsYtIEnAy8Hzja6qqgHZgWpeIyDIRWVZQUNBR0RpGXFBSUsLcuXMZOXIko0aN4sMPP6SoqIhZs2YxYsQIZs2aRXFxcbTFNIy4IW4VO27sfIWqhnewyPdM7Hj/Wz33TcCgiHA5nltL7k1Q1QdVdYqqTundu3cH3oJhdH1+/OMfc9xxx/HFF1/wySefMGrUKG699VZmzpzJmjVrmDlzJrfeemu0xTSMuCGeFfvZ7DDDA7wKhGe2zwdeiXA/35vmonBmAAAgAElEQVQdfxBQ6pns3wCOEZFsb9LcMZ6bYcQlqkre5s3kbd5MKBSqP3YGrl2jtLSU9957r35luaSkJLKysnjllVeYP9+9jrZtq2F0LHGp2EUkHZgFvBjhfCswS0TWAEd75wCvAd8Aa4G/AD8AUNUi4EbgI+93g+dmGHHJlrw8qqurqa6uZsO339Yfb8nLaztwC6xbt47evXvz3e9+l0mTJvG9732P7du3k5+fT//+/QHo168f+fm7tzWsYRg7iMuV51R1O9CzkVshbpZ8Y78K/LCFeB4BHukMGQ0jVlHV+l66iOxWXMFgkBUrVvCnP/2JadOm8eMf/7iJ2V1EdjsdwzB2EJc9dsMwdp6+/fo1UbAiQt9+/XY5zpycHHJycpg2bRoAc+fOZcWKFfTt25c8zxKQl5dHnz59dl1wwzAaYIrdMAwA8rdsaTKerqrkb9myy3H269ePQYMG8eWXXwLw1ltvMXr0aE4++WQef9wtK2HbthpGxxKXpnjDMHadsGl8dybNRfKnP/2Jc889l0AgwPDhw3n00UcJhUKceeaZPPzwwwwZMoTnnnuuQ9IyDMMUu2EYHv3696+fKNe3X7/6nno/b5LbrjJx4kSWLVvWxP2tt97arXgNw2geU+yGYQCup95/wID688hjwzC6DjbGbhiGYRhxhCl2wzAMw4gjTLEbhmEYRhwRk2PsIvIprWzSoqrj96A4hmEYhtFliEnFDsz2/sMrwj3p/Z8bBVkMwzAMo8sQk6Z4Vf1WVb8FZqnqL1X1U++3ALcZi2EYXYS7776bsWPHMmbMGO666y4A27bVMDqRmFTsEYiIHBJxcjCxL7NhGB6fffYZf/nLX1i6dCmffPIJ//znP1m7dq1t22oYnUismuLDXAQ8IiKZgADFwIXRFckw4pPXe0ymrnx7E3d/RjrHFa3YpThXr17NtGnTSEtLA+CII47gxRdf5JVXXuGdd94B3LatRx55JLfddtsuy24Yxg5iuverqstVdQIwARivqhNVdddqGMMwWqU5pd6ae3sYO3Ys//73vyksLKSyspLXXnuNjRs32rathtGJxHSPXUSSgdOBoUBCeOcpVb0himIZhtFORo0axVVXXcUxxxxDeno6EydOxO/3N/Bj27YaRscS0z124BVgDhAEtkf8DKNDCAZDFBbVkF9QTUlpINrixCUXXXQRy5cv57333iM7O5v99tvPtm01jE4kpnvsQI6qHhdtIYz4pKamjo8/K+WmO7+gpLSWUSMyuOnq0fTtnRJt0eKKrVu30qdPHzZs2MCLL77IkiVLWLduHY8//jgLFiywbVsNo4OJ9R77ByIybmcDiUiWiLwgIl+IyGoRmS4iPURkkYis8f6zPb8iIv8nImtF5H8iMjkinvme/zUiMr8jb8yIPmUVQX5182eUlNYCsHpNOX+8fw0V24NRliy+OP300xk9ejQnnXQS9957L1lZWSxYsIBFixYxYsQI3nzzTRYsWBBtMQ0jboj1HvuhwAUisg6owc2M13asPHc38LqqzhWRJCAN+BXwlqreKiILgAXAVcDxwAjvNw24D5gmIj2A64ApuFXwlovIq6pqH9zGCSWltQRqGy5w+L9VZdTU1NEtPdZfjY7Hn5He4qz43eHf//53E7eePXvatq2G0UnEeu11/M4G8D6NOxy4AEBVA0BAROYAR3reHgfewSn2OcATqqrAEq+339/zu0hVi7x4FwHHAU/v+u0YsURWZiKJCUJtcIdyHzuyO8nJ/lZCxS+7+kmbYRixRUyb4r3V5wYBR3nHlbQt8zCgAHhURD4WkYdEJB3oq6p5np8tQF/veCCwMSJ8rufWknsTROQSEVkmIssKCgraf4NGVMnolsCNC0aT0c21b/cdls4vfjBir+ytG4YRP8R0DSYiYVP4/sCjQCLwFHBIK8ESgMnAj1T1vyJyN87sXo+qqoi0uMnMzqKqDwIPAkyZMqXD4jU6l5RkP9Mm9+DJe6cQDCrJST6ys5KiLVaHo6r2OZkRMzjjqNGZxHSPHTgVOBnvEzdV3QxktBEmF8hV1f965y/gFH2+Z2LH+9/qXd+EswqEyfHcWnI34ojERB+9eiTTr09KXCr1lJQUCgsLrTI1YgJVpbCwkJQU+/KkM4npHjsQiOxdeyb1VlHVLSKyUUT2V9UvgZnAKu83H7jV+3/FC/IqcLmIPIObPFeqqnki8gbwu/DsedzmM1d35M0ZRmeTk5NDbm4uNkRkxAopKSnk5OREW4y4JtYV+3Mi8gCQJSIX49aJ/0s7wv0I+Ks3I/4b4Ls468RzInIR8C1wpuf3NeAEYC1uDP+7AKpaJCI3Ah95/m4IT6QzjK5CYmIiw4YNi7YYhmHsQSTWTXQiMosdW7UuVNVF0ZSnLaZMmaLLli2LthiGYRhdChFZrqpToi1HPBDrPXaAT4FU3Lfkn0ZZFsMwDMOIaWJ68pyIfA9YCpwGzMV9Z27bthqGYRhGC8R6j/1KYJKqFgKISE/gA+CRqEplGIZhGDFKTPfYgUKgPOK83HMzDMMwDKMZYr3Hvhb4r4i8ghtjnwP8T0R+BqCqf4ymcIZhGIYRa8S6Yv/a+4UJf3ve1iI1hmEYBlBUHGB7VZDkJB9pqQm2ZPJeQEw/YVX9bfjYWyimRGP9+zzDMIwYIb+gmiuu+YRNedWIwDmnDeLc0wfRPSMx2qIZnUhMjrGLyLUiMtI7ThaRt3E993wROTq60hmGYcQ+VdV1/OXJdWzKqwZAFf76940Ul9RGWTKjs4lJxQ7MA770jufj5OwNHAH8LlpCGYZhdBWqq+tYu257E/fcvKooSGPsSWJVsQciTO7HAk+rap2qribGhw8MwzBigW7dEjhseq8Gbn6f257YiG9iVUnWiMhYIB+YAfwi4lpadEQyDMPoOiQm+Dj76O6cOG4IVdV1+HyQmZFIYsU2Ar5uJPXMiraIRicRq4r9x7jtVnsDd6rqOgAROQH4OJqCGYZhdBkqK1k++dgmzjPWvGWKPY6JScXu7aU+UkSGq+o3Ee6vicjqKIpmGIZhGDFNrI6xh3mhnW6GYRiGR20wRFFxAPs4eO8kJnvs3qduY4BMETkt4lJ3ICU6UhmGYcQ+JaUBXnptM4ve28rtl/aOtjhGFIhJxQ7sD8wGsoCTItzLgYujIpFhGEaMU1sb4rlXNvHE8xsAqAnURVkiIxrEpGJX1VeAV0Rkuqp+uLPhRWQ9rhFQBwRVdYqI9ACeBYYC64EzVbVYRAS4GzgBqAQuUNUVXjzzgV970d6kqo/v1o0ZhmF0ImUVtbzxTv6O82ASo97/f/TMTiYxUerdEzK6NRs+UFhCsLyiiXtChs2i70rEpGKPYK2I/AqnjOtlVdX27Mk+Q1W3RZwvAN5S1VtFZIF3fhVwPDDC+00D7gOmeQ2B64ApuA1olovIq6pavPu3ZRiG0fEk+H307Z1MfkENAJffsg6AZx+cysD+qW2GD5ZXsHjEzCbubc2iD4WUYFBJSor1aVt7B7H+FF4BMoE3gf8X8dsV5gDhHvfjwCkR7k+oYwmQJSL9cQvjLFLVIk+ZLwKO28W0DcMwOp3M7on89NIRpCTvqNpPOb4/Gd06rw9XVBLguVdzufGPq3n3gwJKy2zJ2mgT6z32NFW9ahfCKbBQRBR4QFUfBPqqap53fQvQ1zseCGyMCJvrubXk3gQRuQS4BGDw4MG7IK5hGEbHMHRwGs88MJUNm6vo1SOJzO6JnbbpS0lpgGt+9zmfri4DYPH727jonCGcO3cwSYmx3m+MX2I95//pLUqzsxyqqpNxZvYfisjhkRe95Wo77EMQVX1QVaeo6pTevW0WqmEY0SMxwUevnslMHpfF4IFpZHbiTm6VVXX1Sj3Ms6/kUl4R7LQ0jbaJdcX+Y5xyrxaRMhEpF5GytgKp6ibvfyvwEjAVtzNcfwDvf6vnfRMwKCJ4jufWkrthGIYB+HzSxC0x0UcH9puMXSCmTfGqmrGzYUQkHfCparl3fAxwA/Aqbqe4W73/V7wgrwKXi8gzuMlzpaqaJyJvAL/z9oHHi+fq3bohwzCMGCYhoxsz1rzVrHtzpKb4OfLgXrzzwY55ypeeN6xTrQRG28S0Yvc+RTsXGKaqN4rIIKC/qi5tJVhf4CUXlATgb6r6uoh8BDwnIhcB3wJnev5fw33qthb3udt3AVS1SERuBD7y/N2gqkUde4eGYRixQ1LPrJ36rC2zeyI//8EIZh/Tn9VflXHI1J7075tCQkKsG4PjG9EYXnNQRO4DQsBRqjrK6z0vVNUDoyxai0yZMkWXLVsWbTEMwzB2iz39TbuILFfVKR0e8V5ITPfYgWmqOllEPgbwFpRJirZQhmEY8c6uftNuRJ9Yt5fUiogfbyaGiPTG9eANwzAMw2iGWFfs/4eb1d5HRG4G/gP8LroiGYZhGEbsEtOmeFX9q4gsB2YCApyiqrYfu2EYhmG0QEwrdm+99q3A0xFuiapqaxYahmEYRjPEtGIHVuAWiSnG9dizgC0ikg9crKrLoymcYRhGvLKz37QbsUOsK/ZFwAuq+gaAiBwDnA48CvwZt6CMYRiG0cHs7DftRuwQ64r9IFW9OHyiqgtF5A5VvVREkqMpmGEYRlfC9lrfe4h1xZ4nIlcBz3jn84Ct3idw9tmbYRhGO7Hv0vceYv1zt3Nwm6+87P0GA2cBfnYsCWsYhmEYhkdM99hVdRvwo/C5iKQAJ6nq87i13Q3DiGHM/GsYe56YVuwAntn9WOBsYBZukZrnoyqUYRjtwsy/0ScUCuHzxbpx1uhIYlaxi8gROFP8CcBS4BBguKpWRlUwwzCMLkIwGKSqqor09PRoi2LsQWJSsYtILrABuA/4hbe3+jpT6oZhGO0jFApRXV1NwdatBDIzSU5O5LDVb5CQ0LDat+/S44+YVOzAC8ApuFnwdSLyCt5GMIYRq5SUBqgJhPD7hYz0BJKT/dEWydiL8fl8pKWlkZWdTUlxMQCDhw5potiN+CMmn7Cq/kREfgociRtb/z2QKSJnAq+patPZOIYRRbYV1fDrW1bx2RdlpCT7+NH39mHmYX3olr7jFQsGQ2wrCvD6W1sQn3DcUX3p1SMJv9/GP43OIRQKsb2iAhFBVamoqCAjIwO/3xqd8UxMKnYAVVVgMbBYRBKB43Cfuv0Z6BVN2Yy9g9raEJVVdaSn+UlIaFn5VtfU8cjfvuWzL8q88xC337uGAydmN1Ds24oCnHf5Mqqq6gD469838uS9U+jbO6VzbySKtHdZUps93/GETfGqyqDBg6msrKSkuJiMjIxoi2Z0MjGr2CPxNn35B/APEUltTxhvNv0yYJOqzhaRYbiFbnoCy4HzVDXgrWD3BHAAUAjMU9X1XhxXAxcBdcAV4aVtjfinqDjAc6/msvKzUqZOyubUEwaQnZXUrN/Kqjr+t6q0ifuGTVUM6LejuL76Rl69Ug+H+39vbuHCs4d2uPyxQnuXJbXZ8x1P2BSfmpqK3++nW7dupKenW299LyAmFbuIfErLY+oKTGhHND8GVgPdvfPbgDtV9RkRuR+nsO/z/otVdV8ROcvzN09ERuMsBGOAAcCbIrKfqtY1TsiIL0rLarn+jtWs+F8JAIri88HpswfW98BFpN5/WqqfyeOzWL9xx9xOERiSk9Yg3lBoR5G+5+phdE8I0C0dKtfn1rtbD9XoSCI/c7NP3vYeYlKxA7O9/x96/096/9+hHZPoRCQHOBG4GfiZuFr4KNzncwCPA9fjFPsc7xjcpL17PP9zgGdUtQZYJyJrganAh7t8V0aXoLqmrl6pjx/dnet+sR+giEBtbS2qSlJSUr1yT0n2M3/eYDZsqmTZyhIy0hP46ff3pXtGw9drznH9ef4fm6ipCdE9IcDqQ05skrb1UI09xfbKIJVVdYhAeloCqSnWk48XYlKxq+q3ACIyS1UnRVy6SkRWAAvaiOIu4JdAeDCpJ1CiqkHvPBcY6B0PBDZ66QZFpNTzPxBYEhFnZJgGiMglwCUAgwcPbvP+jNjG5xOSEoVArXLe3EHU1VZQU72d5MQebNtaTHJyMn369m1g0uyZncwNvxxNdU0Inw8yMxJJTGzYQ+rVI5mn7p3CS//KIz3Nek9djaLiANU1dSQl+sjISCQ5qes+w5LSAH9+9BveWJyP3y+cc9ogzjg5h8zuidEWzegAYr1kiogcEnFyMG3ILCKzga17cq92VX1QVaeo6pTevXvvqWSNTiIjPYGLzh0KwG9uW01ldSpJSUkUFRbi9/ubKPUw3TMS6dMrmV49kpsodYDERB/9+6bygwuGk9EtJtvURgts3lLFDxes5MyLl3L2ZR/xnyXbqKoOth0wRnn/oyJeeyufuhAEapXHnt3Ahk22TEi8EOu1y0XAIyKS6Z2XABe2EeYQ4GQROQFIwY2x3w1kiUiC12vPATZ5/jcBg4BcEUkAMnGT6MLuYSLDGHFMSoqfk47tzyEH9mRrYTU5A5LZklcLuJW8gsEgPp+vwTi7sXvUJacy+oPXcB/DONNwenpCTCyeUlZRy+/v/YqNm6sAqKqq48Y7v+D5h6aRmhLrVWhTAoE6PvyosIn7spXFjBuV2UwIo6sR06XS63VPCCt2VW069bhpmKuBqwFE5EjcynXnisjzwFzczPj5wCtekFe98w+962+rqorIq8DfROSPuMlzI3BL2xp7Ad27JdK9WyKDBqZQVFhIYlIS/fv1Y2tBAUWFhS322o2dp6y8ll/930ZWftbw9X7+oWn07xn9TwEDgRBfrmn4KV4wqJSV19K7Z3KUpNp1EhN9TJvcg3c+2NbAffJ4m9sRL8S0YheRvsDvgAGqerw3U326qj68C9FdBTwjIjcBHwPhOB4GnvQmxxXhZsKjqp+LyHPAKiAI/NBmxO99+P1+evTogQI+v5/evXqhnvvu0N7vu+OR0rIAwaDi8wvZmUnU1obI9XrDkZSU1dK/b/QVe0qyn0njMnlvyY5ebnKyr8uOR4sIhx7Uk2Wf9Obt/xTg9wtnnDSQoYNsPfl4QcKmr1hERP4FPApco6oTPFP5x6o6LsqitciUKVN02bJl0RbD6CTqgkEUSEhIaHDcWahqvck/8rirkpdfzQ1/WM2nq8vYd1g61185in59UnjgiXU8/+qOka70ND9/u+9AevaIjR5xQWENN9yxmo8/K+X+a/chJzNEYqKPyMfR1T5VLK+opao65GbFp/pJS0ugrq6OumAQv1emw8d7wjolIstVdUqnJ7QXEOuK/SNVPVBEPg7PjheRlao6MdqytYQp9vglFApRWFhIVWUl/QcMYFtBAcG6OgYOHNgp3wiHQiFqa2vx+/34fL7646661ndJaYArf/sZq9eU17v17Z3MX/4wGfHBE89+y9v/2cbA/in84gcjGJKTFlPL7ZaW1RKoDZFaWsC7+ze/mE7a0JwoSNZxBINBNnz7LZlZWSQlJlJQUED/AQNISUnp9EalKfaOI9ZriO0i0hPv23UROQhoc5zdMDoDn89HdnY21VVVbNywARFhwMCBnVrhbcnLIyEhgazsbLbm55OVlUVmVtYeXWyko5Z7rQ1qA6UOkF9QQ1VNHQP7pfL9C4bznbmDSUiIPTN3oLCExPIKEgENxe+InM/no0/fvmzNzwcgKzu7wZoNRtcg1hX7z3CT2/YRkfeB3sAZ0RXJ2JsR3Fg7tbWISKfOjhcR+g8YwKbcXPK3bCEtLY3umZkdrtRDoVB9nJHHYXZ3ude6OqWkNEBdnTKwfwqb8qrrr2WkJ9R/D56c5Ce5R2xOSIzMg4PefCLK0nQeqkqkFVdDoShKY+wqsWPnap7PgSOAg4FLccu7fhFViYy9llAoRFFxMYFAgH79+uH3+9myZQuhTqr8VJVQKFRf0dbV1dHRQ2fBYJDt27dTV1fX4LijqKtTvvq6nAt/soLrfr+an182giyvN56W6uf6X44iMyO2euddhbq6uvpnFXm8O6gqBVu3kp2dTZ8+fSgtLSUQCHR4uTM6l1jvsX+oqpNxCh4Ab+W5ydETydhbCZviMzMzSUxMpH9yMqFQqFPNlPlbtpDerRvZ2dls3rSJ8rKyDjPFqyq1tbUUbN1KZmYmNYEANTU1DBo0qO3A7aSkLMCCmz+nsDhAYXGAv/19IzcuGE3P7CTSUv10z0hodjEfoymNh0TCjb6krO5UilIbDNKzZ8/dmujm8/nIGTQIv9+PiDQ4NroOManYRaQfbvnWVBGZhLOAgltsJq3FgIbRySQkJNTPTo887gzCY/g+nw+fz8fAnJz6446KPzkpiV69erFtm/umeWBOTofOgA4ElMKiQP35sk9KWPZJCX9/ZBq9uuA34AB1ldX15viUgf2QBJdfnf2pYktDIoetfoNiqaNP3767nYbP5yMpaccuhpHHRtchJhU7cCxwAW61tz9GuJcDv4qGQIYRJqzIw6ZPv9/f4LgxZeW1VFXX4fMJaal+0tPa99qJCImJO8zUkccdRUiViu3b688rKirIysrqMOWelOSjb+9k8gtq6t0GDUzt0r30j06+pP44VmbCJyYl1W/PahgxqdhV9XHgcRE5XVX/Hm15DKMxoVCIqqoqysrK6Nu3L1WVlZSVl9O30Yp0xSUBbv2/L3n/oyL8Pjht9kDmzxtMVvfo94RUlUCglkBNDRmZ/QgGaykvK6Z790wi9cPuLKaTnZnI768dyzW/W0VuXhWDc1L53a/G0KOFve1jlVheUEjER20gQGFh4W6b4o34ICYVexhV/buInIibNJcS4X5D9KQyDNebTkpKIlBTw6bcXILBINnZ2Q38hELK2/8p4P2PigCoC8Hzr27iyIN7kTUm+ootGFRWfFrBhDED+c1tqxm7fwbzTsnhq6+3M2bkjjXDk3pm7fLCKz6fMHxIOn++bSK1QbeoS1dT6rB7edDZ+P0++vcd0KGTHo2uTUwrdhG5HzemPgN4CLeWu63XbkSd8Bh7t4wMykpL8fl8DSa1BQJ1VGyvY+IQ4YnfNNztN4NSAoVEXVHUBkP84418fnf3V5SVB1m2soQXX8vj0vOGNVDsrVFXV1f/CWDkcSQiQo/srqfMuxLJycmg2iTvjb2TmFbswMGqOl5E/qeqvxWRPwD/irZQhhEKhaisrKSstJT09HSqqqrYkpdH3379KK+o49lXcvnm2+384vTuLD3kxCbh2/sNeGlZLQVFNeRvrWG/4d3I7J5AUlLHVN5pqQnMPWkg70fs9FVVVce0A3q0GKbxzOxg0M0dSOyewdbKcrKys0lPT9+jC+jsLbQ2HLAn8rs2GKK0rBZVSEn2kdHNPlOMVWJdsYd3hqgUkQG47VT7R1EewwA8U3xiIj169qR7RgbBYJDKykpUYfH7BTz5/EYAFszb9W0wS8tq+dNDX/P6YrcKWFKicO9tExk1onuH3APAyBHduOWaMTz90kbS0xK49PxhrZrKW5uZrYlCakoKPp8v7ta4jwWiORxQWRlkyYoi/nDfGsrKg0yf0oMFP9rfLDExSqwr9n+KSBZwO7ACt7TsQ9EVydgbCC864/P5GhyHERESk5LISEjA5/eT6PORkZDA9qoQb/27oN5fSWntLstQXlFbr9QBArXKXQ+s5bZrx3bY5LuMbokcdlAvJozJxO+Xds/Yb470bt3q86s2EMDn9+P3++uPO2NWf1ehrq6uflJb5HFXoawiyHW/X014nZoPPiriyRc2cNn8YR1mQTI6jpi2l6nqjapa4s2MHwKMVNXfRFsuI74JhULU1NQQCASaHEciIvUVdPg4JdnPvsN2zJTuntE+RVlcEmDVV2Us/biIwqIaQiGlYnvTyVCFxW5p1o6me0bibil1n89HaUkJ2ysrUVW2bdvG5k2bqKioYPPmzZSWlLQ6uasuGKxf4SzyOB4IBoNuw6BgsMFxV2L9xkoaP46PPi6motIm7MUiMd1jF5HTmnErBT5V1a1REMno4rRnQxNVpbysjO3bt9M9M5PSkhK6d+9Odo+Wx57DJCX6OPf0Qfx3RRHDBqfXr4PeGsUlAa6++XM++6IMcI2Bh+88gN69ksnOSqS4ZEevf/bR/egeg0uw+nw+evfoTWpKCn6/n779+rFp0ya2FRSQkpJCdo8eLfZSQ6EQZWVllJSU0LdfP0qKi6mtrWXQ4MENTPgdtRlNNKipqWHzpk2ISINlgrsKgwemNnEbN6o7aanWW49FYlqxAxcB04HF3vmRwHJgmIjcoKpPRkswo2vSng1N/H4/PXv1IhAIUFpSQnIbiqkxvXsmc+8tE9leGSQhqZojvlwUYc734/MJ/ox0SkoDvLdkG9mZSXTPSMDvc5/E9e+bwre529lveDfuv30SDzy+jty8Ko49si/HzuhDYkJsGtoiTfHBYJCQ10Ovra0lFAq1mH8+n4/umZlUV1ezJS8PEWFgTk6Tcfnd3YymOfZEYyEhIYF+/fuTu9HNu+g/YECX23q3e0YCP710X+599BsCgRAjR2Rw4TlDSUk2xR6LxHrpSgBGqWo+gIj0BZ4ApgHvAc0qdhFJ8a4ne3G8oKrXicgw4BmgJ66BcJ6qBkQk2Yv3ANwEvXmqut6L62pcA6MOuEJV3+ikezVihFAoRCAQIBAI4PP5CNTUUBuxm1t76JGdRI/sJOrqkqn0Q0lxMQB9+vQiJS2NquogoZoAgwemkJqSwFWXD+OLtf1Y9E4Bs2b05cEn11NYFOD02QP4yaX7ICJ075aI379nJqGFd/mKnABXWVWHLy2tzZnZqkrhtm0kJafSPbMnpcX5lJSU0KO1xpEqochdxfZQj3ZXGwtFxQEqq+tITvSRnuYnrZVhjGAwyNb8/PqdALd5e5xHKvdYt0Z0S0/khKP7cfj0XgSDSkqKj+xMmzgXq8S6Yh8UVuoeWz23IhFpbVZSDXCUqlaISCLwHxH5F24b2DtV9RnvG/mLgPu8/2JV3VdEzgJuA+aJyGjgLNwCOQOAN0VkP1W1gaU4praolPD/W9gAACAASURBVGBpGb1JxC8+6kJ1BDdtRTIzSO6V3XYEHm5ltwAlxcX07t2bQCDA1vx8Bg8Zgt8HJUX59MrqRlqaUFJcwMh9+zJowBDm/2g5tUGn2B58cj1+n3DWqTl7TKmDU0abN22iX79+IMKWvDy6Z/Xh7se3MGViNocf1KvFIYGysjokIZui4lp+/tuV3HH9aMorleSUEN0zmir2sCm+NhBgYE4OxcXFbMnLa2KKjyaRSwZXbA9QXVPL93/xCeXbg1zynaGcfNwAMrq1XJ2Kt9a/iJCfn+/KRoQy12Ad74w6pkm43bFG7AztmdyXmuInNcV66F2BWFfs74jIP4HnvfO5nls6UNJSIHXN/XDzN9H7KXAUcI7n/jhwPU6xz/GOAV4A7hFXo8wBnlHVGv4/e+8dJllVrf9/9kmVY1fnMMwQhwwSJSuKoD8JishVxHBFRfQa8ApeEREUROGLCRQVFRPq9Qp48UpSgggiIHGGNDCpc3flXOec/fvjVNVUT3d1HqYH+n2eeWbX6RN2nTpnr73ftda74GUhxIvAIcCDi/HllrE0YWVz3LfH1IMsczDsNXW67p4eNE3D6/PhDwQQQvDsiznaYy0UcuOUSxAKR3l5U4mxuFk36jXced8IJx3fQeQVVGxTFAW3201/1S+s6y7GEyYPPRrnrvtGiYR0jjgkNuWxuaLFhz/9OKWyRbki+fBnnqBUtvjdjw5teq1gKIQ/EEDTNFpbW7d51by5wLIsstks2UyGjs5OctkMdqXAdVfux7997BGu+9nLHHtEa1PDrmkaHR0d9RV7rV1YIjXeTdNkfGyMlpjze9baO5q7YBlbsNR/uY8DpwFHVj//DPh91XAfN92BQggVh27fBfgesA5ISilr4aibcSrIUf1/E4CU0qwG6LVUtz/UcNrGYxqvdQ5wDkBfX9/cvuEyXtVQqylfjZ8BdlnpI53KANDq8UEyzeqgiuWTdaW6tGlw3uUv09ftxeWa6AIwTbMeid/YXiwoikI4HCaXyyGlRDcC/Oz3/fVI/Vv+PMgB+4TxepwhpHH1GbYl1362Ayll/TusWuFDUZob6sb71NjeelXbDOVyuV5e1DTNSfd9IVAUBY/HQyIeZ9PGjdi2jdsb4Z4Hx9lndZAPntnH6HiJrg5301iCuX6fbYlszkRTBe7q6ltK6QT3DQwgcAoD7WjBfcuYiCVt2KWUUgjxCJCSUt4lhPACfpwqbzMdawH7V/Pg/wDssQ37eT1wPcBBBx20/EYsYSyVYh4uQ1AsJAkEo4hMlnunYAhWP3AbLVGDj569sm5AE8kyPq/C2OgwQlFoa2tjaGgIQ9dpicUWzZiZpsng4CButxuEIJ8b4yNn9bFxc4FnnsvQ1+2dUKGtma969QO3EQnrfOmze8yLcWg878G3Xj9luVTV72Pzpk1EIhF0XWdkZITOri7cbveirPprkyafz0cmk3HSGt1eHntiMxd/dldsM0tLLESlUiGRSBCLxbCSmSl95tK2uWf3NwGv/Co9k62w5vkMN928mVBA54P/toLOdje6rjtZDJs3A9Dd3f2a1hx4NWBJG3YhxIdxVsJRYGec1fL3gckjSBNIKZNCiL/iRNeHhRBaddXeA/RXd+sHeoHNQggNCOEE0dW219B4zDJmCduWVEwb1xIQsthW6l21FCZVVSe0m0FVVXr7+lAUhVJD2dRGxKIubrjmQKJhA8uyWbc+x6VXP0tXh5vPn7eKVGKYDevXo6oqkfb2RZUVVRSFUChEMBTCNKvpaGmLDZvztMVcnHFKz6yi81tbXPz02wcRCi7cUDQrl2pZFq0ujdERJwM2FA5jGMasjPpsJno1Kj6TyRAMhchmMuRzY3zuvF1RhE2+mGdkZAizUkE3DJCy6UTn2LV3zPl7zwa5vEkiWeGJZ5KsWuGjs8M9ScRozfMZPnvxU/XPDzw8xq9/cAjhoMrIyEj9ea1NjJap+B0XS/2X+ziOT/sfAFLKF4QQbTMdJIRoBSpVo+4B3oQTEPdXHD/9TcDZwC3VQ26tfn6w+ve/VNmCW4FfCSGuxgme25XlIjRzQjxR5v/+MsSa5zO8+Zg29t87vCiD/FKCbdsUi0Xi4+N0dnVRjicxU1lUbaJhb4xwVhRlRkOsaYJgxAVAIlXmP774JJmsSSpdoVCkTsNrmlb33y4WrGQGVyZPKZ0HwCvBZeX5zVWrKbv9WJZk4+Y8Pp9GyzSyoqoqpv37YkAIMeG7K3O4D7OZ6NWo+Na2Nnw+H8FgkFKxhKKpgI5Lb2FsbAyAjo6OebEmVr44JRuhBfzk8iaZrMnIWInOdjdBv4arIc3MtiX/eirJhV99Binhrce3c+Zp3ShC4PepSCkpliS/vWXzhGsWijZrnstw+EEhVEVxAiWB0ZGRZSp+B8dSN+ylajoaANXV9GyeuE6ceu4qjrreb6WU/yuEWAPcJIS4DPgX8OPq/j8Gfl4NjovjRMIjpXxGCPFbYA1gAh9fjoifPRKpMp/7ylM896JDSd779zE+8r6VvPuUngk07lLDdKu4ZmlJqt+LZVkOJWzC/atPmLTPQiKc8wWLTNYJD7nm0n3ASiKlpCXWSnx8rB7wpKoqxZJFLm/idqmT1OSyORNDVzBmEM5ptuI85rm7+enNY9zy5yEAujrcfOdr+xGY17eqXsuy0dT5Pw+2bTMyPOys1HWd0dFR3B7PolLxuq7XJ1C1thCCSqXC6HAcXdfraW1t7e2zOm+jMdc72skUJKGgjh7aMgHMFyz+765BvvXDdUgJuib45pf34YB9wvWYhWSqUv/7m49t5YNndmGWc7hdHkqlEpl0mki0hUh48oTa7VLqVHxtQtLYtm27PgFtbC9jaWOpG/Z7hRBfADxCiDcB5wJ/nOkgKeWTwAFTbH8JhwHYensROL3Jub4KfHWO/V50WJZVX5U1tpcy8nmrbtRruOnmTZz0xnZaoq7t1KuZMd0qLr9+c9O852AoRCIeBxbf5eBxq+iaoGJKvn/jej77sZW4vAq6YdDV3V1nAMYTZX78y5f5x2MJdlvl55Mf3oXOdjfpTIV/Pp7gj3cM0dvp5r2n99EWc835GbJsWTfqAANDRX76mw2c91bfnL9TKl3hmefS3HnvCHvvEeS4I1vnVatdCEFPTw9qlTrucblQq4Z3sdDICtTatVx/l9tNOBwDLJLJhJOTb09/PpjoWlj9wG2879J+3vOOXv79PVuK/OTyJt+74aW6nGvFlFz+7ee4/psH1guwSClJZ5zs32LRBgTlcp6R4UHK5TL+QABFEbz/jJ2478Fx8gULw1A4+/RedlnluBwaDXZj2ls6nSZQzeSotZcp+qWPpf4LXYCTY/4U8BHgT7wGi8BYlkU8HicYDKJpWr09Wz/i9sJUUdAuQ12SfZ5JIMSybHJ5C7UJXySlJBGP4/P5UAtzK/zSjCFQPW7y6x361Cvhvy9fQSptkjZ1vvOj9Xz07FXEohpSOgNxLm9x1bXPc99DThnW4dESL2/M84NvHsBfHxjlm9e+AMAjj8N9/xjnhmsOpCUytwnWVDr1L63Pofha5xSUWKnY3Hr7ID+48WUA7rx3hLvvH+FrX9iLcIPwyWx84M0yD7Y1hBBkcpJM3ssHP/Mwe+0e4JMfXkWuIBFNqGzhcbP6gdvQVAWvV60b5LTpfOdHnkhw5qm9hEOOoS2X7Qnpj5omiCfLE8R8/H6NU07s4pe/38R9D41z2OuiHHpAkFw2haIoxGIxFEWhs93FL687mKfXpjhw3xCKqOD1qliWRaFQwOPxTLh3NWnlbCaDYRjkcrm6ZPBSfIeXsQVL1rBXafQbpZTvAX64vfuzXSElZqXCwMAALsOgVCoR8PuXfDlMr0flqMNauP+hLfW+P3r2yiXpY59OgSynern1jkH+8Wici89qlscuiESjBINBihsH5nTtZgxBM3bgqGfv4tMf3Y1w9T7WnoFSyeJvD49P2HfzYIFc3uS//zgx5nM8XmZwuDhnw65roi59W8MbjmzFaImgts2spV9DOmvyq//ZNGHbk2vS5IsW4YZKtwsNdkymyoyMlUkky+y8k49wSEdbJEneQtHi2p+8zB33OEF7Dz2a4KFHH+Xmnx6KL+DjqLW3I0RNjc9JgytaKu+7tB+PR+XKL+3NJy59YsI5D9w3jKeSJb/eCagM2fDLL/diWTZZ20CPhvB5VTwutS6a4zJUzjyth852N6l0maMOC5IYH8bldlMulRgdGSHW2oqqqrS2uDj2iNaqdv0wwVAIq1pyuKe3d4Jh1zSNru5uNm7YQKVSIdbaiuGaO8uzjFceS9awSyktIcQKIYQhpSxv7/5sT6iaRntHBxvWr6dYLBKJRjFcriXv7woFdf7zvN045cQsz72Y4YhDWmhvdb+iCmoLhZRwzfUv1kux5vJTe5OFgFAo9Iq4SDRVEJwiIE0IQVvMxdBIqb5N1wSaKvD7Jr/qtRS6uUBRBFd9ZV/+3/dfJJEq87Y3dXDCce3z+k11bfIxsw1827rS3pb+bXknkqkyl3/7OR54OA6Ax6Pyw6sOYKfeubsNpkK5bDMwVJy0vX+wSDRiIDxeykUnM9fwhEB4cLudYMPxRJnHn07xkfet5Ge/2UCxZHPQ/mHefUovVmpkygndkWvuJO/PIwCPx8vw8DCqotASixEOGrz9hE6KRQtFMbGqRYsqlQrZzMTs4JpwUmtrK6OjznPd1dU1iemwLItEVQq5Vr3P6/Uu+XFnGUvYsFfxEvBANTq9nhMkpbx6+3XplYdlWYxXo251XSdZfcGWOhUPEAkZHHpglEMPnP1qbinBlpK/PjA6845sMSqq38fRz95RjyyuFX7Z1rny4ZDOF/5jdz578VNUTIkQ8PEPriIQ0PnEh3bm3Aser1PpB+8fJjpFMFUN01Hgr9spxHcu3w9pSwJ+bV71uEMBjX9/705c+d0X6tuOPLRl1pKlEyRvgaGhIbq6uzGMLROe0fFy3agDFAoW37vhJS4+f/WUE525IuDXOOn4jnpVPgBDF3S0uwn4VFLpUsN2DZ/fwOvR+PE1B3LXvSOkMhVOOrGLE45rByQuQyUU1Mmnpr6eqipEIhEGBwbYsH49QD2+otGVZANeoJQbRA34pixgJKUkn8/XP+fyeSdVb6t9ioUCnZ2d6IbB4MAAZqWyTMXvAFjqhn1d9Z8CCwq83bEhJZZt11+wkZERZDVXevkF27YQgM+jkck5Eelp02D1A3+iNWagNsQQ1Iy2lBLTrTOWtujs7qJQKDCeSNDXu2Kb+34VRbDX7kF++6NDGRou0hpzEfBreNwqO6/0cdP1h/DYk0m6Otzs1Oud4MveGjNR4PMJcmuEpikce0Qru60KcN+DY+y5e4C99gjO2k2jqiper5eBAcft4ff7J93fRGoi0aco0NbqYrFeGUURHHN4C4XCztz85wEiIYNPfnhnomED265QyCWJRKLY0iaVHCcS8SGEIBZ18e5Te2e+wKTrORN7Xdcpl8u4XK56dP50riRXy0T3kZSSSqVCPp+nq7sbyzQZGRkhGAxOouK7e3qq11bqbSEEyXSZ4ZESA0NF9tw9QCioL1d6W0JY0oZdSnnJ9u7DUoCqabS1tdWrizW2Z4O5iqe8miGlxLKs+v2rtZtBCMHHP7iKK77zPADnXf4yH/q3FZyxT+eUVLYQArfHUxef0XW9HlXcDLUyp1tLos4HLpdKq8vxpU7Ybii0tei89fgOyuMJzMQI+cTEY1/pSmJBv05wV509dp37nF0IgT8QIJt1Vqn+Ke7xqhU+vB6VfMGitcXgy5/bk+fXZbj2hnWcdHwnfT0eAv6FxXuEggbv/P+6eNMxbY7uQLUwjmVpdHd3o1UV3Pw+36JQ2GOjo1QqFadSXqFEfv1mVFWdkzxtjYrvW7HCuWeN7a3Q2OdaO5Wu8K3r13HnvU5sgaYJvvPV/dhnz9Ck45exfbCkDbsQ4o9MzltPAY8AP6imqb0qsbUBahSMmMugb1kWuVyOYqFASyw2ob0UjbttSxLJMoWSjctQCPi0uqb1YkBKSf/mzfgDAYLBIAP9/YQjEdwN9LkQClI6ObtawMcxr/ez714h1j6fYZeVPlpbXNP6p+d6X2t9CgSDeDwehoeGaG9vRw/4FiR/O0GXXFL/To2ypo1YrEpii12CNJkuUyzaqIrA63Vy803TZHhoCJ/P8ZcPDw3R3dODLRXcLue3iYR0fnj1gVz305d4x9u6uOb6F3nhJadft9w+xMXn78Ebj2qbVsN+NlBVpZ56tmXbtonUD4XDhCMRDMMgn9zMPVUp4rnK0041yagxHDOVY83kzLpRBzBNyTXXv8hVl+wzLQu0jFcOS9qw4/jYW4FfVz+fgaMTvxtOpPxZ26lf2xy2bbNp40bC4TBen4+B/v668tVc6HchBIauMz42RqlaVzwSbSGZqlAqlwn4tQWvWhYTueEEmf4Eti0pI1CCGpZLRQ8u3moy1trK8NAQqWQSwzAc4yBUXMEAQ4P9mGYFj9dLpKUVl0vDBQT8On3d3kW5/tYQQtDW3s7w0BDpVIpAMIjb40H1+zFaZl9Nbms0FZlZe/uczzUXoZLpaGE17KzOVVWdUAq1GcYTZS66Yg1PrkmhqoJ/O62Xd5/ag9+r0tLSgs/vx7YlbneOgeESP/rFRs48rZeVvV68Xo0VPV4u+sweWMkUF70nhKMWTfW6OYpjCbxtUUoli0LRwufVtrt40nTxDbrLYWK2VttrxMG3Xo/qdQNOoZlaymSziVU2V+GJZ1L8+FcbkBI+dc7OdHd4UBRBKKhPCowsFiezA4lUBcteVqtbKljqhv31UsqDGz7/UQjxTynlwUKIZ7Zbr14htMRaGRsdIZFI4PF4cLs9c/apK4qC4XLh9fnIZbNomoaNm9P//WHKFcl739nLe97RuySMeypdIT2U5JnDT5r0t8VaTdZoyJrAiKuqTlYoVshmc3UavFgskMuVsCyJz7vt703j79rsF36lRYpsW5JMVfB6BOVSHm91UpnLZvH6fPMSKink85imSTAYrLcDW/l2a6iYNrf8eQC/r1b1TbBufZaR0RKhVf6q8IrC6HiRP94+zq//sJlyRXLvg2P86OoD2X0XZxLh82qkB/KsPeKtk65xzHN3M6b5+OlNG3j62TSHHhjljFN6FhxDMB/UStUaLWG0SHBa4z0dVK+bh45/36Ttzd6hgaEin7/UGU5Pf3s3o+Nlrrl+HcWSxXtO6+Xow2N1FwNAJKzT2mIwOr4lhuHtJ3QQXAJjyDIcLHXD7hdC9EkpNwIIIfpwqrsBvKpT4PIFG9PasnKwbI1iycKvzY3Sq1HxtcG4kM9TyCW4+pK9Oe8LT/GL/97EyW/pmpVhX2yKdWuYpo1pbttZv5SSgf5+dMMgEAgwPjaGYRh4PD7MSgGXO4TPHyCTHqdcKuJxb/sBXkrJ8NAQwRoVPzyMx+OpG1Ko/o7ZLIbL5YiFVNuubZRXnM2ZPPxYnD/8aYBLL9iDZDxOJpvFMAwy6TRdhjGv6GgJxONx8oUCxUKBSKQ5I1EsWhxzeJST3xzjtrsDHLB3iK52nbGEPeFZVPMWb9zd5o0XdBFtDxAfzuDOj5F7OVUPlFNF8+fqgsue4dkXnJSwF1/O0T+Y54JP7IG/SX31ZljI+2FZFplMxhE4UlXS6TS+6uRpNvd4otb87CRta/jT3cOAE+V/9OExPvmFJ+pKd1d853liLS4Oe92WrJZo2OC6Kw/ghl+t5x3HBGhxO/LFlf4BatJMr3S8xjImYqkb9s8CfxNCrMNZyKwEzhVC+HBqs79q4XYJxkaGMVwehOKiVEhSLrkpGyqGrmLbEsuSM9KGNSq+JRbD7fahqAVMs8z6zVtSXTLZCp3t7hn7NB3FuhgvsdutUppBw3wx0NbWhm4YDpuh6+iGQTJtkS34WL8pz1Xf/yffvmxvxhMV9tpDMhsCfiGDuhCC7p6euqGsCYVsPaDnCwXGx8fxer3kcjlira3ouj5n/61oyglswcBQgS9duRaAi77+LF8+fzdSiUFKxeKChEp8Ph85r5d8Po9hGITC4aa0vtej0hIWxMeHeeOREaRdIJ1KsPNOfZQ3D00t3vP07VOuzJtVVbOlrBv1Gu57aJxPnWM1NexSSqRto6jqhPZC349sNksqmcTt8ZDLZtE1bdaTp0Z52rlWkFvZ5zzhq3cN8MjjCbYWzfvjHYMcsHeoXnhGCEFHm5vPfGxXzP5B7t19csnhxRoTljE/LGnDLqX8kxBiV7bUUn+uIWDumu3UrUXHVP7Ljf0FQqFWRsdtHn0yyVuOayOdBd2wyWYt/u8vQzy/LstJx3ewetfABKqsETUqXjcMTBMefSJLKlPhuzc4Up7BwPTVuV5J+LwaMrBtH0lFUXB7trg0au2AT/D02jLfuPZFSiWbz31lDddcuu+0gUS5nMnIeIn7Hhzj/9tf8ODe8wtIUxRlQv61YUy+pqqqtLW1sWnTJnK5HH6/v766a8Rs/Naq1zNjUN5f/ubk7qsKnHFyN8XClklLNpOZt1BJPp8nn8/jcrkolUp1/fGp+quqCm63G483SKEawh9r7aRSWTxWx7ZlXYO/hqBfb5oSJ6sqkNlcjmAwiG1Z9fZCoKoqnZ2dbNywgVw2SygcxjPDPW7mi5ezEapvwFGHxvj9/w4wnijTNcUEf2WfF22KBYTbpZJf1qpZkljShl0IcdpWm3YWQqSAp6SUI1Mds6PBsizy+TxerzNrrrX9Pp1v/2gdDz4Sd8orPp/huCNaCQZdfPpLT7KuKjl59/2jfOaju3DyWzpRGypkTZXW5nKpHHZwC7/6n020t7ro7vTwmY/usqiRrNOtXNVwYMY0vYVGKM8GE/zZ1bbLpXL4QVFu+sEhFIsWXo867X2RUvKvp5NccJnjmzxqZfei9K159TgfRU1gVcu05nK5SUp3lmWRSqUoFYu0d3SAx8XRz96BqqoohoGVLzj7FYuI6m/QjFHYZaVj5FtjLvbczU86OUS0pQ2v18VAf/+0QiVNte/9PiwpiUQiBEMh8vk8ZmV6XX1dVxBsCdYSwsIwXJSa7D/XuUaxaPPed/bxk5s2VM8Pn/rILvV8+lS6QqVio6iCSEhHSkm5UiERj1MulSgWi2iatmDDblkW6VSq/s5mMxmCwen97NNJEc8F0YjBNZfty+h4iaBfY/+9Qjz+jKOS093p5pQTu1AVMWWMxzKWJpa0YccpAHM48BccKv5Y4FFgpRDiK1LKn2/Hvi0KbMtidGQEn9+PEIJsJkNPTw/RsM5Zp68gmXbqbx96YJRDDoiSSJXrRr2GX/5+E8e8vrW+8rZtm0KhgGVZ+Hw+isVivR30q3zkrJ34t1N68HgVdE1ZVInX6ejIeKWIz+vFO8VKs4bZFP3YVqjlgM8GiVSF7//s5UXvw3T3r+DWiMVi+Px+RkdHKZXLaLpeH/gVRcHn85FKJtm4YQO2bdPe0YHb46G4cYB7Vs+eMn3dvmH23TPIk2vSXPT157jyS3shbYmu6/StWAEwZ4MDoDUwCrXJbLNnoaZ8Vijk6epyxH7GRkfr158KzfrUyFLU1PeKJZv+lEDX4buX70cqU2G3VX5CAUdPfmikyMVXruWZ59L0dnn48n+uZpedfHg8HsKRCMlEwqGlOzsXJZ0tn88TbWlFN9wk4yOUSiXsdBYrk5u071QTsppg1XzeoWjYqAcMXnbhniRSFUzTJhwyqFQk+UKZXCZFKBxCVVXK5fKSTJddhoOlbtg1YLWUchhACNEO3AgcCtwH7PCGXdU0Ojo7GRocBKC9vR1N11EUhV1X+fnqhXtimpJgwEk7qVWDaoShK9XCEVv85tK2wbYp+osM5zKEQmGkV5LL5cik03R2dZHJZBjLZOicQid6sWGaJoV8mUgkMu1Mv9EoNK5ezUy23p7Ob12p2KSzJiDx+3Rc28pnLyXlytwoz4WitbUVASiqWm8jBMViESklHo+n7moo5PNouo7b7Z7XyioSNvjqF/YikzWd1MOyJFId+BcSrDeX3O5JYj+GQaC6ip0r7HKZhAaBQACvz8/g4AC6P8g/Honz899t5tSTOjn3A6vwuJ0hMZWukB2K84Uzg1hWAEUI1NQohQ1J9KCPTDZdT9lLJpOEwwvzJ2eyFoa7hd/fNsgtfx7iuiv3I5mBaCk3K7+9aZrYto2u6yghP1rAi94w6ZsOW7NEBtAOCL+Xq37Wz18eGOWH39wPl15moL+f9vZ2MtksAf+2n2wvY35Y6oa9t2bUqxipbosLIeZWG3OJQkrH2NaQy+Vwezz1z1tHq8f0Ijdd2ku5vMWohEMGMpudUnTkqLW3Y7gMDHcAyxJ4vV6SiQQbN2xASklrW9uU/bIsSSpdQShbBCsWupr2+XzTDja2LSdQ8XMNRkpnKvz5L8P85NcbsGzJe97Ryykndm2TanKhoMF3LlhJbtzRCY+Ftv2rNJVRrJXcTCWTtHd0UCwWKeTzhEIh0uk0IyMjtDX5jWdCJGTMKFYyV8w1yHCuzI7qcTd1A/h1hbGxMZR4HMPlwu12s3FzkU+dszPHH91WN+oAlmXT5rW4f/Xk1Mtjn78LTXcm5MVikWQiAeHwgt6PsXiZ93/y0frnM855hD12DXDNeTP/dpZlkUwkyGQytLe3E4/HkVLS3dMzK8Pe7D07cs1d/PmvzvD76S89za+/fzDDQxvrbr7BwUHavAGOWnv7JLfMK8GwLaM5lrphv0cI8b/A76qf31Hd5gOS269biwczkcKVyuFVnQHUyhQo5gfQg4EpBzqZz/PEwSdO2t48ElZQLpfJZrIEgn68bhWvz0cmnUZRFLxe76TBM52p8Ne/jXLTzZtxuRTOff8q9l4dxLuAEppCCLLZbD2Nq/GayXSFNc+l+cv9oxy4X5jDXxclEjYmRefOhA2b8nz7R+vqn3/4i/XsvktgQqrOYkFVBT5R5pFqBPbBt17fkG7Ugaim1PIXoAAAIABJREFUJW7rAU5VVcLhMKVikXQq5ajoud14PB78gQCmaS6pegKLlVkxn3KummWRiMdxuVzVwigaF3xyN1y6RFEnshpej0pFTM3INNLvjr6EU6NcnUWfbNuu56sLIertijn5WqXS7GRiVVUlEo1SLpcZGhqq67ov1AduVmvzqqrgxst3wx4aICZV7KFxApqKR6pIaVMJ+/FHo8s+9yWEpW7YPw6cBhxZ/fwI0C6lzAHHTXWAEKIXh653SibB9VLKbwkhosBvgJ2A9cC7pJQJ4Yx63wJOAvLA+6WUj1XPdTbwxeqpL5NSLnqKnZXNc//qEyZtXzxBFgWXJ4Rtm2iaIJPNkkmnCYVCZLNZBgcGJlHxTz+b5hvXbqm69dkvP8UvrzuYvu75Py6qqtISCU8qN1sqWfzu1s387DcbAfjzX4d5/SFRvvSZ1ZhTDHbT4d4HJ1dhu+u+EQ45ILJNgvIax7HGdKPjXrgb7049i369qWDbNqVqEJeqaSQTCcLV3HDDMBxqdgcccMcTJXJ5C5eh4PVoBOaYU741LMtiaHAQIQStbW0MDgwghCDa0kL/wDABv59oS0v9XrndGpYyTWZB9X3Z+t6OJ8oMDhdwu1RaopMZj5qiZDQaxeVyMTg4SHtHB92dHrra3QwMb1HJfu87+1CU5sSkZUmS6TKViiQa3qLkJ6Wsr6oXMqkzdAVFcQy7Uixw3xQxGkc/ewepQg6vz4drBygl/VrBkjbsUkophHgJOAw4HXgZ+P0Mh5nAZ6WUjwkhAsCjQog7gfcDd0sprxBCXABcAHweOBHYtfrvUOA64NDqROBi4CCcCcKjQohbpZSJSVdcwhgdL/HUuKC700MgiLNCb2/H6/USDIUolSbGFxdLFv9759CEbVLCA/8Yp++0mTO6p6Mj3X4/Yiu1tGzO5Dc3T4zi/fvDcbI5E+8cB6V9Voe46eb+Cdv23yv0ikTaLxbmSudKKSkUCgSDQaItLSTicXK5HEY1T792r7dVUGKxZJHJmpimxO1S6n74hWBopMh5Fz7O0EgJIeDdp/Rw1ul9TVM6Z4tAMIinGnPQ3tHBQH8/Q4ODuNxuIlOsOOdqE5OpMgKby7/1PCv7PJx/7q4k02XCwS33RBGClpYWxqplmH1+Py6XC6+qcu2V+3PLnwfZsCnP29/Sye6r/DA+3OxyvLwxx/lffoqPvX8n9t9Tw7Ztenp7GR8bY2R4eFoqfkIdgSYFZBRF8I2L9+FbP3xxUqW8GlRVpTUaqV/HtqxJ7/gyXnksScMuhNgNOLP6bwxnpS2klFOu0hshpRwEBqvtjBBiLdANnIwTVQ+OuM09OIb9ZOBG6VRZeUgIERZCdFb3vVNKGa/26U7gLWzRrd8hoKkKa17I8fpDWusDo6qqKIqCoij1dg26JljZ5+W+ByeeZ0Xv7HTS50yRCsHV5++EXylVr6+g6wr+3BhiGrWwqbDvXiGOPryF+x4cB+CQA8IccWjLnM6xvdHs/pXHkxPSmGwbyhWbjGXg7wgRCGooilJfrW/tXpkPdT0TcnmTu+8f4Vs/XEepZLPbzn6u+OLetMVcMx/cBPmCyQ9ufJmhEed5kBJ+/YfNvO1NnQsy7Kqq4qtWWKvEk1TSWaKWAFQomJQ2DU7w81uWhWXNnjGqmBYCk1xmjKsv2QuwyKSGibV2TIorUKUkJlWE143ZoFkQi7r4wLtXYJoSoxr0WS5PPSHD6+VLF69hLF7mquvW8Z2v7UM07CNfhLb2dkc0Z5Z6/s0KyAgBhxwQ4buX748Rbz7BoCElL1+t616TbV7G9sGSNOzAs8D9wNuklC8CCCE+PdeTCCF2Ag4A/oFD4Q9W/zSEQ9WDY/Q3NRy2ubqt2faprnMOcA5AX1/fXLu5KFC9Ho5aexfJtJOmYugKoZCO6vfx6XNCEyqkTVWKsX4eVeHUk7q4674R+gcdWvCAfUKsnkdpzdnA79PoDNo8vN9ktbA3bLi/XnENQCgqAjFplWlZluNnDBlc/Nk9SKZNpASPWyEUXBriOwtFM9/06gdu4+Szn+N97+rjfe/qW1BNbMeYWRMC87auUtaITNbkG997oR4LYVmSdeuzOBkJ2rQV8JqhVLInpXMCDAwXZj25bIba9zAzOe7Z7fhJf290f6mqihEKcOzzd9dX7lI6xm4qlsM0JRXT2bGQG0ZKiW64yRUsvM2K8Tx3J4lCDpfLhacqlKQoAsMQ1etJRNCJbdkao+MlNm52dAnyBYvzLnySYEDn21/dz2EI5lIBcoIc7cT4ECEE0bBBPtncSGczGYrFIv5AgEw6TUtLC1pVNW8Z2wdL1bCfBrwb+KsQ4s/ATTSvjTElhBB+HNr+U1LKdOPssUrxL5p8lZTyeuB6gIMOOmibip03o1RtTeMT39rIwFCBQtHG71NZ0ePliovaicyx7Gks6uK6rx/AeKKMrjsvtqIIsjkTv29xHxmXoeBp0j+7VCLrNSjk8wgh6OzqxOWauBIwTZNEPE4k6gTIpVNxWqLReRUomSu2Z8791vjNLZs57a1dCzLslUSKcjKNoqiA46dVVa1pZb2BoWLdqB+0X5j3nt7H93/2Mhs35zny0BbO++DOk8qZznTP/H6NY18f46UNW4y7pgl23sk3ZZ+L1QCzhXzvZnDFIrhis6uu53FrDAwV8HuD5DIOY+QPRCmXnWyPqaAoCp3tXVOubuOJMrffM8yzL2R4yxva2XP3IKEGxkLXBLvv4ue5Fx0moFC08XrlvEocLzQ+pK29nf7Nm8lU9e0DweCyr307Y0kadinlzcDN1ej3k4FPAW1CiOuAP0gppxVDFkLoOEb9l1LK/6luHhZCdEopB6tUe025rh/obTi8p7qtny3UfW37PQv6YlNgurSdqRSktIB/yhdveLTAV/5zdyoVyUVXPssV/7WaiikxTXteOubRiEE0YpDPm6zbkOMnv96Args+d+6u+Lw6Ho86Y/nO2aLZKWoCJe0dHaRSKYaHBunt65swCNq2TS6Xo1wu1yOOpyssspjYFvT29oQ9x0DO7k43qgKWDe9/9wouvOwZMjkTgDvuGUFVBJ/+6C4TVu4z3TNdUzj1rV0k0xVu/+swsaiL88/dtW7UttRmh2TG5Oe/dRTjzj5jBd2dnm1i4GcDKSXdHTqDA6MYhhspLdLJYTq7ukmPN6f03dXqgo1IJMucf8lTPL/OeWfvvn+UT354Z047qQtNc16WcMjg0s/vyUVXrOG5dVl6uz1c+vk9Cc+Q2jnfd3Y6NcF8tUqfqqrk83kqlcoyFb+dsSQNew3V6PdfAb8SQkRwAug+DzQ17NUo9x8Da6WUVzf86VbgbOCK6v+3NGw/TwhxE07wXKpq/G8Hvla9LsCbgQsX7ctVMZ0s5FT03dHP3kVe806SO42EdEbLcVQdrv/GfiQTI/jcOgG/B3Nwairw2OfvZrhocO/fx+jq9LD/3qFJ5SoHR0qc+/nH0XWFb122N7aVQ4gglkW9dvi2Wh0LIejq6kbTNFwuF7Y1OchH13XaOzoYHBgAoKe3F01/7ZWPPOPknkVnU2ZC0K9z2YV7cdX3X6BSkXWjXsPfHh7nI2evnDMlHwkZnPuBVZz9rj6EIurPZCJZ5pJvruX5l7Jc/l9788kvPE7NDX7v38f4xbUH09u9MLp+vhBC1KVl/cEQAsikUyiKYDrp9qmMXzZn1o16Db/8/SbeeGQrLdEt8QtdHR6uumQfKqZEVcWMpWZrmgeeBp2M2aLZOGVZFvHhYaLRKMFQiOGhIYqFwjIVv52xpA17I6rR6HXKexocAZwFPCWEeLy67Qs4Bv23QogPARuAd1X/9iecVLcXcdLdPlC9XlwIcSnwz+p+X6kF0m1PjI6XuOLap/nqF/aitWXLSy4UQSTSwvDwIKMjm1FUlVi4DV1Tm+pqW5bkhZcy/PhX69lz9yB+r2CXVcEJA8Qtfx5ASmiPuejucJNODlEuFeo1y2s56fOdnVuWhd1k5JNSkk6liFZ9dkwxgbAsi/GxMRRFQQJjo6O0tbdvs8lGsWiRylRYtz5Hd6eHSEhfcLT21piqKFAjDr71elSvU6zDCGv88aqV6JqCks2Aa+LgG0+UKZUtdE0hGNDrQVlTQc5ROMDjcfT1f3z1gVRMiaIwwYit6PGia/N7LtwudcLq27Yld903wiNPJHnjUa389YFRGmPbLBtuuX2Q8z6487yutxjQNI1wJFI3aLW22zW3FfJUWRyGrkwZpj/bOg9SSkqlEiPDw4TCYVwug6PW3j7pPZmrG0lVVdra26v9VurtZaO+fbHDGPbZQkr5N5r74yctW6vR8B9vcq4bgBsWr3eLgzXPZ/jhz1/m0x/dte6f1jUVgURTVSq2jaaq6Lo6oTDM1lAU2GNnwbVf38/JgzXz6JozuNcMSm+nh39/zwp+ctNGRuMV2lraSYw7MYj+YIxyRcHlmnnwrlXFEtVI/HK5gmnB3/8Z58g9/Ry19vZqn9SqeIdD83kiwWkHidqkoLunByklI8PDzFnZZpawbclTa9Oc/+Un60blrNN7ec87evH7Fse4W5ZFOp3G7/ejKEq93UiFStOale77wFCB8y95io2bC3g9Kl/41O4cdmC0qR92PpMzTVNoibrI5U0+/oGd+d5P1mHbEApqfP683RYteLFi2vzraacwSbFk4/NM/g4z0dD1Pm/D2Iip1AH1kJ+j1t5Ftspo+Hwamjo5CLQGn0/j0AMi/ONfWzJrzzlrp1l/v6kghMDtdhNtaSE+7sQA9PT1zlp2djrMRSZ4Ga8MXnWG/bWCp55NUyhYdcNuVYvJ2LZNa1sb42NjjI+NEWttnfY8xUKGoLdCIVdG1XQUxakgls1m8QcCvP3EdtKpDAcfsC8tYZ1c1hH8E0JQLmbQNBe2rc2YK27bNiPV/rXEYoyMjOB2uwkGdF4YFbSGDQqFArqm0NU9B+36TI6oJaj0O+k4UQTl/mHsWdRBnyuSqQrf+N7zE1aKv/z9Jk49qRv/1LFd80I2myWdSuF2u8nlnKhpdyRY/z6zqd6Vzla48rvPT4icvuQba/ntjw6dV4DVTPB5Nd725g6OO7KVfMEk4NMWtWqgy1A57ogY9z04xsOPxTn7jD7+eMcg8aQj4BIN65xwXPsMZ3HwSsdGuGMR3LEIRsmqZmtMf//DQZ0vfmYPnn42zfMvZTn6sBid7e4FF2uSUpJvkK/O53IEgtNPnJexY2LZsO+geN2+YbzeiSlsLbEYAtB0HaNUwczkKW0abCpAYUvw+cPkssmqClc7liWpmCbj4+OUSiUqpkmlXGbXlT1UKja5TAlfoA0hFAq5UVTFxrLsaiR1c6iqSnt7O/1VURBN0ylVfCRTWXo7NQp5R2Qlk8kwNjpKrLV12qpfTsS2ipmZXZGMxYAExhIThTpq+eSLBVVV6erqYsP69eRyOSLR6LwKuVTKkrUvZCZuMyWZrDnBhdOIBdcC8Gr4vBow/zz26XDw/lHefUoP//OnAa77yUt894r9efaFDELAgfuEJ0XgLzXMJbAvEjY46rAYRx0Wm7A9lS7z0oY8jz6Z4OD9o+zU651VLYQaFV8ul+np7aVUKjE+NkYgMPc01vkE4y7jlcWyYV+imEC9Sie/N5WpkKroHHxAhA+cudOEgUIIgV4NGhNCYGXz3LObY/Ca6ZgrHjdkMnjQQErswUE0VQGPm3ZhYGUKuAFV1TEHhpFuL9FYF9+89gVGx8t8/aK9GB0rEwrNPGBJKev/qlvQdYUn1qTZf69uvH4dn99PIBicVt+8RumPj48Ta23dVqz7lPC6VU44ro0/3r5Fma+n04N3EVfAtYIe4FRxS6dSdVp+LnC5FPbfO8QDD8cnbAsGmr/ySz3KPxzS+ff37sSZpzlZIUG/Tt92CpbbHsgVTG783aa6UuNPb9rI+07v46x39c3IAgghcLlc9Up5qqrirbbnisXS+1/GtsOyYV+i2HqQNSo2dqaC34ZL9plahauZMZwqT9W2bQob+qdMbzp27R1T+nCPff5unh0SbB4sUqlI/vFYgkMOnF2BlRoVr+s6rW1tDA0OopDhmMNjXP2Dl3nTMa0cfpAf9yz0zSVQLBYZHBggNAd1sIXC41E556yVxKIu7ntwjF1X+vjwWSsXfaVYqKb4uata4pVKZZJC4Ezw+zTO/9huZLJreHJNmtYWg4s+s8eCNde3N7YOqnstIZ+3+O8/TpRMvunmTZz61q4ZDTss+8JfS9ix3/LXEHRdIRZdPIpTmYeesxBw0P4Rrlq5D7Z0fIGz1WFXVZX2jg7AiR7u6OyiVLZ56NFNnPTGDvbbK1SlcacP4qoxE7HWVidQji0DVGO0uDStui96MSnCSMjgfe/q47STHDEYzxRBXAuBqqp0dnVVVciUCe0aZkuZt8ZcXP5fe1Mu2ygqhIPGgv20iwnTNJFSomkalmXV28v5z00gJ4vdWNYrSFktY4fBsmFfxiRMl/ZkWdasgqJyeZNy2SYY0OqR+Y2pNYahYxjwHx/eZc59MysVxsbGHNdDQ1161evmoePfN+mY4164m6LhI1+wKJVsAn5tQatsXZtfsZPZ+iZnWlnNhTLfFrXoFwO2bZNMJMhms3R0djI+NoZt23T39NQrk6mqOqE9V4P/avMFu90Kxx/Vyp33bali+JY3tONd5MnlMnZ8LBv21xhsW1Kp2Oh6c1p3OkGN8fFxotNIttq2ZGC4yLU3rKN/qMgJx7Zz0vHtixohbUtwGS40VxjdU6jqySswhYCN0ye49icv1avWdbW7+e4V+9EWcy9an2aDZd/kFtQK1hRLJQb6+50a4t1OKYZcLkd8fJyu7m4ymQyZdJq+FSvmbNjnc79rpU9VVZ3QXgoI+HU+ec4uvG7/CA8/luDwg6Mc/rponelaxjJqWH4iXqVopGtNS5JIlrEsycujkI0nOHDfucuumqZFIZ9HTiPZmkiW+ej5/yKZdtKQrv3pS5TLFu85vQ9dW7j8rBCCZ57N4nJ7+Px//osvf24PujtaOe/CJ/nmx6ZO7bNsOaEU7cBwkZ/etJH/+PDOuF7F/tpmK9/pUChY5ApOvrXfp83Jn21ZVt1t0NieFg3skMT5fX1eL9lMhs2bnBpMNRfOtoZlWYyNjmJZFh0dHYwMD9frty8V4x4JGbztTZ2ccGz7tJPzbYmlVCNhGVNj2bC/SlGja5OpMp+75Ol66tN3L1xJh5KksjmP5nZx7FpHndeSMJZwjLHt9rD6gduIRgwMXUFK6QzUXhcdLZF69P1UGB4r1Y16DbfdPczb39JJNLIlRmC+K6Nc3uRXf+jnoUedaO/PXvw0p5zYyTe/vA+t5pYI8EZ/uyptbrzIWQ2mTYPzLn+ZlzbkKJbsWRn2HZHStW2bcrlMPp8nFApRqVTq7Wb3OZku8/PfbeIPt/WjKIL3vrOXU9/aPaH4SDNYlkU8Hsfv82G4XPW2q0mqXo2KNy2L7u5uxsbGGB4aorunB4TAMAyKRae64GKIqMwGiqIQiUYZ6O9n/fr1jqRxd/e0k5OFPhvzmgzBdjPqsPSzJ5axbNhf9bBseG7dlnzmoFZmzesnl0g9+tm7OPfqIbI5x8juvUeQK764F4ZPYWhwEBMJpQLaqElHR0dTKn6qqOvWFmOCAp5lWRRH49i5/CTD3mxArA+gEs5/R4D8SY7edc1QH31YjPbQlsG/mb999QO3AfDGo1tnra2+o1LopmmSTCQolUoUCwW83ulTw554OlVPpQLJj365gQP2ibDfXqFZX3NwcBCXy0WpVMLva67aU6PiQ+EwmqbR3tFRj+3I5XKk02lira1kMxkG+vvnRcXPFUII5xnUdcqlEpquzxjMt5BnwzJNBgcHiba0YBgGQ4ODtMRiuFyu5epoy1gQlg37qxy6Jthvz1BdjrMZVFXwi2sP5tkXMoSCOj2dHsIhg0rFWX139zi5w8NDQ9MG1wUDOie+oZ3/+4ujBOdyKXzqnF0mBHEJIaBQ5L49ZpZFrWG6euQH7x9m1QofmiUmyK5OBUUIzjq9lzcd3b6kIsQXG4qi4PV6CQQCZDIZVFWlta2tvjKEiWwJCO75+9ik8/z9n+NNDfvWq1Uf4JIqQtEoBV1NV+s1NE4OG9s+rxe9qwuXy4XP66VcqUx1+KKjRsVXymVaYjES8TijIyPbjooXApfbzdDgYD04UNO0ZaO+jAVj2bAvASRTZXJ5Z4D1elUiixhoFgzo/Nen9+CiK9aw9oUM6jTpabGoiyMPnZhSp2kanV2OxKuUst5uRkF6An7O+9Aqzjytl9HxEqtW+AgHJz5m80m1m67PF5/fVw3OM2aUXY21GHzg3d3TFkPZVnglfZM1Kj6bzaLrOpVKhWQiQTAUolQqMTY2Rnd3N8VCgfF4nJ6eHg4/OMqd945MOM+B+zRfdTabbB397B2kCya+aaj46aBqGu5aFLyibGnPEXO93zUqPhxx3E0ejwcp5TYztKqqEo1GyaTTWJZFS0vLkvHlL2PHxrJh385IJMtc/I01PPaks6Lee48gX/uvvWYswTgXdLS5+cbFe1OpSDzpkSn3UQyjaf33mrGsUZUwPQUZ2ilMKGiwasXUVKxlWViLJCyjaQJvw0RopnrTiiK2i1GHV943aZomXp+PWCxGoVAgl8vVFchURWHTxo1IKYlEHZGhQ/aPcPThjh67EHDS8R3svsvcJx2qqhJcoHh+oyGfj1EvlSxMjx/fLO53TelQVVVkOoeVzdHI9xTYNvEUpmkyODCAqmm4DIPx8XEMl2uZil/GgrFs2LczHn0yWTfqAE8/m+b+h8Y4+S1dszp+tsE3tXSzfHbqQdLKF2ZVMWwx4PRx8Wlwy7LI5/Mz+pJfC6hR8R6Px5EPbWjbto3f7yced4INA4EAqqoSDqlc8Ind+I8P74wQ4PVo867xHolEZh0ItjUWEpBmWTaDwyV+ctN6UmmTM07uZo9dAwT8UwcA1oonKYpCrLWVcio9JxfRQiCEcGSUAwEURSGVSi1T8ctYFCwb9u2Mtc+nJ3zeb68QnW1u4okSoaA+bdlVy7JIJpO43W7cbne97fF4mg4OzehJOV3y+gyYq+LbYlLxjbBtm7HRUbw+H36Pi6PW3j5J2GQ+tPeOmt7T+Aw01ncvFArE43GCoRCFQoH+zZvp6e11VtqBxakvPxtKuZkBl7bNPbu/adL22RjXeLLCBz/1KPmCs+Z+6NE4V39lHw45YGrpY0VRiEajDAwMsGH9emJyblT4Qp4NVVUnZClMl7GwjGXMBcuGfTvjDUe18ZtbHP3n09/ezV67BfneT16iULQ445Qe3nR024wD7fDQUD0S2T1Dzm8zOriZT7oZRd84EZhO8a3xWqWyTSZboVCwaPF65zQgzmYAVVWVjo4OBgcHyQGt7e3EMwKvWcBlFlAUgZnJ1o2JFvCjhQOI6kTDtqx6uxGvpvQeRVFwuVzEWlvx+XyEw2Hy+fx26Uszd04tBXM+eOLpZN2o13DTHzaz527BKdkHIUQ9+r1Sqcx5wrnQZ2M2+u1LWTRnGUsTr0rDLoS4AXgbMCKl3Lu6LQr8BtgJWA+8S0qZEM6b/C3gJCAPvF9K+Vj1mLOBL1ZPe5mU8meL3de+bg8XfGI3brp5M8cd0crHL3i8rtnx/77/Im0xF0cdGpvyWFVViUQi5LJZSqUSPr9/2tX6fNCMop/r4Fsu2zzyeIKLr1xDseRIzV59yb7svot/VoPpbAZQKSW5hnrT6XSW8YRBJZ9i7REnTdr/uBfuJq+Cx+NB13XSmQwejwfDMF7VeuWapk2oGDef6nGwNJmMYEBHVUVdQ11VBaGgjqY1cUFZFiPDw9XgtRhyLPFKdndGWJbF8PAwuq7T0tLiTOLdbsLh8LJxX0ZTvCoNO/BT4LvAjQ3bLgDullJeIYS4oPr588CJwK7Vf4cC1wGHVicCFwMH4YhiPSqEuFVKuahvfsCvc+Ib2zn68Bh/umtoUhnS2+4c4uD9IrinqN5kmiaJRBLTNHG73eSyWbxeHz6fd5v76RSvm9UP/AmQ6KGpH6PG1b5tS7pEmev/s7Oee/7lb6zl2q/vPyvd9sYa7I3tRti2TSaToaOzE8uCsdEh+roC5Dc0N9KFfJ5EIoHX4yGXy9HW1vaKCaJsT0xF088VS5HJ2H2XAP/7i8O44VcbeOypFN/+2r5Ypt1UQa9GxQtFwZYKppKecr/tBSEEkXCYwcFBspkMQghira3LfvhlTItXpWGXUt4nhNhpq80nA8dW2z8D7sEx7CcDN0onOfshIURYCNFZ3fdOKWUcQAhxJ/AW4NeL3V9VVQgGFFb2TY4kXrXCh65PbWQqFUm5IvH6WsgWVDxunWLRRtUsvJ65vfhz9b3n00XOvmwzUlJXddsazVb7NZGYzYMFLHvm6lRSSkzTJJVKEYlEsG273t6ayqwJmTzyRII9d+vhBzeu59TXNb8X7R0dbNy4kVwuRzAYxOvzLQ+aOxgaffU6zoT3Q8e7+cipLYzEB2lta0NKOeVkTQiB4XLV2wW/j8OevIN80cJlKHg9Goqy/VgIRVEwXC40TatP4OdTEGcZry28Kg17E7RLKQer7SGgvdruBjY17Le5uq3Z9kkQQpwDnAPQ19c37w7utrOfg/cP88/HkwD0dHo47a1dkwLobNtGCMFYvEK+YPDEM2m+e8NL/NenduOFl0Y487RevJ65XXuuvndNFdx642F8/2cvo00T4Dcd9t0ziDELacyapG0mnaZSLlMulx2DvpVmfaNB7uv2cdbHH2V0vMypr5t64gGQTqWwLQtN08hkswSCwVc9Fb/UoXo9U04yVb+vXpu+kbVp5qs/au3tKC51Rgam8W+etih6NIxesPB6VLRFqG+wENSoeNu2iUSjJOJxksnkMhW/jGnxWjLsdUgppRBi0QoZSymvB64HOOigg+Z93kjY4OLzV5POmJQrNtGwQTRiTIoetm1n9dHq95LSBMccHuWOe0eS5vVpAAARQ0lEQVS59Orn2X0XP+995/wnF7OFpimMp4f5wLu7CGBy1No7UNWJgWfTRdofsE+YL35691mVFVUUBcMwiLa0MD7mqKPVoribIRI2+MbF+3D9z1+edvJQKBRobWvD6/UyMjxMpVx+TVDxSwHNWCLFZeDuapuwTUpJsVikf+NG2tvbqVQqxONx+lasmPYawWBwzgyMpjkM2lJAjYpXNQ1N03C7XKjLKXHLmAGvJcM+LITolFIOVqn2mlJLP9DbsF9PdVs/W6j72vZ7tnUnwyFjUonTZiuSN2y4D0++gBAKX/tQlEIhRCRi4DbzwOII3DQbfFW/D7ddIZsZpagoqIZKZ1fnBGnQZqv9tpiLr164YtZpVbUVezKRqFOS42NjtMRiTY27y1DYZaWfi89fjZJNT/oOtg14vbRGQwjh0Pht7Q6J81oaNLdngZu5+OhFtTBMKBRieNiRK57J1yyEYHRsDN0wcLvdO+RkTVEUXNW+i6oEba29jGU0w2vJsN8KnA1cUf3/lobt5wkhbsIJnktVjf/twNeEEDW+983Aha9wn6eFlS9w/+oTJm1fTDGN6QbfqGmSzWSwbZuWlpZpB9nGXHdh22jjw+THZ2dAaoZd0zQ6OjuplMuMj4/Pqv8+rwbeKODkMVcqNi9vzHHVdS8yPFrkhDe0c+YpPYRD6janNmulU2uDcq29mBOJuRrqHa3AjdIYUzHDfVNVlWg4tMMzMIsR6LiM1xZelYZdCPFrnNV2TAixGSe6/Qrgt0KIDwEbgHdVd/8TTqrbizjpbh8AkFLGhRCXAv+s7veVWiDdqxVTGZ1mME2Tgf5+dF1HNwxGR0fRDQOXy1U/rnG1L01r3sp2NSq+o7PTCRxyuertuSKVqXDu5x+nWHLcBL/87024dIWz3rU49eKng2ma9G/eTEdnJ1LKeplSw1gYu9JozBdyn5cypJSUy2US8TgtsRhmpcLw8PA2oeKXsYwdHa9Kwy6lPLPJnyYtTarR8B9vcp4bgBv+//buPTiu+jrg+Pfs3Zd2pd2VLMmxZDs2lKGABz9wE5ommQxJmgRooS0ttKRJExImk5KmaTMp6R+0TB+ZTpjQtHlMmDxI0k5KAE8hkCYllBkydHjYoRjMY8wAsb2Sbcl6P1d79/SPe3e9lq2HpV3v1d3zmfH43qtd7e+nn7Rn7+9xfjUsWk0JtbsLcV2XQqFAIpGovInG4/EFg6eI0NrWRiaTQUQYjccrW1yWc2/H1+WIZL116rOH+8/4fZar+s25ODy24u7jQ0emK0G97JHHj3PtlT01zc9/Jo7j0NraSn9fHwBtmUxNegmq77ov/9n3lni0p+AnC0rUJmV/3ZW74nt7e4nF46hqZf39YuvpLaibZhTKwG7OjqoyMz3NsWPHWNfZydTUFDPT04veDTmOQy6Xq7xxlo9LpRL5fJ50KkU2l6Mvnyeby9VoxN+z3O7j6g1hysed604vyaaelmXNzl8tESGVTjM+Pg5AKpVqSBfxyGiBex44wo/++yhf+8zimQqDxHGcM2ZqC+J6emMayQL7GlCP/O7VRIRkSwu59vbKrPPejRuXvNtZaOyvq6uLo/39jI2NEY/HaW1tpTBy+h12Pbmuy/DQEDl/M5LycS4b43ev6mHPw95dcy4T41M3nb/izU7ORrFY5NjRo7S2tYHfFb9x06ZVd8Wfza+B6yo/eewY37/XW8lZrNEue8aY4LDAvgYsdEdSODFS05SeszMzJ793oUA0Gl12V7HrukQiESKRSGWykqo2bE24qjI1NcX09DSO4zA7O0tbJkNbOs7HPriFG67dyPhkkc6OOLlMfbvgyxzHobu7mxZ/97lUKrXqrvjJqSLjE3PLfvz4RJFHHx+onI8V41z0xMPksnGSiZMfzoK+wY0xZmEW2NewWnVBlrviZ2Zm6N24kempKQYHBpacmFTmui5DQ0OkUm0kkzH6+/qIxWJkslkGBwaIJxK0tKXPaV7xaDTKhp4eDh86xNzcHOvXr698yMi0xsgssI1nPTmOQ7r1ZG786uOVmpp2mZ45uemJOzVTGWdP9r4JiXofHMo/52QywnlvTvHSQW844JYvvA7Ad758GRdsCV8wL3/gFJFTjo0JMwvsAVPy+1XL49Xl43oqd8Vv2rwZx3G8TUL8PaKXw3WV2ZlZJicmyGSzdHZ2EovHvdnssVhl9yzWtS/9zRYwVywxMjrHgZfH2NG9dPex67oMDg56a34jEYaGhkgkk6ess2+E6qBSiwAjwLgbr6TpnfCvdnXGiWXbTvvgl0w4fPSPtrBv/whHj88CcPV730R357nptTiXXNdl6MQJbzvUaLRyHLPMgibkLLAHyOzgMLMjo373rOC6RRzHIZZpJb6KoLgcy9k+ciGv/XKKTT3rOXb0ECPDw7R3dPHMc8PsurSd1nRtEoPk+6f5+F/8gumZEl/5/Fa2P/1f5LJxqj97VN/9l/PL9/T24jgO/f39uK4bujzb6VSUJw+6fP/efOXa9df0ctONG4i3nPnPe31Xkm/csYvxiTmScYdUyqnJHuxBNFcsku/rIx6LUSgUaMtkllzKGQSu61ZyHFQfG7McovO3EzOrsnv3bt27d++Knjv1xpEFZ3untmxcbdHqZnRslvGxIeYK3nh2qVSiLbueeDxGWw26vCenivz9nS/z8ydPTUrzjTt2csmFmQWfV86pP78bdi28sZ+N0bE53jg8ydPPDnPZpe2ctyVVt3kD5WRB84NOUPOWl0ol3njdG27oWLeObDYb+LYv9zSkW1tJJBKV42QyGergLiL7VHV3o8sRBnbHblatJekwMVYi1dpFqeRQKg6TiEMqVZs3+2JRGRo+fYLYyOjik8aql7rNzc0Ri0aRSIRCoUAsGsVpcLd8rWQzMbZfkmP7JfVf8lUqlThy+DDZXI50Ok1fPk9nVxepVP23Cj5brusyODCAiBCNRhnxt+ddC13xEolwtL+feDxOoVDwVlIYs0zB+ks0a1Is5tDVvZ79L05y9z2HyHV0EXFiNXujz7RFue63ek65lk45XHj+8iZ7qSr9fX0MDA4yOTFBXz7P9PQ01lu1Mus6OxkeGuLI4cPE/TzsQQvqZarKhp4eenp7SSaTlFQD3+6O49DR0YHjOJXhg0QiEdifsQmecNyymIbysoJFueId3bzzbV0k4rXtlhUR3rqrg9s/dxF7Hu6js8Nbsta+zExxkUiEnp4e8vk8U5OTZLJZWhqUHGati0QiJPz9y4HKpiRB5DgOXd3dlWGD6uMgc12XEydO4LouyWSS8bEx0ul0oD9AmWCxwG5qxnEi1GuoNdMW493v6ObXdrQTi0ZoaVn+C5Un0pUV5+Yg4HdtQVUqlejL50m2tJBOpzkxOEgikQhkVzysblJoIzmOw4aeHuLxOCMjI4H98GSCyQJ7gCyW89p4VjJ7W1U5fvw4uVyOVDpNf18f09PTNVlH3oy6/ZwA5WRE5WNTG+V0zeXehepjY5bDAnuAWM7r+ohEImzavLny5lg+tqB+9hzHoaWlpfKzqz42tbNWexpMMFhgN6FXnhVd1ugkNWtdrZPsGGNqy/p2jDHGmBCxwG6MMcaEiAX2JYjI+0XkFRF5VURubXR5jDHGmMVYYF+EiDjAV4EPABcDfygiFze2VMYYY8zCLLAv7i3Aq6r6mqoWgP8ArmlwmYwxxpgFWWBfXC9wuOr8iH/NGGOMCSRb91MDInIzcLN/OiEir5zF0zuBwdqXKtCasc7QnPVuxjpDc9Z7tXV+c60K0uwssC8uD2yqOt/oXzuFqt4F3LWSFxCRvc22VWEz1hmas97NWGdozno3Y52DyrriF/cMcIGIbBWROHAD8GCDy2SMMcYsyO7YF6GqRRG5Bfgp4ADfVtUDDS6WMcYYsyAL7EtQ1R8DP67jS6yoC3+Na8Y6Q3PWuxnrDM1Z72ascyCJ2vaVxhhjTGjYGLsxxhgTIhbYjTHGmBCxwN4gzZKDXkQ2ichjIvKiiBwQkU/71ztE5BEROej/397ostaaiDgi8qyIPOSfbxWRp/w2v8dfaREqIpITkftE5GUReUlEfj3sbS0in/F/t18QkR+ISDKMbS0i3xaR4yLyQtW1M7ateP7Fr/9+EdnVuJI3HwvsDdBkOeiLwF+q6sXA5cCf+nW9FXhUVS8AHvXPw+bTwEtV5/8E3KmqvwIMAzc1pFT19WXgJ6r6q8B2vPqHtq1FpBf4M2C3qm7DWz1zA+Fs67uB98+7tlDbfgC4wP93M/D1c1RGgwX2RmmaHPSq2q+qv/CPx/He6Hvx6vtd/2HfBa5tTAnrQ0Q2AlcB3/TPBbgCuM9/SBjrnAXeCXwLQFULqjpCyNsab3VRi4hEgRTQTwjbWlUfB4bmXV6oba8BvqeeJ4GciGw4NyU1Ftgboylz0IvIFmAn8BSwXlX7/S8dBdY3qFj18s/A54CSf74OGFHVon8exjbfCgwA3/GHIL4pImlC3NaqmgfuAA7hBfRRYB/hb+uyhdq2Kd/jgsICuzknRKQVuB/4c1Udq/6aemsuQ7PuUkSuBo6r6r5Gl+UciwK7gK+r6k5gknnd7iFs63a8u9OtQA+Q5vTu6qYQtrZdyyywN8ayctCHhYjE8IL6v6vqHv/ysXLXnP//8UaVrw5+A/htEXkDb5jlCryx55zfXQvhbPMjwBFVfco/vw8v0Ie5rd8DvK6qA6o6B+zBa/+wt3XZQm3bVO9xQWOBvTGaJge9P7b8LeAlVf1S1ZceBD7sH38YeOBcl61eVPXzqrpRVbfgte3/qOqNwGPAdf7DQlVnAFU9ChwWkQv9S+8GXiTEbY3XBX+5iKT83/VynUPd1lUWatsHgQ/5s+MvB0aruuxNnVnmuQYRkSvxxmHLOej/ocFFqgsReTvwc+B5To43/zXeOPsPgc3AL4E/UNX5E3PWPBF5F/BZVb1aRM7Du4PvAJ4FPqiqs40sX62JyA68CYNx4DXgI3g3EKFtaxG5HbgebwXIs8DH8MaTQ9XWIvID4F1427MeA/4G+E/O0Lb+h5yv4A1LTAEfUdW9jSh3M7LAbowxxoSIdcUbY4wxIWKB3RhjjAkRC+zGGGNMiFhgN8YYY0LEArsxxhgTIhbYjQkYf4e0T/rHPSJy31LPWcVr7fCXXhpjQsICuzHBkwM+CaCqfap63RKPX40dgAV2Y0LE1rEbEzAiUt7t7xXgIHCRqm4TkT/B2z0rjbcd5h14iWD+GJgFrvSTg5yPty1wF15ykI+r6ssi8vt4SUVcvM1K3gO8CrTgpfv8AvAQ8K/ANiAG/K2qPuC/9u8AWbzkK/+mqrfX+UdhjFmB6NIPMcacY7cC21R1h78j3kNVX9uGt0NeEi8o/5Wq7hSRO4EP4WUzvAv4hKoeFJG3Al/Dy1d/G/A+Vc2LSE5VCyJyG95e4rcAiMg/4qXA/aiI5ICnReRn/mu/xX/9KeAZEXnYsokZEzwW2I1ZWx7z97UfF5FR4Ef+9eeBS/1d9N4G3Otl9QQg4f//BHC3iPwQb7OSM/lNvA1sPuufJ/HShQI8oqonAERkD/B2wAK7MQFjgd2YtaU633ip6ryE9/ccwdsLfMf8J6rqJ/w7+KuAfSJy2Rm+vwC/p6qvnHLRe978cTsbxzMmgGzynDHBMw60reSJ/l73r/vj6fi7a233j89X1adU9TZgAG9bzfmv9VPgU/4mHojIzqqvvVdEOkSkBW+s/4mVlNEYU18W2I0JGL+7+wkReQH44gq+xY3ATSLyHHAAbyIewBdF5Hn/+/4v8Bze9qIXi8j/icj1wN/hTZrbLyIH/POyp4H7gf3A/Ta+bkww2ax4Y8yS/FnxlUl2xpjgsjt2Y4wxJkTsjt0YY4wJEbtjN8YYY0LEArsxxhgTIhbYjTHGmBCxwG6MMcaEiAV2Y4wxJkT+H9q1HKKDEoqUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot of agent activity per timestep\n", + "param_plot(median_df,'timestep', 'AggregatedAgentSpend',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEWCAYAAAAJory2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vbdvZXWBhd1mqSBGkKIJdEFFjN7Zo7MYakxjz2RKjxhIxmihRE4MahehnjS1+icGgqFEIEcQGIihll7Jsr3f37r33/f6Ys8vdfmHL3TK/57nPPWfOOTPvOWfOvDPvvDMjqorFYrFYLJbWccVaAIvFYrFYejpWWVosFovF0g5WWVosFovF0g5WWVosFovF0g5WWVosFovF0g5WWVosFovF0g4dVpYicreIFIrITmf/dBHJFZFKEZnecRH3Wq5uk0NERomIioinK9PpCYjI90VkSazlsFj6OyJysYj8u4NxHCEi6ztLplbSSBCRv4lImYi81JVpdSXtKksR2Swifkfp1P8ecY6NAH4G7Keqmc4lDwDXqmqyqn6yt4I5ymfs3l7fnhxO/FXO/WwTkd+JiLsD6bWJiJwnIh876e0QkX+IyOFdlV4U8jwtIgERqXB+X4jIvSKS2tZ1qvqsqh67l2neISJ1TfLSjXt3B72biOdfKSLFIvK2iEyItVzt0RkFdAtx+kTktyKS5zyPzSLyUGem0RMRka9E5NIWwn8iIh93hwyq+oGqjo9Ie7OIHBPt9WK4QUQ2OHpiq1OOxEWcdiYwFBikqmc5eUhF5MEmcZ3qhD/d0fvqCqJtWZ7sKJ3637VO+AigSFV3RZw7EviyU6XcO6KRY6qqJgNHAecAzTJuZyAi1wMPAb/GZJoRwB+AU1s5v7taqL9R1RQgA7gEOBj4UESSulCuF5rkpd+0kI6ISH/oIviNk/9ygF3A03saQW+zZrQi7y3ADGAmkALMBlZ3o1ixYhFwYQvhFzjHegO/B67A3EcK8B1gLvBixDkjga9VNRgR9g1wdpP8cBHwddeK2wFUtc0fsBk4poXwYwA/EAYqgeecfwWqgG+c87KBvwIFwCbgxxFxuIGfYx5cBbAKGA68HxFPJXBOC+m7gFuBLZiCZjGQCsS1JEcL1yswNmL/ReDRiP1U4ElgB7ANuBtwR8j9AFAIfAv80InP00I6qY48Z7XxjO8AXgaeAcqBHzj38RCw3fk9BMQ55w8G3gRKgWLgA8DlHLvJkbcCWA/MbSXNp4G7m4SlOPd7rbN/MfAh8CBQ5DyDi4F/N3mOP3aeQyFwf70srdznM60cWwbc46TnB8Z25B3QJN82TRtTMfjIeYafArObyHKXI0sFsAQYHHH88Ihrc51nchCQXy+fc953gU+jef7AiUClsz0TWO7EvwN4BPA1eeY/BDYAm5ywBY4s5Zjv6Igm9/4SJn9VAJ8D4zBKapdz3bHt5X1gIlADhDB5utQ5P855F1udZ/AYkOAcmw3kYfLlTuAvLTyLN4HrWnlOlwB/i9jfALwUsZ8LTHO2JwBvY76J9cDZEedFI+PPMflpM/D9Nr7XbOANJ52NwOVNnvWLmPKoAlNhn9FKPDlAEBgZEbYfEMDJb629i4jvM/JbPBT4L1Dm/B8acWwg8BSmLCkBXou8d2f7L5jy3O+83xuB/wN+1ETuz4DTgX2dvDCzyfHhQC1wNPAr537qnDgvq5cbeAs4MUK+nZjy4+mIuE5xnmEp5rucGHFsM/A/jjxlwAtAfMTxk4A1zrUfAVOc8BuAvzaR+ffAgtbeuaruvbJs+qCbfMhjnW0X5sO9DfABYzAF23ERQn8OjAcEmIppqjeKp5W0L8Vk1DFAMvAKER9iFNdHyjnByYw/jTj+KvAnIAkYAqwErnSOXQV85WSKgcC7tK4sj8d8EM2ONfnA6oDTnGeWANwJrHDSznBe9l3O+fdiPnav8zvCeX7jMYVHtnPeKGCfVtJ8mibK0glfjGn9gcnUQeBHgMeR62KaK8t3necwAlMz/EEb99mWstwKTHLS8nbkHdCGsgSGYZT/Cc7znufsZ0TI8g1GoSQ4+/OdYyMxheC5joyD2F1YrwW+0yQP/ay954/Jv/8LfODsH4hR5h7nHa4jQpk49/m2c9/1Bf75jiweTNfITpyCw7n3GuA45/hiTMX1F849XI6jdKPI+43evxP2IEZ5DMRUuP4G3BtRRgSB+zAKK6GFZ3Gr8+6vAfYHJOLYGExh58IoqS3sLtzHYAp+lyNrLka5eoDpGMW33x7I+DtHxqMwFe3xrby79zGWoXhgGqYhcHSTZ30CpoJxL7CijW//beDWiP17cRTZnrwL575KMK1SDyZ/lrC7PP0/jDJJd975US2V4TT/bs4G/hOxPxXzrfgw3+CWVu7rvYjneweNK6oXY5Tleewua65x7vNuHGWJ+f6qMN+nF6O8N+JUHB1ZVzr5YiDmO7nKOTYdUxGc5byHi5zz44AsJ94051yPc+6Brb0n1eiVZSUmw9b/Lm/pQUd8yPVKaBawtcnxW4CnnO31wKmtpNueslsKXBOxPx6jcDxRXq+YWniVs/0cu1tuQzE1o4SI888F3nW236l/Kc7+sbSuLL8P7GznGd8BvN8k7BvghIj944DNzvadwOtN7w/TGtuFafV720nzaVpWlvOBtyMyddP3dzHNleXxEfvXAEvbuM9Ak7xUr9iXAXdGnNuhd0DbyvImmrRwgH8CF0XIcmuTe3orIv++2sr93QQ862wPBKqBrDaef43zDHZiCvLWKjbXRabp3OfR7bzfEkw3Q/29vx1x7GTMN13fQklx4kyL4rk3ff+C+Yb2iQg7hN0t3tnOO49vQ1Y3pqX8oZP29vp34RzPBQ4AvgcsxBSQEzCK8Q3nnHNwKhsR1/0JuD1KGYNAUsTxF4FftiDrcExrKiUi7F52F/B3AP+KOLYf4G/j3s8H1jvbLkyl4fQov4GGd4FRkiubxL3cOScL02JMbyH92bStLOOdvLSvs/8A8Adn+1ZaqQgAzwOPN/32IuXGVETzMa3nFcBhNFaWvwRejLjOhWldz46Q9fyI478BHnO2/4jTuIg4vp7dlYR/sFuPnQSsbet7UlWi7e84TVX/FeW5kYwEskWkNCLMjTEbgsl43+xFvLC7llnPFkwNYSjmgUbDAU76Z2GURBImc47E1GR2iEj9uS7MR1ufdm5EPJFyNKUIGCwiHm1ss29KbpP9lu4v29m+H5MBlzjyLVTV+aq6UUSuc45NEpF/Ater6vY20m3KMIx5qTW52pM9Us6WeFFVz48ins58B00ZCZwlIidHhHkxrdN6dkZsV2Naf9B2nn0GWOf0+Z6NKbx3tCHHA6p6a9NAERmHaeXMABIx+XpVk9Nym1zzPxgTVzZG8Q3AmOvryY/Y9gOFqhqK2Adzj9m0/dybkuHIuCrifMF85/UUqGpNK9fjyPEo8KiIJGCsRn8WkZWqug7TSpmNqQy+h6lgHIVReO850YwEZjUpazwY02I0MpaoalXEfmv5OBsoVtWKJufOiNhvmnfi2/j+XwH+ICIHOzImYlqB9fcU7btoWl7UyzUMk2eLVbWkhevaRFVrROQF4HwR+RVGWZ/pHC7EKOKWyMJYL9qK2y8i/4dRuoNU9UMR+U7EKY3uSVXDIpLr3FM9TZ91/TsbCVwkIj+KOO6LOL4IuBp4HFNh+UtbskLXj7PMxdTe0iJ+Kap6QsTxffYy7u2YB1LPCEztML/l01tGDS9iamG3RchVi+k3qJd7gKpOco7vwGTAyLRbY7kT12ntidJkv6X72+7IXKGqP1PVMRib/vUiMtc59r+qerhzrWLMX1EhIsmYVukHEcFN5WqJps9iT5RzJJFpdfQdVGEKnnoyI7ZzMS3LyHyZpKrzo5Cx1Tyrqtsw7/u7mJp+ux9gK/wRY2LeV1UHYPrSpMk5Dc9KRI7AmKjOxrQe0jB9OE2viYb2nnvT/FCIUbaTIs5PVeO41EzW9lBVv6o+imnN7OcE1yvLI5zt9zDK8ih2K8tc4L0m7zRZVa+OUsb0Jo5treXj7cBAEUlpcm60FfSm91uN8Ve4EJNnnlfVQMQ9tfUumso1sklYvVy5jsxp0YjUQtgijIVsLlCtqsud8HeA4SIyM/JkERmO6UZYGkV6izHdBs+0cKzRPYmpMQwnumedC9zTJD8kqupzzvHXgCkiMhnTsny2vQi7WlmuBCpE5CZnrI1bRCaLyEHO8SeAu0RkX8cDcoqIDHKO5WP6JFrjOeCnIjLaKeR/jbF/t9V6a4v5wOUikum0BpYAvxWRASLiEpF9ROQo59wXgR+LSI6IpAM3txapqpZhlPCjInKaiCSKiFdEviMizTxBm9zfrSKSISKDnTieARCRk0RkrJN5yjBmobCIjBeRox237Rp2O2C1iYjEiciBmAxUgnEE2BNuEJF05yP5CaZvpEN0wjtYA3zPedYz2F0bBvMcTxaR45w8GS8is0UkJwrRngWOEZGzRcQjIoNEZFrE8cUYxbU/ptWwN6RguggqxQwnuTqK84OYvjOPiNyGaVnuMVE893wgR0R8zvlhTO38QREZAiAiw0TkuGjTFJHrnOef4DzTi5x7qh/y9R4wB2OOzMNU5o7H9NHWn/MmME5ELnDeuVdEDhKRiXsg46/EDGM5AlOANhsTqKq5GP+Be518MwXTom+psI+WRRgz8hlEeMFG8S4i+btz/+c5z/AcTGXjTSeef2BasOnOszmyFVmalbuOcgwDvyWiAqiqX2N8J54VkYOdb2kSxqHzX1FaI9/D9Ek+3MKxF4ETRWSuiHgxSrUW8/zb43HgKhGZ5eiWJBE5sb6S41g6Xsb4CqxU1a3tRRitsvybNB4b92o0FznmlZMwneCbMDW8JzA2ajCmphcxGaIc4/WV4By7A1gkIqUicnYL0f8Z8+Led+KuwTii7BWq+rkT1w1O0IWYZvtajAJ5md0mh8cxfVyfYlzc2ywUVfW3wPUYc0MBptZzLUY5tcbdwMcYT6/PnXTudo7tC/wL0++0HNOH8C6m83o+5jnvxDgE3NJGGjeKSAXGVLwYY+o7tIk5Khped65dgzEhPbmH17dGR97BLzEtwBKMR97/1h9wCrxTMS22+vdxA1F8D85HdQLmwy3G3PPUiFNexdSGX3VaDXvD/2CcHyow99le5eOfGM/CrzFmqxqiM5+3RlvP/R2Md+JOESl0wm7COF6sEJFyTN4cT/RUYwrinZi8+0PgDFX9FhoK5Uoci4eqlmMcBT+sNyU7ZtFjMf2a25246p2KopFxp3Ov2zEVoqtU9atW5D0X43i1HfO+b9/Lbqp63sdUevNU9b9NjrX1LhpQ1SJMWfszzPd8I3CSqta/owswPh1fYfwarmtFlnsxlfRSMab9ehZjKoBNKwXXYsr0ZzDv6C1Mn/8Zbd7xbrlVVZeqanELx9ZjTKQPY/LFyZhhjIGm57Zw7ccYx7VHMM9tI6avNJJFzj1FZQES1agtJBZLM0REMebCjTGWYxSm0uTtgHWhs2T5BuOx2JEC1NJNiMhsjANKNJaFfomIXAhc4XTx9AnETKrzFZDpVMDapD8M/LZYug0ROQPT7/NOrGWxWDoDEUnEeIQvjLUsnYWYSU+ux/QRt6sogai9YS0WSzuIyDJMP9EFTj+ZxdKrcfp1X8GYrf+3ndN7BWIcufIxXRbHR32dNcNaLBaLxdI21gxrsVgsFks79DozrJixQk8AkzF9Q5diZmZ4AeOhthkzJ2SbA3AHDx6so0aN6kpRLRaLpc+xatWqQlXNiLUc3U2vM8OKyCLMzChPOGO9EjFDAIpVdb6I3IwZmH1TW/HMmDFDP/64W1bBsVgslj6DiKxS1Rntn9m36FVmWDFrLR6JM45PVQOqWooZM1c/mHcR7c+WY7FYLBZL1PQqZQmMxgwif0pEPhGRJxzPpqG6ew7OnZj5YZshIleIWYD544KCgm4S2WKxWCy9nd6mLD2Yyc//qKrTMfN/NprmTI1duUXbsqouVNUZqjojI6PfmdwtFovFspf0NgefPMyUUP9x9l/GKMt8EclS1R0ikoWZzsli6TXU1dWRl5dHTU2ri3NYLN1KfHw8OTk5eL3eWIvSI+hVylJVd4pIroiMd+YNnIuZM3EtZnHP+c7/6zEU02LZY/Ly8khJSWHUqFGI7M1iIRZL56GqFBUVkZeXx+jRo2MtTo+gVylLhx9hZrn3YSZTvgRjTn5RRC7DzMrQ0sTrll5MoKiUYEVls3BPSjK+QdGsPNSzqampsYrS0mMQEQYNGoT17dhNr1OWqrqGxgut1jO3u2WxdB/Bikre3bf5K56zYWmfUJaAVZSWHoXNj43pbQ4+FovFYrF0O1ZZWiwWANxuN9OmTWPy5MmcfPLJlJaW7tH1d9xxBw888ECLxxYvXszkyZPZf//9mT59eqvndTajRo1i//33Z//992e//fbj1ltvbdOJ6tBDD92j+GfPns348eOZNm0a06ZN4+WXX+6oyJYeilWWFosFgISEBNasWcMXX3zBwIEDefTRRzsl3n/84x889NBDLFmyhM8//5wVK1aQmpra7LxgsGuWIX333Xf5/PPPWblyJd9++y1XXnllq2l/9NFHexz/s88+y5o1a1izZg1nnnlmo2OqSjhsF6DpC1hlabFYmnHIIYewbdu2hv3777+fgw46iClTpnD77bc3hN9zzz2MGzeOww8/nPXr17cY17333ssDDzxAdnY2AHFxcVx++eWAaZldd911zJgxgwULFrB582aOPvpopkyZwty5c9m6dSsAL730EpMnT2bq1KkceeSRAHz55ZfMnDmTadOmMWXKFDZs2NDmPSUnJ/PYY4/x2muvUVxczLJlyzjiiCM45ZRT2G+//RrOAVi2bBlHHnkkJ554IuPHj+eqq66KWult3ryZ8ePHc+GFFzJ58mRyc3NZsmQJhxxyCAcccABnnXUWlZXGWe2tt95iwoQJHHDAAfz4xz/mpJNOApq30idPnszmzZsBeOaZZxru+8orryQUCjXI/otf/IKpU6dy8MEHk5+fD0B+fj6nn346U6dOZerUqXz00UfcdtttPPTQQw3x/+IXv2DBggVR3V+/RVX75e/AAw9US++htrBEqzblNvvVFpbEWrROYe3atbEWQZOSklRVNRgM6plnnqn/+Mc/VFX1n//8p15++eUaDoc1FArpiSeeqO+9955+/PHHOnnyZK2qqtKysjLdZ5999P77728Wb3p6upaWlraY5lFHHaVXX311w/5JJ52kTz/9tKqqPvnkk3rqqaeqqurkyZM1Ly9PVVVLSsw7v/baa/WZZ55RVdXa2lqtrq5uFv/IkSO1oKCgUdjUqVN1xYoV+u6772piYqJ+++23zZ7Bu+++q3FxcfrNN99oMBjUY445Rl966aUW5R83bpxOnTpVp06dqoWFhbpp0yYVEV2+fLmqqhYUFOgRRxyhlZWVqqo6f/58/dWvfqV+v19zcnL066+/1nA4rGeddZaeeOKJqqp6++23N3qWkyZN0k2bNunatWv1pJNO0kAgoKqqV199tS5atEhVzWQsb7zxhqqq3nDDDXrXXXepqurZZ5+tDz74oKqad1taWqqbNm3S6dOnq6pqKBTSMWPGaGFhYbP7aylfAh9rDyjDu/vX67xhLf0T36C0PuP12lPx+/1MmzaNbdu2MXHiRObNmwfAkiVLWLJkCdOnTwegsrKSDRs2UFFRwemnn05iYiIAp5xyyl6le8455zRsL1++nFdeeQWACy64gBtvvBGAww47jIsvvpizzz6b7373u4Bp/d5zzz3k5eXx3e9+l3333Teq9Ex5b5g5c2ar4whnzpzJmDFjADj33HP597//3czMCsYMO2PGbgf9iooKRo4cycEHHwzAihUrWLt2LYcddhgAgUCAQw45hK+++orRo0c3yH3++eezcOHCNmVfunQpq1at4qCDDgLMOxsyZAgAPp+voWV64IEH8vbbbwPwzjvvsHjxYsD0S6emppKamsqgQYP45JNPyM/PZ/r06QwaNKjNtPs71gxrsViA3X2WW7ZsQVUb+ixVlVtuuaWhX27jxo1cdtllUcc7adIkVq1a1erxpKSkduN47LHHuPvuu8nNzeXAAw+kqKiI8847jzfeeIOEhAROOOEE3nnnnXbjqaioYPPmzYwbN67dtJsOndiToRSR8aoq8+bNa3h+a9eu5cknn2zzeo/H08jsW++UpKpcdNFFDXGtX7+eO+64AwCv19sgo9vtbrcP+Ac/+AFPP/00Tz31FJdeemnU99ZfscrSYrE0IjExkd///vf89re/JRgMctxxx/HnP/+5oZ9t27Zt7Nq1iyOPPJLXXnsNv99PRUUFf/vb31qM75ZbbuGGG25g586dgGlZPfHEEy2ee+ihh/L8888DpsV2xBFHAPDNN98wa9Ys7rzzTjIyMsjNzeXbb79lzJgx/PjHP+bUU0/ls88+a/O+KisrueaaazjttNNIT09v9zmsXLmSTZs2EQ6HeeGFFzj88MPbvaYlDj74YD788EM2btwIQFVVFV9//TUTJkxg8+bNfPPNNwA899xzDdeMGjWK1atXA7B69Wo2bdoEwNy5c3n55ZfZtcvM6FlcXMyWLVvaTH/u3Ln88Y9/BCAUClFWVgbA6aefzltvvcV///tfjjvuuL26t/6ENcNaLJZmTJ8+nSlTpvDcc89xwQUXsG7dOg455BDAOJI888wzHHDAAZxzzjlMnTqVIUOGNJgGm3LCCSeQn5/PMcccg6oiIq22ZB5++GEuueQS7r//fjIyMnjqqacAuOGGG9iwYQOqyty5c5k6dSr33Xcff/nLX/B6vWRmZvLzn/+8xTjnzJmDqvFKPf300/nlL38Z1TM46KCDuPbaa9m4cSNz5szh9NNPj+q6pmRkZPD0009z7rnnUltbC8Ddd9/NuHHjWLhwISeeeCKJiYkcccQRVFRUAHDGGWewePFiJk2axKxZsxpawvvttx933303xx57LOFwGK/Xy6OPPsrIkSNbTX/BggVcccUVPPnkk7jdbv74xz9yyCGH4PP5mDNnDmlpabjd7r26t/5Er1v8ubOwiz9behLr1q1j4sSJsRbD4rBs2TIeeOAB3nzzzT6bZjgc5oADDuCll15qtb+3pXxpF3+2WCwWS79g7dq1jB07lrlz50btGNXfsS1Li6UHYFuWlp6IbVnuxrYsLRaLxWJpB6ssLRaLxWJpB6ssLRaLxWJpB6ssLRaLxWJpB6ssLRYLYGaJmTlzJlOnTmXSpEkNE6Zv2rSJWbNmMXbsWM455xwCgUCMJbVYuh+rLC0WC2BWA3nnnXf49NNPWbNmDW+99RYrVqzgpptu4qc//SkbN24kPT293anaLJa+iFWWFksvZMmyfM64dAVHnPIeZ1y6giXL8jscp4g0LFFVV1dHXV0dIsI777zTMIH4RRddxGuvvdbhtCyW3oZVlhZLL2PJsnzue+Rr8gtqUYX8glrue+TrTlGYoVCIadOmMWTIEObNm8c+++xDWloaHo+ZGTMnJ6fROpcWS3/BKkuLpZfxp8WbqK1tvBBxbW2YPy3e1OG43W43a9asIS8vj5UrV/LVV191OE6LpS9glaXF0svYVVi7R+F7Q1paGnPmzGH58uWUlpY2LPeUl5fHsGHDOi0di6W3YJWlxdLLGDI4bo/Co6WgoICSkhJUFb/fz9tvv82ECROYM2cOL7/8MgCLFi3i1FNP7VA6FktvxCpLi6WXceWFo4mLa/zpxsW5uPLC0R2Kd/u2bcyZM4epU6dy0EEHcfTRR3PiiSdy33338bvf/Y6xY8dSVFS0Rws/Wyx9BbuepaXXUFsborI6BChpA7y43f2zrnfs7KGA6bvcVVjLkMFxXHnh6IbwvWXK1KmsXLmS+sUVBOMhO2bMGFauXNlRsS2WXo1VlpZeQWl5gGdfzuXVv28nMcHNDy/dh8NmDiQ5yRtr0WLCsbOHdlg5NkVE8Hg81DmTDnh8vk6N32LpzfTKqrmIbBaRz0VkjYh87IQNFJG3RWSD858eazktnYOq8uHKYp57NY+a2jDFpXXc9buvKCy2M8l0JhoOU1dXByKIy0VdXR39dQk/i6UpvVJZOsxR1WkR66rdDCxV1X2Bpc6+pQ9QXRPinQ92NQv/eE1pDKTpw4jgcrnw+Xx4vV5cLhciEmupLJYeQW9Wlk05FVjkbC8CTouhLJZOJN7nYtL4Ac3Cx+2THANp+i71ZlgRabRtsVh6r7JUYImIrBKRK5ywoaq6w9neCXRuh44lZrjdLk77TjYT9k1pCDvxmKGMGJYYQ6n6JpHK0SpKi2U3vdXB53BV3SYiQ4C3RaTRNCOqqiLSrLPFUaxXAIwYMaJ7JLV0CgPTfdx/22T8NSHcbiExwU1Kcv907rFYLN1Pr2xZquo2538X8CowE8gXkSwA579ZJ5eqLlTVGao6IyMjoztFtnQC6Wk+sjMTGJoRbxVlF1FaWsqZZ57JhAkTmDhxIsuXL6e4uJh58+ax7777Mm/ePEpKSmItpsXS7fQ6ZSkiSSKSUr8NHAt8AbwBXOScdhHwemwktFh6Lz/5yU84/vjj+eqrr/j000+ZOHEi8+fPZ+7cuWzYsIG5c+cyf/78WItpsXQ7vU5ZYvoi/y0inwIrgf9T1beA+cA8EdkAHOPsWyx9DlVlx/bt7Ni+nXA43LDd0WEeZWVlvP/++w0z9Ph8PtLS0nj99de56CJTD7VLdFn6K72uz1JVvwWmthBeBMztfokslu5l544d1NTUALB1y5YGJblzxw6ysrP3Ot5NmzaRkZHBJZdcwqeffsqBBx7IggULyM/PJysrC4DMzEzy8zu+FJjF0tvojS1Li8WCaWGGw+FOmzggGAyyevVqrr76aj755BOSkpKamVzrh5VYLP0Nqywtll7G0MzMZgpLRBiamdmheHNycsjJyWHWrFkAnHnmmaxevZqhQ4eyY4cZlbVjxw6GDBnSoXQslt6IVZYWSy8jf+fOZq1JVSV/584OxZuZmcnw4cNZv349AEuXLmW//fbjlFNOYdEiM9+HXaLL0l/pdX2WFovFUG8S7cz5Wx9++GG+//3vEwgEGDNmDE899RThcJizzz5jtd3PAAAgAElEQVSbJ598kpEjR/Liiy92WnoWS2/BKkuLpZeRmZXFTscsOjQzs6FFmek44XSEadOm8fHHHzcLX7p0aYfjtlh6M1ZZWiy9DBFp5PXaEQ9Yi8USHbbP0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxNLBgwQImT57MpEmTeOihhwDsEl0WC1ZZWiwWhy+++ILHH3+clStX8umnn/Lmm2+yceNGu0SXxYIdZ2mx9DreGngAoYqqZuHulCSOL1691/GuW7eOWbNmkZiYCMBRRx3FK6+8wuuvv86yZcsAs0TX7Nmzue+++/Y6HYulN2JblhZLL6MlRdlWeLRMnjyZDz74gKKiIqqrq/n73/9Obm6uXaLLYsG2LC0Wi8PEiRO56aabOPbYY0lKSmLatGm43e5G59gluiz9FduytFgsDVx22WWsWrWK999/n/T0dMaNG2eX6LJYsMrSYrFEsGvXLgC2bt3KK6+8wnnnnWeX6LJYsGZYi8USwRlnnEFRURFer5dHH32UtLQ0br75ZrtEl6XfY5WlxdLLcKckteoN21E++OCDZmGDBg2yS3RZ+j1WWVosvYyODA+xWCx7h+2ztFgsFoulHayytFh6CKoaaxEslgZsfmyMVZYWSw8gPj6eoqIiW0BZegSqSlFREfHx8bEWpcdg+ywtlh5ATk4OeXl5FBQUxFoUiwUwFbicnJxYi9FjiJmyFBG3qoZilb7F0pPwer2MHj061mJYLJZWiKUZdoOI3C8i+8VQBovFYrFY2iWWynIq8DXwhIisEJErRGRANBeKiFtEPhGRN5390SLyHxHZKCIviIivKwW3WCwWS/8iZspSVStU9XFVPRS4Cbgd2CEii0RkbDuX/wRYF7F/H/Cgqo4FSoDLukRoi8VisfRLYqYsndbhKSLyKvAQ8FtgDPA34O9tXJcDnAg84ewLcDTwsnPKIuC0LhTdYrFYLP2MWHrDbgDeBe5X1Y8iwl8WkSPbuO4h4EYgxdkfBJSqatDZzwOGtXShiFwBXAEwYsSIDohusVgslv5ELPssp6jqZU0UJQCq+uOWLhCRk4BdqrpqbxJU1YWqOkNVZ2RkZOxNFBaLxWLph8RSWWaLyFIR+QJARKaIyK3tXHMYcIqIbAaex5hfFwBpIlLfSs4BtnWRzBaLxWLph8RSWT4O3ALUAajqZ8D32rpAVW9R1RxVHeWc+46qfh9jzj3TOe0i4PWuEtpisVgs/Y9YKstEVV3ZJCzY4pntcxNwvYhsxPRhPtkhySwWi8ViiSCWDj6FIrIPoAAiciawI9qLVXUZsMzZ/haY2fkiWiwWi8USW2X5Q2AhMEFEtgGbgPNjKI/FYrFYLC0SM2XptAaPEZEkwKWqFbGSxWKxWCyWtojlROpxwBnAKMBj5hYAVb0zVjJZLBaLxdISsTTDvg6UAauA2hjKYbFYLBZLm8RSWeao6vExTN9isVgslqiI5dCRj0Rk/ximb7FYLBZLVMSyZXk4cLGIbMKYYQVQVZ0SQ5ksFovFYmlGLJXld2KYtsVisVgsURPL9Sy3AGnAyc4vzQmzWCwWi6VHEcv1LH8CPAsMcX7PiMiPYiWPxWKxWCytEUsz7GXALFWtAhCR+4DlwMMxlMlisVgslmbE0htWgFDEfsgJs1gsFoulRxHLluVTwH9E5FVn/zTsaiEWi8Vi6YHEcm7Y34nIMswQEoBLVPWTWMljsVgsFktrdLuyFJGBEbubnV/DMVUt7m6ZLBaLxWJpi1i0LAuBPHYv9BzZT6nAmG6XyGKxWCyWNoiFsvw9MAf4EHgO+LeqagzksPRBwuEwLper2bbFYrF0hG4vSVT1OmAa8BJwAfCJiPxGREZ3tyyWvkUoFKKyspJQMNho22KxWDpKTBx8nJbkuyLyCfA94C5gA/B4LOSx9A1UleKiIiorKvD5fJSXl+PNzibe7aZ+vVSLxWLZG2Lh4JMEnAqcA2QArwAHqurW7pbF0rdwu91kDxtGXm4uNTU1DM7IIC4uzipKi8XSYWLRstyFaUU+7/wrMENEZgCo6isxkMnSBwiHw1SUlzfsV1ZUkJSYCLbf0mKxdJBYKMsXnf/xzi8SxbQ0LZY9RlWpqKhgaGYmXq+X7du2Eairs2ZYi8XSYWKhLNeo6gIROUxVP4xB+pY+itvtZsTIkQCISKNti8Vi6QixsE9d4vzbCdMtnYqI4HK5cLlcjbYtFoulo8SiZblORDYA2SLyWUS4YBxlp8RAJovFYrFYWqXblaWqnisimcA/gVO6O32LxbL3BIpKCVZUNgv3pCTjG5QWA4kslu4hVuMsd4rILGCsE7RRVWuiuVZE4oH3gTiM/C+r6u3OpAbPA4OAVcAFqhrofOktlv5LsKKSd/ed2yx8zoalVlla+jTd3qEjIh4R+Q2QCywCFgO5ziw+3iiiqAWOVtWpmJmAjheRg4H7gAdVdSxQgllc2mKxWCyWDhML74f7gYHAGFU9UFUPAPYB0oAH2rtYDfV2IK/zU+Bo4GUnfBFmfUxLHyccVgqLanntH9t5+c08dhXWEgqFYy2WxWLpY8TCDHsSMC5y8nRVLReRq4GvgJ+0F4GIuDGm1rHAo8A3QKmq1k8EmgcMa+G6K4ArAEaMGNHB27D0BIpLAlz8k1WUltUB8PhfNrPo4RlkDomPsWQWi6UvEYuWpba0yoiqhjAtxGgiCKnqNCAHmAlMiPK6hao6Q1VnZGRk7InMlh7KO/8uaFCUAFXVIV79+3bsQjYWi6UziUXLcq2IXKiqiyMDReR8TMsyalS1VETeBQ4B0kTE47Quc4BtnSaxpcfirwk1D/OHUAU7F0Hn40lJZs6GpS2GWyx9mVgoyx8Cr4jIpRhTKsAMIAE4vb2LRSQDqHMUZQIwD+Pc8y5wJsYj9iLg9S6Q3dLDOHb2UBa9uJVAwPRTut3CGScPw+WymrIr8A1Ks16vln5JLMZZbgNmicjRwCQn+O+q2ry62jJZwCKn39IFvKiqb4rIWuB5Ebkb+AR4srNlt/Q8Bg/0svjhGTz/Wi6BOuW87+aQmRHX6BxVJRQKNczqU7/tdrtbjbesvI6vNlTw3vICZkxL54D900hL9XX17Vgslh6KxKpvR0R+C/xZVb+MRfozZszQjz/+OBZJW7qAYDCMAl5P8274cDhM7tatJCUlMSA1le3btpGenk7KgAEtTodXUxti0Qtb+MtLuQ1hxxyZwc+u3peU5GhGN1ksfRcRWaWqM2ItR3cTk0kJHNYBC0XEAzwFPKeqZTGUx9KL8bSgJCPJGDKEnTt2UF5eTlxcHEnJya3OG1tZFeSF1xt3eS/9oIBrLh5jlaWlS7AzI/V8YqYsVfUJ4AkRGY+ZXP0zEfkQeFxV342VXJa+h4jg9XgQEVQVr9e7RyuRPHLLaAZ4AiRUFFBdtfs6W5BZOgs7M1LPJ5Yty/rxkhOcXyHwKXC9iFypqt+LpWyWvoOqsn37dnw+HwNSUynYtQtfXBxeXxKqQnJS488gOcnD907LYfGLWwEY4Amw7rATWdckXluQWSz9h5gpSxF5EDNBwTvAr1V1pXPoPhFZHyu5LH2ToZmZeDweQBiamU1JWYhrfvRf9p84gOuvGseggbudd+Lj3Jxz6jCmTU7l/eWF1rHH0uWEW5l0yg4X7jnEsmX5GXCrqla1cGxmdwtj6bu4XC7i4uIQEQqLa1mw8FtWf15KWXmQ95YX4fVu5MZrx5GYsPtzSB3gY+b0gcycPpDqzXkxlN7SHwi3ohXt5Bo9h1iujHt+U0UpIksBrKOPpbOp76MsK6/j3Q8LKSsPNhxbsaqYan/zyQ0slu6i9R50O164p9DtLUtnia1EYLCIpLM7NwyghflcLZbOJCXZi9sFkXOtjxmZjNcby3pjz6S4NMDWvGqqqkOMH5tMeqoPt9sW3l2BJyWJA1a91WhGqvQ0H77UpFavsR603UsszLBXAtcB2cDqiPBy4JEYyGPpRyQnubn+qn15cOFGgkFlULqPm340jtSU1oeE9Mcp3opLA1x/22ds3GSMPwNSPDz54IFkDbUT1HcFCUMGUhuXTPHOGjbnVjNtUipxaV58Ca0X0ZEetAe9sRB3onk38cMyG5SoVZydRyxm8FkALBCRH6nqw92dvqV/k5jgYd7soRw6cxA1tSESE9ykt+PA05+meCstC1AbCPP1N5UNihKgvCLIM3/dyk8uH4vPtsI7jbKKOsrK6ygpDTAsK4EJY5OZNH7AHsfjToxnxTEXNgu3HtudRyzMsEer6jvANhH5btPjqvpKd8tk6V8kJrhJTGh9qrv+SklZgDsfWEdtIMxhBw1qdrywMEAwFLbKspMor6jjT4u+5Y1/7gRMvnzs/umMGdm66dUSO2KR649y/k9u4XdSDOSx9HJCoVCL25Y949MvyvjvmlK+2lDBtMlp+LyN+yfPOmUYifExHZrdpygrr2tQlADV/hAPLdxIeWVdG1dZYkUszLC3O/+XdHfa3UU4HG6YSi1y29L5BINBioqKGDTItITqt82YSsuesP6bCgACdcpzr+Zy/+378+Lr26jyBzn39OGMH9t3+2hjQWl5c6W4M7+Gujo7XKQnEstJCX4N/EZVS539dOBnqnprrGTqDILBIH6/n8TERFS1YbutFS4sHUCV2poatm/fjogQDoXs2LS95HvHpDJvwm43YXewmF+cl4p3QBIJQwbGULK+SdbQeJKT3FRW7baGHH/0UAYkR1csRzqeadBaVLqaWK468omqTm8StlpVD+iO9Lti1ZFwOIzf7yd/505S09LwV1cTCoXIGT7cKssuJBAIkJdrVgjJzs4mLj5+j+Z+tRgqN+Xx3riW5ydNHJUTA4n6NqGQkru9mgWPf8OOnTUcN2cIp5+QvVczRnXnMBK76kj34xaROFWtBXAWco5r55oejcvlIiEhgfSBAykpLgZg+IgR1gzbhQSDQXbt2oXL5UJEKCgoICs725ph9wK7Xnb34nYLo4YnceeNE6mrU1JSPC0uMRcN/cljO1bEskR5FlgqIk85+5cAi2IoT6cQDoepqtxdw6uqqiIlJcW2LLsKVQQYlmNaPrvy8/fIDFtZFaS8oo6du2rJyU5gQIqH+Dj7rtoiEAhTXllHKKTE+Vx27twO0nTZNzvZQM8klkt03ScinwLHOEF3qeo/YyVPZxAOh6mtrSUUCjF8xAj8fj8lxcWkpKTEWrQ+i8frJTMrq6FlWb8NxjO2Pjxyu55qf5C/LdnBo3/+FjA1/Qfu2J8Dp6Thss2sFqn2B/lwZTG//ePXVFaFmDxhAHfdvB8Zg3q1UahHYZfr6pnE2j74CfAesMzZ7tXUm2Fzhg/H4/GQnJxMzvDh1gzbxbjd7gYlWL8dCoUoKS4mGAw22o5sdVZVh3hs0aaG/VBImf/79ZSWWdf91qioDHLX79Y1OKV88VU5f1r0LdX+YDtXWiy9m1h6w54N3I9RlAI8LCI3qOrLsZKpM4hUjNbJpGN0xBylqtTU1FC1bRter5fa2lqSU1Ia9WUGAmFCocYm28KiWvqrL2000/pt31nTbDmpT9eW468Jk5jQ1RJaLLEjln2WvwAOUtVdACKSAfwL6NXK0tJ5dMQc5fF4yMrOZsvmzYRCIQYPHozP52tUgUmIdzM8O4Hc7f6GsKMOHUx8XP+0BETjJJKdGY/L1Xj9xamTBpAQ3z+fmaX/EMsc7qpXlA5FxN4sbOkjhEIhCgsLERE8Hg8lJSWEmozBHJju45F7p3L2qcMYlhXPT68ay/VX7UtS4t7VISPj7qtjPVOSPdz2s4kkJxknqP0nDuDKC8c0WgvU0jUEAmF27qqhqnrvTd6hkFJUEqC4NNBn82hXEcsc/paI/BN4ztk/B/h7DOWx9CFUlWAwSFZ2Nl6Ph535+YRCoUZmWFUlOQmuunAkl547Eq8n3ODYE3aaTtH2N4dCIeoCAbw+4xlav93XvKATEzwcefBgpk1ONd6wcS7SBlhv2M6k0WQDCjW1IcrK69hcCD/6n//wy+snMPvQDHy+PWtblFfU8e6HBTz711zifC6uvHA00/dP2+vKYX8jlt6wN4jIGcBhTtBCVX01VvJY+hYej4fMzExEBJfL1bAtIoTD4Yb/woICgsEgQ4YOJRAI4nLOr6mpQUSIj4/H5XJRUVlHoE4RgYFpjZWDqlLj95Ofn8/gwYPx+/1UV1czYuTIGN19y4RDIVyO8o7c3lN8PheDB1rv164i0hxeWFzLeVf9t9Hi5L97bAMHTEnb43ewfmMF9z+6oWH/5ru/ZPEjMxgz0irLaIjpU1LVvwJ/jaUMlt0UlwQoLK7F63GRnubtFePnonUCqm/hhUIhqquriYuLw+PxMGToULZv20awro6a2loqystJTkmhsqKCtLQ04uLiKCiqZf7v17PykxJG5iRy288mMGZkEh5nALmIEJ+QQFpaGoWFhQBkDxvWoxy8gnV1lFdUkJqaiobDDdt9reXb1wiFtJGiBKisCjVzTGuPurowb769s1n4ex8V2FVOoiQWS3RVQIsOhwKoqu75Ym7dRP2KFm63u9F2X6CwuJYf3ryGbTtqAOO0cffNk0hPi53CjMY7c2+cgMrLyqirqyN94EC8Xi/hcJiCggKG5eQQqK2lsqKC+Ph4UtPSqPaHuf/Rr/nP6hIANudW85NbP+OZR2cwqEnNvq5u95CTYF0dXm/rC0rvLX5/CH9tiKREN3G+5nmvtcqDKymR0vISArW1BAIBRIQBA3rsp9Yvaal8iY9zs//EAXy+rrzhvGmTU/d44gy3Wxg7OomlHxQ0Ch8zyirKaInFqiO9coR+KBSitLSU2poaMrOyKC4uJlhXx5ChQ3u9wgyFldff2tGgKAE+/bKcL9eXc/iswTGTqyum8HK73WRmZZGXm0t8fDyFBQUkJCQweHAG/ho/tbW1eDweampq8FfXgHj57ycljeKoqAxS5Q9Rv+JjvRm2urqa7Oxs/H4/BQUFnW6GLSiqZeHiTXz5dTkHTUvnorNHMjC9cWWmrcrDoMGDKXJaviNHjer1+bYvUe+QlpSYSEJiotlOSiIlOZG7bt6Px5/ZzGdfljFtcio/+P4oUgfsWUXM5RJOOCaLJct2sWlrNWCU7pSJqV1xO32SmJphReRwYF9VfUpEBgMpqrqpvetigcvlIiUlhYrycrZs3oyqkpmV1TAAHlpvcZaV1+F2C8lJe/a4S8oCbMmtZnt+DQfsn0Z6qpe4LpiKLRgMs2lLVbPwzXnVHD6r05Prdpq2tsJhJT0MdcWlDBo82Ly3sBmXmTIgFY8vharKUsorqklNS2Of0cl8taGi4XqfV0iI3/0e6s2w9fMAe30+UgYM6FQzbElpgBvv/IIN35r72JrnZ0d+Db+8fkKz6dJaRKGstBSX2004FKK4uJiBAwdahdmD8Hm97Nq1C6/XSzAYJDXVKLLBA+P46RVjqfaHSEx07/V0jIPSfSy4ZyqlZaY8Sk3x9Iqulp5CLCcluB2YAYwHngJ8wDPsdvhp6ZrhwGJgKMaUu1BVF4jIQOAFYBSwGThbVUtai2cv5cXtdhMXF4ff78fj8RAXZ8xwNX4/paWlZGZl4ff7KXO2q/xhVn9WyvOv5pGU6Oaqi8YwMicxKi+2krIAv7p/HR9/WgqAxyP84b5p7Deu801ncT43Jx+bxbKPCiPuF45so1XZm+avbKu1VVJcTGJSEr7aEJ5SP6pQUlZGeqoXBcTt5hfXjee6Wz+jqCTAo78YzfA0Ja68gOrd+rPN++6M9U1rAuEGRVnP8o+LqakNkxLFMpOK4nK5yM7Koi4QoKioyA4d6EG43W5S09IoLy+nrq6OlJQUfD5fQ16Jj3cTH9/xis3ANF8zBzVLdMSyZXk6MB1YDaCq20WkPRNtELPm5Wrn3FUi8jZwMbBUVeeLyM3AzcBNnSlsvRnW7/eTnp5OWVkZu/LzyRgyBK/PRzAYJC83l1AoRFp6OgDrvq7g1nvXNsSx+rPVPPenmWQOiW83veKSQIOiBAgGlUee/JZ7fzFpj00w0TBxXAo3/2gcz76SS3ycm6svGs3gQa1/VH1l/sohQ4cC4C/azkeT5jU7ftT6pYwYmc6ihw+koipIek0R741vfl5r9x0KBiktLSU1LQ2Bhu09XRXF4xZ8PheBwO7ZANJSvVGvFCIiZGVn4Xa7cblcZGVn21ZlF7KnlclQKERhQQHhcJjExEQqKipISEwkMTHRTpfZQ4ilsgyoqoqIAohIuz3NqroD2OFsV4jIOmAYcCow2zltEWYKvU5VlvVm2MSEBOLi40lKTiYUDOJyufDXhImLT6K6qhwRISExhcqqEH99c1ujOOqCyspPijnluOx206uubr6Ya0VlHaFw17QGBqR4+c7cTA6dOQgRSO8l5plonIBaw+XzUZu7AwBpOodb/TkuUA2RlCikDkigenPr2qmiso6a2jAikJLkIS7OTTgcpqKigpoa0x9cV1e3V441yUkefnjJGB7808YGuW64Zt89qjjVK8eOFr7tTVBv2bvKZFxcHKlpafh8PsrLyuwycz2MWL6NF0XkT0CaiFwOXAo8Hu3FIjIK0zL9DzDUUaQAOzFm2pauuQK4AmDEiBF7JKyI4PV68Xg8pl/K2a6pDVNbU0N1VTnxCUnUBWoo3LWToZlZZLXQghzSzuoMqoqIkJ0Zz7Gzh/DBikL8NaYgP+uUYaSmdH6rsh63W3qdiaYjTkChaj/LJh4LwMH/WtzqeaUlJVRWVjI0M5NwqOUV6cNhuO/hr3lveSHj9knm1p9OoLIqyMA0L0Mzs9ix3VScsocNw7MXXrIJ8W6OmzOEQ2YMZNsOPyNyEklJ9jYMX6mnI5WH9qgNhBCUyooykp1l58pKS0lOScHr9fYIhRkoKqWuvJKwKp54H+Fqx2nNJYhTSYi2q6A7uxrcbndDP7fL5Wq0bekZxGLoyKPA/6rqAyIyDyjH9FvepqpvRxlHMmZ85nWqWh75kUa2VpuiqguBhQAzZszY4yZa/aD2yO1AIIjiISEpjS3blNHDMwiHa6isCnLud4ez9IMCSsvNkILxY5MZNzal1Y/QnZKEJiXg9XpJS/Vww9Wj+MH3R/DQwm85bs5QDpqWjtsd+wKpv5GWnk5NbS07tm9nMC2bLqv9QZZ9VIjP5+JnV+3LDb/6nKqqEI/M35+iwvKGfFNcVMSQoUP3qtWQnOQlOclLdmbjGcu7ulAPhZT8ghr+8tIWzj9zOBKupby8vKH/PiEhAY/H03CPsezPDpRX8t4406I7+F+LWXHMhc3OibaroLu7GiLN4pHboWAQHJ+JyG1L9xKLluXXwAMikgW8iFGcUS/PJSJejKJ8VlVfcYLzRSRLVXc48e5qPYa9p6VCwKtQE/bx3uc1PPrnTYwfm8LxczKYfWgyQwb7WPTIgWzcVEVSgpthWQmkp/mo3ryr1Y8wv6yEhIQEEpOSKCwoIGPIEO68cb9O6dzvK+xpYdxaa0tbMb22SDvOMPV9iUfMGsQ7/y5g565axoxMYkCyG39ViIyh2fi8Lnbu2LFn6UZBVxfqJWUBLvvpaioqg7y/oogX/nQQBbvy8Pv9pKWnE+fMctRd8rRFuIu6KWJFKBSiwOnLHJqZSX5+Pi63m4yMDKswu5lYjLNcACwQkZHA94A/i0gCZo7Y51T169auFVN1fRJYp6q/izj0BnARMN/5f70rZG+tEDhq/VK276wlJdmDhpVJE1JJHeAhWFJGQkUl+w90TiytoLq07UI6e9gwtuXlUV1dzYDUVBITE3vkR9GV5r72aKswro1Lwu8PEQwrifFu0lJ9rZpqqzfnNWyHqmsaTLHxwzIRj3nm7pQkSktKCIZCDBs2jLqSco5Yt8SYIMvrqKkNER/nJhRnWntpqV52FdYC8O2WKu54YAP33DKRj1aWMG/2UHKGD2/XXBkMBhu8ryO3YzUpxtffVFJRGUQEbrt+PKVlJagqHq+X8rIykpOTe4wZdk9ntokFe+IR7XK5GDhoENu3bWPL5s3Go3nYMGuejQGxnBt2C3AfcJ+ITAf+DNwGrdi5DIcBFwCfi8gaJ+znGCX5oohcBmwBzu4ywVvA5YJrLhnDRWePwOWWBueY6lYK9dnrlrQaV7DJLDDttWhihW9QGu60VErLA6iaPrVYT8gcDsNjizbxxj938PDNoxmUEMST6iOyXGmt9fnfU65o2J6zYSmJo3Ia9t3BYIMHqztjIDpYKa8Mcfsja/H7Q2zb4WfBPVM5aHo6qz8r5eLvjeSdf5uZUj79soxTLlzBM384qJEZvzVCoRDbt20jKSmJ1LQ0tm/bxoDUVJKTkykuKsLtdpM+cCCFhYV4PR5S01pvqYnPR8U3udTUhvG4Ba/Xhcu15+bQ+vHBbrcwaKAPtIIBaUNIS02gYNcuQsFgIzNsVxGNRcHjib3ChuaVyXoF6U5Oory8nOTk5KhM8fUVJbfHQzgQMHkwYrFzS/cRy3GWHuA7mNblXIwH6x1tXaOq/8ZMi9cSzbVSNxIft/eDhSPZtWsXaWlpJCYlsWP7dqr9fpKSknpcTbLaH2L1ZyXc/4cNlJYGmHN4Bj++fGxMHYSCoTCvv2X8vAZ4Anw288Rm50SaAqNtHUcWaiKCqpKa4uWeWybiEuWOB77m5/d8yaXnjeSQGQPxeFzc/j8TePblXOLiXFx10ZioJ70WEQYNHkz+zp2UlZXh9XpJTk7G5XKRlJxM/s6dVFZWEg6HyXImxWiNUJWf9/c7ts1nEA3DsxOYuG8K6zZUcO0tn/Hwr6cQF+9pmFu33hElFFJKywL4uqh1F41519VDlEikNSMYDLItLw+3W/CFAlSWVRIfFxeV0guFQg0VksEZGRQXFVFQUEBGRkbDOX1x+s2eSCwcfOYB5wInACuB54ErVLX5FDL9DFUYlmNaNB6Ph+EjRnSpR1xHHDHKK+r4+a+/bFgE+F/vFwOWklIAACAASURBVDB0SDw/OG8UXm/nyBsOh1E1g+lVtWG7NYJ1e1ZI76knbTgcprysjLKyMrKyswnXleKvrWX+rZO4/rbPGD82hUHpcfh8Lo45cggzpqXjEtmj4R0ul4u4uDhcLhfhcJi4uLiGPBAfH4/P5yMQCJCQkIA3YtB6i/J2klUiPc3HfbdNZuOmSgqLAgxI8ZGWau6pvnAOBsN8tbGCX85fy2+vyWgruhYJhbRhxqq0VC+DBvr2aukv7wBTAQqHwR3v3W3FcQmIyUfh+ESKSgKkp3oblmRric7qanC73WQPG0bu1q0EAgEyMjLwOe+1PerNsABer5f4+N0e9pUVFVRWVZGVlUV5eTn+6mqGZmZahdlFxKJleQvwv5jJBTp1lp3egjsxoZmJJhwOE47zUFpSwqDBg3G5XF3emuyII8a3W6po2vW6/L/FfO/UnE6ZfD0cDuP3+yksKCB72DD8fj8lxcXkDB/eLN169nR9vz3F5XIxYMAAqv1+tuWZ/s7sYcOoDSi/uW3/RlOHichejVWtN8O63W7S09MpKirCFxfXYIatq6sjZcAAKsrLKauf4KCFQj0chlCw5WEue8PANB8zpw9s9XhpeR033vkF5RVByoM+Jn74f87qNT488T5C1X40HG7UT+xOTsKdloLH42HbTj+XX7+aKmd88eGzBnHzj8Y3KOVoMd0DKQ0VjLq6IBWVQUrLQ+Ruq+buB7/CXxNmyOA4HrxzCiOHJ7YZV0vfQaCotNF91NNaJTMcDlNWaiYYERHKystJiHKygfoha023ARISEykpKWHrli3/3955h8lxVXn7vVXV1TlPHo0kZ8uWc8AYHIgmLWmXHJacFsNiMNj4wybsmmDALLAEL7CGJSwsacFm19gmGGwwtvE6S3KUNHmmp3Ouqvv9Ud2tnpnumZ6kkUb1Po8e3a7prq7qqrrn3nPP+R0sy6Knp2fR/Tksn/UI8Hn6/v7O1WK1RppWpdJYE5NSUqlU7M63mKera/2Ey5fC0IB33rZtRwdnaaYuRKVikclWmUyUiUd1An5t1ppnfYalahp79+wBaIywhc/HeTtvolK161K6NIGUoIUCXPqeo/nqtY/T3lu/QoRAVfaV5lIUhVBw9YJbhBB0dXejaS6qVejt03G79YYbNhQKobvdduBXTQygVaduWZLkrj3LPo6leh1KJYtM1gDg3Z/cJ+/882+fhS8z1chnbebcHTeSLubo6x/gq9c+1jCUAH+8PcHUq8tLNpamaTI5MUE0GkXVbK1VzRVEEYKPf34H5bI90pqcLvOJq3fw2Su2L1kfdamDTCkl+Xyevv5+XC5XoyRcp2uPze9pbmuahtfnI5/Loaoq3gM0GHCj4EhELIGljjRVr2dR41qfSXg8XlTNZQdu6Doej+eAXsSPhF289XVb+db3d/MvH9xKzGMQjbiwxsco1N7TrmOVUvLgrgwXXXEflYqFosD73n4Uz3l67yxjqygKfr+fStmOLvX7bZEn0+dhOp9E9wcBi0o5T2/fJrx+Nxc8zeKs0+O4kxM81OK4FV1f0qygmbobtlgs0tffTyqZZGx0tOEuXw2qVcnYpMVnvnwfD+zM8rbXb+EFz+onFtHweu0BiqIos9pzMU1JLm+0LOHVCtO0SGeqgO0yVlWxZIMQU4v8x+WbZunNapqC38i3rMcHIKVFvKuXctlkYqo87++JZIWjOjqD2aiqytjYGJqmYZommh6iYlgNQ1nn4Ueza6aINfd4hmoiKEKIWe3lYlkW2UyGfC5HOBwmm80yMT7uuGHXEMdYrgILdSzNUZV1TNOkVCpRKILfp9LV3Y1pufjrfWlOODaOEFojkKT+QDW39weLhbcHAy5e9oJBnveMPjypSW459rnz3tOuY02mKlz5hZ2N3ETLgi/+2yM89UnxhrGsu2GTMzOEIxGKhQKjIyNsGhoilwePN0qpaHvxvf4usnkTv9/uoONRnYoVbDlQMUslfrcEbddm6m5Yfy1Vwq3rmJa1qtclkzN4y/v+StWwO/FrvrObJ/YU+cC7jsLnnT3zbkUqXeGmW6a46ZZJLnljH+ftvKkWhbvvParX0xgwWBaUyib5vEEON3fmXDz59NiCIemtkMUCD579vHnbW12DZuyUE5W/eXYfn/vqI43tXo/CkXNqLXbi2VFV+3nK5XJUq1X8gQg3/X6GbUeHCAY0sjmj8d5TT4qu2vr6QsyNgl6N+8WW1fTRo2n4fD6CoRCVSmXF+3Voj2Ms14HGbNIbwjRUwETVFH756wnuud+DlHDhW46gWi03Kg+USiV0XW8Zbp7OVDFMiaYuLZhkIfL5/KI5nj6fhs+nUcgu7eGXEsYmS7O2VQ05SyS87obt6enB6/MRDocpFYsAxOM6yZl9LkJVMQiHZ689dZJbuRxUTWsYkub2ajGdKDcM5ZcvPYyQVkFRBNbYGIVaMEqrWbCUkqohufGWSW6/a4b7d2R47Ycy9Pd6+PpVp8yqe1l4Yrjl4G7brdfz8c89yjevPpWhJfYMy+3+x8fG6B8Y4OlP7cay4Bc3jNEV13n3G4+Y54LtJCDLNE0mxsdRFAVd1ynk0zzz3G5+9ZsEV156HP/yjUd55PE855/dxXvecgShOeXNLNNEYhvd5na1apJKGzz0SJaT4uufztVOfvNAi5rfSDjGcg2pVCxKqcq8dIrH95YI+qKUCklKRXB7wvzpzzPccXeSO+6GZ5/XjaLA1OQkqqoSCAaZSSTo6uoiEAw2HggpJcNjRT7xuR089HCWE7aF+MhF2+jv9XSWk9Y0UpdS2qLYQkF6dKanphgaGoImY9lun0tVpHG7VZ5yZpw/3p5obBvo9cxb79Q0DV9T2ky9bRhlCvksvX39WJYdWh+Nrn7psrVmJlXh4UdzpDJVTj0hQiTiYnPY4DsfGQSgK2zxh+0Lp7+ALc5umSaGpXLeWTHOOyvCl7+1m9/8cZqxiRLpbHVekehWuFwKP/nmmfzutgRDJ6/eebZDCJVINI5pSsIhnRc/1zaaLpfStvarZUlbPlLWqq60iGbVdZ2umsLNTGIG1aWSTlc58nAfX7/qJIolic8rUFX7vmq+ry1LIqVlryf6PGSlSbyri93DRd72gbupVKzG9VlvWslvOqwdjrFcQ2ZSFT719fv51Ee2zzKYlYqJ9DYbGEkoqDVcZS9/0VAj3Hx4715mEgmCNfdf88gxmapy8UfvZ3jMnnHd+2CGD1/5AJ//+Am4O1hzah6pW5ZFPp9ncnIS8lUGBgdR58xi27mbFxJZaEXAr3HxPxxNKPAYt/81yVGH+7noHUe17NCbz7fedrlcbNm6tdE5+Jra60X7wYkfNRKaN0OfSVW46CP38sgTdsaU16PwrS+cRqxS4KGn2AZyIXH3OqZpkk6lyGazxOJdFPMzaJrG2163ld/80a5P2mn+byTkIl2e5gXP7oHJqY4+0wlqwM/THr4ZKe10FgEkklX2JgX/+ePHec9bj6QrpqGqYsFI6myuyl/uTvKt7+/GkpI3vWoLZ50Wm1X8ui7aUK+EEovHKJUs3v3mwxkbG0WruWnHRkfx+nzE4/G29/U5D92AKxZhYqrEF7/xaMPzUY/27Yq5Z4kgrKZ6lWEYCGzvRXPbYf1wfv015sFdWUbGirOM5dGH+xkZ3ovbG0HTVPLZBGedNsBbX7uVJ50aY2jQi2VZlMvlRsBEuVSaV6y3UrUahrLOw4/lqFQsOkuB34eUknxuX2efz+dxuVyzOvnVlDSNR3X+8e1HUiya6Loyq8NbjAPR1dR2ILHrZiYLOfr6+2e50B95PNcwlADFksU3v7+bi/9usZKus6kbh0qlQmJ6ynYN6zHe+cF7AHju03vx+9obyzN+cQ2qz87dE9IkXBYwMYXiWzw4rVNSZoWyMOnt72dyYgJFESh9vbztHXcC8ObXHEZX+6yUBsNjRa74zL6wrY99dgdf/+wpHH/M7HtnriC5368ipaSnp4fRkRH27tmDy+UiGo0uei8Z0sNd98yQTO1bD6xH+375kydx8vZ9M3zLkkzPlPm/+1K4dIUzTo7g87qWVdtyYnwcIQTdPT2MjY3hcbuJd3WtKHjnYCrYfiDiGMtVoO7OtCxbdLpa3TcCBWYFFdgoDAwOcdudSQqFMs88dwiE4JUv3oRei2C0TJPE9DSRSIRQKMTIyAiFfH6WG1bTBOGQRjqzb/89Xe4lS35JKalWqxSLRQY3bcIwDCYnJgiHQrPcsKbZpuajz8t5O29ESsFMsoKqCsJh16Idq8+rzQpa2R+spqZtJ6oppmmg6K55a3rZ7Nx7AtLZ6rxtnWBZFtWaTKJlmoQCgo9dvA23W6W3201ogbJuqs/TtjLHhFUhFo/j1nXGxsbo7evD5Z2fMgT273f+rpsb3hEpQQh7ezwcYHRkhJHhvfZaoqeHj3x6JwBerzrPmLfr1P3G/HvlVzeOcfwxi7vg62k+QlGQpolSS9uoi120o1xMsu3oAJ/+x82UktlZ++v2ZakkaBia6ZkKb/rHuyhXLL585Qnksmk0NbzkyGJFUeju6WGkZtg1TSMWj684ynWjFGxfLxxjuQo0uzPv+OMkH/n0vtFv0K9x9BGzO2K32/7ZTzspBhI8nvmdmaKqbNq0qVGOp95uHglHQi4+dvFxXHrlAxSLJgG/yscu3kYkpFNOd378Qgh0XWfzli2NYIF6uxnDaN2pmMUSk1QJhLr4yY0T/PT6MZ55bjcffHc/B1p1zJXUv2zGsixKpRIziQT9AwPIBVIQunt65rnQTjw+jM+rUijuyy185Ys3IURh7scXpO6GVVWVTUNDTE9NkZxJcPyx/W0711lr1QsIF8TjcaanbVeu3+9vqAm1Qo0EmSxkbSPS3c3Y2Jjt5owEZykvCSFQVEEma9Ad17niA9sIBztz9z/p3vnu/qOO6Gwmbpom4+PjqIpCd3c3kxMTzMzMEI1G21YqEUJFUXXuvSfN+UdI7n7KwuvHv/z1GKl0lU39XqIRF8VcknKpSKTNILMddcOuCIGJ3Rc4q5Hrj2MsV5nTToryqf93PD+5fpTumM4bXrmlrZLLYoWcmztYiUIqXcU0q7h1hUhYR9MUTjwuxA++dgbFoonfp+L2qKQyVTxLDNhrNoztOsR2CjmWtPD4Qvzprhw/vd7WZr37/jTFojlr5mjV/Lh1Kbe533swUY/WlVKyd+9e4la77kwwNjpqF31uup6xiItvfeE0rv3hbpKpCq988SaOPSoI0/uMZbtKKFow0JhJappGJBJpDKS6uruRUi44C2keMCwUHay73S3b7X6P3t5eRkZGGB4exuVyEYvZvtVEIoFhmvT39zM1PU2lOMN3/vVUsjmTSEjvuEarpgmOOSLAzkftWedRhwc498mdiXgoikJvTw+KqqKqKoODgyiqWhMmb30Pmqbkd3/K8ZV/f4KTFwnqkVKSStvXZHisyD9d/TBXvP9I0slxpFzajLDZDdvb18fU5CSJRIJ4XbBEStRaDmm93UyxZJCYqfK726bo6/FwxskRQKCtfxDvQY1jLFeZUNDFU5/Uxcnbw7g0BfcSxNXbuZ+UgJ+7n7D456t3kspUOebIAFd++Hh6uz3oukpXzP6ORLLCl77xKH+9J8Wn/nEz5+64aV5HtJIgBFcowNkP3Eg2a+D3q+gugZQWwuchEHBz9ukBBnrdvPbvhpieqeDx7CtWaxfKriClxO122zlhUqLXdFAPRhRFIRgMkkwmaVcsR9NUvF593sxAVRU2DXj5wLuOwjRlQ72oUm7vJq4buLq4drlcprunh+mpKXRdt2ewq5iQPjY6as8oPR5mEgncbjder7flYEoI0bjOjdfYLup4PI60LDSXi4GBAbutqcSjS+t+Uukqr3/5Znq7PbUBo6tjaUUhBC5dbxxXvS2lRAn4OOehGxrvrSvrCJ+P449WeP4zexd0Zdf3/9LnD/Df/zuK263yD2/cSjGfsr+vjZGqC8/PVRCqu2EVRWkE+tWfkWQySbVSobevj5mZGQzDoGfOdX98d4F3fvBuTAsueseR/PmuGX5y3SiXvy7a0W/l0BrHWK4RAf/S8x3b18u8icuufJxKTSh85yM5PvfVh7n8/dsaIfbZXJUrv7CD2/9qJ+q//tJdHLnVz9WfOHFVtFoBPN1R3F0RZKpKMKAwNjpCJBrD4/WRyaQJBnQ+97ETcKlFIpEuXC5hB3TUOsxMk+JIOp3G7/fvGy3vBwzDomrIjiX5FqIhmpBMEgwGEYbknId+jabNSX8JBohFgm2NmMet2gpQk50HXqhNEZ3jNaWarjUoBtzb12e7XrHTMRZywzbyG1WV3t5eJmpuzng8PmtG3UlZqnZYluSyTz7I+991JC957tLTN1oJA1iWRdYyMHx6YxYnpWwMPE7qgROOC1PaM7Lo/vt6PPzb50/l+hvH6e3WyaQMBgYGMcbaRBa7XJT3jpJLqLNSYLRgAFcsvM+w12qFSikJBoOMjo6y+4knkFLOqzyTzVX5+ncex7TguKODnHR8iO64zo2/n8S9xtrJGx3HWB4EqB6db1wyMGubEAIllwG/7eoqlS3+cvdsXfpHnshTKi9dTNs0TUzDaLh36u36iLue4jG4aVPjIS6Xy2QyGbweD4V8gWDQi8ulEY3F7FJj+Tz9AwNUKxVSqRS6rq84um8pTE2X+dEvhtkzUuRFz+ln+7GhRWcLC1F3w8a7uggEAg39T3cgsORzWk7ghZSy4cq2akEqy1F5WijgydU0i2w3o6wHOdXdsKJpNlSvxbiaBPwqTz1z9QZYqqramsO1ddWu7m7btdl03AtVJpkrnzikwtsv8KJWS4Rqhb5FyN/4jQ1TMp2wpf1kucydp1wwb59zr3vzbF3TNDxuN8ViEZfLNc8zY1l2lDzAK18ySDQMiakRPvTuw/EaJc556AZUdV+aGuyfgu0bAcdYHgSYhVIj966Zvt1/aDyoXkty3ecOw5KwOwHvvvJx3G4FTVv6aNI0TYaHh4nXhMsTiQSbhobmdXzNr/v6+tizezeFQoFwOIzX622K2tVwuVxYlkWlUkEIQbVapVqpIPaDG3YmWeEdH7y7oT96618SXPreo3nu0/sW7AgXw0rncGVzlGtRki6gnMx2FIrfbOyWilmLlFYUhYHBQSbGx5memiIW7yabtwgFXG3Xl01L2tWqar1lpwFP7Qzl9NQUfr8fr89nV9PwevF6PLOqY7Sj3bJDs6aylPaMMl80MVwevv2l01e9ZurcVJNWtBtULCSfqHTZbk89HkWP2+3f/2mKy658DJcm+OXnDm97TOlMlfGpEg8/luOEbWHiURdej0IymaRYLBKJRkmn00xOTs5yw4ZDLl73ss188OP3c/+OLMceGcDlcpNNT5AF3L4wmuajt6d9tRWH1jjGcp1p7jDaRSa2686tQrFlNYcn338jT3tqnDe/aguRkKtRF7LTUb6qqsS7ukjUIiHjXV0YhiCbrxAJzQ+IME2TVCqFZVlomkYmmyUYDKJqGpMTE5imSU9vL0YyQ5dUG8Vqq6OTWKq65nleY5OleULd//mzYc4+Pb4iF/VKQvEt02Tv8DBd8ThiiYEXdTcsUHPB9pFMV3j1O+8ikzP42MXbOO2k6Cy3W75gMDxa5CfXj9Db7eGFF/TTHV9qNu58dLe7VtnDhWkYtku6w8FPJ5rK9ecjFNAAA/LTlPMryw1sZaQtS4LPT0n3Ew665mnGrpZ84pFbAwT9Gtm8MSt3sxkp4T/+aw//+fN9+/5/7zuGZ57bTTAYxO/z4fZ48Pv9WKbZ8O5Ylq08dNLxYX527Zn8+w/24PVqFC03YMtLer3eFbnCD2WcX22dae4wOlFs6QSXJrj0wiMolcoMj+aJx1SkWSUQXIKLsCn3zDAsbr87wfd+sperLt+O16cR9Ltsebxax1gpl+nt68Pj8TA5MUG15rqtq6m4XC6MYplbjp1v3Nc6z6vVWo3Pq65oVrlihCAcCjE5OUnXEqMlYd/aXzJd4fJPPcju4QIzqSr/8MbD6O/VyeWquCKuxiBp16M5LvzwPY3P/+KGMb71hVOJR5dvMFVVJRwOk0mnMapVgsFgY32tFdWqtWTh8qUMSJLpCpYF4aC2oEel3T633Xo97/r8g1z54eM58bjwsrwyixENa/zs2jP59e8m8bhb59VaUvKjX8w2wl/65qOccXKUWFRvpOLout5wvVerVfK5HKFwGJdmoYkiF73jSCrlMslimmAoQrVSJp2caFQ9cVgajrE8gGiXKrBU7VVFERSLZdKpBF6vn8RUAd3txePz04mtNE2zEapuWZLkTIIzTu7nuKOPw6ymUESs4YKLxWJoLhc9vb2N/LDmdl2zcm7li/1JPKZz4nEh7n0wA4CqwLveeMSqic4vB0VRCDQiaZdOfXbksiTve0kACNg1QeM+ZqoZQsFecrkcuVyO7u4evvOj3bM+n5ipsOvRHE8+ffnG0jRNpqamsCwLn89HNpvF6/Ph83pRmm60VKbCX+9J8bvbpjntpAjnntXV0Yx+McGAOsWSyc5HsnzxG4+SzlR5yfMG+Jtn9y/r+n7qPZuJm0lKe/Moc9b1FhvQNashScNszDqbP6sWcpRTaZ5+tIJok24khJinlpUv2KLurfRg66IUyWSScrncKLoQCodxe9yNQSxAqVRad2nIgxXHWB5A3PHCtzXaz9j9B6x6yZ1l1Nx7bK/JUK+fQiFvBwX4oswkDfp7F7/k9QR3TVXZ8WiW/p5+fn/rDKecGEZKg6mJUbSaZqVs+gwt2uudFlKtWnh0lX+69Hh2PZpjeLTIk0+PEYvuX0OZqanz1IOKLNNkZHgYt9uN5nLXAi9mFwNeKPCi3ezo3B03YSoGoyPDmKZJLB7HsloHqSxV6akVHrebaDSKpmlkMxl7Ztl0zYslk//4r738sOZS/M0fp7j1Lwkue9+xtLsCUoJhmPz695Ocs3XxY0hlqrz3snuo5/5/7duPEw3rPO+ZvS0Nw0L2dygq+fOJnZeba2YhNaSKJ0ChaODL5vjDNjuo54xfXNNycCx8Po4/JsgDO/cpBj3vGX34vWr79DK/D38gTD6XRigK8e5eSmU7Jcnn8+3TUW5qOywNx1geoJhN65FzHyoTiRDKgg/9lkGdfDbdMGqlYp5QqDO1E7WWuA0wkzT48jcf594HMwwNernmsycxNTFMpVKhu6dnQbfbvHMy919WtGlKpqbLfO8ne5hMVHjZ3wxywrFBzjqtAxHSVaRQMNj1WI5vfu8JAN7xhsM4bMiP2y2Ix+N4a52X6XXj9vlWvJ5kmBJf0E8um0VVVUKhEIqi8JbXbuXO/0s2DMqZp0Q4YkuAcsXsuEj0XFRVJVjbvxBiVrtOvmDws+tnp13cdscMpZLZ1liCZGR4L2ee3IOSmVn0OO59IM1ckZz/+c045zw5Pq8EF9B2tur1qEsuBt2JGpJlwTe++zg//dUo37tiqLG9eXA8t/btlZcF+PEvR7j/oTTnnNXFs87vwevVyI3l+P0xrdPLisJoPO9TUzPEYnZQ0WrX0jxUcYzlQUDzQ3X+rpsp+vwgdFIjKU69639RVYHPq1Ef0KsBP5piobu96J4o1UoBaZVx660flFLZRFVEy/Wk448JobsUvF6Vf7rkWNKpqUaydCKRwON2o3VgMJOpCtn08rRPl0MyXeFN77uLTE2D9da/JPjMR7Zz9pnxVfuOTnRmxyfLXPjhe5ASnnVeN5sHPRRLBh6Pjs9vFzdWVXVeRZnl4tIEyWyWQCBAoVBgfHyc3t5etg75+O5Xz+DG301y6okRFEVw1Vd2EfBrvP7lW+jrceNaxhpdJ5GkqqZAdZ8hqekXtPz9pAR8PpRynmo5hbddRn8TZx2tziub5fNquEs5CMxPxG83yPR41IYKT6d0ooZkmpIfXzdKMKARjXTm0YhHdd706i2UShY+r4qqCioVk2KxtUGWUqK5dHRPDMssY1Tz8060Hn1dDwiqtx0D2hmOsVxnWnUYlgXI1uuUpiX5+Q0z/PW+NA/s2Oemue67Z+Hz2usXLl0nYBgEAz5u/MM0xx0dpL8niK7PflBz+SqP7ynww58PE43ovPqlQ/R0uWep/kQjOh+9eBu5gkFX1EVyJkfP4CCqqjI5MdFBV2ZTqVrMlDS23Xr9rO3dcfea5HntfCTXMJR1vv+zvWzftrL8ymbaRUhWEqlGx9mrubj+qi0gbNUec3wMt6JQMQOMZVP09/ejeDyr5q4WAuLxLoLBIEa1SrFUi4L0aAwNaLzp1Vt5YEeGt198d+Mzv/3jFN//2hn0dHlW5RiaCfo13vCKzXz12scb217wrD58Xg3dP//3KxQN/nRHgm1H+SkWkoT8IZ728M1UDWuWMW++Z9Ry69Sqpz18M3TNN5Zq0M8Jt/8PhmE/Y6qqEAxo6OEApDtbQ65WLTLZKqomMAzJAzsznBhv/cxWa9+TzRmUyp3HH7g0BVdg3zlncwa5wnwBfvs7JGU1xFsv/CsvfE4fFzyth0JJ4mvKEKlWq41i25ZlMTE+zsDgYEdpPg6OsVx3Zo1Miyb3PJDi6q89wqff3jrxWhHw0+vHyBf2jTCPPSqIx6OQTiXJ5XJEYzFSySRut5sLzu9tO+Lf9WiO91x2b+P1Tb+f5D++cjpdsdlBH5Gw3pDk6untbbjamtuLoWkKV3x9hMSMvQ775UsPI+KqIoS9/lZfh1mtNJJWZan8Pq1jHdKVMDfCudU61jkP3YAv6G/IrhmGyeR0mYceznHuWTGkBF1f+uMphCBQm6W6dL0hJlGnVDb5/s/2zvpMqWzx57tmeOEFA3N3t2LcbpUXPLufk4+PcNudCU4+PsxRhwfaFnf2elTOOi3IxPgYutvPTKWEVCT9WwZwuVp/ZqnjDF9PDLfwcc03H+WhXVlOPynCW183iB50EUhkF/18KlPlp9ePcPMtk1z+/m287/J7yWSNtkWh9SaPTWaZlWXAYf8MeAAAIABJREFUVs1rNyt2uRS+9u0nyBUMbvz9FKefHGOwb3YupaaquFwuRoaHkVKumjfjUMExlkvAsiTJdJVy2a7B2CofayWkMxU+9In7saz26yqqx80PP7GZVLqKJSWqqhCNuFByeWLxOJVqlZlEAlctQrWdocwXDL73k9mdZjZvcO+DaZ7+1J5Z2+spInONYidpKOWKRTZbxTAtrnj/sVzyTw9QKJqEXVUeOPt5895//q6beSKl8qubxtm62c+5Z3W1LAq9GJs3+TjyMD+PPG7XjNRdgre9bmtDg/VAwFuLUDQMg9GRETQ9yCnbQw0ZQU3zt+3MFnIB169LKwUdRRHEIi6e9pQufnvrNLpL8JQz40uqJzoX05QYhtVWBzkcdBE+1sXxx3ZWSkvXdWLxOJMzCl1RF4qorLqrsLfbw6XvOYZSyRb793rtYw90BXnKAzdSKu9zfwphz0ZN00QIhfsfSvGUM6Jkc/bzcvXHt3PRFfc3ikJHwjoed1NhAr+fS99zNP/674+RNXVO++sNBPzaLCPfiXcl4Ncw29QmnUlWefvrD+OD7z4aRRFEQq55A0OhKIQjESbGxwGIRCKOsVwCB07PcRCwe7jA+6+4j8npMkG/xicuOY6Tjg/hcq2OpNcDO7ONkPH6g+dyKUTDeuPBskolbj2+tWIIQR/VWgStYRhUq9VGCsdcFCHweVvMvubUlzQMg/GxMXsWKQTj4+P09Pa2DeyZJbIgoVKxyGaqpKsufnFrjmu/eBqGKYmVEy1/g0rF4k0f+Gvj9U+uG+GL/3zSksUDYhGdz3/8RHY8nGUqUeZJp8aIdbhetD9QFIXJ6Wl0XadiKKiuAKVCknIxhaZplCsqStEk4G/dmS231JjuUnjXGw6jUCxx8vYwR2z1sXlAx+NZXgpJIlnhuhvH2PlIjuc8rZeTjg8TDrnIZKtMTpd5YGeG7ceG6O5ytwy2aYXLpREKhQgE7fsUlq/yZNaS9hVFmdUG29Mwd/Dk7Ynh7YlhmSb5QoF0JkNvXx/5fJ7E+DhdPb1sO9JHqZTi9S/bhJQmxUKKL3/yRN72gXsoFk0ueseRvPT5s2eZFzzNagSXNRvnpeBxq8ieEE++/0bADh6rS9slyxoXfeBufnTNmcTbDC6r1SqTExP4/LbhHxsdZXDTJscN2yEHnbEUQnwLeAEwKaXcXtsWA34IbAWeAF4upVxeAlsbkukKH73qISanbSWYbN7g8s88yHe/cgaxyOoYyy2b9rlN6tXYX/zcfi58y5ZGxOJCiiHpmuZqX38/U5OTJGdm6Ontbfler1flTa/eyq13zFCp2A/c5k1ejjp89gjXTGUJVyxKe0YBCCEwRiehjbt0oYTvm26Z4sFdWb72mZNRqq1nCtn87DWZx/cUmEyUl6W0E4vonH3G8gJ61rqqvKIo9Hb34dJ1Htubo7/HT7mYskUENC8PPZzjhONWX6jBzl2skk5Oct5ZUYxqhXQqRWgZierJVIX3X34vjzxhz95v+dM073zjYbz4OQP8/H9GueY/nmi8991vOpyXPH+g48hbRVFompst+djqJKanCQaD6G53o+3uYI1Y1LR/E5UKw3v3NtJwBPYaZ7VSIWdOYhgGLpeHSsXCNCW6S7S85zRNIR5b+oCk1X3ocSvg9fGyyx6gPGcNNF80iJp2+S5N05BSNtqaqhKJRgmFQiAlmWzWmVkugYPOWALXAl8GmuVuLgFullJ+SghxSe31h1bzS01T8mitUwC44Gk9vPR5gzywI8Omfi/xmL7iwJGeLjcvfcEAP73ONkybN3n5+1ds6biDWUwQei6DfR6+/9UzuO2OBNGIzknHhee5PM1cflVVd0bHS/PC/JuTuX29fn712S0AWAhm0lXiMkUlYe7Xau77o6p8PeftqMP8jI2O4HK5UDUPpWKGE7d1Ewqu/uMphMDtdhOLxZiZsdMy+gcGltVp5vJGw1DW+dHPR3jmOT1c+5+zRRC+8b0neOZ5Pbhjqy+crwb8nLfzxsY5WJZlR2wH/AhpMDY2hq7rVKtVQuEwsE8Avi69WG/XqYuWBwIBMpkMiqraEo6qiqJJfP4Iuaz9+/X09vCpLz3MWadFectrDus44rUT2lYi2nUzJx4X5o6m4glej0I8qlNJpKhm7NShutSlpmlowQDhaLjxO4XDYcdYLoGDzlhKKW8RQmyds/lFwPm19reB37HKxlLTFI4/JtRwK5335G7edcn/NXIH/+4FA7z5NVtXtPYTDrl462u28pqXDlGtSnw+dUmi0Z2E8Tej6yp9Peo8l9FaUk9FaaY5mbtdQMxaS+KtJs3riYquc/5Dv7b/oIhGwr4WDDTc2IoiiESjmJaLx3YXOXJLN16fd007skqlMqut60ufubcKlnK7FSxJo5xcnXLFWjAveCWokSDj+QyKsHC73eRyOfp7B9A9HuJSks/lqFQqhMPhhkTc1ORkY1A5OTGBVitWXX9u6m7YTCbTSMOZGB+3y5a5LBI5O4CuWq0yNTnOpe85iqrBrGLna4ki4EMXHs1lVz7AzkdyxKM6l3/gWHSXglEoNoQPmpn7DDmGcmkcdMayDb1SyrFaexxo6XsUQrwNeBvA5iW6nSIhFx+9eBsf+fSD/M0F/fzbdx+flWT/4+tGedVLh1ZkLAGCAdey99GJ63Ct3YsLccr2MJdddCzhkItKdfFk7oOVpa4nqqpKIBDANGHb0S48bmXNOrJ6ObV8rWRapVJhJpHAX8v5XAp+n8rZZ8a47S/7hAPe+feH4/OonH1GjNvu2Lf93Cd3zQp6WU00TWNwcJA9u3dTrVaJd3XhdruxLIvp6WmklHg8HtLpND6fD93tJhKJMDY2Rj5vz4wH4vFZv3ndDVsvwRYxTYrFYkOL1ef309XVhWmaJJNJFKV1DMBa0tft4bMfPYFqxUJVBZGwjqoKWieXOKyUjWIsG0gppRCt6zhIKa8BrgE4/fTTlzzO7e/18NkrtlMqW3z5m4/O+3uptLySS0thoSjITlyH+8O92IqeLjf//OEtDVd1J8nchxKKoqAorGp0dSvqbtihzZsbYtx+f/uo24UIh3QuvfAYdj6a45HHc5x9RpyeLp2A38Wl7zmGX/56jDvvSXHmKVGe/6y+eYPAxVyhnVKvelM/v0wmg9/vb0QD9w8M4HK5SCaTiFpUt0vX0TSNarWKx+NB07R5Sjcul6uhZlUX4lBVFSklXbVarIqiNNrrQTQ82yNgWZZdQcVh1dkoxnJCCNEvpRwTQvQDk2v1RZGwTrls8txn9PKj/94n49Xb7SYQWPjnNE2z8VA1t5fCQrOWVjNGmF2gdq1ncQsZc32VxADasZ6z5v2NYVikMlVKJROPR11SGtNqduzRiM5Zp8XmyQhGIzqv+dshXvK8gVoKxuxjsyyLQj5POp2mf2CAXC5HNpOhf2BgyccnpaSQz9PX34+u64yOjDSMYDQabUTA1tt1N6xhGI2c5JmZmVluWJidetNJ+0DAHnTtM/qdiLs7dMZGMZa/AP4e+FTt//9eyy9zu1Ve/7LNRMMufvPHaQ7f7OOtrzusbcg22CkYM4mEHYQDjfb+qC3XrDO71DJgnUi6NbPclIbVYDVnzUs97/2JZUl2Pprj4o/dRyZrEPCrfPKy7ZywLbQmZaXs77S9JoqizGq3oz5TDAbsUm5zB4eKouDxepmZmWHP7t2N2dpy4l41TWPT0FBjv/V2syGbO5AKSklQuNAs8Pb3I5TVd31bliSVriKhZR3YTljpfbiQuLtjLJfGQWcshRA/wA7m6RJCDANXYBvJHwkh3gzsBl6+1scRCeu86iVDvOBZ/Xjc6qJ5U1JKCsUi5dExJNJOQlyriIdVZDnGzzCMRkfV3G5HZwEx/kaH21zodq1YT6O/GMl0lY986sGGnF8ub/KRTz/ItV88bZ760mpgGgajo6PE4nHcbjdjo6PEu7pQi2XMbH7e+9WAn7JuV1Dx+Xzk8/lGe24Qmt/vJ5PJ0O31oyazlJKzFXQWmgE1G+Dm4uatjN5CAylPNLzqGqnZXJW77knx9e88jmFKXv3SIZ5xTveSI+aXcx92Iu7usHQOOmMppXxVmz/NfxLWGE1TOs7/K5YkgWCcTMr2EMe6BiiUYB1LKi5IuWKSy9mdcTCgoXeYvmLVkp01TaOru5ux0VF8Ph+xOQEUQCNYQo9HcMXCbTsrKSXVapWJiQl6enoagRs9PT2HZNV307Aa+b51Uukq1eoaDb5qhm5ifLzm5rPXOiuTM20NkBX2MzMzg9frpVgsNjwqdSzLIp/LkclkCIXDyFSO33YQwVnHNE1mEgmisRhCiEZ7OffDWgRTTUyV+X+ferDx+nNffZhNA17OOHm+Vu1q48QDrA2HXk+zxrRbN3P5fKRLucbMKJueJhztabGH5dO2ikNTJdl2Baab3Trpmvbl93+6F4TgtX87xIufO9BRMV1RK/48OjLC3j17cLlcRKLReR2SYRi26LvLdtNZlkWxDJqqzFNVqY/6q5UKoyMjDbH4Q4H6gKK57XIpHLHVPyvvd7Dfg1tv3+mvZD1XrSWzp9NpLMsi2uJ6ziUUCpEvFCgWi3g8nkaOYp26G7a7pwe/308xW1pwf3ORUlIsFimOjKCqKtVqlXAkMuv3Wk9+d9vUvG2/ummcU04Ioy3DHeuw/jjGcpVp5+55+u5biFQlUOswLAsxNUmlElw1d18rl00uX0HWtCChfQ295koZVsXivCMMzru4n4yh8+5PPs72Y0OcdtLio+J6MEU9kGJuQWOozQpmZijk8/T09pKYnkYoCro7zlXf2MW73ngE/b2e2YWQNY2uri4mJiYA6O3t3fCzSsuyqFQqjSjMejsa0bnysuP52FUP8eCuLEcfEeCjF29bMBl+Jeu5pmEwUvMWeDweEonEooOVXD5PuVRCd7splUoUCoV5bth6tKl9vyzyY8xB0zT6BwbYu2cPhmHQ29e3pNqqa80RW+evKR51RAC1RRFuh4ODjd3bHECYhRK3bFs9JZxOEULB9Pg4d8evG+LsijJ/NrmQTB3Ab2+d6shYWqbJ+NgYqqrS3dPD5MQEyZmZWW5YVVWJx2JUK5XGe93uOO/9yH3sHSly/44s3/zCaY2AqbobdmpqCl3XMWvf0dffP8tgHshBOctBSsn01BSWZRGJREgkEoRCISLRKIN9Xj5z+XZMUzZy7NYKI5UlZtTum2IVn3DB5AzSap8qZdXk4ULBIJlMphHwMxdFUdoWDVjwmAyDqcnJxuBsJpFA1/U10zltXifvZM385OPDnLI9zN33pwE4YqufC87v3e/GfKM9E+uJYyz3E+s1nvT7NMpqiInxPKZpS19FozH8ft+SSkCdemJnBl0oCr29vSi12dDg4CBKbfbQjGRfxKQlJUJI4lGdvSNFpmcqZLPVhrGsu2G9Xi9d3d1YlsVMYr4Q+4EclLMcVFWlr7+fkeFhpqen8Xq9RKLRRie9lgayGTOX5/fHzBfvbwRitSAYsiuMKKraaKuqOssdbEl7/bVQNAm0qabR9phSGYJFg6BwgQkYFpXhcWQogB6fP6hbidGoD9YymQzRaBTTNBvtdgYzGtH5xCXHkc0ZmJYkFHQtSY1rtdhoz8R64hjLDY5lmpRKRYQQDG3eTCaTIZdLEwp1rthy/tldnHJCh8aylvBdH0E3t+vU3bAAm4aGmJyYpFpJ8eH3Hs3L33oHwLzoYpfLRVd3d8MlWW9vZCzLwqhWMU2Tbq8fWShR2jM2y2W5nvlyqs+7aJkwmJ3X2c6Dce6jv+eE2/+HWGRfhZ36vlqRm87y5xPme2rO33VzS2O5EqNRFyPPpNNUKxXK5XJH8oDNdWAdDn4cY7mfkKxPmohSk1ILBOwOLBwOEw6HFzQ0zYnM7piLS17hQUlOUjE665jnKqHMpe6GldhrT9F4D9lclfddfj8Ar3jxYEvpsKVq3x7sSCmZnp62r12xuqRo0f2BVak01rxXytR4jtd/YoRvf+m0lut9HbMGLhylJn0XjcVIzswghKCvv9/RVj3EcIzlKjPX3WPLT1ksOYJhASzLargmm9vtWKqRWa1E5k4jMF2ahssluejtR9Lb7SESXr4+7kai7oYVQlDeO7b4BxbgYFm76nRNr13k71osd0gpMQyDdCqF5nJhVKskpqeJxeOHxKDNwcYxlqtM3d0jpaRUKjE5OkooHMJjSM556IZ5EZxL7awsy6JUKtkldzSt0V5OJGBdiUUIgRr0r3oic6cRmLquENfdxKOrn1B/sLNaEb8Hw9rVMUcEFozotSwLaVk1tZ39FwVQd8O63W56enupVCqkkvPL5ZqmiWEYjWtWbzsGdWPgGMs1QgiBXltn8/v9ICV5vwe337+ih0dKSSqVolIuEwqFSKVSRCIRwpHIkvYrpaRcKjE5OcnA4CBVt4tE1mBw0yYqw+OL72A/Uq6YqIpYMym3VqyWyPdGYH/MSsMhF1d99IR5wuDNGIbB8N699Pb27lf1q7obtqe3txa5va899/hGhoeJx+NYlkUymWRoaOiQvW82Go6xXEPUWvHY+tpGc3vZ+1RVent7GRkeJpVK4fX5lmwoYV8gjqppDO/di5SSSCRywOSpgV1c+NEncvz4lyP0dHt4+QsH6elyr/kxmqZJPp/HqFaJRKON9nJ+53YcTKLvqzkrXVBof5FoUVVVCUciTExM0O2dXfC5eT9rQfP3tHuGNU0jHo+TqEVqd3d3oziGcsPgGMsV0EpdZS6dPGRLwbIsyuVyQ3O1XCphmmZDCGApKIpCMBgkMT0N2OH+B1LQwv07Mnzgo/c1Xt/w24k10z9tpp67l0qlKBaLlMvleXJty6HZQErDbIjbNzPXRV2uWGRzVTweH+ftvJm5l+dAW3NcjJUY3np5MYCpYp6enh48yywvtlZYTbmn1gJ5qA4HH46xXCaGYWCaJi6XC8uyGu21fnDrbthwOEw0FmN8bIxcNtvxrKcuLSeEQqVSJjE9TSgUolQqMToywuCmTfs9GKSVyzNfsPjuj/fMel8qXWXXo7k1N5aKouDz+fD6fBQLBXRdJ7QKA4nmNdxOqr+UyyZ/umuGf756B8WSRU+Xm6s/cSJbNvlWdBwHK4ZhMDkxQSgcRgCTk5Ns2rQJ3X1grHUbhkEymaS7uxtLShLT0/NUixwOXhxjuQws02zMEgxVxTTtEaSpqWvuRqu7YcHu1Hv7+hrbFz1uyyKXy9XKg/Xh8ajE43ECwaBdFaVQaAibr8Y5dGJ0LdOkWCiQzeXo6emhUCiQy+Xo6urG455/TvujGn3dDVssFBpC4KlkclXdsJ2QzRl8/HM7qFTs+2tyusw/fX4HV12x/ZDM36tHB9dnl16fD/UAkjzUNK1RVBvA5/MdULNeh5Vx4NxpBxGKqkKxxB/WKe9tufmGiqKA8KC53CSmbZm5WLyXYtEiEHCtyppqM50YXaEouHSdUrHIyPAwhmEQi8VQFMHbX38Yd96TxDDsYI7DNvvYvB9mVXU3bCweJxQKUSgUMAxjxfs1l1jBvlAyG4ayzq7Hckvez0ZBVVW8Xm9juaG5fSBQF8xofu2wcXCM5SFEKlNhZLRIyG8bRNM0KZZMsnmDQGB1Xci5nEG5YhLwa7hbzBDr2FU0bEOdzWZRVZVQOIyiKGwe9PKDr53JH/48TXeXm5OOD+8XybC6G1ZKOau90s6vXF7aGpbfqxL0a2Tz+wz16SdF0F2H7mxlMcELB4e1wjGWy8CqrfsdbLh1hd4uSSZdwOuPYVYLFHJTbBnavGrfIaVkZLzE1V97mMf3FHjqk+K84ZVb2ho5yzQpFApks1n8fj/VapVsNksgEMDtVuntFrz8RaujErMUVjsway6dlEoLh1x8/uMn8LHP7mB4rMgp28N86MJjHMEGB4d1wDGWy6CVMPjBgNejYZl+hND5wc/HePb53XTHNEoli0BgdVxGM6kqF176f0wlKgD89PpRCgWDi955FD7v/Nut7oatV6gwLYtisQiAUa1SLJU2TJCENxbkuNt+hZQSOyZW0BXTcUVbl2nTNIVjjwrylU+fjCUlLpdCOOgYSgeH9eDg6/EdVoSiKphSJRbRGZ+qomouAqs4UykUjIahrPPb26YpllrPxIUQ6LpOMBgEISiVSkxPTZFKpRgdHW2plHKw4umK4j9skN/s0rjuXtA3DeAeGlhwXVcIQSyq0xVzO4bSwWEdcWaWy+Rg0dqci9ej4fVovPpvV8/12ozHraIo0OylHuj1LCiNK4RozBz9fj/lcJh0KoUQgs2bN2+IWSWAqgp6ujy85bVb99t3dpILfCBgmiamaaJpWkNeTtO0g8KDY1lW4zib2w4bC+eqLhM9HsG3ddO8fwea+sr+xudTefvrDmu8drsVLrnwmI4DcyzTpJDPI4RASkk+n29bONhhYQzDoFwu26W+mtoHGpZlkc/lGN67l2KxyPTUFKMjI+t9WB1hGAbpdLqhC1tvO2w8nJmlw6ri92m86LkDPP2cHhLJCn09bkKBzm4zy7IolkqNGWUunyedTuMPHNiz9QORugFKJBL09PSQyWSoVqsMbV4bj8JKUBQFfyBAsVRiYtzWJR4YHFzno1qcejWS5MwMlXKZqmFgGIa9pOCw4XCMpcOqE/BrBPwa/b2eJX2unqZRD+hprsPpsDQURSEQDFIul5mcnEQIweCmTQesGxZs49OqfaBSX2/v6elhcnISsIuZO/frxsRxwzocUDQnds9N8nZYGlJKqjUxBSklpmEckEaoPgsuFgr0DwwQCAQaM8wDHcuySKfTjUFIKpU6IF3dDivHmVk6OGxA6gaoWqmwaWiIdDrN5OTkAe2G9Xi9aJqG3tVF5CBY96u7YQ3DYNPQUEO7VsZi631oDmuAYywdHDYgdTesv+bGjsViRKPRA9YNezBKxdXdsEObNzciuutth42HYywdHDYoB5vxORhpThNxjOTGZkOtWQohniOE2CmEeEQIccl6H4+Dg4ODw8ZgwxhLIYQK/CvwXOA44FVCiOPW96gcHBwcHDYCG8ZYAmcCj0gpH5NSVoD/BF60zsfk4ODg4LAB2EjGchDY2/R6uLbNwcHBwcFhRWwkY7koQoi3CSHuFELcOTU1td6H4+Dg4OBwkLCRjOUIMNT0elNtWwMp5TVSytOllKd3d3fv14NzcHBwcDh4EQeiosdyEEJowC7gGdhG8g7g1VLKB9q8fwrYvcSv6QKmV3KcByHOOR86HIrnfSieM6zsvLdIKQ+52caGybOUUhpCiHcDNwAq8K12hrL2/iVfbCHEnVLK01dwmAcdzjkfOhyK530onjMcuue9EjaMsQSQUv4K+NV6H4eDg4ODw8ZiI61ZOjg4ODg4rAmOsVwa16z3AawDzjkfOhyK530onjMcuue9bDZMgI+Dg4ODg8Na4cwsHRwcHBwcFsExlg4ODg4ODovgGMsOOBSqmQghhoQQvxVCPCiEeEAI8d7a9pgQ4kYhxMO1/6PrfaxrgRBCFULcLYS4rvb6MCHE7bVr/kMhhL7ex7iaCCEiQogfCyF2CCEeEkI8+VC41kKI99Xu7/uFED8QQng24rUWQnxLCDEphLi/aVvL6ytsvlg7/3uFEKeu35EfuDjGchEOoWomBvB+KeVxwFnAP9TO8xLgZinlUcDNtdcbkfcCDzW9/jRwtZTySCAJvHldjmrt+Bfgf6WUxwInYZ/7hr7WQohB4D3A6VLK7dj52K9kY17ra4HnzNnW7vo+Fziq9u9twFf30zEeVDjGcnEOiWomUsoxKeVfa+0sduc5iH2u36697dvAi9fnCNcOIcQm4PnAN2qvBfB04Me1t2yo8xZChIFzgW8CSCkrUsoUh8C1xs4t99YUv3zAGBvwWkspbwFm5mxud31fBHxH2vwZiAgh+vfPkR48OMZycQ65aiZCiK3AKcDtQK+Ucqz2p3Ggd50Oay35AvBBwKq9jgMpKaVRe73RrvlhwBTw7zXX8zeEEH42+LWWUo4AnwX2YBvJNHAXG/taN9Pu+h5yfdxycIylwyyEEAHgJ8A/SikzzX+Tdp7Rhso1EkK8AJiUUt613seyH9GAU4GvSilPAfLMcblu0GsdxZ5FHQYMAH7muyoPCTbi9V1rHGO5OItWM9koCCFc2Ibye1LKn9Y2T9RdMrX/J9fr+NaIpwAvFEI8ge1ifzr2el6k5qqDjXfNh4FhKeXttdc/xjaeG/1aPxN4XEo5JaWsAj/Fvv4b+Vo30+76HjJ93EpwjOXi3AEcVYuY07EDAn6xzse06tTW6b4JPCSl/HzTn34B/H2t/ffAf+/vY1tLpJSXSik3SSm3Yl/b30gpXwP8Fvi72ts21HlLKceBvUKIY2qbngE8yAa/1tju17OEEL7a/V4/7w17refQ7vr+Anh9LSr2LCDd5K51qOEo+HSAEOJ52Ota9Wom/7zOh7TqCCGeCvwBuI99a3cfxl63/BGwGbuk2cullHMDBzYEQojzgQ9IKV8ghDgce6YZA+4GXiulLK/n8a0mQoiTsQOadOAx4I3Yg+cNfa2FEB8DXoEd/X038Bbs9bkNda2FED8AzscuxTUBXAH8nBbXtzZw+DK2S7oAvFFKeed6HPeBjGMsHRwcHBwcFsFxwzo4ODg4OCyCYywdHBwcHBwWwTGWDg4ODg4Oi+AYSwcHBwcHh0VwjKWDg4ODg8MiOMbSwWEF1Kp3vKvWHhBC/Hixz6zgu06upTE5ODjsZxxj6eCwMiLAuwCklKNSyr9b5P0r4WTAMZYODuuAk2fp4LAChBD1KjQ7gYeBbVLK7UKIN2BXdfBjlz76LLYAwOuAMvC8WkL4Edgl4LqxE8LfKqXcIYR4GXYiuYkt+P1M4BHAiy1F9kngOuBLwHbABXxUSvnfte9+CRDGTrj/rpTyY2v8Uzg4bGi0xd/i4OCwAJcA26WUJ9eqtVzX9Lft2NVbPNiG7kNSylOEEFcDr8dWhboGeIeU8mEzsogSAAABtElEQVQhxJOAr2Dr014OXCClHBFCRKSUFSHE5di1GN8NIIS4Elue701CiAjwFyHETbXvPrP2/QXgDiHE9Y4qi4PD8nGMpYPD2vHbWm3QrBAiDfyytv0+4MRahZezgf+yFccAcNf+vxW4VgjxI2zB71Y8G1sE/gO11x5sKTOAG6WUCQAhxE+BpwKOsXRwWCaOsXRwWDua9UWtptcW9rOnYNdSPHnuB6WU76jNNJ8P3CWEOK3F/gXwt1LKnbM22p+bu77irLc4OKwAJ8DHwWFlZIHgcj5Yqxf6eG19klrVh5Nq7SOklLdLKS/HLtQ81OK7bgAurAlhI4Q4pelvzxJCxIQQXuy101uXc4wODg42jrF0cFgBNVfnrUKI+4GrlrGL1wBvFkLcAzyAHSwEcJUQ4r7afm8D7sEuJXWcEOL/hBCvAD6BHdhzrxDigdrrOn/Brk16L/ATZ73SwWFlONGwDg4bjFo0bCMQyMHBYeU4M0sHBwcHB4dFcGaWDg4ODg4Oi+DMLB0cHBwcHBbBMZYODg4ODg6L4BhLBwcHBweHRXCMpYODg4ODwyI4xtLBwcHBwWER/j8opU/nLc0x6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'VelocityOfMoney',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEWCAYAAADIJfYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3WmYFNX59/Hvj5lhR1kEVFBABQVBtlHARAMSFPd9j+JuoolRExUTE01iIsYlamJUomyJD4kSVDRq4A8SjIIEEDdARUEZZF+UHWbmfl6cM9A0s3YPPcNwf66rr646tZ1TVV131anTVTIznHPOOZcZtao6A84559zexAOvc845l0EeeJ1zzrkM8sDrnHPOZZAHXueccy6DPPA655xzGZR24JV0r6SVkpbG/rMlLZK0XlL39LOYcr4ylg9JbSWZpOzduZzqQNKlksZXdT6cc640kvpKyqvqfBSnzMAraaGkTTGAFX3+FIcdDPwE6GRm+8dJHgR+aGYNzezdVDMWA9lhqU5fVj7i/DfE8iyW9LCkrDSWVypJl0iaEZe3RNJrkr69u5ZXjvyMkLRV0rr4+VDSfZL2LW06M3vWzE5McZn3SNqWtC/dnloJ9mwJ63+9pNWSJkg6oqrzVRZJV0j6byXPs7akhyTlxfWxUNIjlbkMV7rKClKS9pH0iKQv47b8LPbvF4cvlPTdhPEPkPRMPCaukzRP0q8kNYjDE4/TKyWNltQ43XxWtfJe8Z4eA1jR54cx/WBglZktTxi3DfBRpeYyNeXJR1czawh8B7gQuGp3ZETSrcAjwO+AloT19mfgzBLGz9SV8+/NrBHQHLgS6A28VbTT76Z8/SNpX/p9McuRpL3hNsjv4/7XGlgOjKjoDPa0WpYS8nsnkAscAzQC+gKzMpitGi0TvydJ2ZJqAxOBI4GBwD5AH2AVYdsmT9MUmArUA/rEY9EAoDFwaMKoRcfpQ4AmwD27ryQZYmalfoCFwHeLSf8usAkoBNYDo+O3ARuAz+J4BwL/BFYAC4CbEuaRBfwM+AxYB8wEDgKmJMxnPXBhMcuvBdwFfEE4aI0C9gXqFJePYqY34LCE/ueAxxP69wWeAZYAi4F7gayEfD8IrAQ+B26M88suZjn7xvycX8o6vgcYA/wN+Aa4JpbjEeCr+HkEqBPH3w94BVgLrAbeBGrFYXfE/K4DPgb6l7DMEcC9SWmNYnl/GPuvAN4C/kD48dwb0/6btB5viuthJfBAUV5KKOffShg2GfhtXN4m4LB0tgFJ+23ysgknGW/Hdfge0DcpL7+JeVkHjAf2Sxj+7YRpF8V1cjSwrCh/cbxzgPfKs/6BU4H1sfsYwgFpbSz7n4DaSev8RuBTYEFMezTm5RvC7+i4pLI/T9i/1gEfAB0IAW95nO7EsvZ9oCOwGSgg7NNr4/h14rb4Mq6DJ4F6cVhfII+wXy4F/lrMungFuLmE9XQl8HJC/6fA8wn9i4BusfsIYALhN/ExcEHCeOXJ488I+9NC4NJSfq8HAuPicuYD1yat6+cIx6N1hJP/3FLmdSzwP+Dr+H1s0n54HzA9bteXgKYV2IeTf09XAnNjvj4Hro/jNmDnY/n6WMbSjkG7bFfCcWsZ0LCU8i4k/i4J+9UHlHC8KOE4fQMwPmn/2KVMiXlM6B/MjlgzBzg7YdgVwH/jPrKGEKtOThjeFBge18Ma4MWEYacBs+N2eBs4qqTybJ+mzBFKCLzFFSx5RRGC40zgl0BtwhnL58BJcfhtccUfDgjoCjQrboUXs+yrCDv9IUBDYCwJP+pyTJ+YzyMIB5lbEoa/ADwVd8oWhJ2/aEf9PjCPcJLQFHiDkgPvQCC/uGFJP9ZtwFlxndUDfg1Mi8tuHjfob+L49xEOHDnxc1xcf4cTDkQHxvHaAoeWsMwRJAXemD6KcFVatDPmAz8CsmO+rmDXwPtGXA8HA58A15RSztIC75eEs+XsWK6UtwGlBF6gFeFE4pS4vgfE/uYJefmMEJzqxf4hcVgbwg/34pjHZuw48M9h5x/rC8BPylr/hP33/wFvxv6ehINqdtyGc0kITLGcE2K5i4LH92Jesgm3f5YCdRPKvhk4KQ4fRTiw/DyW4VpiAC/Hvr/T9o9pfyAEoqaEk7eXgfsSjhH5wP2EA3m9YtbFXXHb3wB0AZQw7BDCAa0WIRh8QTzmxGFr4rAGhH3/yljG7oQg2qkCeXw45vE7hJP2w0vYdlMINVZ1gW6Ei4oTktb1KYSTlfuAaSXMp2nM/2UxzxfH/qJj4GTCiU/nWL5/UrF9OPn3dCrhSlKxjBuBHqUcy0s7Bu2yXYG/AyPLG0/ivH9VxviJx+kmhJPgXycML3eZgPMJ+1AtQg3nBuCAhP16G+G3kAX8gBBkFYf/C/hHzEMO8J2Y3p1w8torTjcolrFOqeUqbWDCilpP2PmLPteWsrESV1Qv4Muk4XcCw2P3x8CZZa3wEoZPBG5I6D88rrjsck5vhLPIDbF7NDvO5loCW0g4SBB+FG/E7knA9xOGnUjJgfdSYGkZ6/geYEpS2mfAKQn9JwELE34QLyWXj3BWu5xQG5FTxjJHUHzgHQJMSNgZk7ffFewaeAcm9N8ATCylnFuT9qWik4TJ7PyDSmsbUHrgvYOkKy/g38CghLzclVSm1xP23xdKKN8dwLOxuynhIHBAKet/c1wHSwlBoaSTpJsTlxnLeUIZ23cNoYquqOwTEoadTvhNF9UeNIrzbFyO9Z68/UX4DR2akNaHHVfifeM2r1tKXrMIV/BvxWV/VbQt4vBFQA/gImAo4UTgCEKQHRfHuZB44pIw3VPA3eXMYz7QIGH4c8AvisnrQYQr/kYJafcBIxLW9f8lDOsEbCqh3JcB05PSpgJXJOyHQ5LmtTWur/Lsw78ubrkJ478I/DhhHSQfy0s7Bu2yXQkng0PKWOZCdgTeT0n4DZcwftFxem1c7/OAVqmWKWnc2cT4Q9iv5ycMqx+XvT9wAKE2oEkx83iCeDKSkPYxMTCX9Cnv/aGzzOz/yjluojbAgZLWJqRlEapGIezEn6UwX9hx9lvkC8KZXUvCWWJ59IjLP58QcBoQfvhtCGc1SyQVjVuLcAAoWvaihPkk5iPZKmA/Sdlmll/KeIuS+osr34Gx+wHCD3x8zN9QMxtiZvMl3RyHHSnp38CtZvZVKctN1opQhVZSvsrKe2I+i/OcmX2vHPOpzG2QrA1wvqTTE9JyCFfNRZYmdG8kXJVC6fvs34C58R75BYRAsKSUfDxoZnclJ0rqQLj6yiUcALIJNUeJFiVN81PgasJ6McL9tf0SRlmW0L0JWGlmBQn9EMp4IKWv92TNYx5nJowvwu+8yAoz21zC9MR8PA48LqkeoTZrmKTpZjYX+A/hIHpY7F5LuLrpE/shbNNeSceabEIVaHnyuMbMNiT0l7QfHwisNrN1SePmJvQn7zt1S/j9J//Gi+bVKqE/eR/PIWzX8uzDyfvIyYQTkQ6EbVqfUONYktKOQbDrdl1FCFLlVd7xe8RjWw7hJPhNSZ3MbHNFyiTpcuBWQi0ShP098TeyfbuZ2ca4rzQknESvNrM1xcy2DTBI0o8S0mpT+jFwt/+PdxHhrLJxwqeRmZ2SMPzQUqYvzVeEQhc5mHDWuqz40YtnwXOEM81fJuRrC+G+XlG+9zGzI+PwJYQDcOKySzI1zuussrKS1F9c+b6KeV5nZj8xs0OAM4BbJfWPw/6fmX07TmuEqqBykdSQcLX8ZkJycr6Kk7wuKhLoEyUuK91tsIHwIyyyf0L3IsLVQuJ+2cDMhpQjjyXus2a2mLC9zyFczfy1HPMrzhOEM/v2ZrYP4d6jksbZvq4kHQfcTgj2TcysMeGeYfI05VHWek/eH1YSAveRCePva6ExzC55LYuZbTKzxwlX7J1iclHgPS52/4cQeL/DjsC7CPhP0jZtaGY/KGcemyQ1KixpP/4KaCqpUdK45T3ZT55Xm6S05Hkl7+PbCOUpzz6cuI/UIVRVPwi0jPvIq+zYR4rbRiUeg0qY5v+Ak0pqnFmM/wPOLm/DLzPbBjwNtAM6l6NM20lqA/wF+CGhKr8x8GFx4xZjEWGbF9eaehHw26TtUN/MRpc2w90deKcD6yTdIamepCxJnSUdHYc/DfxGUvvY8u4oSc3isGWEezglGQ3cIqldDBi/I9ybLO2qsjRDgGsl7R+vUsYDD8Xm8bUkHSrpO3Hc54CbJLWW1IRw075YZvY1IaA/LuksSfUl5Ug6WdIuLXqTyneXpOaxKf4vCVdUSDpN0mEKp2RfE6pgCiUdLumEuENuZkeDiVJJqiOpJ6GaZg2hEUFF3CapiaSDgB8T7oWkpRK2wWzgoriuc4HzEob9DThd0klxn6yr8HeK1uXI2rPAdyVdEFtyNpPULWH4KEIQ7EJod5CKRoTqtfUKfzH6QTnGzyfca8yW9EvCFW+FlWO9LwNaxxasmFkh4YD2B0ktACS1knRSeZcp6ea4/uvFdToolqnob4D/AfoRqr/zCCeGAwn3tIvGeQXoIOmyuM1zJB0tqWMF8vgrhb82HUdoMPN8MetnEeFe531xvzmKUNPwt/KWN8GrMc+XxHJfSDjZeCVhnO9J6iSpPuEW05hYQ1DRfbg24V7sCiA/Xikm/i1wGdBMO/+dsMRjUAn+SghE/5R0RNx3mkn6maRTihn/YcJ+OjIGxqLt8nBcrztR+LvnlYTj2uflKFOiBoQThRVxXlcS7p2XKf4mXgP+HI9zOZKOj4P/AnxfUq8YwxpIOlU7n5jtoryB92Xt/N/LF8qZ4QLCDtyN0JhjJSHYFm3chwkH0PGEA80zhJv0EKpLR0paK+mCYmY/jLChp8R5byY0AkqJmX0Q53VbTLqcsGHnEILRGHZUi/yFcD/lPcLfHko9wJrZQ4QqjrsIG34R4czrxVImuxeYAbxPqDqZFdMA2hPOFtcTrrD+bGZvEHbCIYT1vJTQKOLOUpZxu6R1hCqfUYTqzGOTqtzK46U47WxCI4RnKjh9SdLZBr8gXJmuAX5FaLwEbD94nkm4kizaHrdRjt+DmX1JaNDyE0KV/GxCo8AiLxCuEl4ws43lLunOfgpcQmjE9RfKPpH5N/A6oWHbF4TfQnluEZSktPU+idBSd6mklTHtDkJDx2mSviHsm4dXYHkbgYcI++xKwv3ec83scwAz+4Swr78Z+78hHHjfKqouj1W/JxLuA38V51XU8Kc8eVway/oV4eTq+2Y2r4T8XkyorvyKsL3vTuVWnJmtIhwff0L4Dd4OnGZmKxNG+yuhPcBSQmOum+K0FdqH4/q5iXC8XUPYv8YlDJ9HCLSfx2PugZR+DCpuGVsINWbzCPd7vyFcfO0HvFPM+KsJrbq3Ae/EY9FEwsXE/IRR35O0PuZ7EKE18uqyypS0rDmEfWwq4SSjC6FNQXldFvM5j9CO5uY43xmEBll/inmYT7hfXKqiFlvOpUSSEapE55c58u7NR1vCCVhOGrUelZWXzwitgFNpF+EyTFJfQsO78tR4ZIykyYR8PV3VeXGVa294SIFzGSPpXEKV1qSqzotzrnrao55641x1Fq9QOgGXxfuKzjm3C69qds455zLIq5qdc865DPKq5jLst99+1rZt26rOhnPO7VFmzpy50syaV3U+qiMPvGVo27YtM2bMqOpsOOfcHkVSRZ4mt1fxqmbnnHMugzzwOueccxnkgdc555zLIL/H69weZNu2beTl5bF5c4kv+3Euo+rWrUvr1q3Jycmp6qzsMTzwOrcHycvLo1GjRrRt2xYplZcPOVd5zIxVq1aRl5dHu3btqjo7e4yMB974BptRhPfmGuFdso9Kakp4GHxbwsuSLzCzNfENPI8SHky/kfCS6FlxXoMILx6A8FL3kTG9J+HB4vUIbwD5sZlZScuozPJtXbWG/HUbKCgwsuvVpnBjuDKpVb9uyt0mkVWvLoUbN+3cbZDVIIy3UzeQVb/83RnP356U10rMn0nUygp3d7IbNaR2s+LeMla6zZs3e9B11YYkmjVrxooVK6o6K3sWM8voh/CWkx6xuxHhjSqdgN8Dg2P6YOD+2H0K4ZVMAnoD78T0poQ3lDQFmsTuJnHY9Diu4rQnx/Ril1Hap2fPnlYR6z9fZK9kd7BXsjvYysnTKqW7Mue1O7qrSz6qe14TPxsWLKrQflVkzpw5KU3n3O5U3H4JzLAMx5c95ZPxxlVmtsTiFauF1zrNBVoRXnE1Mo42kh0vjj8TGBW35TSgsaQDgJOACRZeD7WG8BqqgXHYPmY2LW78UUnzKm4ZlVm+yp6lq4F8N3Fu71WlrZrjq9y6E97V2NLCC4chvHuyZexuxc7vFs2LaaWl5xWTTinLSM7XdZJmSJpR0SqULVv92fiubHty4M3KyqJbt2507tyZ008/nbVr11Zo+nvuuYcHH3yw2GGjRo2ic+fOdOnShe7du5c4XmVr27YtXbp0oUuXLnTq1Im77rqr1AZsxx57bIXm37dvXw4//HC6detGt27dGDNmTLpZdnuwKgu8khoC/wRutvBi6+3ilepuPTSVtgwzG2pmuWaW27x5xZ54VrdOVmVkz9VwtfbgP/LVq1eP2bNn8+GHH9K0aVMef/zxSpnva6+9xiOPPML48eP54IMPmDZtGvvuu+8u4+Xn757XLb/xxht88MEHTJ8+nc8//5zrr7++xGW//fbbFZ7/s88+y+zZs5k9ezbnnXfeTsPMjMJCP2nfW1TJz19SDiHoPmtmY2PyslhNTPxeHtMXAwclTN46ppWW3rqY9NKW4ZxLQZ8+fVi8ePH2/gceeICjjz6ao446irvvvnt7+m9/+1s6dOjAt7/9bT7++ONi53Xffffx4IMPcuCBBwJQp04drr32WiBcMd58883k5uby6KOPsnDhQk444QSOOuoo+vfvz5dffgnA888/T+fOnenatSvHH388AB999BHHHHMM3bp146ijjuLTTz8ttUwNGzbkySef5MUXX2T16tVMnjyZ4447jjPOOINOnTptHwdg8uTJHH/88Zx66qkcfvjhfP/73y93AF24cCGHH344l19+OZ07d2bRokWMHz+ePn360KNHD84//3zWr18PwOuvv84RRxxBjx49uOmmmzjttNOAXWsPOnfuzMKFCwH429/+tr3c119/PQUFBdvz/vOf/5yuXbvSu3dvli1bBsCyZcs4++yz6dq1K127duXtt9/ml7/8JY888sj2+f/85z/n0UcfLVf5XMky/lrA2Ep5JLDazG5OSH8AWGVmQyQNBpqa2e2STgV+SGhk1Qt4zMyOiS2UZwI94ixmAT3NbLWk6cBNhCrsV4E/mtmrJS2jtPzm5uZaRZ7VvHXVWvLXraewELLq1qZw4yYgvZa4SNSKrW936k5zvpXVXd3zV13yioTSbNU8d+5cOnbsWOHpKlPDhg1Zv349BQUFXHTRRVx99dUMHDiQ8ePHM2bMGJ566inMjDPOOIPbb7+dBg0acMUVV/DOO++Qn59Pjx49+P73v89Pf/rTnebbtGlTFixYUOxVbt++fenUqRN//vOfATj99NM577zzGDRoEMOGDWPcuHG8+OKLdOnShddff51WrVqxdu1aGjduzI9+9CN69+7NpZdeytatWykoKKBevXo7zb/omez77bff9rRu3brx1FNPsWnTJk499VQ+/PDD7X+ZKVoHkydPZuDAgcyZM4c2bdowcOBArr/++l2uaPv27cuSJUu2L3fixImsW7eOQw45hLfffpvevXuzcuVKzjnnHF577TUaNGjA/fffz5YtW7j99ttp3749kyZN4rDDDuPCCy9k48aNvPLKK9xzzz00bNhw+7rs3Lkzr7zyCps2beL2229n7Nix5OTkcMMNN9C7d28uv/xyJDFu3DhOP/10br/9dvbZZx/uuusuLrzwQvr06cPNN99MQUEB69evZ82aNZxzzjnMmjWLwsJC2rdvz/Tp02nWrNlO5Stuv5Q008xyy71j7UWq4n+83wIuAz6QNDum/QwYAjwn6WrgC+CCOOxVQtCdT/g70ZUAMcD+BvhfHO/XZrY6dt/Ajr8TvRY/lLKMSlO7WeOUDqjO7Sk2bdpEt27dWLx4MR07dmTAgAEAjB8/nvHjx9O9e3cA1q9fz6effsq6des4++yzqV+/PgBnnHFGSsu98MILt3dPnTqVsWNDZdlll13G7beH8+dvfetbXHHFFVxwwQWcc845QLgq/+1vf0teXh7nnHMO7du3L9fyEi9KjjnmmBL/p3rMMcdwyCGHAHDxxRfz3//+d5fAC6GqOTd3Rxxat24dbdq0oXfv3gBMmzaNOXPm8K1vfQuArVu30qdPH+bNm0e7du225/t73/seQ4cOLTXvEydOZObMmRx99NFA2GYtWrQAoHbt2tuvmHv27MmECRMAmDRpEqNGjQLCffx9992Xfffdl2bNmvHuu++ybNkyunfvvkvQdRWX8cBrZv8l/M2nOP2LGd+AG0uY1zBgWDHpM4DOxaSvKm4ZzrnyK7rHu3HjRk466SQef/xxbrrpJsyMO++8c5d7o4lVlaU58sgjmTlzJieccEKxwxs0aFDmPJ588kneeecd/vWvf9GzZ09mzpzJJZdcQq9evfjXv/7FKaecwlNPPVXiMoqsW7eOhQsX0qFDB957771Sl538n+qK/Mc6cb5mxoABAxg9evRO48yePTt5su2ys7N3qtouahBmZgwaNIj77rtvl2lycnK25zErK6vMe+bXXHMNI0aMYOnSpVx11VVlF8qVaQ9u4uGcq0r169fnscce46GHHiI/P5+TTjqJYcOGbb8vuXjxYpYvX87xxx/Piy++yKZNm1i3bh0vv/xysfO78847ue2221i6dCkQrviefvrpYsc99thj+fvf/w6EK8njjjsOgM8++4xevXrx61//mubNm7No0SI+//xzDjnkEG666SbOPPNM3n///VLLtX79em644QbOOussmjRpUuZ6mD59OgsWLKCwsJB//OMffPvb3y5zmuL07t2bt956i/nz5wOwYcMGPvnkE4444ggWLlzIZ599BrBTYG7bti2zZs0CYNasWSxYsACA/v37M2bMGJYvD81YVq9ezRdflP6Wvv79+/PEE08AUFBQwNdffw3A2Wefzeuvv87//vc/TjrppJTK5nbmj4x0zqWse/fuHHXUUYwePZrLLruMuXPn0qdPHyDcB/3b3/5Gjx49uPDCC+natSstWrTYXv2Z7JRTTmHZsmV897vfxcyQVOIV1h//+EeuvPJKHnjgAZo3b87w4cMBuO222/j0008xM/r370/Xrl25//77+etf/0pOTg77778/P/vZz4qdZ79+/ba3Lj777LP5xS9+Ua51cPTRR/PDH/6Q+fPn069fP84+++xyTZesefPmjBgxgosvvpgtW7YAcO+999KhQweGDh3KqaeeSv369TnuuONYt24dAOeeey6jRo3iyCOPpFevXnTo0AGATp06ce+993LiiSdSWFhITk4Ojz/+OG3atClx+Y8++ijXXXcdzzzzDFlZWTzxxBP06dOH2rVr069fPxo3bkxWlv9rozJkvHHVnqaijauc252qQ+Mqt8PkyZN58MEHeeWVV2rsMgsLC+nRowfPP/98iffHvXFVxXhVs3POuWLNmTOHww47jP79+5e7UZorm1/xlsGveF114le8rjryK96K8Ste55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zpXb5s2bOeaYY+jatStHHnnk9hchLFiwgF69em1/lvDWrVurOKfOVV8eeJ1z5VanTh0mTZrEe++9x+zZs3n99deZNm0ad9xxB7fccgvz58+nSZMmPPPMM1WdVeeqLQ+8ztVg4ycv49yrpnHcGf/h3KumMX7ysrTmJ2n7K/G2bdvGtm3bkMSkSZO2vxhg0KBBvPjii2nn3bmaygOvczXU+MnLuP9Pn7BsxRbMYNmKLdz/p0/SDr4FBQV069aNFi1aMGDAAA499FAaN25MdnZ4Am3r1q13ekevc25nHnidq6GeGrWALVt2fin7li2FPDVqQVrzzcrKYvbs2eTl5TF9+nTmzZuX1vyc29t44HWuhlq+ckuF0iuqcePG9OvXj6lTp7J27drtr5fLy8ujVatWlbIM52oiD7zO1VAt9qtTofTyWLFiBWvXrgXCy9UnTJhAx44d6devH2PGjAFg5MiRnHnmmSkvw7mazgOvczXU9Ze3o06dnX/iderU4vrL26U8zyVLltCvXz+OOuoojj76aAYMGMBpp53G/fffz8MPP8xhhx3GqlWruPrqq9PNvnM1VsbfxytpGHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJcZqLgZ8BBnwFfM/MVkpqCvwDaBvndYGZrZEk4FHgFGAjcIWZzcpEmZ2rCif2bQmEe73LV26hxX51uP7ydtvTU3HUUUfx7rvv7pJ+yCGHMH369JTn69zeJOOBFxgB/AkYlZD2NPBTM/uPpKuA24BfANcCmFkXSS2A1yQdTbhSfxToFIPt74EfAvcAg4GJZjZE0uDYfwdwMtA+fnoBT8Rv52qsE/u2TCvQOucqX8arms1sCrA6KbkDMCV2TwDOjd2dgElxuuXAWsLVr+KnQbyS3Ydw1QtwJjAydo8EzkpIH2XBNKCxpAMqsWjOOedcmarLPd6PCIER4HzgoNj9HnCGpGxJ7YCewEFmtg34AfABIeB2AooeldPSzJbE7qVA0el+K2BRwjLzYppzzjmXMdUl8F4F3CBpJtAIKHrQ6zBCgJwBPAK8DRRIyiEE3u7AgcD7wJ3JMzUzI9wDrhBJ10maIWnGihUrUiiOc845V7xqEXjNbJ6ZnWhmPYHRwGcxPd/MbjGzbmZ2JtAY+AToFod/FoPrc8CxcXbLiqqQ4/fymL6YHVfSAK1jWnH5GWpmuWaW27x580otq3POub1btQi8seEUkmoBdxFaOCOpvqQGsXsAkG9mcwgBs5Okoqg4AJgbu8cBg2L3IOClhPTLFfQGvk6oknbOOecyIuOBV9JoYCpwuKQ8SVcDF0v6BJhHuGc7PI7eApglaS6hZfJlAGb2FfArYIqk9wlXwL+L0wwBBkj6FPhu7Ad4FfgcmA/8Bbj1zOrxAAAgAElEQVRhtxbUuRpq7dq1nHfeeRxxxBF07NiRqVOnsnr1agYMGED79u0ZMGAAa9asqepsOldtKdTUupLk5ubajBkzqjobzgEwd+5cOnbsWKV5GDRoEMcddxzXXHMNW7duZePGjfzud7+jadOmDB48mCFDhrBmzRruv//+Ks2ny5zi9ktJM80st4qyVK1Vi6pm51zlMzOWfPUVS776isLCwu3d6Zxsf/3110yZMmX7k6lq165N48aNeemllxg0KNzh8dcCOlc6D7zO1VBLlyxh8+bNbN68mS+/+GJ799IlqTdtWLBgAc2bN+fKK6+ke/fuXHPNNWzYsIFly5ZxwAHhb/H7778/y5al9+pB52oyD7zO1XBmRmFhYVpXukXy8/OZNWsWP/jBD3j33Xdp0KABQ4YM2WkcSYTn2jjniuOB17kaquX+++8SACXRcv/9U55n69atad26Nb16haetnnfeecyaNYuWLVuyJF5JL1myhBYtWqSecedqOA+8ztVQy5Yu3eUq18xYtnRpyvPcf//9Oeigg/j4448BmDhxIp06deKMM85g5MjwpFZ/LaBzpauKlyQ45zKoqOq3sv7B8Mc//pFLL72UrVu3csghhzB8+HAKCwu54IILeOaZZ2jTpg3PPfdcpSzLuZrIA69zNdT+BxywvSFVy/33336lu/8B6b0bpFu3bhT3F7uJEyemNV/n9hYeeJ2roSRxwIEHbu9P7HbOVR2/x+ucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zlXIo48+SufOnTnyyCN55JFHAPy1gM5VgAde51y5ffjhh/zlL39h+vTpvPfee7zyyivMnz+fIUOG0L9/fz799FP69++/y/ObnXM7+P94nauhXm/ag4J1G3ZJz2rUgIGrZ6U0z7lz59KrVy/q168PwHe+8x3Gjh3LSy+9xOTJk4HwWsC+ffv6+3idK4Ff8TpXQxUXdEtLL4/OnTvz5ptvsmrVKjZu3Mirr77KokWL/LWAzlWAX/E658qtY8eO3HHHHZx44ok0aNCAbt26kZWVtdM4/lpA50qX8SteScMkLZf0YUJaV0lTJX0g6WVJ+8T02pKGx/T3JPVNmKa2pKGSPpE0T9K5Mb2OpH9Imi/pHUltE6a5M6Z/LOmkjBXauRrk6quvZubMmUyZMoUmTZrQoUMHfy2gcxVQFVXNI4CBSWlPA4PNrAvwAnBbTL8WIKYPAB6SVJTnnwPLzawD0An4T0y/GlhjZocBfwDuB5DUCbgIODIu/8+Sdj5Vd86Vafny5QB8+eWXjB07lksuucRfC+hcBWS8qtnMpiRehUYdgCmxewLwb+AXhIA6KU63XNJaIBeYDlwFHBGHFQIr4/RnAvfE7jHAnxTqvc4E/m5mW4AFkuYDxwBTK7eEztVs5557LqtWrSInJ4fHH3+cxo0bM3jwYH8toHPllHLglVQf+AlwsJldK6k9cLiZvZLC7D4iBMYXgfOBg2L6e8AZkkbHtJ7AQZI+icN/E6ufPwN+aGbLgFbAIgAzy5f0NdAspk9LWGZeTCuubNcB1wEcfPDBKRTHuaqX1ahBia2a0/Hmm2/uktasWTN/LaBz5ZTOFe9wYCbQJ/YvBp4HUgm8VwGPSfoFMA7YGtOHAR2BGcAXwNtAASHfrYG3zexWSbcCDwKXpVaUnZnZUGAoQG5ubuW8Pdy5DEv1L0POud0rncB7qJldKOliADPbqBSbMprZPOBEAEkdgFNjej5wS9F4kt4GPgFWARuBsXHQ84R7uxBOAA4C8iRlA/vG8YvSi7SOac4551zGpNO4aqukeoABSDoU2JLKjCS1iN+1gLuAJ2N/fUkNYvcAIN/M5piZAS8DfeMs+gNzYvc4YFDsPg+YFMcfB1wUWz23A9oT7hU7t0cJu7Nz1YPvjxWXzhXv3cDrhHuuzwLfAq4oa6J4v7YvsJ+kvDifhpJujKOMJVRjA7QA/i2pkHB1mliVfAfwV0mPACuAK2P6MzF9PrCa0JIZM/tI0nOEAJ0P3GhmBSmU27kqU7duXVatWkWzZs38v7KuypkZq1atom7dulWdlT2K0jlbkdQM6A0ImGZmK8uYZI+Tm5trM2bMqOpsOAfAtm3byMvLY/PmzVWdFeeAcDLYunVrcnJydkqXNNPMcqsoW9VaOq2azyZU4/4r9jeWdJaZvVhpuXPO7SQnJ4d27dpVdTacc2lI5x7v3Wb2dVGPma0lVBs755xzrgTpBN7ipvVnPzvnnHOlSCfwzpD0sKRD4+dhwv96nXPOOVeCdALvjwgPuvhH/GwBbix1Cuecc24vl3LVsJltAAZXYl6cc865Gi+dVs0dgJ8CbRPnY2YnpJ8t55xzrmZKpzHU84QnTD1NeH6yc84558qQTuDNN7MnKi0nzjnn3F4gncZVL0u6QdIBkpoWfSotZ84551wNlM4Vb9GLCG5LSDPgkDTm6ZxzztVo6bRq9ufWOeeccxWU1pOmJHUGOgHbX01hZqPSzZRzzjlXU6Xzd6K7Ca/36wS8CpwM/BfwwOucc86VIJ3GVecRXkC/1MyuBLoC+1ZKrpxzzrkaKp3Au8nMCoF8SfsAy4GDKidbzjnnXM2Uzj3eGZIaA38hvBxhPTC1UnLlnHPO1VApX/Ga2Q1mttbMngQGAINilXOpJA2TtFzShwlpXSVNlfSBpJfjFTSSaksaHtPfk9S3mPmNS5pXU0kTJH0av5vEdEl6TNJ8Se9L6pFq2Z1zzrlUVTjwSuqR/AGaAtnlDGYjgIFJaU8Dg82sC/ACO/4bfC1ATB8APCRpe54lnUO40k40GJhoZu2Biex4kcPJQPv4uQ7wp24555zLuFSqmh8qZZgBpb4kwcymSGqblNwBmBK7JwD/Bn5BaDE9KU63XNJaIBeYLqkhcCshiD6XMK8zCa2tAUYCk4E7YvooMzNgmqTGkg4wsyWl5dc555yrTBUOvGbWbzfk4yNCYHwROJ8djbTeA86QNDqm9Yzf04HfEE4CNibNq2VCMF0KtIzdrYBFCePlxbRdAq+k6wgBnYMPPjidcjnnnHM7qS4P0LgKeEzSL4BxwNaYPgzoCMwAvgDeBgokdQMONbNbirl63s7MTJJVNDNmNhQYCpCbm1vh6Z1zzrmSVIsHaJjZPODEON8OwKkxPR+4JWGZbwOfAN8BciUtjGVoIWmymfUFlhVVIUs6gPA3J4DF7Px3p9YxzTnnnMuYavEADUkt4nct4C7Ce36RVF9Sg9g9gPAqwjlm9oSZHWhmbYFvA5/EoAvhirnoBQ6DgJcS0i+PrZt7A1/7/V3nnHOZlk5V8yYzK5RUoQdoxPu1fYH9JOUBdwMNJd0YRxkLDI/dLYB/SyokXJ1eVo58DQGek3Q1oXr6gpj+KnAKMJ9wX7jMvz4555xzlS3jD9Aws4tLGPRoMeMuBA4vY34Lgc4J/asIV+LJ4xlwY3K6c845l0npvBbwhtj5pKTXgX3M7P3KyZZzzjlXM6V0j1dStiTF7oMI/63NqsyMOeecczVRKk+uupZwP/eL2D2R0NDq75LuqOT8OeecczVKKlXNNwOHAo2AuUAbM1spqT7wP+D+Ssyfc845V6OkEni3mtkaYI2k+Wa2EsDMNkraWsa0zjnn3F4tlcBbT1J3QjV17dit+Klb6pTOOefcXi6VwLsUeLiY7qJ+55xzzpUglZck9N0N+XDOOef2Cqm0av6epF2eICXpMkmXVE62nHPOuZoplf/x/ojwsvpkY4GfpJcd55xzrmZLJfDmmNn65EQz2wDkpJ8l55xzruZKtVVzgxhot5PUCKhdOdlyrubZumoN277ZgJlRq05tbNNmAGrVr0vhxtBtiKz6dSncuGnnboOsBmG8cnVDnLbk7uRlV7R7d+e1uudvd+W1EFErK1wTSZDdqCG1mzVOY89z1Y6ZVegD/BR4jfDgjKK0tsC/gNsqOr/q/unZs6c5Vxk2LFhkr2R3sFeyO9jKydOK7S5tWHXrri752FPzV1peEz8bFiyq6l03JcAMqwbH8Or4SaVV84OS1gNTJDUk/H93HTDEzJ6onNMB52qegkKr6iw456qBlN5OZGZPEt5K1Cj2r6vUXDlXA5nHXeccKQReSbcWk7a928weTh7unIPsLJU9knOuxkvlirdRpefCOeec20vIvP6rVLm5uTZjxoyqzoarAbauWkv+uvBPPNWuTeHGTcDOrVupJbLq1qVg46adu0mv1ezu6K7uea3u+Sstr6q145+ee2qrZkkzzSy3qvNRHaVS1fwAMN/MnkpKvx5oZ2aDy5h+GHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJ8RWEzxNeT1gAvFy0XEl1gFFAT2AVcKGZLYzD7gSujtPcZGb/rmj5nUtV7WaN98gDqHOucqXyAI0TgKHFpP+FEFDLMgIYmJT2NDDYzLoQnop1W0y/FiCmDwAeklSU5wfN7AigO/AtSSfH9KuBNWZ2GPAH4vuBJXUCLgKOjMv/s6SscuTXOeecqzSpBN46Vkz9tJkVEv5aVCozmwKsTkruAEyJ3ROAc2N3J2BSnG45sBbINbONZvZGTN8KzAJax2nOBEbG7jFAf4XWX2cCfzezLWa2AJgPHFN2cZ1zzrnKk0rg3SSpfXJiTNuUYj4+IgRGgPOBg2L3e8AZkrIltSNUHx+UOKGkxsDpwMSY1ApYBGBm+cDXQLPE9Cgvpu1C0nWSZkiasWLFihSL5Jxzzu0qlcD7S+A1SVdI6hI/VxKeXPXLFPNxFXCDpJmEVtNbY/owQoCcATwCvE24PwuApGxgNPCYmX2e4rJ3YWZDzSzXzHKbN29eWbN1zjnnUnpy1WuSziLch/1RTP4QONfMPkglE2Y2DzgRQFIH4NSYng/cUjSepLeBTxImHQp8amaPJKQtJlwV58XAvC+hkVVRepHWMc0555zLmJSeXAXMBVaYWc/KyISkFma2PDacuovQwpnYellmtkHSACDfzObEYfcSguo1SbMbBwwCpgLnAZPMzCSNA/6fpIeBA4H2wPTKyL9zzjlXXqk+MrJA0rdSmVbSaKAvsJ+kPOBuoKGkG+MoY4HhsbsF8G9JhYSr08viPFoDPwfmAbPik7P+ZGZPA88Af5U0n9CI66KY548kPQfMAfKBG81se7W1c845lwkpP0BD0hOExknPA9tfEWhmYysna9WDP0DDOecqzh+gUbJUq5oB6hLunZ6QkGaEK1bnnHPOFSPlwGtmV1ZmRpxzzrm9QSp/JwLCfVZJL0haHj//jPdenXPOOVeClAMvoQHUOEIL4QOBl9nRKMo555xzxUgn8DY3s+Fmlh8/IwB/2oRzzjlXinQC7ypJ35OUFT/fIzS2cs4551wJ0gm8VwEXAEuBJYSHVVxRCXlyzjnnaqx0/k7U2szOSEyID9VYVML4zjnn3F4vnSveP5YzzTnnnHNRha94JfUBjgWaS7o1YdA+gL9Y3jnnnCtFKlXNtYGGcdpGCenfEO7zOuecc64EqbwW8D/AfySNMLMvdkOenHPOuRorncZVGyU9ABxJeG4zAGZ2QsmTOOecc3u3dBpXPUt4LV874FfAQuB/lZAn55xzrsZKJ/A2M7NngG1m9h8zu4qd31TknHPOuSTpVDVvi99LJJ0KfAU0TT9LzjnnXM2VTuC9V9K+wE8I/9/dB7ilUnLlnHPO1VApVTVLygLam9nXZvahmfUzs55mNq4c0w6LrxH8MCGtq6Spkj6Q9LKkfWJ6bUnDY/p7kvomTNMzps+X9JgkxfSmkiZI+jR+N4npiuPNl/S+pB6plN0555xLR0qB18wKgItTXOYIYGBS2tPAYDPrArwA3BbTr43L6wIMAB6SVJTnJ+Lw9vFTNM/BwEQzaw9MjP0AJyeMe12c3jnnnMuodBpXvSXpT5KOk9Sj6FPWRGY2BVidlNwBmBK7JwDnxu5OwKQ43XJgLZAr6QBgHzObZmYGjALOitOcCYyM3SOT0kdZMA1oHOfjnHPOZUw693i7xe9fJ6QZqbVs/ogQGF8EzgcOiunvAWdIGh3TesbvQiAvYfo8oFXsbmlmS2L3UqBl7G7Fzi9wKJpmCUkkXUe4Kubggw9OoTjOOedc8VIOvGbWrxLzcRXwmKRfAOOArTF9GNARmAF8AbwNFFQgjybJKpoZMxsKDAXIzc2t8PTOOedcSVIOvJJaAr8DDjSzkyV1AvrE//ZWiJnNA06M8+0AnBrT80loKS3pbeATYA3QOmEWrYHFsXuZpAPMbEmsSl4e0xez40o6eRrnnHMuI9K5xzsC+DdwYOz/BLg5lRlJahG/awF3AU/G/vqSGsTuAUC+mc2JVcnfSOodWzNfDrwUZzcOGBS7ByWlXx5bN/cGvk6oknbOOecyIp17vPuZ2XOS7oRwdSqpzGrgeL+2L7CfpDzgbqChpBvjKGOB4bG7BfBvSYWEq9PLEmZ1AyH41wNeix+AIcBzkq4mVE9fENNfBU4B5gMbgSsrWmDnnHMuXekE3g2SmhEaVFF0FVnWRGZW0t+QHi1m3IXA4SXMZwbQuZj0VUD/YtINuDE53TnnnMukdALvrYTq20MlvQU0x9/H65xzzpUqnVbNsyR9h3BFKuBjM9tWxmTOOefcXi2dVs11CfdZv02obn5T0pNmtrmyMuecc87VNOlUNY8C1hFekABwCfBXwgMwnHPOOVeMdAJvZzPrlND/hqQ56WbIOeecq8nS+R/vrNiSGQBJvQhPmHLOOedcCdK54u0JvC3pS8I93jbAx5I+IPx756jKyKBzzjlXk6QTeAcCTYDjYv8UwtuDnHPOOVeCdKqazyI0ptqP8B/evwJnmNkXZvZFZWTOOeecq2nSueK9GuhtZhsAJN0PTGVHK2fnnHPOJUnnilfs/Iq+gpjmnHPOuRKkc8U7HHhH0gux/yygwq8EdM455/Ym6Twy8mFJkwlPrgK40szerZRcOeecczVUOle8mNksYFYl5cU555yr8dK5x+ucc865CvLA65xzzmWQB17nnHMugzIeeCUNk7Rc0ocJaV0lTZX0gaSXJe0T03MkjYzpcyXdmTDNLZI+kvShpNHxNYVIaifpHUnzJf1DUu2YXif2z4/D22a25M4551zVXPGOIDxuMtHTwGAz6wK8ANwW088H6sT0nsD1ktpKagXcBOSaWWcgC7goTnM/8AczOwxYQ3jQB/F7TUz/QxzPOeecy6iMB14zmwKsTkruQHjWM8AE4Nyi0YEGkrKBesBW4Js4LBuoF4fVB76SJOAEYEwcZyTh/8UAZ8Z+4vD+cXznnHMuY6rLPd6PCIERwlXuQbF7DLABWAJ8CTxoZqvNbDHwYExbAnxtZuOBZsBaM8uP0+cBrWJ3K2ARQBz+dRx/F5KukzRD0owVK1ZUXimdc87t9apL4L0KuEHSTKAR4coW4BjCoygPBNoBP5F0iKQmhEDdLg5rIOl7lZUZMxtqZrlmltu8efPKmq1zzjmX3gM0KouZzQNOBJDUATg1DroEeN3MtgHLJb0F5BKqoBeY2Yo4zVjgWOBZoLGk7HhV2xpYHOe1mHAlnRerp/cFVmWifM4551yRanHFK6lF/K4F3AU8GQd9Sbhni6QGQG9gXkzvLal+vE/bH5hrZga8AZwXpx8EvBS7x8V+4vBJcXznnHMuY6ri70SjCa8PPFxSnqSrgYslfUIIql8RXsAA8DjQUNJHwP+A4Wb2vpm9Q7j/Owv4IJZjaJzmDuBWSfMJ93CLXtzwDNAspt8KDN7NRXXOOed2Ib/oK11ubq7NmDGjqrPhnHN7FEkzzSy3qvNRHVWLqmbnnHNub+GB1znnnMsgD7zOOedcBnngdc455zLIA69zzjmXQR54nXPOuQzywOucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zjnnMsgDr3POOZdBHnidc865DPLA65xzzmWQB17nnHMugzzwOueccxnkgdc555zLoIwHXknDJC2X9GFCWldJUyV9IOllSfvE9BxJI2P6XEl3JkzTWNIYSfPisD4xvamkCZI+jd9NYrokPSZpvqT3JfXIdNmdc865qrjiHQEMTEp7GhhsZl2AF4DbYvr5QJ2Y3hO4XlLbOOxR4HUzOwLoCsyN6YOBiWbWHpgY+wFOBtrHz3XAE5VaKuecc64cMh54zWwKsDopuQMwJXZPAM4tGh1oICkbqAdsBb6RtC9wPPBMnOdWM1sbpzkTGBm7RwJnJaSPsmAa0FjSAZVaOOecc64M1eUe70eEwAjhKveg2D0G2AAsAb4EHjSz1UA7YAUwXNK7kp6W1CBO09LMlsTupUDL2N0KWJSwzLyYtgtJ10maIWnGihUr0i+dc845F1WXwHsVcIOkmUAjwpUtwDFAAXAgIdj+RNIhQDbQA3jCzLoTgvPg5JmamRGumivEzIaaWa6Z5TZv3jyV8jjnnHPFqhaB18zmmdmJZtYTGA18FgddQriPu83MlgNvAbmEq9U8M3snjjeGEIgBlhVVIcfv5TF9MTuupAFaxzTnnHMuY6pF4JXUIn7XAu4CnoyDvgROiMMaAL2BeWa2FFgk6fA4Xn9gTuweBwyK3YOAlxLSL4+tm3sDXydUSTvnnHMZkZ3pBUoaDfQF9pOUB9wNNJR0YxxlLDA8dj9OuI/7ESBguJm9H4f9CHhWUm3gc+DKmD4EeE7S1cAXwAUx/VXgFGA+sDFhfOeccy5jFG6DupLk5ubajBkzqjobzjm3R5E008xyqzof1VG1qGp2zjnn9hYeeJ1zzrkM8sDrnHPOZVDGG1c555wrm5mxZWshOdm1kIxt24zsnFoIY1u+kZ0lJMjPh1q1wie/ACTIqgUFBWE+WVlQUAhmkJ0FhYVQWGhkZwszyC8wcrKFIfK3FZKTI8zEtvxC6tSuhaSqXRE1kAde55yrZrasXE3+ug1s3lxI/X3rUbhxE2ZQ2KAuhRs379wNZNXfuXvrxs0A1Erq3lZC96ZiugsRBVkCRM4+DandrHFG10FN5oHXOeeqkW35BWz9ej1TjhgAQO//G8W0716e8e5E/T6Z6IG3Evk9Xuecq0a+WVeAWfWq3i30f51WKg+8zjlXjdRSuE/rai4PvM45V400aphFCu922a1qeaSoVL46nXOuGsnOzqKWR7oazR8ZWQZ/ZKRzLtO2rlpL/rr1ANSqXZuCjZtCd2y9nIluagnFE4DsRhVv1eyPjCyZt2p2zrlqpnazxt6KuAbz+gznnHMugzzwOueccxnkgdc555zLIA+8zjnnXAZ54HXOOecyyP9OVAZJK4AvKjDJfsDK3ZSd6mpvLDPsneXeG8sMe2e50y1zGzNrXlmZqUk88FYySTP2tv+u7Y1lhr2z3HtjmWHvLPfeWOZM8apm55xzLoM88DrnnHMZ5IG38g2t6gxUgb2xzLB3lntvLDPsneXeG8ucEX6P1znnnMsgv+J1zjnnMsgDr3POOZdBHngriaSBkj6WNF/S4KrOz+4i6SBJb0iaI+kjST+O6U0lTZD0afxuUtV5rWySsiS9K+mV2N9O0jtxm/9DUu2qzmNlk9RY0hhJ8yTNldSnpm9rSbfEfftDSaMl1a2J21rSMEnLJX2YkFbstlXwWCz/+5J6VF3O93weeCuBpCzgceBkoBNwsaROVZur3SYf+ImZdQJ6AzfGsg4GJppZe2Bi7K9pfgzMTei/H/iDmR0GrAGurpJc7V6PAq+b2RFAV0L5a+y2ltQKuAnINbPOQBZwETVzW48ABiallbRtTwbax891wBMZymON5IG3chwDzDezz81sK/B34MwqztNuYWZLzGxW7F5HOBC3IpR3ZBxtJHBW1eRw95DUGjgVeDr2CzgBGBNHqYll3hc4HngGwMy2mtlaavi2JrynvJ6kbKA+sIQauK3NbAqwOim5pG17JjDKgmlAY0kHZCanNY8H3srRCliU0J8X02o0SW2B7sA7QEszWxIHLQVaVlG2dpdHgNuBwtjfDFhrZvmxvyZu83bACmB4rGJ/WlIDavC2NrPFwIPAl4SA+zUwk5q/rYuUtG33ymPc7uKB16VEUkPgn8DNZvZN4jAL/1GrMf9Tk3QasNzMZlZ1XjIsG+gBPGFm3YENJFUr18Bt3YRwddcOOBBowK7VsXuFmrZtqxMPvJVjMXBQQn/rmFYjScohBN1nzWxsTF5WVPUUv5dXVf52g28BZ0haSLiNcALh3mfjWB0JNXOb5wF5ZvZO7B9DCMQ1eVt/F1hg/7+9+wmxqgzjOP79FZkWkQhtoiKSiGKokaAkXAj9A2sTWS4szUoQqZ3Qn8WURLUwalG0CIoWQWAlabaIIhcxQVqYTlZi1CKKIlqIIFjkr8XzTt1kRBw9Z+z6+2zmnnPuOee9886d557zvvd57N9s/wlsovp/2Pt60tH69rT6H9e1BN6TYwdweZv5OIuajLFlhtvUiTa2+Srwje3nBzZtAVa2xyuBzX23rSu2H7N9ke1Lqb792PZyYBuwtD1tqF4zgO1fgB8lXdFW3Qh8zRD3NXWLeaGkc9rf+uRrHuq+HnC0vt0CrGizmxcC+wduScdxSuaqk0TSEmoc8EzgNdtPz3CTOiFpEfAJMMG/452PU+O8G4FLqDKKd9s+cuLG/56kxcA627dLuoy6Ap4H7ATusX1oJtt3skkapSaUzQK+B1ZRH9iHtq8lrQeWUTP4dwIPUuOZQ9XXkt4EFlPl/34FngDeZYq+bR9CXqJuux8EVtn+fCbaPQwSeCMiInqUW80RERE9SuCNiIjoUQJvREREjxJ4IyIiepTAGxER0aME3oiOtQo/a9vjCyW9fax9TuBco+2rbRFxikrgjejeXGAtgO2fbS89xvNPxCiQwBtxCsv3eCM6JmmyWtVeYB9wpe0RSfdR1V/OpcqtPUclqrgXOAQsackL5lNlJy+gkhestv2tpLuopAd/Ucn8bwK+A+ZQ6fyeBa9Ihg8AAAGxSURBVLYCLwIjwFnAk7Y3t3PfAZxPJYd4w/b6jn8VEUElQY+Ibj0KjNgebRWdtg5sG6EqPM2mguYjthdIegFYQWVDewVYY3ufpOuBl6l80WPArbZ/kjTX9h+Sxqhasg8BSHqGSnF5v6S5wHZJH7VzX9fOfxDYIen9ZCOK6F4Cb8TM2tbqGh+QtB94r62fAK5uVaBuAN6qrH0AnN1+jgOvS9pIJfOfyi1UgYd1bXk2lQ4Q4EPbvwNI2gQsAhJ4IzqWwBsxswbz/R4eWD5MvT/PoGrBjh65o+017Qr4NuALSddOcXwBd9re+5+Vtd+R40wZd4roQSZXRXTvAHDedHZstY5/aOO5tOow17TH821/ZnuMKlh/8RTn+gB4uCW5R9KCgW03S5onaQ411jw+nTZGxPFJ4I3oWLudOy7pK2DDNA6xHHhA0i5gDzVRC2CDpIl23E+BXVT5uqskfSlpGfAUNalqt6Q9bXnSdqqu8m7gnYzvRvQjs5ojTkNtVvM/k7Aioj+54o2IiOhRrngjIiJ6lCveiIiIHiXwRkRE9CiBNyIiokcJvBERET1K4I2IiOjR37sN9U3E5qF0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorCICBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecFdXZwPHfs30X2AbLUhbpRUAWFCkqCiJYQLEbjYrdWKJJjDFGoyZixGiMxvjqa6Jie62xxwIqiFEJ0hSk9+2993vv8/4xs8vlsrsssJfdhef7+dzPnXvmzDlnzpQzc2bujKgqxhhjjDm4Qtq6AMYYY8zhyBpgY4wxpg1YA2yMMca0AWuAjTHGmDZgDbAxxhjTBqwBNsYYY9rAATfAIjJHRPJFJNv9fY6IpIlIuYiMOfAi7ne5Dlo5RKSfiKiIhAUzn/ZARH4qIvPbuhzGmI5DRH4nIv9so7zb7f55rw2wiGwXkSq3Iav//N0ddwRwGzBcVXu4kzwC3KyqnVV15f4WzK2wQfs7/d7K4aZf4c5Phog8KiKhB5Bfs0TkEhFZ5uaXJSIfi8gJwcqvBeWZJyK1IlLmftaIyIMiEtfcdKr6iqpO38887xORuoB16Tf7Nwcdm1/9l4tIoYgsEJFhbV2uvRGRK0TkP62cZoSI/EVE0t362C4ij7VmHqZ5IjJZRNJbIQ1fwPb9AYCq/klVr2lhOvNEZE5AmH87VCQi/xaRPgdS3vagpWfAZ7oNWf3nZjf8CKBAVXP94vYFfmzVUu6flpQjVVU7AycBFwFXBaMgIvIr4DHgT0AyTr39DzCrifgH60jtz6raBUgCrgQmAF+LSKcgluv1gHXpz43kIyJyOFwe+bO7/qUAucC8fU2gPR7VN6eJ8t4JjAXGAV2AycCKg1isQ9rB2J78lmtmwPZ9Zitmc6a7vfQEcoAnWjHttqGqzX6A7cApjYSfAlQBPqAceNX9VqAC2OLG6wX8C8gDtgG3+KURCvwO2AKUAcuBPsBiv3TKgYsayT8EuBvYgbPzehGIAyIbK0cj0yswyO/3G8CTfr/jgGeBLCADmAOE+pX7ESAf2Arc5KYX1kg+cW55Lmimju8D3gJeBkqBa9z5eAzIdD+PAZFu/G7Ah0AxUAh8BYS44+5wy1sGbACmNpHnPGBOQFgXd35vdn9fAXwN/BUocOvgCuA/AfV4i1sP+cDD9WVpYj5fbmLcIuABN78qYNCBLAMC1tvAvHEONr5x6/B7YHJAWe53y1IGzAe6+Y0/wW/aNLdOjsXZKYT6xTsX+L4l9Q/MAMrd4XHAt276WcDfgYiAOr8J2ARsc8Med8tSirMdTQqY9zdx1q8yYDUwBKfhy3Wnm763dR84EqgGvDjrdLEbP9JdFjvdOngaiHbHTQbScdbLbOClRuriQ+AXTdTTlcAHfr83AW/6/U4DRrvDw4AFONvEBuBCv3gtKePvcNan7cBPm9leewHvu/lsBq4NqOs3cPZHZTgnAWObSes44DugxP0+LmA9fBBY6i7X94DEfViHA7enK4F1brm2Ate7cTux+7683J3H5vZBeyzX+rCWbPs462O2O9+LgRFu+HVAHVDrluODJrbnM4CNAdvPSree0oD7/Mb1Y/d9Q6P1EDBft+FsG1nAlX7jo4G/4LQ7JcB/2LUeNbk8mlz+e43QRAPsX9iAsIaGDaeRXA7cA0QAA9wZPtUdfzvOzmAoIEAq0DUwnSbyvgpn5R8AdAbexm/jbsH0/uUc5lb0L/3GvwP8L87K2R1nI6hfYX8GrMc5WEgEFtJ0A3wa4GlsXMDKWQec7dZZNPBHYImbd5K7YO934z+IswMJdz+T3Pob6q58vfxWvIFN5DmPgAbYDX8R5ywVnIbFA/wcCHPLdQV7NsAL3Xo4AtgIXNOSjTBg3CKcneMIN6/wA1kGNNMAA71xDijOcOt7mvs7ya8sW3AaqWj391x3XF+cDfdit4xd2dUArAVOD1iHbttb/eOsv/8HfOX+PgZnYw5zl+E6/Boodz4XuPNdv/Ff6pYlDGfnkQ1E+c17NXCqO/5FnIPhu9x5uBa3IW/Bur/b8nfD/orTICXiHMR9ADzot4/wAA/h7NCjG6mLu91lfyNwFCB+4wbg7NBCcBqFHbj7HHdckTuuE866f6U7j2NwGtPh+1DGR90ynoRz8D60iWW3GKcHKwoYjXNycXJAXZ+Bc9DyILCkiXQS3fJf5pb5Yvd3/T5wEc4B0Eh3/v7Fvq3DgdvTDGAgzr7iJKASOLqZfXlz+6A9lmtjaTS17ePsv7uwq5Ff1dy+Cb/tGYgBXgBe9Bs/GWfdCQFG4Rxkne23H/TfN+ytHjzuvIe79VsJJLjjn3Trtre7fI9z56HZ5dHkvr+5kX4zXo6zEdR/rm1mofk3bOOBnQHj7wSed4c3ALOayHdvDejnwI1+v4fiNGJhLZxecY6WKtzhV9l1dJcM1OC3s8DZOBa6w18AP/MbN52mG+CfAtl7qeP7gMUBYVuAM/x+nwps99sw3gucP5yj3Fyc3onwveQ5j8Yb4LnAAnf4ikaW3xXs2QCf5vf7RuDzZuazNmBdqj9YWAT80S/uAS0Dmm+A7yDgTAz4FJjtV5a7A+bpE7/1950m5u8O4BV3OBFnw+3ZTP1Xu3WQjdM4NHWw9Av/PN35PHkvy7cI5xJL/bwv8Bt3Js42Xd+b0MVNM74F9R64/AVnGxroFzaRXWfmk91lHtVMWUNxzui/dvPOrF8W7vg04GjgJ8AzOAcEw3Aa2/fdOBfhHsD4Tfe/wL0tLKMH6OQ3/g3g942UtQ9OD0AXv7AHgXl+df2Z37jhQFUT830ZsDQg7FvgCr/1cG5AWrVufbVkHf5jY/n6xX8XuNWvDgL35c3tg/ZYrm6Yj9237wsDt79GyhGPs/7F+W0bjTXA9e1QnbuOHNXMvD0G/NUd7kcT++cm6qHKPy7OPnUCTsNahbtdNbLtN7k8mvq09PrR2ar6WQvj+usL9BKRYr+wUJwuU3BW5i37kS7sOhqutwPnSC8Z56ixJY52878Ap+HphLMD6Itz9JMlIvVxQ3B2BPV5p/ml41+OQAVANxEJU1VPM/HSAn43Nn+93OGHcVbo+W75nlHVuaq6WUR+4Y4bISKfAr9S1cxm8g3UG6drraly7a3s/uVszBuqemkL0mnNZRCoL3CBiPhfnwrHOYuul+03XIlzlgrNr7MvA+vca+gX4jQIWc2U4xFVvTswUESG4JyNjcU52g/D6UnylxYwza+Bq3HqRYFYnEsV9XL8hquAfFX1+v0GZx570Xy9B0pyy7jcL77gbOf18lS1uonpccvxJPCkiETjnB09JyJLVXUd8CXOjnGQO1yMc+Yy0f0NzjIdH7CvCcPpGm1JGYtUtcLvd1PrcS+gUFXLAuKO9fsduO5ENbH9B27j9Wn19vsduI6H4yzXlqzDgevI6TgHJENwlmkMTg9kU5rbB0HjyzVTVVOaSRP3ZtcHcPa7STiNNjjzVdLMpGer6mfu9LOAL0VkuKpmi8h4nH34SJze1kicbu7G8t9bPRQELKv67b8bTq9HY9t/S5bHHoJ9o0sazlFmvN+ni6qe4Td+4H6mnYkz0/WOwDmKzWk8euPU8QbOkec9fuWqwbnuV1/uWFUd4Y7PwtkR++fdlG/dtM7eW1ECfjc2f5lumctU9TZVHQCcBfxKRKa64/5PVU9wp1WcLqIWEZHOOGfPX/kFB5arMYF1sS8Nvj//vA50GVTgbFj1evgNp+Ecrfqvl51UdW4LytjkOquqGTjL+1ycs5uXWpBeY57C6V4frKqxONcmJSBOQ12JyCTgNziNfoKqxuPsyAKnaYm91Xvg+pCP04CP8Isfp87NMnuUdW9UtUpVn8Q5gx/uBtc3wJPc4S9xGuCT2NUApwFfBizTzqp6QwvLmBBw82FT63EmkCgiXQLitvSgPzCtvgFhgWkFruN1OPPTknXYfx2JxOnCfgRIdteRj9i1jjS2jJrcBzUzTUtcgtOAnoJzv0G/+mK2JF1V9arq2zg9EfX/JPk/nF6kPqoah3OJbo/1vwX10Jx8nF6rxrb//dqnBLsBXgqUicgdIhItIqEiMlJEjnXH/xO4X0QGu3fqjRKRru64HJxrPE15FfiliPR3G44/4Vy7bO4sszlzgWtFpId71jIf+IuIxIpIiIgMFJGT3LhvALeISIqIJAC/bSpRVS3BadifFJGzRSRGRMJF5HQR2eMO4ID5u1tEkkSkm5vGywAiMlNEBolzOF+CsyL6RGSoiJzsrmTV7LqxolkiEikix+B0xRQBz+9tmgC3i0iC+7eAW4HX93H6PbTCMlgF/MSt67HA+X7jXgbOFJFT3XUyyv0LRbNH7q5XgFNE5EIRCRORriIy2m/8iziN4VE49yXsjy44l0fKxflr0g0tiO/BuRYZJiL34JwB77MW1HsOkCIiEW58H/AP4K8i0h1ARHqLyKktzVNEfuHWf7Rbp7Pdear/++CXwBScbvF0nAPE03CuedfH+RAYIiKXucs8XESOFZEj96GMfxDnL1GTgJk0cgalqmk410IfdNebUTg9Dy+3dH79fOSW+RJ3vi/COej40C/OpSIyXERicC49veX2GOzrOlx/VpgHeNyzQP+/E+YAXWX3vyE2uQ86QF1wDvIKcA6S/xQwvtl9v9tWzAIScO6PqE+zUFWrRWQcTiPfmL3VQ5Pc9eg54FER6eXW+0R3f7tf+5SWNsAfyO7/7XqnhQX24qzIo3Fu+sjHaXTrF/KjODvS+Tg7nGdxLuaD0436gogUi8iFjST/HM4ZxmI37Wqcm4X2i6qudtO63Q26HGdhrcVplN7Cuf0dnI35U5w73Vawlx2tqv4F+BXOzSZ5OEdLN+M0eE2ZAywDfsDpHlnhhgEMBj7DuSbyLfA/qroQZ8Wai1PP2Tg3T9zZTB6/EZEynA3hRZxuzuMCuuJa4j132lXAv3GWY2s4kGXwe5wj1SLgDzhHyEDDTnQWzpll/fK4nRZsD6q6E+dGi9twuupX4dw8WO8dnLOGd1S1ssVzurtf4+xAynDmc28HNJ8Cn+DcALcDZ1toyaWDpjRX71/g3NmbLSL5btgdODdELhGRUpx1c+g+5FeJc2dpNs66exNwnqpuBVDVjTjr+lfu71Kcmzm/ru9Gd7uEp+NcJ85006q/QaglZcx25zUT5yDrZ6q6vonyXoxz1paJs7zv3Z9LdKpagLN/vA1nG/wNMFNV8/2ivYRzTTQbp/vzFnfafVqH3fq5BWd/W4Szfr3vN349ToO71d3n9qL5fdCBeBFnPc3AWceWBIx/FhjulsN/H/mBiJTjtBUP4Fxfrf+r6Y3AH9392T3ufO5hb/XQAr/GqYvvcLb/h3D+9bFf+xRR3d9eBGOcB5rgdJVubuNy9MM5EAs/gF6Q1irLFpy7hvfnvglzkInIZJwbhFrSA3LQiMginHK1yROkTPAdDg87MOagEZHzcK5hfdHWZTHGtG8d6ik6xrRn7hnLcOAy93qRMcY0ybqgjTHGmDZgXdDGGGNMG7Au6Bbo1q2b9uvXr62LYYwxHcry5cvzVTWprcvRXlkD3AL9+vVj2bJlbV0MY4zpUERkX55Qd9ixLmhjjDGmDVgDbIwxxrQBa4CNMcaYNmDXgPdTXV0d6enpVFc3+ZIXYw6qqKgoUlJSCA8Pb+uiGGNawBrg/ZSenk6XLl3o168fIvvz0hljWo+qUlBQQHp6Ov3792/r4hhjWsAa4P1UXV1tja9pN0SErl27kpeX19ZFMUHg9fooKqljZ0YlSV0jiYoIJSO7isT4CKKjQ8nOraZTdChdOoeTW1BDeJiQEB9BQVEtPq+S1DWS4tI6qmo89EyKoqzCS0lZLb17RFNZ5aWgsJYjekdTXesjJ7eGI1KiqatTMrOrOCIlhtjO4URHh+69oGafWAN8AKzxNe2JrY+HrvSsaq67bQVhYcKff38UN8xZRVW1lyceSOWX9/xAfkENf587mrsfWsvO9CoenzOKh57YyIYt5cy9ewRPzdvKyjUl3P2rYbzyVjpfLy3g1usG8tFnOXz8eQ5X/KQv3y4r5LV30zn3jF506xrBMy9tByAkBP70uxFMHJtIaKjdNtSarDaNMaYdq6j08ORzW6io9HLKid1556NMikvqOHFCNz77KpecvBqOSU1gxQ/F7EyvYuigzuzMqGLDlnJ6JUdRW+dj5ZoSYruEkRAXztdLCwgPE4YO7MLHn+cAcNzYRF5/Lx2AU07qzrzXdv191+eDP/99I8WlbfqSsUOSNcAdWGhoKKNHj2bkyJGceeaZFBcX79P09913H4888kij41588UVGjhzJUUcdxZgxY5qM19r69evHUUcdxVFHHcXw4cO5++67m73R7bjjjtun9CdPnszQoUMZPXo0o0eP5q233jrQIhsTVLW1PnLzagCIj4sgt8Adjg0nL78+PJxcdzghLoI8N05cbDi5+bUAdO4URmGRMxwZGUJZxa4Gtc6j+L8WoLZu93cEFJXUoT57b0Brswa4A4uOjmbVqlWsWbOGxMREnnzyyVZJ9+OPP+axxx5j/vz5rF69miVLlhAXF7dHPI8nOEfECxcuZPXq1SxdupStW7dy/fXXN5n3N998s8/pv/LKK6xatYpVq1Zx/vnn7zZOVfH57EVGpv2I7RLOGdN6ALD8+yKmHN/NGf6hmMnHO095XLWmhBMnOOE/ri9l3JgEQkJgy/ZyjhoWS1iYkJ1bzRG9Y4iOCqG8wktMdChxsc5VyMoqDz26RwKQm1fDoH6ddivD8eO6EhlpzUVrsxo9REycOJGMjIyG3w8//DDHHnsso0aN4t57720If+CBBxgyZAgnnHACGzZsaDStBx98kEceeYRevXoBEBkZybXXXgs4Z5C/+MUvGDt2LI8//jjbt2/n5JNPZtSoUUydOpWdO3cC8OabbzJy5EhSU1M58cQTAfjxxx8ZN24co0ePZtSoUWzatKnZeercuTNPP/007777LoWFhSxatIhJkyZx1llnMXz48IY4AIsWLeLEE09kxowZDB06lJ/97Gctbki3b9/O0KFDufzyyxk5ciRpaWnMnz+fiRMncvTRR3PBBRdQXl4OwCeffMKwYcM4+uijueWWW5g5cyawZ2/CyJEj2b59OwAvv/xyw3xff/31eL3ehrLfddddpKamMmHCBHJynO7AnJwczjnnHFJTU0lNTeWbb77hnnvu4bHHHmtI/6677uLxxx9v0fyZji00VDh1cjI/v3ogJaV19Ogexe03DUbEOWC857ZhxMWGk5lTxdy7R9C7VzSr15Xy6B9GMWRgF776bz5P/CmVUcPj+GRhNk/8aTRjRyfwwaeZPD4nleOOTeT9T7L48z1HMfn4bvz78yzuvf1Ipk/uTp/e0Zw3sxe/uWkIXTrb39tanaraZy+fY445RgOtXbt2j7CDrVOnTqqq6vF49Pzzz9ePP/5YVVU//fRTvfbaa9Xn86nX69UZM2bol19+qcuWLdORI0dqRUWFlpSU6MCBA/Xhhx/eI92EhAQtLi5uNM+TTjpJb7jhhobfM2fO1Hnz5qmq6rPPPquzZs1SVdWRI0dqenq6qqoWFRWpqurNN9+sL7/8sqqq1tTUaGVl5R7p9+3bV/Py8nYLS01N1SVLlujChQs1JiZGt27dukcdLFy4UCMjI3XLli3q8Xj0lFNO0TfffLPR8g8ZMkRTU1M1NTVV8/Pzddu2bSoi+u2336qqal5enk6aNEnLy8tVVXXu3Ln6hz/8QauqqjQlJUU3btyoPp9PL7jgAp0xY4aqqt5777271eWIESN027ZtunbtWp05c6bW1taqquoNN9ygL7zwgqqqAvr++++rqurtt9+u999/v6qqXnjhhfrXv/5VVZ1lW1xcrNu2bdMxY8aoqqrX69UBAwZofn7+HvPXHtZLExwej1cLimq0rKxOPR6fFhbVaElprfp8Pi0qrtHiUmcdKyqu0aKSGlVVLS6p1aLiGvX5fFpSVquFRTXq9fq01B32eHxaVl6nBUU1Wlfn1fIKZ7i21quVlR4tKKrR6hrPfpcZWKbtYB/eXj92F3QHVlVVxejRo8nIyODII49k2rRpAMyfP5/58+czZswYAMrLy9m0aRNlZWWcc845xMTEAHDWWWftV74XXXRRw/C3337L22+/DcBll13Gb37zGwCOP/54rrjiCi688ELOPfdcwDlLf+CBB0hPT+fcc89l8ODBLcrP2Y4d48aNa/J/ruPGjWPAgAEAXHzxxfznP//Zo4sZnC7osWPHNvwuKyujb9++TJgwAYAlS5awdu1ajj/+eABqa2uZOHEi69evp3///g3lvvTSS3nmmWeaLfvnn3/O8uXLOfbYYwFnmXXv3h2AiIiIhjPoY445hgULFgDwxRdf8OKLLwLOdf64uDji4uLo2rUrK1euJCcnhzFjxtC1a9dm8zaHltDQEBLjIxp+J/gNx8c1PhwXu+usNdbvDNb/bLZzp13NQFhYCJ2c3QPh4dhfj4KsXXVBi8hzIpIrImsCwn8uIutF5EcR+bNf+J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yISQQdWfw14x44dqGrDNWBV5c4772y4zrl582auvvrqFqc7YsQIli9f3uT4Tp06NTmu3tNPP82cOXNIS0vjmGOOoaCggEsuuYT333+f6OhozjjjDL744ou9plNWVsb27dsZMmTIXvMO/BvOvvwtxz9dVWXatGkN9bd27VqeffbZZqcPCwvbrcu7/sYxVWX27NkNaW3YsIH77rsPgPDw8IYyhoaG7vWa+jXXXMO8efN4/vnnueqqq1o8b8aY9qldNcDAPOA0/wARmQLMAlJVdQTwiBs+HPgJMMKd5n9EJFREQoEngdOB4cDFblyAh4C/quogoAhoeavUjsXExPC3v/2Nv/zlL3g8Hk499VSee+65huuWGRkZ5ObmcuKJJ/Luu+9SVVVFWVkZH3zwQaPp3Xnnndx+++1kZ2cDzhngP//5z0bjHnfccbz22muAc2Y5adIkALZs2cL48eP54x//SFJSEmlpaWzdupUBAwZwyy23MGvWLH744Ydm56u8vJwbb7yRs88+m4SEhL3Ww9KlS9m2bRs+n4/XX3+dE044Ya/TNGbChAl8/fXXbN68GYCKigo2btzIsGHD2L59O1u2bAHg1VdfbZimX79+rFixAoAVK1awbds2AKZOncpbb71Fbm4uAIWFhezY0fwb2qZOncpTTz0FgNfrpaSkBIBzzjmHTz75hO+++45TTz21uSSMMR1Au+qCVtXFItIvIPgGYK6q1rhxct3wWcBrbvg2EdkMjHPHbVbVrQAi8howS0TWAScDl7hxXgDuA54KztwcXGPGjGHUqFG8+uqrXHbZZaxbt46JEycCzs0+L7/8MkcffTQXXXQRqampdO/evaFbNNAZZ5xBTk4Op5xyCqqKiDR5xvXEE09w5ZVX8vDDD5OUlMTzzz8PwO23386mTZtQVaZOnUpqaioPPfQQL730EuHh4fTo0YPf/e53jaY5ZcoUVJ27kc855xx+//vft6gOjj32WG6++WY2b97MlClTOOecc1o0XaCkpCTmzZvHxRdfTE2N83eOOXPmMGTIEJ555hlmzJhBTEwMkyZNoqysDIDzzjuPF198kREjRjB+/PiGM/bhw4czZ84cpk+fjs/nIzw8nCeffJK+ffs2mf/jjz/Oddddx7PPPktoaChPPfUUEydOJCIigilTphAfH09oqHUNGtPhtfVF6MAP0A9Y4/d7FfAH4L/Al8CxbvjfgUv94j0LnO9+/ukXfpkbtxtOw1wf3sc/n0bKcR2wDFh2xBFHaCC72aV9WbhwYcMNUYdqnl6vV1NTU3Xjxo1NxrH10rQn2E1YzX7aWxd0Y8KARGACcDvwhhyEZ+6p6jOqOlZVxyYlJQU7O2OatXbtWgYNGsTUqVNbfPOaMaZ9a1dd0E1IB952j6aWiogP52w2A+cstl6KG0YT4QVAvIiEqaonIL7p4CZPnszkyZMP2TyHDx/O1q1bD0pexpiDoyOcAb8LTAEQkSFABJAPvA/8REQiRaQ/MBhYCnwHDHbveI7AuVHrfbcBX4jTRQ0wG3jvoM6JMcYY42pXZ8Ai8iowGegmIunAvcBzwHPuX5NqgdluY/qjiLwBrAU8wE2q6nXTuRn4FAgFnlPVH90s7gBeE5E5wEqc68bGGGPMQdeuGmBVvbiJUZc2Ef8B4IFGwj8CPmokfCu77pQ2xhhj2kxH6II2xhhjDjnWAHdg1dXVjBs3jtTUVEaMGNHw0oVt27Yxfvx4Bg0axEUXXURtbW0bl9QYY0wga4A7sMjISL744gu+//57Vq1axSeffMKSJUu44447+OUvf8nmzZtJSEjY62MUjTHGHHzWAB8k8xflcN5VS5h01pecd9US5i/KOeA0RaThdXx1dXXU1dUhInzxxRcNLyGYPXs277777gHnZYwxpnVZA3wQzF+Uw0N/30hOXg2qkJNXw0N/39gqjbDX62X06NF0796dadOmMXDgQOLj4wkLc+6vS0lJ2e09wcYYY9oHa4APgv99cRs1Nbu/HL6mxsf/vrjtgNMODQ1l1apVpKens3TpUtavX3/AaRpjjAk+a4APgtz8mn0K3x/x8fFMmTKFb7/9luLi4oZX26Wnp9O7d+9Wy8cYY0zrsAb4IOjeLXKfwlsqLy+P4uJiwHnR+4IFCzjyyCOZMmUKb731FgAvvPACs2bNOqB8jDHGtD5rgA+C6y/vT2Tk7lUdGRnC9Zf3P6B0s7KymDJlCqNGjeLYY49l2rRpzJw5k4ceeohHH32UQYMGUVBQwNVXHxKvPTbGmENKu3oS1qFq+uRkwLkWnJtfQ/dukVx/ef+G8P01atQoVq5cuUf4gAEDWLp06QGlbYwxJrisAT5Ipk9OPuAG1xhjzKHDuqCNMcaYNmANsDHGGNMGrAE2xhhj2oA1wMYYY0wbsAbYGGOMaQPWAHdwxcXFnH/++QwbNowjjzySb7/9lsLCQqZNm8bgwYOZNm0aRUVFbV1MY4wxAawB7uBuvfVWTjvtNNavX8/333/PkUceydy5c5k6dSqbNm1i6tSpzJ07t62LaYxtBhFuAAAgAElEQVQxJoA1wAeBqpKVmUlWZiY+n69hWFUPKN2SkhIWL17c8KSriIgI4uPjee+995g9ezZgryM0xpj2yhrggyA7K4vq6mqqq6vZuWNHw3B2VtYBpbtt2zaSkpK48sorGTNmDNdccw0VFRXk5OTQs2dPAHr06EFOzoG/9tAYY0zrsgb4IFJVfD7fAZ/51vN4PKxYsYIbbriBlStX0qlTpz26m0UEEWmV/IwxxrQea4APguQePfZoBEWE5B49DijdlJQUUlJSGD9+PADnn38+K1asIDk5mSz37DorK4vu3bsfUD7GGGNanzXAB0FOdvYeZ72qSk529gGl26NHD/r06cOGDRsA+Pzzzxk+fDhnnXUWL7zwAmCvIzTGmPbKXsZwENV3B7dWFzTAE088wU9/+lNqa2sZMGAAzz//PD6fjwsvvJBnn32Wvn378sYbb7RafsYYY1pHu2uAReQ5YCaQq6ojA8bdBjwCJKlqvjj9uo8DZwCVwBWqusKNOxu42510jqq+4IYfA8wDooGPgFu1NVvERvTo2bPhhqvkHj0aznx7uDdKHYjRo0ezbNmyPcI///zzA07bGGNM8LTHLuh5wGmBgSLSB5gO7PQLPh0Y7H6uA55y4yYC9wLjgXHAvSKS4E7zFHCt33R75NXaRISevXrRs1cvQkJCGobt5ihjjDl8tbsGWFUXA4WNjPor8BvA/2x1FvCiOpYA8SLSEzgVWKCqhapaBCwATnPHxarqEves90Xg7GDOjzHGGNOYdtcAN0ZEZgEZqvp9wKjeQJrf73Q3rLnw9EbCG8vzOhFZJiLL8vLyDnAOjDHGmN21+wZYRGKA3wH3HMx8VfUZVR2rqmOTkpIOZtbGGGMOA+2+AQYGAv2B70VkO5ACrBCRHkAG0Mcvboob1lx4SiPhxhhjzEHV7htgVV2tqt1VtZ+q9sPpNj5aVbOB94HLxTEBKFHVLOBTYLqIJLg3X00HPnXHlYrIBPcO6suB99pkxowxxhzW2l0DLCKvAt8CQ0UkXUSubib6R8BWYDPwD+BGAFUtBO4HvnM/f3TDcOP8051mC/BxMObjYHj88ccZOXIkI0aM4LHHHgOwVxEaY0wH0e4aYFW9WFV7qmq4qqao6rMB4/upar47rKp6k6oOVNWjVHWZX7znVHWQ+3neL3yZqo50p7k52P8BDpY1a9bwj3/8g6VLl/L999/z4YcfsnnzZnsVoTHGdBDt7kEch6JPEo/GW1axR3hol06cVrhiv9Jct24d48ePJyYmBoCTTjqJt99+m/fee49FixYBzqsIJ0+ezEMPPbTfZTfGGBMc7e4M+FDUWOPbXHhLjBw5kq+++oqCggIqKyv56KOPSEtLs1cRGmNMB2FnwB3UkUceyR133MH06dPp1KkTo0ePJjQ0dLc49ipCY4xpv+wMuAO7+uqrWb58OYsXLyYhIYEhQ4bYqwiNMaaDsAa4A8vNzQVg586dvP3221xyySX2KkJjjOkggtYF7T7B6jbgCFW9VkQGA0NV9cNg5Xm4Oe+88ygoKCA8PJwnn3yS+Ph4fvvb39qrCI0xpgMI5jXg54HlwET3dwbwJnDYNcChXTo1eRf0gfjqq6/2COvatau9itAYYzqAYDbAA1X1IhG5GEBVK+UwvSNof/9qZIwx5tAVzGvAtSISjfv6QBEZCNQEMT9jjDGmwwjmGfC9wCdAHxF5BTgeuCKI+R10qmp/8zHtRgd9qJsxh62gNcCqukBEVgATAAFurX+E5KEgKiqKgoICunbtao2waXOqSkFBAVFRUW1dFGNMCwXzLuhzgC9U9d/u73gROVtV3w1WngdTSkoK6enp5OXltXVRjAGcg8KUlJS9RzTGtAtB7YJW1Xfqf6hqsYjcCxwSDXB4eDj9+/dv62IYY4zpoIJ5E1ZjadujL40xxhiC2wAvE5FHRWSg+3kU53/BxhhjzGEvmA3wz4Fa4HX3UwPcFMT8jDHGmA4jmHdBVwC/DVb6xpi2U1ZeR15BLavXlTDmqDjUB6t+LGHU8DjCw4QVq4sZPqQLMdFhrFxdzIB+nUiIi2Dl6mJSekXRvVsU3/9YQreuEaT0jGbN+lI6xYTR/4hOrN9URogoQwZ1Ycv2CqqqfIw8MpYdaRUUFtcx+qg4MrOrycqu4pjUBHLza9i2s4JxYxIpKqll45Zyjh2dQEWll7UbSzlmVDx1HuWHtSWkjogjNERYuaaYEUNjiY4KZcXqYoYM6EyXzuGsXF1MvyNiSEyI4Ps1JSR3j6RXchSr15YSFxvGESkxrN1YRkR4CIP6d2bjljK8XuXIIbFs21FBaXkdqSPiSMusIje/hqOPiic7t4a0jArGjk6ksKiWTdvKOXZMAuXlHtZtKuOY1Hhqa5TV6926VGHVmmK3LkNYuaaYPr2i6dsnhoS4iLZe9KYVBfMu6CHAr4F+/vmo6snBytMYE3y1dT4WfJnLo09v5vhxXRHgz09uYtTwWLp0DuO+h9fRNyWGm68ayDVzVpIYH8E9tw3j0hu/IzwshEfuO4rZP19Gba2Pv88dzTW/XEFxaR1Pzh3NTb9dRVZONY/PGcVt965m285KHrxrBL+f+yM/bijj7l8O5aG/bWTpyiJuuWYgT83bymeL85h90RH839tpvP3vTM45oxf5BbU8/9oOTj4hido6H48/s4WxqfFERobywF/XM3hAZxLjI7jrwbUkJ0Vyx81D+NntK4mJCePBu0Zw2U3LUJ/ytz+lcuWtyykv9/A/D43h+l+vJK+glr8/mMqtd31PWmYVj9x3FL+ds4aNW8r5w2+O5P6/rGflmhJ+feNgHn9mM4uXFHDdZf2Y9/oOPpyfzUWzUsjMruaVf6Vx2snJlFd4eWreVo47NpGQEOGhJzYyclgssV3CuffPa/H5nHo/YXxXfnvLUOJjw9t0+ZvWE8wu6DeBlcDdwO1+H2NMB1ZaVsfTL2wDYMYpPXju1R0AnD61By+8vhOfD06bkszL/0rD41FOObE7b32QQXWNjxOP68ZHn2dTXuFl/DGJfLWkgMLiOkYOi+PH9aVk5VTTNyWGnPwatu2sJDE+HBH4cUMZkZEhJCdFsXRlEQAjhsby2WLnb4ATjknkvY8zAZhyfBL/904aAKednMy813aVb96rO1CF009O5qU3d+L1KtMnJ/Pau+nU1iknH5/Eex9nUVXl5fhxXflscS4lpR7GjEpg2fdF5BXUMmRgZ7btrCQts4oe3SOprPKwcUs5nTuF0rlTGCvXlBAaAgP7dWLxkgIAjh6VwL8XZANw4sRuvPFeOgCnTk7mxTec8p1xSg+ed+vyjKnJvPD6jobGF+A//y2grLwuOAvVtIlg3pXsUdWngpi+MaYNqEJNjReA6KhQyis8ew5HNz4cExVKQVHtHvFjokMp849f7gxHRYZSXunkFR4mVLv5Anh9u578pQpet7EKDRVqa30N01e60+9Wpii//ALKnZNfs0c5YqJCGp/PqF1xIsJDqKp28goJEerqdpXP51PqH1QmAnUe50d4uFBdvasuyxqpM381Nb49wkzHFcwz4A9E5EYR6SkiifWfIOZnjDkIYqJDmXpidwC++a6AM6b2aBg+vWG4kDNOSXaGlxZwxilu+LICTjvZCV+6soiTJyURGgLf/1jMcWO7Eh4mbNpazshhsURHh5KZU03vHlHExYZRXuElPCyE5KRIAIqKa+l/RAwAO9MrGTU8DoA160s5YXxXAP67opDpU5J3lfWUXWWd4Vdu//Azpjrx/7u8kOmTkxGBFauLmTShG6Ghwjr3unJkZAjb0yoZ0K8zXTqFUVhcR1xsOF0TIqjzKNU1XlJ6RgOQnVvNsMFdANi4pZxxYxIAWPFDMSdP6r5H3t98V9hQr/V6JkeRGG/XgA8lEqznx4rItkaCVVUHBCXDIBo7dqwuW7asrYthTLtRVFLLpwtz+G5lET+bPYA160tZ/G0e11zan53plXy6KJfLL+hDabmH9z/J4twZvQgPC+HNDzKYPrk73btF8urb6Uwcm8DQwV146c2djBway7ijE3npzZ2k9Ipm2kndefnNNOJiw5h1ei9eeycdEbj4nD68+UE65RVervxJX977NJOcnGquvbw/n36Rw+ZtFdxwZX++WlLAqjXF3HjlAFb8UMzXSwu4fvYANm8t5/Ovcrny4r7k5tfy78+y+cnZKXg8Pt7+dyYzp/UgNjac195JZ/Jx3ejbJ4aX30rj6KPiGD0ynpfe3Mmg/p2YNCGJl97cSfduEcw4pSev/GsnUZGhnH9Wb954N52aOuXyC47g7Y8yKCyq5Zqf9uPfn+WwI62CG64YwOdf5bF2Qyk3XDmA/y4vZOnKIm64oj8/bihj0dd5XHtpP9Iyq/hkYS79j4jhknP6kNQtsq0X/T4RkeWqOraty9FeBa0BPpRYA2zMnrxeparaQ1RkKCEhQmWVh8jIUMLDnO7ayIgQwsNDqKj0EB4WQkSEMxwWJkRGhFJV5UFChKjIUKqqvCBON2x1jRefT4mJDqOmxovXHa6t9VLnUTrFhFFX56Om1kfnTmHUeXzU1HjpFBOG1+uceUZHOVfXqqo9REeFIuKULyoylNBQoaLSQ2RE6K7yhYcQ0VBWISIilMoqD6EhQmRkKJXVHkIQoqJCqa72oup0E/uX1b98tXU+6up8u5W1U0xoQ/liosNQVaqqdy/rbuVrpC47GmuAmxfUBlhERgLDgYYnxKvqi0HLMEisATbGmH1nDXDzgnZI5T73+Qn3MwX4M3DWXqZ5TkRyRWSNX9jDIrJeRH4QkXdEJN5v3J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yJiF1SMMca0iWD2aZwPTAWyVfVKIBWI28s084DTAsIWACNVdRSwEbgTQESGAz8BRrjT/I+IhIpIKPAkcDrO2ffFblyAh4C/quogoAi4+oDm0BhjjNlPwWyAq1TVB3hEJBbIBfo0N4GqLgYKA8Lmq2r9/fhLgPr3rc0CXlPVGlXdBmwGxrmfzaq6VVVrgdeAWeK8tPdk4C13+heAsw90Jo0xxpj9EeyXMcQD/8B5CcMK4NsDTPMq4GN3uDeQ5jcu3Q1rKrwrUOzXmNeHN0pErhORZSKyzN75a4wxprUF81nQN7qDT4vIJ0Csqv6wv+mJyF2AB3ilNcq3N6r6DPAMODdhHYw8jTHGHD5avQEWkaObG6eqK/YjzSuAmcBU3XXbdga7d2mnuGE0EV4AxItImHsW7B/fGGOMOaiCcQb8l2bGKc512BYTkdOA3wAnqWql36j3gf9z3zPcCxgMLAUEGCwi/XEa2J8Al6iqishCnJvDXgNmA+/tS1mMMcaY1tLqDbCqTtnfaUXkVWAy0E1E0oF7ce56jgQWOPdRsURVf6aqP4rIG8BanK7pm1TV66ZzM/ApEAo8p6o/ulncAbwmInNwXhTx7P6W1RhjjDkQ9iCOFrAHcRhjzL6zB3E0L5jvA74X52x2OPARzv9y/wN0uAbYGGOMaW3t7UEcxhhjzGGhXT2IwxhjjDlcBK0Lmj0fxFHOgT+IwxhjjDkkdJgHcRhjjDGHkqB0QYtImPvsZUSkDzAW5y9BxhhjjCEIDbCIXItzvXeHO/w57sMvROSO1s7PGGOM6YiC0QX9C2Ag0AVYB/RV1XwRiQG+w3kloDHGGHNYC0YDXKuqRUCRiGxW1XwAVa0Ukdog5GeMMcZ0OMFogKNFZAxO93aEOyzuJ6rZKY0xxpjDRDAa4CzgUXc422+4/rcxxhhz2AvayxhEJEpVq/3HiUhka+dnjDHGdETBfBLWN42E2YM4jDHGGIJwBiwiPYDe7LoWLO6oWCCmtfMzxhhjOqJgXAM+FbgCSGH3679lwO+CkJ8xxhjT4QTjGvALwAsicp6q/qu10zfGGGMOBcF8FvS/RGQGMAK/vx+p6h+DlacxxhjTUQTtJiwReRq4CPg5znXgC4C+wcrPGGOM6UiCeRf0cap6OVCkqn8AJgJDgpifMcYY02EEswGucr8rRaQXUAf0DGJ+xhhjTIcRtGvAwIciEg88DKwAFPhnEPMzxhhjOoxg3oR1vzv4LxH5EIhS1ZJg5WeMMcZ0JMF4EMfJqvqFiJzbyDhU9e3WztMYY4zpaIJxBnwS8AVwZiPjFLAG2BhjzGEvGA/iuNf9vnJ/pheR54CZQK6qjnTDEoHXgX7AduBCVS0SEQEeB84AKoErVHWFO81s4G432TnuA0IQkWOAeUA08BFwq6rq/pTVGGOM2V+tfhe0iMzzG569H0nMA04LCPst8LmqDgY+d38DnA4Mdj/XAU+5+SYC9wLjgXHAvSKS4E7zFHCt33SBeRljjDFBF4y/IaX6Dd+6rxOr6mKgMCB4FvCCO/wCcLZf+IvqWALEi0hPnOdRL1DVQlUtAhYAp7njYlV1iXvW+6JfWsYYY8xBE4wGOBjducmqmuUOZwPJ7nBvIM0vXrob1lx4eiPhexCR60RkmYgsy8vLO/A5MMYYY/wE4yasFBH5G87jJ+uHG6jqLQeSuKqqiAT9mq2qPgM8AzB27Fi7RmyMMaZVBaMBvt1veFkrpZkjIj1VNcvtRs51wzOAPn7xUtywDGByQPgiNzylkfjGGGPMQRWU1xGKSCjwkKr+upWSfR+YDcx1v9/zC79ZRF7DueGqxG2kPwX+5Hfj1XTgTlUtFJFSEZkA/Be4HHiilcpojDHGtFhQnoSlql4ROX5/phWRV3HOXruJSDrO3cxzgTdE5GpgB3ChG/0jnL8gbcb5G9KVbv6FInI/8J0b74+qWn9j143s+hvSx+7HGGOMOagkWH+BFZGncG5wehOoqA/viE/CGjt2rC5b1lq96cYYc3gQkeWqOraty9FeBfNlDFFAAXCyX5g9CcsYY4whuC9j2K8nYRljjDGHg6C9D1hEUkTkHRHJdT//EpGUvU9pjDHGHPqC1gADz+PcpdzL/XzghhljjDGHvWA2wEmq+ryqetzPPCApiPkZY4wxHUYwG+ACEblURELdz6U4N2UZY4wxh71gNsBX4fxfNxvIAs4HrghifsYYY0yHEcy/IaWo6ln+Ae7DOdKaiG+MMcYcNoJ5BtzYIx7tsY/GGGMMQTgDFpGJwHFAkoj8ym9ULBDa2vkZY4wxHVEwuqAjgM5u2l38wktxrgMbY4wxh71gvA3pS+BLEZmnqjtaO31jjDHmUBDMm7AqReRhYATOc6EBUNWTm57EGGOMOTwE8yasV4D1QH/gD8B2dr0e0BhjjDmsBbMB7qqqzwJ1qvqlql7F7m9GMsYYYw5bweyCrnO/s0RkBpAJJAYxP2OMMabDCGYDPEdE4oDbcP7/Gwv8Moj5mcNYYXEt360sYkd6JWdO78m6TaVs2FzGWaf2YntaBatWFzPz1F7k5tewZFkBM6b1oKzcw1dL8jnlpGRUlc+/yuOkCd2Ijg5l/qJcxo1JoFvXCOYvzGHEsFj6psTw6aJc+h8Rw7DBXViwKJekrhEcPSqBL77KIyYmhIlju7L423y8PmXK8UksWV5IaVkd0ycns/yHYjJzqph5Sk/WrCthy/YKzjy1J1u2V7B6XTFnntqLzKxqlq4q5MxpPSksruOb7/I5dUoyNbU+Fn2dz5QTkggPExYszuW4sYnEx0Xw6cIcRo+Mo3ePaD5ZmMPQgZ0Z2L8z8xfmktIripHD4vhscQ7xseGMOzqRhV/nERYWwqTxXfl6aQHV1V6mntid71YWkVdQwxmn9GDVmhK3LnuwfnM56zeVunVZyYbNpfzk7N6EhQkREeF4PB5UlbCwMLxeLz6fj7CwMHw+X7PDoaGhqCo+n4+QkBAE8NYPi+D1epsdDgkJwev1IiKEhobi8XgQEcLCwqirc47/w8N3la9h2OcjLDwcr9eL+nyEtqB8gWUFdpW7ufJ5PEhISKPlqx/21NWhAWUNrMu6whI8ZRWIQEhEBN7KKgBCYqLwVVYHbZgQQSQEBMK6dCaia3xwN+TDTFC6oEUkFBisqiWqukZVp6jqMar6fjDyM4e34pJa7vrTj9z/6HqSukby6NObuOehdcREh/H8qzu44/4f8Sq890kmv/z9D5SUevhqSQE3/fZ7dqRXsW5jGdf+aiWr15aQW1DDFbcs56v/5uP1KrNvXsa/P8uhU0wYl920jNffTSe5WxSzb17G86/toF+fTlz1i+U89cJWBvTtzPW/Xsnj/9jCoH6dufWuH3j4yU307dOJ3z3wI396bAM9u0fz4OMbuO+R9cTGhvP0C9u484EfCQkJ4fV307ntvtVUVflY8GUut9z1PVm5NaxYXcLPbl/Fhi3l7Eyv5KpfrOC7FUWUV3iZ/fNlLPgyl/CwEC67eRnvfJRJQnwEl9+8jJfe2knvntFceesy/vHydgb07cy1v1rB35/dysB+nbj5zu959OnN9O/biV/ft5q5T2ykT68Y7nt4Hfc/up5uiRE89r9b+P3ctURFhTHv9R3ccf8axhwVR1lpIdlZmdTV1VFUWEhmRgYej4fSkhIyMzLwejyUl5eTkZ6Ox+OhqqqK9LQ0amtqqK2pcYZra/F6PKSnpVFdVYVPlfS0NMrLy1FVMtLTKS0pASAjI4PCwkIAsjIzyc/LQ1XJzsoiNycHr9dLbk4O2VlZeDwe8vPzyc7Koq6ujsKCAjIzMqirq6O4uJgMt6xlpaWku+WrrKggIz2dutpaqqurSU9Lo66ujrq6Oqd81dX4fD7S09KorKwEID0tjbLSUqd86ekUFRUBkJmRQUF+PqpKVlYWebm5+LxecrKzycnOxuPxkJeXR1amU38FBQUNw0VFRXvUpcfjoa60jEVDprJw8FQqNm1j0ZHTWXTkdCo3bQ/q8KKh01jo5uspK2+DrfvQFpQGWFW9wMXBSNuYQKVlHlavc3aEgwd05ttlzo56zFHxzP8yB4ATxnXj3Y8yATh5UhKvvZsOwNQTu/N6/fCk7rzxnjN88glJvPVhBl4fnDixGx/Oz6bOo0w4JpHP/5NLVbWP0SPi+G5VEaVlHgb178yW7RXkF9aSnBRJaXkd6VlVREeHEhUZwoYtzs7riN7RLP+hGICRw2L54j95AEw4JpEP5mcDMOX4JN74IAOAU07szmvvpLnDSQ1lPXlSd978IAOfz4n/7seZeDzK8eO68skXOdTU+Dg2NYH//LeA8govw4fEsnp9KYXFdfTpHU12TjVZOdXEx4bj88G2nZWEhQndukY01OWQgV34+jvn/SnHjIrn04VOXT74t0143b/4Z2Zk0CU2ltDQUDLS04mOiSE8PJz09HQiIiKIiooiPS2NEBE6d+5MZmYmXp+P2NhYsjIzqa6uJiEhgdzcXMrLyujarRuFBQUUFxXRLSmJ4uJiCvLzSe7enfKyMvJyc+menExlZSU52dkkJSVRU1NDdlYWXbt1w+PxkJWZSWJCAj5VMjMyiI2LIyQkhIz0dDp36kRYeDjpaWlERUURGRlJRno6oWFhxMTEkJGRAap06dLFabRra4mPjycnO5uKigoSu3YlPy+PkpISuiUlUVRURGFBAd27d6estJT8vDy6JydTUVFBbk4OSd27U11dTXZ2Nt2SkqirqyMrK4vExER8Ph9ZmZnEx8fvqssuXXavy4gIMtLTEZFW215M+xHMLuivReTvwOtARX2gqq4IYp7mMORTbRhWv2Hnt/MtAj53ODRE8Lk/QoSGYQkBrw83fFccEfDWxw8BnxtHQmRXuH86Aj6vGwdQ357lCSQiDSPFLy0n3V1xdi+Hf/kaKbdfHP/4/nHwLzfQRPF2K3tdnQ+vTxERfD6fM0LEqXvVhsZCVRu6a9U/3L8b1y+Oz+0a3iNcFfEfdutC3Xzrh/3DNWB+GvIOHA4JceL7la+pvOu7q+vL6l9u8R/2S8e/LhrqsT6Of1n96lIC6tKZz2YWjOmwgnkX9Gic/wD/EfiL+3kkiPmZw1Rcl3AGD+gMwI60So4e5ZxRrF5XyuTjugGwZHkhM07pAcDCb/I4b2ZvABZ9nce5DcP5nDejlzP8TR7nnNELEfhqST4zp/UgNMRJZ+qkJCIiQvh+TTETjk4kJjqUjVvLGTqoC/Fx4WTn1tA1MYLkpEgqq7x4fEr/I2IAyM6tZuSwWADWby7j+GO7ArBsVRHTpyQDsHhJPuec7pRj4de7yrrw6zzOP3PX8HkznOEvv81n1mk9CQmBr5cWcPrUHoSHCctWFXHihG5ER4Xw4/pSRo+Io0vnMHakV9KndwzdEiMoLqkjMjKElJ7R1HmUktI6hg506nLrjgrGpjp1+cPaEqYc77zO+/e/GkpESDk+n4/eKSmUlZXhqaujd0oKVVVV1NTU0Kt3b+rq6qisrKR3794oUFZWRs9evQgLC6O4uJjkHj2Ijo6moKCAbklJxMbFkZebS0JiIomJieTm5BAbG0tSUhLZ2dnEdOpEcnIyOTk5REZF0aNnT/JycwkPD+f/27v3KLvK8o7j39+ZM5MrJCEMSWYmCMWIIiqXEUKlaAG5eCEICCgtlKayXFK1tq6K7Vra1kuXS5d4K3SxRARrRYwoESjKJWjFEpyAXMI1C4TcM7lN7pk5M0//2O+EkzCTkGHO2XPO/D5rnTXvvj/v7GSes/d+9/vOaGlh7dq1FAoFZrS07Lod3NLayqauLnp7e2lpbWXr1q30dHfT2tbGzh072LF9O61tbfT29rJlyxZaWlspFAp0dXUxfcYMxowZw4b16zlk2jQmTpzI2rVrOWjqVKZMnsya1auZNGkSBzc3s3rVKiZOnMgh06axetUqxo0bx/Tp01mzejVNY8YwfcYM1nZ2UiwWaWlpYd26dSjF17VxY/a7bG1l85Yt9JT/LnfsoLWt7RVfLK0+yCd239rb26OjoyPvMGwv1m/oZsEDnSxdvpWLzp1Jxx828uRzm7jk/ENZ/PQmHn58Ix8+r40/Lt3Gbxeu46I5baxd3809v1nD+e9tYcfOPu66bxVnnTqdpv8llUwAABDMSURBVMYCv/jVSt75jmYOntLEz/9nBW8/ZgqHzRzPz+5cwZvecABvfuOB/PzOFcxsGccJxx3E/F+u5MADipx68iHccc8qGgrirFOncfev17B1Ww/nnt3Kr3+3llWd27nwnDYWPryBJX/cwoc/MJNHF3fx6OIuLjl/Js8+v4WFi9bzofNmsmLVdhY8sJYPntPKps0lfnX/as45cwYRcMc9q3j3KYdwwMQit921gpPePpXW6eP42Z0reOtRB3LkEQdw650rOOKwCRz3lsncdtdKpk5t5JQTm7n97pWMGVPgjHdO4677slvr7z9jBvf9dg3rN/RwwftbeeChdS//Lh/dyJPPbuKS8w7lyWc38ezzW7j8ojYaG0VTUxOlUom+vj4aU8Om8sZMvb29NDY27ioXi0Uigt5SadfV5KDl3l4aGhqQRKlU2lXuLZUoNDRQKBQolUq7GjyVSiUKEg3FIqVSCUgNm3p66EuNsF7RSKy3l+JA8e0Ra7Gx8eVysUiUxSqgNFisZQ2yBotvzwZjA/0ud7y0ggWzTgNg9j038eDpl1alXO7Pn7uX8Ye17df/S0mLIqJ9vzYaRSqWgCVNA74MtETE2ZKOAk5K7wbXFCfg2tHXFxQKqlg5BritWD696/ZjheMYKbFadXSv27irEVTVW0Gn2+tDaQXtBLx3lXwG/H3gBuCf0/SzZM+Day4BW+0oTwyVKJc3htmzYUz5dKXjGCmxWnU0TZ3sV4DqUCWfAR8cEbcAfQARUQJ6h7ozSZ+StFjSE5J+JGmspMMlLZS0RNKPJTWldcek6SVp+WFl+/lsmv+MpDNfWxXNzMyGppIJeKukqaSGiJJmA11D2ZGkVuATQHtEHE02rvDFwFeAqyPi9cAGYG7aZC6wIc2/Oq1Hug1+MVnjsLOAa9I7y2ZmZlVVyQT898B84AhJDwA3AR9/DfsrAuMkFYHxwEqyvqXnpeU3Auem8pw0TVp+mrJ7bnOAmyNiZ0S8ACwBTngNMZmZmQ1JxZ4BR8TDkt4JHEn2FtszEdGzj80G29dySV8DXgK2A78CFgEb061tgGVAayq3AkvTtiVJXcDUNP/Bsl2Xb7MbSVcAVwAceuihQwnbzMxsUBW7ApY0luy28RfIhiO8Ms0byr6mkF29Hg60ABPIbiFXTERcFxHtEdHe3NxcyUOZmdkoVMlb0DeRPWv9NvCdVP7BEPd1OvBCRHSmq+hbgXcAk9MtaYA2YHkqLwdmAqTlk4B15fMH2MbMzKxqKpmAj46IuRGxIH0+QpaEh+IlYLak8elZ7mnAk8AC4IK0zmXAbak8P02Tlt8X2YuQ84GLUyvpw4FZwENDjMnMzGzIKvke8MOSZkfEgwCSTgSG1JtFRCyUNA94GCgBjwDXAXcAN0v6YprX/47x9cAPJC0B1pO1fCYiFku6hSx5l4Ar08ARZmZmVVXJnrCeImuA9RLZq0ivA54hS3wREW+tyIErwD1hmZntP/eEtXeVvAI+C5gC/Fma/g2wsYLHMzMzqxmVfAZ8Llmjq4OB5lQ+JyJejIgXK3hcMzOzEa+SV8BzgdkRsRVA0leA/yNrFW1mZjaqVfIKWOze93MvHlbazMwMqOwV8A3AQkk/S9Pn4pGQzMzMgMp2Rfl1SfcDJ6dZl0fEI5U6npmZWS2p5BUwEfEw2bu7ZmZmVqaSz4DNzMxsEE7AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsB07AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsBzWTgCVNljRP0tOSnpJ0kqSDJN0t6bn0c0paV5K+JWmJpMckHVe2n8vS+s9Juiy/GpmZ2WhWMwkY+CZwV0S8EXgb8BRwFXBvRMwC7k3TAGcDs9LnCuBaAEkHAZ8HTgROAD7fn7TNzMyqqSYSsKRJwCnA9QAR0R0RG4E5wI1ptRuBc1N5DnBTZB4EJkuaAZwJ3B0R6yNiA3A3cFYVq2JmZgbUSAIGDgc6gRskPSLpu5ImANMiYmVaZxUwLZVbgaVl2y9L8wab/wqSrpDUIamjs7NzGKtiZmZWOwm4CBwHXBsRxwJbefl2MwAREUAM1wEj4rqIaI+I9ubm5uHarZmZGVA7CXgZsCwiFqbpeWQJeXW6tUz6uSYtXw7MLNu+Lc0bbL6ZmVlV1UQCjohVwFJJR6ZZpwFPAvOB/pbMlwG3pfJ84NLUGno20JVuVf8SOEPSlNT46ow0z8zMrKqKeQewHz4O/FBSE/A8cDnZF4hbJM0FXgQuTOveCbwHWAJsS+sSEeslfQH4fVrv3yJiffWqYGZmllH26NT2pr29PTo6OvIOw8yspkhaFBHteccxUtXELWgzM7N64wRsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8uBE7CZmVkOnIDNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8tBMe8A6lVEUOoNIqDYAH190NcXFIsiAkq9QWNRBKLU00djo4gQPaU+mhoFiO6e/jJ09wRNjQUg6O4JGosFpFRuLCCCnlJQbBASlEpBoSAKBSiVQAVoKEBvbxZfQ0NWDsrjg2JxgFhLMWh8Y5qy73A7u3cvDxRrT09QLIu1oSy+QiH7lHpBZfHtirWPff4uC4Xs+H19fQOW+8e+lrTX9fIqR8Su2PacHgnx7S1WM9t/TsAVsHPtBkqbt9DbC43jm+jZtgOAwvixu5W376MciBg/lr5t23cvB8SEsfRt2/GKcl9ZuaG/DDSMH0v3HuWBYtrfWLftZ6x9A5VTTHvG2n+MVxNreUx9A5QpiMLYLKbdynvZpprlkR7f3mJtGDuW3hEU624xjcD4hhIrBaH05ad4wESapk7G6kBE+LOPz/HHHx/7Y8vzS+P24hvi9uIbYu39Dw65/Fq3r2Z5pMTh+BzrSIljOGMt/2x9Yel+/T3KE9ARI+Bv+Ej9+BlwBfT09OUdgpmZjXBOwBVQKPjZmJmZ7Z0TcAU0NDgBm5nZ3jkBV4Abh5qZ2b4oe05ue9Pe3h4dHR2vev3udRspbd4CQKGpacgtMOuxNafjq834ainWkR7faGoFLWlRRLTnHcdI5deQKqBp6uSa+Q9iZmb5qKlb0JIaJD0i6fY0fbikhZKWSPqxpKY0f0yaXpKWH1a2j8+m+c9IOjOfmpiZ2WhXUwkY+CTwVNn0V4CrI+L1wAZgbpo/F9iQ5l+d1kPSUcDFwJuBs4BrJDVUKXYzM7NdaiYBS2oD3gt8N00LOBWYl1a5ETg3leekadLy09L6c4CbI2JnRLwALAFOqE4NzMzMXlYzCRj4BvCPQH8vF1OBjRFRStPLgNZUbgWWAqTlXWn9XfMH2GY3kq6Q1CGpo7OzczjrYWZmVhsJWNL7gDURsahax4yI6yKiPSLam5ubq3VYMzMbJWqlFfQ7gHMkvQcYCxwIfBOYLKmYrnLbgOVp/eXATGCZpCIwCVhXNr9f+TaDWrRo0VpJL+5HvAcDa/dj/XowGusMo7Peo7HOMDrr/Vrr/LrhCqQe1dx7wJLeBXw6It4n6SfATyPiZkn/CTwWEddIuhJ4S0R8VNLFwHkRcaGkNwP/TfbctwW4F5gVEb3DHGPHaHv3bTTWGUZnvUdjnWF01ns01rmaauUKeDCfAW6W9EXgEeD6NP964AeSlgDryVo+ExGLJd0CPAmUgCuHO/mamZm9GjWXgCPifuD+VH6eAVoxR8QO4IODbP8l4EuVi9DMzGzfaqIRVg26Lu8AcjAa6wyjs96jsc4wOus9GutcNTX3DNjMzKwe+ArYzMwsB07AZmZmOXACHmaSzkoDPSyRdFXe8VSCpJmSFkh6UtJiSZ9M8w+SdLek59LPKXnHOtxe7YAg9UTSZEnzJD0t6SlJJ9X7uZb0qfRv+wlJP5I0th7PtaTvSVoj6YmyeQOeW2W+ler/mKTj8ou8PjgBD6M0sMN/AGcDRwEfSgNA1JsS8A8RcRQwG7gy1fMq4N6ImEX2jnU9fgF5tQOC1JNvAndFxBuBt5HVv27PtaRW4BNAe0QcDTSQvcpYj+f6+2QD05Qb7NyeDcxKnyuAa6sUY91yAh5eJwBLIuL5iOgGbiYbAKKuRMTKiHg4lTeT/UFuZfdBMMoHx6gL+zkgSF2QNAk4hfSOfUR0R8RG6vxck72iOS71pDceWEkdnuuI+A1ZXwnlBju3c4CbIvMgWU+EM6oTaX1yAh5er3qwh3qRxlo+FlgITIuIlWnRKmBaTmFVyv4MCFIvDgc6gRvSrffvSppAHZ/riFgOfA14iSzxdgGLqP9z3W+wczvq/r5VmhOwDZmkicBPgb+LiE3lyyJ7v61u3nHLY0CQEaIIHAdcGxHHAlvZ43ZzHZ7rKWRXe4eTdVk7gVfeph0V6u3cjjROwMNrSIM91CJJjWTJ94cRcWuavbr/llT6uSav+Cqgf0CQP5I9WjiVsgFB0jr1eL6XAcsiYmGankeWkOv5XJ8OvBARnRHRA9xKdv7r/Vz3G+zcjpq/b9XiBDy8fg/MSq0lm8gabszPOaZhl559Xg88FRFfL1s0H7gslS8Dbqt2bJUSEZ+NiLaIOIzsvN4XEZcAC4AL0mp1VWeAiFgFLJV0ZJp1Gllf6nV7rsluPc+WND79W++vc12f6zKDndv5wKWpNfRsoKvsVrUNgXvCGmZpyMRvkLWc/F7qe7quSDoZ+F/gcV5+HvpPZM+BbwEOBV4ELoyIPRt41Lw9RuT6E7Ir4oPIBgT5i4jYmWd8w03SMWQNz5qA54HLyb681+25lvSvwEVkLf4fAf6G7HlnXZ1rST8C3kU27OBq4PPAzxng3KYvI98hux2/Dbg8IjryiLteOAGbmZnlwLegzczMcuAEbGZmlgMnYDMzsxw4AZuZmeXACdjMzCwHTsBmVZBGFPpYKrdImrevbV7DsY5Jr8OZ2QjmBGxWHZOBjwFExIqIuGAf678WxwBOwGYjnN8DNqsCSf0jYz0DPAe8KSKOlvRXZKPNTCAb5u1rZB1e/CWwE3hP6gThCLKhLpvJOkH4SEQ8LemDZJ0n9JINGnA6sAQYR9ZN4L8DtwPfBo4GGoF/iYjb0rE/AEwi62TivyLiXyv8qzCzpLjvVcxsGFwFHB0Rx6QRpG4vW3Y02YhSY8mS52ci4lhJVwOXkvWsdh3w0Yh4TtKJwDVk/VF/DjgzIpZLmhwR3ZI+RzaW7d8CSPoyWdeZfy1pMvCQpHvSsU9Ix98G/F7SHe7dyKw6nIDN8rcgjau8WVIX8Is0/3HgrWnUqT8FfpL1BgjAmPTzAeD7km4hGzRgIGeQDSTx6TQ9lqybQYC7I2IdgKRbgZMBJ2CzKnACNstfeX/CfWXTfWT/RwtkY9Ees+eGEfHRdEX8XmCRpOMH2L+A8yPimd1mZtvt+QzKz6TMqsSNsMyqYzNwwFA2TGMtv5Ce95JGo3lbKh8REQsj4nNAJ9lwcXse65fAx1Nn+kg6tmzZuyUdJGkc2bPoB4YSo5ntPydgsypIt3kfkPQE8NUh7OISYK6kR4HFZA26AL4q6fG0398Bj5INm3eUpD9Iugj4Alnjq8ckLU7T/R4iG9f5MeCnfv5rVj1uBW02SqVW0Lsaa5lZdfkK2MzMLAe+AjYzM8uBr4DNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAf/DzTNvnxnjUfaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorFiatBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAEWCAYAAAAzRH40AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vLVvudrYvS7UgiDSxYBRBBKMSFTV2xV6SWBI/WzTRKEaNJRIlGo0NNaLy2T+jKAgYSxAQEwUVlLK9l3u33TbfH3Pu5e5lG+zC7tX5Pc997jlz5sy8M2fOzHtm3pkRpRQGg8FgMBgMu4KtvwUwGAwGg8EQuxhFwmAwGAwGwy5jFAmDwWAwGAy7jFEkDAaDwWAw7DJGkTAYDAaDwbDLGEXCYDAYDAbDLtNrRUJE5olItYiUW+dzRKRIRDwiMrH3Iu6yXHtMDhEZLiJKRBy7M56BgIicLSJL+lsOg8Hww0JEnhaRef0tRyzQXZsjIreJyHPW8VCrHbTvLnm6VSREZIuItFiChH4PhwQErgXGKKXyrFvuA36llEpWSn2+q4JZmbT3rt7fnRxW+E1WekpE5IHdmdEicpaIrLbiKxORf4rI4bsrvh7I87SIeEXEbf2+FJG7RCStq/uUUs8rpWbtYpy3iYgvqixdv2spiG0i8t8jIrUi8p6I7NffcnWHiJwvIv/q4zDjROR+ESm28mOLiDzYl3EMZETzvYis729ZekMf1NkdhTlCRIIi8khfhttNnB2WcRE5WETeFpF6651dJSIXWNemiUhxlP9jRGSlVb9WicgKETmhmzi2iMjRfZkepdQ2qx0M9GW4kfS0R+JnliCh368s96FAjVKqMsLvMOCrPpVy1+iJHOOVUsnAkcDpwIW7QxAR+Q3wIPBHIBedb38FTuzE/57q2fiTUioFyAYuAA4FPhKRpN0o14tRZelPHcQjIvJjGHb7k1X+CoFK4OmdDSDWesE6kfcmYDJwMJACTAPW7kGx+pupQA4wUkQO2l2RxFpZsTgPqANOF5H4/hJCRKYAy4AVwN5AJnAFcGwn/k8FXgYWot/vXOD3wM/2hLx7HKVUlz9gC3B0B+5HAy1AEPAAL1j/CmgCvrP8FQD/C1QBm4GrIsKwA78FvgPcwBpgCLAyIhwPcHoH8duAW4Ct6Ep4IZAGxHckRwf3K2DviPOXgAUR52nAE0AZUALMA+wRct8HVAPfA7+0wnN0EE+aJc/Pu8jj24DFwHNAI3CxlY4HgVLr9yAQb/nPAt4C6oFa4EPAZl27wZLXDXwDzOgkzqeBeVFuKVZ6f2Wdnw98BPwZqLHy4HzgX1H5eJWVD9XAvSFZOknnc51cWw7cacXXgn5Zd/kZEFVuo+NGK00fW3n4BTAtSpY7LFncwBIgK+L64RH3Fll5chBQEZLP8ncy8EVP8h84HvBYxwcDn1jhlwEPA3FRef5LYCOw2XKbb8nSiH6PjohK+8vo8uUG/gvsi27AK637ZnVX9oHRQCsQQJfpest/vPUstll58CiQaF2bBhSjy2U58GwHefEWcE0n+XQB8GbE+Ubg5YjzImCCdbwf8B76nfgGOC3CX09k/C26PG0Bzu7ifS0A3rDi2QRcEpXXL6HrIzf6Y2ZyN3Xsk8DzwCvAw1HXRqDrQzfwPrCA9uX4PHQdWAP8johyT8f1ig24EV3n1liyDupheJ2WSzqps4HZwDrrno+BcRFxTUQrjG7gRWAR7d8JseS8wnpmp0blzSzrOTegP8xWABdHXL8Q2IBWRN4FhkW9Q5ejy1O9la9C52X8X0S0Dx08w2lAcYTc24DruvB/PhH1aIR7ZH532MZZ14bTvr4bYaXfjX4HHg6Vkw78Lqfr+q3TMtBperq62FGF3FnmRT2gvSMyYg1aE4sDRqIr/WOs69ehK7VRVuaPBzKjw+kk7gvRL/FIIBn9Ej7bkRyd3B8p537oF+PXEddfBf4GJKG/FlYBl1nXLge+Ris9g4AP6FyR+Cng7+haVOXjA06y8iwRuB341Io7G/0S3mH5vwtdETqt3xFW/o1CV6wFEQVor07ifJooRcJyX4juNQBd2P3AlYDDkut8dlQkPrDyYSjwLREvcwfp7EqR2Absb8Xl7M0zoAtFAhiMfkmOs/J7pnWeHSHLd+jGNtE6v9u6Ngz98p1pyZjJ9oZsPXBsVBm6trv8R5fffwAfWucHohUdh/UMNxDR0FrpfM9Kd6gxPMeSxYEebiwHEiLS3gocY11fiFbqb7bScAmWQtKDst/u+Vtuf0Y3rIPQyuibwF0RdYQfuAfdmCd2kBe3WM/+F8ABgERcG4mu6G3oBnwr2yvskehGwmbJWoRWPBzoRqoaPezaUxkfsGQ8Et0gjurk2a1EN1wJwAT0R9JRUXl9HFr5ugv4tIt334Vu5I8DTrFkjlQaP0ErQHFoBbaR7eV4DLqxO9y6fh+6HolUJKLrlavR9Uqhlda/AS/0MLyelMvIj7OJ6AbwECsv5qLfy3gr/K3Ar9Fl8FQrrkhF4gigDcgAHqK9Qpll5cXJljxXW/dfbF0/Ed0+jLau3wJ8HCXrW0A6ut6qAn7aURm3nlEAmN7Fc5zG9nK5nxX+iC78t4sjwn1LRH532saxo3LwCdvL71R0HdWVItFZ/dZlGeg0PV1djEiYB/0yh36XRGdeR4XJKkDboq7fBDxlHX8DnNhJvN0pAkuBX0Scj7IS7Ojh/coqiE3W8Qts/+LPRRfgxAj/ZwIfWMfLgMsjrs2ic0XibKC8mzy+DVgZ5fYdcFzE+THAFuv4duD16PShv+Ir0b1Fzm7ifJqOFYm7gfciCnv08zufHRWJn0ac/wJY2kU6vVFlKaT0LAduj/Dbq2dA14rEDUR9GaO/WOZGyHJLVJreiSi/r3aSvhuA563jQUAzkN9F/rdaeVCObuQ6U/quiYzTSudR3TzfOvTQXSjt70Vc+xn6nQ717qRYYab3IN+jn7+g36G9ItymsL2nZJr1zBO6kNWO7mH5yIq7NPQsrOtFwCTgDOAxtGKzH1ppeMPyczqWIhZx39+AW3soox9Iirj+EvC7DmQdgm5UUiLc7gKejsjr9yOujQFaukj7OehGzIFWTBqAOda1oZZcrgj/z7G9HP8eSwmwzl1WXkcqEtH1ygYieimBfKx6s7vwelguIxWJR7A+fiLcvkEralOt5xypNH5Me0Xi78BrEc/LB+RY5+cBn0SVwyK2KxL/BC6KuG5Dv4/DImQ9POp539hJGR9s+d+vi+c4je2KxE8s/12V+fOtZ1sf9QtGPL9O2zgilIOIchJZfv9B14pEZ/XbTpWB0K+nY2YnKaXe76HfSIYBBSJSH+FmR3fFg34pv9uFcGH710mIrehMzUV3x/aESVb8P0c3oEnoimwYWksuE5GQXxu6oIbiLooIJ1KOaGqALBFxKKX8XfgrijrvKH0F1vG96EpiiSXfY0qpu5VSm0TkGuva/iLyLvAbpVRpF/FGMxjdZduZXN3JHilnR7yklDqnB+H05TOIZhjwcxGJHK90ons1QpRHHDejvwig6zL7HLDBsjE5Dd2wlXUhx31KqVuiHUVkX/TXxWT0i+xA9+xFUhR1z/8AF6HzRQGp6K+2EBURxy1AtdpufNVi/Sdb93eV79FkWzKuifAv6Pc8RJVSqrWT+7HkWAAsEJFE9JfYkyKySim1Ad1lOw2tKK9AV7hHohuXFVYww4BDouoaB/BsD2WsU0o1RZx3Vo4LgFqllDvK7+SI8+iyk9DF+z8X/U74Ab+I/K/l9mpEXM0R/ovQZTAkS/i5KKWaRaQmKvzo5zYMeFVEghFuAXS92WV4PSyX0XHNFZErI9zi2F5GS5TVWlmE32GrHPwcPRyDUuoTEdkGnIUe5o2WVUUZOw4D5ovI/RFugq7fQvF09o5HU4du4PPRvaDdEcqzfHTPX2d8qpRqZ3AvIlsiTrtq44jy11H5HULndJb2npSpHdjdBm1FaK0/PeKXopQ6LuL6XrsYdim6sIQIaWUVHXvvGKV5Cd019PsIudrQ40YhuVOVUvtb18to/5CGdhHFJ1ZYJ3UnStR5R+krtWR2K6WuVUqNBE4AfiMiM6xr/7AK5zArzHu6iTeMiCSjezM+jHCOlqsjovNiZxSXSCLj6u0zaEJXdiHyIo6L0D0SkeUySSl1dw9k7LTMKqVK0M/7ZOBcdCO2KzyCrrD2UUqlosfuJcpPOK9E5AjgerTykqGUSkd/2Ubf0xO6y/fo8lCNVkT2j/CfprQR6Q6ydodSqkUptQBdeY+xnEOKxBHW8Qq0InEk2xWJImBF1DNNVkpd0UMZM6KMjDsrx6XAIBFJifLb04+XMCJSCBwFnCMi5aKn0J8KHCciWegyPkhEIstxZJkvQw9RhMJLRA9vRRKd90Xo4bfIfEqwym534fWkXEbHdWdUXC6l1AtWXIMlQrOj/Ts8B60M/zUibwajlayO0i6R51bcl0XFnaiU+rgLeUO0yzNLkfsEPfTUE76x4u+p/87oaRtXRsfld1foSZnagd2tSKwC3CJyg4gkiohdRMZGWCb/HbhDRPaxLPXHiUhI6Ar02FBnvAD82poelIyeEfFiN1/9XXE3cImI5FlfkUuA+0UkVURsIrKXiBxp+X0JuEpECkUkA2281CFKqQa0grJARE4SEZeIOEXkWBHZYcZCVPpuEZFsq1L5PfqLFxGZLSJ7Wy9PA/qLIigio0TkKMu6uZXtxrBdIiLxInIg8Bq6An+qu3uiuE5EMkRkCHqs8sWdvH8H+uAZrAPOsPJ6MrqCDvEc8DNrepZdRBJET98qpHueB44WkdNExCEimSIyIeL6QnSjfgB6THNXSEEPu3lETwm9ogf+/Vhd5CLye3QlvNP0IN8rgEIRibP8B4HHgT+LSA6AiAwWkWN6GqeIXGPlf6KVp3OtNIWmba8ApqOHW4rRiu5P0RVcyM9bwL4icq71zJ0icpCIjN4JGf8geirqEWgjwZc7yJ8idBf8XVa5GYfuCXqup+mN4Fy0TdEotK3FBPS4dTFwplJqK7AauM2Sawrtrf4Xo8vxYdbzuI3ulcdHgTtFZBiAVb+EZo91F1535TK6zn4cuFxEDrHq9yQROd5Swj5Bl9mrrGd1MtqYM8RctBHqARF58xNgvIgcAPwfcIBVpzrQQ2ORHwuPAjeJyP5WOtNE5Ofd5E1kOsJl3OJ64HwRuS7URonIeBFZFH2z1cvyG+B3InJBxHt0uIg81kMZoIdtXEQ5CZXfw9n12SG7UqZ6rEi8Ke3n/r/ak5usLsvZ6EKwGf1l8He0VTjobrKX0BVXI9pSPNG6dhvwjOg5u6d1EPyT6C++lVbYrWijwF1CKfVfK6zrLKfz0N1w69GN62J0VxXoF+RdtLX/WrppMJRS96ML1i3oyr4I+BW64e6MeejC8R+0Qepayw1gH7QFtwf9Qv5VKfUB2tDmbnQ+l6MN5W7qIo7rRcSN7opbiO6mPCyqi6wnvG7duw79gj+xk/d3Rm+ewe/QPQd1wB/QY4ZAuDE4Ef1FFXoe19GD90EptQ1tGHcteghoHdpIOMSrWN3HUV3SO8P/oLtw3eh0dqeYvQu8g26UtqLfhZ4MSXVGV/m+DD0ToVxEqi23G9BGYZ+KSCO6bI7aifiagfvRZbYa3SicopT6HkAp9S26rH9onTeijbY/Cg3PWEMNs9B2FKVWWCEDz57IWG6ltRStLF6ulOqsG/tM9LhzKfp537qLQ79z0e9ueeQP3QiGvrzPRg/hhGZNvYjuMUIp9RW6zluE/pL0oG2k2rqIcz7aHmeJ9e5/irZl60l43ZXL24ios5VSq9GGvA+j83YT2jYApZQX3XN3Pvo9Oh3rHRaRwcAM4MGovFmDLudzlVLV6KGPP1l5MwZdX4by5lX0819kPe8v6WSqZgfsUMatnoyjrN/3IlKLttd5u6MAlFKL2b6kQClaOZmHrit7ys60cWehn2Mt2i5o4U7EEyn3rpQpbehiMOwqIqLQXZ2b+lmO4eiXzdmLXqm+kuU7dLfqrjQuhj2MiExDG6b1pEeqXxGRF4GvlVK3dnAtGW0/so9Sqqux+Z7G1afh7U5ErztTjJ62+0F3/g09o6dl4Mew6I/BsMcQkVPQY6zL+lsWQ+xjDc/sZXWN/xTdk/ZaxPWfiR4uTUJP1fsvesbSrsbXp+HtTqyhyXTRQ7khe41P+1msmGdXyoBRJAyGPkJElqMN0n5pjcsbDL0lDz1dzwP8BbhCtV/y/0S2L1q3D3CG6l03c1+HtzuZgp5BVY22CThJKdXS9S2GHrDTZcAMbUQhIr9GTzlSaE3sAvT48CK0cdca4FyllNfShBeiF2qpQa/mtsUK5ya0EVYAvZrnu3s4KQaDwWAw7HZMj0QElpHPVeglbcei55mfgTba+bNSam+00dBF1i0Xoefv7o1eOe8eK5wx1n37o63L/yq7cUMwg8FgMBj6i1jcxGV34wASRcSHXoegDG2pe5Z1/Rm0dfIj6C6g2yz3xcDDIiKW+yKlVBuwWUQ2sX2d+g7JyspSw4cP7+u0GAwGww+aNWvWVCulsvtbjh8zRpGIQClVIiKhjX1a0NNS16A3bgnNBChGL4yC9V9k3esXkQb08Mdg2hv9RN7TIcOHD2f16tV9lRSDwWD4USAiO7OqrWE3YIY2IhC9sNGJ6J3UCtBLZv90N8Z3qYisFpHVVVVVuysag8FgMBh2G0aRaM/R6CW9q5RSPvQCKT8B0q3V00AvHxpaDrcEa8la63oa2ugy7N7BPWGUUo8ppSYrpSZnZ5ueOYPBYDDEHkaRaM824FBrDq2gV1dbj97MKbTE8ly2r072BttXoDsVWGZNk3kDvTxzvIiMQE+hWbWH0mAwGAwGwx7D2EhEoJT6t4gsRi+57Eev4/8YetnnRSIyz3ILLQH9BPCsZUxZi56pgVLqKxF5Ca2E+NHrCgQwGGIEn89HcXExra2dbtppMOxREhISKCwsxOl09rcohijMOhIDhMmTJytjbGkYKGzevJmUlBQyMzMR2ZVNRA2GvkMpRU1NDW63mxEjRrS7JiJrlFKTO7nVsAcwQxuGHwTBoKKmto11X9azabOH+gZvf4sU07S2tholwjBgEBEyMzNND9kAxQxtGGIWnz9IfYOP77Z4GJyfyBXXr6O+wQfA5PHp3HrdaDLS4trdo5Sirt6HAtJTHdjtRpfuDKNEGAYSpjwOXIwiYYhZikqaufTaz5k9Kx+3pzKsRMTH2xgzKpXm5gCBQBspyQ7i4+w0NftZ+596Hnnme7zeIGefMpQZR2STmmLGXA0Gg2FXMZ9jhpgjENDDGAue/J7WtiDpqU4qq/VQhgjMu3EM1TVtnHXFZ8x7YAPlla383/vlbCtp5qY7v2JbcQvllW3c/8hGNm9r6ufUGDrDbrczYcIExo4dy89+9jPq6+t36v7bbruN++67r8NrCxcuZOzYsRxwwAFMnDixU399zfDhwznggAM44IADGDNmDLfcckuX3fWHHXbYToU/bdo0Ro0axYQJE5gwYQKLFy/urcgGQ7eYHgnDgKfR7aOotIV//buaY2fk8dGqGrIGxVFTq5WHNV/UMf3wbD7/bz2TDkhna1Ezby+tID7exqXnjeTy69Yxdr9UikqSwmHmZsdz09WjqKrxUr2livhgK36fIj4pnmBrKyhQIiCCzSY4U5OJy0zvryz4UZKYmMi6desAmDt3LgsWLODmm2/udbj//Oc/efDBB1myZAkFBQW0tbWxcOHCHfz5/X4cjr6vIj/44AOysrLweDxceumlXHbZZTzzzDMdxv3xxx/vdPjPP/88kyd3bHuolEIphc1mviENfYcpTYYBRSCgaG7xEwzqCq+p2c/7Kyu57H8+p7bOx5ov6nDYYdmHVZx9aiFXXzKSdV81kJhg55cXjuSgiRl8sb4BgEMmDWLFx9W4PX6qatoYnJ8Yjuemq0cx/7FN3HbvBuxtLawcdTQfj51Jy3dbWDF6FivGzGLl6Jms3O9olu87A7/b019ZYgCmTJlCScn2Nd3uvfdeDjroIMaNG8ett94adr/zzjvZd999Ofzww/nmm286DOuuu+7ivvvuo6CgAID4+HguueQSQH/RX3PNNUyePJn58+ezZcsWjjrqKMaNG8eMGTPYtm0bAC+//DJjx45l/PjxTJ06FYCvvvqKgw8+mAkTJjBu3Dg2btzYZZqSk5N59NFHee2116itrWX58uUcccQRnHDCCYwZMybsB2D58uVMnTqV448/nlGjRnH55ZcTDPZsp/otW7YwatQozjvvPMaOHUtRURFLlixhypQpTJo0iZ///Od4PLp8v/POO+y3335MmjSJq666itmzZwM79u6MHTuWLVu2APDcc8+F033ZZZcRCATCst98882MHz+eQw89lIqKCgAqKiqYM2cO48ePZ/z48Xz88cf8/ve/58EHHwyHf/PNNzN//vwepc/Q/xhFwjBgqKv3svjNYub9+Wu2FTfz+jtlbPzew5P/0Evpz5yWzeEHp3P4QS5Onp3PlAPTmX5YEvfeuj8fr6phxhHZ/OyYfCYeoHsO4pxCm1dXtps2N5GTGc/EA9IZVuiiqrqNzduaGZTupCcToHtYZxt2A4FAgKVLl3LCCScAsGTJEjZu3MiqVatYt24da9asYeXKlaxZs4ZFixaxbt063n77bT777LMOw/vyyy858MADO43P6/WyevVqrr32Wq688krmzp3Lf/7zH84++2yuuuoqAG6//XbeffddvvjiC9544w0AHn30Ua6++mrWrVvH6tWrKSws7DZtqampjBgxIqx0rF27lvnz5/Ptt9/u4HfVqlU89NBDrF+/nu+++45XXnmlwzDPPvvs8NBGTU0NABs3buQXv/gFX331FUlJScybN4/333+ftWvXMnnyZB544AFaW1u55JJLePPNN1mzZg3l5eXdyr9hwwZefPFFPvroI9atW4fdbuf5558HoKmpiUMPPZQvvviCqVOn8vjjjwNw1VVXceSRR/LFF1+wdu1a9t9/fy688MJwr1AwGGTRokWcc8453cZvGBiYoQ3DgKDR7ePuv3zDR5/VMvf0oTy3uIh3Pqjg3lvHEgjopj7OYUMpPy3N9QzOcVFd1YjTGcfEsTmMG5OOK1EX55lTc1i9ro5/r63jT78by2v/LMXvV/zh/g1cc+nejB2dyhdf6l6L+Hg7Zi2VgUlLSwsTJkygpKSE0aNHM3PmTEArEkuWLGHixIkAeDweNm7ciNvtZs6cObhcLoCw4rGznH766eHjTz75JNxgn3vuuVx//fUA/OQnP+H888/ntNNO4+STTwZ0r8mdd95JcXExJ598Mvvss0+P4ossfwcffPAO6yREXhs5ciQAZ555Jv/617849dRTd/AXPbThdrsZNmwYhx56KACffvop69ev5yc/+QmgFacpU6bw9ddfM2LEiLDc55xzDo899liXsi9dupQ1a9Zw0EEHAfqZ5eTkABAXFxfu0TjwwAN57733AFi2bFlYabDb7aSlpZGWlkZmZiaff/45FRUVTJw4kczMzC7jNgwcTI+EYUDQ0hbgo89qAZg8IYP3VlYCsPzjai49bzjHzchh/uPfYXfEk5ySSmtLMwCDsnJo8xJWIgAy0uO45df78fRfDiQ/N4Gn/3Igx8/MY+qULEbvk0JmRhyTJ2SQmGinrKIVu737aWVmSHnPE7KR2Lp1K0opFixYAOiG96abbmLdunWsW7eOTZs2cdFFF/U43P333581a9Z0ej0pKanTayEeffRR5s2bR1FREQceeCA1NTWcddZZvPHGGyQmJnLcccexbNmybsNxu91s2bKFfffdt9u4o6c/7sx0yMhwlVLMnDkznH/r16/niSee6OJucDgc7YZSQgaiSinmzp0bDuubb77htttuA8DpdIZltNvt+P3+HcKN5OKLL+bpp5/mqaee4sILL+xx2gz9j6keDbuVYFARCATDx37rWCmFz7/9WJBwgx7wK+LidNHcUtTEzKmZ/PKCIfzmir1ICjST0NhElrKTjYNgWQWOmgraquvw+XwopfDW1OOoqSClqZrktgay26q56rgErj4lnUEtVfi3FZPcVs+rfxzCP+8fhgMzbjGQcblc/OUvf+H+++/H7/dzzDHH8OSTT4bH9UtKSqisrGTq1Km89tprtLS04Ha7efPNNzsM76abbuK6664Ld917vV7+/ve/d+j3sMMOY9GiRYD+0j/iiCMA+O677zjkkEO4/fbbyc7OpqioiO+//56RI0dy1VVXceKJJ/Kf//yny3R5PB5+8YtfcNJJJ5GRkdFtPqxatYrNmzcTDAZ58cUXOfzww7u9pyMOPfRQPvroIzZt2gToIYhvv/2W/fbbjy1btvDdd98B8MILL4TvGT58OGvXrgX08MvmzZsBmDFjBosXL6ayUiv+tbW1bN3a9a7eM2bM4JFHHgH0sFVDg+4dnDNnDu+88w6fffYZxxxzzC6lzdA/mKENQ69pavbT3BIABfHxQptXYbOB3694/Z0ygkHFSccW8M6ycuobfZxx0hA++FcVxWUtnH3KED5ZU0tSop3TThzMC68Us/TDSs46eQhPPL+F2TNzcbs9tDQ3MGxwLv7KOj4cvWMlc+TX71HtrmfosGH43R4+2GcGAIe+v5BPjz6vy+OD3niMQ9/XXa2ufYYzbcMSHagIYi1Y5UhJ3q15aOiaiRMnMm7cOF544QXOPfdcNmzYwJQpUwBt1Pfcc88xadIkTj/9dMaPH09OTk64uz2a4447joqKCo4++mitxIp0+gX80EMPccEFF3DvvfeSnZ3NU089BcB1113Hxo0bUUoxY8YMxo8fzz333MOzzz6L0+kkLy+P3/72tx2GOX36dJRSBINB5syZw+9+97se5cFBBx3Er371KzZt2sT06dOZM2dOj+6LJjs7m6effpozzzyTtrY2AObNm8e+++7LY489xvHHH4/L5eKII47A7XYDcMopp7Bw4UL2339/DjnkkHAPypgxY5g3bx6zZs0iGAzidDpZsGABw4YN6zT++fPnc+mll/LEE09gt9t55JFHmDJlCnFxcUyfPp309HTsdvsupc3QP5i9NgYIsbjXhqfJT5s3wHOLi3jl/0r5zWVgn4OBAAAgAElEQVR7U17VyouvFfPgvPHcctdX1Nb7ePCOcfzp4W8prWjlzpvG8NSirWza3MSNV+7Lv9fW8e+1tbS1BfjD9WMYlOFk/bdujpySSUtrkM/W1XH8jFw87hqam5vJEScrRs3cQZapXy8hcWgBNrud1m2lO6VIRDJ941Jcw7s3kvuhs2HDBkaPHt3fYhgsli9fzn333cdbb731g40zGAwyadIkXn755U7tSzoql2avjf7H9EgYdpqmZj/ffufh3Q8qOHhSBi+/UUJ2ZhxZWfHc+9eNDCt0UVTSTG29j/Q0Jy2tAUorWnE4hNRUJ5s260Wg9tkrmcnjUznvtELE4yE/pQ1oY6/xgj3gIdXXwuwDBFtjPcnNbSRjR9T2YYiD3ngMuysBAEdiAq1bSxDMMroGQ6yxfv16Zs+ezZw5c3pspGoYOBhFwrDTFJW2cOVvv+Cow7NZ9189vjl0sIsN3+pu0EBA4XDoIYFgUIVtH5QCW4SB2PDCRKoqy0hw2hiUoli+74zwta56EkLYXQnd+tkV/H4/drsdESEQCGCz2cw6/4Z+Zdq0aUybNu0HG+eYMWP4/vvv90hchr7HGFsaOkUpRU2dl2+/c1Nc1kKD24ffH+SVt/TCQJu3NbH/fqkAbCtpZvS+KQAUl7WQnRlPYX4ijW4/SsE+I5MJBBTlla1MHJsGwKdraklKzsTvayMYDPRPIjvA4/Hg8/kIBAJ4PB78lhGnwWAwGHbE9EgYOqW8so3Lr/88vBT1WScXct7Ph5KdFQ/A5m3N2O3CScfm8+aScqqq2zjvtCEserWYexd8yx03juGbTW5Kylu453f7s+7LBqqq27j1utFs+KaRqro2XElOGhtsKH/PGupAc2u4xyFhcG63fiKNJ22uhHbHR254FwCx2QgEFaCwJ7to8nior6/H5XLhcbux5+ZidzhMr4TBYDB0gFEkDLjdPjYXNfPeikqOmZaD3SGUlbey8tPqsBJx3mlDGb1PCn9a8C3nnzGct5aUU1PnZd6fv+aSc0bw0mMHY7MLcXHCnOMGI6K36d5ruAubzUYgEGDGEVnYbDb8fj9TDspARCgrLcVms/V4O+/PTrg0fByeXdGFn+kblxLMySDRWqSopaWFxMRERIRgMEjRtm047ELB0MFs27oVu6eRwYWFFBcV4XG7SUtLw+Vymb0JDAaDoROMIvEjx+8PsOyjKu5dsJFJ49LZWtLCXfO/4VcX7UVxmV50ZsRQF/vtk8JNd34FQElZK3f+dgz1DT7i4mzsPTyZQRlxUeH6KS8rJTMrC6fTSUV5OWnp6bhcLspKS3HGxZGZmUlmVpZerKa0crekTymoqqoiLT2dlJQUqquqSHS5SE9PD89fHzRoEHV1dQBkZGTQ2NhIMBjEbrfj9nhITU1FIhbXMRgMBsN2zPTPAcLunP4ZCCjavAES4u0oBa1tAXw+xYaNjSQm2rntTxuorvVy3S/34a33yvH7FXk58UwYk0ZVrRe7XSivasXnC7Lyk5pwuHfeNIYjD8vuJM4AtTU1uN1ucnJyaG1ro7GhgaSkJFJSU6koL0cpRVJyMpmZmQQbPO02xrLFxRFobgGbYE9I0McANkGs3gF7YgKBltb2/qP9pCThT4ijorycpKQkUtPSqKyoIC8/n8qKCrKys3E6nZSXlZExaBDx8fFUlJeTkppKUlIS5WVlYQXox9QrMRCmf7a2tjJ16lTa2trw+/2ceuqp/OEPf2Dz5s2cccYZ1NTUcOCBB/Lss88SFxfXfYCGmMdM/xyYmB6JHzi19V7+b0kZX29yc+l5I/l0dS02O9TWeXn25SLuuHFM2K/dLtx45d6kpzr428KtzDk+j4DfT0mFjySXncQEGDnUxcKXi5g9Mx+x7fiFHprlYLfbGTRoEG63m5qaGgoLC3E3NpKkbKiKGjKDNpyuRALuFtrcJe0af0dK323ZHQgEaLA2LnIlJdHc1EQgEKCyooL8/HwQweFwkG/tBGm328nLz0cpFT4GflRKxEAhPj6eZcuWkZycjM/n4/DDD+fYY4/lgQce4Ne//jVnnHEGl19+OU888QRXXHFFf4trMPxoMYrED4SmZj9NzQFa2wIkuxwkJdlxu/384b4NfP5lA5fPHcHfFm5m5SfVPHjHOP72jF7i9oN/VXHmyUN4+Y1iEuJtpKf4aayv5lcXDae1pZnq6mpysrKwO3Qje/YpQ5g9K5eMNAdKaXuHQCAQXomusrKSrCxtC1FWWorT6STHlUzz1hIylQ1pamH56FlA14tC9aUi0eTxUDB4MHa7neqqKnIt48mioiLyCwqw2+3tVtLr7NjQOUuWV/C3hZuprG4jJyuey84bwaxpHRvD9hQRCW+j7fP58Pl8iAjLli3jH//4BwBz587ltttuM4qEwdCPmM+sHwCeJj+L3yrh1Is+5Ybbv6Siuo0FT35PVa2Xz61dLg8YncamzR4KchNQCkbvm8JBEzL4ZHUNM6dm8ezDk6it95KSkkJCQgLVlaWICKlpabS2tqKUorSkhEDAR1qKjZLiYgIBL8FgkJLiYjweD8FgEBUMUlpSgq+ugQw/DArY8Ne7WbnfLD4cfQytJd1vTdyXOBwOhg4bRlxcHDabjaHDhpGQmEhcXFzY3dg+9I4lyyu45+FvqahqQymoqGrjnoe/Zcnyil6HHQgEmDBhAjk5OcycOZO99tqL9PR0HA79DVRYWEhJSUmv4zEYDLuO6ZH4AeD2+Hj82S0A/OKCkdx+/waKSlqYeWQONhsEg+B0CPPnjQVg3Zdu7r9tf5RSfPt9MyrgobLCw0k/LQiv5yA2Gw6nE7fbTWtrK4kuFympqVRWlJGfkkaOOAmUVWFzJZKrHKjqegKuNtJbAyiEYIObFdaeGL1dIKo3mCGJ3c/fFm6mra39xmdtbUH+tnBzr3sl7HY769ato76+njlz5vD111/3KjyDwdD3GEUihgkEAogI9Q0+3lk0hfdWVDJuCDx+fT5eX5D4pFbevn84SilstnpsgXgCzS1MHWEjUF1LoLmFkU7B5k0g3g++bWXYXAmkNHtJxQZ1jaS2+EjDgc3dTGJzK4nYCTY2saKD4Ym+XF3SEDtUVrftlPuukJ6ezvTp0/nkk0+or6/H7/fjcDgoLi5m8ODBfRaPwWDYecznWowS8PuprKjA6/Wy9wgXnsYaZh2ZgcPbyopRR/PJ2Fm0freFFaNnsXLMMSzfbybNG7ewYvQxLB8VcTx61k4cz2JFPwxPGAY2OdYCZT117ylVVVXU19cDev2P9957j9GjRzN9+nQWL14MwDPPPMOJJ57Yq3gMBkPvMD0SsYpI2KAxLyWNpGYfgaYq7AN806rOVp2MnrVhiB0uO28E9zz8bbvhjfh4G5edN6JX4ZaVlTF37lwCgQDBYJDTTjuN2bNnM2bMGM444wxuueUWJk6cyEUXXdTbJBgMhl5gFIkoRCQd+DswFlDAhcA3wIvAcGALcJpSqk60ld584DigGThfKbXWCmcucIsV7Dyl1DN9KWeg3k1Kq5/EoI1Ag5uVA8AeoTPaL2udhzj0TAh7fDyJBb0bQzf0PyE7iL6etTFu3Dg+//zzHdxHjhzJqlWrehW2wWDoO4wisSPzgXeUUqeKSBzgAn4LLFVK3S0iNwI3AjcAxwL7WL9DgEeAQ0RkEHArMBmtjKwRkTeUUnV9JaSv0RPeLTOWlIe+XCPCMHCYNS2314qDwWCITYwiEYGIpAFTgfMBlFJewCsiJwLTLG/PAMvRisSJwEKllwf9VETSRSTf8vueUqrWCvc94KfAC3sqLbuTnmyKtbsWmDIYDAbDwMIoEu0ZAVQBT4nIeGANcDWQq5Qqs/yUA6FPr8FAUcT9xZZbZ+7tEJFLgUsBhg4dulOCer3BDt27skGwJ1gNfeQxO+6K2d1xuyWozfCEwWAw/KgxikR7HMAk4Eql1L9FZD56GCOMUkqJSJ9sUKKUegx4DPReGzslqKNjo8ronS+T9h7WCwkNBoPBYOgao0i0pxgoVkr92zpfjFYkKkQkXylVZg1dhLaqLAGGRNxfaLmVsH0oJOS+vC8FtUXsc9GVPYLBYDAYDLsTo0hEoJQqF5EiERmllPoGmAGst35zgbut/9etW94AfiUii9DGlg2WsvEu8EcRybD8zQJu6ktZnanJTNu4FBVUKPS+BDYx9ggGg8Fg2LMYRWJHrgSet2ZsfA9cgF646yURuQjYCpxm+X0bPfVzE3r65wUASqlaEbkD+Mzyd3vI8LKviMtMNwqD4QdPfX09F198MV9++SUiwpNPPsmoUaM4/fTT2bJlC8OHD+ell14iIyOj+8AMBsNuQfSEg9hCRH7TgXMDsEYptW5Py9MXTJ48Wa1evbq/xTAYANiwYQOjR4/ubzGYO3cuRxxxBBdffDFer5fm5mb++Mc/MmjQIG688Ubuvvtu6urquOeee/pbVMMeoKNyKSJrlFKT+0kkA7G7RPZk4HK2z5C4DD298nERub4/BTMYfmwopSgrLaWstJRgMBg+7u1HSkNDAytXrgyvXBkXF0d6ejqvv/46c+fOBbSi8dprr/U6DQaDYdeJVUWiEJiklLpWKXUtcCCQQ8QaEAaDYc9QXlZGa2srra2tbNu6NXxcXlbW/c1dsHnzZrKzs7nggguYOHEiF198MU1NTVRUVJCfnw9AXl4eFRW9367cYDDsOrGqSOQAkVsL+tBrPbREuRsMhj2EUopgMNjrnogQfr+ftWvXcsUVV/D555+TlJTE3Xff3c6PiKBXqjcYDP1FrCoSzwP/FpFbReRW4CPgHyKShJ5hYTAY9hC5eXk7NOYiQm5eXq/CLSwspLCwkEMOOQSAU089lbVr15Kbm0uZ1dtRVlZGTk5Or+IxGAy9IyYVCaXUHWi7iHrrd7lS6nalVJNS6uz+lc5g+HFRUV6+Qy+EUoqK8t5tN5+Xl8eQIUP45ptvAFi6dCljxozhhBNO4Jln9B54Zhtxg6H/ieXpn2vRCz85AERkqFJqW/+KZDD8eAkNM/TlTLCHHnqIs88+G6/Xy8iRI3nqqafCW4o/8cQTDBs2jJdeeqnP4jMYDDtPTCoSInIlenfNCiAACHqXzXH9KZfB8GMkLz8/bFiZm5cX7onIswwie8OECRPoaFr00qVLex22wWDoG2JSkUBvpDVKKVXT34IYDD92RIT8goLweeSxwWD44ROTNhLonTUb+lsIg8FgMBh+7MRqj8T3wHIR+T8ipnsqpR7oP5EMBoPBYPjxEauKxDbrF2f9DAaDwWAw9AMxqUgopf7Q3zIYDAaDwWCIMUVCRB5USl0jIm+iZ2m0Qyl1Qj+IZTAYDAbDj5aYUiSAZ63/+/pVCoPBsEeYP38+jz/+OEopLrnkEq655hpqa2vNNuIGwwAipmZtKKXWWP8rOvr1t3wGg6Hv+PLLL3n88cdZtWoVX3zxBW+99RabNm3i7rvvZsaMGWzcuJEZM2bssP+GwWDYs8RUj4SI/JcOhjRCKKXMglQGwx7mnUGTCLibdnC3pyTx09q1uxzuhg0bOOSQQ3C5XAAceeSRvPLKK7z++ussX74c0NuIT5s2jXvuuWeX4zEYDL0jphQJYLb1/0vrPzTUcQ5dKBgGg2H30ZES0ZV7Txk7diw333wzNTU1JCYm8vbbbzN58mSzjbjBMMCIKUVCKbUVQERmKqUmRly6QUTWAjf2j2QGg6GvGT16NDfccAOzZs0iKSmJCRMmYLfb2/kx24gbDP1PTNlIRCAi8pOIk8OI3bQYDIZOuOiii1izZg0rV64kIyODfffd12wjbjAMMGK18b0I+KuIbBGRrcBfgQv7WSaDwdDHVFZWArBt2zZeeeUVzjrrLLONuMEwwIipoY0Q1uyN8SKSZp2bfTcMhh8gp5xyCjU1NTidThYsWEB6ejo33nij2UbcYBhAxJQiISK/6cQdMHttGAz9gT0lqdNZG73lww8/3MEtMzPTbCNuMAwgYkqRAFL6WwCDwdCe3kzxNBgMsU9MKRJmjw2DwWAwGAYWMWlsKSKFIvKqiFRav/8VkcL+lstg+CGhlFmaxTBwMOVx4BKTigTwFPAGUGD93rTcDAZDH5CQkEBNTY2pvA0DAqUUNTU1JCQk9Lcohg6IqaGNCLKVUpGKw9Mick1fBCwidmA1UKKUmi0iI4BFQCawBjhXKeUVkXhgIXAgUAOcrpTaYoVxE3qKagC4Sin1bl/IZjDsKQoLCykuLqaqqqq/RTEYAK3cFhaajueBSKwqEjUicg7wgnV+Jrox7wuuBjYAqdb5PcCflVKLRORRtILwiPVfp5TaW0TOsPydLiJjgDOA/dG9Je+LyL5KqUAfyWcw7HacTicjRozobzEMBkMMEKtDGxcCpwHlQBlwKnBBbwO17CyOB/5unQtwFLDY8vIMcJJ1fKJ1jnV9huX/RGCRUqpNKbUZ2AQc3FvZDAaDwWAYiMRkj4S158YJuyHoB4Hr2T7NNBOoV0r5rfNiYLB1PBgosuTxi0iD5X8w8GlEmJH3tENELgUuBRg6dGjfpcJgMBgMhj1ETCkSIvIQXW8jflUvwp4NVCql1ojItF0NZ2dQSj0GPAYwefJkY9VmMBgMhpgjphQJtBFkiD8At/Zh2D8BThCR44AEtI3EfCBdRBxWr0QhUGL5LwGGAMUi4gDS0HYaIfcQkfcYDAaDwfCDIqYUCaVUyCYBEbkm8rwPwr4JuMkKexrwP0qps0XkZbQNxiJgLvC6dcsb1vkn1vVlSiklIm8A/xCRB9DGlvsAq/pKToPBYDAYBhIxpUhEsaeGAm4AFonIPOBz4AnL/QngWRHZBNSiZ2qglPpKRF4C1gN+4JdmxobBYDAYfqhIrC44IyJrlVKT+luOvmLy5Mlq9erV3Xs0GAwGQxgRWaOUmtzfcvyYiakeCRFxs70nwiUijaFLgFJKpXZ8p8FgMBgAAoEASinsdjvBYDB8HNpF2WDYWWJKkVBKmd0/DQaDYRdQSqGUwuN2U1dXR8HgwTQ2NNDU1MSQoUONImHYZWJqQSoROUhEju3A/VgRObA/ZDIYDIaBjt/vx+v1IiIkJSfjdDopLiqisbGR7Jyc/hbPEOPElCKBXoZ6fQfu64F797AsBoPBMOAJBoM0NjRQWlJCc3MzXq8Xh9MJgIjgcDhMb4ShV8SaIpFirWrZDsstqx/kMRgMhgGNzWYjLT2dhIQE2lpb8ba10eTxkJ2TQ1x8PGWlpWaXV0OviCkbCSCji2uuPSaFwWAwxBBKKQKBAI2NjeTm5ZFfUEB8fDyJiYn4/f7uAzAYuiDWeiTeF5E7JaIfTjS3A8v6US6DwWAYUCilCAaD4aGNQCCgDSwbG2ls1BPeHA4H8fHx2Gyx1hQYBhKx1iNxLXpnzk0iss5yG49eOvvifpPKYDAYBhBKKbxeLz6fD5fLRUpqKikpKYjNRlZWFioYDNtFGPsIQ2+JKUVCKdUEnCkiI4H9LeevlFLf96NYBoPBsNsJBAKICDabLTwc4XA42rmHCAaDtDQ3U1tbS2pqKh6PB1dSEpmZmdjtdrDb+ysZhh8gMaVIiEjkSpahjbDSQ+5KqbV7XiqDwWDYvQQCAWpra0lJTsbhdNLQ0EBCQgIiohUJAIeDYDCIPnSQkppKa2srjY2NOByO7UqEwdDHxJQiAdzfxTUFHLWnBDEYDIY9STAYpKysjJzcXIKBABXl5RQMHkxdbS0iQlZ2NjU1NQT8fnLz8vB6vbS0tGC32/H7/bQ0N5PochllwtDnxJQioZSa3t8yGAwGw57GbreTnZ3NtuZmKsrLGTpsGC0tLdTX1ZGekUF5WRmVFRVkDBpERXk57sZGgkqRkJhIbm4uDfX1uD0eEl1mcpuh74kpRUJEzkFvNPZslPu5QEAp9Y/+kcxgMBh2jdDS1aANH0PHkTYPgUCAmpoagsEgObm51NfV4ff7cTqd2KxFpdra2rCJ4HQ6qa2tJTsnh9TUVGw2G6lpaaSC6Y0w7BZibc7PlcCrHbi/gp7RYTAYDDFFIBBg29attLa24vV62bZ1K16vl0AgEP4PKRf5+fkkJCSggJzcXHJyc6mtrQ1P7axvaMDr9ZKZmUlNdTXVVVUEAgHsdrtRIgy7jZjqkQCcSilPtKNSqklEnP0hkMFgMPQGESElJYXysjIAEhMTcTqdiAilJSXh6Zsul4ugUthsNjIyMsIzNTIGDcJms2G320lPTyc9LQ1nXByJLhfK8m8w7E5irYQlikhStKOIpABx/SCPwWAw9JjQrIrIY5vNRnKK3tjYZreTlZ0d9pObl4fH46GstBSP201CQgI2mw2HwxHe+js+Ph6n04ndbsfpdOKMi8Nms+F0OomLizPrRBh2O7GmSDwBLBaRYSEHERkOLLKuGQwGw4DE7/fTUF9PIBDA7/cTCATCv1DPQ35+PtVVVfj9fq1oROyB0ZlCICLhazabLdwDEeluMOxOYkqRUErdB7wOrBSRGhGpAVYAbymlzO6fBoNhQBLa66K+vp7amhoCgQBVlZXhXolBmZlkZWdjt9tRQFlpKQAVFRW4XC7y8vJobm7G4/G069UwGAYCsWYjgVLqURFZAlRZ524AERmhlNrcr8IZDAZDB4g1myInN5fqqipSUlMJBIOUluh19VJTUwG9kFRubi5bt2yhprqa/IIC7HY7NpuNwYWF4WODYSARqyVysVLKHVIiQm79Jo3BYDB0QqgHIRgMUl9XRzAYpK62lqysrPDQhsvlwuFw4Pf7KS8rw2a34/P79ZRPawnsuLg4M/PCMCCJqR4JEdkPvcdGmoicHHEpFUjoH6kMBoOhY/x+Py0tLSQmJoZtIwYXFgJQXlaGw+lEgPKKCgoKChARHE4nOTk52Ox2qqurjZ2DYcATU4oEMAqYDaQDP4twdwOX9ItEBoPBEEXQ2l3T6/VSVVlJWloaQFiJAIiPjyczKwuAGkthcDgcZGVlYbPZ9LLXEccGw0AlphQJpdTrwOsiMkUp9Ul/y2MwGHaNUEMrIu2O+xOlVFiGYDAYtkWIdO/KX+jY7/PhaWoiJSWFuLg4BmVmUltTA0BKamp4jYiQcSXQ7jhy+MIMZRhigZhSJCLYJCK/BYYTkQal1IX9JpHBYOgRwWAQr9cbXusg8ri/lAmlFD6vF5tlzOj3+8M9BD6fL3zs9/tRSuF0OgkEAgQDARxOJ8FgkEAgoJeq9nqpranB5/WSkppKU1NTOJ4mj4fUtLQdVpo0CoMhlolVReJ14EPgfSDQz7IYDD86QsqA06kXlPX5fDgcDmw2Gz6vF4e1QFJHKKWoq62lra2N9IwM/D4f8QkJ4QWWlFJ7vGFVSlFeXo7NZiMvP5/KykpUMEhefj411dV4fT4KCgqora2lpaWFgoICGhsacHs8DC4owNPUREN9fXhnzvSMDHw+HwG/H5/XS+GQIXjb2qiuribFmqFhMPxQiNVZGy6l1A1KqZeUUv8b+vW3UAbDj4WgNXWxoaEBpRRlpaXU1tTQ1NRESUkJrS0t4f0horHb7eTk5urtrS0lAkCAlpYWWpqbCQT27PeBiJBfUIDf76estJTs7GydxtJSBmVmIkBJcTFpaWk47HZKiotJSk4mLi6OkpISEhISSExMpLamBmdcHB63m5bmZlrb2igcMgSbzUaiy8WQoUNN74PhB0esKhJvichxfR2oiAwRkQ9EZL2IfCUiV1vug0TkPRHZaP1nWO4iIn8RkU0i8h8RmRQR1lzL/0YRmdvXshoMe4qQQqCUIhgMhm0EcvPyqK+ro6amJryUc8iwMCExEREJT28EPYMhtGKjz+cL717pswwSq6qqqCgvx+v19ks6Q2mz2+3hHTntNtv2Y0sBCNlCiEh4amYorfHx8fitoZDCIUNIiI+nvKwMEQkPZ/S3LYjB0NfEqiJxNVqZaBWRRhFxi0hjH4TrB65VSo0BDgV+KSJjgBuBpUqpfYCl1jnAscA+1u9S4BHQigdwK3AIcDBwa0j5MBhiiUAgQGtrK4FAAJ/PR3FRET6vVysDVoNvt9vb9SA4rOGO0NLPoWWhK8rLqaurw1fbgK+kgixlx1nvIb6xmWwcuIJ6JkNaenq/DG1UlJeTkJhIbl4e1dXVxMXFkZefT11tLXa7nfyCAhoaGhARBhcW4nG7CQaDDC4spKWlBZ/PR3p6OkGlyM3LC/dChBaVMhh+qMSkjYRSKmU3hVsGlFnHbhHZAAwGTgSmWd6eAZYDN1juC5X+ZPtURNJFJN/y+55SqhZARN4Dfgq8sDvkNhh2B0opvF4vZaWlZAwapBdNcjqprKwMb1+dmZVFclIS27ZtIy09nZTkZNosRUNESM/IoKqykkAgQFp6OpUVFcQrOx+OPmaH+I7YsIQ28dPS3Eyiy7VHGt9ARI9CvrWOg81mIzc3N2xgmZ2TA+hVJzMzM1FK4XA4SM/IIC09HafTSWpqKikpKXozLYdjwMxE6QhvTT1+9w6bKONISSYuM70fJDLEOjGpSIh+O88GRiil7hCRIUC+UmpVH8YxHJgI/BvItZQMgHIg1zoeDBRF3FZsuXXmHh3HpeieDIYOHdpXohsMnRLZiNji4gg0t+gLNkGsaYyhBkVEiI+LIzMzk5qaGuLafKS16aGKtqJycm3xSJ0bvy9I4ZAh4YaztqwMu91OckoKLpcLm81Gc3Pz9p4Gf8ey2e120lNT8Hq9JLpcuz0vQr0kaenpJCQkUFtTQ0pqKgkJCWEjUtAKxM4cR8/IGGj43R4+2GfGDu7TNy41ioRhl4hJRQL4KxAEjgLuADzAAuCgvghcRJKB/wWuUUo1Rs0hVyLSsRXZTqKUegx4DGDy5Ml9EqbBEE1o2MFut7drRA59fyGfHn0eAAe98Rh2lzZ6TBicF1Y27MlJeIM+4uLioKWN5fsevUP40zcuJT5Lj9x5a+rJVg78bX6cdi/e6nqyEOyuRLzbSskEhI6/0iuqWtm01cHEsWkEg8Luaosj14hA69gAACAASURBVH6Ij4+norwch9WLkDFo0IDsRTAYBjKxqkgcopSaJCKfAyil6kQkri8CFhEnWol4Xin1iuVcISL5Sqkya+ii0nIvAYZE3F5ouZWwfSgk5L68L+QzGHpCaH8HpRRNTU34fT7SMzLoZCIFdldCWKmI5KitK4lvbsFlt0Ng+66TkYqHxDlp2rQ1fG356FlAe0Ul+jiSUFjONAfgwbO5icT/b+/Ow+Qoq8WPf09Xd8909+z7lo0kQCK7YVG8QARZVbyIK4Iogooo3osKooKIu7grIioKei+IKD+iomERLosSSSAQSICEQEIms+9b7+f3R9V0ekKGJJNJenrmfJ5nnqmqru55ayqZPv2+5z1vZRAtLZ70T8ipVIqB/n6KioszQy/9/f0kk0nKysvx+/3TMpDI7onSpM2YN5MrXwOJhIg4gAKISDVuD8Ue8YZMfgWsU9XvZT20DPgg8E3v+11Zxy8RkdtwEyv7vGBjOfD1rATLk4HP72n7jNkV6XSa4eFhRITCwkJEhN7eXoIFBbCbS1Cnh6OZfIbsACA78HitIGFXjBfE7JWudlX6+/vpHxigtrY2s5ZFKBSit6eHwsJCCgsLp90Km9v3RBkzmfI1kPgRcCdQIyJfA84GvjgJr3sscC6wRkRWe8euxA0gbheRC4BNwLu9x+4GTgc2AMPAhwBUtVtErgUe9877ymjipTF7m6oSi0bp6+sjUlREcXExoXCYjvZ2anyBnT4/u7fBi9UnVWo4mnkzK2ioJb0PB/Ucv5+GxkY2b9rk5mIUFlLtlafu6+ubtj0SxuxNeRlIqOr/iMgq4ETcOjbvUNV1k/C6j3ivtyOvyk7yZmt8YpzXugm4aU/bZMzuchyHsvJyotEoAb+fRDzOyPAwkaIiGN55jYbtexsm2+NvvyizffCKv1FasvPgZjypVIp0Oo3jOJk6EJkaD14uxGjJa7/fTyqVoq+3F3AXyqqorMTn8+E4DqWlpXmxQNZrJcw6hYXufvb2drIDucLGOsTvJqP4i4v2zQWYaScvAwmvTkM7WdMpRSSgqonctcqYqSHW1UOyf5DiVApffAinsIBa9cNQDF9hAcevW44g+MKFme1dsX1PwmSoKJv4+hqqSiwWo7WlhYZGd1LU1uZmamtrCQSD7vTUykrS6XQmaBARhoeHqa2ro6CggJatWzOlvafyTIts4yXMbr8/3pBTdiC3dP39hOduW5HUmInIy0ACeAI3ybEHtwehDGgVkTbgQlVdlcvGGZNLqYGhMbMrtn+zGbV0/f0UzGnE7/cT7+rhhBfuZ3AoSWHhjt/Ys9+Ajl97z45/dlawEV4wl+PX3kNalUAkxHHPLsfnk1dNNd1RTYNdISIUFBRQXFLC1uZmqqqrKS0tpbOzk9q6OuLxOG2trVRVV5NIJNja3ExBQQF19fXgVapsbGwEr3aEMWZi8jWQuBe4Q1WXA4jIycA7gV/jTg09OodtMyZvBAIBYrEUN9zZxcZNw1SUBfnYqaHM49mBQbC+lo7eJAVBB8IhFj36VwJ+H4U1Ef7jmeUA+Pw+OnsSpNPKK5ti/OC2Dq689AAqQ0HClVWECnf8qX/p+vtfdWy8rvbRstt+vz9Txnr0+OjwRXdXF7W1tTRv2UJnRwd19fVs3rSJ4eFhimMxwpGIW/ciT3oh9pQNZ5i9KV8DiWNU9cLRHVW9R0SuU9WPikhBLhtmTL4ZHkmxcnUvL20e5iPnzCWR2DY9MLsX4sjVyznv2mYOWFDE204u4Lrrm6mvLeTj5xdx1bc2UVtdwMc/uB9fvu6lMa//7Z+u57qrDxo3iAhWlu3y7IzRGSkd7e00NDaSSqXo7e2ltq4Ox3HY2txMZWUloXCY9rY2/H4/VVVVtLW1ZfIlOjs7aSgoGFN0arqz4QyzN+VrINEiIpcDt3n77wHavSmhezwN1JiZJBx2OOKQMl7aPMzGTUNweAWLHv0rIkJFWZDevjiptBIsLWJ2U4jnNwxy8fkhDphfxPMvDhIM+Dj8oFJe3jJMKPTqYCEScnCc3c+DGF0kzHGczGJffr+fUChEUVERW5ubqamtpaGxMVNZsqGhAX8gkEm6rK2ry1TcbGhowOc47hLh3kJcUz2xcpTVgTBTWb4GEu/HXRTr/3n7jwLvBRy2Tc00xryG0WmXBUGH8949h83NIzz0WCdnv62R2+7t5OEVXRy4oIgvfPpABgYSaNLPD689lPauGH5H+OaXDqKrJ04qqVx12SJ6+xOEQg6L9y9m7QsDAPj9wsc/tB/FRbv36V9VSSQSRKNRIpEIgwMD9PT0uIEB21YkbW9ro7GxMdPbkF2qerSXAqC2tjYzIyN7O19kJ1geuezGbXkoC+dywjovX8WbqXHCunvGbnuPZeelGDOZRMcrdZdHRKQQeJuq/iHXbZmoJUuW6MqVK3PdDDMNjPn0quArCJAcHCGNgM/H8EiKWCxFqiBEUV0Ffkfw+91P7dFYGscBxxEScUV8UBzxU1Cw67kE3b1xXtgwQGtHjKOPqKCiLLBbzwc332F4aIiOjg6KiospKiqir6+PgN9PMBiks7OTuvp6hgYHGRwcZPacOXkz62JXbd8LMVoxNJsNU4CIrFLVJblux0yWrz0SeMMYpwDvA94CPALkbSBhzGQJVpYx7A/z6OPdFEUc7vzrVlY+1csH3z2bV7YO8Y9HOgiFHK67+mBu/d3LPLKik8a6EJ+7ZH/2mxsh4N+zGQwVZUGOWVK5R6/hOA6RoiKisRiDAwMUFxdnqlLW1tbSNGsWjuNklh3Pp96FXWXVKE2+yLs5TyJyvIj8HHgZuAA3iNhPVc/OacOMmSIGBhP84MYNfOOHz1NaHGDlU24BpsMOKuORFZ0AnHFSHX/7Ryt//0cbg0Mpnn9xkEuufIq+/qlRikVVSSaTDA0OUu4V14pGozQ0NDA4OJgpbe04DsFg0KZvGpNDefW/T0S2AN/A7X1YrKrvBEZUdTi3LTNm6hiJprj/4Q4ABoeSVFa469l19cRoqHOndh50YAn/Wjm2avvISIqOrti+bew40uk0sWiUYDBIcUkJkXCYhsZGAsEgVdXVVFdXT8teiFHRaGrcBdaMmWrybWjjDuAduLM0UiJyF3tjMQBj8piI4BNIKdx591Y+ecF8vvr957jz7q1c/KH9+NK31tLeGWN2Y5iu7rEls8tLJ2UR3QlLJpOoqjs7IxwmFA67iZF+PwqZPIjplg/R1RPn6bV9HDpL8CdGGBxMUhzaFihNtA5Eb1+cRFIJOIL4IJ5QHAcSCWXNun7qqgtobAjl/L6b/JZ3yZbeCp0n4OZGnA6U4g5x3K2qEyuRNwVYsqXZFdkJeNn8xUWZWgxDw0luX7aF2+9qZmAwySlLa/jA2bMZGk5SW+0uxtXbF8fv9/HJK5+ity+BCHzknLm8862NFEVy8/kilUrR1dXFyPAwdXV1dHS4vSr1DQ3TLnDI1tUT52OffZL2jijLrtuPRxa7VUlfqyLpayVYxuMphqMpRkZSXPWtdbR2RPnOVQfzk5tepK8/wac+Mp/PfeUZEkn3b//Rr6/gS/91AGV5GkxYsmXu5VuPxOhCWQ8AD4hIADgVd+rn9UBVLttmzK5Ie0t5+3w+0uk06XSaweE0qFIUcTJTGFOpVOYNNJVKuYtPbTcNcHSVzsLGOhL9g4hAoLiIc85q5N1va+CPd7dw6OJSKsqCzJsdybShurKAVEq5+cdL6B9IEAn7CYecnAUR4PYyVFRU0BKL0dzcjM/no7GpaVrlP8TiKQaHUohAIpFm1VM9JJJKS1uUhfsVkUhuK4OT3QsRqKulsy+J3++DcHjc1+/qifO7OzZzwPwili1vZd36AT78/jncfPsmVj/Tx8Uf2o+bb9+cCSIAVqzqpqsnnreBhMm9vAsksnmLdP0Z+LOIhHZ2vjG5MlrW2XEcEokE7W1t1Dc0ANDT3U1ZeQWqQndXF+UVld4bTYJAwF3Uqqe7m9KysdUfs1fp3D6oSPX0IuLjPUtLKKjacdVIxxEqy4NUlk+tN5B8z3xIpZTevjhbW6NUlgcIBB3aOqJUVRSwbHkLf16+lW9fdTCXfvFpFi0s5rCD3fszPJIkO+0juxrlokf/ynnXNrPk0DKuvWIWPb1xnnmun+dfHOS0E2t5pXkYv+Pj1jtfYcUTPfz4G4fy9No+ABbMK+IPy5oBKAo7O0yoHRxK7sXfiJnu8iqQEJE1jJ8TocCh+7A5xuyS7LLOdfX1OI6Dz+ejra2NqqoqhkdGSCY7qKysYCQaJd7aQlV1Nf39/VRUVAAQjUYZam6mMr3jT+fZQUW2pevvh6ryvXp9kyWVStHd3U0qlaKxsZGOjg7aWltzNrQRjaUYiaYoivjRNAyNJImE/QgwOJwkHHJwfMLAUJJQgUMg4GNwKEH/QJKPfvZJNA3fveZgPv/1p6irLuS0E2u55fbNHHdMJQ882snwSIo1z/XzlYubOGF+E6rKa5XbOOb15fzXRxcyEk3z/RvW8/CKLi78wFx+fesm/v6PNn76zcNY8UQPAM1bR9h/fhEvvDjIK80jHLCgmJWre/jXqm5OWVrLDTdvK2NeVhqgqX7PP4el0+lMFdFUKuXm6vh8pFMpZAcFwEbzYQKBwJhtk3/yKpAA3up9/4T3/bfe9w9gSZdmivL5fITDYYqKimhtaaG0tJTS0lI6Ojro6+2lpqaG1pYWurq6qKuro2XrVhgcJjQQZWSgmUA4RHksjQIyjf+Zjw5taHk5fr+fuvr6TKnrfa2jK8avb32ZlrYYl140n7v+tpUXNg5x2ccXcs+DbTz5TB+XfWwB/3y8i0cf7+bTFy3gmef68PuEx5/qpX8gyTtOq+euv7fQ1R1n6bHVrFztvsmLTzKVOePxNIOd/ax94+kAlI5TL6KiLMh7zqzgks+v5torXsfDK7oAOPzgMn71vy8D7rBJccTPwFCS39+1hcs+vpCvfv85/vTXZr5y+WLaOqI8+u8uTjyuhis+uT9/+0cbDXWFfPh9cykv27NeqVQqxcDAAJFwGPH5GBwcJFRYiD8QcIMKr7x5KuWW9xYRurq6iI6MUFdXR3tHBz6RTKBt8kteBRKquglARN6iqodnPXS5iDwBXJGblhmzcwqEQiFC4TCtLS0UFxdTUlpKe1sbgUCAispKOr0Ew0TfAA97lQyzk+6me2Gi7BLX2dv7Uk9vnMuuXsPGTUN85uKFXHf9elY/08dF587ll//zMg/9q5P3nNnEnXdv5c/3tHLqm2t5+LFOfnfHK1x60XzaOtwptOWlQdasc4cXtraOcOl7a/jwiQWICHUNRZx77BwAsuOk8WZnaCjM5Vc8QzyhbJ8g76XccPd9rVx03ly+d8MGXto8zE9u2sg3v+gulhYOO/zk64cSS6QJ+H2UFvs57g1VBIM+Cnez6uh4hgYH6evtpa6+npGREXq6u2lsaqKjvR3x+aipqaGjo4N0KkVtXR1lZWW0e/kwjuNQ19hoQUSeytcsJhGRY7N23kj+XouZptLpNKlUKjO0MTw0RFFxKY7jUFZeTll5Rab7t7qmDp/PQYG6+kZ8vh3/QR19oznmvlsobKzdtxc0DaTT+qrtVCpNLOZ+Uk6lleGRlLt4GTBvdoTVz7jBwMGLSzMFvY48vJz7Hmp3tw8r597/c7efXNPH8W9wc76fWNPL8W90t1es6iYiMdYdewZr33g6wxte5uGDTuHhg04htrUt06bH334Rj510Ho+ddB7idwjPbSI8t4nNfX7iCbe9W7aOcMjiEgDWrR/gTUe7VUTve6iDra1Rfv3D1/Ptqw7ims8uoq6mgMZ6d3pnZUUBDbUhqisLCAYdSooDkxZEOI5DXX096XSarc3NVFdXZ1ZarayqIhaN0tbaSnl5OYlEguYtW8YERNO3n21myKseiSwXADeJSKm33wt8OIftMWaM0YJKvb291NTWUlBQQENjI/2DaRLJNIWFEb71k/UkEsqVl+7PSDTNiie6WHpsHT+9aSMXnbLjzPzsBLw3b3qYpevvdwsXpWxFyPGk00pnd5xlf28hEBBOWVrL8gfaSCbTnH5SPcuWb6VvIMkH3jmL5Q+0cezRlTg+SKXd5xYW+IjG0oyMpCgpCtDbn2BgMEFleQFbWkYYGExSVRGkrSPGoys6+e9zajj94DmMRNNU1/l5y/fmkFbw7cHCxJXlQXw+t/fh+t9s5NrLF7P2+X5e2jTEJRfM501HVbLq6V4W719MVUWQBfP2zsJco8Hx6HBT9nZ/fz+qSlVVFQP9/aRSKfxesODz+Ugmk5lqpBUVFfT19ZFOpzO9Fu1tbTa0kafyMpBQ1VXAoaOBhKr25bhJZgbLLqKUSqVQVRzHwXEcorEYW5ubSSQSRIrKiCUK+PnNm2jtjPL8BrcexP0Pd/DVKxZx5Hw/W1a/zLuO9pNO7jyLvqdjiJGyan596ybOP6Oc/1h3H4PDSZIJpaDARyTsz8uVHkeLKDk+obwssMcVLLt743zo0pX09Sf56TcP4+LLV9PeGeMH1x7CJ69cTWt7jK9f+To+/7VnefHlIWLxNO8+s4lb79zCvf/XzvnvncMNN7/EX+9r5aJz5/Kd69ezbLk7jHDNd9Zljn/h688STyj9bf2sO9bNeZisYamiiJ/Pf+oArvvZenp6E3zn+hf40dcOo6zEj+P4aKoPcdqJtTjO3u2YVVVe2byZsvJySktLad6yhaKiIsrLyxkZHqa6poZQKERHRwdV1dVEIhFaW1oQEeobGujs7MwkZZaWllJWVjYmH8aCiPyUl4GEiNQCXwcaVPU0EVkMvEFVf5XjpplpTFUzb2qj3bLpdJru7m5Ghoepra1ldP6ez+fD5ziUlpTQ29uLiBCJFPOH32+mqMjP84+NLSrl9/sIJqOsO/YMYNfedEIhh4uvWkNnd5yTjq/hqp9tYfOWkczjJ59Qw2Ufr2NqTe58bS1tUa7+9lrWvjBAY30h13xuMQvnRUim3ABjzbp+5s0OURQJ8Ozz/VSUBZnTFH7NZMGVq3vo60/SVB+ipW2E9s4YpSV+orEUre0xHB+UFPt58WV3OON///QKF5+/Hz/5xqH09Sc4cGExx7+hipdfGWbhfkXcduNRbHx5iPlzI9x249FseGmQWY0hbv35UazfOEhVxci4bdmRXalaGQ77WfqmapYcVk4ikaaw0KFiu2ve20EEkFmGva2tjWQySU1tLW2trQwPD1Pf0JBZyr26uhpw/x9UV1cjPh+O41BZWYkA/kCAZCIB3tDedC53PhPkZSAB/Ab4NfAFb/8F4PeABRJmr1BVEokEPhEcv9/9I4j7B7GiooLWWIxYPE4ykWBgYIC6+npSySS9vb2EQiGisRg9PR2cflIt0RHloX91MuDN3d9vToTFB5Tg641mfl72m0t4wVyOe3Y5ivuHub07DgiEwnR6Ja7LS4NjggiA+x9q5xMf2o9IOD/+m/f1x7n2e+tY+8IAAM0tUT5z9Rp+d/0SWtqjXPy51VSUB/nifx/Ixz67mpFomoBfuOjceZx4XDWOI5SVBF71hvr6/Rxu+VIjjiMURWLc8qVG9xOxl2Lilt7e9kaWTsNPbtrIgnkRfvDVQygrcd+wZzVuG25qrNs2XbK+tjCzXVtdyPDLW3brurOHq16ramVhgTNpOQ2jVJV0Oo3jOKiqOxyxg4Jo2cQbylCvZ2H03N6eHiqr3JyQ7ETZQDCYOc/v92emiPq9qZ4WROS//PgL82pVqnq7iHweQFWTImKDxGbSpdPpTAXKjvZ2UqkU9Q0NdHV1EYvFqKmpQXw+VJWe7m5q6+qIxmJeYakKSkpLGRgqoKqqnJGRIQZ705T6otz+tdkkkopP3N4IX287mt42hp795vKmdfcRr6wnGksRi6U5/9pViMAN367OnOPzuW+GqdS2tLWqygLIoz/SyaTy9Nr+zP7C/Yq44P1zGB5J8eNfbiSRVE4+oZbb79rCSDSNCNzxg0Uk+ocYeqmZ6roII10xUHAihaSH3cAsDPzb6+k5ctmNlHqFu0JOEXd/dw4oBIqj/O27c1CFQFGIxOAIPp/gDPYw1O4FeD7BKSwkNTwydhvwhbf9vPGMCQ4XzuWEdfdkXnf0zXlfDkWpKslEgh4vABjtXausrERVM9vZQYGqZqYwl5WXs3nTJiKRCEXFxbS1thIKhYgUFY2ZspsdKIx33OS3fA0khkSkEi/ZV0SOASxPwkyqdDpNLBbD7/eT7h+kLOFWLRzZ1ExpOEQqCemWTnyhAsrjaQQf6ZYOStSdopfqGyBUXMrXfvQcqnDOWU1UVTqUpRI8uL+7nsKRy24klalIueNZGAG/UFpZALif2k86rob7Hmpn9bN9nHmqW6vgkRVdvP+sWfz2D5sBcHzw2U/sT3lp/hT48TnCgrkRNrw8RENdIf/10QVc+73nOO/dszPVGLMrM77+kDLSQ8OsOuIU4NX5CDvKTcgu3PVa5+9oe3eesyPb9zxEFsyZ2C9qEqVVGRoaQoGSkhJGhodpjcfHJFFmExEam5oywUWDN2VztJy53++fViXNza7J10Div4FlwHwReRSoBt6V2yaZ6UZV6fKSwypSPv7vgJMyj433JpJdqjq8cC6plha+el4ZvlAhicEBfPGxuRHbv7HtTGlJkP/66ALOe/dsunvjnHx8Ne96eyPtHTHmzg5z+km1bG2NMndWmJJiPz5f/nzqKy8NcvVnF/GZL6/hrDMa+cVvX6KlLcq/VrrVGG/87UuZyoxPr+3nwIXFxOMTnwmxt0y1nofxiAiBQIDKqio6vYJQ1TU1tLW2AowJGEbzg3w+H8GsoYrsoY+CgoJ9fxFmSsjXQOJZ4HjgANzS/M9jdSTMJBudG9+8ZcsujxDs6ifeHdnVpaJLSwKUlgTYb467CFc1MHfWtgW5ZjWMv6jTVDenKcyN3z2CeDzNb257GYBHVnSy9NgqLr1wPg/+s5PaqgKuvXwRL20ewu+feoHSVOx52BFVJZVM0t3dTWEoRHFJCe1tbW4PXDpNX28vpWVliAiJeJxA0M0VGd22GRZmVL4GEv9S1SNwAwoAvMqWR+SuSWOJyKnADwEH+KWqfjPHTTK7KdbVQ7J/kPIUKHs/BWdXk+6mM5/PXUhsaDjJkkPLefCfnaTTcM11z/GGJeVc/ZkDKWGE9OAIRzYGEKufsUfSqgSDQWpqakh7ZaxramszycXgDvFt3bqV0lK3mFp3d3dmSMMYyLNAQkTqgEYgJCKHs22hwBLcnKopQUQc4KfAW4AtwOMiskxV1+a2ZWZ3pAaGMrkM07009VQTCfu58sP1fOy0MPF4iuq6IiQWQ3rbSAEPZpUP35mxPT1WDXSUiBAMBqmtrcVxHNLpNLV1dTiOQywWo7WlhfLycvyBAFXV1Zny7ZVVVQSD+TSp2OxteRVIAKcA5wNNwPeyjg8AV+aiQeM4CtigqhsBROQ24EzAAok8kj0DYlJf197Yds3IME8deSrgLma1o6Gh8fIRfKFC/uOZ5QCkEbr7EhQWOkSKi9wVUQFfMLjt/HDhTrdHZ2qcsO6esds7OG8q5UK8ltFKkzB2RoXf788EDxWVlZBVzjqZSLxqvQ8zs+VVIKGqNwM3i8g7VfWPuW7Pa2gEXsna3wIcvf1JInIRcBHA7Nmz903LzIRkv2EVNNbhhEPuG4cIvlABJ6y7x1udc+eyhzBO9Mpcb2+qvwFNFePlIzz0r06u/PqmMed+5uMLecchVfu0ffksEY8TDAYJhUI0b9lCVVUVjuPQ1tZGpKjIhjZMRl4FEqNU9Y8icgbwOqAw6/hXcteq3aeqNwI3AixZssRC/Ckme5779m9YoYaaHT4n3tW700+82Z9YfQVBCsd5LTNxBy8q4T+OqeThx7zltg8qzSygZXYumUzS19dHbW0t6VSKplmzMr0Xs+fMsSmeZoy8DCRE5AbcnIilwC+Bs4F/57RRYzUDs7L2m7xjJo9M5G9lsLKMYGXZ5DfG7JbysiBXfPIALr0whSqECn2Uldq4/q7y+/2ZgEG9uig+ny/zZUy2vAwkgDeq6iEi8rSqXiMi3wX+lutGZXkcWCgi83ADiPcC789tk8zu8meNp29/3Owd8a5ekgNurQ1N7nhGxu5OkzW7z4YtzO7I10BidFGBYRFpALqA+hy2ZwyvZPclwHLc6Z83qeqzO3mamWKsd2HfSw4M8sDCEwG3uNeuFHaye2RMbuVrIPEXESkDvgM8gVsq+5e5bdJYqno3cHeu22FMvsqXwk7GzHR5GUio6rXe5h9F5C9AoaraWhvGGGPMPpaXgYSInLWDY33AGlVtz0GTjDHGmBkpLwMJ4ALgDcAD3v4JwCpgnoh8RVV/m6uGGWOMMTNJvgYSfmCRqrYBiEgtcAtu0aeHAAskjMlDNlPGmPyTr4HErNEgwtPuHesWkUSuGmWM2TM2U2Zqy56em81mz8xs+RpIPOglWf7B2z/bOxYBenPXLGOMmb62n57rhN3CwoWNdZkAw4KKmSdfA4lPAGcBb/L2bwb+qO5KMktz1ipjjJkhnHBhZiG1bEvX32+BxAyTl4GEqqqIrAT6VPU+EQkDRbirgBpjjNmHsnsnJBhgaIO3YJoVD5sR8jKQEJELcVfNrADm4662eQNwYi7bZYwx00F2LoQvGCQ1PPKa52f3ThyTteR7NuupmL7yMpDAHdo4ClgBoKrrRcSWUDTGmEmQnQuRHRiMliyfDJa4OX3kayARU9X46DLPIuLHLZNtjDFmLxm7YFrtTs9/rSEP0sqDi05+1XOs5yL/5Gsg8X8iciUQEpG3ABcDf85xm4wxZlrLXv/kxE0PZ2p+jLdS62sNeUxm74bJrXxdWP4KoANYA3wUd3GsL+a0RcYYM4Ok43HCc5sIz23KLOVuZqa865EQEQe4RVXPAX6R6/YYY0y+Gi9PQdPp3Xqd7IqkvmBw25LvZkbIu0BCVVMiMkdEgqoaz3V7jDEmcbNoTgAAEMdJREFUX2UnVWbLHrYYExhsN51z1HgVSYdf3rIXWm2mmrwLJDwbgUdFZBkwNHpQVb+XuyYZY0z+yk6MTA2PZIYrfAVBChsmf1LcaOJmYWPdmKERW1cl/+RrIPGi9+UDinPcFmOMyXt7o1LluEMeVqhqWsnLQEJVr8l1G4wxxrw2W4RtZsjLQEJE/syr60b0ASuBn6tqdN+3yhhjjJl58jKQwM2RqAZu9fbfg7vOxv64MznOzVG7jDEmb2QPPYxXC8KYncnXQOKNqnpk1v6fReRxVT1SRJ7NWauMMSaPZA892AwLM1H5GkgUichsVd0MICKzcVf/BLApocYYs5uyeye2P27Ma8nXQOIy4BEReREQYB5wsYhEgJtz2jJjjMlDlhhpJiovAwlVvVtEFgIHeoeez0qw/EGOmmWMMcbMOHkZSIjIWdsdmi8ifcAaVW3PRZuMMcaYmSgvAwngAuANwD9whzZOAFYB80TkK6r62xy2zRhjjJkx8nX1Tz+wSFXPVtV3Aotx60ocDVw+kRcUke+IyHMi8rSI3CkiZVmPfV5ENojI8yJyStbxU71jG0Tkiqzj80RkhXf89yISnPCVGmOMMVNYvgYSs1S1LWu/3TvWDSQm+Jr3Agep6iHAC8DnAURkMfBe4HXAqcD1IuJ4q5D+FDgNN5B5n3cuwLeA76vqAqAHtwfFGGOMmXbyNZB4UET+IiIfFJEPAnd5xyJA70ReUFXvUdWkt/sY0ORtnwncpqoxVX0J2AAc5X1tUNWN3iqktwFniogAbwbu8J5/M/COibTJGGOMmeryNZD4BPBr4DDvayWgqjqkqksn4fU/DPzN224EXsl6bIt3bLzjlUBvVlAyevxVROQiEVkpIis7OjomodnGGGPMvpWXgYSqKm6Z7CTwn8BSYN3Onici94nIMzv4OjPrnC94r/s/e6n5Gap6o6ouUdUl1dXVe/vHGWOMMZMur2ZtiMj+wPu8r07g94Dsai+Eqp60k9c/H3grcKIXrAA0A7OyTmvyjjHO8S6gTET8Xq9E9vnGGGPMtJJvPRLP4eYfvFVV36SqPwYmZaUZETkV+BzwdlUdznpoGfBeESkQkXnAQuDfwOPAQm+GRhA3IXOZF4A8AJztPX80h8MYY4yZdvItkDgLaAEeEJFfiMiJuHUkJsNPgGLgXhFZLSI3AKjqs8DtwFrg78AnVDXl9TZcAizHHVa53TsX3Cmo/y0iG3BzJn41SW00xhhjphTZ1oOfP7zZGWfiDnG8GbgFuFNV78lpw/bAkiVLdOXKlbluhjHG5BURWaWqS3Ldjpks33okAPBmZ/yvqr4NNwfhSSZYiMoYY4wxE5eXgUQ2Ve3xZj+cmOu2GGOMMTNN3gcSxhhjjMkdCySMMcYYM2EWSBhjjDFmwiyQMMYYY8yEWSBhjDHGmAmzQMIYY4wxE2aBhDHGGGMmzAIJY4wxxkyYBRLGGGOMmTALJIwxxhgzYRZIGGOMMWbCLJAwxhhjzIRZIGGMMcaYCbNAwhhjjDETZoGEMcYYYybMAgljjDHGTJg/1w0wxhgztQ0OJRkeSaGqhAp9JBKKApGQQyhkbyMznf0LMMYYQyKZprsnzj8f76Io4ueIQ8qpLA/S2xfnF797mT/f08JHzplLqNDhpv/dxEgsxYXnzuUtx9Xg+HwUFzkMjaRIp5RIxE80miKVUsJhh3hcSSbTFBY6pNJKPJ6mIOijuCiQ68s2k8ACCWOMMbR3xDj/UysZiaZpqC3k8k8G6e1P0N4R5a6/t1Ba4mfxASV8+otPA3DGW+poqA3x6S89zaIFxZx+Uh0/+uWL1FYXcO67ZvPDX7xIQVC45IL5/PiXLxKNprjiUwdw/W828uxz/ZxwbDUXvH8ufkfwOUJFWTDHvwEzURZIGGPMDBdPpPntHzYzEk3jOMJVn1nEN374PHOaQtTVFgIwd1aEZ5/rByDgF95+cj0XX/4kaYUvXHogn/zCU8TjaT590QI+95VnGBhM8q2rDuKL31hLW0eMqy47kK9+/3k2bhqiqT7Emac2cNW31rL2hQHmNIW55nOLmDc7guNILn8VZgIs2dIYY2a4ZCLN0EgSgKMOL+ffT3azacswL24a4uBFpQBsbR1h/twIAI31Ida/NEgqDWWlAdo7Y8TjbhCSTisDg+5rRUIObR0xAGqqCti4aQiA979zFj+8cQNrXxgAYNOWYS778hp6+xP79LrN5LBAwhhjZqjBoSRPr+3j5799ibNOb0QEKsqDtLZFAWhuiTI0lOScd86ifzBJ/0CCs85ooLc/TkOd21MxNJSkssIdlkillFChg+O9s4gIBQXuTiyeprTE7QSf1Rhi3fqBMW3p6o4Tjab2xWWbSWaBhDHGzFDrXujn4stX88e/bOWRFV1c9+WDCRf6OOm4msw53/npC0RjKX77kyUcdUQFH37/HH79gyXMaQrzn6fXE08oTz3bx/vPakIEHni0g498YB6OD/56bwuXfHg//H7hzru38umLFhAM+ujqijO7KTSmLUURJxN0mPwiqprrNhhgyZIlunLlylw3wxgzQwwMJvjCN9byxNO9mWMNdYVce8Vi6qoLWPVUL7/5/WYcR7jwA3M59HWlRML+V73G8EiKWCxNOOTOyIhG00QiDuk0DI8kKYr40TQMDicpKfKTVjcnY2goyWeveYaunjhFEYdrL38dhx1USiCwe8GEiKxS1SWT8ksxE2LJltsRkcuA64BqVe0UEQF+CJwODAPnq+oT3rkfBL7oPfWrqnqzd/z1wG+AEHA3cKlaxGaMmUJ8PiG0XQ/A1tYog4NJSucXs/RN1Rx+cBkIlJfueEZFcVFgJ1M4CzJb1Vnb4A6D3PSD1xONpSgo8FFa7N/tIMJMDXbXsojILOBkYHPW4dOAhd7XRcDPvHMrgKuBo4GjgKtFpNx7zs+AC7Oed+q+aL8xxuyqSNjPhefOw+/fNkti7qww8+a4CZUiQnlZcNwgYk85jlBZEaSxPkRVRQGBgLNXfo7Z+6xHYqzvA58D7so6diZwi9ej8JiIlIlIPXACcK+qdgOIyL3AqSLyIFCiqo95x28B3gH8bZ9dhTHG7IJZjWFuveEoHn6sk6rKIIe9rszqOZjdZoGER0TOBJpV9Sl3NCOjEXgla3+Ld+y1jm/ZwfEd/cyLcHs5mD179h5egTHG7J6CoI/62kLefWZTrpti8tiMCiRE5D6gbgcPfQG4EndYY59R1RuBG8FNttyXP9sYY4yZDDMqkFDVk3Z0XEQOBuYBo70RTcATInIU0AzMyjq9yTvWjDu8kX38Qe940w7ON8YYY6YdS7YEVHWNqtao6lxVnYs7HHGEqrYCy4DzxHUM0KeqLcBy4GQRKfeSLE8GlnuP9YvIMd6Mj/MYm3NhjDHGTBszqkdigu7Gnfq5AXf654cAVLVbRK4FHvfO+8po4iVwMdumf/4NS7Q0xhgzTVlBqinCClIZY8zus4JUuWdDG8YYY4yZMOuRmCJEpAPYtBtPqQI691JzprKZeN0z8ZphZl73TLxm2LPrnqOq1ZPZGLN7LJDIUyKyciZ2583E656J1wwz87pn4jXDzL3u6cKGNowxxhgzYRZIGGOMMWbCLJDIXzfmugE5MhOveyZeM8zM656J1wwz97qnBcuRMMYYY8yEWY+EMcYYYybMAgljjDHGTJgFEnlIRE4VkedFZIOIXJHr9uwNIjJLRB4QkbUi8qyIXOodrxCRe0Vkvfe9PNdtnWwi4ojIkyLyF29/nois8O7370UkmOs2TjYRKRORO0TkORFZJyJvmO73WkT+y/u3/YyI3CoihdPxXovITSLSLiLPZB3b4b311jT6kXf9T4vIEblrudlVFkjkGRFxgJ8CpwGLgfeJyOLctmqvSAKXqepi4BjgE951XgHcr6oLgfu9/enmUmBd1v63gO+r6gKgB7ggJ63au34I/F1VDwQOxb3+aXuvRaQR+BSwRFUPAhzgvUzPe/0b4NTtjo13b08DFnpfFwE/20dtNHvAAon8cxSwQVU3qmocuA04M8dtmnSq2qKqT3jbA7hvLI2413qzd9rNwDty08K9Q0SagDOAX3r7ArwZuMM7ZTpecylwHPArAFWNq2ov0/xe4y6aGBIRPxAGWpiG91pVHwK6tzs83r09E7hFXY8BZSJSv29aaibKAon80wi8krW/xTs2bYnIXOBwYAVQ6y3VDtAK1OaoWXvLD4DPAWlvvxLoVdWktz8d7/c8oAP4tTek80sRiTCN77WqNgPXAZtxA4g+YBXT/16PGu/ezri/b9OBBRJmShORIuCPwKdVtT/7MXXnLk+b+csi8lagXVVX5bot+5gfOAL4maoeDgyx3TDGNLzX5bifvucBDUCEV3f/zwjT7d7ORBZI5J9mYFbWfpN3bNoRkQBuEPE/qvon73DbaFen9709V+3bC44F3i4iL+MOWb0ZN3egzOv+hul5v7cAW1R1hbd/B25gMZ3v9UnAS6raoaoJ4E+493+63+tR493bGfP3bTqxQCL/PA4s9LK7g7gJWsty3KZJ5+UG/ApYp6rfy3poGfBBb/uDwF37um17i6p+XlWbVHUu7n39h6qeAzwAnO2dNq2uGUBVW4FXROQA79CJwFqm8b3GHdI4RkTC3r/10Wue1vc6y3j3dhlwnjd74xigL2sIxExRVtkyD4nI6bhj6Q5wk6p+LcdNmnQi8ibgYWAN2/IFrsTNk7gdmI277Pq7VXX7RK68JyInAJ9R1beKyH64PRQVwJPAB1Q1lsv2TTYROQw3wTQIbAQ+hPtBZ9reaxG5BngP7gylJ4GP4OYDTKt7LSK3AifgLhXeBlwN/D92cG+9oOonuMM8w8CHVHVlLtptdp0FEsYYY4yZMBvaMMYYY8yEWSBhjDHGmAmzQMIYY4wxE2aBhDHGGGMmzAIJY4wxxkyYBRLGTCPeKpoXe9sNInLHzp6zBz/rMG8qsjFmBrNAwpjppQy4GEBVt6rq2Ts5f08cBlggYcwMZ3UkjJlGRGR0NdjngfXAIlU9SETOx11hMYK7RPN1uMWfzgViwOleQaD5uMvUV+MWBLpQVZ8TkXfhFhJK4S4wdRKwAQjhljD+BvAX4MfAQUAA+LKq3uX97P8ESnELLv1OVa/Zy78KY8w+4t/5KcaYPHIFcJCqHuatmvqXrMcOwl1FtRA3CLhcVQ8Xke8D5+FWS70R+JiqrheRo4Hrcdf8uAo4RVWbRaRMVeMichWwRFUvARCRr+OW9f6wiJQB/xaR+7yffZT384eBx0Xkr1ax0JjpwQIJY2aOB1R1ABgQkT7gz97xNcAh3kqrbwT+4FYqBqDA+/4o8BsRuR13gakdORl30bHPePuFuCWQAe5V1S4AEfkT8CbAAgljpgELJIyZObLXbEhn7adx/xb4gF5VPWz7J6rqx7weijOAVSLy+h28vgDvVNXnxxx0n7f9GKqNqRozTViypTHTywBQPJEnqmo/8JKXD4G3AuOh3vZ8VV2hqlcBHbhLPW//s5YDn/QWXkJEDs967C0iUiEiIdxcjUcn0kZjzNRjgYQx04g3fPCoiDwDfGcCL3EOcIGIPAU8i5u4CfAdEVnjve4/gadwl7xeLCKrReQ9wLW4SZZPi8iz3v6ofwN/BJ4G/mj5EcZMHzZrwxizV3mzNjJJmcaY6cV6JIwxxhgzYdYjYYwxxpgJsx4JY4wxxkyYBRLGGGOMmTALJIwxxhgzYRZIGGOMMWbCLJAwxhhjzIT9fy71xIjQVvC9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCICHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAEWCAYAAACexWadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vLdsrsMAuIIjSO6KIioIIGkURC8aKvcVPjYndKBqN2HsPCsTEWGJLYgEpVogCoiJFuixb2ML2fu/7/TFnl8NlG7sLC+z8nuc+d87MnJl35syZec/MO+eIqmKxWCwWi8Wyv+NpbQEsFovFYrFYWgKr1FgsFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgaLZSIyL3i0i2iGQ4x5NFZIuIFInIsOaL2GS59pocItJDRFREfHsyn30BETlfROa0thwWi+XAQkRmisj9rS2HZfcQkYUicnkdYTuNjSLysYhM3ZPyNKjUiMgmESl1lIPq37NO2EHAH4D+qtrZOeVR4DpVjVHV75sqmFMRhzb1/IbkcNIvdsqzVUQeFxFvM/KrFxE5T0SWOPmlOxf3mD2VXyPkmSkiFSJS6PxWiMiDIhJf33mq+ndVndDEPKeJSGVIW7qlaSXYv3HVf5GI5IrIXBHp29pyNYSIXCwiX7VwmmEi8piIpDr1sUlEnmzJPPZlxLBBRFa2tizNoQX67NrSPFhEgiLyQkum20CetbZxETlCRD4SkTznnv1WRC7ZW3LtKWq7bk5f/XpL56Wqv1HVWS2drpvGztSc6igH1b/rHP+DgBxV3eaK2x34uUWlbBqNkWOIqsYAxwHnAJfuCUFE5CbgSeAvQCdMvT0PTKoj/t6a8XlYVWOBJOAS4EjgaxGJ3oNyvRnSlh6uJR8RkbawNPqw0/66AtuAmbubwP42O1iHvLcDI4AjgFhgDLBsL4rV2hwLdAR6isjheyqT/a2tOFwEbAfOEZHw1hJCREYB84HPgUOB9sA1wG+amN4uD9B78qG6TaGq9f6ATcAJtfifAJQCQaAIeMP5V6AYWO/ESwH+BWQBG4HrXWl4gTuA9UAhsBToBnzhSqcIOKeW/D3AXcBmzIAwG4gHwmuTo5bzFTjUdfwW8JzrOB6YAaQDW4H7Aa9L7keBbGAD8DsnPV8t+cQ78pxdTx1PA94BXgcKgMudcjwJpDm/J4FwJ34H4D9AHpALfAl4nLBbHXkLgTXAuDrynAncH+IX65T3Ouf4YuBr4Akgx6mDi4GvQurxeqcesoFHqmWpo5yv1xG2EHjAya8U03E0+RoQ0m5D88YocN84dfgDMCZElj87shQCc4AOrvBjXOducerkcCCzWj4n3hnAD42pf+AUoMhxHwEsctJPB54FwkLq/HfAWmCj4/eUI0sB5j4aHVL2tzHtqxD4CeiNUSa2OedNaKjtA/2AMiCAadN5Tvxw51r86tTBi0CkEzYGSMW0ywzgb7XUxX+AG+uop0uAf7uO1wJvu463AEMdd19gLuaeWANMccVrjIx3YNrTJuD8eu7XFOBDJ591wBUhdf0Wpj8qxDxYjWigj30V+DvwLvBsSNjBmP6wEPgMeI6d2/FFmD4wB/gTrnZP7f2KB7gN0+fmOLK2a2R6dbZL6uizgYnAcuecb4DBrryGYZTXQuBN4J/sfE+II+c1zjU7K6RuJjjXOR/zkPg5cLkr/FJgFUYp+hToHnIPXY1pT3lOvQp1t/GvcI0PtVzDi3H1i648DnXd7y8AHzl1dEIdfo1pp3/A3LfpwCWu/CKBx5zrl+/IHAn8F/i/ENl+BCaHyllPf3kU8J2T7nfAUSH95eWN7JfdcS92ZHzUuUYbgd80tu3XeS0ajFCHUuOu5HoupAfTwd4NhAE9nYKe6ITfjOlg+zgNagjQvq6KDsnnUkyH0hOIwXQIf6tNjjrOd8vZ12kgv3eFvwe8BERjnqK+Ba5ywq4GVmMUsHbAAupWak4CqmoLC2lAlcDpTp1FAvcBi528kzAdwp+d+A9iGrvf+Y126q8PppNPceL1AA6pI8+ZhCg1jv9szGxKdaOrAv4P8DlyXcyuSs0Cpx4OAn7B1bHUd6OEhC3E3MgDnLz8zbkG1KPUAF0wnfbJTn2Pd46TXLKsxwz8kc7xdCesO+YmO9eRsT07BtWV7HxTvgf8oaH6x7TffwBfOseHYZQun3MNV+Ea9J1yznXKXd3hXeDI4sN0ehlAhKvsZcCJTvhsTAdyp1OGK3CUo0a0/Z2uv+P3BGaQb4dRjP8NPOjqI6qAhzAddmQtdXGXc+2vBQYB4grriRl0PBhlYjNOn+OEbXfCojFt/xKnjMMwHWv/3ZDxcUfG4zCDTJ86rt0XmEE0AhiKeWA7PqSuT8Z08A8Ci+u596MwCsfJwJmOzG4FdhGm0w/DKNMF7GjH/TED7zFO+KOYfsSt1IT2Kzdg+pWuTllfAt5oZHqNaZfuB8VhmMF3pFMXUzH3ZbiT/mbg95g2eJaTl1upGQ2UA4nAM+ys3HZw6uIMR54bnPOrB8xJmPGhnxN+F/BNiKz/ARIw/VYWcFJtbdy5RgFgbD3XcadzahljZmIUgqOdaxFRh19j2ul9Tp2dDJQAiU74c5i+qotT30c5dT0F+J9LriGY/i6stutWS3/ZDnOfXejU5bnOcfVYvdBV7w31y+64FzvX7ApH3mswD/DSUNuv79dYpaYI07FU/65wVXJ9Ss1I4NeQ8NuB1xz3GmBSHfk2pJTMA651HfdxKsjXyPPVqaRix/0GO2ZCOmFupkhX/HOBBY57PnC1K2wCdSs15wMZDdTxNOCLEL/1wMmu4xOBTY77PuCDWhrioZhO5ATA30CeM6ldqZkOzHU1utDrdzG7KjUnuY6vBebVU86KkLZUrYAtBO5zxW3WNaB+peZWQmYMME9yU12y3BVSpk9c7fe9Osp3K/B33dERlADJ9dR/mVMHGZiOrC4F9EZ3nk45j2/g+m7HLK9Wl32uK+xUzD1dPesV66SZ0Ih6D73+grmHDnH5jWLHDNIY55pH1COrF/NE97WTd1r1tXDCtwDDgd8CL2OUrL4YBeZDJ845OEqh67yXgHsaKWMVEO0Kfwv4Uy2ydsMMcLEuvweBma66/swV1h8orafsF2AGVB9mUMtnxxP0QY5cUa74r7OjHd+No5A4x1FOXbuVmtB+ZRWu2VsgGaffbCi9RrZLt1LzAs6DmMtvDUZpPBbXAOaEfcPOSs1fgfdd16sS6OgcXwQsCmmHW9gxYH4MXOYK92Dux+4uWY8Jud631dHGuzjx+9ZzHXc6J7Q+MPf77Fr6gNkhZWionZbiGmcw/f2RTvlKce75kHwiMP1BL+f4UeD5EDkL2LlfLnO1swuBb0PSXARc7LgXuuq9oX7ZHfdiYF1Ie1OgMw20/fp+jV1jPV1VP2tkXDfdgRQRyXP5eTHLJWA6iPVNSBd2PLVVsxlzY3bCTJk3huFO/mdjBvNoTKfaHaMJp4tIdVwP5qapznuLKx23HKHkAB1ExKeqVfXE2xJyXFv5Uhz3I5gOa44j38uqOl1V14nIjU7YABH5FLhJVdPqyTeULphp9brkakh2t5y18ZaqXtCIdFryGoTSHThbRE51+fkxTxXVZLjcJZjZFKi/zb4OrHJskqZgBtn0euR4VFXvCvUUkd6YWYMRmBvdh5nxdLMl5Jw/Apdh6kWBOMzTbDWZLncpkK2qAdcxmDKmUH+9h5LkyLjUFV8w93k1WapaVsf5OHI8BzwnIpGYWdhXReRbVV2FWVYYg1HaP8d0usdhOvzPnWS6AyND+hof8LdGyrhdVYtdx3W14xQgV1ULQ+KOcB2Htp2Ieu7/qZh7ogqoEpF/OX7vufIqccXfgmmD1bLUXBdVLRGRnJD0Q69bd+A9EQm6/AKYfrPe9BrZLkPzmioi/+fyC2NHG92qzmjlUHMPO+3gbMySGaq6SER+Bc7DLMWHyqoikhqS91Mi8pjLTzD9W3U+dd3joWzHmFkkY2Yhmkpt95DbrzHtNCekHVXL3QGjvOzSN6lqmYi8CVwgIvdiHlLOCok2XFXX1WQqMg1zv8GuYxHOcZdayrO7/XLNNXDaG67y1Nf262RPG2NuwWiZCa5frKqe7Ao/pIlpp2EabjXVml1m7dFrRw1vYTTPu11ylWPsKKrljlPVAU54OjtX7kH1ZLHISev0hkQJOa6tfGmOzIWq+gdV7QmcBtwkIuOcsH+o6jHOuYqZ9m8UIhKDmeX50uUdKldthNbF7ihRbtx5NfcaFGM6iGo6u9xbMDM17nYZrarTGyFjnW1WVbdirvcZmKebvzUivdp4AdN59lLVOIyth4TEqakrERkN3IJRpBJVNQHzxB96TmNoqN5D20M2Rika4Iofr8YAehdZG0JVS1X1OcxA0t/xrlZqRjvuzzFKzXHsUGq2AJ+HXNMYVb2mkTImhhjI19WO04B2IhIbErexD1I1iEhX4HjMYJMh5rUYZwEni0gHTBtvJyLuduxu8+mYZaTq9CIxS5BuQut+C2aJ1F1PEU7bbSi9xrTL0LweCMkrSlXfcPLqIq7Rm53v4ckYxfx5V910wSh8tZVd3MdO3leF5B2pqt/UI281O9WZM7AuwiwP1sVO/Y2IdK4lTm33gduvMe20LrIxsyt1jaezMKsG44ASVV3UiDSrCR2LoO42vztjY3001PbrZE8rNd8ChSJyq4hEiohXRAa6LPz/CvxZRHo5O14Gi0j1TZSJWTOvizeA3ztb/mIwO4vebGA2pD6mA1eISGfn6XoO8JiIxImIR0QOEZHjnLhvAdeLSFcRScQY3tWKquZjlKXnROR0EYkSEb+I/EZEdtn5E1K+u0Qkyeng7sbMBCAiE0XkUOdGzsc8aQVFpI+IHO/sEihjhyF3vYhIuIgcBryPGUxea+icEG4WkUQR6YZZ235zN8/fhRa4BsuB3zp1PYKdn0xeB04VkROdNhkhImOcQaYh/g6cICJTRMQnIu1FZKgrfDZGwRiEsfNqCrGY6eAiMdu8r2lE/CqcZQwRuRszIOw2jaj3TKCriIQ58YPAK8ATItIRQES6iMiJjc1TRG506j/SqdOpTpmqX8XwOTAWsySWilG6T8IMuNVx/gP0FpELnWvuF5HDRaTfbsh4r5jt5aMxBq5v11I/WzDLJA867WYwZoasKdtfL8TYoPXB2OYMxdhxpQLnqupmYAkwzZFrFGbpsJp3MO34KOd6TKNhRfZF4AER6Q7g9C/VuzAbSq+hdhnaZ78CXC0iI53+PVpETnEUwkWYNnu9c63OwBgiVzMVY0A9yFU3RwNDRGQQxvh1kNOn+jDLl25F4kXgdhEZ4JQzXkTObqBu3OWoaeMOtwAXi8jN1WOUiAwRkX864T9gZseHikgEpu52i+bcS865rwKPi0iK06+NcsYCHCUmiDEk3t2HrY8w99Z5zv15DuaB4z+1xG302NhAeRpq+3XSWKXm37Lzu0Xea6RgAUznMBRjmJiNUWSq34XyOKYS5mBulhkYYzYwjWKWmHcCTKkl+VcxF+cLJ+0yjEFrk1DVn5y0bna8LsJMla7EDPTvYKYfwTS8TzENeRkNDF6q+hhwE8ZYLQvzFHEdRomoi/sxF/VHjDH1MscPoBfGGrwI0zk8r6oLMEZh0zH1nIEx8ry9njxuEZFCzBLZbMxU8lEh0/CN4QPn3OWYzmbGbp5fF825Bn/CPLVsB+7FGOICNQPTJMyTZvX1uJlG3A+q+ivGQO8PmGW65RjDu2rew5niD5k63R3+iJlmL8SUsyEl8VPgE8wAuRlzLzRm2bAu6qv3+ZgdPRkiku343YoxylwsIgWYttlnN/IrwXS2GZi2+zvgTFXdAKCqv2Da+pfOcQFmw8HX1UtoznLQBIzdTZqTVrVxcmNkzHDKmoZRXK9W1bqWGs7FGMqmYa73Pdq05fmpmHs3w/3DDMjVMxLnY5bZqncfvomZSUNVf8b0ef/EPNkWYWwsyuvJ8ymM/dYc595fjLF9bEx6DbXLabj6bFVdgjECfRZTt+swdhSoagVmRvNizH10Ds49LCJdMDMKT4bUzVJMO5+qqtmY5amHnbrpj+kvq+vmPcz1/6dzvVfQ+O3Xu7RxZ4bneOe3QURyMfZdHznhv2BsHT/D7Khq6rucmnMv/REzVnyHqdOH2LlPm41REndLAVfVHMw4/gdMXd8CTHSuQSi7NTY2QJ1tvz6qrYwtliYhIoqZjl7XYOQ9K0cPjHLrb8ZsXUvJsh4z9d2Ugc6ylxGRMRgDxMbM1LUqYmwjVqvqPbWExWDsjXqp6sYWyKtF09uTiHmvVSpmK/6ChuK3RUTkIuBKxzxhv6O+tu+mLbzgzGLZa4jImZh18vmtLYtl/8dZQjvEWQY8CTPD+L4r/FQxS9rRmF0tP2F2/jU1vxZNb0/iLB8nOEss1fY9i1tZrH0SMbYp12Jml/YLGmr7dWGVGoulhRCRhRhjyt85a9wWS3PpjNkGWwQ8DVyjO3/2ZRI7XtDZC/itNm/6vaXT25OMwuz2ycbYW5yuqqX1n9L2cGxysjC2Qv9oIPq+RENtv1bs8pPFYrFYLJYDAjtTY7FYLBaL5YBgf/zAmaUOOnTooD169GhtMSwWi2W/YunSpdmqmtTacliaj1VqDiB69OjBkiVLWlsMi8Vi2a8Qkd15I7llH8YuP1ksFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgsDY1BziVlZWkpqZSVlbnR5Itlr1KREQEXbt2xe/3t7YoFovlAMMqNQc4qampxMbG0qNHD0Sa8tFmi6XlUFVycnJITU3l4IMPbm1xLBbLAYZVag5wysrKrEJj2WcQEdq3b09WVlZri2JpQSqrghQUmk+uxUR5KSoJABAb7SMszFg55BVUkru9grz8CrqlRBIIQkFhFe0T/STEm1k7r9fEDQSCNe6qQBBfLf5ut8VSjVVq2gBWobHsS9j2eGBRUFjJpwsymfnmZi44sxvR0T5m/H0zqsq9t/QnqUM4Xg+8MHMD87/K5vLze7BoSS5vvJdKQryfv9wxgAXfZLNuQxEXnn0Q36/I44ef87ngrG6s3VDMN9/lcN6Z3UjPKGP+V1lMmdSFwqIqPpmfydAB8Ywa0Z6gKl6vEBfjr1GiLG0Te/UtFovF0mQ2/lrMU6+sx+MRDj04loefXUvO9gquu+wQ3vsojct/v5St6WXM/yobrwcOH5rIG++lAvC7S3ry0uyNPPnSOnocFM1zr65n+tO/kNQ+nDfeS2XaI6uIjPAyd+E2bn/gZ6qqgiz7MZ+b7v6Jb77L4ZAeMUx7dBVnXvo/zr/mOxZ8nUVxSVUr14ilNbFKjWWP4/V6GTp0KAMHDuTUU08lLy9vt86fNm0ajz76aK1hs2fPZuDAgQwaNIhhw4bVGa+l6dGjB4MGDWLQoEH079+fu+66q15j7KOOOmq30h8zZgx9+vRh6NChDB06lHfeeae5Ilsse4QFX5mlxF4Hx7B8hbm327cLIzrKx/yvsoiO8pGbVwFAWLiXgqLKmnO7dYnih5/zARjQJ5YvFucAcMSwRD6elwnAcUd14N2P0hx3Eu/+dysAJ5/Qmfc+Tqs5v7gkwP1PrKawyCo1bRmr1Fj2OJGRkSxfvpwVK1bQrl07nnvuuRZJ9+OPP+bJJ59kzpw5/PTTTyxevJj4+Phd4lVV7ZlObsGCBfz00098++23bNiwgauuuqrOvL/55pvdTv/vf/87y5cvZ/ny5Zx11lk7hakqwaD9ELil9RnYz9xz6dvK6HFQFAAdEsPYmm4+mL0tu5yUzpFERnopLQ0QFekjJtoLQOhCpMcZkVTB6zWhgYDic7n9PhPp4IOiWbGqYKfzVSE1zX6ouy1jlRrLXmXUqFFs3bq15viRRx7h8MMPZ/Dgwdxzzz01/g888AC9e/fmmGOOYc2aNbWm9eCDD/Loo4+SkpICQHh4OFdccQVgZjpuvPFGRowYwVNPPcWmTZs4/vjjGTx4MOPGjePXX38F4O2332bgwIEMGTKEY489FoCff/6ZI444gqFDhzJ48GDWrl1bb5liYmJ48cUXef/998nNzWXhwoWMHj2a0047jf79+9fEAVi4cCHHHnssp5xyCn369OHqq69utHKyadMm+vTpw0UXXcTAgQPZsmULc+bMYdSoUQwfPpyzzz6boqIiAD755BP69u3L8OHDuf7665k4cSKw66zXwIED2bRpEwCvv/56TbmvuuoqAoFAjex33nknQ4YM4cgjjyQz0zxBZ2ZmMnnyZIYMGcKQIUP45ptvuPvuu3nyySdr0r/zzjt56qmnGlU+y/7JYYMTGDk8kS1bS/H7PYw9ugObUkvo1zsWr8coGq+9sYmH/zSQw4cl8tFn6Tx+32AG949j45Zijj6iPQBLf8jjxLGdAPhicTZnnGzu68++2Ma5k7sBMPfzbZx7RlfALHsN7Bu3kywi0DUlci+V3LJPoqr2d4D8DjvsMA1l5cqVu/jtbaKjo1VVtaqqSs866yz9+OOPVVX1008/1SuuuEKDwaAGAgE95ZRT9PPPP9clS5bowIEDtbi4WPPz8/WQQw7RRx55ZJd0ExMTNS8vr9Y8jzvuOL3mmmtqjidOnKgzZ85UVdUZM2bopEmTVFV14MCBmpqaqqqq27dvV1XV6667Tl9//XVVVS0vL9eSkpJd0u/evbtmZWXt5DdkyBBdvHixLliwQKOionTDhg271MGCBQs0PDxc169fr1VVVXrCCSfo22+/Xav8vXv31iFDhuiQIUM0OztbN27cqCKiixYtUlXVrKwsHT16tBYVFamq6vTp0/Xee+/V0tJS7dq1q/7yyy8aDAb17LPP1lNOOUVVVe+5556d6nLAgAG6ceNGXblypU6cOFErKipUVfWaa67RWbNmqaoqoB9++KGqqt5888365z//WVVVp0yZok888YSqmmubl5enGzdu1GHDhqmqaiAQ0J49e2p2dvYu5dsX2qWl5cjLr9C0jFJNzyzVrJwyTc8s1Yxtpfrd97l6wbXf6mkXfqNvfbhFs3PLNGd7uVZVBTQvv0Jzcso0O7dcv1ycpa/8bYOmppXo4qU5+tLs9bo5tViX/rBdX5y1XjdsLtIVq/L0xVnrdc26Al2zrkBfe2OTbkkr0WtuWaZHT1yoE6Z8qR/PS9ei4srdlh9YovtAH25/zf/Z3U+WPU5paSlDhw5l69at9OvXj/HjxwMwZ84c5syZw7BhwwAoKipi7dq1FBYWMnnyZKKizFT2aaed1qR8zznnnBr3okWLePfddwG48MILueWWWwA4+uijufjii5kyZQpnnHEGYGaTHnjgAVJTUznjjDPo1atXo/IzfaPhiCOOqPM9LEcccQQ9e/YE4Nxzz+Wrr77aZXkJzPLTiBEjao4LCwvp3r07Rx55JACLFy9m5cqVHH300QBUVFQwatQoVq9ezcEHH1wj9wUXXMDLL79cr+zz5s1j6dKlHH744YC5Zh07dgQgLCysZqbnsMMOY+7cuQDMnz+f2bNnA8ZuKj4+nvj4eNq3b8/3339PZmYmw4YNo3379vXmbdn/iY/zEx+368sUOyVF8PQDQwgGlbhYP36/x3XODvcxIztwzMgOAHRJjmTk8HYAHNQliuGDE2riDei7Y3m59yGxADx450DKygN295MFsMtPlr1AtU3N5s1mm2e1TY2qcvvtt9fYjaxbt47LLrus0ekOGDCApUuX1hkeHR3dYBovvvgi999/P1u2bOGwww4jJyeH8847jw8//JDIyEhOPvlk5s+f32A6hYWFbNq0id69ezeYd+iW5t3Z4uxOV1UZP358Tf2tXLmSGTNm1Hu+z+fbabmr2rhZVZk6dWpNWmvWrGHatGkA+P3+Ghm9Xm+DNkqXX345M2fO5LXXXuPSSy9tdNksByaJCWG0bxe+k0LTksTH+emUFEGHduFWobFYpcay94iKiuLpp5/mscceo6qqihNPPJFXX321xg5k69atbNu2jWOPPZb333+f0tJSCgsL+fe//11rerfffjs333wzGRkZgJmp+Otf/1pr3KOOOop//vOfgJkBGT16NADr169n5MiR3HfffSQlJbFlyxY2bNhAz549uf7665k0aRI//vhjveUqKiri2muv5fTTTycxMbHBevj222/ZuHEjwWCQN998k2OOOabBc2rjyCOP5Ouvv2bdunUAFBcX88svv9C3b182bdrE+vXrAXjjjTdqzunRowfLli0DYNmyZWzcuBGAcePG8c4777Bt2zYAcnNz2bx5c735jxs3jhdeeAGAQCBAfr7ZhTJ58mQ++eQTvvvuO0488cQmlc1isViagl1+suxVhg0bxuDBg3njjTe48MILWbVqFaNGjQKMQerrr7/O8OHDOeeccxgyZAgdO3asWRIJ5eSTTyYzM5MTTjgBVUVE6pwZeOaZZ7jkkkt45JFHSEpK4rXXXgPg5ptvZu3atagq48aNY8iQITz00EP87W9/w+/307lzZ+64445a0xw7diyqZhfS5MmT+dOf/tSoOjj88MO57rrrWLduHWPHjmXy5MmNOi+UpKQkZs6cybnnnkt5eTkA999/P7179+bll1/mlFNOISoqitGjR1NYWAjAmWeeyezZsxkwYAAjR46smVnq378/999/PxMmTCAYDOL3+3nuuefo3r17nfk/9dRTXHnllcyYMQOv18sLL7zAqFGjCAsLY+zYsSQkJOD1eptUNovFYmkK4rYDsOzfjBgxQpcsWbKT36pVq+jXr18rSWQJZeHChTz66KP85z//OWDzDAaDDB8+nLfffrtOeyTbLi37EiKyVFVHNBzTsq9jl58sFkuLsXLlSg499FDGjRvXaANri8ViaSnsTM0BhJ2psewv2HZp2ZewMzUHDnampgmISDcRWSAiK0XkZxG5wfF/RERWi8iPIvKeiCQ4/j1EpFRElju/F11pHSYiP4nIOhF5WpxtJiLSTkTmisha579hC1SLxWKxWNowVqlpGlXAH1S1P3Ak8DsR6Q/MBQaq6mDgF+B21znrVXWo87va5f8CcAXQy/md5PjfBsxT1V7APOfYYrFYLBZLHVilpgmoarqqLnPchcAqoIulAEORAAAgAElEQVSqzlHV6pd4LAa61peOiCQDcaq6WM064GzgdCd4EjDLcc9y+VssFovFYqkFq9Q0ExHpAQwD/hcSdCnwsev4YBH5XkQ+F5HRjl8XINUVJ9XxA+ikqumOOwPo1JJyWywWi8VyoGGVmmYgIjHAv4AbVbXA5X8nZonq745XOnCQqg4DbgL+ISJxoenVhTOLU6tFt4hcKSJLRGRJVlZWE0uyZykrK+OII45gyJAhDBgwoObDlRs3bmTkyJEceuihnHPOOVRUVLSypBaLxWLZn2nzSo2IDK/ld4iI1PtiQhHxYxSav6vquy7/i4GJwPmOMoKqlqtqjuNeCqwHegNb2XmJqqvjB5DpLE9VL1Ntq00OVX1ZVUeo6oikpKTdLv/eIDw8nPnz5/PDDz+wfPlyPvnkExYvXsytt97K73//e9atW0diYmKDr/i3WCwWi6U+2rxSAzyPsX95GXgFWAS8DawRkQm1neDsUJoBrFLVx13+JwG3AKepaonLP0lEvI67J8YgeIOzvFQgIkc6aV4EfOCc9iEw1XFPdfnvUeYszOTMSxcz+rTPOfPSxcxZmNnsNEWEmJgYACorK6msrEREmD9/fs2HHKdOncr777/f7LwsFovF0naxSg2kAcOc2Y7DMPYxG4DxwMN1nHM0cCFwvGub9snAs0AsMDdk6/axwI8ishx4B7haVXOdsGuBvwLrMDM41XY404HxIrIWOME53qPMWZjJQ8/+QmZWOaqQmVXOQ8/+0iKKTSAQYOjQoXTs2JHx48dzyCGHkJCQgM9nJsS6du3K1q1bG0jFYrFYLJa6sd9+gt6q+nP1gaquFJG+qrqhrq8nq+pXQG2BH9UR/1+YparawpYAA2vxzwHGNSx+y/HS7I2Ulwd38isvD/LS7I1MGNM8O2Wv18vy5cvJy8tj8uTJrF69ulnpWSwWi8USilVq4GcReQH4p3N8DrBSRMKBytYTa++zLbt8t/ybQkJCAmPHjmXRokXk5eVRVVWFz+cjNTWVLl26NJyAxWKxWCx1YJef4GLM0s+Nzm+D41cJjG01qVqBjh3Cd8u/sWRlZZGXlwdAaWkpc+fOpV+/fowdO5Z33nkHgFmzZjFp0qRm5WOxWCyWtk2bn6lR1VLgMecXStFeFqdVueqig3no2V92WoIKD/dw1UUHNyvd9PR0pk6dSiAQIBgMMmXKFCZOnEj//v357W9/y1133cWwYcO47LLLmlsEi8VisbRh2rxSIyJHA9OA7rjqQ1V7tpZMrUW13cxLszeyLbucjh3Cueqig5ttTzN48GC+//77Xfx79uzJt99+26y0LRaLxWKpps0rNZit2b8HlgKBVpal1ZkwplOzlRiLxWKxWFoDq9RAvqp+3HA0i8VisVgs+zJWqYEFIvII8C5Qs82n+oOVFovFYrFY9g+sUgMjnf8RLj8Fjm8FWSwWi8VisTSRNq/UqGqb2rZtsVgsewpVxfnkHSKCBoMo5uWbgUAAVcXn8+3krqqqAtjFHQgYE0ev19sqZbHsn7RZpUZELlDV10XkptrC3d90slgsFkvdBAIBo7hUVbF161Y6deqEz+8nbetW2nfoQER4OGlpaSQkJhIVFUV6ejoxMTHExsaSmZFBWHg4iYmJ5GRnIx4PHTp0qPlGHFCjKNWmBIlIjdIEVglq67Tll+9FO/+xdfwsLUheXh5nnXUWffv2pV+/fixatIjc3FzGjx9Pr169GD9+PNu3b29tMS0Wy25SVVXF9txco2yIEBERQVpaGmWlpURGRZGZkUFRcTHR0dFkbdtGYUEBMTEx5ObkkJubS3xCAoUFBeTm5hIdE0NRYSGlJSUU5OeTk52NqpKXl0dGejpVVVUUFhSQnpZGIBCgpLiY1NTUGv/U1NQa5cbSNmmzSo2qvuT831vbr7XlO9C44YYbOOmkk1i9ejU//PAD/fr1Y/r06YwbN461a9cybtw4pk/f49/stFgsLYyqUlRUREZGRo2SAuZBJsFx5+flERcfj4iQn59PTEwMHo+HkuJiwsPC8Hq9FBcVERYWRlhYGPn5+cTFxVFRUUGGM6sTCARIT0sjMioKVSU1NZWw8HA8Hg+/bt5Mbm4u7dq1a82qsOwDtOXlp6frC1fV6/eWLPsKqkpGejoAnTp3JjMjA4DOycnU9XHPxpCfn88XX3zBzJkzAWo6rg8++ICFCxcCMHXqVMaMGcNDDz3UrDJYLJa9i8/nIzk5mczMTOLj40lPTycyMpL2HTqQnpZGWFgYnTp1Ij0tDa/XS3JyMhkZGYgIKSkpbNu2DYCULl3YnptLZWUlcfHxAPj9fsrLy1FVwsLCKC0tJRAIEBERQVFREZWVlURGRlJZUYGIEBkZaZef2jhtdqYG87K9pUAEMBxY6/yGAmGtKFerkZGeTllZGWVlZfy6eXONu1rRaSobN24kKSmJSy65hGHDhnH55ZdTXFxMZmYmycnJAHTu3JnMzMyWKIbFYtmLBAIBsnNyCAaDVFVVERcXR1LHjng8HuLi4ujcuTPiuJNTUmrcKSkpeLxeEtu1IzklBZ/PR6wTJyEhgYKCAioqKkjp0oXi4mJKS0tJTkmhorycoqIiOnfuTDAYpCA/n8TERHx+P1u3brXLT22cNjtTo6qzAETkGuAYVa1yjl8EvmxN2Vqb0B0MzaWqqoply5bxzDPPMHLkSG644YZdlppEpEXyslgsexdVJRgIkNKlC2Dudw0G8YeFERsXVzNzEhMbW+OOjo7G4/EgIoSHhyMieDwewsPNx3M9Hg8JiYnEJyTg8/mIi4sjOjqa8PBwfD4f4RERhIeHExYM4u3UicjISGLj4igvL69dSEuboS3P1FSTCMS5jmMcvzZHp86dd1EsRIROnTs3K92uXbvStWtXRo40rwQ666yzWLZsmZmSdmaB0tPT6dixY7PysVgsex+fz0eXrl3x+/34/X5iY2Px+f3AzjuRQt3VfY3X68Xj8dS4q8P8fj9hjr2Nz+cjLCwMj8djlJrwcOPv99csOfl8Prv8ZLFKDTAd+F5EZorILGAZ8JdWlqlVyMzIqJmhqUZVa2xrmkrnzp3p1q0ba9asAWDevHn079+f0047jVmzZgEwa9YsJk2a1Kx8LBbL3qd6lqV6trXa3RLpVqfj8XhqlJXqLdzVuN3VypGl7dJml5+qUdXXRORjdrxZ+FZVbXAUF5FuwGygE+YNxC+r6lMi0g54E+gBbAKmqOp2MXfnU8DJQAlwcfWnGERkKnCXk/T9rqWxw4CZQCTwEXCDhmode4DqzqQls3rmmWc4//zzqaiooGfPnrz22msEg0GmTJnCjBkz6N69O2+99VaL5WexWCyWtkebVWpEZHiI1xbnP0VEUhrx7acq4A+qukxEYoGlIjIXuBiYp6rTReQ24DbgVuA3QC/nNxJ4ARjpKEH3YD7ToE46H6rqdifOFcD/MErNScAe+/hm5+TkOnc/NZehQ4eyZMmSXfznzZvX7LQtFsv+Q0VOHlWFRbv4+2JjCGuf0AoSWQ4k2qxSAzxWT1iD335S1XQg3XEXisgqoAswCRjjRJsFLMQoNZOA2c5My2IRSRCRZCfuXFXNBXAUo5NEZCEQp6qLHf/ZwOnsQaVGREhOSak5drstFoulIRqjsFQVFrGg1zgADv/wZbxREQBEdOlcc65VcCxNpc0qNS35zScR6QEMw8yodHIUHoAMzPIUGIVni+u0VMevPv/UWvwtFotln6QuhSWqVw+K123eJb43KoLFJ1y0i//YtfOsUmNpEm1WqalGRPzANcCxjtdC4CVVrWzk+THAv4AbVbXAbSCnqioie9QGRkSuBK4EOOigg/ZkVhaLxbIL7tkZrdrxjhi3wnLkZ7N3cteGWwnSqgBladsIlJSCRxCXAbCdxbHUR5tXajB2K37geef4Qsfv8oZOdBSifwF/V9V3He9MEUlW1XRneWmb478V6OY6vavjt5Udy1XV/gsd/661xN8JVX0ZeBlgxIgRe9yI2GKxWNy4Z2fqUlgaQ+isjVsRqmvWxxMVQbCkzJzgUn6s4tN2sUoNHK6qQ1zH80Xkh4ZOcnYzzQBWhXzR+0NgKmar+FTgA5f/dSLyT4yhcL6j+HwK/EVEqt+NMwG4XVVzRaRARI7ELGtdBDzT9GJaLBbL/kl9sz52+crixio1EBCRQ1R1PYCI9AQa857tozGzOj+JyHLH7w6MMvOWiFwGbAamOGEfYbZzr8Ns6b4EwFFe/gx858S7r9poGLiWHVu6P2YPGglbLBbL3iBQUlYzoxPRpVMDsS2W3cMqNXAzsEBENgACdMdROOpDVb9y4tfGuFriK/C7OtJ6FXi1Fv8lwMCGZNkfeOqpp3jllVdQVa644gpuvPFGcnNzOeecc9i0aRM9evTgrbfeIjGxTb7M2WI5IGiMwvLdaVfWuMdt/pKxa81rHdz2OBZLU2nzSo2qzhORXkAfx2uNqtoPiLQgK1as4JVXXuHbb78lLCyMk046iYkTJ/Lyyy8zbtw4brvtNqZPn8706dPtV7otlv2YuhQWT1gYY1bNMQEu2xdPeBgRKebzKCWbUrFYmkubVWpE5Iw6gg513qb7bh3hByyftBtOoLB4F39vbDQn5Tb0LsK6WbVqFSNHjiQqKgqA4447jnfffZcPPviAhQsXAjB16lTGjBljlRqLZT/DFxtTo7y4cSssTUmnRhHyCATtHghL42izSg1waoj7365jBdqcUlObQlOff2MZOHAgd955Jzk5OURGRvLRRx8xYsQIMjMzSXbeVty5c2cyMzOblY/FYtn7hLVPaBGj3PrSqcjJq3XWxxMVUesMkC82ptnyWPZP2qxSo6o1djMi8r372NKy9OvXj1tvvZUJEyYQHR3N0KFDd/mSrvvjdRaLxeKmpRQny4GP/aSpwc5t7mEuu+wyli5dyhdffEFiYiK9e/emU6dOpDvfmkpPT6djx8ZPVVssFovFEopVaix7hW3bzDsIf/31V959913OO+88TjvtNGbNmgXArFmzmDRpUmuKaLFYLJb9nDa7/CQi/8bM0AjQU0Q+dIer6mmtItgByplnnklOTg5+v5/nnnuOhIQEbrvtNqZMmcKMGTPo3r07b731VmuLabFYLJb9mDar1ACP1uFus3hjo+vc/dRcvvzyy1382rdvz7x5u+6asFgsFoulKbRZpUZVPwcQkVOB/6pqsJVFanWas23bYrFYLJbWxtrUwDnAWhF5WET6trYwFovFYrFYmkabV2pU9QJgGLAemCkii0TkShGJbWXRWgzzhQaLZd/AtkeLxbKnaPNKDYCqFgDvAP8EkoHJwDIR+b9WFawFiIiIICcnxw4kln0CVSUnJ4eIiIjWFsVisRyAtFmbmmpE5DTMBywPBWYDR6jqNhGJAlYCz7SmfM2la9eupKamkpWV1dqiWCyAUbS7du3a2mJYLJYDkDav1ABnAk+o6hduT1UtEZHLWkmmFsPv93PwwQe3thgWi8VisexxrFID04D06gMRiQQ6qeomVbX7jS0Wi8Vi2U+wSg28DRzlOg44foe3jjgWi8Wyd6moCFBQWEVaZhmdk8IRj5CxrYykDuF4PcK27HLaJfrxeT1k55QTG+MjPNxL7vYKfD6hXWIYifFhrV0Mi8UqNYBPVSuqD1S1QkTs3WmxWNoMv2wo5vo7fyC5YwQ3XX0otz/wM9FRXu69pT+3P7CCQEB5/N7B3Pngz+QXVPLsg0O5b9oKUtNLARjQN5bpdw4kMcF2nZbWxe5+gizHWBgAEZkEZDd0koi8KiLbRGSFy+9NEVnu/DaJyHLHv4eIlLrCXnSdc5iI/CQi60TkaXE+VS0i7URkroisdf4TW7TUFovFAmzPq+ChZ9ZQURHk1AmdefWNzZSUBjjp+M78870t5BdUMW50R/49J52snAqOOrw9XyzOrlFoAH5eXcgPK/NbsRQWi8EqNXA1cIeI/CoiW4Bbgasacd5M4CS3h6qeo6pDVXUo8C/gXVfw+uowVb3a5f8CcAXQy/lVp3kbME9VewHznGOLxWJpESorA2TnllNWHiA9swyAdolhZGyrdvtJ31Zu3AlhO9yJYTXx3WzeUrKXJLdY6qbNKzWqul5VjwT6A/1U9ShVXdeI874AcmsLc2ZbpgBv1JeGiCQDcaq6WM2LZGYDpzvBk4BZjnuWy99isViaRTCorPylkHOv+pb3P07nuKM6ALDspzyOHWXc3/+Yx3GjdvgfN6q98XfFqUYExhyVtBdLYLHUTptXakQkXETOA64HbhKRu0Xk7mYmOxrIVNW1Lr+DReR7EflcREY7fl2AVFecVMcPzA6s6l1ZGUCnZspksVgsbM+rICu7nD8/vprSsiDvf5zGqROSOf03yfywIo/xx3bkwrO7sWFzMUMGxHPlhT3Izi2nc8cIbrjyEKoCSjCo3H5Dbw4+KIo+h8Tw2LRBJLW39jSW1scaCsMHQD6wFChvoTTPZedZmnTgIFXNEZHDgPdFZEBjE1NVFZFaXwksIlcCVwIcdNBBzRDZYrEcSOTmVaCqhId5iYn2oaps2VrK3Q+v5IYrDyXDWU4qLgnwx2k/cdLxnXjs3sHExfq5tGcPzjq1K2F+YVC/OCaOT8bnE44Y1o5xx3TE44W4GD+jRrRHBLvzybLPYJUa6KqqJzUcrXGIiA84Azis2k9Vy3EUJlVdKiLrgd7AVsD9atWujh9Apogkq2q6s0y1rbb8VPVl4GWAESNG2G8hWCxtnMqqIOs3FnP/E6vZll3G9D8Norw8QHysn/seW01qeinrNhQxbFAC3/+UB0BZeZBvv9/Opef2ICbaDAvtE3coKu3qctvdTpZ9jDa//AR8IyKDWjC9E4DVqlqzrCQiSSLiddw9MQbBG5zlpQIROdKxw7kIM3ME8CEw1XFPdflbLBZLneQXVHLDXT+waUsJF/+2Bx98nMbN966gvDJYs2PpH+9u4ZqpB3PMyPZERXoZNjCeJ+4bTGKCv5Wlt1iah52pgWOAi0VkI2Y2RTArPoPrO0lE3gDGAB1EJBW4R1VnAL9lVwPhY4H7RKQSCAJXq2q1kfG1mJ1UkcDHzg9gOvCW86mGzRjDY4vFYqmV3LwKlv24neROkRSXBAAY3D+e51/bAEBpaYB2CX5y8yrJyqngtvtXcN4Z3fj9VYcSGeElLtYqNJb9H6vUwG+acpKqnluH/8W1+P0Ls8W7tvhLgIG1+OcA45oim8ViOTCorAyCgN/nobIqCAqFxVX8mlpCWXmAnt2jycwyb/j98+OrWbOuiJcfHYbXKwQCitlUaXjrg1Ruua43Dzy5hsKiKgJBZVD/eDq0C8frlVYspcXScrR5pUZVN4vIMUAvVX1NRJKAmNaWy2Kx7FkKiiopLQ3g8QrBgPLJgkyKSwJMOjGZjh3C8fubvzofCCjFJVVERnjxeoWi4ioiwj34/R4Ki6sI83uICPdSWFSF3ydERHgpKq4iqEFycyv5x3up9OkZw4hhibz1YSqnTUjmwafXsG5jMX+5YwDTHlnF+k3F3Hdrf9asKwLg04WZXHtJT16cuYENm4sZMSSBJT/kseSHPHw+D08/MISICA+REV4S4vxNUmgCgQCBQACf14s6xz6vF4/X2+w6s1iaQ5tXakTkHmAE0Ad4DfADrwNHt6ZcFoul6RQWVVJWHsQjEBbmobzczHjExfgJC/OQl1/Bky+vY8HX2bzw8FD+OO0nCgqrOLRHNGOO6sCCr7MIBJWTxnbii0XZbM+vYNKJKfxvWS5rNxYz+ZRkYqJ8iAhhYR7ia1m6ycuv4JMFmXz9bQ7XXtKT1WuLmPflNi4/vwcZ28r4z9wMLjizG+UVQf713zROOzGZuBgfH85J57wzunHNLcvx+4RJJyZz6Y1LSekUQf/ecazbWEz7dmEg8OPKAmJjfAQCO2Zk/vWfNE7/TTLPPzyM2GgvRztvAF6+Ip+xxySR1D6chPjdX2oKBAKoKiJCZUUFaWlpJHXsSFVVFdtzczmoe3drpGlpddq8UgNMBoYBywBUNU1EYltXJIvF0lRyt1fwyPO/sGhJLk/+eTAffpLGvC+ziIz0cs8f+tK3Vxzfr8jjsy+yGDYwnmU/5lFQWAXATdf04o4HfiY7t4In7hvMjXf9yJa0Uh64vT93/OVn1qwv4sjD2pG5rZzbXvqZtIwyRh/Zgd9fdQhejxAZ6UUVysoCvPrGZj74JJ1TxndmwVfZ/OPdLYw+sj0/ry7ghVkbGdw/nqzcCh565hcOPigKv0+46Z6fOGlsJ/47N4NAQDliWCJff5dDeXmQmGgfeXnmM3XRUV7yCyoBKCyqwusRuqVEsiXNGAK//3E6QwfEM+7YjogIk09O4dQJyU2efVJVysvKyMzMJCUlBUSIi48na5vZlJmUlITzhReLpVWxSg1UuN8DIyLRrS2QxWJpGhWVQf7x7ha+XJzDsaM6sOSHPOZ8ngXAZef3IC2znOU/p1JYVLXLuT27R7NpSwnZuRW0bxdGSWkVW9JKCQ/3EBPtY816s7xz/pnduOOBnyksrqJ71yjOP7Mbjz6/lpztFdxxfR9mvfUrZ5ySwkefZQAwakQ7Hn/BvIdz1GHtePvfW2v8P5mfCcCRh7Xj0wWZNWWIizNdc2VlkPAwo4isWVfIdZceQphfSE0rpedB0URFeikpDfDES+v40019+e6H7fyaWsKkE5Pp2SO6RtEQEfz+xikdFTl5VBWasnrCwgiUON948ggd1Et5agb+uBg8vh0KkohgVRrLvoCdLTQ7jF4CEkTkCuAz4JVWlslisTSB4uIqvv1+OwC9esbwwwrzHpae3aNJjA/jiZfW8c13OQwdGA/Aj6sKGD44gbjY3Xi+E2OsC3DZ+d2Z/vQavvkul1MnJPPYi2uZ/1UWhUVVNbuJiksCxMc57tKAy7+KeCff4pIAcU6cRUtzOeHYjsREe/l+RT6HD00kMcFPRaXyj/e28Oi0QRx1eHvmf7WNFx8ZxtijO9Au0U9GVhlnn5rCnTf2YcjABGJjGr/EVJGTR8mmVEo2pVK5PZ8FvcaxoNc4itduZGG/CSzsN4HiNRupSM2gcmsmVAUIyy2gk/rohJ9gZg5lW9KpyMlrfD1aLHuANj9To6qPish4oABjV3O3qs5tZbEsFksTiIz0MrBvLBs2F7Nlawl9Do3l+xX5DBsUzxeLsgHY+GsJQYVzJ3fl3Y/SeGHmBp6fPpSF32QxqG8cSe3DyMqpIDrKV7OkU1RcRZ9DYlizvgivx9jRVFQEaZcQxibnQ449ukXx48oCAP77WQaXnd+Dh5/9hf/OzeDSc3sw7ZGVfDwvk99d0pPb1qxg7ufbzOzK8u0s+DqLR+8ZxOdfZ1NYXMULr23g6QeG8NOqArKyy5jxxHD+t2w7lRVBDuoaxV2/74MqxMb4uf2GPlRWaa12PfXNuojHgyr442KoKixiQS+z2fLIz2bXWrfeqAgWn3BRTZxqt5uxa+cR1j6hGVfQYmkebVqpcV6I95mqjgWsImOx7OdEhHu55NwerFlfxMKvs3j6L0NYva6Q7XmVdEoKr4n34JOrOf3kFF578jCiosxnBC7+bQ8AXnl8OHM+38bPvxTw5P2D+XJxDr9sKOQvdwzgf9/n8mtqCX+6qS9/eWoNCkSEeygrD1JaFiAh3k9efiVf/S+HbimRvPDwUFLTSjmkRzRvvHQEP60qoGNSGP948QhWrM4nJsbL688fzopVBfh8wqxnR7DylwKiIr10aBfOmRO71Mh86oTkWsscFblzN+5WZLQqwMJ+E4BdFZHDP3wZb1QEdOncElVvsewTtGmlRlUDIhIUkXhVzW9teSwWS/NJah/Oo9MGUVYexO8T7rulPxWVQTwe+PybbNIyywgEYfXaQmJjfCSGvOq/Q7twzpvcreb4rFO7OIpCNif0MX6qAd6b3h2JDvKHa3ox/ek1vP9xOv932SE8+PQaqqqUtz5IZWDfOE44tmONgW5K58iadJM7RdS4OyXtcHfssPPXruuabfFERRAsKdvFDeykyNRF6MyLxXIg0KaVGoci4CcRmQsUV3uq6vWtJ5LFYmkOdX1g8YVHhrEtqwy/30P7xDASE8IapTTADkXBzdi18zjuqM4cNiSBnNwKktqH89YrI8nJLad9u3Bio31N2nHUmNmW+twWS1vFKjXwrvOzWCwHOO0Tw3b6UCOwiz1JQ4pCzbINIGF+glu3Eg1E+wRveQSBklLjroggkFdKMSEKkmPPAuCLjanVBqUxNi57ikBJWU2eUb16MGbVnL2av8XSHNq0UuPY1ExQ1fNbWxaLxbJ/UJ/BbGNmUtzsK4a1bkUmoktnVASP14OE+amIDCMuLo5AXiFj184DzIxWjbIToqRZLK1Jm1ZqHJua7iISpqoVrS2PxWJpWRq7tLQvELrk1BKEzroct+pTBAGPQHDHW4i/O+3KGvfYtfMI79oZn8+HquIPBvF6vXjbJ+wTCpjFUh9tWqlx2AB8LSIfsrNNzeOtJ5LFYmkJdndpaW/gXr7SqgAlm1KNOxhkYZ/xzZYpdNYlKACCJzyM7QSICA8nPiFhp5kXN77YGHw+MzSICF77PSfLfoRVamC98/MA9vMIFotlF3ZWFDo1Ky338pVbwakr3dpmW0w6kYxZNQdFa9wAeIRAUAHFExeNJ9a8WdgfFkYnjTPn2pkXywFKm1dqVPXe1pbBYrG0HLu7jFOXYawnKqJWuxENBltM1rq2VYfOtuD1EAgEwO+jPDGW+Ph4RITULVtIbNeO8MhI0rZupUNSEhEREVRUVOD3+fB4vZSXl5svaHvsC+QtBz5tXqkRkQWAhvqr6vGtII7FYmkmu7tzKNSeJPrQ7vXGr8jJq9Ng1hMRbuxWxIMnMrzGhsUTFbHDnqURuGUa88tnFEeHU1RYiBTmk9SxY82yUNdu3RARPB7PTu7w8PAaJcbttlgOdNq8UgP80eWOAM4Edv3ancVisQBhIcs2quO3D+8AACAASURBVFrz4chAIEBmRgZlZWUkJyZR5FFKiovpGBdNqU8oLCykozT+m0zVlBQXk5ySgsfjIT0tjeSUFLOE5LJ3cbvdSoxVaCxtiTav1Kjq0hCvr0Xk24bOE5FXgYnANlUd6PhNA64Aspxod6jqR07Y7cBlQAC4Xv+/vTsPk6OqGj/+PdV7T89Mz74kmRAgQAAxQIC4QRRk81UUBRUUXH4iL+AKL4sLKK64vqKALwoCyiqIBETZZBNFSAxbCIEACZl9X3um1/P7o2qGTpghmSwM6T6f5+lnqm5XVd+aSmbO3Hvuvap3eeVHAr8AfMBvVfWHXvk84AagClgOfNJGaBkzPdPtWprukGRVJZ1OT7ScJJNJxsbGKInFUFVGEwmi0Sg+n4+RkRHC4TCSmrz7auMupyzqBi6xEmZXlKGq+P1+mua+fkuSMcWs6IMaEanM23WA/YHyzTj1KuBXwMbt2z9X1Z9s9Bl7Ah8D9gIagXtFZDfv7UuA9wLNwOMislRVnwUu8q51g4j8Gjcgumw692ZMsZtu19LmymZfzdXp7uoinclQX19PIpEgVlpKZWUlQ0NDRCIRamprGRkZIRgKUVtbS7pvgIOfuxufz7dBzs+GXU73EZldh4C38KQb4IjIRKuQMea1ij6owW0FUUBwu51exg0gXpeqPiQiO23mZxwD3KCqSeBlEVkDHOi9t0ZVXwIQkRuAY0RkFfAe4ATvmKuBb2FBjTEzbryLKRwOE6+ooKq6mo72dlqam6mrqyMUDuP3+yktLaW0tBSfz0c0GiUajeL3+5HKOMHKuNuy09036bBqX2kJPkvuNWbaij6oUdV52/iSZ4jIScAy4ExV7QNmAY/mHdPslQGs36j8INwup35VzUxyvDHGk0xmGU5kCAV9BIMOQ8NpoiXRKedfmYyqouqOFRARct7oJp/PRyaTmehaymQyOI6DiFBeXk5HRwejY2NUVlZOnNPd3U3jLPe/6vhcLxtv5+e+hKoroLpiK78LxphxRftngIh8QkQ+OUn5J0XkhMnO2QyXAbsAC4E24KdbUcXNIiKniMgyEVnW1dW16ROMKRC9/Skuveolzjj3CV5pTnDFtWv5/FkrOPd/19PpVBCaM4voTrMnXlPNyZLJZFj/yiukkkmy2Swtzc2MjY2RyWTo6+sjk8mQyWQY6O8nnUqhqgRDIXx+P1VVVfT19hIIBmmaOxfHcejt7d2ge8oY88Yp2qAG+AJw6yTlfwLO3JILqmqHqmZVNQf8hle7mFqAOXmHzvbKpirvAeIi4t+ofLLPvFxVF6nqopqami2ptjE7nMRohkuvfJFb7mhlv30quOuBDq69ZT3tnUmWP9XPf5/zBH0DU+fVZ7NZ0uk0uVwOESESidDa2sro6CiRaJTOjg7S6TTpVIq21lYymQypdJpWb7ursxPN5RgdHaWyqoqamhpEhIbGRqqqqmwWXmNmSDEHNQFVHd64UFVHgOmPuQREpCFv90PAM972UuBjIhLyRjXNBx4DHgfmi8g8EQniJhMvVbct/H7gI975JwO3bUmdjClEo2M57v9nNwD77h3n4Ud7Jt6LlwVYvH8FXT1J4NWk3lwuRzabRVXJZrOsf+UVhoeGSI6NUVbmzrQ70N9PPB5HVens6KCuvp5cLkdbWxu13vwwQ0NDlJWX0zhrFuXl5RPXdxwHv9+/QVeTMeaNVcz/+yIiUuIFMRNEpBQIbupkEbkeWAJUi0gzcAGwREQW4iYerwU+D6CqK0XkJuBZ3GTk01U1613nDOAu3CHdV6rqSu8jzgFuEJHvAiuAK7budo3ZcfUNpMhmlGBQyOUgk8nRUBtm7foEPf0p6mvDdHYniZcF+OUP3kIsCpFwiHQ6zcDAAPF4nEwmQ3tbGw2NjQDE43H6+/upq6+nrbWVSCRCVXU1rS0tBIJBampq6O52A6fa2lp6e3vJ5XKMJhJoLkcgEJho5bFRSca8ORRzUHMFcLOInKqq6wC80UyXsBkBhKp+fIprTnX894DvTVJ+J3DnJOUv8Wr3lTHbxOBQmlQ6R0nUx+hYjmxWCQUdslklk1X8PqEivsmYfptJjGYYSWRJpXKEww6ag7FUjkjYR2XcbTB9pWWUCy56lmQqxwVnLeDn//cCIJz+mZ35+g+e5fa72vjK53flvO+t5KhD6yiJZBka6CEcqiWT9jE0OEgmnaY8HicUCtHS3Ey8ogKf3z+RL1Mej1Na6i79Vl5eTszbzmWzNDQ2EggEGBocpK6+nnA4TFdnJ9lMBg0EbISSMW8iMp71X4xE5FTgPGB8WMQw8ENV3SGHTi9atEiXLVs209Uwb0K5nNLcOsqPL3meUMjhpOPnctEvn8fnE875wm78+JLnWfPyCKd9ah7vOKia514YYpedSqipClFe9vq9se4IJLcLpiTqMJJwRwLFSnwMj2QZb8AYHsmQTucoiwVIprIo8I9He/j1NS/zwaMamNMY5dLfvUgqrdTXhrj0hwvx+YXTznmClrYxzvnCbsyvzhHMjAIQDvkoifpRlEBZjIS/hI6uMebNiTCaGGRwcIDy8nKCwSBdXV2UlZcTCoUYGhyksqqK1pYWKipfnaaqpKSEYDBINpudyInJZrMTSw/kj4TKLzc7PhFZrqqLZroeZusVc0sNqvprEbkbbwZgVR0CdzZfVX15RitnzBbKZpX+wTSoEon4iEb89A2k+cLXnqSnL8WPzt+b8y96lu7eFBectQc/+MVq1q5P8K7FVcRK/Jz4349PXOukj87hEx9uwu9z6BtIsfK5QeY2RYlF/ax6foj5O8e47W9t3HpnC+d+cXfWt4xyw5/X8/mT5pHOKFffuI6vf3kPbr69hcdW9PGNr+zOP/7dwyOP9XDx99/KJb97CYAjltTx32evIJuD0pifc7+4Ow/+q5u3LCinpW0MgNmNEYKJbla9432Au8J1xlvhOiD1lPgT7BwG32iOZHKMQCBASSxGZ0cH0WiUkmiUtrY2YqWlZNJpGhob8fv9EwHLeCAz1dIDUw3LNsa8eRR1UOO5WVX327gMd2ZhY3Yoo2MZnlw5yI8veZ6evhSf+mgTRx9Wz+holp4+dzRQJOKju9fdrq4KsXZ9AoD3HVbPj371/MS1jvvALA7at4p/Pt5DfW2YL5z3JJUVQb751T049awV7LlbGW8/sIrr/rSeXeeVkE7n+O21a6mvDVFTFeLc765kTmOERCLLYyv6iJcHKC8L8MA/u6mqDNLR5SbyBvzCSCJL1ls94PMnzeO6W9bz2Io+fvKtt1AZD9Dbn6a3L0Vl9NWWkfwVrvMdsvpe0pJh1uzZE3PLVNfUoKpUVVVREoshIoyNjeE4zmvWUDLG7LiKtu1URPYQkQ8D5SJybN7rU7gLWxqzw+jrT/HcmiG6e1Occ+HTdHQlefuiSubvUspXvvk0w4ksPu9/ezajlMbcv2eGhjPU1YQAiIR9DA678z3uv0+cPXYt5YzznqC7J8Wlv3uZdEY5fEkdN97WzOhYjgW7lfL4ij4AFswv5fEn3O3ddill+VP9AFRVBmlpd7uLKsoDtHcmJ+rbWBfG7xfSGSUUcohE3MBi13kxHvOue+NtzfzP6btRGvNzw63NlJdu+u8wxxHmzJmD3+8nEAhssPhjrLQUv9+Pz+cjEolYMGNMgSnaoAbYHXdByjjw/rzXfriLUhrzppXNKp3dSa6+cR3PrRni6z9YyQU/epanVg5MtHh8/Ng5nH/Rs6xrTnD/P7r4zAk74Tjwx6UtnHPGbpSWuIHC2WfsRrw8wONP9PHeQ2oBOOqweq66YR2qUFLiZ2AwDUAs6pvYbusYY15T1N3uTLJzUwkA7Z1j7DzX3X7+xWH2fUscx4H1raPstnMMv98dwfSnv7Ry/pl7UFcT4rpb1vP9r+3FnMbIBvf5+Io+bvtbG987b0/OP3MP/P7JRxgdsPRyFt97DYvvvQbNZEk2tzO6roXcwPDEmknjrTLjLB/GmMJTtN1PqnobcJuIvE1V/zXT9TFmKn39KUYSWQJ+wecTkqkccRllZH0fS3aFmkiCH37GnWrf8adZ8M1ZiAhl0RTJpBvh3HhbMyd+eA7/95N9cUSorgpyzSWLSKVyRCM+rrp4f1KpHMGgw7ymEqoqAowk3FabR5f3csS7a7n892t5dHkvhy+p46lnB3n40W4u/v5C/vN0P8uf7OPkjzaxcO9ynnhmgKqKIO84oJJHHu/l3oc6+c65e/K769Zx70Md/Ozbb+HSq15mxTP9LFpYzmU/WojP5xAJO1xy0UJCyWFu+m4TY8ksNfUxdHQMcQZwkg7kJh/YMFVX1LtfuG/KmYSNMYWnqEc/AYhIDW7LzE7kBXmq+pmZqtOWstFPO4axZJaRkQzBoEMo6DA0kiHgdya6f/w+mRhx1NOX4n++/TQvvDTM0kv2Yrh7EAHKYw4P7XkEAIvvvWbiF/oBSy/H5yXPRnfdifSw2/UTiEVID48iAo7PQby+KH9p7DW/9LNZZWQ0w5/+0spv/7AWx4Hzz1xAX3+K+x/p4uTj5zKccN/fuSnCiR+ZSy6n+P2C4wjptOI44Pe5XUuqEIv5yaRzqCrlZQGGhrNkc0pZqZ+Af8MWk8TaZu6ff+hr7i3//sKz6gF4YMHhkx437t0v3Ed0p9lb/rBMUbDRT4WjaFtq8twGPAzcC9iCLWa76u1L8dtr17LsyT6+9T8LuO+hTh78Vzff/OoePLaij7/9vYP994nz6Y/PZSyZIzQ2zDdOKCcYqMA/NsxTBx4FuL/EJ5PfYpH/i/71fulvHNT4fEJZLMCHjmqkvibM3Q90sHtdjorZcNTeNfjCGXKJURb/vwqcaJjcYAeAu50YIzK+PTBGeHy7bcyd0dIRkgMOQdyAKuB3PzvV009myJ3gWzNT/zd8/AOnTNTbXxqbWLjy9c4xxhQPC2ogqqrnzHQlTOEaGk7T159mcDjNzbe3cO9DXXzo6Eb+el8Ht97ZynveWcNjK/q4+sZXKCv1c8yRjZxy1goOe1ctxx3kmxjCPFUgM135rTmayTLW2kk2MQqO4AuH3W0gGA3zrqYx3nVSOZDkgd1f2yoy3e18+QFVZmh4g9aZzRGsik+cn1jbPO3vgzGm8FhQA3eIyNHezL7GbFPpdI4H/9nND3/5PD+/cB8e9NYreute5fzyihcBWLh3OX/+axsAhx1cSzQ7wi++UEvA71AW3fZT72+cf7K5gcm2sHFANR6MaC437Wvlcm53lo1gMsaMs6AGvgR8TURSQAoQQFW1bGarZQrBwFCaS650J5jr6UsyqyHirlfUl2JWfYSe3hQ9vSku+HwjMpogVuInEkjy0DZunXmzyA+o8gOc8Ky6aV9rbGyMsdFRyuNxfLEoS56/d2L9JVVFRPCXxjZxFWNMISn6oEZVS2e6DqZwqbrrGwHcemcrp316Z7550bMs/VsbXz11V772/ZXceV87xy2exSP7bX4gk02MTRwXnb8TS1bdvf1uYjvZOP9n3Mb3dsiquwFFxCEHqOZwSiKks1n6+/vxBwJkfUJfLkVVVRWDg4OoKrPnzLFh28YUmaIPasT90+5EYJ6qfkdE5gANqvrYDFfNFIBI2Md73lXLPQ92snL1EHfc3cZlFy0klc5RVxPiD5ceQFdPEp9vYJPXyv9lH55Vj/i9af1DISKNbktHqqd/InnWCQYngh0nGt5hAp/xZGCAd626i3BTI12dnaRSKRoaG+np7iY52E9dtJ5YaSndXV3U1dcTi8Xo6elBHIc5FtAYU5SKPqgBLgVywHuA7+AuankJcMBMVsoUhliJny9+bhd2mVvCP5f1MndOlOrKEJUVwYkRPyVB0MzkOSVTBTKTDcUG8FeUkSsJT6xplEqlJmbQHV+QMdXcPu37eG3ryV0IghMNb7C9ZNXdKIovGpl0W5g8R2jj+1RHyOVy+EtLSCWTJJNJwpEIqJJOp4nFYqgqw0NDRKJRfD4fyaQ7W7HmciSTSRzHscDGmCJjQQ0cpKr7icgKAFXtE5HgTFfKFI6K8iAfP3Y2HziygUjENzEvy+aM+MlvtdjcOVfa29oIhkKUlpbS1dlJdU0NJSUltLe1uesgxUo4+Lm7UQWfz8EJBTlk1V0ggi8S3qB155BVdwEgjoPizkPjBAMkQn4G+vupCAdwoiF6enqojkVIe+WV0RBEgvT29hIP+fHHKuju6qJaJ0/q3fg+h8J+QsEg0bIy+np7KSsrI15RQW9vL4FAgMqqKkZHRyktLaWyqoohr8upae5cBgYG6OnuZvacOZvxdIwxhcSCGkiLiA9QmJiMb/pDMYyZwniLjB/IBoOkvCHTU3m91plNEREaZ82ief16UsnkRF6J4zjU1dfT0tJCpw5TM6uOjvZ2stkUjZU1DGqGWGkpY8kkY2Ef9fX1DA4MMJJxaGxsZHBwEICy8nJQZayjAxEhFA4zMDBAJBIhEAjQ3dVFfX09/kCA5vXrqamtJRKJ8Mq6dVRUVBDK4QVUim+KVhuA6upq9579fioqKye2K/O2I5HIxPpNpaWlE+s6xeNx4vG4tdIYU4QsqIGLgVuBWhH5HvAR4BszWyVTSDZukdlUcuxU3UyqSi6XmxjhM77tOA7ZrDv5nIiQSbtrM9U3NNDV1UVZWRmRSMQ9fqO6VdfUMDQ0xNjYGJFIhFgsxsjICK+sW0dtXR1lZWWI41BWXj4xoigxOko6lWL2nDmk02nGRkdpbGxEYSKIEhHmNDVNBBZzmppwRFBgYHSEqqoqnESSQ1bfg4hM3NP4Pfv9r/5o2pxtX/62DfE2pmgVfVCjqteKyHLgUNzh3B9U1VWbOk9ErsRdELNTVff2yn6MuyhmCngR+LSq9ovITsAqYLV3+qOqeqp3zv7AVUAEuBP4kqqqiFQCN+Iu37AWOF5V+7bBLZs3oam6mcYDGcdxyKTTtLe3U1dfj4jQ3tZGbV0dPp+PtrY2qqurCQaDdHZ2UlZWhuM4RMJhujo7mdPURFdnJ4FAgLr6ejra23F8PkKhED7HIRqJEPYCn0AwSHZ0lN6eHmbNmvWaFo9IJDIRsIgITXPnIiKML7kyXp4fXORvNzQ2usFYNIq/omwiMDPGmK1V9D9JvOChE7geuA7oEJHAZpx6FXDkRmX3AHur6j7A88B5ee+9qKoLvdepeeWX4a49Nd97jV/zXOA+VZ0P3OftmyKiqqRTKVqam0mn0+D98m9tbSWTTuP3+2ltaSGVTBIMBGhrbaWzs5PGWbOIV1QQCAQo97phOjs6qK2ro66+Hp/PR21dHQ0NDYRCIYKhEKGwO1/MwMAAybExqqqrUVXaOzomWoHG+Xy+iZWvx5OQx1fAHi9/PePHb7xtjDFbq+hbaoD/AHOAPtyWmjjQLiIdwOdUdflkJ6nqQ14LTH5Z/pjZR3G7sqYkIg1Amao+6u1fA3wQ+CtwDLDEO/Rq4AHAlnMoIFMO0Y6VkM1m3V/4XpDQ0txMOBymsrKStrY2evv6qKmpoXn9enp6e2loaGBkZITRRIJULEa0pIRcLkd7uzvSyR8I0NnRQUVlJdFolEDg1bh9fFtVKS8vJxaLEQwGiUajZLPZTQYpxhjzZmFBjdu6crOq3gUgIocDHwZ+hzvc+6AtvO5ncLuPxs3zRlgNAt9Q1YeBWUD+ojXNXhlAnaq2edvtwPSnXDVvavldTkuev5c+P9TV15NJp2lrbaW+oYFcNks8Hqevv594RQXtbW1Eo1EqKitpa20lFA5TU11Na2srfr+fQCBAV1cXDYEAgUCAWEkJkZoa/H4/Q4ODBIPBKYOUjVtexruQrCXFGLOjsKAGFqvq58Z3VPVuEfmJqn5eREJbckER+TqQAa71itqAJlXt8XJo/iwie23u9bwcG53is04BTgFoamrakuqa7SiXyyElEQ5ZfY8bKAQDrw6TFoesusm+vtISMsODdLS3U1VdTS6Xo6uzk3hFBV1dXe4cLUAsFiNeUQFASUnJq9vRKGXl5TiO486y6wUnpWVlE4m4+dtTyX9/U8caY8ybjf0JBm0ico6IzPVeZwOd3jDvaQ/tFpFP4SYQn6he5qSqJlW1x9tejptEvBvQAuRPPDLbKwM3t6fBu2YDbt7Pa6jq5aq6SFUX1dTUTLe6ZjtTVVJBP52aZjDkI1dWwkhphE7JkqutIBWP0UWGMZ9QVl5OMplkZHiYeEUFqVRqIhipra3F7/dTEotNtKhUVFbi9/vx+/2Ux+MEAgF8Ph/xeHxiZNB4i8vG28YYU4gsqIETcIOJP3uvJuBjgA84fjoXEpEjgbOBD6hqIq+8xguSEJGdcROCX/K6lwZFZLG3XMNJwG3eaUuBk73tk/PKzQ7E5/NRGosRiUYJhkKkMxlGhoep9hJxBwcGqKysxB8I0NfbSzweJxKN0tPdTTAYpKe7m1AohKri9/sJBoMTI4nyRxT5bUizMcZY95OqdgNfGN8XkTDwflX9I7BmqvNE5HrcRN5qEWkGLsAd7RQC7vH+Ih4fun0wcKGIpHFbf05V1V7vUqfx6pDuv3ovgB8CN4nIZ4F1TDPAMm8OuVyO0bExRhMJ/D4f4ViMqupqoiVuMnBFZSWx0lJyuRzxeJzyeJxcLkdpWRnxeBxUGRgYIBqNAhawGGPM65HxuSWKmdeKcgTwceC9wD9U9XVHLr0ZLVq0SJctWzbT1TB5stksw8PDZNJpKiorSSTcBrxIJIKIt76R308ul5vYVlWy2exE68v4SChjzPYhIstVddFM18NsvaJuqRGRQ3C7n44GHgPeAeyc33VkzNbw+XzEYu7yBo7jEPESfseDlPGRRfmLL47nzORfwxhjzKYVbVDjdRm9gjv53VmqOiQiL1tAY7a1qWbWNcYYs20Vc6LwzUAj8FHg/SJSgreopTHGGGN2PEUb1Kjql4F5wE9xE35XAzUicryIbHo5ZGOMMca8qRRtUAPupHaqer+qnoIb4JyAuzzB2hmtmDHGGGOmrWhzajamqmngduB2EYnMdH2MMcYYMz1FG9SIyNNMnUOjwFvfwOoYY4wxZisVbVCDu5QBwOne1997Xz+BJQwbY4wxO5yiDWpUdR2AiLxXVffNe+scEfkPcO7M1MwYY4wxW6KoE4U9IiLvyNt5O/Z9McYYY3Y4RdtSk+ezwJUiUu7t9wOfmcH6GGOMMWYLFH1Qo6rLgbeOBzWqOjDDVTLGGGPMFij6bhYRqRORK4AbVHVARPb0VsY2xhhjzA6k6IMa4CrgLtwlEwCeB748Y7UxxhhjzBaxoAaqVfUmIAegqhkgO7NVMsYYY8x0WVADIyJShTc3jYgsBiyvxhhjjNnBFH2iMPBVYCmwi4g8AtQAx81slYwxxhgzXdZSAyuBQ4C3A58H9gKe29RJInKliHSKyDN5ZZUico+IvOB9rfDKRUQuFpE1IvKUiOyXd87J3vEviMjJeeX7i8jT3jkXi4hsw3s2xhhjCo4FNfAvVc2o6kpVfcZb2PJfm3HeVcCRG5WdC9ynqvOB+3h1VuKjgPne6xTgMnCDIOAC4CDgQOCC8UDIO+Zzeedt/FnGGGOMyVO03U8iUg/MAiIisi8w3hJSBkQ3db6qPiQiO21UfAywxNu+GngAOMcrv0ZVFXhUROIi0uAde4+q9np1ugc4UkQeAMpU9VGv/Brgg8Bft+BWjTHGmKJQtEENcATwKWA28LO88iHga1t4zTpVbfO224E6b3sWsD7vuGav7PXKmycpN8YYY8wUijaoUdWrgatF5MOqest2uL6KyHZf7VtETsHt0qKpqWl7f5wxxhjzplW0Qc04Vb1FRN6HmyAcziu/cAsu1yEiDara5nUvdXrlLcCcvONme2UtvNpdNV7+gFc+e5LjJ6v/5cDlAIsWLdruQZQxxhjzZlX0icIi8mvgo8AXcPNqjgPmbuHllgLjI5hOBm7LKz/JGwW1GBjwuqnuAg4XkQovQfhw4C7vvUERWeyNejop71rGGGOMmUTRt9QAb1fVfUTkKVX9toj8lM1IyBWR63FbWapFpBl3FNMPgZu8taPWAcd7h98JHA2sARLApwFUtVdEvgM87h134XjSMHAa7giriFcfSxI2xhhjXocFNTDqfU2ISCPQAzRs6iRV/fgUbx06ybEKnD7Fda4ErpykfBmw96bqYYwxxhiXBTVwh4jEgR8D/8FdLuG3M1slY4wxxkxX0Qc1qvodb/MWEbkDCKuqrf1kjDHG7GCKPqgRkWMnKRsAnlbVzklOMcYYY8ybUNEHNcBngbcB93v7S4DlwDwRuVBVfz9TFTPGGGPM5rOgxv0eLFDVDgARqQOuwV2P6SHAghpjjDFmB1D089QAc8YDGk+nV9YLpGeoTsYYY4yZJmupgQe8BOE/evsf8cpKgP6Zq5YxxhhjpsOCGnf+mGOBd3r7VwO3eHPLvHvGamWMMcaYaSn6oMZbeHIZ7tIF94pIFIjhrtZtjDHGmB1E0efUiMjngJuB//OKZgF/nrkaGWOMMWZLFH1Qg9v99A5gEEBVXwBqZ7RGxhhjjJk2C2ogqaqp8R0R8eMulWCMMcaYHYgFNfCgiHwNiIjIe3FHQd0+w3UyxhhjzDRZUAPnAl3A08DngTuBb8xojYwxxhgzbUU9+klEfMA1qnoi8JuZro8xxhhjtlxRt9SoahaYKyLBma6LMcYYY7ZOUbfUeF4CHhGRpcDIeKGq/mzmqmSMMcaY6SrqlhrPi8AduN+L0rzXFhGR3UXkibzXoIh8WUS+JSIteeVH551znoisEZHVInJEXvmRXtkaETl3K+7RGGOMKXhF31Kjqt/extdbDSyEiZydFuBW4NPAz1X1J/nHi8iewMeAvYBG4F4R2c17+xLgvUAz8LiILFXVZ7dlfY0xxphCUfRBjYjczmvnpRkAlgH/p6pjW3H5Q4EXVXWdiEx1zDHADaqaBF4WkTXAgd57a1T1Ja+eN3jHWlBjjDHGTMK6n9ycmmHc0U+/wZ1ZeAjYja0foxPbWwAAFBVJREFUEfUx4Pq8/TNE5CkRuVJEKryyWcD6vGOavbKpyo0xxhgzCQtq4O2qeoKq3u69PgEcoKqnA/tt6UW9EVUfwJ3MD+AyYBfcrqk24KdbWe/xzzlFRJaJyLKurq5tcUljjDFmh2RBDcREpGl8x9uOebupyU/ZLEcB/1HVDgBV7VDVrKrmcFuAxruYWoA5eefN9sqmKt+Aql6uqotUdVFNTc1WVNcYY4zZsRV9Tg1wJvAPEXkREGAecJqIlABXb8V1P05e15OINKhqm7f7IeAZb3spcJ2I/Aw3UXg+8JhXl/kiMg83mPkYcMJW1McYY4wpaEUf1KjqnSIyH9jDK1qdlxz8v1tyTS8gei/usgvjfiQiC3GTkteOv6eqK0XkJtwE4AxwujcpICJyBnAX4AOuVNWVW1IfY4wxphiIanEvSC0ix05SPAA8raqdb3R9tsaiRYt02bJlM10NY4zZoYjIclVdNNP1MFuv6FtqgM8CbwP+jtvlswRYDswTkQtV9fczWDdjjDHGbCYLatzvwYLxhF4RqQOuAQ4CHgIsqDHGGGN2ADb6CeaMBzSeTq+sF0jPUJ2MMcYYM03WUgMPiMgdvDqfzIe9shKgf+aqZd5II4kMjsBYMkdPX4psTqmpClEZtwXcjTFmR2FBDZwOHAu809tfBtSp6gjw7hmrlXlDJBIZXlw3wtU3ruP/fWIeP/rV8zz/4jAAHziinpM/Ohe/z6G01E/AL+QUBgfTvLRuhNaOMRa9tYKKeIBwyDfDd2KMMabogxpVVRF5CVgMHAe8DNwys7Uy28PQcJqxsRw+P6gKmXSOvsE0p53zBG9ZUM6TKwcmAppPHtdEQ12Y0855goa6EP9z2m7c82AXB+wb57d/WMuKZwYA2GfPMs774u5EIj4iYR/JVI5cTgkFhWwWsjnF73MoLwvM5K0bY0xRKNqgxlsJ++Peqxu4EXeIu7XO7OBGEhlGx7L4fUIo6CMxmkVRfnLpCzy+opff/mw/EOUv93RQGvPzm58u5M9/bae9052eqDTm54CFFXzx608CcMFZC/jiN54imcyyz15lEwHNOw+q4v1HNHDWt5/mO6fNoTaaYWgoQ2VNFEkmcVRBhcFEFqcsQCheSrAqPmPfF2OMKXRFG9QAzwEPA/+lqmsAROQrM1sls7V6+lJc/Js1LH+yjx+d/xZuu6sNnw8iIR//+HcPnzxuDpUVPkaG+vjYB2cR8MPIcB+f+MgsOrsz/HFpC7vOi/HESjedqml2hOa2UXp6U1TGA4yOZic+64Rj53DmBU8xOpajJprhkb3eC8Die6/h0cNOek3dDll9nwU1xhizHRVzUHMs7tID94vI34AbcOepMTuoxGiGX13xIvc93MUxRzbw17938Jd72jnjs7uQTme45coDWf5UP44I6XSKbLaLMRGqqqrp6svy0rphbrv6IC67ei07zy0BIJtVfI77z6K3P80+TcIfLphNLgf15WPc8l13eS6fs+lJLJXinujSGGO2t6INalT1z8CfvVFOxwBfBmpF5DLgVlW9e0YrWGSGRzIkRjOk0kok5JDLQTKdJRT08cJLwzz/0jCHH1JLc+sozzw3wOFL6ujqTfGfJ/s49OBaRhJZfD7hn4/3ALDXHmVcdf06ACJhhyOWVDMy1M3b9q/BP5agKucjl8ni8/nItHVS5fh43+IoYyQ4+/RdyPQNsfTH8+gfTNMwC/7607mogjM6zMq3HQ1AeV6LzOJ7r9nkPVrEbIwx21fRBjXjvFFO1+EuKlmBmyx8DmBBzXbW25/ileYEJVE/f/9HJ9fesp5PfqSJQNDhd9ev46un7so//t3Dv5b1cson53Hldev42/0dfOyDs/nTna3cdFsLRx1aRy6bA3KsXpPgqov3pbwsyO13tfPjC/akvjbCt3/6HEcsCuNLZpFUBzmFBxccDsABSy/HFw0DEJ2/E8GBMdK9QwD86y3uMdMNXqbiOBbWGGPM9mST7+VR1T5VvVxVD53puhSSTMad+6WnL0U2mwPcgOZ/vvU0Z1/4DEPDGX7/x/WICG87oIorrl1LNqvsulOMfy3rBWC/feLc9YA7R+I7Dqri1r+0AvDZE5qIhJKUl4xy+JIa4jJKtrWV/3qrUOtLkF7fzNePLyXbP8TDC47goT0OZ6ylfaJuvmiYRw87iUcPO4nEC2t5YMHhPLBgw2OMMcbsGIq+pcZsO+l0jsGhNOIIZTE/A4NpVOHhf/dw9Y3rcBzhvC/txs5NJax5eYTVLw4zpzFCS/soACVRH719KcbXWM2pst8+cdo6xlBVjn1fI+uaEzginPiR2aRSOYZGslTHI/T3DTLQ103pWIaH9nBbWBZvoxaWzZFNjE18RnT+Thyy6i4AxHHIqQKCL1ayXetgjDHFzoIas9WGRzKk0zn+dGcrt/21lTNPm09L6xiPPNbNRz80h59e9gIAZ3xmZ55/cYRrb1nP2xdVAdDeOcbOTSX4HBgazlBVESQYdEilcuSyyrfO2pWxJCRGs/z3yU2ICC3tKU78UAM5Vdo6spSUBEmORUgkEpQ6MzMD8OMfOGVi++Dn7sZpqKGjvR0RBZSGxkYCQZud2BhjticLaswmZbNK/2CaxGiWWMQhq+5yAqGgw9PPDvD8S0NUxEP87vp1LJhfiiNw4H7ldPcmGRpO8fdb3sFFv3yBvfYopbEuzIP/7GKv3cs47OBq7nu4m7/c287F338rP7x4NTctXc/vf7U/v7ziJWbPCjMy3AWqNM1qoKurk0wmw6z6egYHBhgaGqKxvp7hoUESiQQ1tbVoV9/2/V5s1CKzZNXd7qgmEcTxkc1mIBIiEAgQDAZJpVKEwmECgQCOY729xhizPVlQYyaMJDIMj2Ro70wyuzECqogj9Pal+Mr5TxEO+Tj/zD34wS9W01gf4cB9K7jmj+s47v2zeWbVAF86ZWcyGeUtC2Ikhnv5xHGziUUdOjvaOPuMXcjmwO+Dn124F680j/L1L+/GaZ+exzOrB9lzfpSrf7k/2ZySTY9x4dm7k1MoLamjtaWFZHcv8VSObFZJrm8jFo0QUR/a3kMkEiKkfujo3az7zA9MwrPqNnnMxsGL4/ORyWSQYID+XJpMJkNDYwM93d0kk0pDZZy+3l7S6TTxeJz+/n56e3uprKzE57PlFIwxZnuxoMYAkExmWfZkHz/79QvEogG++dXdueK6tRz8thruvLedXE754JENJJMZfnbh3qx4epB99irlQ0fX87f7Oznv/fNJJkdIjAWJRnwM9GfIDXURDdcA0N3VSU1tLc3r11NZVc0uVcrouhaijsPb54VJvtIKiDsSKTFKCvBFI6QTY1QjSGKMB7wRS/DafJlN5c5sGMjUI343uPBFwrz7hfsAcIJBlqzyBr05gngtK04wyKCjJBIJ6urqGB4eZng4SaVPKC0rIxwO4zgOZeXl+P1+/H4/pWVllMfjBINBItEoIoKIjX4yxpjtyYKa7UBE1gJDQBbIqOoiEanEXYphJ2AtcLyq9on7m+4XwNFAAviUqv7Hu87JwDe8y35XVa/e1nXNZDKICKPJLIv3i3P9rxfx9KphdqrI8K2TKslkMhz25UZyiTEUxRfNkB3s5OC5gpMTkuu6eM/OgvT3EUiMUg5kNUJ1GpQs2jtARTKHomS7+6hTP9rdRwbh4QVHAK8foEw30XeyFhZggyDFXxqb1sy+mUyGbEeCxsZGfH4/2YEBGhoaCIZCDA0Nkc1m8fv9hMNhRATHcQiFQu7HbrRtjDFm+7GgZvt5t6p25+2fC9ynqj8UkXO9/XOAo4D53usg4DLgIC8IugBYBCiwXESWquo2SxpJdveR6h8EgXAkQrozAcDecYdMf44Hpxl0THd7e8hP2H33C/dRsuvcrb6m3++nrr4ex3EQEWpqa3EcB8dxKC0tnQhk8uV3M1kwY4wxbwwLat44xwBLvO2rgQdwg5pjgGtUVYFHRSQuIg3esfeoai+AiNwDHAlcv60qlB0e4aEFrx3+PL5vXpUfpPj9/knLjTHGzCz7E3L7UOBuEVkuIuNNB3Wq2uZttwPjGaqzgPV55zZ7ZVOVbzO53La8mjHGGDOzrKVm+3inqraISC1wj4g8l/+mqqq4E5hsNS9oOgWgqalpmuduixq8MTZO9PVFI26+jCP4wuEpc2eMMcYUDwtqtgNVbfG+dorIrcCBQIeINKhqm9e91Okd3gLMyTt9tlfWwqvdVePlD0zyWZcDlwMsWrRoWoGS6sytGj1VQq8TDU+6vTWJvsYYY4qDzOQvtkLkrfrtqOqQt30PcCFwKNCTlyhcqapni8j7gDNwRz8dBFysqgd6icLLgf28S/8H2H88x2YyixYt0mXLlm12XYdfaubB3d1lrjbOqRlf6HG8VSSbcJcycKJhcomxrd62IMUY82YhIstVddFM18NsPWup2fbqgFu9OUn8wHWq+jcReRy4SUQ+C6wDjveOvxM3oFmDO6T70wCq2isi3wEe94678PUCmi0RLI9xyOr7yGRyBKIhDll1NwIWcBhjjNkhWUtNAZluS40xxhhrqSkkNvrJGGOMMQXBghpjjDHGFAQLaowxxhhTECyoMcYYY0xBsKDGGGOMMQXBghpjjDHGFAQb0l1ARKQLdw6czVUNdG/yqMJTjPddjPcMxXnfxXjPsHX3PVdVa7ZlZczMsKCmiInIsmKcm6EY77sY7xmK876L8Z6heO/bbMi6n4wxxhhTECyoMcYYY0xBsKCmuF0+0xWYIcV438V4z1Cc912M9wzFe98mj+XUGGOMMaYgWEuNMcYYYwqCBTXGGGOMKQgW1BQpETlSRFaLyBoROXem67M9iMgcEblfRJ4VkZUi8iWvvFJE7hGRF7yvFTNd121NRHwiskJE7vD254nIv73nfaOIBGe6jtuaiMRF5GYReU5EVonI24rkWX/F+/f9jIhcLyLhQnveInKliHSKyDN5ZZM+W3Fd7N37UyKy38zV3LzRLKgpQiLiAy4BjgL2BD4uInvObK22iwxwpqruCSwGTvfu81zgPlWdD9zn7ReaLwGr8vYvAn6uqrsCfcBnZ6RW29cvgL+p6h7AW3Hvv6CftYjMAr4ILFLVvQEf8DEK73lfBRy5UdlUz/YoYL73OgW47A2qo3kTsKCmOB0IrFHVl1Q1BdwAHDPDddrmVLVNVf/jbQ/h/pKbhXuvV3uHXQ18cGZquH2IyGzgfcBvvX0B3gPc7B1SiPdcDhwMXAGgqilV7afAn7XHD0RExA9EgTYK7Hmr6kNA70bFUz3bY4Br1PUoEBeRhjempmamWVBTnGYB6/P2m72ygiUiOwH7Av8G6lS1zXurHaiboWptL/8LnA3kvP0qoF9VM95+IT7veUAX8Duv2+23IlJCgT9rVW0BfgK8ghvMDADLKfznDVM/26L7+WZeZUGNKXgiEgNuAb6sqoP576k7p0HBzGsgIv8FdKrq8pmuyxvMD+wHXKaq+wIjbNTVVGjPGsDLIzkGN6hrBEp4bTdNwSvEZ2u2jAU1xakFmJO3P9srKzgiEsANaK5V1T95xR3jzdHe186Zqt928A7gAyKyFrdb8T24uSZxr3sCCvN5NwPNqvpvb/9m3CCnkJ81wGHAy6rapapp4E+4/wYK/XnD1M+2aH6+mdeyoKY4PQ7M90ZIBHETC5fOcJ22OS+X5Apglar+LO+tpcDJ3vbJwG1vdN22F1U9T1Vnq+pOuM/176p6InA/8BHvsIK6ZwBVbQfWi8juXtGhwLMU8LP2vAIsFpGo9+99/L4L+nl7pnq2S4GTvFFQi4GBvG4qU+BsRuEiJSJH4+Ze+IArVfV7M1ylbU5E3gk8DDzNq/klX8PNq7kJaALWAcer6sZJiDs8EVkCnKWq/yUiO+O23FQCK4BPqGpyJuu3rYnIQtzk6CDwEvBp3D/cCvpZi8i3gY/ijvZbAfw/3BySgnneInI9sASoBjqAC4A/M8mz9YK7X+F2wyWAT6vqspmot3njWVBjjDHGmIJg3U/GGGOMKQgW1BhjjDGmIFhQY4wxxpiCYEGNMcYYYwqCBTXGGGOMKQgW1BhjNuCtdn2at90oIjdv6pyt+KyF3vQCxhiz1SyoMcZsLA6cBqCqrar6kU0cvzUWAhbUGGO2CZunxhizAREZX7V9NfACsEBV9xaRT+GuhFwCzMddSDEIfBJIAkd7k5/tAlwC1OBOfvY5VX1ORI7DnTQti7vw4mHAGiCCO439D4A7gF8CewMB4Fuqepv32R8CynEnlvuDqn57O38rjDE7GP+mDzHGFJlzgb1VdaG3uvkdee/tjbvaeRg3IDlHVfcVkZ8DJ+HOUn05cKqqviAiBwGX4q5BdT5whKq2iEhcVVMicj6wSFXPABCR7+Mu7fAZEYkDj4nIvd5nH+h9fgJ4XET+YjPFGmPyWVBjjJmO+1V1CBgSkQHgdq/8aWAfb0X0twN/dGerByDkfX0EuEpEbsJdeHEyh+MuyHmWtx/GnQYf4B5V7QEQkT8B7wQsqDHGTLCgxhgzHfnrB+Xy9nO4P08coF9VF258oqqe6rXcvA9YLiL7T3J9AT6sqqs3KHTP27iv3PrOjTEbsERhY8zGhoDSLTlRVQeBl738GbyVkt/qbe+iqv9W1fOBLmDOJJ91F/AFb1FCRGTfvPfeKyKVIhLBze15ZEvqaIwpXBbUGGM24HXxPCIizwA/3oJLnAh8VkSeBFbiJh0D/FhEnvau+0/gSeB+YE8ReUJEPgp8BzdB+CkRWentj3sMuAV4CrjF8mmMMRuz0U/GmDc9b/TTREKxMcZMxlpqjDHGGFMQrKXGGGOMMQXBWmqMMcYYUxAsqDHGGGNMQbCgxhhjjDEFwYIaY4wxxhQEC2qMMcYYUxD+P3apmpGtPKynAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCurrencyHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEWCAYAAAD7KJTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXl8JEXZ+L9P99zJTCb3uQewsBxyLwiC3CogiKgIiBxeiKJ4oCKKCIiivqDgT1BREUHk0FcUb27FA31dQEEWlgX2yn1nkknm6K7fH9UzO5lkkkk22WQ2/f188klNd3V3dXUdT9Xz1FOilMLFxcXFxcVl6WIsdAJcXFxcXFxcFhZXGHBxcXFxcVniuMKAi4uLi4vLEscVBlxcXFxcXJY4rjDg4uLi4uKyxHGFARcXFxcXlyXOdgsDInKtiPSISIfz+3QR2SIiwyJy4PYncdbp2mHpEJGVIqJExDOfz1kMiMg5IvLgQqfDxcVl50JEbheRaxc6HTsjIrJRRE6YKs60woBzk1GnU838fds5txy4FNhbKdXgXHI98BGlVLlS6untSLwSkVWzvX66dDj3H3Hep1VEviEi5nY8b0pE5F0i8i/nee0i8nsROXK+nldEem4XkaSIxJy/50TkOhGpmOo6pdRdSqk3zvKZV4lIKq8sfWZ2b1Da5OT/sIj0ichDIrLnQqdrOkTkAhH5yxzf0yciN4jIVic/NorIjXP5jMWMaF4RkecXOi3bwxy02ZPdcxcRsUXkO3N532meOaGMz7a9LCWKnRk41elUM38fcY4vB3qVUl05cVcA/53TVM6OYtKxv1KqHDgaOBN473wkREQ+CdwIfAWoR+fbLcBpBeLvqBmGryulwkAt8B7gMOCvIlI2j+m6N68sfX2S54iILAUV1ted8tcCdAG3z/QGpTYbVSC9lwNrgEOBMHAM8NQOTNZCcxRQB+wqIofM10NKraw4nAf0A2eKiH+B0zKj9rLkUEpN+QdsBE6Y5PgJwChgA8PA3c5/BYwALzvxmoD/BbqBV4FLcu5hAp8DXgZiwFpgGfDnnPsMA2dO8nwDuALYhG5I7wAqAP9k6ZjkegWsyvl9H3Bzzu8K4IdAO9AKXAuYOem+HugBXgEudu7nmeQ5FU56zpgij68Cfg78BBgC3u+8x41Am/N3I+B34tcAvwEGgD7gCcBwzl3mpDcGvAgcX+CZtwPX5h0LO+/7Eef3BcBfgW8CvU4eXAD8JS8fL3HyoQf4n0xaCrznTwqcexz4svO8UWDV9nwD8spt/rPRFflvTh7+GzgmLy1fctISAx4EanLOH5lz7RYnTw4BOjPpc+K9Dfh3MfkPvBkYdsKHAn937t8OfBvw5eX5xcBLwKvOsZuctAyh69Hr8979Z+jyFQOeBfZAd8JdznVvnK7sA3sBY4CFLtMDTny/8y02O3nwXSDonDsG2Ioulx3AnZPkxW+AjxfIp/cAv875/RLws5zfW4ADnPCewEPoOvEi8M6ceMWk8XPo8rQROGeK+toEPOA8ZwPwgby8vg/dHsXQA5I107SxtwF3Ab8Avp13bhd0exgDHgZuZnw5Pg/dBvYCXyCn3DN5u2IAn0W3ub1OWquKvF/BckmBNhs4BXjGueZvwH45zzoQLfTFgHuBexhfJ8RJ54ecb/aOvLx5o/OdB9GDqz8B7885/15gHVqY+COwIq8OXYQuTwNOvgqFy/jtTNNeFvnMDzvPjKHbmN2cfBlyvkUmPyvR9aLbuddvgJYZtFHn5nzHz1OgHx/3PlOdnKxRzTt3DLA171i2k0UXvLXAlYAP2BXdcL/JOf9pdMO02vkQ+wPV+fcp8Oz3oivirkA5uiLdOVk6Clyfm849nY/6iZzz9wPfA8rQUvs/gQ865y4CXkALLlXAYxQWBk4E0pOdy2tAUsBbnTwLAtcATzrPrnUKzJec+NehGzOv8/d6J/9WoxvHJifeSmC3As+8nbzC7Ry/Az16B93JpYGPAh4nXRcwURh4zMmH5cB6cirkJO85lTCwGdjHeZZ3e74BUwgDQDO6kpzs5PcbnN+1OWl5Gd1hBp3fX3XOrUBXvrOdNFazrTN6HjgprwxdOl3+o8vvT4EnnN8Ho4UVj/MN15HTWTrv+ZDz3pkO7d1OWjxo1V0HEMh59zHgTc75O9CC+eedd/gAjlBRRNkf9/2dY99Ed45V6Aby18B1OW1EGvgaukMOTpIXVzjf/sPAvoDknNsV3Vgb6E54E06b45zrd86Vocv+e5x3PBDdse89gzR+w0nj0ehObXWBb/dndOcTAA5AN9jH5eX1yWgB6jrgySnqfgjdEZwMvN1Jc67g93e0EONDC6FDbCvHe6M7rCOd89ej25FcYSC/XfkYul1pcd71e8DdRd6vmHKZO8A6EC1svtbJi/PR9dLv3H8T8Al0GXyH86xcYeD1QALdMf4/xguFNU5evM1Jz8ec69/vnD8N3T/s5Zy/AvhbXlp/A0TR7VY3cOIUZfx2pm8vi3nmr4AIup1LAI+gy3EFuv0434lb7ZSHELq8/gz4ZV57WaiNynzHo5y8/ga6fM+JMDCMrpCZvw/kVKKphIHXApvzzl8O/MgJvwicVuC503XmjwAfzvm92ikMniKvV05hGnHCd7Nt5F3vfKhgTvyzgcec8KPARTnn3khhYeAcoGOaPL4K+HPesZeBk3N+vwnY6ISvcQrVqrxrVqEr3wmAd5pn3s7khfurwEM5lSL/+13ARGHgxJzfHwYemeI9k3llKSO4PA5ckxN3u74BUwsDl5E3QkVL8efnpOWKvHf6Q075vb/A+10G3OWEq4A40DhF/o85edCB7qgKCW4fz32m857HTfN9+9FqsMy7P5Rz7lR0nc7MsoSde0aLyPf87y/oOrRbzrHD2TZjcYzzzQNTpNVEz3T81Xl2W+ZbOOe3AAcBZwG3ooWTPdEd/wNOnDNxhKmc674HfLHINKaBspzz9wFfmCSty9CjxnDOseuA23Py+uGcc3sDo1O8+7vRHZEHLVwMAqc755Y76QrlxP8J28rxlTgdufM75OR1rjCQ366sI2e2EGjEaTenu1+R5TJXGPgOzgAm59iLaGHrKOc75wp+f2O8MPADnA7Q+V4poM75fR7w97xyuIVtwsDvgfflnDfQ9XFFTlqPzPven52sjOfU1+nay2KeeUTO+bXAZTm/bwBuLJDXBwD9Ob8fp3AbdSVwT865sqm+Y+avWB3SW5VSDxcZN5cVQJOIDOQcM9HT2qAr1suzuC9sGyVk2IQu0PXoqc1iOMh5/hnoj1qGboxWoKXVdhHJxDXQhS3z7C0598lNRz69QI2IeJRS6Snibcn7Pdn7NTnh/0FX9Aed9N2qlPqqUmqDiHzcObePiPwR+KRSqm2K5+bTjJ7+LJSu6dKem87JuE8p9e4i7jOX3yCfFcAZInJqzjEvenYhQ0dOOI4evcPUZfYnwDpHh/hOdOfUPkU6rldKXZF/UET2QEvza9ANsgfdcOSyJe+aTwHvQ+eLQo8+anKidOaER4EepZSV8xv0OzYxdb7nU+ukcW1OfEHX8wzdSqmxAtfjpONm4GYRCaJn/W4TkX8qpdahp3+PQQu7f0ILUEejO4g/ObdZAbw2r63xAHcWmcZ+pdRIzu9C5bgJ6FNKxfLirsn5nV92AlPU//PRdSINpEXkf51j9+c8K54Tfwu6DGbSkv0uSqm4iPTm3T//u60A7hcRO+eYhW43p7xfkeUy/1nni8hHc4752FZGW5XTWzlk67BTDs5AqzZQSv1dRDYD70KrTPPTqkRka96zbxKRG3KOCbp9yzynUB2fCbntZTHPzK+H+b8bAEQkhJ7NOhE9MwIQFhEzp94WSn9+3oxMUi4mMN9GWlvQ0nc05y+slDo55/xus7x3GzrzM2Sk6M7Jo0+O0tyHno67MiddCbQOJpPuiFJqH+d8O9sqZObZhfi7c6+3TpeUvN+TvV+bk+aYUupSpdSuwFuAT4rI8c65nyqljnSuVejp2aIQkXL0rMITOYfz0zUZ+XkxE+Ejl9xnbe83GEE3WBkacsJb0DMDueWyTCn11SLSWLDMKqVa0d/7bWid3Z1F3G8yvoNWgeyulIqgddmSFyebVyLyeuAzaAGkUikVRY8w868phunyPb889KAbsX1y4lcobRg5Ia3ToZQaVUrdjJ7Z2Ns5nBEGXu+E/4QWBo5mmzCwBfhT3jctV0p9qMg0VuYZghUqx21AlYiE8+IWOwDJIiItwHHAu0WkQ/Ty7HcAJ4tIDbqMVzkdQ4bcMt+Onu7P3C+Inl7OJT/vt6BVWbn5FHDK7nT3K6Zc5j/ry3nPCiml7nae1Sw50hnj6/DpaIH2lpy8aUYLSpO9u+T+dp79wbxnB5VSf5sivRmKKq+TtJfb88x8LkXPdr/WyeujMo8t4tpxbaNTfvLLxQTmWxj4JxATkctEJCgipoi8Jsdi9gfAl0Rkd8eCfD8RySS6E61LKcTdwCecpSflaEv9e6cZfU/FV4EPiEiDM5p7ELhBRCIiYojIbiJytBP3PuASEWkRkUq0Qc6kKKUG0ULGzSLyVhEJiYhXRE4SkQmW9Hnvd4WI1DoNw5XokScicoqIrHIqwCBasrdFZLWIHOdY3Y6xzcBzSkTELyIHA79EN8I/mu6aPD4tIpUisgytu7t3htdPYA6+wTPAWU5er0E3shl+ApwqIm9yymRARI5xGufpuAs4QUTeKSIeEakWkQNyzt+B7pj3RduxzIYwWoU1LHq54YeKiJ/GmW4WkSvRDemMKSLfO4EWEfE58W3g+8A3RaQOQESaReRNxT5TRD7u5H/QydPznXfKLAn+E3AsWnWxFd34nohu4DJxfgPsISLnOt/cKyKHiMheM0jj1aKXOb4ebfj2s0nyZwt6Ovs6p9zsh56R+Umx75vDuWgbm9XoaeAD0DrgrcDZSqlNwL+Aq5x0HY5W8WT4Obocv875HlcxfWfxXeDLIrICwGlfMquaprvfdOUyv83+PnCRiLzWad/LROTNjiD1d3SZvcT5Vm9DGyhmOB9tWLlvTt4cAewvIvsCvwX2ddpUD1rNlCvwfxe4XET2cd6zQkTOmCZvct8jW8bzmaK93J5n5hNGt98DIlKFVncVy8+BU0TkSOcdrqGIvr5YYeDXMn5t+P3FXORMZ5yC/pCvoiX0H6CNJUBPOd2HbnyG0BbMQefcVcCPRWRARN45ye1vQ4+8/uzcewxt6DYrlFLPOvf6tHPoPPSU1vPoD/5ztH4NdCH/I9oK/SmmafSVUjcAn0QblHSjJciPoAtTIa5FNwT/QRtZPuUcA9gdbVk8jK5UtyilHkMbi3wVnc8daOOvy6d4xmdEJIZWZdyBnvJ7Xd50aTH8yrn2GXQl/eEMry/E9nyDL6BH8P3A1WgDPSDboJ+GHtlkvsenKaI+KKU2o429LkVPDz6DNnzNcD/OVGze9O5M+BR6OjSGfs/phKs/An9Adyyb0HWhGPVOIabK90fRFvIdItLjHLsMbTj1pIgMocvm6hk8L47Wl3agy+7FwNuVUq8AKKXWo8v6E87vIbQh8l8zU6bOtP0b0XYFbc69MkaLxaSxw3nXNrTAd5FS6oUC6T0bbUDXhv7eX5ylGvV8dN3tyP1DdyqZEfA5aHVIZjXPveiZG5RS/0W3efegR4PDaJuhxBTPvAltn/KgU/efRNt2FXO/6crlVeS02Uqpf6GNU7+NztsNaH08SqkkegbtAnQ9OhOnDotIM3A8Wn+emzdr0eX8fKVUD1qN8HUnb/ZGt5eZvLkf/f3vcb73c8BJU+RLLpOVcZimvdzOZ+ZzI7ov7EF/oz8Ue6HzHS9Gt3nt6LzfOuVFOMYbLi6zRUQUetpwwwKnYyVaKPRux+zQXKXlZfR04Ww6CJcdjIgcgzbKK2ZmaEERkXuBF5RSE0aKomdIB9D18dU5eNac3m8+Ee2XZCt6Sehj08V3mchScOzi4rLDEJG3o3WOjy50WlxKH0fVsZujrjkRPaP1y5zzp4pWPZahlwI+i15JM9vnzen95hNHzRd11KIZ+4UnFzhZJcuSFAYcPfHTIvIb5/cuIvIPEdkgIvdmdEWObuhe5/g/nNFn5h6XO8dfnIl+1GXnRUQeRxtZXezoqV1ctpcG9DKyYeBbwIfUePfqp7HNMdnuwFlq+6Z75/p+88nh6JU9PWhbircqpUanvsSlEEtSTSDaPfAaIKKUOkVE7gN+oZS6R0S+i/Ya9x0R+TDaY9ZFInIWev3vmSKyN9rA71D0Mo6HgT3UtiUfLi4uLi4uJcOSmxkQbTH+ZrQhY2ZJynFoIymAH7NtGeBpzm+c88c78U9DO3VIOLq0DYy3hHVxcXFxcSkZSnHjiu3lRvTSr8w64Wq0/+mM0dlW9HpWnP9bAJRSaREZdOI3M143lXtNFhG5ELgQoKys7OA991z0m9K5uLi4LCrWrl3bo5SqXeh07OwsKWFARE4BupRSax0L4nlFKXUr2n0qa9asUf/617/m+5EuLi4uOxUiMhPvoi6zZEkJA2inFW8RkZPRfsAj6HW3UdnmLrSFbd7EWtGenLY6ji0q0GtMM8cz5F7j4uLi4uJSUiwpmwGl1OVKqRal1Eq0c5JHlVLnoH3SZzzUnY92ogPaOUfG+cc7nPjKOX6Ws9pgF7TV7T930Gu4uLi4uLjMKUttZqAQl6G9Rl2Ldm+a8aD3Q+BOEdmA9pJ1FmgPT84KhOfRLjUvdlcSuLi4uLiUKktyaeFC4NoMuLi4uMwcEVmrlFozfUyX7WFJqQlcXFxcXFxcJuKqCVxcXFxKnGTvAOnY8ITjnnA5vuroAqTIpdRwhQEXFxeXEicdG+ax3Y+fcPzYlx5xhQGXonDVBC5ZLMvCsqwJYZfCuHnm4uKyM+AKAy6A7sh6e3qIx+PYOWG3cyuMZVm0tbYyGo9jpdO0tbYyNjqKbbt7FLm4uJQWrprAJYvP56O7q4sBr5d0Ok0kEkFvxeBSiPJwmK6uLgzDwDAMfH4/huHK2C4uLqWF22qVOOl0mlQqzb+f6+eVTTFSqfSsRqamaRKpqMDj8ZBKpSgrK8Pr87kd2xSYppkVmGzbJhwOY5rmQifLxaUgg0Mp1r8c44+PdbK1fZSReHr6i1yWBO7MQAmjlCKZTNHR3kZ9bQ22lWLL5i5ali3H55tZJ55RE1iWRSgUYnh4mGAoRCgUcju4AmTUBKZpEgwG6e/vx+fzEQyFXCHKZYfiCZdz7EuPTHo8w/BImjvu28S9v9Ke00Xgmsv25qjDajBNdwZwqeMKAyWMbSu6ey18/jLiwz0A+AMVtHcmWLHMO+P7+fx+IpEIXp+PWCyG1+Nx1QTTEKmoIOR0/j6/31UTuCwIvurotKsG4qMW9z2wbQsVpeDGWzew394VVFf65juJLosct9UqYWwb2jpHQbZ1/KbHR2dPYsb3Mk2TcDiMz+8fF3Y7tsKYpkl5eTler3dc2MVlMZJO2+Q7nI3FUkw46LIkcVv6EsbjEfbfu5zk2AA+f8SZIejmgH0is7qfaZrZzj837FKYXBXKjlan5K70cFd9uExHMGCyapeyccfefEIDoaA7QeziqglKGhHB4/VSV9/Ai68kqIwEqG8Il8TUvlIKpVQ2rZlwKaR9MZBKpejq6qK+rg4F2bDHnZlwKUBl1Mf1V+3L3fdvYd36YY4+vJo3HVtPMOjaBLm4wsCiZ7IOMxef14PXY7LP6gCGCF5vaXSo6XSatrY2GhoaEBHa29tpbGzE53N1l8UgItiWRWur1gGbpqktwhaA/oEk8VELr9egLGRSFnKblcVKTZWfi87bldExi7KQxzUcdMni1tpFTDqdxkqn8fp82LadDedP34sIAX9pSfeGYeD3+2lzOjPXPmFmeDweauvqsvnX0NiIx7Pjq3NXT4JPXvkfNm6JYxhwztuXc/bpLUTC22YoXL/5hbHSaSzbxuPxoGw7G57PuuD1Gni9bl1zGY8rDCxSbNsmNjREf38/dfX1DA4MkE6nWbZ8+UInbU4wDIPKykriIyMAVFZWuksYZ0AqlaKzowOv14tSis6ODpqamnaommAsYXHb3RvZuCUOaIPWO3+2mTcdWzdOGHD95k+ObdsMxWIM9PdTX1/PwOAgqWRy0dZxpRS2bWOa5riwy86BKwwsUgzDIFJRQTKZpKuzExGhZdmyklABFEM6naa9rQ2/MyPQ2dFBc0tLSagJevsSPP63Hnr6Epx8fAM11T6CgcJVKZGwiI2kiY9ahIImFWHvdo/MRIRAIEB1TY1OU0/PDlcTjI5ZvLhh4oh/S+soK5eVTXKFSy6GYRCJREiMjdHR0YGI0NTcvEPq+FSzNQl/GZ3dCZ5c28eeq8LstksZ0YiXVCrF0OAglVVVWJaVDbsCwc6BKwwsYpRSpFKpbDidTmOa5k4hEGSEnYwHv8HBwZJQE/T2J7nwU0/T2a2Xb/70f7dw6w0HsXpVeNL4qZTFv/49wBe+9jzJpE0oaHL9Vfuyz+rIdulrPR4PNbW12YY4N7yjCJd5eP1rq3nplW2dimHA7ruWT3GVyzicEbYOqgmGtfPFVLM1TzwzxldufDF77A1H1fKpi3fHFItYLEYymSSZTGrB3V2WuNOw+FvfJUpGTZC2LFqWLaO8vJyuzs6FTtacYZom0WgUj8czLrzYeXFDLCsIAFg23Hb3JuKjk7t1HYyl+dI31pFM6gY/Pmpx9fXrGBhKbXdaFnJZI4DHY3D6m5s45Q0NeD1Cfa2fr17xGirC7oqGYsioCRLJJE3NzZSVldHZ0bHAaYLv3v7KuGMP/bmb2LCFPxCgsrKSsbExbNumobERswTqrEtxuF9ykZIZOYfDYUyPh+qaGpRt7xSzAhlyZwJKYVYAwLInjoQsSxUcICWTNsMj430AdHYnsKydY0RVWeHjkg/sxgfO3QWAaMTrWqgXSUZNUF5enp3psRdBHU8kJ+5tYhraTmVgYACvV6sMerq7qa6pcdUEOwlLShgQkQDwZ8CPfvefK6W+KCK3A0cDg07UC5RSz4iulTcBJwNx5/hTzr3OB65w4l+rlPrxXKfXNE1wKlpu2GXmKKXoG0gRH00T8JmEZrkEbu/dw1RX+ejtSwJaTf+es1cUvJffb9LSGGRr+2j22D6rw/h8O0+HGQp6CAULny/Gb/5SxTTNbGeaG14oROCMt7Rw+z2bssf22TNMIGhgWxZ+v5+6+npSyST9/f2ummAnYkkJA0ACOE4pNSwiXuAvIvJ759ynlVI/z4t/ErC78/da4DvAa0WkCvgisAZQwFoReUAp1b9D3sJlxrR1jPGRy5+huzeJacCF5+7CW05sJFw+syntqkofP/jGQfzu4Q66exOcfnIzjfX+wvGjXq6/al++ctMLrFsfY//XVHD5JauJRha/oeRcUYzffJfFgQiccWozu64I8fCfuthnzwgnHddAuEwvb66rr9d2S45QsNDCi8vcsaSEAaWUAjLWTl7nbyrR9jTgDue6J0UkKiKNwDHAQ0qpPgAReQg4Ebh7vtLuMntiwym+8b2X6O7Vo3nLhu/8+FWOO6puxsKAiFBb7ef8M1cUZeglIrQ0Bbnu868hnVZ4fUJkhs90cZlrppqtCUW8HHdkHa87pBqvx8iqfUpRredSPEtKGAAQERNYC6wCblZK/UNEPgR8WUSuBB4BPquUSgDNwJacy7c6xwodd1mEJFOKVzfFJxzv7UvSWBeY9X1notutiMxOAHAd9rjMB8XM1pSaIzOX7WPJCQNKKQs4QESiwP0i8hrgcqAD8AG3ApcB12zvs0TkQuBCgOWL1JHIUqAsZHLEoVXc/7v27DG/36ChrvD0/mLBddjj4uKyI1iycz1KqQHgMeBEpVS70iSAHwGHOtFagWU5l7U4xwodz3/GrUqpNUqpNbW1tfPxGi5FEPCbvOeslbzp2Dp8PoOVy0LcdO3+RMqXnCzssoRRSpFMJkmn0+PCLi6wxGYGRKQWSCmlBkQkCLwB+JqINCql2p3VA28FnnMueQD4iIjcgzYgHHTi/RH4iohUOvHeiJ5dcFmkVFX6uPRDu/PhC3ZDDKiKLh0DPpelh2VZGIaBiGTDyrbp6uxEKUV1TQ1dnZ2UlZVRVV09b4aA/QNJevqSpNI29bUBqivderdYWVLCANAI/NixGzCA+5RSvxGRRx1BQYBngIuc+L9DLyvcgF5a+B4ApVSfiHwJ+D8n3jUZY0KXxct0S+AWG4mkNX0kF5c8LMuir6+PSCSCx+PJhn0+H/UNDbS2ttLR3o7f759Xd8J9A0kuu+Y51r0UA6CpPsAtXz+AmqrFr55biiwpYUAp9R/gwEmOH1cgvgIuLnDuNuC2OU2giwswNJxi/YZhfvn7Nj566sx8/Gfc2YI2cMyEXevvpUU6laKttRW/308ikSBcXo5t2+PKR8YN8nzx7/8OZgUBgLbOMR74QzsXnLUCw9h5/GzsLCwpYcDFZbGjlOKfa/u46voXAHjH0WFe8/ffUV3lJ7c/z3fYMxRLkUhaVIRN2ttaqa2rw+v10tbaSn19Pf5AYME927lMz8BgkrGEjWkK5WUegoHxo/ZiVpeYpkl9QwObNm5kbGyMyqoqfH4/KEVXZyd+n4+a2lo62tvp7+ubNzXBltaJK3g2bomTthQ+VxhYdLjCgIvLImJgMMVdv9ia/f2R614F4DtfP4B996oocE2Sm27dwKN/6ea6K/ZmZXOIjvZ2RASfz4fH63UFgRKgty/B5697nudeGMLnFS48dxfe/IaGcb4willdYlmW3sUS8Hq9DPT3EwqF8Pl8NDQ2Anqjq6ZmvRp6ewWBdFqrs15YHyMS8dDUEMQwhKNfV8v3f7JxnJPCt57UiG87d+x0mR/cr+LisogwDCHgn1gtfb7CVfWFl2I89OduLBt+fO8WAkG9g6JSinAk4qoISoBk0uLOn2/huReGAPjGp1ZyaHMC1dlBfOPW7J8qcmrftm0aGxtpam4mGAyiHBWBx+PJbgiWG54tmVUJWzZvorbGxGum2LJ5E5ZlUVfj48Yv7cdeu4fZbWUZX/zUnqxyd7RctLgzAy6LlqXocKci4uWi83flo597hky7v9fuYeqqCxtdPet0ILXVPr7yub2IDXbi8/nw+Xz0dHfj83pdNcHtfwGhAAAgAElEQVQiJz5qEQmb3HvrGi7+7H9ojNj868A3T4h3zLoHp72XaZrU1tUhIhiGMS4811iWon/QxusLMBLrAsAfiNDdm6SpoYyD96/kf75YhlIQrXBnqBYzrjBQosSGU4yN2Yih95X374Tewpaqw509divnp985lCee7KG5Mchr9opQOcVSyCMOrebH926mrz/Jiy8Ps2pFhFCojGDQg9/vn1ZNkOtWuRgXyy5zT1nI5G0n1TEy3M/3rt+f8uHe7brfjtre2rYVL28cYbcVAUBvxuX1Bnh58yhNDdr4NVrhLicsBVxhoATpH0xywy0v8ae/9xDwG3zg3F046dh6wu4+8jsFwYBJS1OQs9+2bPrIQEtjkI9fuBs/vGsTV/3PC1z3+X3YfVfBNM1p1QRKKVKpFIZhYJpmNry908eFsG0by7Jp6xgjwhi+9Bj5skfuzE8pzA7ZtmJgMIVlK3xeY1aup71ek2DQy+BAmnS6i2CJrCr1eg0O3i9MZ0cbPn8YpdKMDHdz8H7FlV2XxYMrDJQYlmXz2wc7ePxv2kBodMzmW99/mTX7V7rCwBxSCp1QhkjYy2knNnHskXWgFOXlHvw+PRqcbmrYtm26u7qwLIua2lq6OjsJhULztk+9Zdls2bwJfzCKZ3SUx/c8YUKc17/wMDEjRFXUu+hnh1Ipi3UvDXP19evo7E6w714Rrv70XtTVznzPC6/XQ0U0Sl9vLzB53puh4KLaDlpE8Hq91NbWs2FjkqqqEDW1EXd2qQRxhYESIz5q84+nJvo3en79EC3lqZLpwGbKIQ/cihnSDaxKW8Q3aov7+Xq3HdUJjSUsRkbS+P0m5WW6Os5GEPF6jVl5d8ssQ2vdupWO9nZ8Pt+8eqRr6xjDH4ySGB1Aqcmf0dOb4FPXPsW3r9ufxV5qB2NpLr3qWUZH9VD+2XVDfO3m9Vz1qb1mtCOmbdskEgn6ensJhkIwkpg8XjJJaGXLnKR9rvD5PHi9ZeyxKoAhQiBguMJACeIKAyVGMGBw0P6VPP3c4Ljje64Kk44NLOpR1PZghgI8ecJ5E46X8rvFu/oY6hwikbAY8xiosAfTFJRt8/jqN0yIPx/vqpTKOqOB+XdE09uXpKlBd5JC4Q6jqyfBLT96mcvPWtzfdmTEygoCGZ55bpBE0iY8g/tkVDMV0SjRaJR0/yBHvfAQlgWDQynC5V78fmPBZgCmQ0QoC7ndSSnjfr0Sw+MxOO3ERp57YZB/rO3H5xXOP3MFdTV+2D6bo0VH7p7rKl0iStQiGYmnGWwf5Ok1J044V4zF+FyRURN4fT7q6upob2+nr7d33tQE++4d0WqCQDlGMjVpnIyjnVc2x1FqcQsDoZCJzyskU9sW06/eLYx3FmvpvV4v0WgU0zQxa6owKiIMxSzKa6Ei4sM03dG2y/zhCgMlSFXUx5WX7sXYmIVhbPNUFt/JhIHcPdczaoGdhbGExVhi4QWcjJoAHEc0TU3Z4/OBCDQ0NNLdZ2Or/knjJJJ6duKY19VOMC5cbITLPVz16b249psvEh+1aG4M8LmPr6ZilvY7ufnu9XqornKbaJcdg1vSSpSKsHfWDY7LwiPIohnp5a4cmOkqgkL2DWZ5GUZFOaZpZlURpmni8XgwTZMmn8IaTHHM+kewLL2NrmEYJJKK1kGD009q5IxTm/Fa8UVlMJdPwG9y2MHV/PS7h5BM2gT8JpVRt166lB6uMOAyDttWpNJ21hp9qZKrosg/vj1kdPOVUS/mTrD+upCh5THrH6ZzsI+6+nqsdJre3l6WLV+e3VbX6xWMygidw4OYfpNAMMjQ4CD1yxrYpdnLxfubBAIm4Fv0NiE+n+HuxOdS8pSUMCAizwKq0Hml1H47MDkLRqKnH2t4ZMJxIxBg3yd/T9rS06ymaVBd6S26A+sbSPKHRzv574tDnHBUHQftG53Vmun5wBMu55j1jzi7ruF4VJu/EWKuimKuyKzpV0rh9XrxFJoZ8Ps56oWHJ8wcLJbRcDGICBXRKF2dnQDU1NRgTrLMsbKqilAolN1Hwe/3z5uPAxcXl8KUWq07xfmf2Vb4Tuf/OQuQlgVBKUU6Nszje0xcn33Ysw/yrqu2jDv28Qt34x2nTt+p9Q8mufzLz/HfF/SWo3/6Ww/vfdcKznn7cvxT+MXfUVhl5fxzXYqv3PQCo2M2TQ0BvnnNfjRXBxc6aUVj2zb9/f3ER0aorq5G/B6OeuFBTNNkeCTN8IieLn9pS5Iv/aCNW284kOrKxTvitG0b2y4om4/TfxumSb4BgGmalJeXZ30h5IZdXFx2LCUlDCilNgGIyBuUUgfmnPqsiDwFfHZhUrbjEJGCa3hTqYkN86ato+N+J3sHSA0NYysFSm+MIwK+QIiLL9iFx/7aw89+3QbAvb/cymknNuH3Lfx09vCIxdU3rCOd1u/Y1jHGV7/1Il/+3D5ESsR2wjRNampq6Eil6Onpwev10rSyhcGhNB+48il6+5Pj4g8OpRe1MGAYRsF96ZVS2VUJ6XSars7OrJog/x6ThbcX27az98sNL1UGhpJYaUUoNHFbZBcXKDFhIAcRkSOUUn91frwOdwdGgsGJlfzUNzaM+50aGubxPSbT8T5CVYXJmafVkUzZ/OoPHTt0RmA6//jDw+msIJDhhZeHSaXmd138XKKUwrIsUim9pC6dTpNOp/F6hcoK7wRhYLLdC3ckWiWjMAxjXLgYRITm5ma8Xi8KKC8rm1RNMB+kUymSqRSBQADbsrLh+RIIbNvOCum54YUi36gznVbEYikGkl5++884F757F6pm4aDKZeemVIWB9wG3iUgFIEA/8N6FTdKOIdMoT4bHFG64el9+eJfeQ/y971pBU8P4afRC07qWZZFSSby+MD19ulO66PxdiUbmv4hYlkUikcDv16PgTDh3mjkc9hAMGIyObev8D9q3oqQ2aMqoCXw+H/UNDXR1dtLX10ddXR2fuGgVl3z+P1iW/j4nHVdPWdnCVc/M1rSpVBqFF49pY9sWwWBw3IhbQkFev+6PmKYHpWxs29Zb44bL8QW2ueSdz81ycrFtm+GREfp6e6msqiI2NISI0NTcPC/PsyyL0dFRfD4fHo+HeDyOz+fDO83mUPNJIaPOvf76W37zYAcicMn7V7kzBC7jKElhQCm1FtjfEQZQSg1Oc8lOw1SjDhF47UFVrF5VDmry3cLSViEdryIciWBjss/qCO8/Zxca6/2MJWwC/vldBqeUorOjg2AohN/vp7+vj4bGRoLBYPZdK8Ierr9qX6654QU6uxMc8JoKPvWhPbIufEuBjJoApTBNk7r6+mx4z1Vh7vv+oaxbH6OpIUhdrX9Bl47atk0sNszQ4AChsgij8RiBQBC/358VBgzDwFcdxVtVgWmaWU+GpmkuWEdoGAaRcJhkIkF/Xx+GYdCybNm8CiNDg4Mkk0nKw2GGBgeprq7GE4lgWdqPhMfjIZ1OZ8MLzZ//3sP737XSFQZcxrHwJXMWiIgfeDuwEvDkTC9fs4DJ2mFMt+wtGpl8CnB4JF3Qgl1EGBocpKExxLvfsYyBoTT/+5s2nn5ukCMOqeINR9dNuRVpMf70C65JD5fR1NREa2sr8ZERqqqq8Pv94zoUr9dk370quPWGA7FtZr073EKQ6RQyHVLagr7BBKYpVDlbE/v9JvW1JvWz2OBmPhgcsugb9FIeCBIfGdIjXU8FA4MWNdXbmo0dtVXuTLBtm7GxsWw4kUg49g1zrybIOG3aumULQ4ODlJWXE45EUErR3d1NOpWirr6ers5OPB4PdfX1C55Py5tDeDxLXqvqkkdJCgPAr4BBYC0w+Y4ekyAiAeDPgB/97j9XSn1RRHYB7gGqnXueq5RKOkLHHcDBaGe/ZyqlNjr3uhytrrCAS5RSf5yjd5uWmS57S/T0kxgYJjacJlI2uTBgmiYV4XJMwyA+anH19etY++8BAP71TD/rXx7m4x9cVdD/eDEb+0wVJ5XTOI0lEpP6dTcMmdagLrfjze+EFwLLsujq6sIQobaujs6ODsTw8OpWg1t+tJEvfXZvVrSEChriLRSmCRVhg/jwGIZhkEql8PpTmKa5qHd0zKgJRIQVK1cyODBAX2/vvKoJ4vE4lmVhGAaj8bhjB+KltraW1tZWWrduxTRNamtrF1wQiIQ9fPriPUpGkHbZcZSqMNCilJro1H16EsBxSqlhEfECfxGR3wOfBL6plLpHRL6L7uS/4/zvV0qtEpGzgK8BZ4rI3sBZwD5AE/CwiOyhlFp4/7KTkBwc5om99FLEQx64lcMevgMAf3MDYpqI6IY8Gg1jGAYD3YmsIJDhwcc7+eB5u8zLZiRKQV9vLzU1Nfj9ftra2kgkEuPUBMVgWRbDw8Okkkmqqqt1OJWisrJywRphEaGyspL2tjY2vvoqhmEQLKvg7vs3sHFLnE9d9Sy33nDQrHYcnE/8PmE0PobXF6AiWsPgwABWaoRQtIx0++LdVtgwDMLhMOFwWAu40SgVjr//+SI2NERlVRUVkQjtHR2MxuN4IhGA7FZMIjJhaeWOpqbKz53fXjPlDJ/L0qVUhYG/ici+SqlnZ3KR0pZ3mSGN1/lTwHHAu5zjPwauQgsDpzlhgJ8D3xbdO50G3KOUSgCvisgG4FDg77N9ofkkmWNx/39vuTAbPnr9I5TtMnE7VMPUNgJWjn1BIGAyxSZz28XgUIqaXZsRQ/D6PCxfvhxmYZGd2Vu9t6eH0dFRUqkUNTU1s05230CSzq4xFNBQG5iVBbZhGNrBkMejR9deL7ERm+fXa38Ond0JEsnFJ0MGAl4iFRF6epOceeE/+crn9mb1blG8XpPFl9rx7EjVRe7eDoZp0uCEM2oCgKbmZro6O+nu6tohaoKp1IiRPE+JQ7EUyZSN32fMaMtll52PUhUGjgQuEJFX0aN9Qff103ogFBETrQpYBdwMvAwMKKXSTpStQGZOsRnYgr55WkQG0aqEZuDJnNvmXpP7rAuBCwHdwS0QhYz/CnWSoZDJWae3cNfPtzkw+uB5u8zbev6xhMVHP/Y0bzq2nvefsxJzlkZWhmEQCAQIhULE43G8Pp92ZDOLxrevP8nHrvg3r26OA7CsOci3rztgxiP4jJrAsiyqqqrp7+8jFBjlS5ftyWeueZ5ohRffLHa42xGEgj6iFcKdNx+CaQjBoDuinIxCwkdtbS0ohcfr1WoKx7hyvilWjdjWMcp1N73IupdifOcLu0G5NanXy4We7XHZMZSqMHDSbC90pvIPEJEocD+w55ylauKzbgVuBVizZk1hV23zjMecvLMpNPAuC3p41+nLOPaIWl5YH2O/fSqorfZN6LRyN6DJ5ZAHbsUMaUM4lbayOw4qu7BPgM7uBD19CWfZ5OzG8hk1QTweJ1RWRnxkhL7+/lmpCZ74R09WEADY0jrKo090ccZbJs6kTEVGTZDZr97r9xOP29x9/0tURDx8+fK9qaxYvCOyUnHotBjZng2g5pu+gSSfvvo5Nm3VZdxMxPnzmjdPiHf8picm3THUFRJ2PhZXCS2SHE+EdcCszK+VUgMi8hhwOBAVEY8zO9ACtDrRWoFlwFYR8QAVaEPCzPEMudcsOmZjRF0R8VIR8bLnqslM+batQ4+PjBCpqMAoD3H0iw9pBzVpi8f3euOEa47f9ER2+tKyFN29SUAxlPYhAmec2oJZQHAphoyaoKa2lvKyMsYiEdLp9KxEi0wjOd2x6TAMA5/Pl10SGvD5SKUtPnvJavw+g2jEu13v7LKwLGZjyqlIJOyiyrMVH520Li8G+xCXuaUkhQEReQtwA9p4rwtYAaxDG/RNdV0tkHIEgSDwBrRR4GPAO9ArCs5Hr1YAeMD5/Xfn/KNKKSUiDwA/FZFvOGnYHfjnnL7kHDIfO/BlNt3p7+8nkUgwOjpKMBSitraWxJb2Sa+xk0lCK/XIOpGwsGSUH/50I+n0KLd87QCaGoqX6zKOl0QkG86oCZRSGKY5LjxTTj6+gft+NV6+O+UNjTO+TyZdGUyPSTRiEo3M6laLgvna0bEUKWYVzVxgWVZ2dis3PFu8XiFc5iE2kp4+ssuSoCSFAeBLwGHAw0qpA0XkWODdRVzXCPzYsRswgPuUUr8RkeeBe0TkWuBp4IdO/B8CdzoGgn3oFQQopf4rIvcBzwNp4OLFupIA5mcHPsMwCIVCRCIRhoaGMEyTurq6otdy+/0mu+9azpWX7olSzGiVgm3bJJNJTNPUS92csMfjmTNf9411AW64al9+cNdGbKV479kraWlaHD4AFpr5KE87A4XUY/mzBDOdTUin0/T09GiHVZANb4/qoSLs4YpP7skXvvY8yaS9oO6TXRYHpSoMpJRSvSJiiIihlHpMRG6c7iKl1H+AAyc5/gp6NUD+8THgjAL3+jLw5ZknfecgMzMQi8XweL2kUykG+vupiM6skwgFZ14ElVL09vaSdpYN9vb2Eg6HqayqmjMDrbIyD6892PHmyOTeHF1ccjFDAZ484bwJx/NnCWY6m6CUIjE2Rntb26T7dswGr9dkzf5R7rv1UIbjaWpSfdt9T5fSplSFgQERKUc7ELpLRLqAkQVOU0lg2zbpdDrrMjYTnmknmhEGMqqB0dFRhmMx0mnFFHaCc4JpmjTU19Pa2kpPTw+BQGBOBYFcXCFg6bJY7AG8Xi919fW0t+ndRFuWLZsTg0S/38TvN6mp9pPsTU2q+pnK6Ndl56JUhYHTgDHgE8A5aMO+JeGKeC5oa20lGAwSjkTo7OigqrqacDg8o2n1jJogGAxqwcLwowyDcz78L669eBlHPv8wHo+MW7EwVzpl27ZJpdNZD4OpVCq7Ta073ekyV8yVPUCx/anh801quW+Wl9E9MoTH48FWiq7OThoaG4sWCKbbERQKq36SvQOTCglmMOCuMtjJKElhQCk1AiAiEeDXC5yckqOhsZG21lZGRkYoKyvTa/FnoV/PXJNK2fz0F1v58b2bAXj/Fzfg9xvc871Dqa2e2n3wbMioCUKhEDW1tbS3tTE4MDBvswMuLoXINaa004XMhopbVVzIcv+Y9Y/g8Xnwh6owBEZH+gruXJpPxr4mY0+TCRcrSBQSEuIbty5aL5Qus6MkhQER+SBwNXp2wMZxOgTsupDpKkWKaVKmmy6NjaR59C/d484lEjZbWkfnRRgwTZP6+npERKsMGhuz4VKjmFHbfDMwmOTZdUM889wARx5Ww64ryibsmLiQU+ax4RSx4TTtXWMsbwoRDnsILJKtq3M7y+FXthSItX3f1LIVY+kKPv6Z/1AW8vCFT+5B36BFfU1xPiC6OjsRw6AyGqW7u5uKaJRoNDovGze5lC4lKQwAnwJeo5TqWeiElCId7e2UlZcTCYfp6OhgeHh4SjXBdNOlPq/B8uYgW1pHx52vrZ4/fftiduhSLGlH1eHz+bAsKxvekQJBbDjFjbdu4OE/a2Hu3l+18sHzduGdp7Xg920rDztqCV0+I/E0v/xDO9/78asAeDzCDVfvy0H7RhedSsgbKeeI/z7EwGAKWylMQ6iM+vBVjFePFVqaWUg/PzKS5rzPP5X9fd5HnuKD567k3HeumDZNhmHQ2NRE69atdHV1EQqFqKiocAUBlwmUZiuqXQjP3AOMC6B9pWcMCJtbWjBNc7sah/IyDx99/yqeX/80/QMpAM48rXlJ74w23e6JlmXR39/PcCxGbV0dfb292YZ7R85wjI5aWUEgwx0/28zJx9fjrypuViez7n0+Zg/ioxY/uPPV7O90WvG1b63nu9cfmN3+ebHgr6nEjFaQHsr4+zcpr/BO2JFyqqn3yZhsR8tIkXXLtm2sdBrbETRSqVTRKgaXpUWpCgOXozcr+gc5WxgrpS5ZuCSVBhmPeBlyw9tDU32A27+1hoHBJGUhD2Uhc8lufGJZFp0dHfj9fiqrquhobyfojMgyHb1pmlRVVZFKJunq7MyqO3a0qmOybsG2VZFabq3a6Orqoq6ubl5mDxJJGytvwNzVm2BH9Gezca7k8RjUFClEFUsoaBIu9xAb1g6C6mr8HHloddHXd3V1UV5eTmVVFW2trQwNDblqApcJlKow8D3gUeBZtM2AywJjGEJ1pW/RbcW7EIgI0WiUjo4OhoaGEBFqJzHSVEqRTusG3rbt7Ag7f/q7kPe5RNJm2PEgFyn34J3FhkeBgMmRr63mL//ozR4787QWwmXFNQ2WZeH1zJ8zplDApLkxQGv7WPbYcUfWEvDPf0e2o50rFRI+zPIy7rx5Df96ph+fz2D/faJF1zPDMGhqbs7a1DS3tCAi2y0IuF4odz5KVRjwKqU+udCJcHGZDMMw8AcCmB4PVjq9bfllTiefUROICMtXrKC7u5vurq4JaoJUKpVdKWHbdjY8PGJz/+9auesXWzENOP/MFbz5hIYZbyxUEfZy2Uf24OjD+1j7nwGOO7KWfVZH8M/AQK+qunreRplVlT5uunZ/vn3by2x4ZYTXHVLFu89YPiOPlZNh24q+gSTr1scIBk12XV42qy2q55KphA8/cOJxDbO671zZ1ywWvwsu80OpCgO/d7YH/jXj1QSuG615YLGOAizLJpG0CQYmjqYXkoyaQNk2lZWV9Pf3Mzg4OKmaQCmFx+Ohrq4OlbfFrVIKy7KIxWIkk0lSqRSmaaKUYv0rw/zgrk3ZuDff9gp77xFh/30qZpzeyqiPk45v4E3H1k+qn4bxZSCTLhGBoJ/Ojg7q6utn/NxiaagLcPklqxlL2ITLTHy+2alScjszy1IM9yVpNhRDIz4u+fwGvvXl/ScIBH39Sdb+p5/BoRSvP6yGqqgXr3dxrGSYLyzL0tstezzjwgtlROqyYyhVYeBs5//lOcfcpYXzxGL0Rd/Xn+SBB9t59vlBjjq8hqMPr1k03gJFhGhlZXY9tz8QmLBvAow3KJzMVkBE8Pl8VFdX09OjF860LFuGYRg8+HjnhPh/+lv3rISBDIUEAdhWBjK7VY4NDxONRkmn0/iGnQ7Wnj9FvrZDGX8snU5nhSnLsrLhQoJhoc5sr7/+lo1b4vz7v4Mce2Rt9nhff5IPXfZ0VkVxy+2v8qObDmZFS2jCPXYWLMtiYGCA0XicxqYm+np7SSaTNDTObpMul9KhJIUBpdQuC50Gl4VjYDDJFV/9L/95fgiAfzzVzysbR7jo/F0JBhd+1JbZPTG7bXFOeKZk1AmmaWLbNj3d3dTU1nLQvlF+/8h4gWC/7RAEiiUjoESj0ewqlGg0im0L/Ukve/31t+PiV1X6xs0g5U8127aesrcDQaxQmKrK4pZWWpZFb08PY2Nj1NXV0d3djcfjob6hYdZGmL39iXG//7t+aJytQjJpc/s9G7nso6sXjZ+DucY0TSKRCMOxGJs2bgSgsalpUc28ucwPJSkMiEgI+CSwXCl1oYjsDqxWSv1mgZPmsgMYHbOygsC3L9+FiCcJCFZ7G3FndLsQesyMS+QMmQZ0tvr0zHR8ppNLp9P09vSglOLwNVUcdnAlT67tB+Cow6u3a1ZgJuQ6eMqExxJpvvnTLv7v6f5xcT998e6ctvv0m/Ts9dff8rH/t55brz+IxvrpDRJN06S6pob2tjba29u1qqW+ftaCgNcjHHFozbhjo6MWy1uCbN66zX9GPG6j5nEGZDFgGAY+v5/ReBzTNPF5ve7KgyVASQoDwI+AtcDrnN+twM8AVxhYApim3vNAKYh4kqw74s0ArMuJs6P1mJZlMTY6is/vxzRNRuNxfH4/Xu/sl1dmRuGZJYeGYWTD0Qr4wif3YnRM+zAIBs0JXgMLMR+GYGUhDyceWz9OGDAMWLN/ZdH36B9IcdvdG7n0Q7sXPfLOrJmv9AZIbOkgmTeALead/H6Tn9yyBq9XGBlJ4fdra/vDD67k8DVRfv1gJ7f8SPs6ePcZywgGPfQPJHlhQ4xNW+MccUg11VU+QkEPtm1nZ4Fyw6VCrpqgurqagYEBvXR0Hm1CXBYHpSoM7KaUOlNEzgZQSsWllGqcy3YRCno4/eQmfvHbth32zNxRf25YKUX/YIpwmUF/fz+WZREOhxkYGKC6poby8vLt8h2QOyLLH51VRLyzcuw0X4Zghx1cxUXn78IvfttGWcjkkvevonKGjoFa28dIJu1phYGMmkBEWLZsGWOb2yf161/MO1WEvfxjwzCPPtHFZz+6is2bWqmpqcXj8dDR0c4pJzRi23DQflFWtIToH0xy5dee5+nnBgFtvPmNq/fj4P0rGBsbwzRNvF5vNryjvUpuDxk1QSgUwu/3U1auVTwiglletigNiV3mhlIVBpIiEsTxmSIiu5GzqmBnwV3KMznlZR7e966VvPGYOiL2wLw/z7Is+vv6iFZWIiLZcNoS1q2P8fWb16Nsxfe/cSC93a0MDAwQDoe3WxAoNSoiXs58awsnHV+PITJjQQDglDc2EC6fvlnKqAlAL5dLeabP50KrYlLeIF/8+nMAHL6mkgP3qaCnR3tl1B2jj3e+pTm7iqFr00hWEAA9Q3XL7a/wvf/Zn8HBQcZGR4lUVDA4MJDdB6CUyoHX682mdzgWY2hoiKbmZoaxGDFsWlpaXLXBTkipCgNfBP4ALBORu4AjgAsWNEXzgLuUpzB6VFxBfGOsYBzbtrPL9RK9/VixkQlxihGslFLE43FGR0f1vRIJIpEI8Th84sr/kE4rLjx3BbHYSHZqOB6PE62sLKlOYC7wegyqK2fugc9jGnzig6s44pDqokfR9uAw6dgwSUAV3DFwG5OtilFK8f9uXp/9vf6VEQ7eb9tI1+vzYRgGHs+2zi+VnujnbCxhMTxiU1dXR1trK4MDAwSDwYKCwFxuUJVO29gKfLNwOlWITGdfHg4Ti8XYvEkvY21omJ2vA5fFT0kKA0qph0TkKeAw9JZgH3M3LXLJJ5lMZkdp6aFhHt/jhAlxihGsPB4PjU1NbNm8mVQqRX1DA16fjw3/7SedVhgGvOnYelJjPQRDFdTWVtLR3kY8HgeKZSAAACAASURBVC+p2QHD55v3PeonG53bNhjlId56QCWmWXynmCssH/bwHbNKj4iwaqXu/FetLON9Zy+nt6eVsrIwPr+X3p4e/H4/gcA2o8aaKj9NDQHaOratNDj79BYiYQ+JxBipVAoxDMbGxkin0xiGMa6zT6fT2JaF19mgKhOeqUBgWTadPQnuvn8rIyNpznprCy1NQULBuWvWRQS/308qlcoaFrqzAjsnJScMiIgHOAnY0zm0Dpj/uWKXRclULlxTqRR9fX2MjY0RsqYfORbCsix6uruzxmB9vb34/X6am4KA7sw+9Jl/c8tX96Oja4xopaKxqUmnYwcJAoVcFs/oHvHRWevdi2Ux+qw49ohafvWHdjZsHOGJf/TyukPqCYX8eD0GgUmMQKsqfdzytQP4xW/b2Lh5hFPf2Mg+e0YQUQwODhKJRKiqrqbT2RE0d3bAtiwGBwcZGhykrr6e/r4+lFJZN8Ezobc/xQUfXUt8VJfth/7UxQ++cRCrV4XnJF9s2yY2NMTw8DDV1dUMDQ3R1tbmqgl2UkpKGBCRZvSeBO3A0+hZgVOAG0TkWKXUjrMoc1kUTNW5eG2b8nCY4ViMELPvlDN7CDQ1N2MaBu3t7diWRUXYw7lnLOcnP99MV0+CS696jhuu3o9gYH6qVSEbErO8jP7UGNU1NYgIPd3dVNfUFFzJMNMtdEsBKz6WnR0INDcgjg1BMcZtVZU+brx2P/r6k4iA1+sn4Nd5FwgGJ+2ka6r8vO9dK0il1Thjx7q6OkBPs2cs8HMFM8M0iUajJMbG6OzowDAMmqfpXAt9d2X7soIAaNuFu/53C5//+GpsBcMjaVJpm6DfnNR+I7MvhsfjGRfOptUwKA+H8fv9+AMBysrLSSWTBdPpUtqUlDAAfBn4jlLqxtyDInIJcB1w/lQXi8gy4A6gHm18eKtS6iYRuQr4AJDZy/VzSqnfOddcDrwPsIBLlFJ/dI6fCNwEmMAPlFJfnZM33AnI1dXnhnd0GpLJJCPDw7pTTM6+o/N4PDQ3NyPOdG8m7PML57y9hdNPbiSRtCkLeubVv/1UNiQpw6attRXDMLLb1RZiplvobg9DsRSGIZQXufHRbPm/t1yYDR/70iOEVrbM6PqqqI+qqE93vD0DxPOUjpOpSkzTIL9YT+dVEhz/Ec43Ukpl68hMPSce9uyDE46FgiZjSZuHHu/k5tteIZVW7LqijOuv2pe6mm22HJZl0d3VhW3b1Dc00NHejsfrpba2dly6PR5Pdl8NwzAm3UjLZeeg1ISBw5RSF+QfVEp9S0ReLOL6NHCpUuopEQkDa0XkIefcN5VS1+dGFpG9/z975x0mR1k/8M87M9v39nq/SwETkhDSSAIBhAQMvQWpiiAdBIGfokhRFFFQqgVRFIQAggKKNCFUUYqBhAAhgRTSrve9vbZl5v39MbubvV5zt3s3n+fZ5959d8o7c7vzft9vBc4E9gWKgFeFENOjH98LLAfKgPeFEM9KKTcM6ap6IVlrAvSFlJJgMEh9XR0FhYWEw+F4ezhFUoYwECLhMB6Ph+ycHDp2DE9ppHRZ3cXwemx4PWNfqrmgoIBdu3ah6zqFhYXDym8wErS0Rti4OcDKv+5AsylcfPYUpk7y4HQmt//EnnbajZkJDF2ntLSUuvp6aqqrh2QmcNgV8nMdVNeagVROh8LZp06itS3CPfdvjW/3xY5Wfv/QF1xz+bS4P4GiKOTk5FBeXs7OHTtQVbXX7I2J47IEgfFLqgkD7X181tbfzlLKSkwTA1LKgBBiI1Dcxy4nAU9IKYPANiHEFmBx9LMtUsovAIQQT0S3HVFhIBntqwChkE5Lm47ToXRzVhJCYNPM5CtlZWUY0bj70X6IKKqKy+3G5XajqiqaL/UEq8FQXV0dX7XV1tZSWFQ0pgLBzrI2/u+HH8ffr/2okcfuW0xJ1M9iJEhFYVlRVTLS00n3+dBsNrNAVZfMlQM+liK4/875rF7bSGtbJFpIyc5HG/zdtt24OUB7h4E7evuFEAhFiWuSFGvFP+FJNWEgXQhxSg/9AvAN5kBCiCnAfOB/mKGJVwghzgE+wNQeNGIKCu8l7FbGbuFhV5f+A3o4x8XAxQCTJk0azPBGlJgqEuikRh6K6r6hKcSjT+7k3Q8amLaXl2+dvxcFuZ3TxyqqSnpGBvXR4jpZ2dlj4lGfeE5HTibkDDwbXqqhRFd2QghqamqGdIyRmlwjusHTL5R36tMNeO0/NZx7xuQhja0nklVY7g81QUOmqirdbA2DIDvTwTFHdA73Ky1yoSrmPY+xeEEmXvfu88TMBFJK8gsKqK2tpa6urpuZwGLikGrCwL+BE3r57K2BHkQI4QWeBq6WUjYLIe4DforpR/BT4E7g/GGOFSnl/cD9AAsXLhyzhOaGYbBz506ysrJwuVyUl5eTl5eH2+0e1GqgtS3Cr/+4hVffMl0rdlW0s/mLFu69bV7cVp5oJnC73YRCISrKyyksKhpdMwETK2lTfkJe/vwh5ugfqclVEYL83O71BfJzB59/YLjo0SgSVVU7tcczvjSNn98wm1/+dhMNTSEOOSCbc06fjCPB0TFmJkAI0yemqAgSak5YTDxSShiQUp4HIISYKqXclviZEGJAlQyFEDZMQeAxKeXfo8etTvj8j+yucVAOlCbsXhLto4/+pCQrKyu+Une6XDgcjkGrBTuCOm+83dmzaldFezw/Puw2E2RkZJCekYE0DJqbm8dEBTnekjb1tXIfiOPaaKEoghXHFvHCq1XUN5je55NKXCyenzWq4zAMg9bWVhobGiguLibQ0kKz309Jaemo3aNQSKe1TcftVnHYh3bOwWpsXE6NA/fP4sF7FiAlOBwKad7OJiMhBJrNFv9dJrYtJiYpJQwk8DSwoEvfU8D+fe0UrV/wALBRSnlXQn9h1J8AYAWwPtp+FviLEOIuTAfCacBqTLPEtKgAUo7pZPi1YV3RHkRRFFyu3bZaVy/hUv0hEPzuhr1wyd3JVlRFkN5eT6h+92pbs9lIj8VWR00GYz1BJQvD0Vakklo8J8vOg/fsz5ZtLdhsClNK3Hs00qInFEXB7XbT7Pezc+dOAHKjoX+9MZJ+CPWNQR55chdrP25i3ux0zj19MtlZg78HQ/m/q6ogO6tvTYzlGGiRSEoJA0KIGZie/V19B3xA/3VPTd+AbwCfCCHWRfuuB84SQszDNBNsBy4BkFJ+KoT4G6ZjYAS4XEqpR8dyBfAyZmjhg1LKT4d5eXsMwzAoLy/H6XLhcrlobGjAbrcP2kyQkW5DpBu8s+9x3T5bsv4VhOqOxzPHJv+RUNU3+kMYuiTNq2KzmY5Ouq53y+yWCow3bUVvCCHIzrSTnTk0bUBDU4h/v13Hpi8CHH1EPlNLPfgGWJWx6zicLhehUMhsO519CqYjJXD5m8PcfOdnrPnIzIf2xY5Wtu1o5Zbr9h1Scan+GK5fkL85zLZdrbz3QQPzZ2ewz5e8ZKSPrvBmMbaklDAA7IOZZCiDzr4DAcw8AX0ipfwv5qq+Ky/2sc/PMPMbdO1/sa/9ko28vLy4acButw/JTKAootf8503+EHc/vIGfXjur00NkOJNfOGywdXsrt9+7iROOyueQRV68XheitY2wvyWaEXD39qPhCzAWfggNjSFa2yLY7Qoul4rPaxvX/hCNTSG+95NP+HyLeX3Prariuiunc/ThBYNKVxwzEzT7/WRlZdHS0kJFefmomAmCIT0uCMT4cL2fjqBOOiMvDBiGwa6dO8nIzMTtdlNRXk5ubi5uj6ff33lHUOfpF8p58C9m/YFHn9rFCUcWcPn5e+/x/BAWyUNK/aellP8E/imEWCKlfHesx5MqqKraSQswWI1AIn3t9uEnfgKtkRFbUfibw1x+3TqCQYMbZ02no72ZlkAj2YbKWzOWd9t+NFbXo72yr60LcuUNH7GrwoyqPenoAi76xlTs41jD0ByIxAWBGA//dSdLFmaRNYgiSDEzQX5BAS6XC29aGsHg6BQ3VRSB26V2yhDocqmDEmYGgxCCrKws6urqaKivx+l04nQ6B/Q7b2mN8NjTuzr1vfBqFeedNaVPYaC3st4xxrPAOh5JKWEggS1CiOuBKSRcg5Ry2BEA45XRsg/KEcxoW17VQTBoHvBb137MY/ftT8BfhRzgSVIxDj2RUEhn5ZM74oIAwD9fquLEo4soHccuGD19PYUCPSv1+kbTNJRoPH3ia0+T5rVx1UV7c+uvzYqILpfKNZd9ibQ9tNKOmUNiuFyuviX3Lhh652AnwzBND70RiURob2/H7XYjpYy3EzUuE8UkNl5IVWHgn8B/gFcx0wRbJAHT9/YOqBb9QMlJcLY676xSOtrbouFhA5sJU8nhrifagwabv+hednlnWTulIxeun3T40jRmz/Cx/rPmeN8FX5syZFt74uQ/WgV2HHaFww7KZf5+Gewsb2Pevj5UVWCzmSGOUko0TaO9Xae+McS7H9RTWuRiny+l9VhHoD8Mw0xH7XQ6cbvdNMT8ggZgJnC7VE4+ppAnn9udpXPpwTm4eskWKaUkFApRW1NDeno6HR1mpUZ3aWmP21ukBqkqDLillNeO9SBSnaGo8RJX24Zh1lJv69ARbg933DRpSA+y3vClaXzjtFIeeXIXi+ZlYhjNZGZlo/m7jzlZ6XqPFbudpRtXgWJmgIvRk7bC69Y44su5nSZFRYHZM9KgvX7QY2loCvHO6nq+2NnK0cvyKSpwYu9oTTpVbka6nZ/fsC+r1zawaWsLy5fmUVLoGrKKvTkQJhg0EAqkp9mw9eL3MtJ4PRpej0Z+rp36+nqCHR0UFhVRU12NlJKCwkI2bglw9Y0fESsnMX92Oj/9waxBm9qEELv9ghRlUH5BbpfGuWdMZu6+Gfz73ToWzctkyaKsXh02Y46YWdnZNNSb38PSSZM6pem2SD1SVRh4XghxbKyYkMXQGIoar6fVdppuoKo9P2AHo6qXUmJIM1wRTFXr106ZxEnHFNHRoZOXl4+iCEIpJAz0dY/7K6ajqoLlh+VRUxfk+VVVpPtsXH3Jl8jw2ZF9JebugcamEN+96RM2f2Heu7/9s5xbb9yX/fM7klKVm5Vh5+jDCzj68OEdp74xxM/u/ozVHzbiS9P47mXTWLJ/Fm736D36VFUlKzOTiooKdu7YES921dau87s/f0FiXakP1/tpaAoPWhhQFAVXgi+Qa9CRQnaWHpzLlw/M7vW3nIhhGLS27P4dtrS04PP5rBDiFCZVhYGrgOuFECEghGlMlFLKQaUkthgZ+np4DERVbxiSuoYg/3ixgqMWusmyh1FVM1JAxYwbzUrzYrd7zO3H0BdgtP0QMtLtXHj2FM5cYRayyUw3k8OEBjmO+sZQXBCI8cCj25n/fwU9bj8eCAZ1HnpiO6s/bARMx8Qf376RJ/90wKgKAwAiWvEvEomYfguqihE0aG/vbuUMhYZm+RwJv6CBCAIxM0E4EqF00iSCHR3U1dfjS0sb0jktkoOUFAaklNa3bhzR0Bjim1euoTkQYfmMYv5zcPc8Bokr1bH0BRiLczvs3bPXDXYcPfmCGWOWIHt0aG2LsObjzuF9UsLO8jYK8gaSlmRk0HWd+vp6wuEw+QUF1NfVUV1VRUFhIWeeXMIvfrspvm1BnoPcnNEb21AQQuBwOCgtLTUFG7ebUre7mz9GqjvwTjRSUhiIZhL8OjBVSvlTIUQpUCilXD3GQ7MYAms+bqI5EBnrYYxrsrPsTJ3kZtvO3cU9v3nmJBQlNIaj2jO0tkaorQ9SWdPBz68oxWjt7ISZ62slVK+MmlAXMxNkZGRgs9lwFBVhSImiKBx2UA5ZmTaefbmKKaUuTj2hhOxRztQ4FAaS/jrVHXgnGikpDAC/AwzgcMzCQi3AvcCisRyUxdDQtNTKIpiKZGXYueeWubz5di1btrdwwvJCSotdUFfd/85JREeHTqA1QnMgTHqajbQ0Gw777hWplJIP1zfxg1s+Jc2r8cTNk/jvvM6apo1094mQUsZV64ntkUKz2eLHTWz70mwcvDiHBXMysWkCTRsd50YLi66kqjBwgJRygRDiQwApZaMQIvnF6SQjWdR482ank5ttp7a+71XqUFIQNzSFCIUMNE306Em+pxOjJMs9BsjOtPPV44s79YWCyTO+/giFDP63toEf376RcETicCj84oezmT87Ix5p0OgPk6V2sPKH5nUK2b/9Xdd1Otrb43H6sfZIO8P1ZdPvLYzPwmK0SFVhICyEUDFrCSCEyMXUFFgMgkQ1XuKkGAm0xNujEWKWnengT3ct4K336vGlhXvdrqGhAZ/Ph91uH5BAUFHVzvdvXs/2XW2keTV+9N0ZLNgvo1Mp1z2dGCXZVaXJPr5EmlvC/PxXnxOOmM4OwaDBT+/6jAfv3j9eAEhK8BBkfdTv5MBXV/Z7XF3Xqa6uxufzYUhJSyAwqpUNLSySgVQVBn4N/APIE0L8DDgVuHFsh5TajHW2sOwsByuOLSJY18iXN65CCBEtuGImaDEcdgLNzXi93gGpcf2BMLf+6nO27zJt5IGWCDfcuoG//XFxJ2FgIITqmwj5W9ANCVKiqgqKYqVVHW3CYUlrW+eVfn1DyPy/RMnwachBZvnTNI38/Hyqq02TSX5BAZqWqo/GzlgpgS0GSkp+46WUjwkh1gBHYIYVniyl3DjGw7IYAUJOD83OEKFgC5qiUVRazK6dO5FtATIyM3E4HAPKIhcJG3y6KdD52CGD1jadnEEW0gv5W/j3PskXiz/RcDgUppS64wIewOwZvk4+A6qq4ByksCelpK19d+KG9vZ2nM7k9ugfKGMt5FukDikpDAghsoAa4PGEPpuUsncds0VKsGFTgJnTMqiraSE7J4f6+nqklNjtdvxNTXg8ngGZCWx2hTmzfHywbndomcup4HEPXvUbClsWqGQgK8PO7Tftxy/v3cTGTc3Mm53Bdy6d1i1NcaKsqLd1xE0FzuIChGb+/xN9InRdpyUQoLCwEAlUV1VZCXQsJhwpKQwAa4FSoBFTM5ABVAkhqoGLpJRrxnJwqUSTP0RFdQf5Ru+OVpFIBCHEqDwc589Op7qqIlpgRo2nbXU4HNTV1mIYxoDMBD6vjR98ex9uuPVTPt/SQnaWnZu+OwPfEGon6HrPAfl91HGx2EMU5ju5+fszCYYMnA613xK77594cbzdW9ZHTdOYNHly/DuV2LawmCikqjDwCvCUlPJlACHEkcBXgT9jhh0eMIZjSxn8zWHu+v1mXv9vXdz7uieqq6qw2Wxk5+TscYFACHB7vBjSyeZt7UzfKxMlmr0tJzc37kswEArynNz54/0IhQ1URSEj3dYtv/1AvP2djp7PZ80XY0Oa10ZfWccGG8ExWsWLLCySmVQVBg6UUl4UeyOlXCWEuENKeYkQYuAFzyc4gZYwr/+3DoDmiJ2Zb7+ApilkZdoRSHRdR7drhEMd5OXljcpD02bTyMzMINASobhARVVVbDbzazoUQaS/HO8D8aZXlOSa9Q1DIsSeLUWdyqRShISFRbKQqsJApRDiWuCJ6PszgJpouKFl4B0g7R27b9UVt24DID/XwR/vmk+6V6W8ooJIe6vptKeqozb5KIpCui950kbYfOZKM1ZQJiYTjXYsfnuHTk1tB089X4HXo3LyMUXkZDmGXM3PYvyTTHkuLJKbVBUGvgbcBDwTff82cCZmXZvTx2pQqUZWpp28HAc1dcF430lHF+LzalTXVGMYBjm5udTX1VFfVzcqZoKxINASpiNoJibyelRsUSczXddRVTVpVpqVVe2cd9Ua9KhQ8sy/Kln524XkZlvKMIueSZbvrkXyk5LCgJSyDvh27L0QwgmcIKV8EtjS237RGgYrgXzMhEX3Syl/FY1O+CswBdgOnB7NaiiAXwHHAm3AN6WUa6PHOpfduQ1ukVI+PKIXOQpkZ9q575fzeOivO9ixq52jD8/j0CW5qKpCdnY2SjR1qsPhQBmErT7ZSYy9NgwIBMKEI5Kc4nTq20Jk5eQikNTX1ZGTm5sUMeehkMGjT++KCwJg5k54b00DJxxZOHYDs0gZrJwDFn0x9k+5IRI1CRwFnAUsB/4LPNnPbhHgu1LKtUKINGCNEOIV4JvAa1LK24QQPwB+AFwLHANMi74OAO4DDogKDzcBCzGFijVCiGellI0jfJl7nPxcJ1df/CWCQYM0rxY3BdjtpppeCNGpDT3ncZdSYhgGqqp2aicjvcVeH/rZqwRVnerKCgzDQEmm8Qt6NAdolonAYoBYOQcs+iLlhAEhxGGYZoJjgdXAwcBeUsq2PncEpJSVQGW0HRBCbASKgZOApdHNHgbexBQGTgJWSikl8J4QIkMIURjd9hUpZUN0TK8AR5OQ9yCV6Foit6cVhGGA4nWjZaQBEpvNhq7rGIaBpmlEIhGam5vJzMxE1/V4O1kFgp4ItERwF2UTaK4FoKi4OCm0AgB2m8I3Tp3Ea2/VEAqbMY1ZGTYWzc8c45FZWFiMB5LjSTdAhBBlwE7MFfo10Ql920AEgR6ONQWYD/wPyI8KCgBVmGYEMAWFXQm7lUX7euvveo6LgYsBJk2aNNghjhm9rSCWrH+FsBGhvb2V3Lw8GurrEUJQUFhoCgB+P6FQiFAwGNcmpBJpXo2GtkY0TUNKGa85nywCQX6eg0d/t4iX36jG69FYdnBuSpS7tehMe4dOkz/E+s8CTCpxkZ/rJKNL4iQLi9EmOZ5yA+cp4GTM6AFdCPFPosWKBoMQwgs8DVwtpWxO9JKXUkohxIikk5FS3g/cD7Bw4cKUT1Hjbw6j2zNwaEGqq6pQVZXikpJogiCFzKwsGhsa4gJCKvoY2G02snNzEUBdbe1YD6cTDrtKUYGL886aMtZDsRgiUko+2eDnmp98Eo9OOX55Ad86by98aZZAYDF2pNTTWkp5NTAVuBNTVf85kCuEOD06wfeLEMKGKQg8JqX8e7S7Oqr+J/q3JtpfjpnpMEZJtK+3/nGNooDbpSKjTzHDMDCipoJIJIK/qQlbtFZ7fV0dut5/+dhkQghBbl4+dpsNm81GXn5+0mgFxjuh+ibatpd1e4Xqm/rfOYVo9Ie5+/4tcUEA4PlXqmhrT63fisX4I+WedFH7/RvAG9GJ/WjMsMLfATl97RuNDngA2CilvCvho2eBc4Hbon//mdB/hRDiCUwHQr+UslII8TLwcyFEzGB7JHDdSFxfMpPmtRGiFYCS0knU1dVSU1MTNxM4HA7y8vMJhUI0NSavL2VfsdeattvHoSd/B8Mw0HUdRVEQQsTbqeQbkYxMFOc2aUj8zd1LqIxG/Qsr54BFX6ScMJBItDDRc8BzQgjXAHY5GPgG8IkQYl2073pMIeBvQogLgB3szlXwIqaj4hbM0MLzoudtEEL8FHg/ut3NMWfC8Yy/OYzhyKAoPwNFUcnLywOImwny8vNRVTUuFCTrBDmc2GspJWW7duHz+XC53VRVVpKXn4/H47EyAlr0S5pX44QjC3ns6d0uR8WFzn5rLIwEVs4Bi75IKWFACPEJvfsISGBuX/tLKf+LWdioJ7otS6JaiMt7OdaDwIN9nS9V6bqCkJgrGtwegnYHmqaiaQqJVqZE/4BU9BUYKEII8vLzqa6qwu/34/V6cblcliBgMSDsdpWzVpSQk23n9f/UsvcUD+ecPpmsjLF1BI0VAFNVtVO7K03+EMGQgaoK0jwaDodq5S8YJ6SUMAAcH/0bm6Afif49myE4Elr0TF8rCEuhOHEEH4s9Q0a6nVOOLebIw/JxhFowWmpp6zKXjuZEahgGHR0dGLqO2+MhVN+EHmhFdK3J4XJz/V07+HhDMy6XylUX7s2yg3MRE8TEM95JKWFASrkDQAixXEo5P+Gja4UQazGTBVlY7DGklFRVVuL1enF7PNRUV+N0uSwzgcWgUFVBus9G2/bWMZ9IpZSEgkEaGhrweDy4Wjr4z8yjum23/9qX+XhDMwDt7Tq3/WYTC+ZmYE3344OUEgYSEEKIg6WUb0ffHESKRUZYjC66roOUqJpGOBwB4MNPzBVOSZGLzH6qG8YQQsSTEQkh4qGVliAwPCzntsHTVT1vGBAOG4RsTkjzkZluw27v329HVVXSfD7a29tpbW3F3cu0EAp1d3LcWdZORvbQr8EieUhVYeAC4EEhRHr0fRNw/hiOxyKJMQyDQCBAs99PUXEx/qYm2tpambZXASd/83/MmeXj5mtnDUggUBQFh2N3YaDEdjKi6zoiWlcisZ1sWM5tg6e3CIyZb7/Ahd/7nAfuWsDUyZ5+j2MYBsFgkPb2djSbDdnDpA9gt3f+3ggBk0vc0D7onG8WSUjyPRUGgJRyjZRyLqbD4Fwp5bxYASELi64oioLX60UIwc4dO2hu9mNzpvP4P8rQdcmHn/iprukY62GOOHokQlVlJcFgsFPbMKwq34mMxxwHoZDBHx/bRlt7pN9tY2YCn89HSUlJr8Ki16Ox/9yMaFvlhv/bB19aqq4nLbqSkv9JIUQ+8HOgSEp5jBBiFrBESvnAGA/NIkkRQuBwOgmHwwghsGkO3nl/dzSov7n/h2bKES0yVVlREfcMj4WBWuxmvOY4CLToRPT+/apjZgIwBefevh+KAjd/fxbBkI6iCHxeG3a7Qsgy8YwLUlIYAB4C/gzcEH2/CbMEsSUMWHQjZiZoCQTIzs6mubmZtpYafvPzOZz8zf/hcirsPbV/dWr/55E0+cMYUuKwK6R5xza9rKqqZGVnEwgE0HWd7OzspM39AD1Xwxzv7Elfia+dUoJvgN/BxO9FX2Ny+2xA52NaJp7xQaoKAzlSyr8JIa4DkFJGhBBWPk+LHomZCex2O06nE5fbQ0dHiFf/U8uyg3O48OypA3Yg7I2OukY6GgME/GF0Q+Kwqwifhj09bcwelHokQmVlJaqqYnc4qK+vx+5w4HA4kk47YBgG4VAIzWZDCBFvdxVeYimuVVXt1A6HDfyBiA+csgAAIABJREFUMI1NYdJ9Gl63htud/I+3PTGROuwq99wyh332HppAYU3uE5Pk/7X0TKsQIptobgEhxIGAf2yHZJHMaJqGqqoIIbDbFWw2ja8caueYwwtxuYa/Wo40t/D2rOXd+pduGkNVsxC43G58Ph+KotDU1JTUZoLKykrsdjs+n4+amhqyc3JIS0uLj1fXderr6lBUlaysLOrr6lBVlYzMTDZva+WqGz+mvV1HUeA7l07jyKX5uEfgf5us9LSClxLUNA/FOVZpa4vBkarCwHcw6wbsLYR4G8gFThvbIVkkO4lqZyHEiFaJ03vxyTOTWI4NqqqSkZERX10ntpONWMhm2a5ddHR04PV68Xq9nQQXIQTetDSqKitpaWlBGgaFhYW0tev87O7PaY8W+zEMuOf+LRy8ODtphIE9kaXPWsFbjCSpKgx8ChwG7IOZXvhzUjQywmJ80Otie4zt3omTf7IKAmAKTXpktxNnJNLdoTMW1mm32wmFQjidTmx2O63NOmUVncPbIhFJMDgwy+Fg7fZSyh5DNvu6v+PVSdFi/JCqE+i7UsqIlPJTKeX6aMGid8d6UBYTF6WXSb9rRleL3qmuribN56O4pIRQKERLS0unMMiYmSAcDuNLT6ejo4Omxka8boVDDuic+SYny47LNbC1jj07A/eUkk6vYGYeLaobw9it2YmNRUpJeVkZjQ0NRCIRysvKCAQCfYZsWtGcFslOSmkGhBAFQDHgEkLMZ3fRIR/gHrOBTVD6Un222zx0BHVUReD1aDidybsqHQmSxfF9tIrG+JvNgjWKYqbVtWl9ryt0XY+vnBPbMYQQlJSUIKKhbYntxG28aWn4fD7sDgdutxtFCGw2he9cNh2nYyvvrmlg78kevn/FdDLTB28Gam2LsP6zZv6wchuhkMHZp07i4EVZuN0KLS0teDxm1ElObi7VVVU0Nzdjt9u7mTQSaWuPEGgdh6GrFuOKlBIGgKOAbwIlwF0J/QHMUsQWo0hvqs/DPn+NG/+4nQ/X+7HbBBd8fQonHlU45qF2e5JkSac7GurouoYgP759I+vW+8nw2bj229NZOC8Dl3P346SrUBITAFSvh8ZwBzm5uWja7u2FEGi23d+PxHYMRVFwOp09trMz7VzzrWm0tuvYbcqQ/UFq64Jc8+NPiLl63HL3Z9x761xmz0zD39REs9+Px+vF7XYjhEBKic1u7zMMsr1dj/szjBfa2nWqajp45l8VZGfZOe6IArKz7BiGQSQSif9vY+1kNlFZmKSUMCClfBh4WAjxVSnl02M9HoueaW2L8OF6M7gjHJG89p9aDl6UPa6FgYnizNXWHuG+P3/Buuj/t6k5zI23fsqTDxzYSRjoTSj58sZVhGxDd6zsq2Kky6UN2DTQG2+8XUfXof3jXxXM2mcGRcXF7NyxA5/PR3lZGTabjfT0dGpra3E4HPGojZ5IFs3RSLF9VyuXXPNh/F79/YUKVv5mIS6HQXlZGdnZ2Uigob6ektJSSxhIAVJKGIghpXxaCHEcsC/gTOi/eexGZREjFDYNpELADf83nQMXZFBVHSYSiWAYBus+DbBtZzuHH5JLVoYdVR1nT8pxTHuHzrpPO0fx6gZU1XSQlzOQOg2SvPwCbD2s/JOByaXdrY1TJ3sQQhIIBABobGggNy8Pu92OoijYbDY0m61XQSDdZ0PPSWPm2y/E+9wujTSvlpJZ+lrbIvz58R2dhKb6hhAfb/Bz0KJMsnNyqK+rAyAnJ6eTBsgieUlJB0IhxO+BM4BvY/oNnAZMHtNBWcRxRAuaHH5ILgvneGmoq6C4UMHvb6Zs1y5mfsnLP16o4JwrPqChMTTGo7UYKFJKXE6Vgxdns3j+7jh2RYH83IEXbKqtqekxWiAZmD87nX33SYu/Ly1yccLyQoSAQHMzeXl5ZGZl0RIIEAqZ312H09nnhKdpCu68LNTCQj5pcBPKzMM1uRjP1JKU1CYJAUoPnrGxvkStj5RyTMNrLQZOqopsB0kp5wghPpZS/kQIcSfwr7EelIWJ26Vx6IHZ/PudWo5fns+kwjRqa6oBcLqz+PuLlZRVtgPwyls1fO2U0mGdL+bFrShKp7bFyBGJRIhEIjgddi4/bwotrSF+/cB23n2/ke9eNo00z8AeJZqmoWpK0k4QmRl2bvvhbBoaQ0QiktwcB1kZZnbK4pISwAzRzM7JAQb+PfN6NLwejcmlw097Pda4XRrnnzWZ9z6oj+fXyM91MHumDz0SoaG+npycHCRQX1eHy+22zAQpQKoKA+3Rv21CiCKgHigcw/FMSPpymrvuqnw6ggYet0JHWyD+mRAKDU27tQHh8PBirgzDiK/QYvHnsfZEFAj2hCOjruv4/X6a/X5ycnNpamwE4If/N4Mmf4S0NFtcGzQQ8vPzk3pyyEy395ieOlVyNowGk0pcPPK7RbzwShU5WXaWHZJLepoNXdcpKS1F0zRTk+RyWWaCFCFV/0vPCyEygNuBtZhpif80tkOaePTlNGcHvB5Je3s7TU2N5OTmEuwIEgjUceHXJvO/NU3UNQQ5aln+sMYgpaTZ76e1tZX0jAz8TU14vV6ysrP733kP4m8OUVUbZPvONvad4SMr3TYiufL7K+YT+5+EwwaGIXE4hj9pxTIZhoJBamtqzNC/0lI0TSUnu+fj9yWUTPSJdDzgcmpMKta47Jt7depXVRVVVWkOhAHwpQ2v5ofF6JGSwoCU8qfR5tNCiOcBp5Sy39oEQogHgeOBGinl7Gjfj4GLgNroZtdLKV+MfnYdcAGgA1dKKV+O9h8N/ApQgT9JKW8bqWsbTwghcDgcFBcXo9lsuFxuvGlpfPRpgIMWZXHqicVkZw3vYRFT2YbCYZoaG3E4HGSNcXW+QEuYBx7fwd+frwBMG+vPrpvFwYtzhuUsqes6oWAQu8O0z8faideq6wbVtUEe+/su/P4wZ60oZUqpG88A1fi9IaWM2/lj4WN9lbudKNEVFp1pr20k2Bgg0BpBAIZHw2ZTsPlGNs+FxciTksKAEOKUHvr8wCdSypo+dn0I+C2wskv/3VLKO7ocbxZwJmbEQhHwqhBievTje4HlQBnwvhDiWSnlhqFcy3gntlIw22CzaSxe4GDxguwenZAGi2EYhMNhwqEQQghCoRDhcDieKnYsaGvX+ccLFfH3UsLdf9jCvjPSyc4cmvAjpSQUClFZWUlWdjahYJCWlhYmTe7sN9vQFOa8q9bQ2mbGtb/5Th33/XIe+81MH/L1xMwEUkomTZ5MfX09tTU1cRu6hUWMkL+Ft/ftXrDLSruc/KSkMIC5Wl8CvBF9vxRYA0wVQtwspXykp52klG8JIaYM8BwnAU9IKYPANiHEFmBx9LMtUsovAIQQT0S3tYSBATISQkCMmJnA7fGQm5tLbU0NgebmMTUTRCKyW6x6c8vwvOfNaot2srKzaaivB6CwqKibwLPmo6a4IBDj0ad2cdP3PLidQ/u5x8wE6enpaJpmOodJOSF9Miz6ZrwlV5pIpOqvWQNmSim/KqX8KjAL02/gAODaIRzvCiHEx0KIB4UQsZipYmBXwjZl0b7e+rshhLhYCPGBEOKD2tranjaxGCYxM0FOTg6KopCTmzvmZgK3S2WvyZ29xk84sgCPe/hjCgWDu9uhUDev/J6q9Hk9Kuows96oqhp3BEtsW1gkYuUMSV1SVRgolVJWJ7yvifY1AOFBHus+YG9gHlAJ3DkyQwQp5f1SyoVSyoW5ubkjdViLLnQ2Rahj7qCWmWHnrpv344yTipkzK52rLtqbb54xGecwnPliZoKWlhYKi4riiV26CgOzZ/goKXTF3zscCt88Y/KIOBIOh4amEBs3N7NhU/Ogc0vouo6u693aFsmHy5mqU4pFqor3b0YdB5+Mvj812ucBmgZzoEShQgjxR+D56NtyIDEAviTaRx/9FmNMS2uExqYQGzYF2Huqh9xsB+n95Kk3DCOu8k5sD4ecLAeXnLsXHR06Hrc27BVTzEwwafJkFEXBbrfj8Xi6jTUr087vfjGPdZ820RyIsGRhVjxOvut1hsKS9g6dNI+G1k+hoeHQ0Bjiqhs/YttOs8xwaZGL3942b0D+E7quU11Vhd3hICszk6rKSlwuF+kZGWMu9Fl0ZyRNgBajS6oKA5cDpwCHRN8/DDwtzWXSssEcSAhRKKWsjL5dAayPtp8F/iKEuAvTgXAasBoz4+E0IcRUTCHgTOBrw7iWXjEMSaM/TGtbBKdDxeNW8YxAeNp4JRIx+O//6rjl7s/jfeecPomvn1qKp5ec9ZFIhKamJjIzM5FSxtvDmWgSi/RoQNA08Q+7cuBAx5SVaefwQ/I69em6TkdHBw6HA0VRaGtrJxRWuO03W5g9w8eJRxWS0UNs/Ujw9ur6uCAAsKuinVf/Xc0ZJ/efbEoIQUZUCAg0NyOEIDcvz/JXSFKSpWCXxeBJyZlFSimFEB8Afinlq0IIN+DFrF7YK0KIxzGdDXOEEGXATcBSIcQ8TJ+D7cAl0XN8KoT4G6ZjYAS4XEqpR49zBfAyZmjhg1LKT0f+KqG8qp1vX/cRdQ0hVAUuPmfquK/+Nxz8zRF+/aetnfoee3oXK44t6lEYkFKi6zqB5mZCoRCRaBRCRsbwvJ5Ho3LgUKivqzPLAHvTaGxswOPNZOa0NO5/ZDuN/jCXnjN1j5gTdpa3devbXtbWY56EriiKgsPhQNM0MwOiy4Wqqv3uNx7oTWOl6xJ/cwiJIMNnSyo7vRVSmrqkpHgthLgIeAr4Q7SrGHimv/2klGdJKQullDYpZYmU8gEp5TeklPtJKedIKU9M0BIgpfyZlHJvKeU+Usp/JfS/KKWcHv3sZyN9fWDGqt/1+y3UNZj2Vd2A3z+8rZuneJfrwzAMDMOITnQG5ZVtrP/MPyFqAEhkt/uj65JIpOfUt0IIbDYbObm5dLS3E4lEKCwqGpfOcaqqUlRcTCQSobGxAYfTy+dfRHjw8R1omuCl16ppad0z9QJ6Six10lFFA5rQY2YCwzDIzMykva0Nf1PTuPcbiGmsdF3v1A60hHntPzVc+v11XHLNWl54tTKe4MfCYjik6lPvcswwv/8BSCk3CyHy+t4ltQiFDLbtaO3UJ6Vpfy3Ic/a4TzgcpqK8nILCQqSE6qpK0tLzuef+rTQ2hfj97fPJzR54QZlUw+VUWX5oLi+9sTvVxL77pPXp1GQYBo0NDaiqimEY1NfVkZObO+7s0bqu09HeHg8JzMnJID0D9tnby4++uw9lFe2IPuy94bCOvzlCZU0H2Vl20jw20rwDe3wU5jm58yf78adHt2MYkvPOmkxJkav/HdltJtA0DU3T4kWBxrOZIJbgqamx0cybEQphGAY+n4/q2iA33/lZfNtf/nYzk4rdzJttrcYthkeqCgNBKWUotrIQQmiYav5xg8ejccgB2Tzzr7iiAqdD6bNMrKqquFwuKspNf0a7w0V1bYjtO1vpCBr844UKLjh7Cuo4dfLxuDUuv2Bvpkzy8M779cye4eOMk0t7tYXHzASKolBQWEgkEqGutjZpi+gMl4aGBjIzM/H5fJRXVNDR3s53LnLjb9xGuluhqqKW6sqevxvhsEFDUwgpoa7GLLzjdqkDdhjzueDqC0whVlFq2bVz4KG2/aVgHo/Eqv21tpoLAlXT2Lx5M4GWMD+9xtdp247WnWzYUEmq3xan00lJSUnSlrce76SqMPBvIcT1gEsIsRz4FvDcGI9pRHE6VM7/2hQ6OnTefKeOogIXP7hyOum+3v9liqLgS0+PP0Bsdi9P/7WMjqBZDGhneRuRiIFqH1+r3kQy0+2ctaKEE48qxOVUsdl6X0HGzARFRUUoqoqiKPH2eENV1U4ZA4PBIGk+H5mZmfH7IITocaKNRAx2VbRjdyUUlRKw92RPn/fXYuhIKQmHw6ZgKiVKNLdDoCVCRVVHp23zcx1kZqR2DQApJfX19ZSVlTF16tSxHs6EJFWFgR9gZiH8BNPh70XGYaGirAw737lsGpedtxeKInqspJZIOBymqrISt9uNBNpa6vjWeVPYUd7BZ5sDnHxMEY5xLAjEUFUFX9rAJqlEdfNIqZ6T1aM60fQRiURMQQDzunsTBGJ0qy4pwRinGpSxJqYVkFLGV8nhsOkX4HapuFxqPNOf06EM2FyTzAghyM7OxkrONnak3LdICKECK6WUXwf+ONbj2dO4XRruXsLiuqKqKllZWXi9XgwJLS0tNDXrKArcdM0M9tnbCu8ZDZLdozrmlCaEQFUUM5GPEL166SuKIM2r4W/e7WCoaWLcmpvGmtj/wG63I4RAShlva5qguMCJYUgkoCpij+aIGE0mgvknmUk5YUBKqQshJgsh7FLK8e8iPwhUVSXN50NRFFQgPd2Hour84oezyfDZkvbHlhiXn8hw4/ItekdRlN2mgahmoPdtBbnZDhRFEGiN4LAr5Oc4kyqkbbyR+P/o+r8ZL5O/RXKRcsJAlC+At4UQzwJxl3sp5V1jN6TkoKvaO92X/A+OZI3LH6/ENACxV+w705dAoGkKudkOsjPtCGGaYkZiHPvttx+RSISpU6fyyCOPDCrHw49//GO8Xi/XXHNNt89WrlzJL3/5y+hqWuPrX/96j9uNNFOmTCEtLQ0wNTCnnHIKN954I05nzxFABx10EO+8886Aj7906VIqo1kYAa6//npOO+00YLdzZbIK/RbJTfLPFD2zFTNtsAKkJbwsLCwGQOKkMdAJRImqpEdCEABwuVysW7eO9evXk5WVxb333jsix/3Xv/7FPffcw6pVq/jkk0947733SE/vXMLZiEQItrahB0OdXkakc66FxMiSWNuIRLrtl7jvG2+8YZ73nXfYunkLF194UbftItFtByMIxHjsscdYt24dH374ISedeCK6rpulvEMhq3aDxZBJSWFASvmTnl5jPa5kwzCMHtvJQKi+ibbtZbRtL0NGrIfXRGfJkiWUl+8u8XH77bezaNEi5syZw0033RTv/9nPfsb06dM55JBD+Pzzz3s6FLfeeit33HEHRUVFADgcDi666CLAXFlfffXVLD7gAG6/8SY+XfUGyw75MnNmz+bwLx/Kjm3bAXjyySeZPXs28+bN49BDD0VKySeffMLixYtZsP/+zJk9m3UvvkJg/ab4S+qdf2Mel5tffOtqnnnmGXa+/T7/eugxDjlwCSedfDKzZs0CwOs1/XjefPNNDj30UI477jj22WcfLr300gH9ZjWbja1btzJz5kwuuPBC5s6dS1lZGatWrWLJkiUsWLCA0047jZYW0wz30ksvMWPGDBYsWMCVV17J8ccfD5haljvuuCN+3NmzZ7N9u3kvHn30URYvXsy8efO45JJL4sKG1+vlhhtuYO7cuRx44IFUV5tlXqqrq1mxYgVz585l7ty5vPPOO/zoRz/innvuiR//hhtu4Fe/+lW/12cxeqSkMCCEeE4I8WyX1yNCiKuEED3r4yYYwbrG+GSb+ArVD6qO0x4jZhp4Y9oRdJRXjfVwxpxE4SjxFaxvHPcrPV3Xee211zjxxBMBWLVqFZs3b2b16tWsW7eONWvW8NZbb7FmzRqeeOIJ1q1bx4svvsj777/f4/HWr1/P/vvv3+v5QqEQ/3vnXa44+1y+f/utnHX8ibz9xN857ejjuPq73wHg5ptv5qWXXmL16tU89dRT6LrO7++7j8uv+Dar313NG4/8laK87pkVu+LzeplcXMzWXTsA+Pizjdx9x51s2rSp27arV6/mN7/5DRs2bGDr1q38/e9/7/GYX//615k3bx7z58+nvt4sfLFlyxYuvfRS1q9fj8fj4ZZbbuHVV19l7dq1LFy4kLvuuouOjg4uuuginnvuOdasWUNVVf+/u40bN/LEE0/w5r//wwcfrEVRFB577DEAWltbOfDAA/noo4849NBD+eMfTX/uK6+8ksMOO4yPPvqItWvXsu+++3L++eezcuVKwFyYPPHEE5x99tn9nt9i9Ehln4Fc4PHo+zMw6xJMx4ww+MYYjStp0Fta+fc+y7v1W3b45KQ3v4mlm16lIdhOXn7+uMuK2N7ezrx58ygvL2fmzJksX25+X1etWsWqVauYP38+YEbFbN68mUAgwIoVK3C73QBx4WGwnHHGGfH2+x9/xCO33232H3c8P/6duVo9+OCDOe+88zj11FM54fjj0SMRDlyyhJ/feitlO3Zw9Oz57D1p8oDOl2hqWLDv7F7j6BcvXsxee+0FwFlnncV///tfTj311G7bPfbYYyxcuNAsax0M4vf7mTx5MosWLsQwDN599102bNjAwQcfDJjCz5IlS/jss8+YOnUq06ZNA+Dss8/m/vvv73Psq1a9yvvvr2H/BYtAgB4JkpdnJnu12+1xzcL+++/PK6+8AsDrr78en/hVVSU9PZ309HSys7P58MMPqa6uZv78+WRnZw/o/lmMDqkqDBwkpVyU8P45IcT7UspFQog9UjTIYs+ht3Vw4Kvmw8NZXIDQzElvrOPyR5VeQvZ1XUfV+k4hnarRGDGfgba2No466ijuvfderrzySqSUXHfddVxyySWdtk9UM/fFvvvuy5o1azj88MN7/Nzj8fR7jN///ve89957PP/88yw56CDefecdzjzzTBYuPICXXnie06/6Fndf/yMOXXRAn8cJtLays6KCL02azPpNm3C7ek/D3NVvYyB+HDa7HU3T8Hg82KLhhwDLly/n8ccf77TtunXrej2OpmmdzBIdHR3ouqQ5EOakk7/Gd675cXRMsNcU8/7FolHAnPQjkb5rW1x44YU89NBDVFVVcf755/d7bRajS0qaCQCvEGJS7E20HZs5rHDDFOP9Ey/mva+cw3tfOQehqbinlOCeUpLUE9lIYhgGhuzdPpyTk9OnViDR5JL46klASEbcbje//vWvufPOO4lEIhx11FE8+OCDcTt3WVkZNTU1HHrooTzzzDO0t7cTCAR47rmek45ed911fO9734urwUOhEH/6U885yRbPmcfTL78EwJP/eoFDoqvprVu3csABB/DDH/6QvLw8qqqr2bp1K1/60t5ccfkVHHvYMj7d3F3Vn0hLSwvX3HYLxy09nAxfep/bgmkm2LZtG4Zh8Ne//pVDDjmkz+1jkSCxCTnWPvDAA3n77bfZsmULYKrzN23axIwZM9i+fTtbt5qVPROFhSlTprB27VoA1q5dy7Zt25BSsnDRobz88jPU15vJgBobG/hi6/Y+x3XEEUdw3333AaYw6/f7AVixYgUvvfQS77//PkcddVS/98NidElVzcB3gf8KIbYCApgKfEsI4QEeHtORWVgMEkVR+sx+WFVZSX5BwbgzEyQyf/585syZw+OPP87ZZ5/Np59+ypIlSwBzJf/oo4+yYMECzjjjDObOnUteXh6LFi3q8VjHHnss1dXVfOUrX4mH23VdiQpVIW32dO790/1ccPHF/O7Jv5CTk8ODDzwAwPe+9z02b96MlJLDDz+cOXPmcvvtv+Thhx/BbrdRkJ/Pj355G2lZWZ2OCbBs2bJ4BdGTTjiRG6+/HqfTiau+Ei3NE9+uK4sWLeKKK65gy5YtLFu2jBUrVgzpXubm5vLQQw9x1llnEQwGAbjllluYPn06999/P8cddxxut5svf/nLBAJm1fevfvWrrFy5kn333ZcDDjiA6dOnI4Rgv/1mcdXVP+TC807GkAaaZuMPv7+XffbZq9fz/+pXv+Liiy/mgQceQFVV7rvvPpYsWYLdbmfZsmVkZGSM6+9yqiJStSiLEMIBzIi+/VxK2dHX9mPNwoUL5QcffDBq52vbXtZr7L57SkkPe4wue0q1naoq87ZtZbwxvSefgddoT3OSmZnZ6wN0KP/rjRs3MnPmzOENeg8hpSQcCpkZ9lQVPRJB1bReMySOFrohzcx/EhQxssl/3nzzTe644w6ef/75ETvmSJwzHDbrUoRCBooC+XlOvB5tSNknDcNgwYIFPPnkk3G/ha709L0UQqyRUi4c9AktBkVKagaEEKd06dpbCOEHPpFS1vS0z0QjWfPjx9hTKXtTMYGRYRgIj5Mvb1yFppmllAUCoQi0NA/ODN+EWklJXUdFmDW7IzoaAnQDCQit50dWbFETS98ba48kqjLxUjDbbAqTil0Y0vQXUBUx4EqViWzYsIHjjz+eFStW9CoIWIwtKSkMYBYpWgK8jmkmWAqsAaYKIW6WUj4yhmPbYzQ0hmhpjeBwKLhdKmne3kt9Jnt+fIvdKIqCPTsTe7a5+o+FEk4kASARqRsE1ne3x6fNnt7jEytWitowDGw2W6d2qmTjW7p0KUuXLk3Kc46EBmTWrFl88cUXwz6OxZ4jVYUBDZgppawGEELkAyuBA4C3gHEnDFTVdHD5D9ZRXWvaAE8/sZhzz5hMui+1an/ruh6f5BLbE53E+zDYe5LsWqDRQIkWXAqFQiAlmi21fhcWFmNNqgoDpTFBIEpNtK9BCBEeq0HtKdraI/xh5ba4IADwt2fLOfGowpQSBiKRCI0NDWRGna5iba0X1a/FwJjoWqBEb3pD16GLl72FhUX/pGpo4ZtCiOeFEOcKIc4F/hnt8wC9ptgTQjwohKgRQqxP6MsSQrwihNgc/ZsZ7RdCiF8LIbYIIT4WQixI2Ofc6Pabo+ffowSDBtt2tHbrr6hOap/JbkgpaW1tpaqyksrKStra2khVB1aL5CFuJtB1lKhWJRwOW98tC4tBkKpLssuBU4BYIO4HQL6UshVY1sd+DwG/xTQpxPgB8JqU8jYhxA+i768FjgGmRV8HAPcBBwghsoCbgIWYqWLWCCGelVI2jtC1dSPNq7H04Fy2bN8tEGia4EtT+k+ekkxomkZBQQEVFRUAFJeUYBthda6lMp+YKIqCsNlQFAUppSUIWFgMkpQUBqSUUgjxBXAgcBqwDXh6APu9JYSY0qX7JEwHRDBzFLyJKQycBKyU5lPlPSFEhhCiMLrtK1LKBgAhxCvA0exOjTziaJpUs/+SAAAXdklEQVTCSccU4g+Eeem1anKy7Xz3smkpZSIA00egrq4uHlNfV1tLfkHBiJoJRkplHptQYqrmnsrDpmoYY7LQ0dHBoYceSjAYJBKJcOqpp/KTn/yE7Tt3cNZl59NQX8+CBQt4+ME/Y7fbe43P76n6olXK18JicKSUMCCEmA6cFX3VAX/FzJXQlzagP/KllJXRdhUQqz5SDOxK2K4s2tdb/x4lM93OJedM5exTJyEEZGXY9/QpR5zYaq24pAQpJTXV1Um7gotEIlRWVFBQUABCUFVZSUFhIXb77vueimGMQ2XVm9X8YeU2auqC5OU4uOScqRy5tP9CPX3hcDh4/fXX8Xq9hMNhDjnkEI455hjuuusuvvOd73DmmWdy6aWX8tCjj3DZZZf1eazEid8SAiwsBk+q+Qx8BhwOHC+lPERK+RtgxEq6RbUAIzY7CSEuFkJ8IIT4oLa2dtjHczpUsjPtKSkIgGkmKCoqwmazYbPZ4u1kRAiBZrNRXl5OeVkZmqah9pElcDyz6s1qfvHbTVTXBpESqmuD/OK3m1j1ZnX/O/eBECJewjccDhMOhxFC8Prrr8cL9Jx77rk888wzw74GCwuLvkm1p9spQCXwhhDij0KIIzDzDAyH6qj6n+jfWNKicqA0YbuSaF9v/d2QUt4vpVwopVyYm5s7zGGmPkKIuINXYjsZUVWVrKysuLkgMysrqce7J/nDym0Eg51rJwSDBn9YuW3Yx9Z1nXnz5pGXl8fy5cvZe++9ycjIiJuOSkpKKC/v8edlYWExgqSUMCClfEZKeSZmGuI3gKuBPCHEfUKII4d42GeBWERALDIh1n9ONKrgQMAfNSe8DBwphMiMRh4cGe2zGEdEIhGqKitxOBw4nU6qqqoIh8dd1OqAqKkLDqp/MKiqyrp16ygrK2P16tV89tlnwz6mhYXF4Ekpn4EY0aiBvwB/iU7Ip2E6/a3qaz8hxOOYDoA5QogyzKiA24C/CSEuAHYAp0c3fxE4FtgCtAHnRc/dIIT4KfB+dLubY86EFuMHIQQ+n4/09HQk0Oz3T1gzQV6Oo1OOi8T+kSIjI4Nly5bx7rvv0tTURCQSQdM0ysrKKC7e4y45FhYTnpQUBhKJhvTdH331t+1ZvXzUzQss6j9weS/HeRB4cBDDtEgxNE0jIzMzHvmQ2I5vM0HCGC85Zyq/+O2mTqYCh0PhknOmDuu4tbW12Gw2MjIyaG9v55VXXuHaa69l2bJlPPXUU5x55pk8/PDDnHTSScO9BAsLi35IeWFgomOFt+05Eif/nkoMT5TMf7GogZGOJqisrOTcc8+N1xI4/fTTOf7445k1axZnnnkmN954I/Pnz+eCCy4YicuwsLDoA0sYSHEmUnibxdhx5NL8YU/+XZkzZw4ffvhht/699tqL1atX97u/rksiukFHh4HDoWDTBGovuQiAXsNYrVBECwtLGLCwsEhBDEMSaAlTVbPblyEn205mhr3HMsNSSgzDIBKJYLPZMAwDXdc75Y2wsJjITEyPKIsJTWwi6Nq2SB10Q3aLZqhvCGEYva/+Y8WLwqEQeiSCNkFDRS0sesLSDFhMKAzDIBQK0djQQF5+PuFwmMaGBnLz8sZd9cS+/EnGA13n/YGkDFMUBd0wHSHFBI0OsbDoifH19LOw6IfYCjEYDFJRXk4kEsHt8YxLu3Ff/iSpjiIEaV6NQCAS73O7VEQv83vMTKBHIghFBSThcNgyE1hYRLGEgRRnooS3jRRCiHjYYEN9PQC5ubk9RgtMRGJOdkKITu1kQ1UF+TkOnHaFljYdt0slM92G1osDoZSgG6CoNlradFxOFVWBSMTAZrPMBRYWljCQ4kyU8LaRItFM4HA6CYdCVFZWkp+fP+7MBIMltnoGU52e2E5GgUDTFLIy7WSkS4QiUPoYo5SSmtogqirwN0dQFLM0uMetWcKAhQWWA6HFBCNmJvCmpVFQUEBRcbFZHjcJJ7uxQEpJJFo0KBIO7/Gqkk1NTZx66qnMmDGDmTNn8u6779LQ0MDy5cuZNm0ay5cvp7Gxsdf9hTDDCfsSBABUVSHdZ8PfbJoVDAOaWyK4nAMTBIxIBD0Y6vYyIpH+d7awSAEsYcCiXyKRSDwvf2I7FRFCYLPZyMrKQlXVTu2JjjmxqghFQRoGQlHi96WyooLKigoMw4i3R0JQuOqqqzj66KP57LPP+Oijj5g5cya33XYbRxxxBJs3b+aII47gtttuG/Z5wPQpKCpw4nKpeL0aU0rdqNrAhECpGwTWb+r2krrR/84WFimASNZ68uONhQsXyg8++GCshzFodF2ntqaGUChEfn4+NTU1qJpGfn6+NYEmOX1FE2ytqWTmzJmd+uOx+OFwXCDQbDZqqqvp6OgAOvsSOJ1OCouKhjy+/2/v3qOjrNMDjn+fuYRcyU1ygeHqIoWT1qBo3NatKJbipetuQemKFZHi8ezaxZ5uS6rn2O72tI1HT7eUpZ7Cusqe3bpSREDX2rWsulYLqFAVN6IWEIkhCZGEiEiSmad/vO+EyYVLLpOZed/nc07OvO9vZvL+3vwy7/vM79re3k51dTX79+/vVTMzY8YMXnrpJSorK2lsbGTu3Lns27dvyMfpKxqNgciA8xGc8T2nOunY+36/9IKqiwiOGb1OiF6fOKm+vr7f/6WIvKmqc1KUJd/wdyOpOadgMMgF48bxSUMDDQ0NBINBKseNs0AgA5y1P0lz44DJqkowFCIYDBKNRnvdfOLLOcPI3HwOHDjAuHHjWLZsGW+99RaXXnopq1evpqmpicrKSgAqKipoamoCnKr6gb6JSzBAYBD9Pc42S2G6U3VGQYTDYYCeba8EAyZ1LBgwg+bVuiS/r/MQbybou11eUcGhjz7qFRiICOUVFcM6Xnd3N7t372bNmjXU1NSwcuXKfk0CItJzo4tX1fdVUHWRb65k8T4vXZ2dzn6adu40mccnHyEzVNFolKMtLQBMiERobmqipaXFk80EXlznIRZT2tq7UJw283N1mEu8scS3jzQ29queVlWajhwZVjNBJBIhEolQU1MDwKJFi6irq6O8vJzGxsaeZoKysrIhH8OLgsEgMXfWTK99Bk3qWDBgzireTADOsr7xi79dhNLfyS+ivP1uOw8/8gGtxzpZcE05K26bQnHh0Nq449/SR6qfUUVFBRMnTmTfvn3MmDGD7du3M2vWLGbNmsWGDRuora1NmyWMJRhwaiAGSB9N8WaCeI1AfK0Fqx0ww2XBgDmnxPH3gx2Lf+pUlOajp9jyH40U5Ae54dpKSkuyCAyi85YZmvbjXfzF997BnS6Abc83Un7BGJYsnDio31NRWcmRRqePQXlFBU1HjvSkD9eaNWtYsmQJnZ2dTJs2jccee6xnOeNHH32UyZMns3HjxmEfZ7gCoVBaXC3jzTfxYDwajVogYEZEGvx7Gy9rOPIFy1a+STTqfJvc9MwnPL7mUi4oGZPinHnf+//X0RMIxL38P0f56oLB3cRFpFdzwJmaBoYye2F1dTUDjbLZvj3zp0xOhp7hn+7fNXHbmOGwYCBDZGLnts7OKD/ddKgnEABoO97F63uOcd284XU+S4a+N85MFxmf2y9t+rT8QU20c7699+MjDeLV1onbI3WzSpeq+lQbqF+HMcNlwUCG8GLntnTzuYxh5qs/75VWWpyVses8lJZkcesfTuSJpz9GFSZOyGH5rVPIHnN+wcBgeu/HawNUlc54T/cRvlGlS1W9MV5kHy2TNFlZQW67eRLb/7uF7m6ndqCoMMxls4tTnLP+OrtirHmymRdfPdor/c5vTObOWzMz2CosCHP7LZNY9Afj6exScnOClBQlb4Kc+CJQ3e4MlWGb5tmYjGHBgEtEDgIdQBToVtU5IlICPAlMAQ4Ct6jqMXGucKuB64HPgTtUdXcq8p3uxpdn85O1l/HsC40U5IWYf3V5Um5I0ajyxako2WOCBIODvwGFQ8Jls4v7BQPVVZkZCMTl54XIz0v+xzyxmUACgV6T41hAYEz6s2Cgt6tVNfFuUAtsV9U6Eal191cB1wHT3Z8a4BH30fQxZkyQyPgc7l46LWnHONbeyfO/bOL1PceouaSY+VeXD3r4nIjwlSsuYOfuY7z82lGCAfja9eOZNjkvSbn2lngzQSAQIBQKoapE3bHw6UpVT09olLBtjB9ZMHB2NwFz3e0NwEs4wcBNwI/V6TK9Q0SKRKRSVQee43WYYrFY0lePy1Qdn3Xx0A/e51c7WgHYtecY77x3nFX3XERBfnhQv6u4MItV91zEt1dciCDk5QbJy7WPyPmKL3Xc9ycdxWIxot3dhNzOjvHtdM2vMclmV7rTFPiFiCjwr6q6DihPuMEfAcrd7QnAxwnvPeym9QoGROQu4C6ASZMmDTljgUCAUEE+X6n/BfHJgAOBQE+6n538IsorO1t7pb382lFWrvgSQ/nTjC0IM7ZgcEGEVw2l9/5ge7qvXr2a9evXo6qsWLGCe++9l08//ZTFixdz8OBBpkyZwsaNGykuHrl+JvHAOqZKV2cnep55NcbLLBg47UpVbRCRMuAFEXkv8UlVVTdQOG9uQLEOnFULh5O5UPFYTkiMtrY2ACZNigx6AiAvEhHCIaGz6/SfNysrgF3ahy/ee//5kkuIdpzo93ywII8Fnw69q8zevXtZv349u3btIisriwULFnDjjTeybt065s2bR21tLXV1ddTV1fHggw8O51R6id/4e3V2tFoB43P+GqB7Fqra4D42A08DlwNNIlIJ4D42uy9vABKncYu4aUkRi8U4efIkbW1tFBYVEc7KouHw4bRvkx0N+Xkhbr+5d63LHYsnk5dvgdJIGSgQOFv6+aqvr6empobc3FxCoRBXXXUVmzdvZuvWrSxduhSApUuXsmXLlmEdZyA9nR1FQISu7m5rijO+ZldMQETygICqdrjb84HvAduApUCd+7jVfcs24B4R+RlOx8H2ZPUXAKdJIDs7m7KyMnJycyksLOSLkyeTdbiMkpMd5Os3TODLl5eyt/44vzlzLBVl2eSc51h6kzpVVVXcf//9tLa2kpOTw3PPPcecOXPOuITxSEmcHTFxgiRj/MyCAUc58LRbTRgC/k1VnxeR14GNIrIc+Ai4xX39czjDCj/EGVq4LNkZDIVC5OblEQg4lTmJ235XODZM4dgwMy4sSHVWPMEZJgjOl+bkVZ3PnDmTVatWMX/+fPLy8qiuru63AFYyOiHGf19i04A1Exi/s2AAUNX9wMUDpLcC/ab9c0cRfGsUstZL4s3fAgEzGH2ns451dxM91dlvauHu7hgdJ7o5cSJKXl6QgiTPUbB8+XKWL18OwH333UckEhmVJYxtSl9jerNgwBgf6DuddeUza+nolF5TC0ejStPRU3R0OFXmn53o5mRBcvulNDc3U1ZWxqFDh9i8eTM7duzgwIEDabeEsTFeZ8GAMQaAWEx7AoG44591E8zPI/rZwKMJhmvhwoW0trYSDodZu3YtRUVF1NbWpt0SxsZ4nQUDxhiH07GexE71AsxreYNwKDnNUq+88kq/tNLSUlvC2JhRZg3PxhgAggGhpLj3NM4lxVkEA9ambozXWc2AMQaAQEAoLgqTnxvk85NRcnOChLMCBCwYMMbzLBgwxgdCBflc/cHpqveDHcfInz6939TCoWCAUE6AnBy7NJjRZZM+pZZ94o3xgazSIrJKTy/HnHOgi7bPOigtLU1hroxxqCqtra1kZ2enOiu+ZcGAMT4UiUQ4fPgwLS0tqc6KMQBkZ2cTiURSnQ3fsmDAGB8Kh8NMnTo11dkwxqQJG01gjDHG+JwFA8YYY4zPWTBgjDHG+JzYcI7RISItOCsfDsYFwNEkZCed+fGcwZ/n7cdzBn+e93DOebKqjhvJzJj+LBhIYyLyhqrOSXU+RpMfzxn8ed5+PGfw53n78ZwzjTUTGGOMMT5nwYAxxhjjcxYMpLd1qc5ACvjxnMGf5+3HcwZ/nrcfzzmjWJ8BY4wxxuesZsAYY4zxOQsGjDHGGJ+zYCANicgCEdknIh+KSG2q85MsIjJRRF4UkV+LyLsistJNLxGRF0TkA/exONV5HWkiEhSRPSLyrLs/VUR2umX+pIhkpTqPI01EikRkk4i8JyL1IvJlr5e1iPyZ+7+9V0SeEJFsL5a1iPxIRJpFZG9C2oBlK45/ds//bRG5JHU5N3EWDKQZEQkCa4HrgFnAN0RkVmpzlTTdwJ+r6izgCuBb7rnWAttVdTqw3d33mpVAfcL+g8D3VfVLwDFgeUpylVyrgedV9TeAi3HO37NlLSITgG8Dc1S1CggCf4Q3y/pxYEGftDOV7XXAdPfnLuCRUcqjOQsLBtLP5cCHqrpfVTuBnwE3pThPSaGqjaq6293uwLk5TMA53w3uyzYAX0tNDpNDRCLADcAP3X0BrgE2uS/x4jkXAr8LPAqgqp2q2obHyxpnZdgcEQkBuUAjHixrVf0V8Gmf5DOV7U3Aj9WxAygSkcrRyak5EwsG0s8E4OOE/cNumqeJyBRgNrATKFfVRvepI0B5irKVLP8E/CUQc/dLgTZV7Xb3vVjmU4EW4DG3eeSHIpKHh8taVRuAh4FDOEFAO/Am3i/ruDOVrS+vcenOggGTciKSDzwF3KuqxxOfU2fsq2fGv4rIjUCzqr6Z6ryMshBwCfCIqs4GTtCnScCDZV2M8y14KjAeyKN/VboveK1svciCgfTTAExM2I+4aZ4kImGcQOCnqrrZTW6KVxu6j82pyl8S/A7wVRE5iNMEdA1OW3qRW5UM3izzw8BhVd3p7m/CCQ68XNbXAgdUtUVVu4DNOOXv9bKOO1PZ+uoalyksGEg/rwPT3R7HWTgdjralOE9J4baVPwrUq+o/Jjy1DVjqbi8Fto523pJFVf9KVSOqOgWnbH+pqkuAF4FF7ss8dc4AqnoE+FhEZrhJ84Bf4+GyxmkeuEJEct3/9fg5e7qsE5ypbLcBt7ujCq4A2hOaE0yK2AyEaUhErsdpVw4CP1LVv0txlpJCRK4EXgHe4XT7+X04/QY2ApNwln2+RVX7dk7KeCIyF/iOqt4oItNwagpKgD3Abap6KpX5G2kiUo3TaTIL2A8sw/lC4tmyFpHvAotxRs7sAf4Ep33cU2UtIk8Ac3GWKm4C/hrYwgBl6wZGP8BpMvkcWKaqb6Qi3+Y0CwaMMcYYn7NmAmOMMcbnLBgwxhhjfM6CAWOMMcbnLBgwxhhjfM6CAWOMMcbnLBgwJoO4K/99090eLyKbzvWeYRyr2h3maozxOAsGjMksRcA3AVT1E1VddI7XD0c1YMGAMT5g8wwYk0FEJL6K5T7gA2CmqlaJyB04q8Ll4SwN+zDO5D5/DJwCrncnfLkQZ4nscTgTvqxQ1fdE5GaciWKiOAvqXAt8COTgTBX7D8CzwBqgCggDf6OqW91jfx0oxJlQ5yeq+t0k/ymMMSModO6XGGPSSC1QparV7kqPzyY8V4Wz8mM2zo18larOFpHvA7fjzGq5DrhbVT8QkRrgX3DWR3gA+H1VbRCRIlXtFJEHgDmqeg+AiPw9zvTJd4pIEbBLRP7LPfbl7vE/B14XkZ/brHLGZA4LBozxjhdVtQPoEJF24Bk3/R3gt9zVIX8b+HdnRlgAxriPrwKPi8hGnAV1BjIfZ5Gl77j72ThTzQK8oKqtACKyGbgSsGDAmAxhwYAx3pE4v30sYT+G81kPAG2qWt33jap6t1tTcAPwpohcOsDvF2Chqu7rlei8r297o7U/GpNBrAOhMZmlAygYyhtV9ThwwO0fgLtq3MXu9oWqulNVHwBacJaY7Xus/wT+1F1oBhGZnfDc74lIiYjk4PRdeHUoeTTGpIYFA8ZkELcq/lUR2Qs8NIRfsQRYLiJvAe/idEYEeEhE3nF/72vAWzhL7c4Skf8VkcXA3+J0HHxbRN519+N2AU8BbwNPWX8BYzKLjSYwxgyLO5qgp6OhMSbzWM2AMcYY43NWM2CMMcb4nNUMGGOMMT5nwYAxxhjjcxYMGGOMMT5nwYAxxhjjcxYMGGOMMT73/5ZOeWlesb16AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentDemand',swept)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Simulation_param/CIC_Network_cadCAD_model_params.ipynb b/Simulation_param/CIC_Network_cadCAD_model_params.ipynb new file mode 100644 index 0000000..5de9b02 --- /dev/null +++ b/Simulation_param/CIC_Network_cadCAD_model_params.ipynb @@ -0,0 +1,1007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CIC Current System Network Graph" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Graph overview \n", + "\n", + "Modeling as a weighted directed graph with agents as nodes. A network is a set of items (nodes or vertices) connected by edges or links. \n", + "We represent a network by a graph (N, g), which consists of a set of nodes N = {1, . . . , n}.\n", + "\n", + "#### Node types\n", + "* Agent\n", + "\n", + "An agent is a user of the CIC system.\n", + "* Chama\n", + "\n", + "A chama is a savings group consisting of multiple agents. Redemptions of CICs for fiat occur through chamas.\n", + "* Trader\n", + "\n", + "A trader is an agent interacting with the bonding curve for investment/arbitrage opportunities.\n", + "* Cloud\n", + "\n", + "The cloud is a representation of the open boundary to the world external to the model.\n", + "* Contract\n", + "\n", + "The contract is the smart contract of the bonding curve.\n", + "\n", + "### Edges between agents\n", + "The edge weight gij > 0 takes on non-binary values, representing the intensity of the interaction, so we refer to (N, g) as a weighted graph.\n", + "E is the set of “directed” edges, i.e., (i, j) ∈ E\n", + "\n", + "#### Edge types\n", + "* Demand\n", + "* Fraction of demand in CIC\n", + "* Utility - stack ranking. Food/Water is first, shopping, etc farther down\n", + "* Spend\n", + "* Fraction of actual in CIC\n", + "\n", + "![](images/dualoperator.png)\n", + "\n", + "\n", + "![](images/v3differentialspec.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assumptions\n", + "(Defining data structures, not just initialization. Baking in degrees of freedom for future experimentation)\n", + "\n", + "* agents = a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p\n", + "* Agent starting native currency is picked from a uniform distribution with a range of 20 to 500. Starting tokens is 400.\n", + "* system = external,cic\n", + "* chama = chama_1,chama_2,chama_3,chama_4\n", + "\n", + "Chamas are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* traders = ta,tb,tc\n", + "\n", + "Traders are currently set to zero, it can be configured for more detailed analysis later on.\n", + "* Utility Types Ordered:\n", + " * Food/Water\n", + " * Fuel/Energy\n", + " * Health\n", + " * Education\n", + " * Savings Group\n", + " * Shop\n", + "* Utility Types Probability \n", + " * 0.6\n", + " * 0.10\n", + " * 0.03\n", + " * 0.015\n", + " * 0.065\n", + " * 0.19\n", + "* R0 = 500\n", + "* S0 = 200000\n", + "* P = 1\n", + "* priceLevel = 100\n", + "* fractionOfDemandInCIC = 0.5\n", + "* fractionOfActualSpendInCIC = 0.5 # if an agent is interacting with the external environment, then the actual spend is 100% shilling.\n", + "* kappa = 4\n", + "\n", + "\n", + "## Initial State Values\n", + "\n", + "# Equations\n", + "\n", + "## Generators\n", + "* Agent generation for each time step: Random choice of all agents minus 2 for both paying and receiving. \n", + "\n", + "* Agent demand each time: Uniform distribution with a low value of 1 and a high of 500. \n", + " \n", + "### Red Cross Drip\n", + "Every 30 days, the Red Cross drips 4000 shilling to the grassroots operator fiat balance. \n", + "\n", + "### Spend Allocation \n", + "\n", + "#### Parameters:\n", + "* Agent to pay: $i$\n", + "* Agent to receive: $j$\n", + "* Rank Order Demand: $\\frac{v_{i,j}}{d_{i,j}}$\n", + "* Amount of currency agent $i$ has to spend, $\\gamma$\n", + "* Amount of cic agent $i$ has to spend, $\\gamma_\\textrm{cic}$\n", + "* Percentage of transaction in cic, $\\phi$\n", + "* Spend, $\\zeta$\n", + "\n", + "\n", + "if $\\frac{v_{i,j}}{d_{i,j}} * 1-\\phi > \\gamma_{i} \\textrm{and} \\frac{v_{i,j}}{d_{i,j}} * \\phi > \\gamma_\\textrm{cic} \\Rightarrow \\zeta = \\frac{v_{i,j}}{d_{i,j}}$ \n", + "\n", + "else $ \\Rightarrow \\zeta = \\gamma$\n", + "\n", + "Allocate utility type by stack ranking in. Allocate remaining fiat and cic until all demand is met or i runs out.\n", + "\n", + "\n", + "### Withdraw calculation\n", + "\n", + "The user is able to withdraw up to 50% of the their CIC balance if they have spent 50% of their balance within the last 30 days at a conversion ratio of 1:1, meaning that for every one token withdraw, they receive 1 in native currency. We are assuming that agents want what to withdraw as much as they can.\n", + "This is one of the most important control points for Grassroots economics. The more people withdraw CIC from the system, the more difficult it is on the system. The more people can withdraw, the better the adoption however. The inverse also holds true: the less individuals can withdraw, the lower the adoption.\n", + "\n", + "## Distribution to agents\n", + "#### Parameters\n", + "FrequencyOfAllocation = 45 # frequency of allocation of drip to agents\n", + "* idealFiat = 5000\n", + "* idealCIC = 200000\n", + "* varianceCIC = 50000\n", + "* varianceFiat = 1000\n", + "* unadjustedPerAgent = 50\n", + "\n", + "```\n", + "# agent:[centrality,allocationValue]\n", + "agentAllocation = {'a':[1,1],'b':[1,1],'c':[1,1], \n", + " 'd':[1,1],'e':[1,1],'f':[1,1],\n", + " 'g':[1,1],'h':[1,1],'i':[1,1],\n", + " 'j':[1,1],'k':[1,1],'l':[1,1],\n", + " 'm':[1,1],'o':[1,1],'p':[1,1]}\n", + "```\n", + "\n", + "Every 15 days, a total of unadjustedPerAgent * agents will be distributed among the agents. Allocation will occur based off of the the agent allocation dictionary allocation value. We can optimize the allocation overtime and make a state variable for adjustment overtime as a result of centrality. We are currently assuming that all agents have the same centrality and allocation.\n", + "\n", + "Internal velocity is better than external velocity of the system. Point of leverage to make more internal cycles. Canbe used for tuning system effiency.\n", + "![](images/agentDistribution.png)\n", + "\n", + "### Inventory Controller\n", + "Heuristic Monetary policy hysteresis conservation allocation between fiat and cic reserves. We've created an inventory control function to test if the current balance is in an acceptable tolarance. For the calculation, we use the following 2 variables, current CIC balance and current fiat balance, along with 2 parameters, desired cic and variance.\n", + "\n", + "Below is \n", + "```\n", + "if idealCIC - variance <= actual <= ideal + (2*variance):\n", + " decision = 'none'\n", + " amount = 0\n", + "else:\n", + " \n", + " if (ideal + variance) > actual :\n", + " decision = 'mint'\n", + " amount = (ideal + variance) - actual\n", + " else:\n", + " pass\n", + " if actual > (ideal + variance):\n", + " decision = 'burn'\n", + " amount = actual - (ideal + variance) \n", + " else:\n", + " pass\n", + "\n", + "if decision == 'mint':\n", + " if fiat < (ideal - variance):\n", + " if amount > fiat:\n", + " decision = 'none'\n", + " amount = 0\n", + " else:\n", + " pass\n", + "if decision == 'none':\n", + " if fiat < (ideal - variance):\n", + " decision = 'mint'\n", + " amount = (ideal-variance)\n", + " else:\n", + " pass\n", + " \n", + "\n", + "```\n", + "\n", + "If the controller wants to mint, the amount decided from the inventory controller, $\\Delta R$ is inserted into the following minting equation:\n", + "\n", + "- Conservation equation, V0: $V(R+ \\Delta R', S+\\Delta S) = \\frac{(S+\\Delta S)^\\kappa}{R+\\Delta R'} =\\frac{S^\\kappa}{R}$\n", + "- Derived Mint equation: $\\Delta S = mint\\big(\\Delta R ; (R,S)\\big)= S\\big(\\sqrt[\\kappa]{(1+\\frac{\\Delta R}{R})}-1\\big)$\n", + " \n", + "\n", + "\n", + "If the controller wants to burn, the amount decided from the inventory controller, $\\Delta S$ is inserted into the following minting equation:\n", + " - Derived Withdraw equation: $\\Delta R = withdraw\\big(\\Delta S ; (R,S)\\big)= R\\big(1-(1-\\frac{\\Delta S}{S})^\\kappa \\big)$\n", + " \n", + "\n", + "There is a built in process lag of 7 days before the newly minted or burned CIC is added to the respective operator accounts.\n", + "\n", + "### Velocity of Money \n", + "\n", + "Indirect measurement of velocity of money per timestep:\n", + "\n", + "$V_t = \\frac{PT}{M}$\n", + "\n", + "Where\n", + "\n", + "* $V_t$ is the velocity of money for all agent transaction in the time period examined\n", + "* $P$ is the price level\n", + "* $T$ is the aggregated real value of all agent transactions in the time period examined\n", + "* $M$ is the average money supply in the economy in the time period examined.\n", + "\n", + "\n", + "\n", + "## Simulation run\n", + "* 5 monte carlo runs with 100 timesteps. Each timestep is equal to 1 day.\n", + "\n", + "\n", + "## Proposed Experiments\n", + "![](images/experiments.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Run cadCAD model" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n", + " import pandas.util.testing as tm\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAFCCAYAAACn2kcMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XdUVNfaBvBnht5EjWJnht6kqIiKBCsWQOK1RIUrGksMdrERJYKoIMaCvRuMGPVijUaNvUdjQQFpioAISJcyDMMw5/3+4OPEsWuwJfu3FisrM3P2nHOSxcPeZ+93C4iIwDAMwzDM3yb82CfAMAzDMP8ULFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqCAtVhmEYhqkjLFQZhmEYpo6wUGUYhmGYOsJClWEYhmHqiOrHPoGPgYhwv+g+8ivyIVfIoa2mDaMGRmik3ehjnxrDMAzzGftXhaqkSoLTD05j+53tyCzNhIpABQSCAAJw4NBV3BXDWg+DfRN7CASCj326DMMwzGdGQET0sU/iQ7iRfQMzTsyApEoCbXVt6KnrKQWnglOgSFoEjjjYN7XHUrel0NfU/4hnzDAMw3xu/hWhejHjImacmAFtdW3oquu+8rNEhDxJHlrVa4WtX21Ffc36H+gsGYZhmM/dP36iUnJBMmadnAVdDd3XBioACAQCNNFtgszSTEw7Pg3VXPU7fW9eXh769esHhULxTsczDMMwn59/7DPV06dP4/fff0d1j2oQCNpq2m91vIGOAeLz4nHt0TV0Nuz8ns6SYRiG+Sf5R/dUJVUSXHp4CV9of/H2BxOgrqqOqNiouj8xhmEY5h/ps+ipFhUVYePGjYiPj4empib69++Pfv36ITg4GK1atcLo0aMBAEuWLIGGhgYGDBiAtWvXIrUgFZkXM5GlnoW2k9uCq+bw6NIjFCUVgRSEBmYNYNjdEEJVIUofluLB0QcwaGOA3Ju50Bfpo2HrhojeEo22T9ri/PHzEAqF8PX1Rc+ePQEA169fR1RUFHJycqCjowM3Nzd4e3t/zFvFMAzDfESffKgSEUJCQtCxY0fMnDkTBQUFCAwMRIsWLTBlyhRMmjQJ7du3R1FREVJSUrB69WpoaWlhwoQJmLJmCmxH2aKeRj0AwKOLj1BZXInWI1pDoCJA6pFUZF3JQivXVgAAuUQORaUC9t/aAwDKs8uhqFAgNS8VkZGRuH37NsLCwtCxY0fo6upCU1MT06ZNg0gkQkZGBgIDA2FsbIyOHTt+tPvFMAzDfDyf/PBvSkoKSkpKMHToUKiqqqJp06bo3bs3Lly4gAYNGmD8+PFYsWIFNm3aBH9/f2hpafHHVimqoCqs+buBiJB3Jw+G3QyhqqUKFXUVVDauxJ0Td/Dnn3/WHCAAWnRuAaGqEELV/781QsCxlyNUVVXh6OgILS0tZGVlAQBsbW0hFoshEAggFovRpUsXxMfHf9D7wzAMw3w6Pvmean5+PoqKijB06FD+NYVCARsbGwCAk5MTNm7ciJYtW8La2lrpWKFAiNoVQ9XSanByDgk7Ev5qh1MAciAvNw95yXnQr9aHUEX57wwVTRVoqGkAqAlmuVyOffv2oWPHjmjRogW2b9+OjIwMVFdXQy6Xw8XF5b3cB4ZhGObT98mHaqNGjdCkSRNs2rTphe///PPPaNmyJXJzc3HhwgW4urry7+mo6UCmkEEHOlDVUoVQVYjW37SGup46/xm5XI7fj/8OACgpKcHRY0dhYWEBIyMjAIAAAvx+6HfM/998ZGdno6CgAPv374eXlxcaNmwIT09PBAcHQ11dHZs3b0Zpael7vBsMwzDMp+yTH/41NzeHlpYW9u7di6qqKnAch4yMDNy7dw/x8fE4deoU/P39MW3aNGzYsAGFhYUAgPr166OJsAmqqqoA1Kw/bWzXGA/PPoS8Qg4AqCqrQsWjCvTu3RtCYc2t4BQcEhMSceLECaRlpEEAAe5fuI9bt27h8ePHqK6uBhFBU1MTubm50NTUhLq6OlJSUnD+/PmPc5MYhmGYT8JnUVGpqKgIW7duRWxsLORyOVq2bInBgwdj06ZNGDFiBN87jYyMRGpqKkJCQqBQKBCyIAQbf98IgUCA9pPbg6vmkH0lG4VJhaiWVkNdVx0GDgZo0q4JCu4X4Nr2ayCnp26HDBBeEqJ+dX3o6uri0aNH4DgOAGBtbQ2pVIqSkhLo6OjAzs4OrVu3Rr169TBnzhzk5eVh9OjROHjwIFRUVD7GbWMYhmE+sM8iVP+OLbe2YN31dWiu1/y1RfIlEgkuX76MKllVTR9eC8D/ALxgRLe6uhoPHz7E9evXcf78edy6dQtyuRxEBENDQ3Tq1Alt27aFlZUVmjd//XczDMMwn79/fKhWVldi3JFxSMhPQBOdJq8Nt9KSUly7fg0yNRlwCcDdF38uOjoaAwYM+GvYmOOQmpqKO3fu4OLFi7h58yaAmslNenp6cHJygoODA6ysrGBqago1NbW6vEyGYRjmE/CPD1UAeFL5BJOPTcbd/LtopN0I6irqL/wcEaG8qhw5RTl4tP8RKi5XvLRNFRUViEQi+Pv7Y+zYsVBXV26zuroa9+/fR2xsLK5evYpbt25BVVUVAoEAHMfB3t4ednZ2sLKygpWVFerVq1en18wwDMN8eP+KUAUAqVyK9TfWY1/iPlRVV0FLTQtaaloQCoSo5qpRKisFEaG5XnNMdpqMldNW4tdff31tu2pqamjSpAlGjRoFf39/6Ou/eLs4uVyO5ORkxMbGIiYmBrdv34ampiaEQiEqKythaGgIW1tbWFlZwdramg0ZMwzDfIb+NaFaS1IlwZm0M9hzdw9yy3Nrltyo6cC+qT2Gth6KsKlhEAqEmDp1Kjp37vzcLjMCgYBf+6qhoQG5XA6O46CpqQl9fX0MHDgQs2fPhqGh4SvPQyaTITExEXFxcbhz5w4SEhKgo6MDdXV1VFRUQFNTEzY2NnzIsiFjhmGYT9+/LlRfZ8KECdixYwc6deqE5ORkZGRk8O/V9hxVVVUhl9csy1FRUYG+vj5KSkrAcRy0tbWho6OD7t27Y/bs2XBwcHij75VKpUhISEBsbCxiY2ORmpqKBg0aQFNTE5WVlSgvL4eJiQkfspaWli/tFTMMwzAfBwvVZwQHB2Pbtm3Q0dFBUVER8vLyAACampqoqqqCqqoqqqurIRAIoKKiwq+D1dXVha6uLvLz88FxHPT09KClpQUHBwf4+/ujV69eb3UeEokE8fHxfMjm5OSgcePG0NbWhkwmQ15eHho2bMiHrJWVFVq0aMGGjBmGYT4iFqrPCA0Nxf/+9z9kZmaicePGaNSoEXbu3ImhQ4ciKSkJZWVlUFdXR3V1NTiOg4GBAXJycgDU9GCbN2+O6upq5Obmgoj43marVq3w3XffYfjw4fyM4bdRWlqKuLg4xMbGIi4uDkVFRWjRogV0dHRQXV2Nx48fo7Kykp/4VDtk/OwEKoZhGOb9YaH6jB9//BE///wzmjZtin79+mHy5MkAgLy8PPTs2RO5ubkoKiqCmpoaP8nIwMAAJSUlqKiogEAggJaWFuzs7JCWlobCwkIQERo3bgwdHR1oampixIgRmDRpEjQ1Nd/5PIuKipR6shKJBCYmJtDT0wPHccjJycGjR49gZGSk1JtlQ8YMwzDvDwvVZzx8+BDV1dXQ1dXF1KlTsX79ej6IHjx4gN69e6OyshK5ublQV1eHtrY2iouL+YlF165dg0AggLq6OurVqwcnJydcvXoVpaWl4DgOLVq0QP369SGRSDBgwADMmDEDBgYGf/u8CwoK+ICNjY2FQqGAhYUFGjZsCCJCTk4OUlJSoK+vD2trazZkzDAM8x6wUH2FDRs2QF1dHaNGjeJfu3XrFgYOHAiBQICsrCx+SU12djaICL169cK5c+dQVlYGFRUVaGpqwsTEBDY2Njh+/DgkEgk4joNYLEaTJk3w6NEjdO/eHQEBATA3N6+T8yYi5Obm8jOL4+LiIBQKYWdnBwMDAwiFQmRnZyMhIQFSqZQNGTMMw9QRFqqvUFRUhIkTJ2L16tX44osv+NdPnTqF0aNHQ1tbG+np6VBRUYGZmRnu3bsHuVwOMzMziMVi/Pbbb/xwsLq6Orp16wYtLS0cO3YMFRUV4DgOZmZmMDQ0REJCAtq2bYuZM2fC2dm5Tq+DiJCdnc33YuPi4qCtrc3vB6uiooKsrCwkJibi4cOHbMiYYRjmHbFQfY3IyEhUVFRg/PjxSq/v2bMHs2bNgr6+PlJTU6GiogJbW1skJiaioqICOjo6CAoKwty5c1FeXg5NTU1oaGhAR0cH//3vf3H//n2cOXMGUqkURAQrKyvY2Njg6tWrMDQ0xKRJk9C/f/93mtT0OkSEhw8f8iEbHx+P+vXrw87ODhYWFtDU1ERmZiYSExORlJQEfX19pZBt2bIlGzJmGIZ5ARaqr1FWVoZx48Zh2bJlaNasmdJ7q1evRkREBOrXr4/k5GSoqKigdevWSE9Px5MnTyAQCPDNN98gNzcX0dHREAqF0NXVhbq6Olq1aoWxY8di//79uHnzJqRSKTiOg4ODA9q3b48zZ85AS0sLo0ePxrfffgtV1fe39S3HcUhLS+N7sXfv3oWBgQFsbW1hZ2cHPT09PHz4EImJiUhISEBFRQUsLS35kDUzM2NDxgzDMGCh+kZ2796N7Oxs+Pv7P/fe3LlzsX//fujr6yMhIQFCoRCWlpYoLS1FdnY25HI5bG1tsWjRIvTv3x/l5eXQ1dWFhoYGhEIhevToAQ8PD6xevRqpqamQSCQgIjg6OqJHjx44evQoysvLMXToUPj7+0NPT++9X69CocD9+/f5JTyJiYlo0aIF7OzsYGdnh2bNmiE9PZ0P2YcPH0IsFvMha21tzYaMGYb5V2Kh+gakUinGjh2L0NDQF5YfHDt2LG7dugVtbW1+UpChoSEaNmyI2NhYVFZWol69eti8eTN++ukn7Nu3DyoqKmjQoAEfruPGjUOLFi2wdOlSFBQUoLS0phaxk5MTBg8ejIMHDyI1NRWenp6YPXs2WrZs+cGuv7q6GikpKfxw8b179yASifiQNTIyUurJJiUloV69ekohy4aMGYb5N2Ch+oYOHDiAxMREzJkz57n3OI7DwIEDUVhYCKFQiLi4OAgEAjRq1AgdO3bEsWPHUFlZCYFAgO+++w6DBw9G165dUV5ejgYNGkBVVRUaGhpo3LgxFi1ahISEBKxfvx5SqRRPnjwBx3Ho2LEjvv32W+zbtw/Xr1+Hs7MzAgICYG9v/8HvRVVVFZKSkviQTUtLg4mJCT9cbG5ujsePH/Mhm5iYCIlEAktLS36msbm5ORsyZhjmH4eF6huqqqrCt99+i7lz58LMzOy59ysrK9G3b1/o6OjwJQaFQiF0dHQwdOhQREZGorq6GlVVVWjXrh127tyJCRMmYP/+/VBRUeHXi8rlcjg7O2PhwoXYvn07du7cCYFAgPz8fBARnJ2dMX36dBw4cAAnTpyAlZUV/P394ebm9hHuyl/XnpCQwA8XP3z4EObm5nxP1szMDKWlpUhKSkJCQoLSkPHTy3nq16//0a6BYRimLrBQfQvHjx/HlStXEBIS8sL3S0pK0KNHD7Ru3RqZmZm4e/cuBAIB1NTUMHHiRGzYsAHV1dUoKytD/fr18dNPP0FfXx+urq4oLy9HkyZNIBQKUa9ePUilUowePRpjxoxBSEgIjhw5Ak1NTeTk5ICI8OWXXyIoKAhHjhxBdHQ0DAwM4OfnB29v7/cyY/htSCQSpc0BcnJyYGVlxYessbExP6T87JDx0yHbqlUrNmTMMMxnhYXqW6iuroafnx+mTJmC1q1bv/Az2dnZcHNzg7u7O27evInk5GQQEYRCIWbMmIGdO3eioKAAJSUlUFVVxeTJkxEQEIBBgwbh0KFDUFVVhbm5OSoqKqCmpgYdHR2EhobC3Nwc33//Pa5cuYJ69erh4cOHICJ06dIFCxcuxLlz5xAZGQkA8PX1xcSJE/9WGcS6VFZWhvj4eL4YRWFhIWxsbGBnZwdbW1sYGRkBgNJz2cTERJSXl/NDxtbW1jAzM4OGhsZHvhqGYZiXY6H6ls6ePYtjx44hPDz8pb2oxMREeHl5YezYsfj9999x//59fmebCRMm4M8//0RMTAy/jKZDhw6IiorCvXv30K1bN0gkEhgaGkIoFEJPTw8lJSVo164dIiIikJeXh8DAQCQlJUFPTw9paWkgInTr1g2LFy9GXFwc1q5di9zcXAwYMAAzZ85Eo0aNPvBderWSkhKlak+lpaWwtbXln8nW9lCLi4uVQjYjIwMikUhpzWyDBg0+9uUwDMPwWKi+JY7jMHHiRIwaNQqOjo4v/dyVK1fg4+OD4OBg/Pzzz3jw4AHkcjmEQiGGDBkCoVCIX375BWpqapBIJGjQoAEiIyPh5OSEr776CkeOHIGamhqcnJzw6NEjGBgYIDc3FyNGjEBgYCBOnz6NBQsWIC8vD3p6erh37x4AoFu3bliyZAlycnKwbNky3L17Fz179sT3338PExOTD3Wb3kphYSH/PDY2NhYymYwP2NolPAKBADKZDPfu3eNDNikpCbq6ukoha2hoyIaMGYb5aFiovoM//vgDu3fvRkRExCt/gf/666+YPHkyXyTi4cOHkEqlUFdXh6urK7p27YqgoCDUr18fjx8/hlAoxMyZM+Hv748///wT3bt353ef0dTUhIqKCt/2ggUL4OnpiV9++QVLliwBx3HQ1NREcnIyAKBHjx4IDw9HdXU1wsLCcPHiRbRr1w6zZ89Ghw4d3vs9+jvy8vKUSioSER+wtfWLgZrKUJmZmXzIJiYmorS0VKkwhbm5ORsyZhjmg2Gh+g6ICNOnT8eAAQPg4uLyys9u3boVoaGh+PnnnzFv3jxkZWVBIpFAW1sb5ubmmDFjBsaNGwddXV1kZWUBAFxcXPDTTz9BW1sbXl5e+O2336Cmpoa+ffvi9u3bMDIyQmZmJlq3bo2IiAiIRCJERERgw4YN0NfXh0AgQGJiIgQCAXr27ImwsDDo6ekhPDwchw8fhlgsxuTJk+Hl5fXRJzW9Tu0OO7UBe+fOHWhoaCiF7NN1mWuHjGt/0tPTYWhoyIeslZUVGjZs+BGviGGYfzIWqu8oJiYGmzZtwpo1a5R6kC8SFhaGyMhI7N27F1OnTkVOTg7KysrQsGFD6OvrY8OGDRgzZgwkEglKSkrAcRzq16+PyMhItG3bFpcvX0avXr1QUVHBh0JRURFatmyJlJQUeHt7Y968eeA4DosWLcIvv/wCQ0NDyGQyfgaym5sbQkND0aJFC0RERGDnzp3Q0dHB2LFjMXr06PdaBrEuEREePXqk1JPV09PjA9bW1lZpaU5VVRU/y7j2R0dHRylkRSIRGzJmGKZOsFB9R0SEOXPmoGfPnujRo8drPz916lScPXsWhw4dwqhRo5Cfn4+SkhI0bdoUCoUCu3fvxty5c3Hnzh1oamryRR++//57jB8/HhzHwcPDA8ePH4eamhqGDx+Oc+fOwcjICGVlZZBKpZg/fz7+85//IC8vD0FBQTh27Bisra1RVFSEhIQECAQC9OrVCwsXLoSJiQm2bt2KzZs3QyKRYNiwYfD394euru4HuHt1h4iQnp7Oh+zdu3fxxRdf8AFra2urVNqxNpRrh4wTEhL4IeOnC1N8KjOnGYb5vLBQ/RsSExOxdOlSbNiwAWpqaq/8LMdxGD58ONLS0nDw4EEMHToURUVFKC4uhpGREfLy8rBnzx7s3bsX27dvh7GxMVJSUiAQCNClSxds2bIFmpqauHjxIvr06YOKigrY2trCzMwMt2/fRvv27XHjxg1YWFhg1apVMDExQWpqKgIDA/HHH3/A0dGR33lGKBSid+/efLgeOXIEK1euxIMHD9CvXz8EBASgefPmH+gu1i2O45Camsr3YhMSEtCsWTN+4pONjQ10dHSUjnny5Anfi01ISOCHjJ9eM8uGjBmGeRMsVP+m+fPnw9HRER4eHq/9bHV1Nfr16weO4xAdHY3+/fujtLQUBQUFsLS0xP379xEZGYmsrCwEBATA1tYWMTEx0NTUhL6+PrZv3w4bGxtUV1fDw8MDJ06cgLq6OqZMmYLjx4+jXr16aNasGa5fv46vv/4aISEh0NTUxI0bN/DDDz8gJSUFLi4uSEhI4HfV6dOnD0JCQmBmZoZr165hyZIluHHjBr788ksEBAS8dD3u56K6uhr37t3jZxcnJyejVatW/HCxtbX1c73Sqqoq3Lt3T6kwhZaWllItYzZkzDDMi7BQ/ZsePHiA+fPnY9OmTW80y7SiogJubm5o1aoVtmzZAi8vL5SXl6OgoAB2dna4c+cOli9fjlatWsHX1xeGhoZIS0uDiooKJBIJQkJCMGLECAA1a2Y9PT1RUVEBBwcHuLi44PDhw3B1dUV6ejoKCwsRFBSEr7/+GgBw8uRJBAcHo7i4GF27dsXVq1fx4MEDCAQC9O3bFwsWLOB7uIsXL8bJkydhY2MDf3//Nxri/hzI5XIkJyfzw8WpqakwMjLiQ9bS0vK5msS1Q8ZPr5ktKSmBpaUlP9OYDRkzDAOwUK0T4eHhMDU1xcCBA9/o8/n5+XBzc4OrqysWL14MT09PSKVS5OXlwcHBAbdu3UJAQAD69++PwYMHQyaTQUNDA48fP4ZMJkOvXr2wdu1aqKuro6qqCv369eN7rfPnz8fRo0fx5MkTdO/eHUePHoWJiQkiIiJgYWEBjuOwa9cu/PjjjxAKhejWrRtOnTqFhw8f8uEaEhICExMTFBQUYNmyZdi7dy8MDAwwfvx4DBs27JOfMfw2ZDIZEhMT+ZnFGRkZMDMz45/JWlhYvHASV0lJiVLIpqWlsSFjhmFYqNaFR48eISAgABs3bnzued3LpKWloW/fvvjvf/8Lf39/eHp6QiaTIT8/H/b29rh16xZGjBiBgIAAjB49Gjdu3ICDgwOuXLkCXV1d6OnpYefOnXxBh1OnTsHLywtSqRRt2rSBt7c31q9fjzZt2kBPTw9nz57FgAEDsHDhQmhra4PjOKxatQrr169HkyZN4OrqigMHDiAnJ4cP1/nz58PExASVlZVYt24dXwZx5MiRGD9+/D+yZyaVSpGQkMBXe3r06BEsLS35nqypqekLZ3tXVVXh/v37Smtmnx0yrq2SxTDMPxcL1ToSERGBxo0bw8fH542PuX37NgYOHIiAgAD4+PjA09MTcrkchYWFsLa2RlxcHHr16oWVK1ciLCwMW7Zsgbu7O44ePYrGjRujoKAAYWFhGDJkCICa3WI8PDxw5swZqKurY9myZTh//jxiYmIwdOhQXL58GY8fP0ZgYCB/nhUVFQgLC0NUVBRat24NJycn7Ny5E/n5+Xy4BgcHw8TEBBzH4ZdffsH69euRl5eHQYMGYebMmf/oHll5eTnu3r3LDxfn5eXB2tpaaS/ZFwUlESErK0upN/vkyRNYWFjwIcuGjBnmn4eFah3Jy8vD1KlTsX79eujr67/xcadPn8aYMWOwfPly9O7dG56enlAoFCguLoapqSlSU1NhaWmJnTt34vDhw5g+fTp69uyJq1evQkNDAwUFBfD09MSKFSv4Ycpjx45h4MCBkEqlaNu2LWbPno2QkBAYGBigR48eiIqKQsuWLREREQEbGxsAQEFBAebNm4ejR4/iyy+/hKWlJSIjI1FcXAwA8PDwQHBwMF/8/vTp01i2bBkSEhLg5uaGgICAT7YMYl0qKSlBfHw8P7u4uLgYNjY2sLe3h62t7SsnMJWUlPDb3yUmJuLBgwdo1aqVUpnFpwtZMAzz+WGhWodql9aMHj36rY7bs2cPAgICsGPHDrRt25afSVxaWormzZujsLAQenp62LdvH9LS0uDt7Q1TU1NUVVUhNTUV6urq0NfXx86dO2FoaAjgr/1dz58/DzU1Naxbtw7x8fE4cOAABgwYgKqqKhw5cgReXl4IDQ3l16empaVhzpw5+OOPP+Dl5YUmTZpg27ZtKCsrAxHB3d1dKVxjY2MRHh6OS5cuwdHREbNnz4aTk1Md3tVPW1FRER+ysbGxkEgk/PNYOzs7fp/cF6n97/f0mlktLS2lkBWJRGzImGE+IyxU61BRUREmTpyIVatWvfXOMKtXr8aqVatw8OBBGBkZwcPDA0KhEBUVFdDX1wfHcSgrK8OhQ4cgFArx9ddfQyqVokOHDjh48CCMjY2RmZmJZcuWwcvLi2/38OHDGDJkCP+sddWqVQgICEB5eTkmTJiA6OhoZGZmIiAggJ9VDNQMTc+ZMwfJycnw8fGBuro6tm7dioqKCgDgn7mKRCIANc+VlyxZgsOHD8PY2BhTpkyBp6fnvy4QCgoK+ICNjY2FQqHgA9bW1hZNmzZ9acgSEbKzs5VCtri4GBYWFnzIWlhYsCFjhvmEsVCtY5GRkZBIJJgwYcJbHzt37lwcOHAAJ06cQMOGDeHh4QEVFRXI5XKoqqqiUaNGSEpKwv79+yESifDdd9/h0qVLGDVqFDZu3AgTExOkpKTg66+/xuLFi/lAq6iogLu7Oy5cuAA1NTVs3LgRRUVFWLNmDZydneHi4oJVq1ahadOmiIiIgJ2dHX9Op0+fRlBQEAoLCzFu3Dg8efIEP/30E2QymVLPtTZcy8rKsGLFCuzatQs6Ojr49ttvMWrUqM+mDGJdIiLk5uYqlVRUUVHhA9be3v61f3yVlpYqFaZIS0tDixYtlMosfmpb+zHMvxkL1TpWVlaGcePGYdmyZWjWrNlbHz927FjExMTg1KlTUFdXh4eHBx9IUqkUdnZ2OH36NHbu3AlHR0csX74cq1evhp+fH6Kjo6GqqoqKigo0atQIUVFRSudw4MABeHt7QyaToU2bNti9ezdmz56NuLg4TJs2Dampqdi3bx/c3d2xZMkSpZKFe/bsQVhYGFRUVDBt2jQkJCRgx44dUCjQQV+TAAAgAElEQVQU4DiO77nWDj9XV1djy5Yt2LJlCyQSCXx8fDB16tTPrgxiXaqdvFQbsHFxcdDW1uYD1tbW9rX7w8rlcty/f19pApSGhobSkLFYLP7XjRAwzKeChep7sHv3bmRnZ8Pf3/+tj+U4DgMHDkRxcTGOHz8OhUIBT09PqKmpQUNDA/n5+ejZsyd27dqFDRs2wM3NDUePHsWkSZPQv39/ZGVl8TvZpKamYu3atXBzc+PbLy8vR9++fXH58mWoqalh8+bN0NXVRWBgIJo3b44ZM2Zg5cqVSE1NxaxZszBq1Cj+FzTHcVi7di3Wrl2LJk2aYNasWTh37hx27doFIuLDNTg4mA9XjuNw6NAhrF69Gunp6fDy8sKsWbM+2zKIdYmIkJGRwVd7io+PR/369ZU2B6hXr95r28jOzlYK2aKiIpibmysNGWtpaX2gq2KYfzcWqu+BVCrF2LFjERoayofL25DJZOjbty/09PRw4MABVFRUoF+/ftDQ0ICenh4ePHgAb29vrFmzBosWLYK3tzcSExMxbNgwGBkZwdHREZs3b0bHjh1x7do1+Pr6IigoSKn38r///Q8jRoyATCaDg4MDjh49ikWLFuHw4cPw8fFB69atsWjRIjRq1AjLly9H27Zt+WMrKysRGhqKqKgo2NjYYObMmdi3bx/27t0LoVAIhUKBvn37IigoSOn6//jjDyxZsgS3bt2Cq6srAgIC+NnHTM0fIGlpafxwcUJCAgwMDPiQbd269Rutgy4tLeVnGSckJODBgwdKQ8bW1tZsyJhh3hMWqu/JgQMHkJiYiDlz5rzT8aWlpejevTvs7Oywbds2lJeX88HapEkTxMTEYMqUKVi4cCGmTJmCqVOn4smTJxgyZAiKi4sxbdo0BAUFwdramv+lumPHDqVfpqWlpXB3d8eVK1egpqaG9evXw9bWFlOmTEFlZSUWLVqEc+fOYc+ePejTpw8WL16stK1aUVERfvjhB/z222/48ssvMWXKFGzduhW//vorVFRUUF1dDXd3d8ybN08pXO/du4fw8HCcOnWKD+WuXbu+873+p1IoFLh//z4fsklJSWjZsqXS5gBv0gN9dsg4KSkJampqSiHLhowZpo4Q817IZDIaMWIEpaSkvHMbWVlZZGNjQwEBAUREVFZWRl26dKHevXuTn58fWVpa0q5du8jU1JS+//57IiJSKBTk5+dHZmZmtHfvXnJxcaEOHTqQh4cHWVlZ0YULF577nqioKNLU1CSBQEAODg5UXFxMS5YsIbFYTCNGjKCbN2+Sh4cHmZmZ0bp160ihUCgdn56eTt7e3iQSiWjSpEkUHx9Po0aNoubNm5NYLKYWLVrQmDFjKDMzU+m4vLw8mjVrFpmYmFDnzp3pl19+ea5t5i9VVVUUHx9Pu3btou+//54GDRpE06dPp+3bt1NMTAxVVla+UTscx9GjR4/o5MmTtHLlSvruu+9o8ODBFBgYSDt37qSYmBiqqKh4z1fDMP9MrKf6Hh0/fhxXrlxBSEjIO7eRlJSEfv36YcKECZg6dSrKy8vh6ekJLS0ttG7dGocOHUJ4eDgCAwPRqVMnbNq0CUKhEGvWrMHSpUsxe/ZsxMTE4Ny5c+jevTuOHz+O7777DrNnz1Za2vHkyRO4u7vj6tWr/LpWNzc3TJo0ie9x6+vrIygoCPr6+li+fDnat2+vdK63b9/G3LlzkZSUBF9fX3z99dcICwvD6dOnoa6uDrlczg8Lt2zZkj+usrISq1evxs8//wyhUIiRI0fCz8+PLR15jaqqKiQlJfE92bS0NJiYmPDDxRYWFq/dkrBWWVmZUmGK1NRUNG/eXGkCVOPGjd/zFb0KB+AmgDsAigGoATAA0AVAi494XgyjjIXqe1RdXQ0/Pz9MmTLlb22h9scff8Db2xsLFy6Ej4+PUrB26NABUVFRiIiIQHBwMFq2bIndu3dDU1MTJ0+exPjx4+Hp6Qlzc3OEh4fzS2vMzMwQGRn5XPWnqKgojB07FjKZDPb29jh//jyOHz/OPx9dvnw5fvnlF+zcuRPdu3fH0qVLnytTeObMGQQFBaGgoAATJ05E9+7dMX/+fFy8eBGampqQyWRwd3dHUFAQWrT46xcix3GIiorChg0bUFBQwJdBfN2MWKZGZWUlEhIS+M0BMjMzYWFhwU96MjMze+OlTdXV1XxhitqgVVNTU9owQCwWv7AOct0qA3AUwM8A8gEoAKgCINQErQCAEwAfAJ3+/98Z5uNhofqenT17FseOHUN4ePjf2n/zyJEjmDhxIjZv3gw3NzelYO3evTs2bNiAFStWICIiAhzH4eDBg6hfvz5SU1Px9ddfo2nTppg+fTomTZoEc3NzVFVV4eHDh9i2bdtzPc6ioiL07dsX169fh5qaGtauXYuhQ4di5syZOHbsGEaOHAkfHx/MnDkTd+/exeTJkzFhwoTnnsnt2bMHixcvhkAg4CclzZs3D3/88Qd0dHQglUrh4eGBoKCg52YDnzx5EsuXL0diYiJ69+6NgIAAvooT82YkEonS5gA5OTmwtrbmn8mamJi88XNUIkJOTo7SLOOCggKYm5vzIWthYQFtbe06vIIsAOP//596AF60HItDTc+1CkB/AAGoCV2G+ThYqL5nHMdh4sSJGDVqFBwdHf9WW1u3bkVoaCj27NkDR0dHpWDt168ffvzxRyxbtgw7duxAZmYmfv31VzRv3hzl5eUYOnQocnJysH79egQGBqKwsBBdunTB/v37+bB91vbt2/Hdd9/xvdazZ88iOTkZkydPhkKhwPLly1FaWoq5c+dCV1cXS5cuRadOnZ67/nXr1mHt2rVo3LgxQkJCUK9ePcyfPx83btyArq4upFIpP6Hp2XC9ffs2wsPDceXKFTg5OWH27Nl/+z7+W5WVlfHrY2NjY1FYWAgbGxt+uFgsFr/VH34vGjJu1qzZc0PG7/bH5GMAI1DTU32TesgKALkA+gIIAcAmXTEfBwvVD+CPP/7A7t27ERER8bd6qwCwePFibNu2DceOHYOJiYlSsH799dcICQlBeHg4Tp48iStXrmDv3r2wsrICx3GYMWMGDh8+jDVr1uDEiRM4ePAgRowYgV27dsHe3h5btmx5rjhDXl4ePD09cePGDaipqWHNmjUYPXo0wsPDsWnTJnTr1g2LFy/GunXrsH37dri6umLZsmXPLdmorKzE4sWLsWPHDlhZWSE0NBRSqRTBwcGIj4+Hrq4uJBLJS8M1MzMT4eHh+O2332BiYoKpU6fC09Pzb93Lf7snT57wARsbG4uysjK+F2tnZ4eWLVu+1f+vTw8Z1/ZoVVVVlULWyMjoDYaMOQDDADwEoPz/UV6eDKNH38HBg+2hovLsuXEAcgD4A/jvG583w9QlFqofABFh+vTpGDBgAFxcXP52e9OmTcPp06dx6tQpGBgYKAXrN998g9mzZyM4OBjJycmIjo5GZGQkOnfuDADYsmULFi5ciOnTp8PAwADff/89+vXrh8TEROTn52P79u1KZQprbdmyBZMmTeJ7rWfOnEFpaSkmTJiAlJQUzJs3D66urpg2bRpu377NT6x6dnjxyZMnmDdvHn799Ve4uLggNDQU6enpCAkJQUpKCnR1dVFeXg4PDw/MmzfvuapUpaWlfBnEevXqYdy4cfjmm2/YcpA6UFhYqFS3uKqqSmlzgGbNmr1VyBIRHj9+rBSyBQUFMDMz40PW0tLyBUPG1wBMAtAEADB69B1MmiSGg4P+a0IVAKSoCdffUTOZiWE+LBaqH0hMTAw2btyItWvX/u3JHRzHYfjw4Xjw4AFOnjzJB1FtsI4fPx6TJ0/GzJkzIZfLERERgZUrV/KF9i9cuIAxY8agR48emDBhAoYPH45mzZrBxsYGe/fuxZw5czB27Njnvvfx48fw9PTErVu3oKamhpUrV+K7777Drl27MH/+fBgbG2PNmjVITk7GnDlzoK6ujh9//BGurq7PtfXw4UPMmTMHly5dQr9+/TB//nzcvHkTixYtQlpaGvT09FBaWgpPT0/MmzcPTZs2VTq+uroamzZtwtatWyGVSvHf//4XkydP/leXQaxrtXWLa3uzAoFAqSdrYGDw1m3WDhnX1jO+f/8+mjZtqrRmtnHjhRAIrqO2l/p2oQrUDAMvAdD1Ha+cYf6GD76I51+K4zgKCAigU6dO1Ul7crmc+vTpQ7169SK5XE5ENetYXV1dqW/fvnTy5EkyNjamJUuW0C+//EJisZi2bNnCH5+RkUHt27enXr16UWZmJvXv359sbW1p9erVZGZmRiNGjCCpVPrC7163bh2/rtXe3p4KCwuppKSExo4dS2KxmEJCQkgmk9GCBQtILBaTj48P5ebmvrCtO3fukIeHBxkbG9O8efNIKpXS4cOHydnZmcRiMdna2lKrVq3Iz8+PcnJynjteoVDQ3r17qWvXrmRsbExTp0594eeYv4fjOMrKyqJjx45ReHg4+fj40OjRo2nlypV05swZKigoeKd25XI5JSUl0YEDByg0NJTGjx9Eqalf0L17FpST057CwkyoXz8DGjCgKQ0a1Iz27m1Hnp4GdOyYE/n6tqThw1vQ/v3tiMjzqZ/ORDSm7i6eYd4CC9UP6O7duzRq1Ciqqqqqk/YkEgk5OzvTkCFD+KIJTwfr5cuXydTUlIKCgujEiRNkbGxMoaGhSsf/5z//IXt7e4qLi6Pg4GASi8W0YsUK6tatGzk6OlJSUtILvzsrK4vatGlDQqGQ1NXVad26dUREdPHiRXJ0dKT27dvTpUuXKCsriwYPHkzGxsYUHh7+0uIOZ8+eJVdXV7KwsKBVq1bxYenk5EQmJiZkb29PrVq1ovHjx780oC9dukT9+/cnQ0ND8vX1pbt37/6d28u8AsdxlJGRQYcPH6bQ0FAaNmwYjRs3jtasWUMXL16kJ0+evGO7N0kma0v5+R3pwYPWFBsrIi8vLdq/vxVlZrahlJQO5OHRmJYssSKptC+lpXUnb+/mFBPzJf0Vqr2IqFsdXi3DvDkWqh9YcHAwHTlypM7ay8/PJ3t7e5o0aRL/2tPBevPmTbKwsKAZM2bQjRs3yNzcnKZMmcKHm0KhoICAADI2NqYjR47Q4cOHycTEhPz8/GjatGlkZGREO3bseOn3r169mjQ0NEggEJCdnR0VFhaSQqGg+fPnk0gkorFjx1JZWRmdOHGC2rVrR46OjnT69OmXthcdHU1t27YlBwcH2r17NykUCoqKiqK2bduSqakptWnT5rXhmpSURCNHjiSRSESenp507ty5d7y7zJviOI5SU1Pp4MGDFBISQkOGDKHx48fTxo0b6cqVK1RaWvqGLV0moo70dM9z5MgWdOGCA2VmOtDFiyJydlalP/+04d/fts2eVq60eeqYvkTk9B6ukmFej4XqB5aamkq+vr4vHVp9Fw8ePCALCwtasGAB/1ptsLq7u1N8fDxZW1uTn58fpaSkkJ2dHXl7e/PDxkRE27dvJ7FYTD/++CM9ePCAOnToQF27dqVt27aRiYkJjRs37qU97IyMDLK3t+d7rWvWrCEiovv371OfPn3IwsKCD8iwsDAyMjKiIUOGUFZW1gvbUygUtHbtWrK0tCQXFxc6deoUKRQK2rp1K9nb25OlpSW1bduWWrVqRRMnTnxpuObm5tKMGTPI2NiYXFxc+HNg3r/q6mpKSUmh6OhomjdvHg0ePJgmT55MW7ZsoT///JMkEslLjrxJz4bqqFGt+J5obq4b9e37BV250oxksl5E5ElHjrSnoCCzp47pTURdP8BVMszzWKh+BIsXL6bo6Og6bTMmJoaMjY1p48aN/GtPB+v9+/fJ3t6efH19KScnhzp16kR9+vRR+uV29epVsrS0pG+++YbKysrIx8eHLC0tKTo6mjp37kzOzs704MGDl57DihUrlHqt+fn5RFQT2GZmZuTh4UEZGRmUnZ1Nw4YNI7FYTAsXLnxp0EmlUgoODiZjY2Nyd3enmJgYUigUtH79erKxsSFra2tq3749GRoa0qRJk14arhUVFRQeHk42NjZkb29PK1euJJlM9i63mXlHcrmcEhISaPfu3TRnzhwaNGgQ+fv7U2RkJN28efOpPzKziKg9EbnTy0LV09OA/vzThpKTzYnjPOmnn57tqboQke/HuEyGYaH6MWRmZpKPjw+Vl5fXabunTp0isVhM+/fv5197OlgzMjKoXbt2NHjwYCouLqbevXuTs7MzH35ENc9KnZ2dqWvXrpSfn0/Lly8nkUhEK1asoPHjx5OxsTHt3bv3peeQnp5Otra2fK911apVRERUXFxM33zzDYnFYgoNDSWFQkFnz56l9u3bU9u2ben3339/aZvFxcU0efJkEolE5O3tTenp6SSXy2nFihVkaWlJtra25OTkxBf0f1m4KhQKioyMpI4dO5KZmRnNnTuXiouL3/Y2M3VAJpNRbGwsRUVF0ezZs2nQoEE0c+ZM2rFjBxUUDCSF4q/e6vTpxnTsmBM9HapLlljSjRsiun27Lfn4tKBbt55+ptqeiE58xKtj/s1YqH4kK1asoKioqDpvd/fu3SQWi+nixYv8a2VlZfTll1+Su7s730v19PQkiURCQ4cOJXt7e6UeqFQqpSFDhpCNjQ3dvn2bzp8/TxYWFuTr60uRkZH8LNuX9TAVCgUtWbKE77Xa2tryQXf+/Hlq164ddejQga5evUoKhYJ+/PFHMjY2pkGDBj23k83TMjIyyNfXl0QiEY0fP54KCwtJJpNReHg4mZmZkYODA3Xo0IFEIhFNnjxZ6Y+FZx07dox69+5NIpGIxo0bR+np6W97q5k6JJVKKSYmhrZv306rVw+hlJQGlJBgSo8etaXTp9vQiBEtaciQ5rR//1+zf4cNa0ru7lq0e7c9/RWobkTkSkRvtmMPw9Q1FqofSW5uLg0bNuydZ0m+yqpVq8jExITi4+P5154O1sLCQurSpQv17NmTysrKaNKkSWRhYUExMTFK7QQFBZGRkRHt27ePsrKyqEuXLtSxY0e+h9mlSxd69OjRS8/j/v37ZG1tzfdaV65cSUQ1Q4FBQUEkEonIz8+PysrKKDc3l4YPH05isZiCg4OVnvc+Ky4ujry8vMjIyIgCAwNJKpWSVCqlBQsWkKmpKTk6OpKzs/MbhWtMTAwNHTqUDA0NafDgwXT9+vU3vc3MeyMnudydSkttKSPDnuLijOj69WaUlGRGWVntqKysK3GcBxF5UkaGPd27Z0U1gepBRG2JaOMrW383EiI6QkRLiegHIgojop1ElPcevov5nLFQ/YjWr1+vtHa0LgUGBpKVlZVSz+/pYC0pKaFevXqRq6srlZSU0IIFC8jY2Pi5mbm1Pd8FCxaQXC4nPz8/MjU1pYMHD9KoUaPI1NSUfvvtt5eeh0KhoNDQUKVe6+PHj4mIKCUlhXr16sU/tyWqWZLTsWNHcnBweGW7RETnzp2jLl26kLm5Oa1cuZIUCgWVlZVRYGAgGRsbU8eOHcnFxYVEIhFNnTr1leGakZFBfn5+JBaLyc3N7bXfzbxvaUTUhWrWnHqSXN6Hioo6U3q6LcXGiunGjWaUnGxOWVlt6caN5lRY6ExE7YhoMhG9/A+yt5dJRMuIyJlqhpXbU81EKqf//z4nIppJRLfr8DuZzxkL1Y+osLCQhg0b9spf9n/H2LFjqV27dkrPDZ8O1rKyMvLy8qKOHTtSQUEBbdy4kcRiMe3evVupnZs3b5KVlRX5+PiQTCajrVu38kG7efNmEovF9P33379yZm1ycjJZWVnxvdbly5fz723bto3MzMzoq6++ooyMDFIoFBQREUHGxsbUv39/ysjIeOV11i7Dsbe3p507d5JCoaCSkhKaNWsWicVi6ty5M7m4uJBYLKapU6dSYWHhS9sqLi6mH374gczNzcnJyYm2bNnCZgx/NClUM5zbjoh60tMzgquqelNhoTOlpdnQ3buNKC5OnS5d6kRHjuyl9PR04jiuDr7/KtWEenuqWfvq+YKfvkTUgYgciegnIqqL72U+Z6xM4UcWGRkJiUSCCRMm1HnbHMdh0KBBKCwsxO+//85v+l1eXo6+fftCX18fe/fuxciRI3Hv3j0cPnwY165dg7+/P/z9/ZV2rsnLy8PgwYPBcRyio6Px6NEjfPPNNzA3N8fs2bPh5+eHL774AlFRUS8tX8dxHBYuXIjQ0FBUVVXBxsYGJ0+eRNOmTfHkyRNMmTIFFy5cwPjx4zF9+nQUFRVh5syZOHv2LIYPH44ffvgB6urqL21748aNWL16NRo0aIDg4GC4ubmhqKgICxYswIEDByAWi8FxHDIzM/Gf//wHgYGBz+0FW6uqqgqbN2/G1q1bIZPJMHz4cEyePLmOtzZjXq8AwF4AuwFUoGa/1Nr9VOX//xlTREdr49IlLZiaWiA2NhZSqVSppGLz5s3fcjOL6wAmANDBi7ece5YcNfu9TgAw6i2+h/nH+dip/m9XWlpKw4YNo+zs7PfSvkwmo27dupGXl5dSj6usrIxcXFzIw8ODpFIpjRw5kmxtbSk9PZ0uXrxIJiYmFBgY+Fxbvr6+ZGVlRdevX6fi4mLq06cPtWnThm7evEne3t5kYWHxyuIOREQJCQlkaWlJQqGQNDQ0aNmyZfx7p0+fpjZt2lCnTp3455tXr14lZ2dnsrW1pUOHDr2y7dpnq8bGxtSnTx+6efMmEdU8w/bz8yORSEQ9evSgLl26kFgsJn9//1f2XBUKBUVHR1OXLl3I2NiY/P39+eFr5kOSEdFJIlpENcOtc4hoFRElEBFHEomERo4cyc8LyMvLo1OnTtHy5ctp5MiR5OvrS0uXLqUTJ05QTk7Oa3qyeVSzLKcrvbh3+rKf3lTTq75ax9fOfE5YqH4Cdu3apRQsda2kpIQcHR1p5MiRSq8/G6wTJ04kKysrSkpKovj4eLKysqJvv/32ueHP0NBQEovFtGvXLlIoFDRr1iwyMjKiPXv20OrVq0kkElFISMgrh00VCgX98MMP/LPW1q1b8zV7ZTIZzZkzh0QiEU2cOJEkEglfEMLU1JS8vLzo/v37r7zm4uJimjp1KolEIho6dCg/uzkrK4vGjBlDhoaG1Lt3b+ratSsfrq9bXnPx4kXy8vLiyyAmJia+8vPMh3Xjxg0aNWrUc4VVOI6j7OxsOn78OC1ZsoSGDx9Oo0aNohUrVtDp06df8PhlK9UM5z6/Tvb1P85ENPZ9XibziWOh+gmoqKggHx+f97qsIysri2xsbGjWrFlKrz8drFVVVTRr1iwyNzen27dvU2ZmJrVr144GDBjwXLGE/fv387Nva3tzxsbGNGPGDLp27RrZ2tqSh4fHa4MqLi6OzM3N+V7rjz/+yL+XlJREPXr0ICsrK37tbXFxMY0ZM4ZEIhEFBAS8tjJVZmYmvwzHz8+P/wWanp5Ovr6+ZGhoSB4eHm8VrrVlEA0NDcnLy0tp+RLzcS1btkypAMqLcBxHmZmZ9Ntvv1FYWBh5e3vT2LFjafXq1XThwmmqqvqSiHrQu4WqO9UEctp7ukLmU8dC9ROxf/9+WrRo0Xv9jqSkJDI1NX2uV/x0sMrlcpo/fz6ZmprS1atXqbi4mFxdXalbt25UUlKidFxcXBzZ2trS4MGDSSqVUlJSErVt25Z69+5N6enpNGDAALK2tqbLly+/8rxq6w9ramqSUCgkGxsbpRKGmzZtIlNTUxowYAD/+vXr18nFxYVat279ymIUteLj4+mrr74isVhMc+fO5StJ3bt3j4YOHUoikYi++uor6tatG4nFYpoxY8ZrwzU3N5f8/f3J2NiYXF1dKTo6mk1q+shKS0vJ19eXEhIS3vgYjuMoLS2NDh06RJGRY+jevYYUGyuitLTWtGCBmDw8GivtknP3bheaMcOYhgxpTiNHtqRTp5TLKtaE6sr3c4HMJ4+F6idCJpPRiBEjKCUl5b1+z5UrV0gsFj9XJP/ZYF26dCkZGxvT2bNnSSqVkpeXF7Vv3/65er2FhYXUvXt36tixI2VmZlJZWRkNHDiQbGxs6Pr167RkyRISiUS0dOnS155bTEwMmZqa8jOEw8PD+ffy8/PJx8eHjIyMaNmyZaRQKEihUNCGDRvIzMyM3N3d3+jeXbx4kbp160ZmZma0fPlyPgTj4+Np4MCBJBKJaODAgdS9e3cSi8U0c+bM14arRCKhsLAwsra2JgcHB1q1ahUrg/gRXbp0icaNG/eO/w32EMe1ofLybpSd7UhJSebk5aVF//tfM8rIsKPk5PY0cGBTOn++0/+vpe1DqandSDlUXYhoYl1eEvMZYaH6CTl27Nhzk4Peh8OHD5NIJKLjx48rvf5ssG7YsIHEYjEdPXqUFAoFjRw5kmxsbJ7bDk4ul9OYMWPI3Nyc75UuXLiQxGIxbd68mS5evEhWVlY0YMAAKisre+W5VVdX0/Tp0/leq7W1tdJa2xMnTpC9vT117tyZbt26RUQ1z4zHjRtHIpGIZsyY8UabFezfv5/atWtHdnZ2tGPHDj5cY2Ji+B7tkCFDqHv37mRkZESzZs16bbgqFAratm0bdejQgczMzCgwMJCVQfxIQkNDafv27e9w5FaqKSDxV0h+801Luny5HWVltaUVK5rS6NEaVFb2qklMXYhoRB1cBfM5YqH6CakNp9jY2Pf+Xdu2bSNjY+PnKgjVBqunpyfJ5XL6+eefSSwW80Oss2bNIjMzM7p69fkZjsuWLSOxWEyRkZFERHT8+HEyNTWlcePGUW5uLrm7u5OtrS3duHHjted3/fp1MjExIRUVFdLQ0KCwsDD+PZlMRrNmzeKLOtSG6K1bt6hLly5kbW393FrbF1EoFLRx40aysrIiZ2dnOnHir3qxf/75J/Xt25eMjIzIx8eHevbs+cbhSkR09OhR6tWrF4nFYvLz83vtWlumbhUVFZGPj89rJ7Q9bw89G6pPP1Ndt641LV8upuRkc3p5qLKe6r8ZC9VPzJkzZ2iKGSYAACAASURBVGjmzJl1tHj91cLCwsjMzOy5XzylpaVKwbp3714Si8X8X/614fmiqkNHjx4lY2NjmjlzJikUCsrIyKBOnTqRq6srZWZm0vz580ksFtPatWtfe35yuZymTp3K91qfrRAVHx9P3bp1IxsbG36pTe0Wcebm5tS7d+83mqErk8lo4cKFZGJiQr1791b6Q+PixYvk5uZGxsbGNHLkSOrRowcfrs8+Y36RGzf+j70zj7Op/v/48+539sUYs5kZs5nF2DXWiSzZJUtIIsmWRPlKVOLbQiUpFVEUFdLC11JEGxUhjH0bxsww+3bv3P39++PO3ExG8c1P9J3n43Efs5xzPudz7sw9r/NeP7/IgAEDJDw8XO65557LWkHW8P/H1q1b5ZFHHvnDlpeX8704uyRVL6qrVzeV2bPjZN++sD+wVmtiqv/L1IjqTYbdbpexY8fesB60jz76aJWG95UUFxdXEdaNGzdKZGSkvP322yIi8sEHH1SxSi/l6NGj0qhRI+nTp4+UlZWJ2WyW4cOHS1xcnGzfvl22bt0qcXFxcu+99/7Bupq/8dNPP0lUVJTLar00oauy1CYqKkoGDBjgKsspLS2V8ePHu6zZqzlPcXGxTJ48WSIiIuSee+6p8rCxdetWad++vcTExMiDDz4od9xxh0RFRckTTzxxVeKanp4uY8aMkYiICOnSpYts3LjxT4+p4a/hcDjkmWeekVWrVl3DURYRuUMuzf69dJWcnJzO0r9/sKxblyhpadHVxFRrsn//16kR1ZuQnTt3yiOPPHJDrFW73S733nuvtGzZ8rJ4Z3FxsbRp08YlrNu3b5eoqChX0lGlVXppQlElhYWF0qVLF2nevLmcOXNGRMRVw/rKK6/IhQsXpGPHjtK0adMqjf+vhNlslocffthltcbHx1dxqV68eFEGDRokUVFRsmDBAleM9MCBA9KxY0eJj4+/LDnrSmRmZsrw4cNdK9hc+sCxYcMGadu2rdSvX1/Gjh0rnTp1kqioKJk2bdpViWthYaHMmDFDYmNjpWXLlrJs2bKajOH/R3JycmTw4MFy7ty5aziqap3qTz+1keHDf1slJy3tdpk0qZ507uwu995b53fZvzV1qv/r1IjqTYjD4ZBJkybdsPpHu90uXbt2lS5dulzmKqsU1l69eonVapWffvpJYmJi5NlnnxURZ+wzNjZWJk+efJk42O12GTdunMTGxsr27dtFxJmZGR8fL0OGDBGDwSBPPPHEFS3e6vj+++8lMjLSZbXOnj27yvaNGzdKcnKypKamVolNL1++XOLj46Vjx45XJeIizs5Pd911l6u38aXW7qeffiopKSmSkJAgjzzyiHTs2NElrn+WjCXifEhYsGCBNGrUSJKSkuTFF1+8Kmu6hmtnw4YN8vjjj1/Dw8vVdVTKzW0lhw5FicPx+45KP17vS6jhFqJGVG9S9u7dK6NHjxabzXZDzmcwGKRNmzYyYMCAy24+lcLau3dvsVqtsn//fomLi3M1kjh+/LgkJyfLfffdV+2Na+HChRIREeFyHV+8eFHuuOMOadGihZw8eVLWr18vMTExMnLkSDGZ/nwdzPLychk9erTLaq1fv77LGq7c/thjj0lERIRMnjzZlchUWlrq6rI0YcKEqxI/kaplOK+88orrwcNut8vHH38szZo1k+TkZJk8ebJLXJ988smrGt9ut8uqVaukXbt2rjaIV1pkvYb/DofDIU888cSftrisyi5xNtK/srA6HD3kwIEIKSxsK05BbSpOK7eG/2VqRPUmpfJGsGXLlht2ztzcXGnUqJE8/PDlmYu/F9ajR49KQkKCjB8/Xux2u1y8eFFSUlKke/fu1Za0bN26VWJiYuSRRx5x1ZhOmDBBoqOjZd26dZKRkSGpqamSkpJy1bW627dvl/DwcFGr1aLT6VzWcyX79++X1NRUSU5OrhLDTEtLky5dukj9+vXlvffeu+r357PPPpPmzZtLcnKyvP/++64HCLvdLsuWLZNGjRpJ48aNZerUqa6Y69WKq4hzAfdevXpJRESEDB8+/LLSpRr+ezIzM2Xw4MGumPvVUblKTXO50io1+fmt5PTpOuJw1KxSU4OTGlG9iTl06JA88MADYrFYbtg509PTJT4+/jKBEnEKa+vWrV3Cmp6eLsnJyTJ8+HDXWqadOnWStm3bVtuk/uTJk9KsWTPp3r27lJSUiIjTLRsZGSlPP/20WK1WmThxokRFRV1VSYyI0yp98MEHr2i12u12WbBggURFRcmgQYOqWIEffvihJCQkSIcOHa46K9dut8s777wjiYmJ0rJlyypiXVmik5ycLM2aNZOnnnpKOnToIFFRUTJjxoyrFtfDhw+7Wij26dOnpg3idWLt2rUyffr0a8xVqFxPtVJcq66n6nDcJlu3NpW9e68ufFHDP58aUb3JmTlzpqxfv/6GnnPfvn0SFRXlctdeyu+FNTMzU5o1ayb33HOP2O12sVqtMmDAAGnSpEm1tZmlpaXSs2dPadKkicsi3bdvnyQnJ0vv3r2lpKTE1Ud43LhxV10OsWXLFqlbt67Lan3mmWequKKzs7NlwIABEhUVJQsXLnRtKy8vd2X8jh079qqSjUScMdHnn39eoqOjpUuXLlWytSuFPCEhQVq2bCnPPvusyy1cnbheKZaanZ0tkyZNklbh4fJqTIykt2snjl69RPr3Fxk/XmTrVpGazk1Xjc1mk0mTJsmXX375XxxtEJH/iMjLIjJDRF4QkZUikiO//PKLjB07tibhrAYRqRHVm55Tp07JsGHDrqpL0PXk66+/lsjISFcj+0v5vbDm5+dLy5YtpXfv3mI2m11lQfHx8bJ///7Ljrfb7TJp0iSJjo523eCKioqkR48e0qhRIzl48KCcPHlSWrZsKW3btr3qxgkGg0FGjBhRxWqtXJ2mknXr1klSUpK0b9++SsLS0aNHpWvXrhIbGyuLFy++6hvkpWU4AwYMqFKGYzab5aWXXpK4uDhp06aNPPfcc3LHHXdIdHS0PPXUU1JaWiq7d++Wjh07yvnz5y8fPC1NZNw4sTVtKpmhofKTu7v85OkpGXFxYm/VSqRFC5H27UXeflvkBv9/3KqcOXNGhgwZInl5eddtTIfDIVOmTPnTJQ9r+N+gRlRvAV588UVZs2bNDT/vqlWrJDIyUr777rvLtv1eWIuLiyU1NVW6dOkiRqNRRJxWdmX/4OpYsmSJREREyIIFC0TEKbbTp0+XyMhIWbFihZjNZhk9erTExMTI559/ftXz3rRpUxWr9emnn64ikuXl5a6EpX/9619VesSuWrVKkpKSJDU19ZpqhTMzM2XEiBHVluGUl5fLv//9b4mJiZH27dvL3LlzXW7hhg0bSlxcnAwZMqRqr9qtW0Vuu02kZUuR7t1FevYUR48ecrZhQ/nOx0e+9vCQo3FxYmnfXqRpU5Hhw0VqWiJeFStWrJBZs2Zd15K1gwcPysiRI6+x0UQN/0RqRPUWICMjQ4YMGSJlZWU3/NxvvPGGREdHV1uG8nthNRgM0rlzZ7n99ttdLs4333xTIiMjr/hQ8P3330tsbKyMHj3aJXyffvqpREVFyaOPPip2u10++OADqVev3jWVRZSWlsrQoUPFzc1NlEpltZ2j9u3bJ23atJFGjRpVcQmWl5e72iCOGjXqmvr3Hj16VPr27SuRkZHyxBNPVHH1GgwGefrppyUqKko6deokEydOFC8vL3Fzc5Pg4ODfmlrs2CHSvLlIx44iPXtW+7rQooXsDAiQrW5uciA8XEwNG4oMG1ZjsV4FVqtVxo0bJ99+++11HXfGjBmyadOm6zpmDbceNaJ6i/Dqq6/KihUr/pZzz5gxQxISEqp1w1YKa58+fcRqtYrZbJaePXtKq1atXMlKlW0Or9Sa8OzZs3LbbbdJp06dXAJ2/PhxadasmXTq1Elyc3PlyJEj0qxZM+nQocNlK+X8EevXr5ewsDDRaDSi0+lc679WYrfbZd68ea4ev5cuWH3y5Enp0aOHxMTEVInDXg07d+6Ujh07SmxsrMydO7eKBVNaWipPPPGEeHl5iYeHh4SHh4unp6doNBqZ8cgjYm/TRqRDh2rFdGxEhBxITXX9XNi2rfwSHCxbdDo55ecnGVOmXPUc/5c5duyYDB06VIqKiq7bmJXr7NasUPS/TY2o3iJcvHhRBg8efF1vAtfC6NGjpWnTptVabb8XVrvdLgMGDJBmzZq5ShgquzHNnDmz2vENBoP07dtXGjZs6LKKjUajDBo0SBISEuSnn36S8vJyGTZsmMTGxl62ws4fUVxcLEOGDBE3NzdRqVQSGxt7WdlOZmam3H333RITEyOLFi2q4hr89NNPJTk5Wdq0aVPtQgJ/xLp166RFixaSnJx8Wfekr776Svr27SuBgYGSkpIi48aNk7c7dZJTtWrJhdtuE3uF2/dqXoaOHSUtNFR+1umkV6dO/2Uyzv8WS5culblz517XMWfNmnVNoYoa/nnUiOotxFtvvSVLliz5W85tt9vl7rvvltTU1GqTpqoT1mHDhknDhg1dFu7BgwclPj7+ipmSdrtdpk2bJlFRUVUynufOnSuRkZHy1ltviYjIokWLJDIy8jKr88/49NNPJSQkxGW1Pvnkk5cd/+mnn0piYqJ07NixSp2o2WyWJ598UiIiImTEiBHVlgxdCbvdLkuWLJGkpKTLynBEnA9MDz/8sESEh8vuoCDJTU6Wo3Fxsi8sTC5eo7hamzSRZQMH1rRBvApMJpOMGjXqmh+U/ojTp0/L0KFDb3hiYQ03DzWieguRn58vgwcPruKivJGYzWbp0KGD9O7du9obdXXCOnbsWElMTHRZhmfPnpUmTZpI//79r+gmq2zWf6kVsXXrVomNjZWRI0eK2WyWffv2SaNGjaRr167X9H4UFhbKwIEDxd3dXVQqlcTExFxmtRoMBpkwYYJERETItGnTqtQJnz59Wu666y6Jjo6u0mP4ajCbzfLCCy9ITEyMdO7cWXbt2lVl+8Xt2+VU7dqyRa+XX0JCJCclxSmudes6xbVHD3mgbl3Z167dlYW1bVuR4cOlvLxc5s+fL40aNZIGDRrI3Llz//qN/vx5kX37RH78UWT/fpGCgr823k3AwYMH5f7777+u+Qpz5syR1atXX7fxari1qBHVW4z33ntP3njjjb/t/MXFxdKiRQsZPnx4tdsLCwuldevWctddd7niiFOmTJG4uDg5ePCgiDgfDtq2bSudOnW6YkOEn376SeLj42X48OGucTIyMqRt27bSpk0bOXfunJSWlsrAgQMlPj7+mpNO1qxZI8HBwS6rderUqZcJ5O7du6V169bSuHFj2bp1a5Vt69evl0aNGkmrVq3khx9+uKZzl5aWypQpUyQiIkL69+//m6h/+61ISooYO3aUfWFhskWvl71hYZLbqpVLXHvp9bKjefMri2rnziJdu7rOVdlKsW3bthIdHS1Tpky5rA1iYWHhlTNhLRaR7dtFHnjAmTzVsuVvr9tuE3nySafA3oDFH/6/WLhwobz22vVbqu3vTCys4e+nRlRvMUpKSmTw4MGSlZX1t80hMzNTkpKSXL1/f091wjpz5kyJiYlxWWfl5eXSvXt3SUlJuWKv28zMTGndurW0b99ecnJyROS3hdxjY2Ndi4q/+uqrEhERIS+88MI1WY75+fnSt29fl9UaHR19WWtAu93ucj8PGzZMCgsL5dy5czJs2DDJy8uTZ555xrWtynUcPy7y3nsic+eKzJkjsmSJyIEDVcQnOztbRo4cKREREfLggw9KwZo1TqGqEMiyDh1kT2iobHFzk11BQbLNw0M6gcwH+blOHTndoIHktmwpps6dxVEpql26OJOcfofNZpPt27dLjx49XC7s48ePS3l5udx5552ydGk1PWuPH3cKdIsWIm3aiPToUVXAu3Vzzrd5c5GRI2/Zkh6DwSDDhw+/rmvd/p2JhTX8vShERKjhluLjjz8mMzOTxx577G+bw7Fjx+jVqxdjxoxh8uTJl20vKiqiR48eBAYGsmbNGtRqNS+99BJvv/02y5Yto127djgcDkaMGMG+fftYu3YtsbGxl41jMpkYMWIEBw8eZMWKFTRu3BiARYsW8eKLLzJmzBimTp3Kzz//zIMPPkh0dDTLli3D19f3qq/lo48+YvLkyRQUFKBQKJg4cSIvvPACSqXStc/58+eZMGECaWlphIaGkpmZyYgRI3jyySc5d+4ckyZN4uC+fTzXpQv9DQYUR4+CwwEqFSgUYLOBUgkREXD//WywWFi7YQOtW7fG29ubFStWoN69m+dNJiKaN8dNr0eA4qIijh49Sn5+Pg4RFgA9gViVCn8/P7y8vLBYLKBQ4OXpibdOh3utWuS/+y5fffUVW7ZsYdeuXRQXF3P48GGCg4M5dOgQc+bM4dtvvyU4OJiCggK8vb157bXXaNOmjfOCDx6EsWOd3/v5/fEbKAI5ORASAu++C/7+V/3e3yzs2bOHN998k4ULF6LX6//yeDk5OTz66KO89dZb+Pj4XIcZ1nCrUCOqtyDl5eWMGjWK5557joiIiL9tHj///DODBg1i9uzZDB069LLtRUVFdO/enTp16riE9c033+Sll17irbfeomvXrjgcDqZMmcL69etZuXIlLVq0qPZczz77LMuXL+ell16iX79+rvOPGDGC5ORk3nvvPSwWC8OHD+fUqVMsWbKElJSUq76WnJwcRo0axdatWzGbzURGRrJ+/XoSEhKq7DdjxgxefvllPD09CQ4O5qOPPqJBgwZgMJA+ZAjGLVswq1SEN2hArYCAqicRgdJSKCsj08+P/hkZlKjVWCwWysrKiPf356UjRyhQqwkOCcFisVBcUoJSqUSjVlNaVsY8q5VeCgVRgFanw9vLCxQKQkJCcNPrsWdl8a2HB/ccOQKAUqlErVaj0+koKiqq8qBw8uRJUlJSMBgMuLm5ERQUxMaNG6mn1cK99zrn6+3t2n/k/v1MiIyk8ZVEIicH4uJg6VLQaq/6vb9ZmDdvHp6enjz00EPXZby33noLnU7HAw88cF3Gq+HWQDVz5syZf/ckarg2NBoNCoWCr7/+mtTU1L9tHmFhYcTExPD4449Tv379yyxNvV5Pv379WLx4MRs3bqR///6kpKTg5+fHlClTCA8PJzExkTvvvBOTycTUqVOJi4ur1mJt3749wcHB/Otf/6KsrIzU1FTCwsK45557WLlyJW+++SZdu3Zl7NixlJaW8sQTT6BQKGjZsuVVXYuHhweDBw8mPDycnTt3cvHiRRYtWkRJSQkdO3ZEoVBQXl7Oiy++iFqtxmw2c/78ebZt28aDw4ahnjQJ3xMnqNWgAWU2G8ePH6eouBh/f3/UajUADhFKLRbyTCasp08Tl5XFFpUKo91OYGAgRVYrcSLUNRq5UFKC0WhEp9MRHBxMSUkJep2O7y0WWtaqhbfdjtlsxmQyYTKZKC4qwsvLiyBPT5I/+ghtaCg//PADDocDm82G1Wrl9ddfZ/Xq1ezfvx83Nzf279/P559/jl6vx83NjaysLN5//33uycnB59w5FLVqVXmP1l28SIqvL0FXsuTc3SE9HWJjISrqqt73m4kGDRqwaNEi4uPjqV279l8eLzo6mtdff5077rgDNze36zDDGm4FakT1FiU6Oprly5eTlJRErd/d/G4kcXFx+Pj4MHXqVNq0aUNISEiV7dUJa9OmTQkLC+Pxxx8nICCAhg0b0qZNG3x9fZkyZYrrd78nKSmJ1NRUZs2axY8//kjPnj3x8vLi3nvv5fjx4zz11FNEREQwatQomjZtysyZM/n+++/p1q0b2qu0nBo1asTQoUM5dOgQ586d4/vvv2f58uV06tSJwMBAgoODadiwIQkJCfj6+nL06FGi1q4l+tw51KGhKJRKatWqRUhICBcvXuTYsWMUFRVRVFzMuYwMysvL0Wi1eAcFYT9/npCyMjbhdC/n5uaSa7fTw+HAIzAQlUqFxWymID8ftVpNUFAQmwoLaeLuTucWLTifmYndZsPhcCAOBwFaLccMBmZkZpKamkqzpk3J37mTSJuNyX37MrxnT/LKy/nu55955513WLduHSKCSqXCzc2NWbNm0fP224l8913OGwygVOLu5oZCoQCuQlQVCrDb4dw56Nv3mv6PbgZ0Oh2BgYEsXryYLl26oFKp/tJ4bm5uFBcXc+DAgSt6YGr451Hj/r2F2bRpEzt37mT27Nl/91SYO3cuS5YsYdOmTURHR1+2vTpX8MaNGxk/fjzTpk1zudw2btzIww8/zPjx468YM87JyWHAgAE4HA7WrFlDUFAQ4IyNTp8+nUGDBvHvf/+bgoIC7rvvPi5cuMCyZcto1KjRNV3T0qVLmT59OoWFhSgUCsaPH89LL71UxYUqBQUUt25NekkJvrVq4e3tTZnBQGlpKeXl5SgUCooKC1GqVCQlJhIYGOg6dvu2bXgajdwDnKn4naeHB4tFSBIhplUrTp06RV5eHiaTCQ8PD8xmMz4+Pvj4+nLmzBnE4XAKo8NBoELBlz168MZ339HGYGCkVksQUG42ExcTg19lrLN7dxz9+9Nt4kR+3b8fg8FAeXk5IsKEkBAeNZuxBwRgsVoxmUzUCQwksE4dxhw6RM/AQLbl55NjNtPUx4dJUVFoL3k/EIGLF2HlSqcr+BbkhRdeIDQ0lGHDhv3lsYqLixk7dizz58+v8rev4Z9LjajewthsNsaOHcsjjzxCcnLy3z0dJk+ezNatW9m6dWu1N5BLhfWTTz5BpVLxzTffMHLkSMaPH+9KePr555+577776Nu3L3PmzKn2XBaLhVGjRrFr1y7ef/99lyVw6NAh7r33XkJDQ1m5ciXe3t7MnDmTDz74oIp4Xy1ZWVk88MAD7NixA5PJRN26dfniiy9ITk6mpKSE7Hnz8Fu2jAsiFBYWOuObwcHUCQrC08MDpVKJiHDq1CnOnj2Lr58fsTExFBYWkp2djTIvj1XAfKUSb29vzGYzHZo25X21Gsvp01yw21FrtdisVpQqFRkZGeh0OjRqNSgUzvHNZrwtFhbqdBwvL+d5QK9QUCaCUaEgKDiYpk2bOi/IZoOCAnA4eOPQIV5wc+O21FQGDBhA7dq1CZs3D82+fVy0WDCWl6NSqVwW2wIRQv38mBkfj0ap5F9HjtC7Th26/f5vnZ0N06ffktYqQGFhIRMmTGDWrFlEXQc39ooVK8jPz2fixInXYXY13OzUiOotzvbt29m0aRNz5sxxuen+LhwOB8OGDePkyZNs3boVT0/Py/YpKiqiW7duBAcH88knn6BUKvn555+59957GT58ODNmzACc2cX9+vWjRYsWLF26tIp1eCkvvvgiixYt4rnnnmPIkCEAlJWVMXToUE6fPs37779P48aN+fLLL5kwYQKtWrVi0aJF15zhuWjRIp566imKiooQERITE6lfvz7/3rcPH70ej4AA3D08KC0tJT09nX8XF3N3ZCTfFxVRYLXS0teXIb6+HE1Lo8xgwMvTE5vNhsVoxEOE7hoNZoUCb29vbr/9dvZ/+y2vazTEmEzovLxQ1qqFp5cXv+zejcPhwGyx4KnREKBSodXpWFK7NqfPn+eJ8nKKgPJL5q7X6fD09CQ6Oho3Nzfsdjt2m43sX3/lqEbDU/7+qDw9adeuHdNPn8YtM5NsgwEPT09MJhOlJSWUlZXxotHI7UBDoEnjxqwrL8euUjHh98KTmQkTJ8L991/Te3wz8fXXX7Nu3TpeeeUVV0z8v8VgMPDQQw8xd+5cQkNDr9MMa7hZqRHVWxyHw8HDDz/MiBEjboq4jcPhoGfPnthsNjZu3FjtDak6Yf31118ZOHAg/fr144UXXgCcVuJdd91FcHAwq1atuqIQrlu3jkmTJjF48GBmzZqFUqnE4XAwe/Zsli1bxsyZM7n//vvJyspi6NChlJaW8sEHHxAfH/+H15KTk0NaWprrdfHiRdLS0sjKysJqtVIvNJT9Hh64/87d7XA4GPLTTzhMJmbWr4+vuztPHz5MhAgDa9cmKzsbo9GIVqMhPCKCouPH6a9QkKfToVQqsVckIXm7u9M/PJwOWVm0Uqux2GwYS0txAAKUi/AhsEGpJNDh4G2gCDBfMpcFQC8gWqFwxU91Oh0qlYrS0lKCgO9VKqZrNNQODOSzwECUx49zwWjEy8sLpUqFwWDAarEwz26nJxAFeHt785NWS7bZzKiAALy8vPD09MTTywttTg48/jhUPOTciogIM2fOJCkpiYEDB/7l8VavXs3Zs2eZMmXKdZhdDTczNaL6D+DHH3/k448/Zv78+X+7tQpgNBrp0qULISEhfPzxx9VamdUJ67Fjx7jrrrvo3Lkz8+fPR6lUUlJSQt++fbHZbHzxxRdXrD89dOgQgwcPpn79+nzwwQcuAf7Pf/7Do48+Srdu3XjttdcAmDp1KmvXrmXWrFmuUiARITs7u4qIWiwWGjRo4HpFRESgUChYuHAhs2bNgqIi/mO14hYZSVJiYpX3fuT+/XTz8UGXlgbAKWAzMEGhQKfX4+3tTXl5OaUlJQQAIzUaDlutKCrEr5KAgADMZjOPDxpE6S+/kH7oELWCgrhosaBt2ZKcoiIOHjzIvPx86uEU1Ut5W6NhfHg4nrm52B0O1CoVZrOZ0NBQzp49i81mo45CwRidjmMqFc+p1bQuKyNfqUQcDjQaDXaHA5vVymtAb4WCxj4+iMPBDyoVyoAAxgYHU1ZaSllZGWVlZfhZLOzr0wf93XeTmJhIeHj4FT0NNzOVtaZz5syhbt26f2ksk8nEqFGjmD17NpGRkddngjXclNSI6j8AEeGxxx7j7rvvpm3btn/3dADIy8ujc+fOtG7dmoULF1a7T3XCeubMGfr06UPz5s1ZsmQJSqUSi8XC4MGDSU9P57PPPiM8PLza8QoKChg4cCAGg4E1a9YQFhYGwJkzZxg0aBAeHh58/PHH7K4KxQAAIABJREFUeHt788gjj7B582YaNGhA27ZtOXbsGAqFooqIhoaGXvEhJT09nVHDhjF3xw4yRXDT62neogU+3t4IMPTnn0k1GgkzGnGIkAssBZ7z9HTFKEvLylCpVNQG+tpsnHM4qpyjMp6ZnJzM7t27CQ0NJTs7Gz8/P4xGIydPniQsLIyTmzZR1qcPGVZrleODg4J4KjeXu9RqeiYlkZuTw8WLF7Hb7YgIjoqPfiBOwX9WoSBFhNeVSnIrRFBZIfIeHh48X1bGQHd3Gvv4EBERwWu//kqZRsMLKSloNRoAxGbDcuECO6ZP52BmJkeOHKGoqIi4uDgSExNJSEigfv3616XBwo1gw4YNfPPNN8yZM+cvPxh88cUXHDx40BXiqOGfSY2o/kPYt28fixYtYuHChX+5FOC6YDeTceYod/cfQO+7B/PU089Wu1t1wpqVlUWvXr2Ii4tj5cqVLnfuuHHj+O6771izZg1JSUnVjudwOBgzZgzffvst7777rqtDkNFoZPDgwezZs4c6depw4sQJGjVqRGZmJm5ubixdupSUlBSniIpAVhYUFTlLRDw9ITwcfufKdtjtZCQmkn76NKU2GwqFgrC6ddHr9TyWnk5bhYLkim5HZ5RKNtjt/MvdHbVajcFoxN/PD71Gg7a8nK5qNWdzcqq9Jjc3NyIjIzlySUMHh8NBdHQ033zzDT4LF3JuwQLSTSYcFcKsUavRarXMNZlo4nCwHzCpVDTz8qKfXk9ZcTFmkwmHCCrAH+gK6AMC+Nxmw1RSQpnDgaenJ94+PiiAp/PyGODmRnN/fxITE3nt119JLylhuI8P8fHx6HQ6Z+Zv164wa5Zr/sXFxRw9epQjR45w+PBhzpw5Q2hoKAkJCSQkJJCYmEjA7xtl3CSICNOmTaN169b07t37L41lsVgYPXo006ZNI+4WzYyu4c+pEdV/CCLCk08+SceOHenUqdPfMwm7GXK/h9PvQ/FhUCgxGA2cOHEKe+AdNOs7F3ySnPWMl1CdsObl5dGzZ0+CgoJYvXq1q870qaee4qOPPmLZsmV/aJW//PLLzJ8/n7vuuovAwEAOHz6Mn58fe/fuZc+ePdStW5f4+Hg+++wzpkyZwsaNG3lp1izu9vWF5cudTQwqRdThAC8vZ5ehnj3hUgFYtoz0qVNJy8mh8oOkVCpZIIIOGOnujpebGx9YLITabLSxWHDY7fj5+eHl7U2kmxuKu+5i4K+/smnTpsvcv76+vtSuXZuysjKys7Mvu061Ws1Wd3dspaWYcDaY0Gq12Gw2VCoVC0Tw1OkYrtViLivjM62WJA8Pbnc4KC4uxlJh3QYAjyoU7Abu12h4TKGAoCAEqFOnDgcPHiQ+IYH8vDy0Wi3x8fE4HA4OHTqETqfDaDQSGhxMgAiK996DBg2u+LexWq2cPHmSo0ePcvjwYY4cOYJGo6kispGRkTfHwyGQmZnJlClTmDdvnqt8679l8+bN7Nix46Yog6vh/4caUf0HcfjwYV555RXefvttNBXuuBuCCJz/Ao7NB5sRlDrQ+LjEMy8vh/OnfiU8vC7+dZtBw3+Dd9WuSdUJa0lJCT179sTd3d3V+Qdg4cKFvPzyy8ybN4++FWUbVquV48ePc+jQIQ4ePMixY8cwmUz8+OOPdOrUiYULF5Kfn0///v2xWCycO3cOvV7PihUr6NatG9ueeQaPuXMJ8vEhPC4Ohbd3VfEvL4fiYmf/3uHDYcwYUCg4vnMnpo4dyTSZsF1yPa8D7dzd2Wu3Y1araajX06akBC3OJB+TyUStWrXwMZmYEhzMxpMnadiwIfv378dkMqFQKLDb7ahUKqer9neuYQCFQoFer+dHvR6bSoW7jw9lBgMFBQX4+vqSl5fH60BLh4NmgE6r5bDVymbgMZ0Ofz8/siqEujYwDfgG8NJq+SoujrC8PAIbNmTX7t3UqlULD3d3zBYLDoeD+hWWlrG8nCOHDzvjr3l5aB96iISFCy97cPrjfx9nPPvIkSMuazYvL4/Y2NgqLmMPD4+rHvN6s3btWvbt28fs2bP/Ut6CzWZjzJgxPProo872ljX846gR1X8Yzz77LM2aNaNnz5435oQicOItOLUUtH6gqr4dW1Z2NkeOHKJ5w2h8vH2h+evg36TKPtUJq9FopHfv3tjtdtavX+8q01mxYgVTp06la9euBAYGuuKLlfHQxMREvLy8OHbsGIMGDSI8PJzXXnuNbdu2sXv3bvbu3UtaWhqenp6cevVVPOfNw6DRsPfoUVRKJU2aNsWtmrif2GzYs7IoateOQ/368eBDD3HfqVN0E+FCxT7e3t48V1JCT5xZtyGhoVzIziYgIACVSoVarUalVuO4cIFzvr7cZzRSVFyMWq3GZrO5uieVlJRgt9sxGo0ukb0UHx8fWrZsybvnz2O12TDabJhMJnJyctBoNChVKp4rLaUbEAsogFyFgiUiPOfpScOGDdmzdy8mk4kA4F/ADxVj+ymVbE5IILSggPSyMlq2a8eRCmvfaDS6WkmWlpVxeO9e9AYDW3x9eba8nF59+jBmzBiaNm1abVnV1VBWVlbFZXzy5EmCgoKqWLOBgYE3LDHPbrfz+OOP061bN7p06fKXxtq2bRtffvklL7744k2RWFjD9aVGVP9hnD59mpkzZ7J48eIbkwySvgqOzAFdHVD+cT1f+tl0Tp8+zW1NEvH00EOr5eBZtcaxUlhDQkJYs2YNSqUSk8lE3759ycrKYvTo0aSnp3PmzBmUSiXbt2+nX79+vPLKK7i7u1d73uLiYgYNGkRubi5r1qyhXr16iAgZGRn856mn6LZhA4H16+Ph74/d4SDt4EHy8/NJSkriyQsXqjSR37t3L4bSUgJsNt5VqXi5rAw3YAkQp1BQqNEQEhrKE9nZdLPZqGtz2q86rZa2bds6E4UcDhT5+eDvT6sTJ8i12y9z++r1eho2bEhqaip79uzh22+/rdZa1Wg0fAjUVatReHuj0+kwm83k5uaiAF51OGiD02p2OBxkubmx1mhktNWKw+FAqVDgEKE2MAo4ptGgVCrx8fHBVlbGCKORsXXqEBESwrGMDALr1aO4tJSYiAikpIQTR46QZ7GwXKfjQ4uFOkFBnD17lsjISPz8/GjevDnPP//8Na0aVB02m40zZ8643MWV8eX4+HiXNRsVFfWXa0r/iPT0dKZPn86CBQv+UmtQh8PB+PHjefDBB2nWrNl1nGENNwM1ovoPZM6cOURHR9O/f/9rOu7rr7/myy+/ZO7cuVd3gLkAvukOah9QXV1v3aPHjpGdnUWrZnHoA5tDyuLL9ikqKqJLly54eHgwZMgQDh8+TEZGhqvMZcmSJbRu3Rq9Xs+vv/7K4MGDq5ThVIfD4WDixIls3ryZd955h/bt2zut7L59KTl7lpO5uYSFhlI7MBAFcC4jgxPHj/OmWs2MRo1oUiEKmVlZHDt2DIfFgo/dzmBPT3JECPHwYF1sLKoDB7hgNLKoVi06mkz4FxWhqkgsUqlUhPr5QXEx5zUaHiwvJ7uaj1+lxapSqahTpw6JiYmcPXuWEydOAM6YrZeXFxEREXz++ecUL12K55tvctZkwmqzYbNaXfHdN1Uq1A4Hozw80CmVLDOZCLFa6aRUYquwfH21WsosFnoC3r6+hIeHY7PZOHz4MADBXl5012oZodeT6OuLpaQE75AQLPXqobjvPpYeOsSipUs5duwY7u7uuLu7U1pSwh0BAdwXGsqAdu1Qg3MJudatoW3bv7yKjYiQm5vrEtnDhw9z4cIFYmJiXNZsfHw8Xl5ef+k8v2flypWcPn2aGTNmXNnKtBRB1iY49wlY8sBhBbUn1EqBiHvAJ4kfduxg7dq1zJs3r8Za/YdRI6r/QM6fP8/UqVNZvHjxNcWhrllUz6yAY6+B/tqSNw4cPEBRUSGtm8agbv8ZeERQVFTEoUOHXDWi58+fZ9euXYSFhbFkyRLq16+PwWCgU6dOnDlzhjZt2pCQkMDIkSPR6/X06dOH+Ph457qkf2CtvPnmm8ydO5dp06YxOiUFHnoIAgMpN5s5eeIEnp6eREREoFQqKS0tZdDOnQz08GBQixaoVCpOnDhB+tmzOOx26gDL3NxYYrczb9481n/yCZ7ffcdQu50IjQYRwVRhhSorrMwCYJVGwxqrFcMV5li5es+wYcN49dVXMRgM3HnnncyfPx/A1cQBnAKbEBrKh/n5ZBmN2HCW4iiUSixmMwuApiIcAEqBOKCXQoFKBHcPD9zd3NAVFTHP4WBFNZZw48aNad26NW+//TYOhwOdTkdiYiLFxcW4ubmxY8cOfHx8OHz4MO3atcNQVERvtZohNhuhItQNDSWosgTKZnM+yHh4wODB0L//dV171WAwcPz4cZfQHj9+nICAAJe7OCEhgeDg4L8cE504cSL33HPP5StEWYrg6KuQvRnE4RRSpQ5QgtjAWgw4wCMCqT+JR59bzaBBg2jVqtVfuu4abi5qRPUfyvz586lduzb33nvvVR9zTaLqsME3PZxf1dW7Xa+EIOzevRs3RSn5Xl1Y9WswhYWFJCYmkpSURIMGDYiOjqasrIyuXbsSGhrKmjVryMnJYefOnaxfv55du3bx2GOPsXXrVt59913Kysro06cPnp6erF279g9jedu2bWP06NG85e1NR7UaRUXvWrvDwZnTpzGbzcTExqLTanng11/pbDYTUFqKWqVCo9E4Y7inTqEXQQEM9vOjqKwMs/m3XkbN1Wo6qdV4mkx4ubtjdHPji/x89qnVmG2/pTT5+vpSXFzscv3q9XqsVitJSUl8+umn1KtXjzVr1jBnzhz27duHUql0uXgrrd+QkBCmKxQ0z8ggV63Gw8MDlUpFdHQ0v/zyCyql0lXvW/lhd3NzQ61Wo7ZaUZvNjAwKQlmrFmkVzSoq8ff3JyQkhLS0NFcpD/yWJDV06FAWLVoEQOdWrRh5/DjxRUWUazTUjY/n+MmTREREEHNp1ymTCQoLITAQFi6EevWu6f/narHb7Zw9e7aKNWu1Wqu4jGNiYq45qe/48ePMnj2bN95447cFyMuzYdcYKM8CbcCVQyEiYCsFu4GT2v68ujaD119//ZZsjlFD9dSI6j+Uym4wb7311m8f/EvIy8tj8eLFHDp0CBEhNTWV2NhYvvzyS+Lj4/nqq6/w8PBg3LhxrrjP1q1bWbt2LXl5efi4Qf/6B+jaxpkFevB0Ca+sPk2vVnX47IcLKBUw7q5I1CoFi/9zjqIyM12aeHNHsobS0lJOZZtZ/W0B+WXgGd2Tzp0789BDD11mZRYVFVUR1sqbz2OPPcaGDRuIjIzkjTfeICYmBqPRSL9+/SgqKuKLL774w1VBTp06RWmjRlj1ehq3aOFsUI+z/d+FCxe4kJ1NVHQ0j546xZ1WK36FhdgdDvz8/HB3cyP7wgWsViuBwH1KJSd+Z+VV1sfu2LGDvXv3Eh8fj7+/PxEREZw4caLa+KiXlxcNGjRg79691K5dG6VSyZNPPklqairPPvUUG9euxULVNoRarRaLxYIP8JFeT22bjRyHg7C6dTGUlZFfUIBCoUBV0f5QoVDg6+uLVqvFbjKhLipyZv1qNC6vRlGRsy+TSqVCr9djMFzJpna6qj/88EMG9O7NNw0aEJCZSbFOR0RkJGFhYRQVFbF3715CQ0OpX79+1YMLCkCvh/ffhxvUEzcvL69KlvH58+eJiopyWbPx8fHVfl5+z7vvvkt+fr6z7aClCH4cDqYLoLvKdVjtFsSSxzu76lG//QRuv/32v3ZhNdw01IjqP5jK0pqRI0dW+X1lfLFy7VClUsnJkyfJzs7m9ddfZ+zYsXTu3JnNmzezatUqli1bhkKhYPfu3YSFhREUFMShnat5Zuo45o5tRHSoBwdPlzBj6TEGdwyh/+3BfL0nj1dW7iO8lp1+LfWUmZW8tcXG88PrUi/Ml6xCsNttqEqP8syOTtSqVYs777yTvn37otVqq7joKoU1LCyM1atXu4R1woQJvPfee2zatIl27dq5ru2+++4jLS2NTz/9tNpl6ACw27E3b86erCxMJhNNmzXD8xJXeUlJCTt37uQVm41eQIxKhVqlwlphZapUKiIiIjBnZfFcaChfpKdjraj5VCgUdO/ene3bt2M0GpkwYQIPPfQQHTp0wGQyYbFYsFqtlyUmVR47YcIETp8+zfdbttDcYOBeu51ElQqLzYZeq8UIfGSx8DlwtuJ4rVaLv8XCWwoFYUCOCHoPD2xWK2aLBZ1OR9u2bcnLzSUtLY0ArRaV2cxCT08+U6lcQnoparUajUZDeXn5ZdsuRaFQcHD4cMJ++AFH7dq4eXhw+NAh6sfH4+HuTmlpKUN37GB4nTr0bVI145u8PKhbF1atuqYynOuFyWSq4jI+duwYPj4+VVzGYWFhl7mMzWYzEyZMYOTIkaS4fwXn14HbNdaw2ssxlOQyfUtjXl6w9P81yaqGG0eNqP6DKSgo4OGHH2bBggVVOtYcPXqU2bNn8/7771cpsP/6669ZtWoVixc7k4fMZjP9+/fn/fffx8/Pr+rg+bv59+S7aRgXRO82QRw8XcLMZcdZM7MZSqWCcrOdOyZ8ybC2DsL8nffLd7bD7QkKEkJVKJVKVEoFAV5CytNOUfHy8iIyMhKtVouHhwceHh5otVqXe27Dhg34+PjQv39/FAoF27Ztw2w2c/bsWR544AGSkpLQarWo1WpWrFjBnj17eOqpp2jQoAFarRadTodWq3W+NBrq9OyJBAVx/PhxLubkkNyggcu6dTgcbP36a14ym+kJxCiVzpZ9ODspKZVK/P398bJYGFRSQlWn6W/JRvBbJm9aWhpGo9HZeaji/b0Ud3d3jEYjjRs1ok1GBoOLitA4HJiBUoUClVpNUoMGuKvVnNy9GwXwCzATqOzF5A08CvRUqcBuxwB4BgRQajDQqnlztCYTv+7bx0mbjVeBgx4edO3alXXr1rkeCgA8PT1p0qQJRRW9ha+Em5sbCWFhLMnIwO7hQXRCAn6+vuTn55OZmUlSgwaolEoMBgO7d+/Gz8+Phg0b/iZSIpCTA2+9BTdBJqzD4eCjjz7is88+o3Xr1hw+fBij0Uh8fLwrASo2NhadTkdaWhoL5z/PG/1OotLV+tPs92oxXWDV/lD8m46nc+fO1/+Carjh1Dwa/YPx9/enS5curFq1ivHjx7t+n5eXR2BgYLUday4tfai8+ZtMJgD27NnDRx99RGZmJmIpxnzBQGTYb/FBL3c1SqXzZqlVKwkICKBDu3Cyzx7BbLag0zhwoESn01JoVLL1oJ3z+Q5q167FhQsXXHWpWVlZmM1m1BXxQW9vb3x8fGjdujU//PADn3zyCWFhYURHR9O3b1+++uorli9fzqhRo0hISKCsrIzu3bvjcDh48skn6dOnD+Hh4VitVsxmMxaLBYvFwsScHKw5OVgVCtRqNb/88gsenp54eXq6FhhXKZUoHQ4UOG+4glNIrDYbuXl5KIFSpdLZdekSLnXv2mw2srOzq1h81T3LGo1GALrs389AoFCpxKDVuqxji9XKgQMHnAuTV7RTbAJ8AIwG0gGVnx+zCguZb7fTFRjt709iVBTnz5wh7cgRDuh0vKFQsK/ypAYDO3bsIDw8nNOnTyMiaDQa+vTpw969e0lMTOTo0aN06NCBM2fOuDKQFRVruWo0Gnrr9Xi7uZGrULBnzx78fH2pHx+Pp6cn586epV69enh4eJDSsiW7du1i7759NG3SxCmsCoWzocaHH14mqpUZ0DcyO1apVBIUFERUVJRrfd+CggJX96f33nuPs2fPEhERQUJCAq0jS7h4IYuQenX+uxOqveiRmM/Ej1bSvn37a47vpqWlMW3aNAYOHMh99933382hhutKjaj+w+nXrx+jR4/m7rvvJjg4GHCufJKbm+vq2HM1WK1Wnn/+eSZPnkxKSgpqpfDvkfURu+UPj/P39SM8qCVHjhxBqy1EqRS0Wg0bdliJCrCTFBOM8UgUfn5+nDhxgg4dOjBhwgTq1KnDhQsXSE9PJyMjg8zMTLKzs2nVqhWbN2/m3LlzhISE8MMPznYFGo2Gl19+mYYNG9KwYUPq1KlDt27diIyMZO3atUyfPp3hw4fj7u7+2006NhY+/hgqWs/l5+ezf/9+7HY7Or0evV6Pd3k5bhYLyopOQhq1Gp1ej91oxEehIEupJLOa6/59zPTixYu4u7uj0WiIiYmhoKCAjIwMRMRl0QI8BAwE8pRK/AMDUatU2Gw2cnNzAVwNIPR6PRazmVwR/IA3gWFAXmEhACXAamB1QQG1Tp3Cw8ODc+fOuWpQqdgPnDFkvV6PiNBQp6OrRoP/6tX0DAkh76efKFcqmfLYY7y5ZAknTpxAoVDg7u5OQMWSbz2KizEoFChVKnRaLcUlJezcsYPatZ3xxYKCAqZkZDAhMpKWKSns2r2bX375hWbNmjld+f7+8MMPzhirvz8mk4kvvviCd955hxkzZjjLn/5G/P39ad26Na1btwacHoYTJ05w5MgR6ltPcy4zj8z83fj718LLyxNPT0/c3NxQcBUPA2oPPLU5NIt1Z/PmzfTq1euq52Wz2Vi8ePHlseoa/lZqRPUfjpeXF7179+bDDz/kscceAyAuLg4/Pz+WL1/OkCFDUCqVnDp16g/HsdlsWK1WfHx8UKlU7Nm7l31ZfkQEFP7hcQDubm4kJyej3fQT/v4eeHoqMZTn4KFXoYq4mxRvHR9//DG1atVi0aJF7Nmzh6CgIBITE2nQoAEpKSmu2Ojzzz9PgwYN2LJlC+Hh4SxdutQlUKtXr2blypX4+flhMBj4+eefKSwsRKFQ8OijjzJz5kxq166Nr68v/v7+xOv1TDx/HpvRiN7d3eWm3bNnD3o3N9z0ejw9PXHk5eFwOKhduzYBtWtztKLxQETt2nzi4YHtzJnLrtnNzc1lmSoUCmw2G54VC5MfOXIEg8GAQqFAq9Wi1+vRaDTUNhqZ6ulJhtGItaIzUnz9+pjNZnIqRBXA08MDo9HosnYLgSBgHPBOcDBlZWWUlpa69i8rKyM/Px9wir2+4oGh0gOhANqaTNwPJNrtYLNhtttxnD1LJJACGO68kwClEn+gQASj0UhGRgYx0dFEqFSUh4ZisVqdi5qXlmJwOMi+cAERISc3F0tF+ECn07mEddeuXbSoKFVCqaQ8PZ1V69bx7rvvUlpaisVi4eLFi+Tm5rquVURcr0t/rry2P9vn99vy8/NZtWoVJ0+eRERo1qwZERER5OXlMXv2bHbu3ImbmxsDBw4kMTEREeHHH3/k66+/pqioiGBy6dy4DjFqA3a7je/2nOO9LYW0jFXxwzEbSgUM71KH6HoRvPOfc5QYbfRtG8TADiEAHM8oY/EX5zhRqiJtyZecPXuWMWPGXFV89fPPP6dJkyYUFxf/6b413DhqRPV/gD59+jBq1CiX20qpVPL000+zaNEiHnjgAQDat29/5aQenCIxevRoXnzxRWw2G7fddhspqT2gaKWzuP1P0Go0+PvXQq22otVqeaRvGHM/yeGnTSvw9vamU6dOGAwGdDoda9asoV27dpSXl3PgwAG2bdvGxYsX8ff355dffsHPz486deqwbds2kpKS2LRpE6mpqaSmptK1a1cmTJjA9OnTefDBBwHnzfarr75i9OjRNGvWjK5du3L+/HmysrI47u5O8PnznDCZUCqVzputQoHBYKC0pITBOh0WqxUvLy8KCgqcmc++vngoFOSVlvJJRZ/eS925Go2GBg0asH//ftfvExMTOXbsWJW45aVWqt1up6fFgogQGBKCqqCAkuJiDh85gkqpRFExrrubGyUlJWg0GhwOB7aK+G6+w8G9/v58HxzMmYICbDab61XpSq88V2lpKe3atSMtLY387GyeBToDARER1IqMxCHi7KV84gT5+fmoVCp89XoeKCujD/AwcLLiusrLyrCKUGC1UlJSglqtdpb72O2Iw4FDBIvFwoWLF7FWlM5oNBpapqSwe/dufv75Z1rcdhsahYLlixYxbfVqADw8PDCZTLzzzjts3rwZcD6cVHoZKr+v/PnSkhSHw3HZy7XcXcX3lV8PHDiAp6cnwcHBOBwOvvzyS8xmMxkZGQQFBeHt7c2ZM2cYN24cgYGBWCwWysrKsNvt2O12XhtcwqJ1edyfCsH5BVzME/KLodQA4+6A/Wdh8YYsurbxZP7DSeQWWZi08BC3N6pFHX8dSqWCUV0Diek+i2fe/Ib169dTt25d+vTp84efp5ycHLZs2cJrr73G22+//aefvxpuHDWJSv8jfPbZZxw+fJjp06df34FPLnH2/tXXAcWfu5IFyD5/kvLSAvTtP2TvSSPLly9HrVZjtVrp0KEDFy5cYOXKlTz88MOkp6dTVFREkyZNXAt2Hzt2jPT0dEJCQtiwYQP16tXj888/R6FQcObMGS5evMioUaOYOHEiEydOdJ37yJEj9O/fn9atW7No0SLnjfjsWexDh/Lrvn2UKBQ47HYSEhIoLy/nxMmT2KxWfP38KCsrw2azoQA8tFr87HamKhR8aa3+gUKlUrlctV5eXjgcDlejfNslGcQi4rRY7XZ+cHenwGRC4+GBsby8ils4G/gPUKrR0NjLi+KiInwdjv9j7zwDo6rztn2dOVMyJWWSSa8kIYFAQiihg4CAgOAiVQVEVx8r6i4Lij6uiLsqNgSXJlYQRUUFVEQpgiAQejckQALpvU+fOef9MJNZIrArz+qKr7m+UJKZ+c/MSX7za/fNYEApiiQnJxPscrFYo2F+fj5Op7OVVvCPA79erycpPp47fviBgUClIBAaHo7RaPT0nJ1OnA6Hr00ge+8jUJZxA3fgmTwWRZGDSiVlDgduPAFTwFPZaOlBK5VK3tbrGadWMzI11feBwO12c+qHH3A6HKRHRXFi5kwOm81s3LiR/Px8nzxlSkpKq1745f7e8qckSa2G0i4eTmv5e0sWWFLCXjcnAAAgAElEQVRSwvbt2xkwYAAWiwWz2YzZbKakpISKigpCQkKwWq3YbDYaGxsJCwsjKCiIwMBAjEYjJpOJ2T138uY39SRHaegY1khxvZJ3vrXz1sxkgoODUaq1TJ53mJfvSyM1zrM7/afFp7hlSBS907zDf/Yq6PEPiiwRTJ06lUGDBjFv3uWtElv4+9//znXXXceAAQNYuHAhISEhbT3Va4S2TPV3wo033siGDRs4c+aMTwz9ZyHpLrBXQ+Fa0JhA8a/l5wRnA1Ghgew33sNrz77Do48+ysqVK/n444/ZuHEjOTk51NTUEBMTw4oVK9i5cyeSJJGdnc3evXspLCyke/fujBw5Er1eT6dOnZg3bx6pqakEBgbidrt58803ef3117n//vtpbm72fZDo2LEjW7Zs4aabbmL8+PGsWbMGv/h4qubORbj5ZgIcDipdLo4fP45Wq0UURZKTksg7cwZkmU5paVgrK7HX1vKavz8HRRF/h6NVqRU8Aevi3c6mpiYCAwNblVxb0Gg0qFQqerhc+Gu1VLtcPgF9rVaL3W7HKUl8DPQGspxOztTWkg30wVO6jY2NpaSkBItSyfT0dF48f/6S1/3Hn53NZjO9cnMZAJQCaqWSispKGpuaEEWRSpeLDxwOqtxuhioUdJckZFmmHjACi4DxeALtOVkmDGgAnA4HQovBuUKBSq1G6+eH0+HApVBw+MgRjEFBaPz8UAgCJpOJytJSLhQUcKikhMC4OKZPn055eTk7d+4kNTXVN9Xdanr7on+LoojdbsdisVBXV+frv1dWVlJVVUVFRQV1dXU0NDTQ1NTkK507nU4cDgc//PADQUFBGI1G2rVrR2xsLKWlpTzyyCNERUURGxvLtGnTeOONN4iMjOTQoUO89957nDp1ihknLIiORkIDg4iMjKKiuZ6YCD0J8fEAuN2e193o/88BJLXSMx0PUFLRzFsbizmz6mXsTpm6ujqOHPGNkV2W/fv3Y7VafWtkbVxbtAXV3wlqtZrJkyezatWqn9fLURAg7THQRUHecpC9Oqei/p97h7IEjjqPVJvGBJnz6WnM4NHY47z44ovccccd3Hnnndx444288MIL7N27F4PBQElJCQkJCfTp04eQkBDWrl1LXV0d+/btY+fOneTk5NC5c2deeuklZsyYQXNzM6GhoaxatYrGxka6devGokWLyMnJYeHChZhMJqKioti6dSs333wzI0eOZN26dVzw9+c+lYpZbjcdnE4kt5vapiZiExMpLysjQKdDa7PRdO4cZZLEM243e7x7nT169KC6upri4mJfZnlxQG3xQy0sLPTtpiqVStxuNzqdzldObBcdTXNFBZIs45YkRIUCu92OQhCo1WqRrFZ64gmiqUAUHpF+HA4Kzp/3ZMBA0a5dWK7wVrX0UkVRpLm2ltvcbmq8X5MkCWQZi9mMSqViuyQRD/yPQoEgCEjedSJZln093D7A9y4XbwLPCAJN3mElrU6HWqUiPj6eyqoqMtLTCTlxgvSEBBJkmfz8fKKiogjyiiykBAbypcPBu+vWsWHDBuLj42lsbGTSpEk0NDRQUlJCYWEhFRUVVFZWUlNTQ21tLXV1da2CpOz1km2ZFm/JJlNTUwkPDycyMpLIyEhiYmIIDg6msLCQZ599lpUrV16yWvbNN98wYsSIiy5zgcbGRo4ePcqsWbMIDw+nT58+DO01kZ1r5xIdGU5KSixnSk9isf70HufSdbkkpfVk9ux30Wq1vPPOO7z44os0NTVdUbf42LFjnDlzxpeZWiwWFAoFFy5c4Mknn/zJj93GL0NbUP0dMWzYMD777DNOnDhBenr6z3fHggDtboeYm6FsCxSs9Mi2Cd4+lyyBqSckTIXgLFB4foFlZGQwf/585s2bR2lpKdOmTeOVV17hnnvu4a233qK5uZldu3aRl5fHuHHj2L17N3369GHEiBGMGDHCt/s4e/ZsXC6Xp3dXXo7RaGT58uWcP3+eTV99xbqnnmL9V1/RU6/HqNGgDQpiQ1ISLxcXc12fPtgkiby6Ol7p2hUKChhSX89owJqfT0xICPHt21OflsaIlSs5DEgXrdAcOnTIE3Qkia7ALQoFHQGNJGFXKLhgNtPYvz+j1qyhR69evr6tLMsMGDCAI0eOUF1dTWR4OO6SEtR+fricTlxuNzqt1tMvtdkIgFazpAF4SqwqlcpXOld5M7YrYbPZcLlcJCQkMEqjQVdaSjOg8NrKabVabDYbkiRhVatpr1QSGxJCu4QETp8+TXJyMru809ZOYCoeq7jdSiUKlQqV3Y7d5ULr50eXLl3Iy8sjLi7O9/pYbTYErRZTaCgnT54kICAApSiibWxkc+fO1J05Q1paGhEREb51LlmW0el0BAYG+gbMIiIiyMjIICIigqioKCIjIwkODvZVA34qqamp/3Zgr7S0lH379pGTk8Ojjz5KVlYWQUFBzJ8/n6ysLA4fPszxIhWJkRYEICoqCputErPFgv4Krkk+ZAmrQ0IXMwA/Pz+Ki4vZt28fMTExfPbZZ0yfPv2yN5s6dWors4wVK1YQEhLC5MmTf/Jzb+OXo62n+jtj+/btbNq0iRdeeOGX2/+TZbDXgKsZFCpQBYDqym4hDQ0NPPvss4SEhPDnP/8ZtVrtm7J866232Lx5M7GxsfTp04fm5mbGjRvHkCFDUKlUvP/+++zfv5/6+nqys7N9lnB333UXE/39yTp4EEVlJblnzkBgIJHR0ViamrDW1uI0m6l3OHhPklgfGEhYdDS5ubm+gRZTcDC3Tp7MwsWLWbFiBQ899JBvDenifucI4AFB4Lr27dH6+7Pn+HGcbjeCLGMQBDRKJQ2iyOEuXZixYwcTJ09mw4YNrV6DfsAChYIK73SugKdfKYoiP1gsfOxyMVupRHK7UavVvG63EwcMwVNmFUURtdNJOXDbT3iL3gKSgUZBwGg0Ul9Xh6hUEhQYyD/q66nQasHlwt9g4KnISKpzc3FL0j9Vo/AYm4/DUz6+T6Hgf2SZSkEgODTU0+e02VCr1bjcbl602ZikUpEgigjgE/yPVqloiI1ly+TJRERGsmXLFrKzs1m8eDH9+/cnMDDwF1Uaqqqq4vXXX/c58lx33XX4+fnx8ccfEx8fj9lspmfPnnz00UesXr2auLg4Nm7cyJo1a3wDe67GC0Sav2DaiCROXHDw7KofeHKigbS0TsgSjP3rAd6a3YUwo+eDwqPLf2Bkz1AGp7k42dSZxVs11NTWkpiYSEZGBtnZ2VRXV7N06dJLRVcuQ1tP9dqiLaj+zpAkiRkzZnDnnXeSlZX1ax/Hh8PhYNGiRVRUVPDkk0/6RChcLhcfffQRDz30EGlpabzwwgts2bKFgoICbrjhBpYsWYLVamXBggV07tyZr7/+msfnzGFBYiKDzp+n2unEoVJh8PensLCQwIAAunbtSll5OadPn0Z0uQhwONgjy/yvSoX5ooncxMRESktLWbBgAcnJyUycOLHV+oIA/BlPEIvv3JmQuDgOHDyIQqEgNCyMUydPeoKdWo1sNhMsCOS0a8drQUHsO3KkVZ8zAPgGUIWG4pAkFAoF1dXVni8qFLzqdtMXyBIECkSRD91uessyg723V4oiYbLMx0Yj73pLmRevovyYbwGnIOASBETRo3DldLnQqNXY7XbekSQyFQq6ezWD8fZ4LWazT5Q/BHgIOAwogJeAIQoF1qAg7A4HkZGRGPz9sYsifyooYHHHjkTq9SiVSgTAWVpKTlUVr/XowRMvv0y7du0QBIH58+fzxhtvsHLlSvr37/8fXVc/BadXVGPfvn3s27cPvV5P79696dWrFykpKT/tw2fJRjgxF5SByEodeXm5+Pv7ExUZden3yhLYKyCoC2QtAfHS7PqNN95AlmXuueeen+EZtvHfpC2o/g7Zu3cvH374IQsXLrymvBxlWeaDDz7g22+/Ze7cucS1WIbhmdwdMmQIJpOJ//3f/yUzM5O//e1vbNq0iYiICPz9/fnwww9p164djqVLqZw3D5fJRHy7dp4Blvp6qqurqfAKHWRkZGCxWvnh1CkATE4newSBx9VqnLLsm5x1uVzodDpEUaSxsRH45yTt/cDdgDs0FKck4W8wUFNbS5cuXSgqKqK0tBRkGafL5VEgkmXCgT3BwTxcW3vJ838SGM0/JQfBE7j9tFrOWa1sEkVsWi3pWi3G4GAigLjCQqxWKwrABNxmMGDW66msrMRgMCBepOsreJWjAHa6XLj9/bE5nVitVk8J+aLseyWQAQwzmRAVCurq6lB5xfv1Oh31DQ2EArOA3Xh6x4LTyWybjYkGA/4mE+GpqZyxWPhrXh43hIZyZ2ysp4rR3AzNzTjj46l+6ilS+vdHoVDQo0cPhgwZwqBBgzh8+DALFixg2bJlrXqbPxdms5mDBw+SnZ3NkSNHiIuLo0+fPvTq1YuoqMsEwp9CxU449gRIdhySmpO5BXTsmIbWT+v5uuQERy0gQ/gQyJh32YAKHr3rBx54gEWLFvlENNr4bdAWVH+HyLLMX/7yF8aNG/dfyQSulu3bt/PWW28xa9YsMjMzff9//PhxxowZQ7du3TAYDJw6dQqn0+kTN0hISGDXG28QOGMG7qAgcgsK0Gq1JCQk+PqRTc3NHDxwwDOYIwjodTqazWaUCgUxosjjzc185efnkwxswWQyYbVacTqdOJ1OJiYn85rNRk5VlcczFY+MoFqlQqlSoRAE7A4HAQEBOL0rKpLbjex2Y5IkHsOTLV5MR0HgA6WSYq/JuEatxuVyofCu5wQHB+Pn50dlRQVvSBJdJYkM749vGLATeBTPUJrL5WolcvBjdogiKp0OQaOhsaHhn98PiAoFq4AuokimJCEqlYSFhZGRkcHmzZsRFQpcLhdBbjcPCwInvf3P4cOHc/TIERJKS1kzejRRpaXgdntkCAXB83dRhJgYuP12ZnzxBduzs+nRoweffvoparWa0NBQYmNj2bBhA2vXruXpp59mwYIFjBs37j+6psAjz7lv3z6ys7PJzc0lPT2d3r17+/qkPwvOJt9cQV3ZaRobm3x9ZQCix0DcBPBv/y8NBE6dOsWdd96J0+kkOTm51dfWrl3785y1jV+EtqD6O+XIkSO8/vrrLFmy5CdLFf43OXXqFPPnz2fKlCmtMpUdO3Zw5513cv/99/PZZ5/hdDrp1q0bERERFBcXszA4mMBduyA8HLfbTW5e3iWB1eVy8f3333vcW9Rqj56vnx8GQaC0qYkbfrT2AtCuXTuSkpLYs2cPdrudV1Uqetnt1IgibpfLF4xUajV6nQ6z2Yzd4fCtxmi9og1OhwOjQsE5SeJyYyhzgfFqNUVOJ+6LfjQv4Cm36oCTwFfAg4BRFNG63YjANP7pWtNCy77sxV6oSqWSvenpqM6codS7O+t2udDqdJ6sV6FglSzTRRQZGxfnEYBQKnHY7TQ2NdE+OZnSkhL8rVbuj4oiqX9/SkpK2L9/Pw6Hg4SEBEpLS/nHo49yT1qax4nG6fTIEWZmQpcuIAh88skn/M///A9Go5G6ujqfoMLGjRt90oSffPIJs2fP5plnnrnqnqEsy1y4cIHs7Gz27dtHRUUFWVlZ9O7dm65du17VUNNVI8vIjXksXfgsXTLS6D9oBBiS/uVswY9pamri3nvv5ZVXXvFJjLZx7SM+/fTTT//ah2jjv09ERAR79uxBEAQSExN/7eNcQlhYGH369OH111+nsrKSLl26IAgCCV6fzueee47FixczevRojh49SlBQEDPvuouwJUs8v7y9xtzBwcGUV1RgNps9JUrAarVSVVWFzWZDlmVSU1KwWq1U1tcTJssclCQqvcIMLdTX11NVVYXT6SRWo+EvDgfNGg2Sd6ipBcntxulyefxLvVrBClGkqanJV1K2yjLtgO3Aj4vAu4FUWSZNln2rMQpB4CzwKZ5p2xpgFJDo50e0Xo/scvFnpZJO48aRl5fX6jzR0dGYzebWZ5Qk8srLGQFoTSYC/P0xGo1UV1WBLKMQBEpMJqKVSgKtVhoaGzE3N+NwOkH27FKaFAqSbr2VjTodAwcO5Pjx41RWVuJyuWhqakKpVLL/9Gkqw8K4/vHHEfr29QTUiAhfhuZyudixYwcNDQ04HA5cLhdZWVl8+umnXH/99ZhMJtLS0khNTWXWrFmo1ep/Owfgdrv54Ycf+Pzzz1m+fDnfffcd4eHhjBkzhnvvvZe+ffsSGxv7y9usCQKCn4no9j15buFq+g0djyEw5KruQqPR4HQ62bNnj093uI1rn7ag+jtFEASioqJYsWIFo0aNuiazVX9/f6677jo2bNjA/v376dmzJ0qlkrS0NNRqNXPmzOGOO+5g+vTpNDU1sWPuXJKLitCYTL7nc3FgPVNXx9KKChacOsU+q5VIgwF/u53y8nLUGg1GoxG104nD6WTHZUzEXS4Xfn5+jJBlejkcNHozvBa1IVmWaQLWSxJfuFwckGVkt5swpxOFIKBUqUCWCTYaEa1WmoADP3oMCdguigQqFHSTJExaLWqtliCHg2F6PYNVKro4naQAQaJIqcPBw6LISW9wlySpVem6sbHxkhKwRqNBjopiRGMjgiThxiP4jyD4ytW7mpoIsFoJslqRZZmIyEhsNhtur2JRSlQUIfPnM/SOO7j11luprq7G4fCYK7TIL95666189913PqF4tVp9yTnef/99ZG8P+9lnn2Xp0qVcuHCBv/71r/Tq1YuYmBjat29PZmYmc+bMweFw+AzgW7Db7Rw8eJBPPvmEJUuWkJubS2JiIrfeeiu333473bt3Jzw8vJWU4X+LgIAAAD7//HMGDx581TMMSUlJrFixgu7du/98Jeo2flHagurvmNDQUI4ePYrFYiElJeXXPs5l0Wg0DBo0iKNHj/Lpp5/Ss2dPtFotWVlZ1NbW8vTTTzN27Fh69epFN5cL586dnPEKuev0ehRei7KAoCAezckhpLKScW43JlnmA7udjnhKqlaLBZvdjuR0YgW+vExXpEVc4ObAQJLNZiS9HrckkZaWRvvkZJqbm1kpyyQqlYxzu+kAbALClUoCJcnjwyqK2G02lLJMLZf2VcETWM+GhWG66y6aFQpS7Xa0djvYbPhJEkGiyD5B4DmXixfdbiolCaVSSUJCAnFxcVy4cOGKvVTwZHPhUVEEhITQsayMSosFnU5HYlISJcXFyLJMFzwCDy2TwaIoetSgZJlQhQKLycTKwEAEUWT//v1UVlZit9sRBAGVSoVCoeD48eNMmDCBiooKli5dyvXXX09wcHCr93b9+vX06NHDNyCUmZnJsGHDcLlcPProo6SkpNC+fXsSEhLo27cvTzzxBNXV1XTr1o1du3axZs0ali9fTk1NDRkZGdx9992MHz+ezp07YzQar4lBvNTUVDZu3IhCofiX+tqXQ6VSIQiCT06xjWuftqD6OycuLo4lS5YwcuTIX74k9n9EoVDQq1cvGhsbWbp0KRkZGRiNRgYPHsypU6dYsGABkyZNwj83F/2pUxi9fcDioiKUSiVanY5ci4W9zc2MaGpCgUdqr0oQsCgUdPSKLLhdLrRKJZK/P9u8gu4XI4oiGo2G0QEBxDQ2Um21otfrPSVlm41SQWBnfT23+/nhcjjQAi5B4Lws08Pfn86dOuGw22k2m9EKAoakJL7hn4bmLdmuLMvo9Xr+On8++51O3rRYWFJQwNcKBWsFgTcVCnYEBnLOZiMgIMCTQbrdPqu8ljJzSkoKEydO5ODBg62ehyAIHjk/o5H2Wi2d7HbqnE5qvXZwkjcgq5RKFN6hJP+AAOJiY5Gqq4lLS+OJkBBee/ddPvzwQyorK3E4HGi1WlQqFQaDAb1ej8Fg4MCBA8TFxdG5c2fmzZtHx44dfYFFEASGDh3KhAkT6NmzJ8uXLyc+Pp7IyEj69OmDyWRi1qxZGI1GMjMzUSgU6PV6Xn75Zd5//30iIiLo27cv999/PyNGjCAlJQW9Xv8LXon/NxQKBR06dGDBggUMGjQI3b8ThfgRSUlJvPPOO6Snp7f6UNLGtUlbUP2dYzQaycvLo7q6mrS0tF/7OFdEEAQ6depEcHAwL730EnFxcURFRTFq1Ci2bt3Km2++ydQ+fRD37kVpNBIcHIzeYKCstJTKigqKgXK3mz/ExuKWJBwOB5WiiKTVkun9RSxLEqLdznlRZJ3ZfEm2FxwczIcffsiEzp1p3LqVBrfb14+22myUK5Xstdn4zmZjv0rFLkniPKAXBHpoNFwoLMRsNqMQBFKiotD06MEuQcBms+F0OlsJSuh0OtasWYNSqWTz1q3UOBzY9HrMKhUqgwGlUklTU5MvO7z4dZIkCX9/fx588EGWLFnSyhnn4u+rrq5mU3MzPRITSWloQHS7MUuS7/7klhK4IDCoRw/0Nhtn6utJ27WLMffdx7Jly1pZ0AUHB3PXXXcxa9YspkyZQmJiItXV1Zw4cYKamhqmTZvGvHnzEASB3r17A2AwGBAEAT8/PxITE3n11VcZPHgwfn5+pKenYzAYeOyxx1i/fj2HDx8mLi6OadOmsX37dvR6PTNmzPCpL13LBAUFYbPZ2Lx5MwMHDryqDLrlw9ymTZt+dW/ZNv49bdO/bVBcXMxjjz3GihUrrslP+j/m9OnTPPfcc0yaNInRo0fjcDgYNWoUqU4ni81mhIuGYWSgrraW7fn5rDKbeT01lbq6OiIjI3n8wAGMksQfgoKIjY3FYDBw5vvvWaRSscbtbhXkAEJCQmhsbKSvIPCy00mtWo1SFImOiUGtUrG/rIz3m5t5WKHA6s1y4+PiKCsrw+F0olAoPCLwKhWdw8JYl57OjE2bsHlt51qGiVQqFSEhIZjNZiwWiy/zDAgIICIignPnznnEGrzBUqFQoBAEGiorEZRKAk0m1Gp1Kw3iFjnDFo/XH9MXuM/fn4FaLbVVVTi86zUR/v4EAUEqFW69nuLmZuI7doQ+fVirVHLbyy/jcrsRBIGZM2dSWFjIqlWrfJO1Bw8e5IknniA3NxdJknj44Yd58803GThwIMuWLbukOvLuu++ye/duunbtyr59+9DpdISFhbFy5UomTJjASy+9hCAIFBcXM2bMGDp27Mjq1at/lX7p1eJyuXjkkUeYPHkyAwcOvOrb3nvvvfzlL3+5pj/8ttEWVNvwsnDhQkJDQ5kyZcqvfZSfREVFBfPmzSMzM5O7774bi8XC9UOG8I+KCrLi4xG8Yu0tOFwu7jh4kC5uN1kuFwGdOjH//HnuU6kQamrQarWoBQG5ro5ts2ezZPVqAgMDOXv2LHa7HZPJhE6no7a2FktzM7sDA9Gr1RTX1hJiMtHQ0IDL7eZ1t5uOkkQWIALVgAtIUKuJCA+npLSU0MBADILAzE6dcKnVbNu2zZftmUwmtFotpaWlrazbLkegwUDH5mZmBAeTbrEQFx1NZUUFVRYL+8PDWVpRQYFX1zcgIICgoCAKCwuveH9RUVFsffdd1j70EEJeHiMEgWilEkGvR46MJDgqitzTp+nSuTPU1eG029ly4gQvArVpaRQWFhIfH8+6detaTZSfP3+emTNncurUKerr6/njH//Ijh070Gq1fPzxx2i1Wg4dOkR2djaHDh2ioKCAQYMG8cgjjxAdHQ1Abm4uEyZMoEePHrz11lsoFAoqKysZPXo00dHRfPTRR5cMQl2L5OXl8be//Y3FixcT+KNr9N+xdetWtm3bxnPPPXdN9IrbuDxtQbUNwGN6/Kc//Ylly5Zd9Q/7r4XZbGb+/PmoVCpmz55NQ0MDz/TqxeN2O7GXWb0otFpZkp/PodJSAoCJJhNjUlJoqK/n9OnTBLtcbBQEnlcqEQTBY7btLYe++OKLjBw5kuuvv574+Hg6Hj7Mn4AipxPBOzWrUqkorKtjh0rFD1Yrbjy7pUNFkWRvZikD0aLIZxoNC2S5VeaoUChYu3YtiYmJTJo0ibKyMpqbmy95HiaTiaymJv7kcGAE1FotFQ4HEp7+LE4nIYKAn0ZDaUgIiStX8sHu3Tz11FOtVmsuh1arZXrPnixyOsk9doxCsxmNnx+SJJHRpQuVlZVkeM0YigoLaS4vJ1CpJPzVV+m3YAFnz54lPj6eOXPmMH78eM6cOUNSUhKNjY3MmTOHvXv3UlNTQ/fu3amtreXMmTNkZmbSv39/evfuTc+ePXE4HMycOZO5c+e2siksLy/npptuIiIigo8//hg/Pz/q6+sZM2YMOp2ODRs2/LK7pz8Tb7/9NjU1NcyePfuqbud2u3nwwQe57777WomitHFt0RZU2/CxfPlyVCoVd9111699lJ+My+Vi+fLl5OXl8dRTT1FbWkp+v36kBwcTnZHR6nsdTidFhYWUlJRg9xpaBwYEEBsbS9Hp07htNm6VZYp+9BjBwcHk5ORw4403MnDgQF555RW+WL0a/d13Y5Bl6rzDRS6vspL04xUWtdpj8+Z0onU6CQoK4m69nr3nz1/St1WpVD51o8sxfPhwupw8yS1lZdTLMi0FXkEQfCL8LfcRHBxMvMGAKSqKR/V6Vuze7evfXok4QeC7+Hhio6Nx6XR89913nlUZQcCg1xMQEEC3bt2w2mzk/PADndPTUcsytpISlsTF0fPxx7nrrrtQKBSkpKRQUFDAkiVLGDBgAGfOnOGJJ55g586dWCwWgoOD6du3L3v37uWll15i0qRJvnPs3r2blStXsnDhwlaDPY2Njdx88824XC42bNhAUFAQFouFP/zhDzidTj7//HPfGsu1it1u56GHHuKuu+6iV69eV3XbnTt3smHDBl5++eW2bPUa5dpvRLTxX2PSpEls27btn0LuvwGUSiUPPvgggwYNYtasWSh0OsI++ogzlZVUeZ1HnE4nbrcbye2mzLtuIwB6nY7ExESsFRWo3W6eNBguCagAtbW1pKenI4oizzzzDAcOHGDt5s08qtNhcTgwOJ1IXqGHlvu+GIfDQV19PUqzGYXbzT02Gy+sWmzd/mMAACAASURBVEXXrl0veawWz9Ur/cJUb9nCnfX11CuVrQKqRqNBp9cjCAIW725pbW0tOVVVHDxwgCl79xLvzZb9/f0vWyoVBIHHZJnqoiIOnzuHJMueQSKvp6rZbKayshKz2UxhYSGRUVGoVSpQq6lyOrn93DkGdO1KdnY2Wq2Wr7/+mvz8fGbNmsU999zDCy+8wLBhw7j//vt9pvIHDx5k+vTpzJkzp1Um3a9fP7p06cLSpUtbGw8EBLBp0yZMJhNDhw6luLgYnU7Hl19+SUBAADfccMM1f/1qNBoeeughli1b1qrv/VMYMGAADoeD/fv3/0Kna+M/pS2otuEjODiY4cOH89FHH/3aR7kqBEFg3Lhx3HPPPcydOxdnSAjut99mb3k5FcePk5edTVFRkUdI3xscJbcbP6cTk9tNUocOfD1uHLssFvz9/S8b0CorK33Tp6NGjeKDDz7AGhnJ3aJIDWCSJHROJxnp6Zi8AugCkBAfj1GpJFIQcAAPajR839jIgAEDOHz48CWPYzQaGT58+CVBLzo6mr/Nns0TQJHFgrnFgs27hmO323E6HLglyTMM5TXrdjgc1Lpc2BsauL+hgfDwcIxG4yXZqk6nI0WrJQuocLupqKhgz+7dHqs7hcKXBbvdbo4eO4bVaiU8PBzwKDRVNTcTpNXC1q0sW7aMyspK1Go1NpuNkydPotfreeWVV7j33nuZN28ezz77LFqtluDgYN555x3Gjx/P+vXrmTx5sm+V6e677yY/P59vv229zatWq1m7di3dunVj+PDhnDp1yrfzGh8fzw033OAxM7iGSU9PJysri7fffvuqbicIAlOnTmX16tX/che5jV+PtqDaRivGjx/P7t27KSsr+7WPctX07duXp59+mqVLl9Kk1fLlLbdwc2EhByUJV0kJVFcTYLORERVFKNCo1aKYNw/hyy8Z+uc/A/CHP/zhih6WTqeThoYGqqurkSSJuro6zKGhTAAeB2oCAohRq0kzmQgHQgWBDkYjhnbteEqW+QOQ9yPlqpZyLeDTCN61a9clZuMlJSWcWrAAFeDyBrmAgAD69+tHWFgYKpXKl5H7aTQgCB6tYe+qTq0gMFCrJT0o6LLlZZVKxTf33090dDQKpRJkGYvVSkNDA1qdDpVKhVanIz4+HovFQm1NDXVep536+np0Oh2qoCDklSvZ/f33hIaGkpycTIcOHXC73WzdupUHHniAAwc8GlIjRoxgxYoV+Pn5ERUVxWeffUZaWho1NTVcd911FBYWotFoePTRR3n77bcpKSlpdV6FQsGKFSu4+eabGTt2LLt370ahUPDBBx/QpUsXRowYQUFBwdVeQv9V7rzzTg4fPsyxY8eu6nY9e/ZErVbzvdcwvo1ri7Y91TZa8VvXGw0JCaF///48/fTTfLZuHaUKBV+4XByLiWHsCy/gN2wYmptv5i2Hg2UVFdwxZQqK8+cRyso4eeAAH23dSk5ODsePH0fpLedeTMu/BUGgqakJq9XKPfffz5enTrFZp+OEycToRx/lte3bKenQgSGrVvGX/HzWnTyJE3xSfhffX0REBH/+859pbm5m1qxZVFRUUFTUuhAtAK9qNAQEBmKTJE9pVq+npKSEkOBgapxOPrbZ+FoQ2O5w0KxQ0M07cKb186Nzejo6ICw2lh0WC3VeoYcWnE4nk0+epMnpJDA4GFGpxG6zIePpAe6SJNba7Wy0WDij1RIfEkL9uXPYbDasVqtnOjooCKGiginvvst9c+Ywbdo0Ro4cSb9+/cjJySE3N5ecnByf+lFMTAxDhw5l+/btuN1uqqqqUCgUJCcn8/zzz5ORkUFmZiZarZZVq1YxdOjQS+Q0r7/+egRBYPbs2SQmJtKhQwfGjBlDbm4uzzzzDIMHDyYsLOw/vq5+CVQqFTExMSxdupThw4f/ZPEVQRAIDw/nnXfeYeTIkb+JdaLfE21BtY1L+K3rjdpsNt577z2qqqqQJAlZlimqryd95Eg6jx4NtbUEfv45Iw4dgq+/xn/fPoQtW7ihuZmg3bspqqyk/eDBFJaXY7fbfVZqP6Zz586MHz+ejRs3kmYycW9gIFMuXKD+k0/o0NxMx+pqLixbRumJEzTp9dh0uksyUKVSiU6nY8KECWzYsIE33ngDi8XCd9991+oxuwcFca9OR7NSicPhwO12o9V6fDqrqqtZbrUSAdyl19NbllE6nWgdDpRKJX379iUwMBB9QACaCxdYVFPjO4cgCOj1ep54/HFGnjuH7O+Pw2tv53a7fT3OJmAgMNDtJi0ujg/MZm5LS6PswgWqqqqIj4/3TN7abDB0KEREoFarMZlMdOrUiWnTplFdXc3XX3+Ny+Vi+/btpKSkkJiYyI033siRI0coKyvDaDSSk5PDyJEjmT9/PlqtlltuuYUjR45w5swZunfvfsn70KtXL8LDw5k9ezb+/v50796dkSNHUlpayty5c+nbt+//3SP1FyYqKoqzZ89y+vTpyz63KxEeHs6ePXtQKBTXpCHG75m2oNrGJbTojW7btu2ql9SvBXbv3s2WLVswmUxIkoTT6USv15N38CB3HjuG4o03sHttz+pcLhQGA06VClmnQ2E2E5OXx8jGRgoNBh547jnWr19/2VUUt9vNtq++4r66Om7Yu5eQggLqHQ6qHA7MQLMkYYqMpJco8lhyMgN1Oj6vqqJliUar1ZKamsr58+d95129ejXvv/8+brebzMxMX0DJCg2ld10dYfHx1NTUoNfr0Wq1CILAWbudA243twKS00mYyYRJo8FqteJ2u6mpqaG5uZlTOTnItbW86w3MLTidTnbv3s1Ui4WypiYsNhtOr2sMAIJAKKDBkzGHAQcsFkIVClJDQnC6XJy/cAFJljFqNAgjR8KPrMoEQWDw4MF07tyZd955B0EQ2LdvH3a7na5duzJ69GhKSko4dOgQmZmZbN68mbFjx7Jy5Ury8vKYM2cOb775JlFRUb7d1YtJT0+nU6dOPPbYY1itVvr378/111+P2Wzm8ccfp3v37q1M768lOnfuzLJly+jQocNPNiQXBIHIyEhWrFjBjTfe2JatXkO0BdU2LktSUhIrV66kU6dOhIRcnWXVr01SUhJTp06lT58+pKWlUVdXR7ekJF5paMB54gT+SUnkFhcjeSd16+rqkCSJkNBQymtq0IWGUlVeziSNhg/272fvFfrLSoeDdgsWoD90iPzGRuolCedFwVcAAo1GVEFBGMLCaDp2jBtkme2yjFmh4O9//zsVFRUUFxdjtVqprq6mqqqKtLQ0RFEkMDCQ8vJyioqKePfZZwnZt4+cwkLsdjv+BgN19fW43W7OWq1UCQLd8Xi6gscgICo6Go1GQ0N9PVXV1bhdLowqFe+IIvbLlKHv1mrx0+sJCg4mPCICWZLQGwwYjUZKTSY+tFrZ4naz1WqlQZLoqNEgl5URFBREZEQEhUVF2GpqcI8fjyE+/orvzcSJE/n000+5cMHj/rp9+3a6dOnC2LFjEUWRzz//nP79+7Nt2zaysrI4duwYGzduZNasWSxevJhBgwb5svQf33e/fv148sknKSgoYNiwYQwYMABRFJk9ezYdO3a8xPD7WkCj0RAaGsqbb77J8OHDf7JjVFhYGIcPH8Zut7fa523j16UtqLZxWURRxM/Pjy+//JIhQ4b82se5apRKJREREWRmZnL7lCnc/O23BNfUUCZJNDY2UltXx4s2GyFuN52iorDZ7QQGBlJXW4vVZsMYFkZxWRndKir4XpKolGVCQkJwuVxIkoQCmC/LZLpcXHA4EFUqMrt0obGpCaUo4nK7kcEz6KPVUlxcjKTVEqZUMkyt5qDJxOEffuDgwYOtyrwBAQEolUouXLhASUkJRUVFSJLEvq1bGeVw0CxJyF57txarNztwWBAYqFaDLGOz25HxBFar1YqzxXpOlnFKEl+GhNDU1AR4Mp4W0YkhMTGE19SAwUCtN7ttl5BAQGwsLxQX80yXLkwwGOhcX89Jl4sAs5lErZZ2CQk0NjaikWUcLhejvvqKoJAQMjIysFgsNDY2tto1NRgMTJ06leLiYj777DNSUlJYv349Op2OW265xfeBrnv37pw9exatVoufnx8ffPABw4YNY/v27Ve0UWvRg37++efZs2ePz8EoKCiI2bNne4Q7Onb8ZS++/wOxsbEcP36coqIiunTp8pNvFxMTw/Lly69Z+8bfI201gzauyNChQykvL+fEiRO/9lH+Mw4cgGPHUISH0z45GavVSkhwMCHBwfgHBJCcnIwA1FRXe6zLlEoKCgqobGrC6XLx0aBB1NfX+yZsAfoA/QWBaoXCY3UmCJw+fRqVUklkVBR+Gg0x0dGoVSqKioupra3FarUiBweTpFYzsKSE06dPX1JWrq+v5/z585c8hRy7nRqLBcHhQBRF9AYDoijidDqJkmX8gc1uN1a3G0GlokqjQZIkXE4noWFhZGVlMTAjA3OPHpSXl/vu12g0+rKct8xmCvLzqautJT4hAb1eT3h4OA7v3myQSkVCQgLOTp2oU6mQJInGpiZy8/KIiYkhNSyM4gEDKKup4Y9//COBgYH07duXm266ifr6+lbPR6FQ8Nxzz7Fs2TI2bdqE0+nk66+/Zt68efTs2ZPVq1eTm5tLeHg44eHhFBQU0LVrV5YtW0Zubi6ffPLJFd/upKQktm7dytmzZxkzZgw2m4077riDF198kZkzZ7J69er/02X0SyIIAvfddx/ffPMN+fn5P/l27du3JyUlhY0bN/6Cp2vjamgLqm1cEaVSyW233cZ77733296Je/99UCpBEBBFkdTUVNyShNvtRq/XU1VVhSiK1NfXY7PbKSkpodlsJshoJK5rV/QnT9I9IoLy8nJfZjcVcAI9e/VCo9Hg8ApANJvNFBUWetZY6upoedUkWaapqYn8/HzyqquZJMuornDcy2n+SqLIJ0olRsDpctHU1OTJQL3rNZNlmSq3m5VBQbxvMpGnVnucXjIyPCXghgaUCgU3rlzJpk2bfJOm9fX1nDlzhokTJ/LMunUo4+OJNxrReu3wRFEkVqvl5ogIZuXkMPXIEcrcbvrGxKDTalEplTQ1NrJ/zx5q6+oYumgRQ4YMQafTYbFYOHHiBA0NDVcUsxg5ciQ7duygpqaG3bt3o9PpePjhhzGbzWzYsAGLxeKTJ/zuu+8YNmwY+/fv57nnniMnJ+eKb3lYWBhbt27F4XAwbNgwamtrmThxIkuXLuWvf/0rS5cu/alXz3+N4OBg7rzzThYtWnTZwbgrMWXKFD799NMrmiW08d+lrfzbxr8kPj6e9evXEx4eftkBkWue0lJ45RUwmXzONaIoEhQUxJr8fLoZDPhZrZxrbGRBYyOC2UyYIGAKCcFms1FcUoJelhk3ZQpDHnuM7OxsAhsbeQSPWH59fT1Oh4MFLhc2l4svJYlvJIkaSSLM6eRjSeIroFAQSAaPaL8oEiwI5Moy5y9zZIVCccngSVxcHGfMZm6RZVyiiOR1kWkxY9fIMllaLb1cLrparXTWaunVqxfBRiNhYWHIdXUca2jgnkOHiImNRaVSkZOT4/Nv7dmzJy+9/DJn3W6CduygsKwMq8OBWq1GEAS6h4QwISqK8ZGRdAsMpKtCQYxSSZcuXWhsaMDfYuF1i4XxS5diMpl8AhQul4uKigqWL19Ofn4+sbGxhIeHtwqy/v7+TJs2jXPnzrFq1SpGjRrF9u3bqaioYO7cuWRnZ5Odnc2MGTNYs2YNvXr14uzZs3z44YdMmzbtsv1V8IhE3HLLLWzevJnXXnuNkSNH0qNHDzIzM5kzZw4Oh4N+/fr9DBfZz0e7du3Izs6mpqaGTp06/aTbBAUFkZ+fT3l5OZ07d/6FT9jGv6MtqLbxLxEEgeDgYD744ANGjBjx29MbPXAAtm0Dg6HVfyuVSjbV1hJrtVJeV8cbZjMjZJlOXmNu8KgMSZLkkeU7fpzJH31EY2Mjg/GslzTjGQzy02o5IAjYNBpukSR6yDKbgTPASGCEUkmOUoms0xHtdKIQRZReneCLtYIEQUDwZtPjx48nKSmJM2fOoNVqeffdd3ljzRo6JSeT3tRE3UWZTIv0YIeOHSkrLUWSJE+JWKfzyAzabOgB9YIFzFm0iLVr13L69GlPluvdebRYLJjNZu595hlievTAb8cO3ICgUvmGqZqamnxTw2Xl5YSGhhKg0xGjVFKemcmc+noam5o4f/48DocDs9mMUqlk+/btbN++nezsbNatW8cXX3yBLMu0b9/epxwlCALDhw8nKSmJ+fPnEx0dTWRkJGvWrGHmzJmYzWZWr17NY489xubNmwkPD6ehoYFly5YxadKkK+r9iqLIhAkTOH78OH/7298YNGgQPXv2pG/fvjzxxBNUV1czePDg//w6+5lo8Q1euHAhPXv2/MnmFgkJCfzjH//ghhtu+E249fz/TFv5t41/S+/evRFFkd27d//aR7l6zGa4gjOLUqnEYjLxjs3GH4D2eCT3kGUcTifNZjMOhwNJEAjwBjtBEAgCn75vu3btiIuNxc/PjzEREXRNTSVMqyUOiAbCAVwu2ksSZbJMVFQULqcTtyAQqVK1MthWe4X30yMjWT52LA+YTNyh07Fg6FBs588THh7OzVu28LnLRSQea7kWGhoaOHr0KB07dmTY8OFERkVx6tQpju7eTVNpKZ9068YNc+YQGhqKyWRCr9cjyzImk4ktW7bw/fffYzab6dOnDy+dPs3h227DaDCQoNWSHh9PRkYGYWFhuFwuCgoKqC4qwlxQQHVeHsXDhtFh7VoOHz3qM+BuaGjAZrMxadIkevXqxfHjx3nkkUd8Zc1FixaRlZXFww8/zA9ejWaAMWPGsG3bNgoKClizZg2jRo3i1VdfpWPHjtx///08//zzTJ8+neDgYDQaDaIo0rt3b7Kzs694CSgUCpYuXcrEiRMZO3YsO3fuJCsri3Xr1vHxxx8zc+bMq76sfknCwsKYMmUKr7322r91FWohKiqK3r17s27dul/4dG38O9oy1Tb+LYIgEBYW9ttUcCkogB07LslUAT6vqOCc3U6E3c4QPz9EUUStVmMwGDyDTCEhSLKM6HLhUKn4OiAAjUZDHz8/ujmdNAkCsd5S6pbGRvoGBBCl02EKCeG78nKCBIEk7xR1lUJBkdNJfEMDMqAVBKqAfaGh2Gw2JEkiE3jQ6eQJWcb/wAE61daSUFZGh8pKEvftY2r37uQ3NPDHLVsQ8AxL+QNuPJ6tKqXSI/yvUBCsUBCl11NeW8vU8nJWFRTw0EMPsXr1ajQaDfn5+TQ1NeHv78/Ro0cZNGgQM2bMIC0tjUWLFvHB7t343XEH/W67Dc6eRSwrQwsEqtUo7XZ0gYHI06eze9gw1jc08PY773Dq1CmGDh1KXV0dRUVFCILAiRMnOHnyJDfeeCPDhg1j4MCBfPrppxgMBh588EEOHTrEwoUL+eKLLxBFkZSUFEJCQpg+fTo5OTksXryY2267jYqKCgoLC5k4cSILFixg4MCBZGRkcPDgQURR5KOPPiI4ONhjiWYugrKvoWIHVO+FpjMgKBg8YjJKr01gfHw81113HSNHjuTZZ5/lyJEjjB49+pqpxLRv355vv/0Wq9VKamrqT7pNYmIi//jHPxg6dOhvwgLv/1fagmobP4mIiAj27NmDIAi/LQWXmhr4+mvQ6y/50ucVFdwXH885hQIxIoKbOndG6+eHxWLxrMR412+UNhsNISHkJicTGBhISGMj3SwWLIJA165d8ff356uaGgZHRdHeZCIgIICzoki7iAg6arXU1dVR7HJRLkmkewe+/IFcpZL1TU1EhYbymMPBIy4X7USRMrudC7W1VFgs1DocWEWRisZGAquqEL74gmSFgjcMBrYajZRarXRRKIjQaFDY7Tjq6tBLEgfq65lVVsbmrCzufuYZZFlm7dq1FBYW8sADD7B3717CwsJYtWoV58+fZ+7cuZw+fZrp06czY8YMvvjiC77asoW91dW8Z7USevvtJN13H/KoUfz93Dk6LV1K0uTJdOrZk2HDhjF27Fji4uKor69HkiSKi4sJCAjAbDZz8uRJVqxYQUZGBgMHDmT69OkcOXKEt99+m+nTp/P8889TXV3NW2+9xdKlSzl37hzJycncdtttxMbG8vTTTxMSEsJNN93Ehg0buOmmm/jwww/RaDTMmDGDjRs3otX60VzwDVENq4ht/gShahfUHYeGE1C9B0q+gPLNZPUeSExqX2bNnoNOp2PYsGHcdNNNvPLKK3z//ffcfPPN10RgFQSBjh078uqrr9KvXz8Ml/lQ+GP0ej3V1dXk5OTQrVu3/8Ip27gcv6GUo41fE0EQmDZtGmvWrPmXfpzXHF27glbrkc+7DFqFgnkpKZxsamJNeTnR0dF0696dxMREVCoVBr2ehMhIDLffTnFxMceOHWNLfT2SLKNSKikqKrri1KVSqaRTp04MHTqUIKOx1QS1AjgZEcGo4cN5VaNhgkZDlSDQrNVy3fXXE2Q0giB4yqWyjM3pJK+2lnJZZrAksUyjobCujo/9/JiZmsodWi0P63SMra8ns6iIJ2Ji2KlS4RZF+vfvz6pVq1i/fj2nT5+mX79+dOvWjT59+mCz2Xjttdf45ptvKCkpoUePHrz66qu0a9eOTZs2ceHCBTZ+9RXPv/cerg4dOK1WU2c0kvKjIRq1Wk3nzp2ZPHkyCxYsID8/n61bt3Lfffeh1Wqprq5m1KhRdO/enW+//ZannnqKxYsXs3DhQmbMmMGDDz7IwYMHeemllzh//jzDhg1jxIgRvlWbU6dO8cwzz/DQQw9RXl7O4MGD/x97Zx5XY97+8U+nvaRVKHVOe0mobEmb7BqkQglZwwwTRmNfxjIa+zqWzCCMJmPskSUj20hEIUkkW7tKe+d8fn/0OM80Qgzm+c2c9+t1vxrn/i7XfZ97znVf3++1ICUlBeHh4di/72d84ZKN2b3zoV6RhvjkDFQrNQZUmwAqjQFVQ0C5MVCeAyTPh2+zaOzYsgJhYWFYuHAhmjVrhuPHj+Pu3bvw8fF5JT/z34WhoSF8fHywbt26envfDxgwAKdPn/6fL3/3T0ZmqcqoN40aNUJiYiJKS0thaWn5d4tTP+TlgbIy4OLFV5aAD2Zlob2WFozV1OCso4OIx4+RX1mJVpqaUFVVhZ6eHrTV1VFWXg6fq1eR+/x5TXgKiRbV1bBQUEBeWRnS09NxoqgITYqLoVZRAYFAgKtlZdBQUIBdw4Y1/37yBA9KS9ESNen+qgFMKyrCqKoqdC4uxmOJBMoqKigvL4eOjg4qKypgZW2Np0+fQkJiX1UVHpEwlZdHhYICmisoYEJgIGZER+PnvXuR8vQpnlZXo0BeHvYuLujVqxfOnj2L9PR07NmzBzExMUhKSoKRkRF0dHTw66+/Ii4uDo8ePYKxsTHU1NTg7++PFi1aYO3atbhw4QI0NDSQnJyM8vJy5OTkYM+ePXj48CG6du36Vs9UgUAAXV1d9OjRA2PGjMHdu3elCS3279+PK1euICMjA66urkhOTsby5cthYmKCPn36YODAgRgwYACePXuGzZs3Y9euXdIsSqtWrUJgYCBMTEzw9OlTFBbkQfT8ewR4NkFqxnOUVdWEAWVkZEBXT++/TjtycoC8MiDfACh9BKHyPXQe/B1mz1uE1NRU9O/fHwMGDMDWrVuxd+9e+Pn51TvB/cfEysoKR44cgUAggJmZ2Vvbq6qqori4GNeuXUO7du0+gYQy/owc/18HIMr41KSnp2PevHnSsl3/L3jyBPD2BjQ1gT84Br0VsqbvqFG47uyMvn37Ijs7G2KxGO3FYuwzMoJe8+aQyMmhID8fuXl5KHz+HC9KSiCRSKCurg7Nhg2hq6uLBw8eIC8vDwoKCjAUCLBBIkFEZSWOA3gOQCwnB5BopK+P8vJyNDM0hLy8PO7duwdNTU1sKyiAUkUFPAAoyMujo5MTBHl5GKimhtPJydDV1YWBgQFKSkpQVVWFS5cuoVu3bsjKykKjRo2gqamJ5cuXQ0NDAwUFBcjNzcWKFStw5coVaGlpoW3btlBXV0dhYSEEAgF+++03FBYWQl5eHg0bNoS2tja6dOmC7du3o3379li/fv07ZyaKiopCSEgI8vLyQBJeXl4YOXIkUlNTpYrWysoKoaGhcHBwkG4zREdHIzw8HImJiTUpE588ga+vL7788ktc+WkU7BtexdPnhJWVFe7evYvq6mo0bKiJFy+K0aJFC+g3qqNKTXkWoGOP+3pfo5+3N2xtbbFjxw5UVlaib9++qKqqwsGDB1/rVfwpuX//PmbNmoU1a9bUK2VocXExgoODsWLFCjRp0uQTSCjjj8iUqox3JiwsDGZmZvD19f27Rak/+/YBixYBjRoBiq9Lu/AHSCA7G7CyAjZvBlRVce3aNQQHByM/Px/FhYWYV16OboqK0LaxgY6OTq3uL168QE5uLgoKClBcXIwXL15AICeHRnJyyFdVxSJzcxgkJWFSdTWy/tBPW0sLEokEqqqqUFBURP5/kudvKyiAnrIyuisp4UVxMUhCqKyM8hEjYDx3LsRiMSorK1FRUYGffvoJurq6+PHHH5Gfnw+JRAJXV1fMnj27Vo7Ys2fP4uzZsxCLxdi+fTvs7OywePFi5OXl4fvvv4dYLMaRI0dQXl4OFRUVeHh4IDs7G4WFhcjMzIRQKISrqyv09PSgq6sLbW1t6OjovPL3j3Gkz58/R3BwMI4cOYLKykro6elh9+7dcHd3x+bNmzF79mwoKiqiffv2UFBQgJWVFVq0aAFbW1uoq6tj69atiIyMxKNHj2DYWAtXluqiqFSM+xlPUFFRDgMDQ5SUlKCoqAgNGzZEcXERRCIRzEz/ZOWRQEUW4BSB7Aod9OvXD5qamvjll18gLy8PPz8/5OTk4NChQ9DT03ufJ+6DsmvXLqSnp2PWrFn12vPdvXs3srKyW1JO+QAAIABJREFUMOk/dYJlfDpkSlXGO/Po0SN8/fXX2Lx5M9TrcAD6nyUiAli1qmYZWENDmgziFSoraxycrKyAtWuBPyjMY8eOYdq0afjuu+9gZmiIJwMGQDMtDS9UVWFgZAQjY2NpUvuXVFRU4NLFi9CqqsIzEuPl5fEMQFRlJVTFYrz4Tzt5gQD8T0rAZwAOCwTIFYthBkBRXh4iTU30+E8YSUlJCVQAlJaUYNeQIZg5dy6aNWuG7Oxs7NixA6dOnUJxcTFcXV2RlJSEqKioV1YWbt++jfDwcCxfvhx5eXmYNWsWoqOjYW1tjU6dOmHWrFkIDg6Gq6srVq9ejdTUVAwdOhSrVq3C1atXERISgqysLIwYMQLt2rVDQUEB8vPzpX9fHgKBADo6OrUU7Z07d7Bt2zY8f/4cAoEAPj4+CAwMRGxsLHR1dbFx40b0798ffn5+uHXrFm7evInMzEyYmZnBxsYGOTk5uBmzBONd81BGTTRrZohnz56hqKgYmpoNoafXCE+ePIaioiLKyyugo6ODli1bQvDH77w8CzD8DLCbjRcvXsDHxwcvXrzAgQMHoKOjA39/f6SlpeHQoUPS0nE7d+7EpUuXkJmZiYEDByIgIOAvPZL1paqqCl9++SUGDRpUr8pRpaWlGDNmDL799lsYGRl9AgllvESmVGW8F6tWrUKjRo0wePDgv1uUd+PsWWDNGiAjAxAIgIYNa/ZdyRpnptJSQEkJ6N8fGDcO+EMi+JckJCSgZcuWUFRUBCorURUWhvytW5GXm4sCsRgNGzeGqalpzQtHZSVKnzxB5sOHyDU1RcGkSbBycoJIXx9PLS2RWlSEsv84UTVQV69Jm5iXh5ViMdoDaAvgrpwcDikooJ++PsZZW0NVVRVZ2dnIevYMpg0a4Etzcxy7cgWNGzeWlrrr168fGjdujIkTJ2Lx4sWwt7dHz549a11HXl4eQkJCEBERIf0sLS0N/v7+ePDgAYYMGYLMzExERkYiNzcXfn5+KCoqgry8PBYsWIDu3btj+/btCAsLg1AoxIoVK17ZayWJ0v8URf+zwn38+DEiIyORmpoKsVgMBQUFGBkZoX///qisrMSBAwegrKyMr7/+Gq1atYKamhpycnLw4MED3Lp1C310dkFNUIzH2cUQCARQVlaGgkLNC4eSkhLs7e2RmpqKiooKyMnJQUFBAY6OjlBW+s8WgKQaqHoOdI4BFDVQXV2NwMBApKSk4MCBAzAyMsLIkSORkJCAAwcOwMTEBKdOnYKWlhaio6Nhamr6yZQqANy5cwcLFy7EunXr6pUUYu/evbh37x6+/vrrTyCdjJfIlKqM9yI7OxshISH4/vvv65315X8GEkhOBiIjgWvXgBcvahRp48bAwIFA5851huC8kbw84OhRFKxdi/y0NBSVlEBNRQW6hobQGTUKAh8f4I/l0HJzUdWtG35/8ACUSKDfuDGys7JAAPkNGmBjdjbGV1VBDjXxp5Hq6nA1NsbwP4zx6NEjVD97hj19+2JpVBRKS0tRVVUFJSUl9OrVC/fu3UP37t1RXl6O+Ph49O/fH/Ly8tKcvnJyctiyZQtGjx4NJSUl6efR0dFQVlbGb7/9hry8PAwYMAAaGhooKytDjx49cPDgQRw7dgxCoRBjxoyBnp4etm3bhgsXLqBjx44IDg5GgwYNpOkWXx4v5xYIBCgsLERUVBTu3buHrKws3LlzBy9e1NjsNjY20NTUhEAgQFlZGe7du4fWrVtDRUUFqampKCsrg5qaGmb3yoWDpSbKyytx5XYOfrkshpOFAs7dqYYcAC8HAdq1bYM1P99G7vNSeNipopMVYG/fGtlFCth8+CEeZRVCqWkndHTrgVGjRkEgEODLL7/EyZMn8dNPP6Fly5YICQnBiRMnsHfvXulLw/Lly9G0adNPqlQBYOvWrcjPz8fUqVPf2ra8vBzBwcGYO3fu/68wuP/nyLx/ZbwXLxPRp6Sk/P+LiZOTq1GgnTsDgwcDw4cDQ4fWWKdWVjUK9l1RUwNatYLqqFHQ+fxzKAwciAhFRYSmpuL769eRU1mJli1b/nd/USyGfEQElHR1oa+vD2MjI+jp6aG4qAjJhYV4oaqKIDs7aGhoAACuFxXhRW4u9EtK0LBhQygqKkKjYUOU5+bijKEhDK2tUVpaCk1NTVRUVCAjIwPq6uqQk5NDUFAQEhMT0apVK1hYWEBXVxdaWlrQ1NREcnIyWrduLc1QpKCggPj4eLRv3x4aGhrQ1tbGpUuXcOHCBZiamkJfXx+GhoZo06YNUlNTsWvXLqSlpcHV1RWWlpY4d+4cdu3ahSdPnqC0tBRpaWlITU1FSkoKbt68iaSkJCQmJmLdunUoKSmBhYWFNCXh8+fPUVRUhOzsbOTm5kJXVxcFBQVo0aIFEhISkJWVBTs7O5ibm0NZUYCbKekw0pVATVGMojIBLt2phqGOBP4d5aGsSBxLJB5kPsaWmZ5oYSyPjUeeoYO1OrKfPUSFRAkurQ0wumtDuPjMxJ79p0ESNjY26NWrF/Lz8zFjxgy0bt0a48aNw5MnTzB37lw4OzujadOmuHjxIjQ0NGBnZ/cBH8y3Y2tri507d9YrF7eCggIUFBQQExMDNze3TyShDFCGjPckLy+P/v7+zMnJ+btF+Z9FLBbz559/Zrdu3WhsbEx/f39eunSJFItJZ2eyWzfSy0t6iHv3ZoylJbsrKvKCnh6fu7hQ0rs3Jxga8httbZ5UU+MxJSVebtKEBU5OFLdrxwUzZ3LlypVMTU3lpEmT6ODgwMOHD3PkyJFUV1enp6cnV61axSVLlrwi34wZM3j16tVanwUEBDA/P58TJ05kSkoKr1+/TmdnZ5qbm9PT05OXL1+Wtk1OTmaPHj1oYWHBNWvWUCwWMzIykra2tnR1dWV8fPwrc96+fZsBAQGsrq6u9fnJkyfZo0cPGhkZUUlJiUpKSjQyMuKzZ89YXFzMIUOG0NzcnHv27CElEi4YYsADCxzJWC/e2OrK/i5NeH9bS56YpcorK4Xs1b4Rb/7oQsZ6kbFeHOtlwHUjVXlukTZPzlblre/NKTnWgSy8w/3793PhwoW15Nm4cSNFIhGjoqJIkosXL6apqSnj4uK4bNky7tq1672fi7/CjRs3OGzYML548eKtbSsrKzl8+HCmpKR8AslkkKQs+YOM90ZHRwfdunVDZGTk3y3K/ywCgQB+fn44fvw4YmJioKmpCX9/fzi7uOBC06aQ5OXVbi8nBw9zczTS1cVFsRhXEhOx9+ZNZFRXQygUol3btjBq1gzFxcW4Fx+P7VlZaO7ggMzMTFy6dAkrVqzAvn370K1bN4SHh2PHjh3Izc3FsmXLsGbNGsTExNSaT19fH9nZ2dJ/l5eXo7y8HIqKinjy5AnMzMxw+vRpTJkyBdeuXYOjoyMGDBiAgQMH4v79+7C1tUV0dDTCwsKwdetWdOjQAdra2rhy5QqcnZ3h6+uLUaNGIT8/XzpHbm4u9PX16yyqbWdnh1u3bsHf3x8K/0mu0bp1ayQlJeHLL7+ElZUVRo0aBZGJCa6ki1H0okTaV0NNASKhMdq3b4+iwgIUFj5HA9U/VMNRV4G5ZXMIBAIUlAqwNDID/WYlwGfYFOzYsQNFRUW1ZAkODsayZcswdepUbNiwAdOnT0dISAiGDh2KO3fuvN8D8QGws7ND27Zt8cMPP7y1raKiIgYNGoQdO3Z8AslkALKMSjL+Ij4+Pjh//jyePn36d4vyP4+VlRW+//573Lp1C4MGDcJ3d+8iOTkZyUlJKC0tlbZTEAgwx9oaDzQ1sUIgwKmnT2H04gUqysuhoaGB5s2bw6lDBxg0aYIfS0owcOBAbNq0CRMnTkTz5s2xYsWKGicqAN7e3nB3d8eGDRtgZWWFwYMHo2fPnjh37hyAV5Xqs2fP0LhxY9y+fRuWlpaorq7GpUuX4O7ujgYNGiAsLExa99TDwwMTJkzA8+fP4e3tjStXrqB///4YO3Ys/P39MXLkSMTGxiI3Nxft2rXD6tWrIZFIoKenh5ycnDrrxgJAgwYNsG3bNuzfvx8qKirIzc2Fm5sbfH19MXXqVNy6dQu2trbIKShFyYvnr/TXaNAAzh2dIS8vj/j4K8jO+e/1KSkqokOHDjieJA8jXcKrgzYyH2ehe/fudWYt8vHxwbZt27B8+XLMnz8fEyZMwOzZs7F3717Ex8e/34PwARg+fDiuXr2K69evv7Vt586dkZOTgxs3bnwCyWTIlKqMv4SGhgb69OmD3bt3/92i/L9BRUUFEyZMwP7EROj27Anl4mJcuHABv//+O549e1ZTFq1BA6xp0QJHXFyw3NkZQRoasHz8GA8yMiAhoVpSgqbu7lhx9Ch0/1P7taioCCkpKUhMTJQ6/cjJyWH48OE4dOgQNm/ejK5du6JFixYYNmwYunTpgkePHiEnJ0cqW1ZWFpo0aYKbN2+iRYsWOH/+PJo3bw5tbW1pGwMDA/z44484fPgw0tPT4ejoiEWLFkEikWDatGm4fPky9PT04OnpiTVr1mDnzp1YtWoVfvzxR3Ts2BFZWVnQ1tbG9u3bUV5ejsrKyjoLjnft2hUeHh7S7EYPHjzAgAED8OTJE3zzzTcoUxQiOzsHt28lQcLa1VzkBQI0bNgQJiYiJCUl4XZKirRgvBzkoNFQFwb6Wth3WQ4kMXXqVGRkZNT5fbm5ueHXX3/Fnj17pC8MvXr1QkREBLZt21bvSjIfEjU1NXz++edYu3Ytyl+TgvMlCgoKCAgIQERERL3THcp4f2RKVcZfpm/fvrh27dprf5RkvB7DLVtg0b49XG1toampidspKTh79ixS796V5lhWV1ODg6MjRCIRMh48wJ2LF1EmL4+pAObMnYvRo0fD1NQUTZs2hZycHC5cuAAjIyNMnDgRT58+RatWrWBgYIDbt2/D2NgY/fr1w/Xr1+Hk5IQ1a9Zg1apVOHr0KID/WqrJycmwtbXFyZMn0aVLlzplb9GiBY4cOYKNGzfiyJEjcHBwwPbt26GtrY0tW7bg4MGDuHXrFhwcHPDw4UNcvnwZXl5eCAoKwpMnT3Dnzh2MGDECQUFBiIuLq3MOeXl5LF++HEeOHIG+vj5ycnLQsWNHfPHFFxgwaDB0zLtArjIX165dQ2UdOambGRiibdt2yMnJxtOnT6VtRnTVwLUnmihXs0F6ejoaNWqE6OhorF+/vk45WrZsiWPHjuHQoUMwNTXF8+fPYWZmhvHjx/9tCRbatGmD5s2b1wqJeh2urq4oLS1FQkLCJ5DsX87fu6Ur45/Cvn37XnH0kFFPMjPJPn1IBwdKunThIwcHXtDT4wlVVSYYGrKgU6caR6Zu3VjWogWv6Ouzh5UVx40bRy0tLRoaGtLMzIzKysr09fXljBkzqKGhQTU1NWpqanLQoEE8fvw4AwMDGRMTw+nTp0unTk9Pp729PS0sLNixY0eOHTuWUVFR9PX15YMHDxgQEMCqqqq3XoJYLOa2bdtoa2tLJycnxsTESM/t3buXLVu2ZPv27Xnq1Ck+fvyYgwYNoomJCRctWvSKw9LrKCsr45gxY6impkZ5eXk2a9aMly+epeT8UGZuacITs1SYusWaktjeUuekl0f1yZ5MWGHIU3PUWRDZnDzZhSx9QpJ8/PgxO3XqRDs7O5qYmDA4OJhisbhOGXJzc+ns7MyuXbuyuLiYsbGxNDU15XfffVeva/jQFBUVcciQIbx169Zb254/f54TJ06kRCL5BJL9e5GF1Mj4IJiZmWH79u2wtbWtV35SGX+gYUOgZ09ATg5ySUloKJHASF8fjfX0UF5YiKdpaSh8+BDiyko0GD4cTTZuRKmWFiIjI1FdXQ0lJSWUl5ejcePG2LRpEwYOHAgnJyekp6dDTU0NFy9exM8//4zCwkKoqKjgyZMncHR0hKamJjQ0NBATE4Pjx4+juLgY4eHhOHfuHLS1tdGgQQMYGhqibdu2b70EOTk5tG7dGqNGjUJOTg4WLFiAmJgYtGrVCu7u7hg9ejRycnLwzTff4Nq1awgLC4O7uzvWrl2LzZs3w9jYuFYKxbpQUFDAZ599BhcXF8TGxuLp06f4cVsE8pXt4dfFGo3VniMz8xEyHz+Dnq6edF8ZqHEYa6qvDXWFUlxPeYJfn3RHew9fyMnJQUNDA4GBgUhISKiV9N/Ly6tWikWgZtl10KBB2Lt3LzZv3oyJEyeia9eumDFjBvLy8uDh4fF+z8B7oqysjEaNGiE8PBzdunWr0/nrJc2aNUNMTAw0NDRgbGz8CaX8l/F3a3UZ/xyio6M5a9asv1uM/9+UlZFHj5IhIeSQIWRgICvHjuX+kSPZyd6e5ubmDAkJ4YMHD3j37l06OjpSRUWFTZs2ZY8ePXju3DnpUPv37+e4ceMYGxvL3r17U11dXWrhjRgxQmqNBQUFMSsriyQZHBzMfv360cDAgLq6uvzuu+9ea7W9iYKCAk6YMIFCoZDDhg3j48ePSZJZWVkcPnw4hUIhJ0+ezMLCQi5fvpympqb09vbmgwcP6nmbyjhu3Dip1WpmYsS02KWsPt2b6d/rMTFMiU93mJPHncno9mR0W/KEB3l3M29c+Y2tWrVijx49pNf9ktDQUKqqqlJLS4sNGzZk165d6evrS19f31rtxGIxBw8eTDs7O6alpTEpKYlWVlacPHnyO9+rv4pEIuGiRYu4Y8eOt7a9cuUKx40b917fqYz6IVOqMj4YVVVVHDVqFG/cuPF3i/KP5fTp0/Tx8aGRkRF79+7NqKgo2trasmnTpvT29mZAQADDw8OlS7Zbt27l1KlTWVFRwfT0dLq4uFBFRYXy8vIUCoVctWoVp0yZwqSkJEokEvr4+HDq1KmMiIigm5sbW7RowVatWnHjxo3v9UN8//59Dhw4kEKhkKGhoSwuLiZJXrt2jZ6enrS0tOTGjRuZlZXFoKAgCoVCzpgxg+Xl5fUa/9y5czQzM6OCggKVlJT4+efjKc69wuSoYdwyXpsH55mz9PIM8ukpsrpC2q+4uJgDBw6ktbU1Y2Nja4158uRJmpmZ0d7eniKRiHv37q1zbrFYzJCQEFpaWjIhIYFpaWm0tbXl6NGjP7nSysvL4+DBg3nv3r03tpNIJJw6dSpPnz79iST79yFTqjI+KKdPn+bUqVNl+zYfmadPn3LatGm0tramnZ0dQ0JC2LlzZ9ra2tLf35+hoaHMy8ujRCLhsmXLuGDBAlZXV/PFixf08/Njhw4dqKmpSXV1dTZo0ID+/v588OABBw0aRF9fX3777bfcv38/xWIxw8PDaW9vTzs7O65Zs6Zee6x/5vfff6enpyctLCy4cuVKqdKJjIyknZ0dnZycGBsby0uXLrFTp05s0aLFa5XZn6moqOCECROoqqpKeXl5Ghsb89q1a8zJyaG3tzetra15+PDhOvuuWbOGQqGQ8+fPr6UIMzIy2KFDBzZv3pxGRkacP3/+a+d/mRQiJiaGmZmZbN26NQMCAj65Yj158iQnTpz41u8nKSmJo0aNeq/vUcbbkSlVGR8UsVjMcePG1cq6I+PjIRaLuXPnTnbu3JnGxsZ0dHSkkZERO3fuzEGDBjEpKYlVVVWcNWsW161bR4lEwl9//ZWff/45x4wZw63rv+UQD02O8JDn2G5KHP9ZY04e05cDBw7k8+fPa80TERHBNm3a0MbGhsuWLWNFRcUbJKubffv20dHRka1bt5ZmKqqoqOD8+fNpYmJCX19fpqenc+PGjbSwsGDPnj3rnQ3o0qVLNDc3l1qtEydOpFgs5qZNm6QOSGVlZa/0i4+Pp52dHXv16sW8vDzp52VlZfT396eJiQlNTEw4cODAOvuTZHh4OEUiEffs2cOsrCy2bduW/fr1e6979L5IJBLOmTOHkZGRb207a9YsRkdHfwKp/n3IlKqMD86FCxdkXoZ/A8nJyRw1ahQNDAyoqanJxo0b08PDg7/88gtLSkr45Zdf8qeffmJlRQXnTfyMh+ZbsWSfLQt+suCD73WZtFSZ8QvB+AXgL1MbMuW370lxZa05XqZddHJyopWVFRcvXvxaRfM6xGIx161bR0tLS7q5ufH8+fMka/Zbhw4dSqFQyKlTp/Lp06ccN24chUIhQ0JCWFJS8taxq6qqOGnSJKqqqlIgEFAoFPLGjRtMT0+nu7s7W7duXZMm8k8UFRXRx8eHNjY2jIuLq3Xu22+/pZGREa2trenk5MTMzMw6596/fz9FIhHXrFnDgoICdurUid27d3/n+/NXyMrKor+/Px8+fPjGdnfu3GFQUNAnVfr/FmRKVcYHRyKRcNKkSa/8OMn4NBQXFzMsLIwGBgZUUFBgo0aNOGnSJD569IjBo0cwdd9QFv5syZQ12ry7xYLP97vw9kZzPtrlwPOLdRgzU4lxc+WYsEiO+6c34vHDP9c5z/79+9mpUyeam5tz3rx50v3S+lJaWsoZM2ZQJBKxf//+vHv3Lskay9HDw4PW1tYMDw+X7r9aW1tz27Zt9Ro7Pj6elpaWlJeXp5KSEkNCQlhVVcUFCxZQKBRy9uzZdS7PLl++nEKhkN9++22t80ePHqWpqSltbW1pYWHx2mc7Li6OZmZmnDVrFktKStilSxe6ubmxqKjone7NX+Hw4cP86quv3rr8vGDBAu7fv/8TSfXvQaZUZXwUrl69yuDg4HrHIMr4OISHh1NXV5fy8vJs2kSflzd7MH2DDvP3OfHGWiEvfKvHwoOuTFxtzHs/2DJuoRavLG/K4sPuvLbKkFcWCRgVIs/WtuYMDw+v84f66NGj9PDwoKmpKadPn87CwsJ3kjErK4sjR46kUCjk2LFjpUuwu3fvpq2tLZ2dnRkXF8eIiAhaW1vTw8OD165de+u41dXVnDp1qtRqFYlEvHHjBhMSEujo6MhOnToxNTX1lX6XLl2ira0t+/Tpw4KCAunnaWlpdHR0pKWlJY2MjLhly5Y6501OTqaNjQ2Dg4NZUlJCLy8vdujQ4ZMVnpBIJAwNDeWBAwfe2C49PZ2BgYGf1JL+NyBTqjI+ChKJhNOmTeOJEyf+blH+9VRVVfGrr77i590VmbAIPDFTmWfmN2TmTnueW6TNjB2teHlpE95YK+TZBZrM2NFSmjSh8kR3PtzShBtHq1BNTY1Nmzbl4sWL61yKjY2NZbdu3WhiYsLJkyfX2p+sD7du3WKfPn1oYmLCefPmsaysjBUVFZw7dy5FIhEHDhzIlJQUTp48mUKhkMHBwbWU3uu4du0arayspFbr5MmTWVZWxgkTJlAkEnH9+vWv9CkoKGDfvn1pa2vLixcvSj8vKSlh//79KRKJ2KxZM+m+7Z/JyMigg4MD+/fvz7KyMvr5+dHBwUEaWvSxefToEf39/fn06dM3tgsLC+PPP9e9EiHj/ZApVRkfjZs3b3LEiBGsrHy5L5dHMo3kbZIPSVa+tq+MN3Py5ElOnTq1/h2qSlj8a2ueX9iAR7+W5/EZSjwSKuCpOWo8u0CTCSsMeH6xDn/7piFLjnaunZHodG+Kjzpw29rZFIlEVFVVpY6ODr/44os6f7TPnTvHXr16USQSccKECa/Egr6N2NhYOjs708bGhps3b6ZYLObjx48ZGBhIoVDIadOmMSkpib169aK5uTnXr1//1qVOsVjMGTNmSK1WExMT3rp1izExMbSxseFnn332ipwSiYRLliyhUCjk0qVLa401d+5cGhoa0sTEhD169KjTOi8oKKCLiws9PT1ZWFjIoKAg2tnZMT09/Z3ux/sSFRXFmTNnvtG34dGjRwwICKhXGTkZ9UOW+1fGR6N58+YQCg1x+fIqAOMB9AAQCGA4AD8A3QGEA8j6+4T8t5AViwYqiujQ0RVCoQgSiQTKysoQiyUoLCxCdnYOioqKoaqqCjVVtdp95eQgkJPHsM4NcO/ePURERMDY2Bhbt26FpaUl/Pz8aiXEd3Z2xpEjR+Du7o5ff/0VJiYmsLOzw+HDh+slqru7O86ePYuZM2di7dq1cHJywvXr1xEREYGff/4ZFy9exIABA+Dn54clS5Zg48aNcHFxwaVLl147pkAgwKJFi3D58mVYWlri4cOHaN26NU6cOIELFy5AXV0dnTp1wt69e/9w2XL4+uuvsXPnTvzwww/w8fFBUVERBAIB5s2bh7Vr10IikeDu3btwdXV9pRyclpYWYmJioKKigq5du2LRokVwd3dHr169cOvWrXrdi7+Ct7c3SkpKcPLkyde2eZkxa//+/R9dnn8Nf7dWl/FP5hZfvHBnWpouq6s7kOxF0usPRxeSbUi2JRlGUhY3V1/e2VKNG0DGuEqtz4L9nXhqjhqPfi3PmJkqjJ6myENfgcdnKPHmBlOWRnepba2e6kYe70hW/XfZ98KFC+zSpQvV1dWppqZGNze3Wg489+/fZ3V1NRMTE9mtWzeqqakxMDCQGRkZ9Ra7qqqKYWFhNDMzY/fu3aV7qREREWzevDk7derEM2fOcNasWRSJRBw6dOhbLWOxWMzZs2dTRUVFarXevn2bERERNDU1ZVBQ0CtOV/n5+ezduzft7OxqhYvdunWLLVu2pKmpKUUiEQ8dOlTnfEOHDqWdnR1TU1M5ffp0WlhYMCEhod734X1JT09nQEDAG5fiX3oM/zGESsb7I8v9K+MjcQXAOCgpAfn5cqislIeGRsM/tVEA0ACAKoDfAaQA6ALg9flL/43k5uZi1apV2LhxI3755Rfk5ORAV1cX9+7dQ2ZmJsLCwhAdHY1mzZrBwMAAAHDy5EksXboU27dvR8zx41B6fhHmIkNATg5J6UWYu/0+mhkbY/Ox54hNKkNDFQmelwLHU7Sx71wu0u8/gIZ8AZQUlfA4n/j2p/v44dhjHDyZgKycArRu3RpCoRBDhw7FwIED8ezZM5w5cwbbt29HZGQk9PT04OTkBHl5eTRp0gTt27dHUlISKisrERYWhsTERLRs2RI6OjpvvHaBQABnZ2cEBQUhOTkZ8+ZsDLVZAAAgAElEQVTNw5UrVzBq1ChMmjQJmZmZ+Oabb6Cmpobly5fjzJkzWLhwISorK+Hk5AQ5OblXxpSTk4OHhwd8fHxw+vRppKenY9OmTTA3N8e6deuwe/durFq1Ci1atIBQKAQAqKqqYtCgQcjPz8f06dMhJyeHDh06oFGjRhg8eDDOnj2LZ8+e4dChQ6iuroazs3Ot+fr27Yt79+5h7ty5mDlzJjQ1NTF9+nQ4Ojp+1Dy82traKC8vx4kTJ+Di4lLn/VBXV0d2djZSU1Nhb2//0WT51/B3a3UZ/0TSSDqTdCfpxdLSLkxIMGBVVU/WtlT/ePQm6UByPklZfOtLxGIxv/jiC27ZskXquHPz5k2ePHmSffv25bFjxygWi3nkyBEOHTpUun92+fJlPnnyhBKJhEnX4tm/oxbTdnqQsV68sdWVfTo25k+z7Vl1shf3zLCkmzUY5AqWHuvJjD2e7OvciL8tMeapOerc9WUDHl9oyopDbZiVeoZjx46tMxQjLy+PU6ZMoY6ODlVVVWlsbMyePXuyb9++9PLy4pw5cyiRSJiWlsahQ4fS2NiYgwYNqleFlZdkZGRw8ODBFAqFnDRpEouLi/n48WMGBARQJBJxxowZPHjwIB0cHNimTRuePHnyrfd3/vz5UqvV1NSUKSkpXLZsGYVCIb/66qtXMg/FxsbS2tqafn5+UotWLBYzNDSUBgYGNDQ05NChQ+uMAQ0LC6OJiQmPHTvGNWvWUCQS8fjx4/W+/vehsrKS48aN42+//fbaNnl5efT3939n5zIZryLbU5XxEVgDoApAA4wceR137lRAS0sLz549e0MfOQBNABwCkPophPx/QWpqKvLz8zF8+HCoqKhASUkJzZs3BwDo6+uje/fuEAgE8PT0RH5+Pp4/fw4AaNu2rbS+aotWDrA3U8XN+8XScRXk5TDA3QAK8gL0cTVDA61GmBDQHqrK8jBurApRkwZQ0jCCu7s7XNqYoYHgOZKTb2DFqrWwsbFBcnLyK7Lq6Ohg2bJlePr0Kb799luQRGxsLOLi4qCtrQ1LS0vIyclJKxrFxcVBXV0dPXv2hK+vL27cuPHW+2FsbIydO3fil19+wc2bN2Fvb49du3Zh+/bt2L17N+Li4jBt2jRMnDgRPj4+GDNmDAYMGIBHjx7VOZ5AIMCcOXOQmJiI5s2b48GDB2jZsiXy8/Nx+PBhnDt3Di4uLrh586a0j7u7O+Li4lBcXIxOnTohMTERAoEAYWFhWL58OeTk5BAbGwtPT89XnvnQ0FDMnTsXwcHB0NbWxpw5cxAcHIxff/317Q/De6KoqIgvv/wSW7ZsQWFhYZ1tdHR00KVLF0RGRn40Of4tyJSqjA/MUwAXAejV+tTQ0BDZ2VnSwtt1I0CNct37hjb/LnJzc6Gvr19nSS8tLS3pfysrKwMAysvLAQAJCQn46quv4O/vj0H+AUhIF6PoRam0vYaaAgSCmqVAJQUB5OTk0Ez/v8vzSgpyKKsQQyAnB4GyHk6m6mBptCr2Rl/G9OnTsWnTJkREREAikbwil5KSEr788ks8ePAAERERMDAwQFRUFEaMGIFevXrh4cOHAGoUZHh4OC5cuIBGjRqhT58+6NevH65cufLW++Lo6Ijjx49j1apViIqKgqOjI+7fv48zZ84gNDQUYWFhOHbsGNatWwclJSW4uLhg/vz5qK6urnM8KysrXL9+HQsXLoS8vDyWLFmCfv36Ydu2bXB1dUXv3r2xdOlS6fXq6enhyJEj6NevH/r164cNGzYAAAYNGoRDhw6hYcOGePjwIdzd3REfH19rrmHDhmHdunWYPXs2CgsLERYWhsmTJ2Pnzp1vve73xcrKCu7u7ti8efNr2/j4+CAuLg7Z2dkfTY5/AzKlKuMDcwAAAQiwYkU6cnIqsWDBXQQGJuP33xUwe/Z1DBlyDQMHJmDatNt4+LDsT/11ARwGUPzKyP9G9PT0kJOTA7FYXO8+VVVVWLx4Mby9vREREYE9e/bAsV0nUPzne10/NhzIQDMtMX74Nghp6Q8RHh4OExMTLF++HM2bN8fXX3+NJ0+evNJPIBDA19cXSUlJOHHiBJo0aYJTp07BxsYGPXr0QGJiIgDAwMAA33//PS5fvgyhUAg/Pz/06tUL58+ff6tsvXv3xqVLl/D5559jwYIFcHNzg4mJCa5evYqOHTti3LhxAIAVK1bg2LFjaNOmDQ4ePFjnWAKBANOnT0dSUhLs7Oxw//592NnZQVlZGdu3b0dERAR69uwptXpfegGHh4dj9erVCAgIQGlpKVq3bo1z587B2toaxcXF8Pb2fkVhenl5Yffu3Vi/fj0SExOxfv16zJ49Gxs3bnyn7+ZdCAwMxN27d3H58uU6z2tqaqJXr1746aefPpoM/wZkSlXGB+Y0apyPgMmTTdGokRJmz7ZAVJQjRo60gbFxJdats8bOnfYwM1PDsmX3/tRfATVK+dXlxX8jlpaW0NbWxvbt21FeXo7Kyspa4St1UV1djaqqKmhqakJeXh4JCQm4ll4BQA5g/ZXzS8oqxFBTloOKVSAePXqE3377De3bt8fVq1excuVKpKSkoEOHDujfvz9OnToFAHj06BESEhJQWVkplcfBwQFHjx6Fl5cXzp8/DycnJ7Rp0wbR0dEAapazV69ejYSEBNja2mLIkCHo1q0bzpw580b5BAIBxowZg2vXrsHT0xNBQUEYNGgQhg0bhrNnz0IsFmPy5Mno0qULgoKCMGXKFKnjUF2YmZnh6tWrWLJkCeTl5bFw4UKMGjUKu3btgoGBAdzc3GopyS5duiAuLg65ubno1KkTbty4AS0tLURHR2PAgAEQi8WYOnUqvv7661qWvZOTEw4ePIgDBw5g37592Lp1K5YuXYqlS5e+83dUH5SVlTFhwgRs2LABJSUldbbx9vbG5cuX8fjx448iw78BmVKV8YEpBKBY5xklJUX06mWA+/dT8eJFIfz89HH/filKSv68JEcALz62oP8veLnn9+TJE4wYMQJBQUGIi4t7Yx9VVVUEBwdjyZIl8Pf3r1GCHV0BLTugIuedZRjRRQNnbgMDxoZh7dq1cHFxkcrWs2dPHDhwAOfOnYNIJMK4cePQpk0bbNq0Cdu2bcPgwYMRGBiIQ4cOITQ0FJ6enoiMjMT9+/cxduxYpKeno3///jA3N8ePP/4IiUQCHR0dLF26FImJiWjTpg1GjhyJzp07S5Xv61BRUcG8efNw+fJlNGnSBN27d8eCBQuwevVqREREIDY2FuHh4QgNDYW+vj48PT3x9ddfS5fM/3zfp06ditu3b6NVq1ZIT0+Ho6MjhEIhlixZgm+++Qb+/v7SPWx9fX0cO3YMPXv2RN++fbF582YIBAKsXLkSixcvhkAgQEREBLy9vfHixX+fbRsbG5w4cQKJiYlYu3Yttm3bhs2bN+NjBWXY2dmhbdu2+OGHH+o8r66ujr59+2L37t0fZf5/BX+3p5SMfxo9WBN/WuPVO2KEEa9dcyHpRbG4N8PDW3DAAC326NGAXbuq0NVVhRcvWjArqx1LSjpTIulNsh3JN3ttyngPKotr4lWPtSVP964dh/q647gzecKdfPHmqicvqaqqYnh4OF1cXCgSiThq1CgmJye/tn1ZWRm/++47GhgYUFlZmfr6+vzmm29qpUEsLi7mvHnzaGFhwU6dOtU7CfydO3ekKQVnzpzJkpIShoeHS/MHb9++nW5ubmzevDl/+umn144jFou5cuVKqqioUE5Ojubm5oyPj2efPn1oY2PDY8eO1WofHR1NCwsLDh06VJpX9/Lly7S0tGTTpk1pb2/PtLS0Wn0KCgro5uZGd3d3nj9/nlZWVpw8eXK9rvNdKSkpYVBQEBMTE+s8X1ZWxsDAQN6/f/+jzP9PR6ZUZXxgAki6si6levp0B44dK+SzZ10pkfRmcXEP9uypxxs37HnvXnNev27MK1cM+PChAY8dW8Br167Vq9yXjHegPI88P4Q8ak+e6Px6ZXqyGxntWJP0oejue00VHx8vLeXWuXNn7ty587XpBMViMXfv3k1ra2uqqKhQU1OTY8eOrZXIoaysjIsXL6aVlRU7dOjAyMjIehUCj4uLo5ubG62trbl+/XoWFxczNDSUQqGQgYGBXLlyJa2srNitW7c3vgBkZGTQ3t6eAoGAioqKnD9/PtevX0+RSMQvvviC5eXl0raPHz+mh4cHHR0dpWNmZWXRzc2NTZo0oVAoZExMTK3xy8rK2KdPH7Zp04bnzp2jra0tR48e/VGKncfHx3PkyJGvTaa/f/9+Lliw4IPP+29AplRlfGB2syZLUo1SnTLFlNHR7Uh68ciRtpwwQcSSkp4sK+vJDRta0MtLn0+e/Neyraz0YGFha+7YsZnTpk2jr68vv/jiC65fv56nT5+Wxl7K+AtUlZL3tpOnupLRbcno9uRxFzLGhTzmVPNZTCfy9kqy7PWVVZKTk+nr61vn8UcKCgq4cOFCtmzZktbW1pw+ffobE73HxcWxY8eOVFFRobq6Ovv161erUHlFRQWXLVtGGxsbtmnThhEREfVSPHv27GGrVq3o6OjIAwcOMCMjg35+fhSJRJw+fTq/+OILCoVCfvHFF28sY7dmzRqqqqpSTk6OFhYWPHPmDF1cXOjo6Mj4+Hhpu5exqyKRiD/88IP0s+DgYDZq1IiNGzfmqlWrao0tFosZFBREW1tbnjlzhq1bt+bgwYM/imJdvnw5N2/eXOe5iooKBgUF8c6dOx983n86MqUq4wOTT7I9a5aBvXjpkjODgppx4EAD7tnjwAULrOjr25TDhxvx1KkOryjVGoW8VjpaVVUVU1NTeeDAAS5ZsoTDhg1jYGAgFy1axH379vHWrVuyQsvvi7iKzD5HJs4ifx9LXhpNXg0lHx2uUbwfejqxmIcOHWLv3r1pZGREHx8fxsbGvrZ9SkoKvb29qaamRhUVFWkJuJdUVVVxzZo1bNGiBR0cHF5bmu7PMixfvpwWFhb09PRkfHw8z5w5QycnJ9rZ2XHZsmXs3r07LSws3jjeo0eP2KZNm1pW65w5cygUCjl//vxa/Q4dOkRzc3MOHz5cahlu2LCBjRs3ZqNGjThq1KhXSiSGhobS3NycR48eZdu2bdmvX78/FKb4MBQVFXHIkCGvTb4RHR3NWbNmfdA5/w3IlKqMj8Ac/tFarf/RnTV5gDPfOHpOTg5/++03btq0iSEhIfTx8eFXX33FrVu38vz587KsMP8PePDgAUNCQmhubs42bdpw5cqVr13qz8rK4vjx46mlpUVlZWVaWVnx559/liousVjMjRs3slWrVrSzs6tX1Zri4mJOnTqVQqGQgwYNYnp6Ojdt2kRLS0t6enpyyZIltLW1pauray3r889s2LBBarVaWlry0KFDtLe3p5ubW61qNJmZmXRzc2Pbtm2lVndcXBxNTU2pp6dHNze3V+qtLl++nCKRiJGRkezUqRN79OjxwWufxsXFcezYsXW+mFZVVXHUqFFMSkr6oHP+05EpVRkfgWzWWKodWX+F2pM1aQp/eOfZysrKeOPGDUZGRnL+/Pn09/fnyJEjuWzZMh45coT37t2TFUv/H6WiooKbNm2is7MzRSIRg4ODX2s5lZWVcdGiRWzcuDGVlJRoaGjIlStXSi04sVjMbdu20dHRkba2tlyxYsVbVzEeP34s3fedMGECMzMzpfVaAwMDOWHCBAqFQo4cOfK1L2tPnjxh27Zta1mtY8eOpYmJCTdt2iRtJxaLOWnSJJqYmDAiIkI6f8eOHamnp0dLS8tXiq9HRERQKBRy48aN9PT0pJubG4uKiup9f9+GRCLhokWLuGPHjjrPnzp1iqGhobItl3dAplRlfCTukezKGk/eP1en+fPRhTUKdRk/RN5fiUTCzMxMxsTEcPXq1Rw3bhz9/Pw4c+ZM7ty5k1euXJHVj/wf5PLlyxw8eDCNjY3p6enJPXv21GlxisVi7tq1i+bm5lRSUqK2tja/+uoraU1TsVjMPXv2sH379rS2tuaSJUveauFdv36dvXr1oqmpKRcvXiz1HDYxMeGkSZP42Wef0czMjKtWrXqtFbxp0yap1WplZcVt27bR2tqa/fr1q2WF7tu3j2ZmZhwzZgwrKiqk+5e6urps0qQJIyMja4179OhRmpiYcPHixfTy8mKHDh2Ym5v7rrf3teTl5XHw4MG8d+/eK+fEYjHHjh3LK1eufLD5/unIlKqMj8gzkuNYsxTchjVKtjf/m0DfmTXLve4kf+bHTKRfVFTE+Ph47tixgzNmzKCvry/Hjx/PtWvX8uTJk3z8+LHsbfx/hIKCAn7zzTe0s7OjjY0NZ86c+dpybmfOnGG7du2orKxMdXV1BgQE8OHD/4b/7Nu3j87OzrSwsOD8+fPf6k1+7NgxdujQgS1atOC2bdt44sQJtm/fni1btuS0adPYqlUrtm/fnmfPnq2zf1ZWFtu3b1/LavXz86OFhUWtUKCMjAx26tSJHTp0kIbXrFixgnp6etTV1eXs2bNrKe/ff/+dFhYWnDJlCv38/Ojg4MDHjx/X+56+jZMnT3LixImvFA8ga5aIQ0JCZP9/1BOZUpXxCcgguYo1oTYOJB3/83cYa+JRP72jUXV1NdPS0njo0CF+9913HDFiBAMCArhgwQJGRUUxOTlZ5gD1NyMWi7l//3727NmTRkZG9PPzq+Wo9EdSUlLo5eVFVVVVqqio0MPDo9ZS6pEjR+jm5kYzMzPOmjXrjd69YrGYW7duZfPmzdmxY0fGxMRw/fr1Uuem8ePHUyQSMSAg4LVezOHh4bWs1hUrVtDU1JSjRo1iaWmNE1hVVRUnTJhAU1NT7tmzh2SNcjMyMqKOjg59fHxqWdgpKSm0tbXl0KFDOWzYMNrZ2X2wWFKJRMLZs2fz559/rvPcxIkTeeHChQ8y1z8dmVKV8YmpIPmC/4vl3XJychgXF8ctW7Zw8uTJ9PHx4eTJk7llyxbGxcV90CU3Ge9GWlqaVAG1a9eOa9asqXNJNysri6NHj6aGhgaVlZXZsmXLWskZYmJi6OnpSVNTU4aGhrKgoOC1c1ZUVHDBggU0NTVl7969+fvvvzMkJIRCoZD+/v709vamiYkJFy1aVOeefU5ODjt27Eg5OTkqKipy5syZ9PT0ZMuWLXn+/Hlpu6ioKJqamnL8+PGsqqpiRkYG27RpQy0tLTo4ONQq6v5y/9bLy4vjxo2jtbX1O5XOexMvi5VnZr7qKHj58mWOHz/+o4T2/NOQKVUZMl5DRUUFk5OTGRUVxQULFjAgIIDDhw/nd999x4MHD/Lu3bsyB6hPTFlZGTdu3MiOHTvS1NSUY8eOrRXD+sd28+fPZ6NGjaikpERjY2Nu2bJFqhTi4uLYo0cPikQihoSEMDs7+7VzFhQU8PPPP6dQKGRQUBAvXLjAfv360dTUlKNHj2abNm3o4ODAo0eP1tl/+/bttazWGTNmUCgUcvr06VJ50tPT6eTkxI4dOzI9PZ1lZWUcOHAgtbS0aGRkxDNnzkjHKywspIeHB11dXTlp0iRaWFgwISHhr9xWKYcOHeLUqVNfUZ4SiYRTpkypJYeMupEpVRky6olEIuHjx4958uRJrlu3jp9//jl9fX05ffp07tixg/Hx8R/UM1PGm7l06RL9/f1pbGzMbt261QqzeYlYLOYPP/xAkUhEJSUl6unpcc6cOVIr99KlS/Ty8qJQKOT48ePfmJQiLS1NmiwiNDSUBw8eZNu2bdmyZUsGBQXR1NSU3t7efPDgwSt98/Pza1mtU6ZMYdu2bdmxY0fpS0FVVRXHjRtHU1NTRkVFkSQXL15MHR0d6urqcuPGjdLxKioq6O3tTUdHR4aGhtLU1PS1S+PvgkQikV7bn7l+/TpHjx5d576rjP8iU6oyZPwFXrx4wYSEBO7cuZOzZs2in58fx40bx9WrVzMmJoaZmZkyB4+PTF5eHufNm0dbW1s2b96cs2fPfiXmk6wJD7G3t6eysjI1NDQ4cuRIqYWakJBAb29vCoVCjh49utaS65+5dOkSO3fuTAsLC65cuZKrV6+mhYUFPTw82K9fPwqFQs6YMaNW2sKX7Ny5k2pqalKrdfTo0RSJRFy1apX0Odm9ezdNTU05ceJEisViHjlyhE2bNqWmpmatJVixWMzRo0fTxsaG06dPp0gk4vHjx//y/Xz06BH9/f357NmzV87NmDHjlfSKMmojU6oyZHxAqquree/ePR45coTLli3jyJEj6e/vz/nz5zMyMpI3btz44AH8MmoQi8Xct28fe/ToQWNjYw4cOJDnzp17pd2tW7fYvXt3qqioUFVVlb169eLduzX5jZOTkzlgwAAaGxszKCjolcT3f+SXX36hg4MD7e3tGRERIY1p7du3r9SDeO/eva/0KygooKurq9Rq/fzzz2lra8tevXpJPXpTU1PZvn17uri4MCMjg2lpaWzRogUbNmxIDw+PWnvBM2bMoLm5uVSx7tu376/eSkZFRXHWrFmvvBDevn2bw4cP/+DZnf5JyJSqDBkfmby8PJ4/f55bt27lV199xf9r707Dmry2t4HfIQnzJCAoU8IQBBQHUGuxda5VbK1UcK5Vj4pDpU5Uj8KlnuqxKipYQS2o1TpXcUBruSrWqXWuQ6sMIiAiCChjQiAkWe+H/pv3pGoHGwV1/a7LLyHDfvaX27Wf/aw9ePBgmj59Om3YsIFOnjz5h/fz2NPJycmhKVOmkKenJ3Xp0oXWrl37yH9mSkpK6MMPPyRLS0syNjamjh076jYQZWZm6p6ZHTFixGPv2xL9GuRr1qwhHx8f6tmzJ+3atYsGDhxIHh4eFBoaSjKZjPr37//Yz+/evVuvag0LCyNvb2/dTuD6+noaP348eXt704EDB0ihUNDAgQPJ2tqaZDKZXvP/+Ph4kkqlFBUVRVKpVNdc4mmp1WqaPn36Y6vSRYsWPXZ5mP2KQ5Wx56y+vp5u3rxJKSkptGTJEho5ciSNGTOGPvvsMzp48CBlZ2fzfSsDUSqVlJCQQF26dNHtsP2tKv3f90RHR5O9vT2JxWLy8vKinTt3kkajodzcXBozZgy5u7tTeHj4E1v2KRQKXaU4ePBg2rhxIwUFBVFAQAD179+fJBIJTZ8+/ZHnZKuqqqhHjx66qnXMmDHk7e1NI0eO1D32s2XLFpJKpTRz5kxqaGigmJgYsrGxoebNm+s9+7pjxw6SSqUUGRlJUqlU7x7s08jNzaURI0Y80knq9u3bNHr06McubzMOVcYanVarpeLiYjp+/DglJibSRx99RGFhYTR37lz68ssv6fz587puQezpnT59moYNG0bu7u7Ur18/2rdvn97GJo1GQ0lJSeTm5kZisZicnJxoxYoV1NDQQHfv3qWIiAiSSCQ0aNCgJ+62LS4uprFjx5JEIqFJkybRkiVLyNvbm7p27UpdunQhX19f+vLLLx/53L59+3RVq0wmo169epG/vz+lp6cT0a/Lrh07dqQePXrQvXv3KCUlhZo3b042NjZ6R7SlpaWRh4cHTZgwgTw9PWn58uX/aM62bdtGn3766SPLwEuXLn3s0jbjUGWsSVIoFHTlyhXasWMHxcTE0JAhQygiIoJWr15N3377Ld25c4c3QD2lsrIyiomJIX9/f2rTpg0tXLjwkWosLS2N2rRpQ8bGxmRjY6M7Dq64uFh3RNyAAQPo3Llzj/2NX375hd59913y9PSkuXPn0sSJE3Xnyv62VPz7Pr81NTXUs2dPXdUaFhame+RHpVKRUqmkMWPGkEwmoyNHjtCNGzdIJpORpaUlhYeH6yrHixcvkkwmo+HDh5OnpyctWLDgqedKpVLR5MmT6eTJk3qvFxQU0MiRI7nd52NwqDL2AtBoNJSXl0dHjx6lVatW0YQJE2jo0KG0YMEC2rlzJ129epU3QP1NGo2Gvv76a+rbty+5u7vTsGHDHgnJ69evU8+ePcnExITMzMxo8ODBdO/ePSorK6MZM2aQVCqlt99++5HQ+c3x48cpODiY/Pz8aPHixRQSEkIeHh7UvXt3cnd3p4iIiEcaUBw8eFBXtXp5eVGnTp2oU6dOdPXqVSL6tVuTVCqlOXPmUEVFBfXp04csLCyoQ4cOuo1OOTk5FBAQQAMGDCCZTEYzZ8586nnKzMykUaNGUWVlpd7rK1eupB07djz1976sOFQZe0FVVlbSuXPnaPPmzfTJJ59QWFgYRUZG0rp16+jEiRNUUlLC1exflJmZqTtZJjg4mNatW6d3z7C4uJiGDx9O5ubmZGJiQl27dqVr165RRUWF7jnR3r17P3Zjj0ajoa+++ooCAgLotddeo0WLFlFgYCC1bt2aOnbsSDKZ7JHj6hQKBfXu3ZsEAgGJRCLq27cvSSQSWrp0KWk0Gvrll18oMDCQevfuTffu3aPZs2eTpaUlubi40NmzZ4no//ch7t69O/n5+dHEiROfuiNScnLyI0vJv80JP5utT0BEBMbYC0+tVuP27dvIzMxERkYGMjIyAAC+vr7w8/ODn58fPD09IRaLG3mkTVddXR2SkpKwbds2PHz4ECEhIZg+fTo8PT0BALW1tVi4cCGSkpKgUCjg5eWFlStXolu3bli2bBl27doFZ2dnREVF4Z133tH7brVajdjYWCQnJ8Pb2xv+/v44dOgQbG1tUVNTAwcHB8TGxuL111/XfebIkSMYMmQIamtrIZVKYW5ujpYtW2LTpk1wdHTEhAkTcP78eSQkJODBgweYOnUqiAgrV67EuHHjIJfLERoaiqqqKiiVSrRr1w5bt26FkZHR35qX+vp6TJs2DePHj0fnzp11ryckJMDS0hIffvjhP5j1l0wjhzpj7BnRarVUUlJCJ06coHXr1lFkZCSFhYVRVFQUbdq0ic6ePfuHvW9fdSdPnqTw8HByc3Oj/v370/79+/UaL6xdu5acnZ1JJBKRs7MzJSYmUk1NDX366ackk8koODiY9u7d+1h9WwAAABtjSURBVEh1WFlZqeshPGTIEBo1ahS5ublRUFAQubm50ejRo/VO5VEqldS3b19d1dq1a1fy9PSkTZt+PXt4/fr1JJVKKTo6mi5fvkwSiYQsLCxo2rRppNFoqL6+nsLCwiggIIDatWtHgwYNeqrd5devX6cPP/xQ7z5qWVkZDR8+nMrLy59mil9KXKky9gqpq6tDdna2rpLNzMyEtbW1XjXr7u7+tyuZl1lpaSnWrFmDlJQUiEQihIeHY9q0abC1tQUAHD58GFFRUbh9+zYsLS0RERGBOXPmICkpCZs2bYK1tTU+/vhjDBs2TG9eCwoKMGfOHJw9exY9evRAUVERbt26BWtra8jlckyaNAmzZs3SfSYtLQ3vv/8+amtr4ebmBrFYjMDAQCQlJSE/Px9jx46Fo6Mj1q5di7Fjx+LKlSvo3LkzUlNTYW5ujo8++gjp6emwsLCAk5MT9u/fD1NT0781FwkJCdBqtZg2bZruteTkZGi1WkycONEAs/0SaOxUZ4w1Hq1WSwUFBZSWlkZxcXEUERFBQ4YMoejoaNq+fTtduXLlT88gfVX8dvh5nz59yN3dnUaOHEkXLlzQ/f369esUHBxMxsbGurNdi4qKKC4ujlq3bk1BQUG0efPmRyrXixcvUt++fcnb25vGjh1L7dq1I29vb/Ly8qKgoCA6duyY7r2/r1rbt29Pvr6+dOTIEaqpqaFhw4ZRq1at6NixYzR58mQyNzcnLy8vys7OJiKimJgY8vDwoMDAQOrevfsfHoH3OAqFgsaMGaPbNEX0a+U9fPhwbmLyf7hSZYzpqa6uRlZWlq6azcnJQYsWLXSVrK+vL1q0aAGBQNDYQ200GRkZiI+PR1paGlxcXDB69GiMGTMGxsbGKCoqwrRp03D06FFotVp07doViYmJOH78ONavXw+BQIDJkydjwoQJepXr4cOHsWjRItTX1yMgIABnz56FiYkJ5HI5Xn/9daxatQqurq4AgPT0dLz33ntQKBRwdnaGSCRCSEgIVq9ejeTkZMTGxmLs2LFwdnbG7NmzIRKJsG3bNvTv3x+JiYlYvnw5HBwcYGxsjMOHD8POzu4vX/ulS5ewfv16rF27Vlfpbt26FVVVVXoV7KuKQ5Ux9ofUajXy8vJ0IZuRkQG1Wq0LWT8/P3h5ecHY2Lixh/rc1dbW4osvvsCOHTtQUVGBAQMGYMaMGZBIJFAoFJg3bx6+/PJLKJVK+Pn5Yc2aNcjJyUFiYiJUKhUmTpyIyZMnQyQSAQC0Wi2SkpIQFxeHZs2awd7eHleuXIGlpSWUSiXGjRuH+fPnQyQSQaVS4b333kNaWhqEQiE8PT1hYWGB9evXw8jICOPGjYOrqytmzpyJ0aNHo7q6GjExMZgzZw727NmDOXPmwN7eHgBw6NAhODs7/+XrXrVqFaysrDBhwgQAgFwuR0REBFasWPG3vuel1LiFMmPsRVRWVkanTp2iDRs20IwZM2jw4ME0a9YsSk5Oph9++OGRZgqvgu+//54GDx5Mbm5uNGDAAEpNTSWNRkMajYZWrVpFTk5OJBKJSCKR0NatW2nLli3UqVMn8vPzo+XLl+s9Z6xUKikmJoakUin16tWLunbtSi4uLiSVSqlt27Z08OBBvd+1sLAgAOTo6Eiurq4UExNDVVVVFBYWRn5+fnTw4EEKDAwkU1NTCg8Pp4aGBkpPTydPT0/q0KEDBQQEPPbIuieprq6mDz74gDIyMnSv7dq1i2JjYw0zmS8wrlQZY/9YXV0dcnJy9DZAmZmZwd/fX7dkLJFIIBQKG3uoz9z9+/exZs0a7N+/HyYmJggPD8fUqVNha2uLAwcOICoqCvn5+bC1tUVkZCR8fHwQHx+Phw8fYvTo0Zg1a5ZuWbW0tBQxMTFIS0uDj48PCgsLoVAooFar0bFjR6xatQpeXl5Qq9UYNGgQvvnmGwiFQjg7O0MikWDTpk1ITU1FfHw8xo8fj4yMDKSkpMDHxwffffcdioqKMHToUJiamqK+vh779++Hn5/fX7rOM2fOYMeOHYiPj4dYLIZSqcSECROwZMkSSCSSZznFTRqHKmPM4IgIRUVFekvGDx48gI+Pjy5kfX19YWFh0dhDfWa0Wi127tyJzZs3IycnB926dUNkZCQ6duyIn376CZMnT8aVK1dgYmKC4cOHo0+fPli7di2Ki4sxcuRIzJ49G5aWlgCArKwszJ07F1evXoWHhwdu374NANBoNBg5ciQWLVoEU1NTnDp1CiEhIVAoFLC3t4e5uTnmzp2Ljh074l//+hc8PT3x+uuvY/HixbC0tMThw4dhb2+P0NBQNDQ0QKVSYc+ePejQocOfXh8RYenSpXBzc8MHH3wAANi/fz8yMjIwb968ZzexTV1jlsmMsVdHdXU1Xbx4kb766iuaN28ehYWF0ZQpU+jzzz+nY8eOUWFh4UvbAeqXX36h8ePHk1QqpTfeeIOSk5NJpVLR3bt3acCAAWRqakqmpqbUv39/2rZtG/Xq1UvXN/h/2wOeOnWKunXrRt7e3hQcHExOTk7k4uJCrVq10rUMbGhooHfeeYcEAgEJhUJq2bIlDRw4kHJycig0NJT8/f0pMTGRHBwcyNLSkrZs2UKlpaUUHBxMMpmMPDw86PTp03/puh4+fEgjR46k27dvE9GvJzCNHj36kZOAXiVcqTLGGoVGo0F+fr7eknFdXZ3umVlfX1/4+Pi8VBug5HK5bmNTdXW1bmOTnZ0dZs+eje3bt6O+vh7t2rVDREQEvv76a2RnZ+P999/H/Pnzdbt0d+/ejaVLl0KlUkEsFuP+/fsAgLZt2yIuLg6tW7fGjz/+iLfffhtyuRw2Njawt7fH8uXLkZubi4SEBIwaNQr79u1DXl4eJk6ciMWLF2PIkCHIzs6GWq3Gxo0b8dZbb/3pNR07dgypqalYuXIlRCIRvvnmG1y4cAELFy58llPZZHGoMsaajIcPH+raLGZmZiI/Px8SiUQXsn5+frodqy+69PR0JCQk4NKlS2jfvj0mT56Mt956CytWrMDq1atRUVEBiUSCiIgInDhxAjdu3MDAgQMRHR0NR0dHaLVarF69GuvXr4e5uTlqampQW1sLAAgPD8fSpUthbm6O0NBQpKamwsjICHZ2dhgwYABGjBiB6dOnQyaToaGhAceOHUOXLl2QmpqKiRMn4ocffgAArFmzBqGhoX94HUSEBQsWICAgAOHh4VCr1YiIiMCsWbPg7+//zOexqeFQZYw1WSqV6pENUMbGxnohK5VKdY+kvIiKiooQHx+PgwcPwszMDEOHDsWUKVNw5MgRzJs3D4WFhbC3t8eIESOQm5uLq1evol+/foiJiYGLiwvkcjkWLlyIr7/+GtbW1igrKwMRwdzcHNHR0Rg7diwuXryIPn36QC6Xw9LSEu7u7lixYgXWrVuHO3fuIDg4GFu2bIGTkxOOHz+O1atXIyUlBUSE5cuXY9SoUX94DaWlpZg+fTqWL18OV1dXHDt2DOnp6fjvf//7yj3PzKHKGHthEBHu37+Pmzdv6irakpISyGQyvQ1QVlZWjT3Uv02r1WLHjh3YtGkTcnNz0aNHD0yfPh11dXWYNGkSbt68CXNzc7zzzjuora3F5cuX0bt3byxYsAASiQSFhYWYN28evv/+e1hZWaGkpAQCgQC+vr6Ii4tDYGAgwsLCsH//fhgZGaFZs2YYO3YsrK2tsXHjRvTr1w87d+4EAKSkpODHH39EYmIiiAiLFi1CRETEH47/8OHDOHXqFD777DMQEaZOnYpJkyahffv2z2P6mgwOVcbYC02hUOg6QGVmZiIrKwv29vZ6HaBcXV1fqIrp+vXriI+Px/Hjx+Hu7o6xY8eie/fumDhxIk6fPg0jIyN07doV1tbWuHTpErp3746YmBjIZDJcvXoV8+bNw88//wyxWIzKykoIBAK89957iI2NRU5ODnr37g25XA4zMzO0adMGU6ZMwbJly+Dl5YWff/4ZJSUlWLBgAezs7LBw4UJotVpERUVh9uzZTxwzEWHu3Ll444038O677+L06dM4cOAAYmNjX6i5/6c4VBljLxWtVos7d+7oQjYjIwNyuVzv0ACZTPa3m8k3BrlcjnXr1mHXrl2oqanBwIEDMWHCBCxduhR79+6FSqVC27Zt4erqiitXriA4OBjR0dFo3bo1jh49ikWLFqGoqAgqlQr19fUwNzfHJ598gqlTp2Lo0KFISUnRVa3Tpk3DuXPncO/ePZiYmODatWt49913MXz4cERGRqKhoQEfffQRFixY8MTx3rt3D1FRUVi9ejUcHR0RGRmJUaNG4bXXXnuOs9a4OFQZYy+9iooKvQ1QeXl5cHV11bs36+Dg0KQrqu+++w6JiYm4fPkyAgMDERERgfPnz+Pzzz9HdXU1JBIJWrVqhRs3biAoKAgxMTFo27YtNm/ejNjYWCgUClRXVwMAPD09ERcXB0tLS3Tv3h1yuRwmJibo2rUr2rdvj5SUFHh5eeH06dPw8vLCsmXLMGXKFCiVSowZMwaxsbFPHOfevXtx7do1/Oc//8GFCxewbds2rFmzpknPrSFxqDLGXjkNDQ24ffu2LmRv3rwJoVCoF7Kenp5NcgNUYWEh4uPjcejQIVhaWmLo0KGwsbHBkiVLUFRUBAcHB/j6+iI/Px/t2rVDdHQ02rZti2XLlmHjxo3QaDSoqqqCUChE3759ERcXh8jISOzbtw8CgQDNmzfHuHHjcODAATg4OOCnn36CmZkZ1q9fjzlz5qCiogJhYWG6HsO/p9FoMHv2bISEhKBPnz6YPXs2Bg0ahDfffLMRZuv541BljL3yiAglJSV6S8bFxcXw8vLS2wBlY2PT2EPVUavV2L59OzZv3oz8/Hz06tUL3bt3x4oVK5CVlQULCwu0atUKpaWl8PX1xfz58+Hv74+YmBikpKRArVZDqVTCzMwMH3/8Mfr374+ePXuipqYGxsbG6Nu3LxQKBYqLi1FWVoba2losWbIEycnJuHfvHkJCQrBt27bHBmteXh6io6Px+eefo6CgAOvXr0dCQsIr0aaSQ5Uxxh6jtrYW2dnZupDNysqCjY2NXjXr7u7eJJY1r169ivj4eHz//ffw8PBASEgIUlNTcf78eQiFQkilUigUCvj4+ODf//43JBIJ5s6dixMnTkClUkGj0cDFxQWrV6/Gli1bsGfPHggEArRo0QI9e/bEmTNnAEDXQvHGjRvIyspCt27dsH///sdW9Nu3b0deXh7mzZuH+fPno3fv3ujTp8/znprnjkOVMcb+Aq1Wi7t37+pVs1VVVboq1s/PDz4+PjAzM2u0MVZXVyMxMRG7d+9GbW0t+vXrh7y8PBw7dgxqtVp3LJuHhwc++eQTNGvWDHPnzsX169ehVCohFArxxhtvYMaMGQgPD0dNTQ3EYjH69u2LzMxMCAQC5Ofno0OHDrC0tMSlS5fQqVMnHDly5JGNXw0NDfj4448xbNgwODg4YOXKldiwYUOTXFI3JA5Vxhh7SlVVVcjMzNTdl83NzYWzs7PeTmNHR8fnXs1qtVqkpaVh/fr1uHLlCgIDA2FsbIzvvvsONTU1sLe3h4mJCSQSCWbOnAmtVouFCxfi7t27qKurg4mJCSIiIpCXl4e9e/cCANzc3NCiRQuUlpaiuLgYdnZ2CAoKwokTJ9C6dWukp6frDgD4TVZWFhYvXoy1a9di9erV6Ny5M0JCQp7rXDxvHKqMMWYgarUat2/f1lWyGRkZICK9JWMvLy+IxeLnNqaCggLEx8cjNTUV1tbWcHd3x9mzZ1FaWgorKyuYm5tDIpEgMjISpaWlWLlyJcrLy6FWq9G8eXPMmjULMTExkMvlEIvF6NixI/Ly8lBTUwMiQu/evXH8+HF4enrixIkTuv7Ev9m4cSPKy8sRGhqKTz/9FElJSS9VP+ff41BljLFnhIhQVlamF7L37t2Dh4eHXjVra2v7zMeiVquxZcsWbNmyBXfv3kWrVq2QlZWFgoICmJqawsLCAu7u7oiIiMCtW7ewadMmyOVyAEBgYCDs7Oxw5MgRANA106iqqoJSqcSbb76J8+fPo2XLljh58qRumRkA6uvrMW3aNIwfPx7Hjh2Dn5/fn/YTfpFxqDLG2HNUV1entwEqMzMTVlZWeiHr7u7+2F21hnL58mWsWbMGJ0+ehJOTEx4+fIj8/HwIhUJYWFjAzc0No0aNwrVr13Do0CHU1dVBLBYjJCQE3377LeRyOUQiEaRSKR4+fIjq6mr4+/sjNzcXdnZ2OH36tN5B5T///DNWrVqFOXPmYPHixUhKSmrUe8/PEocqY4w1IiJCYWGhXjVbXl6uO9D9tw1Qz+JA98rKSqxbtw67d++GQqGAQCDAnTt3oNFoYG5uDjc3N4SGhuLHH3/EuXPnoFKpYGNjAy8vL1y8eBEA4OjoiPr6esjlcjg4OEChUMDc3BwnT56Er6+v7rcSEhJARKivr4erqyuGDh1q8OtpCjhUGWOsiampqdEL2ZycHLRo0UKvmm3RooXBNkBptVp888032LBhA65duwaRSIT79++jvr4epqamaNmyJd566y2cPn0a2dnZICK4ubmhpKQEtbW1EAqFsLKyglwuh7GxMYRCIcRiMdLT03UN9WtrazF16lSMGjUKGzduxPvvv4/z588jMjISbm5uBrmOpoBDlTHGmji1Wo28vDy9oG1oaNALWW9vb4NsALpz5w7i4uKQmpqK+vp6lJeXQ6lUwtjYGA4ODujSpQvOnDmDBw8ewMjICE5OTigsLAQAWFlZoa6uDlqtFmZmZhAIBDhy5Iium9KlS5ewYMECXLp0CVVVVfDy8sLWrVsRFBT0j8fdVHCoMsbYC+jBgwd6IVtQUACpVKoXtL/fift3qFQqbN26FVu2bEF2djaUSqXuXqqNjQ3atGmDixcvQqlUQiwWQ6vVoqGhAUKhEEZGRlCr1br7pnv27EGfPn0wZMgQHD16FL/FTuvWrfHFF1+gc+fOBpmTpoBDlTHGXgL19fW4deuWXtCamZnpAtbPzw8SieSpWgVeunQJcXFxOH78OORyOeRyOYyMjGBubg6pVIrMzEyo1WqIxWKoVCoAgFAohEaj0VXPRISGhgbY29vrHsdxdHTE3r170aVLF4PORWPiUGWMsZcQEaGoqEgXsBkZGXjw4IHuQHc/Pz+0atXqkYYNf6SyshJr167F9u3bcffuXdTW1gIATE1NYWdnh6KiIhARBAIBnhQtdnZ2aNasGe7evQuRSIQ9e/YgJCQEeZV5eFD7APXqepiLzSG1lcLe3N4gc/E8cagyxtgrQi6X6w50z8jIwK1bt+Dg4KBXzTo7O//pBiitVovDhw8jMTERZ86cQW1tLYgIYrEYJiYmuudbH0cgEGDr1q1YvHgxnN2dER4VjpNVJ5FbkQuhQAgCQQABtNCil7QXhrYZinZO7ZpEj+W/gkOVMcZeURqNRneg+2//lEolfH194e/vD19fX8hkMpiYmDzxO/Ly8rBq1Sps374dVVVV0Gq1MDIygkAggEajeexn2rdvj+TDyYj6LgryBjlMRaawNrHWC06NVoNyZTm0pEU7p3aI7RsLG9Omc0rQk3CoMsYY0ykvL9e7L5ufnw93d3ddJevr6wsHB4dHPqdSqbB582asWrUKOTk50Gq1T/wNIzcjSCZJ4ObsBmsT6z8cDxGhrLYMLlYu2DhwI5qZNfvH1/gscagyxhh7IpVKpTvQ/bd/YrFYL2Q9PDz0Tp85f/48ZsyYgbNnzz76hc0AhAICrQA+Hj6QyWS6Pz24+QAPf3mIVkNaPfKxUnkp/Jr7IXlgMkRGTfekGw5VxhhjfxkR4f79+7qAzczMxP379+Ht7a0XtCEhIbpzWPX0AuAJQAFAAEgkEgS0CQD+5JYpEaFEXoKVb69EN0m3Z3BlhsGhyhhj7B9RKBTIzs7WBW12djYuXLiAwsJCiEQimJiYwMXFBQ+VD1H6VilITsD/JE/z5s3x2muv/WmwlivL0bp5a3zx7hfP9oL+AQ5VxhhjBqXVahEWFobMzEwolUpUVFRALBZj6hdTcbD4ICrvVaIguwDabC1Q9etnRC4iBHUPQtnPZfAf4Q8AUD5QouB4ARQlCgiMBHAMdIQwQIivw7+G1FbaeBf4B5ruwjRjjLEXkkAgQGVlJWxtbdGjRw+8+eab8Pb2RlJxEqzMrODi7wK6SGjwbMB98/vQqrVQy9U4f+48pGZSAIBGpUHmnky06NQCsvdlIC1B+UAJBRS4WXaTQ5UxxtirQSAQYOfOnbC3t9fbwLRy70oIjYRQFCvQoGhAhw87QGAkQGlpKS5evAhSEvJz89EGbVB5uxJiCzFadmqp+7ylsyWqa6ohVz35OdjG9uwO7GOMMfbKcnJy0gtUABALxSAiqGpUMLExgcDo15uojo6OGDBgAGQ+MojEv35GVaOCqa3pI98rgABiI/Gzv4CnxKHKGGPsuXCycEK9ph7GVsZQVatAWv0tPfb29nCXuAMAjK2MUVdZ98h3CAVC2JraPpfxPg0OVcYYY8/FwFYDodFqYNHSAmILMe6euguNSgOtWouaezV677X1skWDogH3L/16z1Wj0qCisAIiIxE6uzTdU234nipjjLHn4nXX12FtYo06TR1k78tQkF6Aa19cAwDY+9nDwslC916hsRCtwluh4HgBin4sgkAkgGlrU0QER8DC2OJJP9Ho+JEaxhhjz83mK5ux9sJatLRq+bea5DdoGlCuLMeusF3wbOb5DEf4z/DyL2OMsedmeMBwtHVqi1JF6ROPh/s9tVaNMkUZpnaa2qQDFeBQZYwx9hyZikwR1y8Ovg6+KJYXQ6VR/eH75So5SuQlGNdhHEa3G/2cRvn0ePmXMcbYc1enrkPChQSkZKRApVHB3NgcZiIzGAmMoCENquqqoCUtHC0cMaXTFITIQhp7yH8JhypjjLFGo1ApkJ6bjl03dqFYXox6dT0sjS0R4BiAYW2GIcg5CEaCF2dRlUOVMcYYM5AXJ/4ZY4yxJo5DlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQDhUGWOMMQPhUGWMMcYMhEOVMcYYMxAOVcYYY8xAOFQZY4wxA+FQZYwxxgyEQ5UxxhgzEA5VxhhjzEA4VBljjDED4VBljDHGDIRDlTHGGDMQDlXGGGPMQP4foTpy+Hz8+b8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n", + "[{'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 30}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 60}}, {'N': 5, 'T': range(0, 100), 'M': {'drip_frequency': 90}}]\n" + ] + } + ], + "source": [ + "import math\n", + "import pandas as pd\n", + "from tabulate import tabulate\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "from model.parts.supportingFunctions import *\n", + "\n", + "pd.options.display.float_format = '{:.2f}'.format\n", + "\n", + "%matplotlib inline\n", + "from tabulate import tabulate\n", + "from typing import Dict, List\n", + "\n", + "from ipywidgets import interact, interactive, fixed, interact_manual\n", + "import ipywidgets as widgets\n", + "from IPython.display import clear_output\n", + "\n", + "# The following imports NEED to be in the exact order\n", + "from cadCAD.engine import ExecutionMode, ExecutionContext, Executor\n", + "from model import economyconfig\n", + "from cadCAD import configs\n", + "\n", + "exec_mode = ExecutionMode()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " __________ ____ \n", + " ________ __ _____/ ____/ | / __ \\\n", + " / ___/ __` / __ / / / /| | / / / /\n", + " / /__/ /_/ / /_/ / /___/ ___ |/ /_/ / \n", + " \\___/\\__,_/\\__,_/\\____/_/ |_/_____/ \n", + " by BlockScience\n", + " \n", + "Execution Mode: multi_proc: [, , ]\n", + "Configurations: [, , ]\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/aclarkdata/anaconda3/lib/python3.7/site-packages/cadCAD/utils/__init__.py:113: FutureWarning: The use of a dictionary to describe Partial State Update Blocks will be deprecated. Use a list instead.\n", + " FutureWarning)\n" + ] + } + ], + "source": [ + "exec_mode = ExecutionMode()\n", + "multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)\n", + "run = Executor(exec_context=multi_proc_ctx, configs=configs)\n", + "\n", + "i = 0\n", + "results = {}\n", + "for raw_result, tensor_field in run.execute():\n", + " result = pd.DataFrame(raw_result)\n", + " results[i] = {}\n", + " results[i]['result'] = result\n", + " i += 1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networkKPIDemandKPISpendKPISpendOverDemandVelocityOfMoneystartingBalance30_day_spendwithdrawoutboundAgentsinboundAgentsoperatorFiatBalanceoperatorCICBalancefundsInProcesstotalDistributedToAgentstotalMintedtotalBurnedrunsubsteptimestep
4000(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000054100
4001(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000055100
4002(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...{'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000056100
4003(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,...{'a': 352.69163522161693, 'b': 850.37760837978...{'a': 1.0687625309745967, 'b': 1.4413179803047...0.72{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000057100
4004(a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ...{'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,...{'a': 352.69163522161693, 'b': 850.37760837978...{'a': 1.0687625309745967, 'b': 1.4413179803047...20.94{'a': -2.1724474214163934, 'b': 87.78588308123...{'a': 564.306616354587, 'b': 2785.025646787363...0[h, a, a, k, p, c, c, g, o, o, i, f, b, b][k, d, p, p, l, p, d, e, p, e, d, b, external, o]16500198500.00{'timestep': [], 'decision': [], 'cic': [], 's...15000058100
\n", + "
" + ], + "text/plain": [ + " network \\\n", + "4000 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4001 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4002 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4003 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "4004 (a, b, c, d, e, f, g, h, i, j, k, l, m, o, p, ... \n", + "\n", + " KPIDemand \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4003 {'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,... \n", + "4004 {'a': 330, 'b': 590, 'c': 303, 'd': 0, 'e': 0,... \n", + "\n", + " KPISpend \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... \n", + "4003 {'a': 352.69163522161693, 'b': 850.37760837978... \n", + "4004 {'a': 352.69163522161693, 'b': 850.37760837978... \n", + "\n", + " KPISpendOverDemand VelocityOfMoney \\\n", + "4000 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4001 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4002 {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'e': 0, 'f': ... 0.72 \n", + "4003 {'a': 1.0687625309745967, 'b': 1.4413179803047... 0.72 \n", + "4004 {'a': 1.0687625309745967, 'b': 1.4413179803047... 20.94 \n", + "\n", + " startingBalance \\\n", + "4000 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4001 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4002 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4003 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "4004 {'a': -2.1724474214163934, 'b': 87.78588308123... \n", + "\n", + " 30_day_spend withdraw \\\n", + "4000 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4001 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4002 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4003 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "4004 {'a': 564.306616354587, 'b': 2785.025646787363... 0 \n", + "\n", + " outboundAgents \\\n", + "4000 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4001 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4002 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4003 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "4004 [h, a, a, k, p, c, c, g, o, o, i, f, b, b] \n", + "\n", + " inboundAgents operatorFiatBalance \\\n", + "4000 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4001 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4002 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4003 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "4004 [k, d, p, p, l, p, d, e, p, e, d, b, external, o] 16500 \n", + "\n", + " operatorCICBalance fundsInProcess \\\n", + "4000 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4001 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4002 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4003 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "4004 198500.00 {'timestep': [], 'decision': [], 'cic': [], 's... \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "4000 1500 0 0 5 4 \n", + "4001 1500 0 0 5 5 \n", + "4002 1500 0 0 5 6 \n", + "4003 1500 0 0 5 7 \n", + "4004 1500 0 0 5 8 \n", + "\n", + " timestep \n", + "4000 100 \n", + "4001 100 \n", + "4002 100 \n", + "4003 100 \n", + "4004 100 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results[0]['result'].tail()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(0,len(results)):\n", + " results[i]['result']['agents'] = results[i]['result'].network.apply(lambda g: np.array([get_nodes_by_type(g,'Agent')][0]))\n", + " results[i]['result']['agent_tokens'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['tokens'] for j in get_nodes_by_type(g,'Agent')]))\n", + " results[i]['result']['agent_native_currency'] = results[i]['result'].network.apply(lambda g: np.array([g.nodes[j]['native_currency'] for j in get_nodes_by_type(g,'Agent')]))\n", + " # Create dataframe variables \n", + " tokens = []\n", + " for j in results[i]['result'].index:\n", + " tokens.append(sum(results[i]['result']['agent_tokens'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCICHolding'] = tokens \n", + "\n", + " currency = []\n", + " for j in results[i]['result'].index:\n", + " currency.append(sum(results[i]['result']['agent_native_currency'][j]))\n", + "\n", + " results[i]['result']['AggregatedAgentCurrencyHolding'] = currency \n", + "\n", + " AggregatedSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedSpend.append(sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentSpend'] = AggregatedSpend \n", + "\n", + " AggregatedDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedDemand.append(sum(results[i]['result']['KPIDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedAgentDemand'] = AggregatedDemand \n", + "\n", + "\n", + " AggregatedKPISpendOverDemand = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedKPISpendOverDemand.append(sum(results[i]['result']['KPISpendOverDemand'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedKPISpendOverDemand'] = AggregatedKPISpendOverDemand \n", + "\n", + "\n", + " AggregatedGapOfDemandMinusSpend = []\n", + " for j in results[i]['result'].index:\n", + " AggregatedGapOfDemandMinusSpend.append(sum(results[i]['result']['KPIDemand'][j].values())- sum(results[i]['result']['KPISpend'][j].values()))\n", + "\n", + " results[i]['result']['AggregatedGapOfDemandMinusSpend'] = AggregatedGapOfDemandMinusSpend " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestepVelocityOfMoneyoperatorFiatBalanceoperatorCICBalancetotalDistributedToAgentstotalMintedtotalBurnedrunsubstepAggregatedAgentCICHoldingAggregatedAgentCurrencyHoldingAggregatedAgentSpendAggregatedAgentDemandAggregatedKPISpendOverDemandAggregatedGapOfDemandMinusSpendRed Cross Drip Frequency
0110.514500200000.00000386000.004869.001189.0013893.20138.0030
129.724500200000.00000386350.505219.501057.0010574.000.0030
2319.574500200000.00000386323.005192.002333.2532757.14941.7530
3415.674500200000.00000386435.005304.001734.3837376.85789.7530
4520.014500200000.00000386435.005304.002227.0631406.99498.2530
\n", + "
" + ], + "text/plain": [ + " timestep VelocityOfMoney operatorFiatBalance operatorCICBalance \\\n", + "0 1 10.51 4500 200000.00 \n", + "1 2 9.72 4500 200000.00 \n", + "2 3 19.57 4500 200000.00 \n", + "3 4 15.67 4500 200000.00 \n", + "4 5 20.01 4500 200000.00 \n", + "\n", + " totalDistributedToAgents totalMinted totalBurned run substep \\\n", + "0 0 0 0 3 8 \n", + "1 0 0 0 3 8 \n", + "2 0 0 0 3 8 \n", + "3 0 0 0 3 8 \n", + "4 0 0 0 3 8 \n", + "\n", + " AggregatedAgentCICHolding AggregatedAgentCurrencyHolding \\\n", + "0 6000.00 4869.00 \n", + "1 6350.50 5219.50 \n", + "2 6323.00 5192.00 \n", + "3 6435.00 5304.00 \n", + "4 6435.00 5304.00 \n", + "\n", + " AggregatedAgentSpend AggregatedAgentDemand AggregatedKPISpendOverDemand \\\n", + "0 1189.00 1389 3.20 \n", + "1 1057.00 1057 4.00 \n", + "2 2333.25 3275 7.14 \n", + "3 1734.38 3737 6.85 \n", + "4 2227.06 3140 6.99 \n", + "\n", + " AggregatedGapOfDemandMinusSpend Red Cross Drip Frequency \n", + "0 138.00 30 \n", + "1 0.00 30 \n", + "2 941.75 30 \n", + "3 789.75 30 \n", + "4 498.25 30 " + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "params = [30,60,90]\n", + "swept = 'Red Cross Drip Frequency'\n", + "mean_df,median_df = param_dfs(results,params,swept)\n", + "median_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfYAAAEWCAYAAACUr7U+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXl4VcX5+D/vvdlDSMK+hFVR9k0EcUfEFcUFxaWK1aq1tXa1Ym3VulSttuq3Wpe6a+tat/ZnFVTUVqUIiFVBBQUhEELIHrLc3Nz398ecG272AAn35vJ+nuc+95w5s7xnzpx5Z96ZMyOqimEYhmEY8YEv2gIYhmEYhtFxmGI3DMMwjDjCFLthGIZhxBGm2A3DMAwjjjDFbhiGYRhxhCl2wzAMw4gjdluxi8hNIrJNRLZ456eKyEYRqRCRSbsv4i7LtcfkEJGhIqIiktCZ6cQCInKuiCyMthyGYcQXIvKYiNwUbTliGRE5UkRy2/LXpmIXkfUiUuUpyPDvHu/aYODnwGhV7ecFuQO4XFW7qerHu3EDKiL77mr4tuTw4t/u3c8mEfmjiPh3I71WEZFzRGSZl16eiPxLRA7trPTaIc9jIhIQkXLv95mI3CIima2FU9W/quoxu5jm9SJS26gs/XLX7qBrE5H/FSJSJCKLRGRktOVqCxG5QET+08FxJonIH0Qk18uP9SJyV0emEcuI4xsRWRVtWXaHDqizm4tzmIiEROS+joy3jTSblHERyRGRv3ud2FKvvrxgT8m0s7S3x36SpyDDv8s998FAoapujfA7BPi8Q6XcNdojxwRV7QYcAcwDLuwMQUTkZ8BdwO+Avrh8+zMwpwX/e6rn/3tVzQB6A98FDgLeF5H0TpTr2UZl6ffNpCMisjcME/3eK385wFbgsZ2NoKtZiVqQ92pgCjAVyACOBFbsQbGizeFAH2C4iBzYWYl0tbLicT5QDMwTkeQoyvEksBGnV3oC5wH5UZSndVS11R+wHji6GfejgSogBFQAT3v/CmwHvvb8DQD+DhQA64ArIuLwA78CvgbKgeXAIOC9iHgqgHnNpO8Dfg18i6sUnwAygeTm5GgmvAL7Rpw/B9wbcZ4JPAzkAZuAmwB/hNx3ANuAb4AfevElNJNOpifPGa3k8fXAC8BTQBnwPe8+7gI2e7+7gGTPfy/gn0AJUAT8G/B5167y5C0HvgRmtpDmY8BNjdwyvPu93Du/AHgfuBMo9PLgAuA/jfLxCi8ftgG3h2Vp4T6fauHaO8DNXnpVwL678wxoVG4bp41rxHzg5eEnwJGNZLnRk6UcWAj0irh+aETYjV6eHIh70f0R/k4DPmlP/gMnAhXe8VTgQy/+POAeIKlRnv8QWAOs89zu9mQpw71HhzW69+dx5asc+BTYD6dQt3rhjmmr7AOjgGqgDlemSzz/yd6z2ODlwf1AqnftSCAXVy63AE82kxf/BH7SQj59F/hHxPka4PmI843ARO94JLAI9058CZwZ4a89Mv4KV57WA+e28r4OAF710lkLXNwor5/D1UfluM7FlDbq2EeAvwIvAvc0ujYMVx+WA28C99KwHJ+PqwMLgd8QUe5pvl7xAQtwdW6hJ2uPdsbXYrmkhTobmA2s9MJ8AIyPSGsSrgFXDjwLPEPDd0I8OS/zntncRnlzjPecS3EdpXeB70VcvxBYjWsYvAEMafQOfR9Xnkq8fBVaLuMVeOWsmec31IvvElxdnQf8IuJ6i3keEXY+rmxuA66JCJuKqyuKgVXAlUBua+VJVXddsUe+EI3c6hWmd0PLgWuBJGA4rhI+1rt+Ja6S2d/L1AlAz8bxtJD2hbiXajjQDfdSPNmcHC2Ej5RzpPcwfhpx/SXgASAd15peClzqXfs+8AWuEdIDWEzLiv04INjctUaVQS1wipdnqcANwBIv7d64l+JGz/8tuIop0fsd5uXf/riKbkBEodmnhTQfo5Fi99yfwPWqwSmsIPAjIMGT6wKaKvbFXj4MBr4i4uVq5j5bU+wbgDFeWom78wxoRbEDA3Ev2Alefs/yzntHyPI1Tvmleue3eteG4Cqisz0Ze7JDsawCjm9Uhn7eVv7jyu/fgH975wfgGh4J3jNcTYTi8+5zkXffYeX0HU+WBNzw2BYgJeLeq4FjvetP4BrZ13j3cDFeA6EdZb/B8/fc7sQpuh64xuE/gFsi6oggcBtOuaY2kxe/9p79D4BxgERcG46reH04hfotXp3jXSv2rqXjyv53vXuchKskR++EjH/0ZDwCp6D2b+HZvYdTJCnARFyn5ahGeX0CrjF0C7CklXc/Dad0TwBO92SObMR9iGuQJOEalGXsKMejcQrnUO/6Hbh6JFKxN65XfoyrV3K8e30AeLqd8bWnXEZ2libhGo7TvLyYj3svk734vwV+iiuDc720IhX7YUANkA38iYYNvF5eXpzmyfNjL/z3vOtzcPphlHf918AHjWT9J5CFq7cKgONaKeNv4hr6ZwGDG10b6sX3NK4cjvPiC+dba3keDvsX7/lM8O55lHf9VlzHrQeurvuMDlTsFbiXK/y7OOKFaE2xTwM2NLp+NfCod/wlMKeFdNtSzG8BP4g43997sAntDK9ewdge8VDCPeK+XuamRvg/G1jsHb8NfD/i2jG0rNjPBba0kcfXA+81cvsaOCHi/FhgvXd8A/BK4/vD9XK34qwpiW2k+RjNK/ZbgUURBbzx87uApor9uIjzHwBvtXKfgUZlKdwIeQe4IcLvbj0DWlfsV9Go54hr0c+PkOXXje7p9Yjy+1IL93cV8FfvuAdQCfRvJf+rvTzYglM6LTXCfhKZpnefR7XxfItxQ03he18Uce0k3Dsdtn5keHFmtSPfGz9/wb1D+0S4TWeHJeFI75mntCKrH2eBeN9Le3P4WXjXNwKTcZXqg7iGxkicEn/V8zMPr2EUEe4B4Lp2yhgE0iOuPwf8phlZB+F6cxkRbrcAj0Xk9ZsR10YDVa3c+3dwSiAB11AoBU71rg325EqL8P8UO8rxtXgKwjtP8/I6UrE3rldWE2HFA/rj1ZttxdfOchmp2O/D64xEuH2Jazgd7j3nyEbcBzRU7A8BL0c8r1qgj3d+PvBho3K4kR2K/V/ARRHXfbj3cUiErIc2et4Lmivjnls2rm783Hv+K4EDvWtDvfhGRvj/PfBwO/I8HDYn4vpS4Czv+Bsa1q+X0A7F3t4xl1NU9c12+o1kCDBAREoi3Py4Fgi4l+TrXYgXdrTew3yLy6i+OPNhe5jspX8G7qGl4yqWIbhWZJ6IhP36cAUnnPbGiHgi5WhMIdBLRBJUNdiKv42Nzpu7vwHe8e24l3ahJ9+Dqnqrqq4VkZ9418aIyBvAz1R1cyvpNmYgzsTYklxtyR4pZ3M8p6rfaUc8HfkMGjMEOENETopwS8T1+sNsiTiuxPWqofUy+xSw2pujcCZO0eS1Iscdqvrrxo4ish+u9zgFV7km4CxfkWxsFOYXwEW4fFGgO65XEyZyPLAK2KaqdRHn4O5xAK3ne2N6ezIuj/AvuPc8TIGqVrcQHk+Oe4F7RSQVZ417RESWqupqnIn1SFzD9V1cY+gIXGX/rhfNEGBao7omATc22h4Zi1V1e8R5S+V4AFCkquWN/E6JOG9cdlJaef/n496JIBAUkb97bi9FpFUZ4X8jrgyGZal/LqpaKSKFjeJv/NyGAC+JSCjCrQ5Xb7YaXzvLZeO05ovIjyLckthRRjepp6086t9hrxycgRs+QFU/FJENwDm4YcnGsmqj2eJDgLtF5A8RboKr38LptPSON0FVi3Hm9AUi0gtnzXhZRHIivDWuj8ZFyNJSnodpSZZdquc6e4LSRlyrOCvil6GqJ0Rc32cX496My7Aw4dbtTk1oUMdzOJPXtRFy1eDGVcNyd1fVMd71PHa8XOG0W+JDL65T2hKl0Xlz97fZk7lcVX+uqsOBk4GfichM79rfVPVQL6ziTKDtQkS64Xr7/45wbixXczTOi51pSEQSmdbuPoPtuMonTL+I4424HntkuUxX1VvbIWOLZVZVN+Ge92m4yTVPtiO+5rgPN8wwQlW748Z+pZGf+rwSkcOAX+IaE9mqmoXr+TUO0x7ayvfG5WEbrmEwJsJ/prpJgU1kbQtVrVLVe3EWh9Gec1ixH+Ydv4tT7EewQ7FvBN5t9Ey7qepl7ZQxu9Gk0ZbK8Wagh4hkNPLb3s5EPZ5SOAr4johsEffJ8FzgBE955HlpRZbjyDKfhzPvhuNLxQ3HRNI47zfihosi8ynFK7ttxdeectk4rZsbpZWmqk97aQ2UiJYWDd/hU3GN0z9H5M1AXKOnuXuXyHMv7UsbpZ2qqh+0Im+YVsurqm7DKfYBOMtcmJbqwdbyvC12RtfU09mKfSlQLiJXiUiqiPhFZGzEzM+HgBtFZIQ3E3q8iIQLUj5uDK0lngZ+6n0O0Q034/zZNnrFrXErcLGI9PN6WQuBP4hIdxHxicg+InKE5/c54ArvE4hsXEuuWVS1FNdguFdEThGRNBFJFJHjRaTJjPBG9/drEentveTX4nqEiMhsEdnXK8yluNZfSET2F5GjvNmj1eyY3NgqIpIsIgcAL+Mq1EfbCtOIK0UkW0QG4caTnt3J8E3ogGewEjjLy+spuAozzFPASSJyrFcmU8R9H5pD2/wVOFpEzhSRBBHpKSITI64/gVOy43DzPnaFDNwwUYW4T+Aua4f/IJ5JV0SuxVWKO0078j0fyBGRJM9/CDc+eKeI9AEQkYEicmx70xSRn3j5n+rl6XzvnsKfqb4LzMAND+TiGp7H4ZRO2M8/gf1E5DzvmSeKyIEiMmonZPytuE/vDsNN+nq+mfzZiDMZ3+KVm/E4S8lT7b3fCM7DzUnZHzdWPxE3ryMXOFtVvwWWAdd7ck3HDaOEeQFXjg/2nsf1tN2Yux+4WUSGAHj1S/jrnLbia6tcNq6z/wJ8X0SmefV7uoic6DWKPsSV2Su8Z3UabnJemPm4SYXjIvLmEGCCiIwD/h8wzqtTE3BDOZGN9/uBq0VkjHefmSJyRht5E3kf9WXcC3+bp7sSPPkvA9aqaqSF5Dde/T4GN0wUrgdby/O2eM67j2yvfvpRWwGg/Yr9H9Lw2+OX2hPIM7HNxj2UdbiW80O4WbfgzDrP4SqSMtxM3FTv2vXA4yJSIiJnNhP9I7ge0Xte3NW086ZbkPVTL64rPafzcWajVThl9wJubARcgX0DN5t6BW1U4Kr6B+BnuAkcBbgW3OU4RdoSN+Fe6v/hJhiu8NwARuAmc1TgXpA/q+pi3MSMW3H5vAU38enqVtL4pYiU44YLnsCZ1Q5uZJJsD694YVfiXriHdzJ8S+zOM/gNrmddDPwWNzkNqK+c5+B6HOHncSXteB9UdQNuotPPcUMWK3ETXsK8hGd6a2RC3Rl+gTM5luPus62G0hvA6zgl8S3uXWjPEEpLtJbvb+PGGbeIyDbP7SrcRKUlIlKGK5v770R6lcAfcGV2G66SPl1VvwFQ1a9wZf3f3nkZbuzx/fBwgmcaPwY3Dr/Ziys8Ya89Mm7x7nUzrvH2fVX9ogV5z8aNjW7GPe/rdnGocj7u3d0S+cMpgnDP9FzckEP4q5RncRYVVPVzXJ33DK5nV4GbY1PTSpp34+ZzLPTe/SW4uVDtia+tcnk9EXW2qi7DTcy8B5e3a3Hj16hqAGfZugD3Hs3De4dFZCAwE7irUd4sx5Xz+V6v+QzcWHYhzrqzLCJvXsI9/2e85/0ZcHwr+RJJc2U8DfesS3BlbwjOWhrJu949voUbZgsv5NVinreD3+Le6XU4PdkuK6A0HOIwjJ1DRBRnmlsbZTmG4gp/4m5YbTpKlq9xZsBdqeyNPYyIHImbkNYei01UEZFngS9U9bpmrnXDKZ4RqrquA9Lq0Pg6E3HrXuTiPlNc3Jb/Dk57KDFS94TZGxYBMYw9hoicjhujezvashhdH284YR9vSOQ4nKXp5YjrJ3nm33TcuO+nuC9CdjW9Do2vM/GG0rLEDT2Gx/uXRFmsmKArrkRkGDGJiLyDMwme543rGsbu0g9nou6J65Fepg2XyJ6DM88KzhR9lu6eGbaj4+tMpuOG2MLDRqeoalXrQfYOzBRvGIZhGHGEmeINwzAMI44wU3wH06tXLx06dGi0xTAMw+hSLF++fJuq9o62HPGAKfYOZujQoSxbtizaYhiGYXQpRGRnVo80WsFM8YZhGIYRR5hiNwzDMIw4whS7YRiGYcQRNsZuGHFMbW0tubm5VFe3uLmaYexRUlJSyMnJITExMdqixC2m2A0jjsnNzSUjI4OhQ4cisiubvRlGx6GqFBYWkpuby7Bhw6ItTtxiit3YawkUlhAsr2jinpDRjaSeWVGQqOOprq42pW7EDCJCz549KSgoiLYocY0pdmOvJVheweIRM5u4z1jzVtwodsCUuhFTWHnsfGzynGEYhmHEEabYDcPoVPx+PxMnTmTs2LGcdNJJlJSU7FT466+/njvuuKPZa0888QRjx45l3LhxTJo0qUV/Hc3QoUMZN24c48aNY/To0fz6179udYLiwQcfvFPxH3nkkey///5MnDiRiRMn8sILL+yuyMZeRFwqdhH5qYh8LiKficjTIpIiIsNE5L8islZEnhWRJM9vsne+1rs+NCKeqz33L0Xk2Gjdj2F0ZVJTU1m5ciWfffYZPXr04N577+2QeP/1r39x1113sXDhQj799FOWLFlCZmZmE3/BYOdskb148WI+/fRTli5dyjfffMOll17aYtoffPDBTsf/17/+lZUrV7Jy5Urmzp3b4JqqEgrZBoJG88SdYheRgcAVwBRVHQv4gbOA24A7VXVfoBi4yAtyEVDsud/p+UNERnvhxgDHAX8WEf+evBfDiDemT5/Opk2b6s9vv/12DjzwQMaPH891111X737zzTez3377ceihh/Lll182G9ctt9zCHXfcwYABAwBITk7m4osvBlyP9yc/+QlTpkzh7rvvZv369Rx11FGMHz+emTNnsmHDBgCef/55xo4dy4QJEzj88MMB+Pzzz5k6dSoTJ05k/PjxrFmzptV76tatG/fffz8vv/wyRUVFvPPOOxx22GGcfPLJjB49ut4PwDvvvMPhhx/OiSeeyP7778/3v//9divo9evXs//++3P++eczduxYNm7cyMKFC5k+fTqTJ0/mjDPOoKLCTQZ9/fXXGTlyJJMnT+aKK65g9uzZQFPrx9ixY1m/fj0ATz31VP19X3rppdTV1dXLfs011zBhwgQOOugg8vPzAcjPz+fUU09lwoQJTJgwgQ8++IBrr72Wu+66qz7+a665hrvvvrtd92d0IKoaVz9gILAR6IGbHPhP4FhgG5Dg+ZkOvOEdvwFM944TPH8CXA1cHRFvvb/WfgcccIAaXYOabcW6fd3GJr+abcXRFq3DWLVqVbRF0PT0dA2FQhoMBnXu3Ln62muvqarqG2+8oRdffLGGQiGtq6vTE088Ud99911dtmyZjh07Vrdv366lpaW6zz776O23394k3uzsbC0pKWk2zSOOOEIvu+yy+vPZs2frY489pqqqDz/8sM6ZM0dVVceOHau5ubmqqlpc7J775Zdfrk899ZSqqtbU1GhlZWWT+IcMGaIFBQUN3CZMmKBLlizRxYsXa1pamn7zzTcN8kBVdfHixZqcnKxff/21BoNBPfroo/X5559vVv799ttPJ0yYoBMmTNBt27bpunXrVET0ww8/VFXVgoICPeyww7SiokJVVW+99Vb97W9/q1VVVZqTk6NfffWVhkIhPeOMM/TEE09UVdXrrruuQV6OGTNG161bp6tWrdLZs2drIBBQVdXLLrtMH3/8cVVVBfTVV19VVdUrr7xSb7zxRlVVPfPMM/XOO+9UVdVgMKglJSW6bt06nTRpkqqq1tXV6fDhw3Xbtm1N7q+5cgks0xjQIfHwi7tZ8aq6SUTuADYAVcBCYDlQoqphm1wurgEAOxoCqGpQREqBnp77koioI8M0QEQuAS4BGDx4cIfej9F5JPXMiqvZ77GIqlJVVcWkSZPYtGkTI0eOZObMmagqCxcuZOHChUyaNAmAiooK1qxZQ3l5OaeeeippaWkAnHzyybuU9rx58+qPP/zwQ1588UUAzjvvPH75y18CcMghh3DBBRdw5plnctpppwHOqnDzzTeTm5vLaaedxogRI9p9r2GmTp3a4nfaU6dOZfjw4QCcffbZ/Oc//2liagdnip8yZUr9eXl5OUOGDOGggw4CYMmSJaxatYpDDjkEgEAgwPTp0/niiy8YNmxYvdzf+c53ePDBB1uV/a233mL58uUceOCBAFRVVdGnTx8AkpKS6nv8BxxwAIsWLQLg7bff5oknngDcPIrMzEwyMzPp2bMnH3/8Mfn5+UyaNImePXu2mrbR8cSjKT4bmAMMAwYA6ThTeqehqg+q6hRVndK7t+06aBiRpKam8t8lS1izZg2hUIg/e2PsqsrVV19dP468du1aLrroojZi28GYMWNYvnx5i9fT09PbjOP+++/npptuYuPGjRxwwAEUFhZyzjnn8Oqrr5KamsoJJ5zA22+/3WY85eXlrF+/nv3226/NtBt/7rUzn39FxquqzJo1qz7/Vq1axcMPP9xq+ISEhAam//CEP1Vl/vz59XF9+eWXXH/99QAkJibWy+j3+9ucs/C9732Pxx57jEcffZQLL7yw3fdmdBxxp9iBo4F1qlqgqrXAi8AhQJaIhC0UOUB4oG8TMAjAu54JFEa6NxPGMIx2EFYI4vORmpLCnXfeyZ133UVdXR3HHnssjzzySP248KZNm9i6dSuHH344L7/8MlVVVZSXl/OPf/yj2bivvvpqrrzySrZs2QK4HutDDz3UrN+DDz6YZ555BnA94cMOOwyAr7/+mmnTpnHDDTfQu3dvNm7cyDfffMPw4cO54oormDNnDv/73/9avceKigp+8IMfcMopp5Cdnd1mnixdupR169YRCoV49tlnOfTQQ9sM0xwHHXQQ77//PmvXrgVg+/btfPXVV4wcOZL169fz9ddfA/D000/Xhxk6dCgrVqwAYMWKFaxbtw6AmTNn8sILL7B161YAioqK+Pbb1ndRnTlzJvfddx8AdXV1lJaWAnDqqafy+uuv89FHH3HssTbnOBrEo2LfABwkImniapWZwCpgMRC2d80HXvGOX/XO8a6/7Y33vAqc5c2aHwaMAJbuoXswjLggbJ7WUAjx+Zgwfjzjxo3jb3/7G8cccwznnHMO06dPZ9y4ccydO5fy8nImT57MvHnzmDBhAscff3y9ebgxJ5xwApdffjlHH300Y8aMYfLkyZSVlTXr909/+hOPPvoo48eP58knn6yf0HXllVcybtw4xo4dy8EHH8yECRN47rnnGDt2LBMnTuSzzz7j/PPPbzbOGTNmMHbsWKZOncrgwYN54IEH2pUnBx54IJdffjmjRo1i2LBhnHrqqe0K15jevXvz2GOPcfbZZzN+/Ph6M3xKSgoPPvggJ554IpMnT643qQOcfvrpFBUVMWbMGO655556C8Po0aO56aabOOaYYxg/fjyzZs0iLy+v1fTvvvtuFi9ezLhx4zjggANYtWoV4Ez3M2bM4Mwzz8Tvt/nGUSHag/yd8QN+C3wBfAY8CSQDw3GKeS3wPJDs+U3xztd614dHxHMN8DXwJXB8e9K2yXNGLBHtyXOhUEhra2s1WFvb5HhvZPHixfUT2eI1zbq6Op0wYYJ+9dVXLfqxyXOd+4u7yXMAqnodcF0j52+Aqc34rQbOaCGem4GbO1xAw9hLEJH6XlvjYyP+WLVqFbNnz+bUU09t96RDo+MR11AyOoopU6bosmXLoi2GYQCwevVqRo0aFW0xDKMBzZVLEVmuqlNaCGLsBPE4xm4YhmEYey2m2A3DMAwjjjDFbhiGYRhxhCl2wzAMw4gjTLEbhtFpVFdXM3XqVCZMmMCYMWPqN3pZt24d06ZNY99992XevHkEAoEoS2oY8YMpdsMwOo3k5GTefvttPvnkE1auXMnrr7/OkiVLuOqqq/jpT3/K2rVryc7ObnMpVMMw2o8pdsMw6ln4Tj6nX7iEw05+l9MvXMLCd/J3Kz4Rqd+ytLa2ltraWkSEt99+u37jk/nz5/Pyyy/vtuyGYThMsRuGATilfts9X5FfUIMq5BfUcNs9X+22cq+rq2PixIn06dOHWbNmsc8++5CVlUVCglsfKycnp8Ee7YZh7B6m2A3DAOCBJ9ZRUxNq4FZTE+KBJ9btVrx+v5+VK1eSm5vL0qVL+eKLL3YrPsMwWscUu2EYAGzdVrNT7jtLVlYWM2bM4MMPP6SkpKR++8/c3FwGDhzYIWkYhmGK3TAMjz69knfKvT0UFBRQUlICQFVVFYsWLWLUqFHMmDGDF154AYDHH3+cOXPm7HIahmE0xBS7YRgAXHr+MJKTG1YJyck+Lj1/2C7HmZeXx4wZMxg/fjwHHnggs2bNYvbs2dx222388Y9/ZN9996WwsJCLLrpod8U3DMMjLnd3Mwxj5znmyL6AG2vfuq2GPr2SufT8YfXuu8L48eP5+OOPm7gPHz6cpUuX7nK8hmG0jCl2wzDqOebIvrulyA3DiD5mijcMwzCMOCLuFLuI7C8iKyN+ZSLyExHpISKLRGSN95/t+RcR+T8RWSsi/xORyRFxzff8rxGR+dG7K8MwDMNoH3Gn2FX1S1WdqKoTgQOASuAlYAHwlqqOAN7yzgGOB0Z4v0uA+wBEpAdwHTANmApcF24MGIZhGEasEneKvREzga9V9VtgDvC45/44cIp3PAd4Qh1LgCwR6Q8cCyxS1SJVLQYWAcftWfENwzAMY+eId8V+FvC0d9xXVfO84y1AeIbQQGBjRJhcz60ld8MwDMOIWeJWsYtIEnAy8Hzja6qqgHZgWpeIyDIRWVZQUNBR0RpGXFBSUsLcuXMZOXIko0aN4sMPP6SoqIhZs2YxYsQIZs2aRXFxcbTFNIy4IW4VO27sfIWqhnewyPdM7Hj/Wz33TcCgiHA5nltL7k1Q1QdVdYqqTundu3cH3oJhdH1+/OMfc9xxx/HFF1/wySefMGrUKG699VZmzpzJmjVrmDlzJrfeemu0xTSMuCGeFfvZ7DDDA7wKhGe2zwdeiXA/35vmonBmAAAgAElEQVQdfxBQ6pns3wCOEZFsb9LcMZ6bYcQlqkre5s3kbd5MKBSqP3YGrl2jtLSU9957r35luaSkJLKysnjllVeYP9+9jrZtq2F0LHGp2EUkHZgFvBjhfCswS0TWAEd75wCvAd8Aa4G/AD8AUNUi4EbgI+93g+dmGHHJlrw8qqurqa6uZsO339Yfb8nLaztwC6xbt47evXvz3e9+l0mTJvG9732P7du3k5+fT//+/QHo168f+fm7tzWsYRg7iMuV51R1O9CzkVshbpZ8Y78K/LCFeB4BHukMGQ0jVlHV+l66iOxWXMFgkBUrVvCnP/2JadOm8eMf/7iJ2V1EdjsdwzB2EJc9dsMwdp6+/fo1UbAiQt9+/XY5zpycHHJycpg2bRoAc+fOZcWKFfTt25c8zxKQl5dHnz59dl1wwzAaYIrdMAwA8rdsaTKerqrkb9myy3H269ePQYMG8eWXXwLw1ltvMXr0aE4++WQef9wtK2HbthpGxxKXpnjDMHadsGl8dybNRfKnP/2Jc889l0AgwPDhw3n00UcJhUKceeaZPPzwwwwZMoTnnnuuQ9IyDMMUu2EYHv3696+fKNe3X7/6nno/b5LbrjJx4kSWLVvWxP2tt97arXgNw2geU+yGYQCup95/wID688hjwzC6DjbGbhiGYRhxhCl2wzAMw4gjTLEbhmEYRhwRk2PsIvIprWzSoqrj96A4hmEYhtFliEnFDsz2/sMrwj3p/Z8bBVkMwzAMo8sQk6Z4Vf1WVb8FZqnqL1X1U++3ALcZi2EYXYS7776bsWPHMmbMGO666y4A27bVMDqRmFTsEYiIHBJxcjCxL7NhGB6fffYZf/nLX1i6dCmffPIJ//znP1m7dq1t22oYnUismuLDXAQ8IiKZgADFwIXRFckw4pPXe0ymrnx7E3d/RjrHFa3YpThXr17NtGnTSEtLA+CII47gxRdf5JVXXuGdd94B3LatRx55JLfddtsuy24Yxg5iuverqstVdQIwARivqhNVdddqGMMwWqU5pd6ae3sYO3Ys//73vyksLKSyspLXXnuNjRs32rathtGJxHSPXUSSgdOBoUBCeOcpVb0himIZhtFORo0axVVXXcUxxxxDeno6EydOxO/3N/Bj27YaRscS0z124BVgDhAEtkf8DKNDCAZDFBbVkF9QTUlpINrixCUXXXQRy5cv57333iM7O5v99tvPtm01jE4kpnvsQI6qHhdtIYz4pKamjo8/K+WmO7+gpLSWUSMyuOnq0fTtnRJt0eKKrVu30qdPHzZs2MCLL77IkiVLWLduHY8//jgLFiywbVsNo4OJ9R77ByIybmcDiUiWiLwgIl+IyGoRmS4iPURkkYis8f6zPb8iIv8nImtF5H8iMjkinvme/zUiMr8jb8yIPmUVQX5182eUlNYCsHpNOX+8fw0V24NRliy+OP300xk9ejQnnXQS9957L1lZWSxYsIBFixYxYsQI3nzzTRYsWBBtMQ0jboj1HvuhwAUisg6owc2M13asPHc38LqqzhWRJCAN+BXwlqreKiILgAXAVcDxwAjvNw24D5gmIj2A64ApuFXwlovIq6pqH9zGCSWltQRqGy5w+L9VZdTU1NEtPdZfjY7Hn5He4qz43eHf//53E7eePXvatq2G0UnEeu11/M4G8D6NOxy4AEBVA0BAROYAR3reHgfewSn2OcATqqrAEq+339/zu0hVi7x4FwHHAU/v+u0YsURWZiKJCUJtcIdyHzuyO8nJ/lZCxS+7+kmbYRixRUyb4r3V5wYBR3nHlbQt8zCgAHhURD4WkYdEJB3oq6p5np8tQF/veCCwMSJ8rufWknsTROQSEVkmIssKCgraf4NGVMnolsCNC0aT0c21b/cdls4vfjBir+ytG4YRP8R0DSYiYVP4/sCjQCLwFHBIK8ESgMnAj1T1vyJyN87sXo+qqoi0uMnMzqKqDwIPAkyZMqXD4jU6l5RkP9Mm9+DJe6cQDCrJST6ys5KiLVaHo6r2OZkRMzjjqNGZxHSPHTgVOBnvEzdV3QxktBEmF8hV1f965y/gFH2+Z2LH+9/qXd+EswqEyfHcWnI34ojERB+9eiTTr09KXCr1lJQUCgsLrTI1YgJVpbCwkJQU+/KkM4npHjsQiOxdeyb1VlHVLSKyUUT2V9UvgZnAKu83H7jV+3/FC/IqcLmIPIObPFeqqnki8gbwu/DsedzmM1d35M0ZRmeTk5NDbm4uNkRkxAopKSnk5OREW4y4JtYV+3Mi8gCQJSIX49aJ/0s7wv0I+Ks3I/4b4Ls468RzInIR8C1wpuf3NeAEYC1uDP+7AKpaJCI3Ah95/m4IT6QzjK5CYmIiw4YNi7YYhmHsQSTWTXQiMosdW7UuVNVF0ZSnLaZMmaLLli2LthiGYRhdChFZrqpToi1HPBDrPXaAT4FU3Lfkn0ZZFsMwDMOIaWJ68pyIfA9YCpwGzMV9Z27bthqGYRhGC8R6j/1KYJKqFgKISE/gA+CRqEplGIZhGDFKTPfYgUKgPOK83HMzDMMwDKMZYr3Hvhb4r4i8ghtjnwP8T0R+BqCqf4ymcIZhGIYRa8S6Yv/a+4UJf3ve1iI1hmEYBlBUHGB7VZDkJB9pqQm2ZPJeQEw/YVX9bfjYWyimRGP9+zzDMIwYIb+gmiuu+YRNedWIwDmnDeLc0wfRPSMx2qIZnUhMjrGLyLUiMtI7ThaRt3E993wROTq60hmGYcQ+VdV1/OXJdWzKqwZAFf76940Ul9RGWTKjs4lJxQ7MA770jufj5OwNHAH8LlpCGYZhdBWqq+tYu257E/fcvKooSGPsSWJVsQciTO7HAk+rap2qribGhw8MwzBigW7dEjhseq8Gbn6f257YiG9iVUnWiMhYIB+YAfwi4lpadEQyDMPoOiQm+Dj76O6cOG4IVdV1+HyQmZFIYsU2Ar5uJPXMiraIRicRq4r9x7jtVnsDd6rqOgAROQH4OJqCGYZhdBkqK1k++dgmzjPWvGWKPY6JScXu7aU+UkSGq+o3Ee6vicjqKIpmGIZhGDFNrI6xh3mhnW6GYRiGR20wRFFxAPs4eO8kJnvs3qduY4BMETkt4lJ3ICU6UhmGYcQ+JaUBXnptM4ve28rtl/aOtjhGFIhJxQ7sD8wGsoCTItzLgYujIpFhGEaMU1sb4rlXNvHE8xsAqAnURVkiIxrEpGJX1VeAV0Rkuqp+uLPhRWQ9rhFQBwRVdYqI9ACeBYYC64EzVbVYRAS4GzgBqAQuUNUVXjzzgV970d6kqo/v1o0ZhmF0ImUVtbzxTv6O82ASo97/f/TMTiYxUerdEzK6NRs+UFhCsLyiiXtChs2i70rEpGKPYK2I/AqnjOtlVdX27Mk+Q1W3RZwvAN5S1VtFZIF3fhVwPDDC+00D7gOmeQ2B64ApuA1olovIq6pavPu3ZRiG0fEk+H307Z1MfkENAJffsg6AZx+cysD+qW2GD5ZXsHjEzCbubc2iD4WUYFBJSor1aVt7B7H+FF4BMoE3gf8X8dsV5gDhHvfjwCkR7k+oYwmQJSL9cQvjLFLVIk+ZLwKO28W0DcMwOp3M7on89NIRpCTvqNpPOb4/Gd06rw9XVBLguVdzufGPq3n3gwJKy2zJ2mgT6z32NFW9ahfCKbBQRBR4QFUfBPqqap53fQvQ1zseCGyMCJvrubXk3gQRuQS4BGDw4MG7IK5hGEbHMHRwGs88MJUNm6vo1SOJzO6JnbbpS0lpgGt+9zmfri4DYPH727jonCGcO3cwSYmx3m+MX2I95//pLUqzsxyqqpNxZvYfisjhkRe95Wo77EMQVX1QVaeo6pTevW0WqmEY0SMxwUevnslMHpfF4IFpZHbiTm6VVXX1Sj3Ms6/kUl4R7LQ0jbaJdcX+Y5xyrxaRMhEpF5GytgKp6ibvfyvwEjAVtzNcfwDvf6vnfRMwKCJ4jufWkrthGIYB+HzSxC0x0UcH9puMXSCmTfGqmrGzYUQkHfCparl3fAxwA/Aqbqe4W73/V7wgrwKXi8gzuMlzpaqaJyJvAL/z9oHHi+fq3bohwzCMGCYhoxsz1rzVrHtzpKb4OfLgXrzzwY55ypeeN6xTrQRG28S0Yvc+RTsXGKaqN4rIIKC/qi5tJVhf4CUXlATgb6r6uoh8BDwnIhcB3wJnev5fw33qthb3udt3AVS1SERuBD7y/N2gqkUde4eGYRixQ1LPrJ36rC2zeyI//8EIZh/Tn9VflXHI1J7075tCQkKsG4PjG9EYXnNQRO4DQsBRqjrK6z0vVNUDoyxai0yZMkWXLVsWbTEMwzB2iz39TbuILFfVKR0e8V5ITPfYgWmqOllEPgbwFpRJirZQhmEY8c6uftNuRJ9Yt5fUiogfbyaGiPTG9eANwzAMw2iGWFfs/4eb1d5HRG4G/gP8LroiGYZhGEbsEtOmeFX9q4gsB2YCApyiqrYfu2EYhmG0QEwrdm+99q3A0xFuiapqaxYahmEYRjPEtGIHVuAWiSnG9dizgC0ikg9crKrLoymcYRhGvLKz37QbsUOsK/ZFwAuq+gaAiBwDnA48CvwZt6CMYRiG0cHs7DftRuwQ64r9IFW9OHyiqgtF5A5VvVREkqMpmGEYRlfC9lrfe4h1xZ4nIlcBz3jn84Ct3idw9tmbYRhGO7Hv0vceYv1zt3Nwm6+87P0GA2cBfnYsCWsYhmEYhkdM99hVdRvwo/C5iKQAJ6nq87i13Q3DiGHM/GsYe56YVuwAntn9WOBsYBZukZrnoyqUYRjtwsy/0ScUCuHzxbpx1uhIYlaxi8gROFP8CcBS4BBguKpWRlUwwzCMLkIwGKSqqor09PRoi2LsQWJSsYtILrABuA/4hbe3+jpT6oZhGO0jFApRXV1NwdatBDIzSU5O5LDVb5CQ0LDat+/S44+YVOzAC8ApuFnwdSLyCt5GMIYRq5SUBqgJhPD7hYz0BJKT/dEWydiL8fl8pKWlkZWdTUlxMQCDhw5potiN+CMmn7Cq/kREfgociRtb/z2QKSJnAq+patPZOIYRRbYV1fDrW1bx2RdlpCT7+NH39mHmYX3olr7jFQsGQ2wrCvD6W1sQn3DcUX3p1SMJv9/GP43OIRQKsb2iAhFBVamoqCAjIwO/3xqd8UxMKnYAVVVgMbBYRBKB43Cfuv0Z6BVN2Yy9g9raEJVVdaSn+UlIaFn5VtfU8cjfvuWzL8q88xC337uGAydmN1Ds24oCnHf5Mqqq6gD469838uS9U+jbO6VzbySKtHdZUps93/GETfGqyqDBg6msrKSkuJiMjIxoi2Z0MjGr2CPxNn35B/APEUltTxhvNv0yYJOqzhaRYbiFbnoCy4HzVDXgrWD3BHAAUAjMU9X1XhxXAxcBdcAV4aVtjfinqDjAc6/msvKzUqZOyubUEwaQnZXUrN/Kqjr+t6q0ifuGTVUM6LejuL76Rl69Ug+H+39vbuHCs4d2uPyxQnuXJbXZ8x1P2BSfmpqK3++nW7dupKenW299LyAmFbuIfErLY+oKTGhHND8GVgPdvfPbgDtV9RkRuR+nsO/z/otVdV8ROcvzN09ERuMsBGOAAcCbIrKfqtY1TsiIL0rLarn+jtWs+F8JAIri88HpswfW98BFpN5/WqqfyeOzWL9xx9xOERiSk9Yg3lBoR5G+5+phdE8I0C0dKtfn1rtbD9XoSCI/c7NP3vYeYlKxA7O9/x96/096/9+hHZPoRCQHOBG4GfiZuFr4KNzncwCPA9fjFPsc7xjcpL17PP9zgGdUtQZYJyJrganAh7t8V0aXoLqmrl6pjx/dnet+sR+giEBtbS2qSlJSUr1yT0n2M3/eYDZsqmTZyhIy0hP46ff3pXtGw9drznH9ef4fm6ipCdE9IcDqQ05skrb1UI09xfbKIJVVdYhAeloCqSnWk48XYlKxq+q3ACIyS1UnRVy6SkRWAAvaiOIu4JdAeDCpJ1CiqkHvPBcY6B0PBDZ66QZFpNTzPxBYEhFnZJgGiMglwCUAgwcPbvP+jNjG5xOSEoVArXLe3EHU1VZQU72d5MQebNtaTHJyMn369m1g0uyZncwNvxxNdU0Inw8yMxJJTGzYQ+rVI5mn7p3CS//KIz3Nek9djaLiANU1dSQl+sjISCQ5qes+w5LSAH9+9BveWJyP3y+cc9ogzjg5h8zuidEWzegAYr1kiogcEnFyMG3ILCKzga17cq92VX1QVaeo6pTevXvvqWSNTiIjPYGLzh0KwG9uW01ldSpJSUkUFRbi9/ubKPUw3TMS6dMrmV49kpsodYDERB/9+6bygwuGk9EtJtvURgts3lLFDxes5MyLl3L2ZR/xnyXbqKoOth0wRnn/oyJeeyufuhAEapXHnt3Ahk22TEi8EOu1y0XAIyKS6Z2XABe2EeYQ4GQROQFIwY2x3w1kiUiC12vPATZ5/jcBg4BcEUkAMnGT6MLuYSLDGHFMSoqfk47tzyEH9mRrYTU5A5LZklcLuJW8gsEgPp+vwTi7sXvUJacy+oPXcB/DONNwenpCTCyeUlZRy+/v/YqNm6sAqKqq48Y7v+D5h6aRmhLrVWhTAoE6PvyosIn7spXFjBuV2UwIo6sR06XS63VPCCt2VW069bhpmKuBqwFE5EjcynXnisjzwFzczPj5wCtekFe98w+962+rqorIq8DfROSPuMlzI3BL2xp7Ad27JdK9WyKDBqZQVFhIYlIS/fv1Y2tBAUWFhS322o2dp6y8ll/930ZWftbw9X7+oWn07xn9TwEDgRBfrmn4KV4wqJSV19K7Z3KUpNp1EhN9TJvcg3c+2NbAffJ4m9sRL8S0YheRvsDvgAGqerw3U326qj68C9FdBTwjIjcBHwPhOB4GnvQmxxXhZsKjqp+LyHPAKiAI/NBmxO99+P1+evTogQI+v5/evXqhnvvu0N7vu+OR0rIAwaDi8wvZmUnU1obI9XrDkZSU1dK/b/QVe0qyn0njMnlvyY5ebnKyr8uOR4sIhx7Uk2Wf9Obt/xTg9wtnnDSQoYNsPfl4QcKmr1hERP4FPApco6oTPFP5x6o6LsqitciUKVN02bJl0RbD6CTqgkEUSEhIaHDcWahqvck/8rirkpdfzQ1/WM2nq8vYd1g61185in59UnjgiXU8/+qOka70ND9/u+9AevaIjR5xQWENN9yxmo8/K+X+a/chJzNEYqKPyMfR1T5VLK+opao65GbFp/pJS0ugrq6OumAQv1emw8d7wjolIstVdUqnJ7QXEOuK/SNVPVBEPg7PjheRlao6MdqytYQp9vglFApRWFhIVWUl/QcMYFtBAcG6OgYOHNgp3wiHQiFqa2vx+/34fL7646661ndJaYArf/sZq9eU17v17Z3MX/4wGfHBE89+y9v/2cbA/in84gcjGJKTFlPL7ZaW1RKoDZFaWsC7+ze/mE7a0JwoSNZxBINBNnz7LZlZWSQlJlJQUED/AQNISUnp9EalKfaOI9ZriO0i0hPv23UROQhoc5zdMDoDn89HdnY21VVVbNywARFhwMCBnVrhbcnLIyEhgazsbLbm55OVlUVmVtYeXWyko5Z7rQ1qA6UOkF9QQ1VNHQP7pfL9C4bznbmDSUiIPTN3oLCExPIKEgENxe+InM/no0/fvmzNzwcgKzu7wZoNRtcg1hX7z3CT2/YRkfeB3sAZ0RXJ2JsR3Fg7tbWISKfOjhcR+g8YwKbcXPK3bCEtLY3umZkdrtRDoVB9nJHHYXZ3ude6OqWkNEBdnTKwfwqb8qrrr2WkJ9R/D56c5Ce5R2xOSIzMg4PefCLK0nQeqkqkFVdDoShKY+wqsWPnap7PgSOAg4FLccu7fhFViYy9llAoRFFxMYFAgH79+uH3+9myZQuhTqr8VJVQKFRf0dbV1dHRQ2fBYJDt27dTV1fX4LijqKtTvvq6nAt/soLrfr+an182giyvN56W6uf6X44iMyO2euddhbq6uvpnFXm8O6gqBVu3kp2dTZ8+fSgtLSUQCHR4uTM6l1jvsX+oqpNxCh4Ab+W5ydETydhbCZviMzMzSUxMpH9yMqFQqFPNlPlbtpDerRvZ2dls3rSJ8rKyDjPFqyq1tbUUbN1KZmYmNYEANTU1DBo0qO3A7aSkLMCCmz+nsDhAYXGAv/19IzcuGE3P7CTSUv10z0hodjEfoymNh0TCjb6krO5UilIbDNKzZ8/dmujm8/nIGTQIv9+PiDQ4NroOManYRaQfbvnWVBGZhLOAgltsJq3FgIbRySQkJNTPTo887gzCY/g+nw+fz8fAnJz6446KPzkpiV69erFtm/umeWBOTofOgA4ElMKiQP35sk9KWPZJCX9/ZBq9uuA34AB1ldX15viUgf2QBJdfnf2pYktDIoetfoNiqaNP3767nYbP5yMpaccuhpHHRtchJhU7cCxwAW61tz9GuJcDv4qGQIYRJqzIw6ZPv9/f4LgxZeW1VFXX4fMJaal+0tPa99qJCImJO8zUkccdRUiViu3b688rKirIysrqMOWelOSjb+9k8gtq6t0GDUzt0r30j06+pP44VmbCJyYl1W/PahgxqdhV9XHgcRE5XVX/Hm15DKMxoVCIqqoqysrK6Nu3L1WVlZSVl9O30Yp0xSUBbv2/L3n/oyL8Pjht9kDmzxtMVvfo94RUlUCglkBNDRmZ/QgGaykvK6Z790wi9cPuLKaTnZnI768dyzW/W0VuXhWDc1L53a/G0KOFve1jlVheUEjER20gQGFh4W6b4o34ICYVexhV/buInIibNJcS4X5D9KQyDNebTkpKIlBTw6bcXILBINnZ2Q38hELK2/8p4P2PigCoC8Hzr27iyIN7kTUm+ootGFRWfFrBhDED+c1tqxm7fwbzTsnhq6+3M2bkjjXDk3pm7fLCKz6fMHxIOn++bSK1QbeoS1dT6rB7edDZ+P0++vcd0KGTHo2uTUwrdhG5HzemPgN4CLeWu63XbkSd8Bh7t4wMykpL8fl8DSa1BQJ1VGyvY+IQ4YnfNNztN4NSAoVEXVHUBkP84418fnf3V5SVB1m2soQXX8vj0vOGNVDsrVFXV1f/CWDkcSQiQo/srqfMuxLJycmg2iTvjb2TmFbswMGqOl5E/qeqvxWRPwD/irZQhhEKhaisrKSstJT09HSqqqrYkpdH3379KK+o49lXcvnm2+384vTuLD3kxCbh2/sNeGlZLQVFNeRvrWG/4d3I7J5AUlLHVN5pqQnMPWkg70fs9FVVVce0A3q0GKbxzOxg0M0dSOyewdbKcrKys0lPT9+jC+jsLbQ2HLAn8rs2GKK0rBZVSEn2kdHNPlOMVWJdsYd3hqgUkQG47VT7R1EewwA8U3xiIj169qR7RgbBYJDKykpUYfH7BTz5/EYAFszb9W0wS8tq+dNDX/P6YrcKWFKicO9tExk1onuH3APAyBHduOWaMTz90kbS0xK49PxhrZrKW5uZrYlCakoKPp8v7ta4jwWiORxQWRlkyYoi/nDfGsrKg0yf0oMFP9rfLDExSqwr9n+KSBZwO7ACt7TsQ9EVydgbCC864/P5GhyHERESk5LISEjA5/eT6PORkZDA9qoQb/27oN5fSWntLstQXlFbr9QBArXKXQ+s5bZrx3bY5LuMbokcdlAvJozJxO+Xds/Yb470bt3q86s2EMDn9+P3++uPO2NWf1ehrq6uflJb5HFXoawiyHW/X014nZoPPiriyRc2cNn8YR1mQTI6jpi2l6nqjapa4s2MHwKMVNXfRFsuI74JhULU1NQQCASaHEciIvUVdPg4JdnPvsN2zJTuntE+RVlcEmDVV2Us/biIwqIaQiGlYnvTyVCFxW5p1o6me0bibil1n89HaUkJ2ysrUVW2bdvG5k2bqKioYPPmzZSWlLQ6uasuGKxf4SzyOB4IBoNuw6BgsMFxV2L9xkoaP46PPi6motIm7MUiMd1jF5HTmnErBT5V1a1REMno4rRnQxNVpbysjO3bt9M9M5PSkhK6d+9Odo+Wx57DJCX6OPf0Qfx3RRHDBqfXr4PeGsUlAa6++XM++6IMcI2Bh+88gN69ksnOSqS4ZEevf/bR/egeg0uw+nw+evfoTWpKCn6/n779+rFp0ya2FRSQkpJCdo8eLfZSQ6EQZWVllJSU0LdfP0qKi6mtrWXQ4MENTPgdtRlNNKipqWHzpk2ISINlgrsKgwemNnEbN6o7aanWW49FYlqxAxcB04HF3vmRwHJgmIjcoKpPRkswo2vSng1N/H4/PXv1IhAIUFpSQnIbiqkxvXsmc+8tE9leGSQhqZojvlwUYc734/MJ/ox0SkoDvLdkG9mZSXTPSMDvc5/E9e+bwre529lveDfuv30SDzy+jty8Ko49si/HzuhDYkJsGtoiTfHBYJCQ10Ovra0lFAq1mH8+n4/umZlUV1ezJS8PEWFgTk6Tcfnd3YymOfZEYyEhIYF+/fuTu9HNu+g/YECX23q3e0YCP710X+599BsCgRAjR2Rw4TlDSUk2xR6LxHrpSgBGqWo+gIj0BZ4ApgHvAc0qdhFJ8a4ne3G8oKrXicgw4BmgJ66BcJ6qBkQk2Yv3ANwEvXmqut6L62pcA6MOuEJV3+ikezVihFAoRCAQIBAI4PP5CNTUUBuxm1t76JGdRI/sJOrqkqn0Q0lxMQB9+vQiJS2NquogoZoAgwemkJqSwFWXD+OLtf1Y9E4Bs2b05cEn11NYFOD02QP4yaX7ICJ075aI379nJqGFd/mKnABXWVWHLy2tzZnZqkrhtm0kJafSPbMnpcX5lJSU0KO1xpEqochdxfZQj3ZXGwtFxQEqq+tITvSRnuYnrZVhjGAwyNb8/PqdALd5e5xHKvdYt0Z0S0/khKP7cfj0XgSDSkqKj+xMmzgXq8S6Yh8UVuoeWz23IhFpbVZSDXCUqlaISCLwHxH5F24b2DtV9RnvG/mLgPu8/2JV3VdEzgJuA+aJyGjgLNwCOQOAN0VkP1W1gaU4praolPD/W9gAACAASURBVGBpGb1JxC8+6kJ1BDdtRTIzSO6V3XYEHm5ltwAlxcX07t2bQCDA1vx8Bg8Zgt8HJUX59MrqRlqaUFJcwMh9+zJowBDm/2g5tUGn2B58cj1+n3DWqTl7TKmDU0abN22iX79+IMKWvDy6Z/Xh7se3MGViNocf1KvFIYGysjokIZui4lp+/tuV3HH9aMorleSUEN0zmir2sCm+NhBgYE4OxcXFbMnLa2KKjyaRSwZXbA9QXVPL93/xCeXbg1zynaGcfNwAMrq1XJ2Kt9a/iJCfn+/KRoQy12Ad74w6pkm43bFG7AztmdyXmuInNcV66F2BWFfs74jIP4HnvfO5nls6UNJSIHXN/XDzN9H7KXAUcI7n/jhwPU6xz/GOAV4A7hFXo8wBnlHVGv4/e+8dJllVrf9/9kmVY1fnMMwQhwwSJSuKoD8JishVxHBFRfQa8ApeEREUROGLCRQVFRPq9Qp48UpSgggiIHGGNDCpc3flXOec/fvjVNVUT3d1HqYH+n2eeWbX6RN2nTpnr73ftda74GUhxIvAIcCDi/HllrE0YWVz3LfH1IMsczDsNXW67p4eNE3D6/PhDwQQQvDsiznaYy0UcuOUSxAKR3l5U4mxuFk36jXced8IJx3fQeQVVGxTFAW3201/1S+s6y7GEyYPPRrnrvtGiYR0jjgkNuWxuaLFhz/9OKWyRbki+fBnnqBUtvjdjw5teq1gKIQ/EEDTNFpbW7d51by5wLIsstks2UyGjs5OctkMdqXAdVfux7997BGu+9nLHHtEa1PDrmkaHR0d9RV7rV1YIjXeTdNkfGyMlpjze9baO5q7YBlbsNR/uY8DpwFHVj//DPh91XAfN92BQggVh27fBfgesA5ISilr4aibcSrIUf1/E4CU0qwG6LVUtz/UcNrGYxqvdQ5wDkBfX9/cvuEyXtVQqylfjZ8BdlnpI53KANDq8UEyzeqgiuWTdaW6tGlw3uUv09ftxeWa6AIwTbMeid/YXiwoikI4HCaXyyGlRDcC/Oz3/fVI/Vv+PMgB+4TxepwhpHH1GbYl1362Ayll/TusWuFDUZob6sb71NjeelXbDOVyuV5e1DTNSfd9IVAUBY/HQyIeZ9PGjdi2jdsb4Z4Hx9lndZAPntnH6HiJrg5301iCuX6fbYlszkRTBe7q6ltK6QT3DQwgcAoD7WjBfcuYiCVt2KWUUgjxCJCSUt4lhPACfpwqbzMdawH7V/Pg/wDssQ37eT1wPcBBBx20/EYsYSyVYh4uQ1AsJAkEo4hMlnunYAhWP3AbLVGDj569sm5AE8kyPq/C2OgwQlFoa2tjaGgIQ9dpicUWzZiZpsng4CButxuEIJ8b4yNn9bFxc4FnnsvQ1+2dUKGtma969QO3EQnrfOmze8yLcWg878G3Xj9luVTV72Pzpk1EIhF0XWdkZITOri7cbveirPprkyafz0cmk3HSGt1eHntiMxd/dldsM0tLLESlUiGRSBCLxbCSmSl95tK2uWf3NwGv/Co9k62w5vkMN928mVBA54P/toLOdje6rjtZDJs3A9Dd3f2a1hx4NWBJG3YhxIdxVsJRYGec1fL3gckjSBNIKZNCiL/iRNeHhRBaddXeA/RXd+sHeoHNQggNCOEE0dW219B4zDJmCduWVEwb1xIQsthW6l21FCZVVSe0m0FVVXr7+lAUhVJD2dRGxKIubrjmQKJhA8uyWbc+x6VXP0tXh5vPn7eKVGKYDevXo6oqkfb2RZUVVRSFUChEMBTCNKvpaGmLDZvztMVcnHFKz6yi81tbXPz02wcRCi7cUDQrl2pZFq0ujdERJwM2FA5jGMasjPpsJno1Kj6TyRAMhchmMuRzY3zuvF1RhE2+mGdkZAizUkE3DJCy6UTn2LV3zPl7zwa5vEkiWeGJZ5KsWuGjs8M9ScRozfMZPnvxU/XPDzw8xq9/cAjhoMrIyEj9ea1NjJap+B0XS/2X+ziOT/sfAFLKF4QQbTMdJIRoBSpVo+4B3oQTEPdXHD/9TcDZwC3VQ26tfn6w+ve/VNmCW4FfCSGuxgme25XlIjRzQjxR5v/+MsSa5zO8+Zg29t87vCiD/FKCbdsUi0Xi4+N0dnVRjicxU1lUbaJhb4xwVhRlRkOsaYJgxAVAIlXmP774JJmsSSpdoVCkTsNrmlb33y4WrGQGVyZPKZ0HwCvBZeX5zVWrKbv9WJZk4+Y8Pp9GyzSyoqoqpv37YkAIMeG7K3O4D7OZ6NWo+Na2Nnw+H8FgkFKxhKKpgI5Lb2FsbAyAjo6OebEmVr44JRuhBfzk8iaZrMnIWInOdjdBv4arIc3MtiX/eirJhV99Binhrce3c+Zp3ShC4PepSCkpliS/vWXzhGsWijZrnstw+EEhVEVxAiWB0ZGRZSp+B8dSN+ylajoaANXV9GyeuE6ceu4qjrreb6WU/yuEWAPcJIS4DPgX8OPq/j8Gfl4NjovjRMIjpXxGCPFbYA1gAh9fjoifPRKpMp/7ylM896JDSd779zE+8r6VvPuUngk07lLDdKu4ZmlJqt+LZVkOJWzC/atPmLTPQiKc8wWLTNYJD7nm0n3ASiKlpCXWSnx8rB7wpKoqxZJFLm/idqmT1OSyORNDVzBmEM5ptuI85rm7+enNY9zy5yEAujrcfOdr+xGY17eqXsuy0dT5Pw+2bTMyPOys1HWd0dFR3B7PolLxuq7XJ1C1thCCSqXC6HAcXdfraW1t7e2zOm+jMdc72skUJKGgjh7aMgHMFyz+765BvvXDdUgJuib45pf34YB9wvWYhWSqUv/7m49t5YNndmGWc7hdHkqlEpl0mki0hUh48oTa7VLqVHxtQtLYtm27PgFtbC9jaWOpG/Z7hRBfADxCiDcB5wJ/nOkgKeWTwAFTbH8JhwHYensROL3Jub4KfHWO/V50WJZVX5U1tpcy8nmrbtRruOnmTZz0xnZaoq7t1KuZMd0qLr9+c9O852AoRCIeBxbf5eBxq+iaoGJKvn/jej77sZW4vAq6YdDV3V1nAMYTZX78y5f5x2MJdlvl55Mf3oXOdjfpTIV/Pp7gj3cM0dvp5r2n99EWc835GbJsWTfqAANDRX76mw2c91bfnL9TKl3hmefS3HnvCHvvEeS4I1vnVatdCEFPTw9qlTrucblQq4Z3sdDICtTatVx/l9tNOBwDLJLJhJOTb09/PpjoWlj9wG2879J+3vOOXv79PVuK/OTyJt+74aW6nGvFlFz+7ee4/psH1guwSClJZ5zs32LRBgTlcp6R4UHK5TL+QABFEbz/jJ2478Fx8gULw1A4+/RedlnluBwaDXZj2ls6nSZQzeSotZcp+qWPpf4LXYCTY/4U8BHgT7wGi8BYlkU8HicYDKJpWr09Wz/i9sJUUdAuQ12SfZ5JIMSybHJ5C7UJXySlJBGP4/P5UAtzK/zSjCFQPW7y6x361Cvhvy9fQSptkjZ1vvOj9Xz07FXEohpSOgNxLm9x1bXPc99DThnW4dESL2/M84NvHsBfHxjlm9e+AMAjj8N9/xjnhmsOpCUytwnWVDr1L63Pofha5xSUWKnY3Hr7ID+48WUA7rx3hLvvH+FrX9iLcIPwyWx84M0yD7Y1hBBkcpJM3ssHP/Mwe+0e4JMfXkWuIBFNqGzhcbP6gdvQVAWvV60b5LTpfOdHnkhw5qm9hEOOoS2X7Qnpj5omiCfLE8R8/H6NU07s4pe/38R9D41z2OuiHHpAkFw2haIoxGIxFEWhs93FL687mKfXpjhw3xCKqOD1qliWRaFQwOPxTLh3NWnlbCaDYRjkcrm6ZPBSfIeXsQVL1rBXafQbpZTvAX64vfuzXSElZqXCwMAALsOgVCoR8PuXfDlMr0flqMNauP+hLfW+P3r2yiXpY59OgSynern1jkH+8Wici89qlscuiESjBINBihsH5nTtZgxBM3bgqGfv4tMf3Y1w9T7WnoFSyeJvD49P2HfzYIFc3uS//zgx5nM8XmZwuDhnw65roi59W8MbjmzFaImgts2spV9DOmvyq//ZNGHbk2vS5IsW4YZKtwsNdkymyoyMlUkky+y8k49wSEdbJEneQtHi2p+8zB33OEF7Dz2a4KFHH+Xmnx6KL+DjqLW3I0RNjc9JgytaKu+7tB+PR+XKL+3NJy59YsI5D9w3jKeSJb/eCagM2fDLL/diWTZZ20CPhvB5VTwutS6a4zJUzjyth852N6l0maMOC5IYH8bldlMulRgdGSHW2oqqqrS2uDj2iNaqdv0wwVAIq1pyuKe3d4Jh1zSNru5uNm7YQKVSIdbaiuGaO8uzjFceS9awSyktIcQKIYQhpSxv7/5sT6iaRntHBxvWr6dYLBKJRjFcriXv7woFdf7zvN045cQsz72Y4YhDWmhvdb+iCmoLhZRwzfUv1kux5vJTe5OFgFAo9Iq4SDRVEJwiIE0IQVvMxdBIqb5N1wSaKvD7Jr/qtRS6uUBRBFd9ZV/+3/dfJJEq87Y3dXDCce3z+k11bfIxsw1827rS3pb+bXknkqkyl3/7OR54OA6Ax6Pyw6sOYKfeubsNpkK5bDMwVJy0vX+wSDRiIDxeykUnM9fwhEB4cLudYMPxRJnHn07xkfet5Ge/2UCxZHPQ/mHefUovVmpkygndkWvuJO/PIwCPx8vw8DCqotASixEOGrz9hE6KRQtFMbGqRYsqlQrZzMTs4JpwUmtrK6OjznPd1dU1iemwLItEVQq5Vr3P6/Uu+XFnGUvYsFfxEvBANTq9nhMkpbx6+3XplYdlWYxXo251XSdZfcGWOhUPEAkZHHpglEMPnP1qbinBlpK/PjA6845sMSqq38fRz95RjyyuFX7Z1rny4ZDOF/5jdz578VNUTIkQ8PEPriIQ0PnEh3bm3Aser1PpB+8fJjpFMFUN01Hgr9spxHcu3w9pSwJ+bV71uEMBjX9/705c+d0X6tuOPLRl1pKlEyRvgaGhIbq6uzGMLROe0fFy3agDFAoW37vhJS4+f/WUE525IuDXOOn4jnpVPgBDF3S0uwn4VFLpUsN2DZ/fwOvR+PE1B3LXvSOkMhVOOrGLE45rByQuQyUU1Mmnpr6eqipEIhEGBwbYsH49QD2+otGVZANeoJQbRA34pixgJKUkn8/XP+fyeSdVb6t9ioUCnZ2d6IbB4MAAZqWyTMXvAFjqhn1d9Z8CCwq83bEhJZZt11+wkZERZDVXevkF27YQgM+jkck5Eelp02D1A3+iNWagNsQQ1Iy2lBLTrTOWtujs7qJQKDCeSNDXu2Kb+34VRbDX7kF++6NDGRou0hpzEfBreNwqO6/0cdP1h/DYk0m6Otzs1Oud4MveGjNR4PMJcmuEpikce0Qru60KcN+DY+y5e4C99gjO2k2jqiper5eBAcft4ff7J93fRGoi0aco0NbqYrFeGUURHHN4C4XCztz85wEiIYNPfnhnomED265QyCWJRKLY0iaVHCcS8SGEIBZ18e5Te2e+wKTrORN7Xdcpl8u4XK56dP50riRXy0T3kZSSSqVCPp+nq7sbyzQZGRkhGAxOouK7e3qq11bqbSEEyXSZ4ZESA0NF9tw9QCioL1d6W0JY0oZdSnnJ9u7DUoCqabS1tdWrizW2Z4O5iqe8miGlxLKs+v2rtZtBCMHHP7iKK77zPADnXf4yH/q3FZyxT+eUVLYQArfHUxef0XW9HlXcDLUyp1tLos4HLpdKq8vxpU7Ybii0tei89fgOyuMJzMQI+cTEY1/pSmJBv05wV509dp37nF0IgT8QIJt1Vqn+Ke7xqhU+vB6VfMGitcXgy5/bk+fXZbj2hnWcdHwnfT0eAv6FxXuEggbv/P+6eNMxbY7uQLUwjmVpdHd3o1UV3Pw+36JQ2GOjo1QqFadSXqFEfv1mVFWdkzxtjYrvW7HCuWeN7a3Q2OdaO5Wu8K3r13HnvU5sgaYJvvPV/dhnz9Ck45exfbCkDbsQ4o9MzltPAY8AP6imqb0qsbUBahSMmMugb1kWuVyOYqFASyw2ob0UjbttSxLJMoWSjctQCPi0uqb1YkBKSf/mzfgDAYLBIAP9/YQjEdwN9LkQClI6ObtawMcxr/ez714h1j6fYZeVPlpbXNP6p+d6X2t9CgSDeDwehoeGaG9vRw/4FiR/O0GXXFL/To2ypo1YrEpii12CNJkuUyzaqIrA63Vy803TZHhoCJ/P8ZcPDw3R3dODLRXcLue3iYR0fnj1gVz305d4x9u6uOb6F3nhJadft9w+xMXn78Ebj2qbVsN+NlBVpZ56tmXbtonUD4XDhCMRDMMgn9zMPVUp4rnK0041yagxHDOVY83kzLpRBzBNyTXXv8hVl+wzLQu0jFcOS9qw4/jYW4FfVz+fgaMTvxtOpPxZ26lf2xy2bbNp40bC4TBen4+B/v668tVc6HchBIauMz42RqlaVzwSbSGZqlAqlwn4tQWvWhYTueEEmf4Eti0pI1CCGpZLRQ8u3moy1trK8NAQqWQSwzAc4yBUXMEAQ4P9mGYFj9dLpKUVl0vDBQT8On3d3kW5/tYQQtDW3s7w0BDpVIpAMIjb40H1+zFaZl9Nbms0FZlZe/uczzUXoZLpaGE17KzOVVWdUAq1GcYTZS66Yg1PrkmhqoJ/O62Xd5/ag9+r0tLSgs/vx7YlbneOgeESP/rFRs48rZeVvV68Xo0VPV4u+sweWMkUF70nhKMWTfW6OYpjCbxtUUoli0LRwufVtrt40nTxDbrLYWK2VttrxMG3Xo/qdQNOoZlaymSziVU2V+GJZ1L8+FcbkBI+dc7OdHd4UBRBKKhPCowsFiezA4lUBcteVqtbKljqhv31UsqDGz7/UQjxTynlwUKIZ7Zbr14htMRaGRsdIZFI4PF4cLs9c/apK4qC4XLh9fnIZbNomoaNm9P//WHKFcl739nLe97RuySMeypdIT2U5JnDT5r0t8VaTdZoyJrAiKuqTlYoVshmc3UavFgskMuVsCyJz7vt703j79rsF36lRYpsW5JMVfB6BOVSHm91UpnLZvH6fPMSKink85imSTAYrLcDW/l2a6iYNrf8eQC/r1b1TbBufZaR0RKhVf6q8IrC6HiRP94+zq//sJlyRXLvg2P86OoD2X0XZxLh82qkB/KsPeKtk65xzHN3M6b5+OlNG3j62TSHHhjljFN6FhxDMB/UStUaLWG0SHBa4z0dVK+bh45/36Ttzd6hgaEin7/UGU5Pf3s3o+Nlrrl+HcWSxXtO6+Xow2N1FwNAJKzT2mIwOr4lhuHtJ3QQXAJjyDIcLHXD7hdC9EkpNwIIIfpwqrsBvKpT4PIFG9PasnKwbI1iycKvzY3Sq1HxtcG4kM9TyCW4+pK9Oe8LT/GL/97EyW/pmpVhX2yKdWuYpo1pbttZv5SSgf5+dMMgEAgwPjaGYRh4PD7MSgGXO4TPHyCTHqdcKuJxb/sBXkrJ8NAQwRoVPzyMx+OpG1Ko/o7ZLIbL5YiFVNuubZRXnM2ZPPxYnD/8aYBLL9iDZDxOJpvFMAwy6TRdhjGv6GgJxONx8oUCxUKBSKQ5I1EsWhxzeJST3xzjtrsDHLB3iK52nbGEPeFZVPMWb9zd5o0XdBFtDxAfzuDOj5F7OVUPlFNF8+fqgsue4dkXnJSwF1/O0T+Y54JP7IG/SX31ZljI+2FZFplMxhE4UlXS6TS+6uRpNvd4otb87CRta/jT3cOAE+V/9OExPvmFJ+pKd1d853liLS4Oe92WrJZo2OC6Kw/ghl+t5x3HBGhxO/LFlf4BatJMr3S8xjImYqkb9s8CfxNCrMNZyKwEzhVC+HBqs79q4XYJxkaGMVwehOKiVEhSLrkpGyqGrmLbEsuSM9KGNSq+JRbD7fahqAVMs8z6zVtSXTLZCp3t7hn7NB3FuhgvsdutUppBw3wx0NbWhm4YDpuh6+iGQTJtkS34WL8pz1Xf/yffvmxvxhMV9tpDMhsCfiGDuhCC7p6euqGsCYVsPaDnCwXGx8fxer3kcjlira3ouj5n/61oyglswcBQgS9duRaAi77+LF8+fzdSiUFKxeKChEp8Ph85r5d8Po9hGITC4aa0vtej0hIWxMeHeeOREaRdIJ1KsPNOfZQ3D00t3vP07VOuzJtVVbOlrBv1Gu57aJxPnWM1NexSSqRto6jqhPZC349sNksqmcTt8ZDLZtE1bdaTp0Z52rlWkFvZ5zzhq3cN8MjjCbYWzfvjHYMcsHeoXnhGCEFHm5vPfGxXzP5B7t19csnhxRoTljE/LGnDLqX8kxBiV7bUUn+uIWDumu3UrUXHVP7Ljf0FQqFWRsdtHn0yyVuOayOdBd2wyWYt/u8vQzy/LstJx3ewetfABKqsETUqXjcMTBMefSJLKlPhuzc4Up7BwPTVuV5J+LwaMrBtH0lFUXB7trg0au2AT/D02jLfuPZFSiWbz31lDddcuu+0gUS5nMnIeIn7Hhzj/9tf8ODe8wtIUxRlQv61YUy+pqqqtLW1sWnTJnK5HH6/v766a8Rs/Naq1zNjUN5f/ubk7qsKnHFyN8XClklLNpOZt1BJPp8nn8/jcrkolUp1/fGp+quqCm63G483SKEawh9r7aRSWTxWx7ZlXYO/hqBfb5oSJ6sqkNlcjmAwiG1Z9fZCoKoqnZ2dbNywgVw2SygcxjPDPW7mi5ezEapvwFGHxvj9/w4wnijTNcUEf2WfF22KBYTbpZJf1qpZkljShl0IcdpWm3YWQqSAp6SUI1Mds6PBsizy+TxerzNrrrX9Pp1v/2gdDz4Sd8orPp/huCNaCQZdfPpLT7KuKjl59/2jfOaju3DyWzpRGypkTZXW5nKpHHZwC7/6n020t7ro7vTwmY/usqiRrNOtXNVwYMY0vYVGKM8GE/zZ1bbLpXL4QVFu+sEhFIsWXo867X2RUvKvp5NccJnjmzxqZfei9K159TgfRU1gVcu05nK5SUp3lmWRSqUoFYu0d3SAx8XRz96BqqoohoGVLzj7FYuI6m/QjFHYZaVj5FtjLvbczU86OUS0pQ2v18VAf/+0QiVNte/9PiwpiUQiBEMh8vk8ZmV6XX1dVxBsCdYSwsIwXJSa7D/XuUaxaPPed/bxk5s2VM8Pn/rILvV8+lS6QqVio6iCSEhHSkm5UiERj1MulSgWi2iatmDDblkW6VSq/s5mMxmCwen97NNJEc8F0YjBNZfty+h4iaBfY/+9Qjz+jKOS093p5pQTu1AVMWWMxzKWJpa0YccpAHM48BccKv5Y4FFgpRDiK1LKn2/Hvi0KbMtidGQEn9+PEIJsJkNPTw/RsM5Zp68gmXbqbx96YJRDDoiSSJXrRr2GX/5+E8e8vrW+8rZtm0KhgGVZ+Hw+isVivR30q3zkrJ34t1N68HgVdE1ZVInX6ejIeKWIz+vFO8VKs4bZFP3YVqjlgM8GiVSF7//s5UXvw3T3r+DWiMVi+Px+RkdHKZXLaLpeH/gVRcHn85FKJtm4YQO2bdPe0YHb46G4cYB7Vs+eMn3dvmH23TPIk2vSXPT157jyS3shbYmu6/StWAEwZ4MDoDUwCrXJbLNnoaZ8Vijk6epyxH7GRkfr158KzfrUyFLU1PeKJZv+lEDX4buX70cqU2G3VX5CAUdPfmikyMVXruWZ59L0dnn48n+uZpedfHg8HsKRCMlEwqGlOzsXJZ0tn88TbWlFN9wk4yOUSiXsdBYrk5u071QTsppg1XzeoWjYqAcMXnbhniRSFUzTJhwyqFQk+UKZXCZFKBxCVVXK5fKSTJddhoOlbtg1YLWUchhACNEO3AgcCtwH7PCGXdU0Ojo7GRocBKC9vR1N11EUhV1X+fnqhXtimpJgwEk7qVWDaoShK9XCEVv85tK2wbYp+osM5zKEQmGkV5LL5cik03R2dZHJZBjLZOicQid6sWGaJoV8mUgkMu1Mv9EoNK5ezUy23p7Ob12p2KSzJiDx+3Rc28pnLyXlytwoz4WitbUVASiqWm8jBMViESklHo+n7moo5PNouo7b7Z7XyioSNvjqF/YikzWd1MOyJFId+BcSrDeX3O5JYj+GQaC6ip0r7HKZhAaBQACvz8/g4AC6P8g/Honz899t5tSTOjn3A6vwuJ0hMZWukB2K84Uzg1hWAEUI1NQohQ1J9KCPTDZdT9lLJpOEwwvzJ2eyFoa7hd/fNsgtfx7iuiv3I5mBaCk3K7+9aZrYto2u6yghP1rAi94w6ZsOW7NEBtAOCL+Xq37Wz18eGOWH39wPl15moL+f9vZ2MtksAf+2n2wvY35Y6oa9t2bUqxipbosLIeZWG3OJQkrH2NaQy+Vwezz1z1tHq8f0Ijdd2ku5vMWohEMGMpudUnTkqLW3Y7gMDHcAyxJ4vV6SiQQbN2xASklrW9uU/bIsSSpdQShbBCsWupr2+XzTDja2LSdQ8XMNRkpnKvz5L8P85NcbsGzJe97Ryykndm2TanKhoMF3LlhJbtzRCY+Ftv2rNJVRrJXcTCWTtHd0UCwWKeTzhEIh0uk0IyMjtDX5jWdCJGTMKFYyV8w1yHCuzI7qcTd1A/h1hbGxMZR4HMPlwu12s3FzkU+dszPHH91WN+oAlmXT5rW4f/Xk1Mtjn78LTXcm5MVikWQiAeHwgt6PsXiZ93/y0frnM855hD12DXDNeTP/dpZlkUwkyGQytLe3E4/HkVLS3dMzK8Pe7D07cs1d/PmvzvD76S89za+/fzDDQxvrbr7BwUHavAGOWnv7JLfMK8GwLaM5lrphv0cI8b/A76qf31Hd5gOS269biwczkcKVyuFVnQHUyhQo5gfQg4EpBzqZz/PEwSdO2t48ElZQLpfJZrIEgn68bhWvz0cmnUZRFLxe76TBM52p8Ne/jXLTzZtxuRTOff8q9l4dxLuAEppCCLLZbD2Nq/GayXSFNc+l+cv9oxy4X5jDXxclEjYmRefOhA2b8nz7R+vqn3/4i/XsvktgQqrOYkFVBT5R5pFqBPbBt17fkG7Ugaim1PIXoAAAIABJREFUJW7rAU5VVcLhMKVikXQq5ajoud14PB78gQCmaS6pegKLlVkxn3KummWRiMdxuVzVwigaF3xyN1y6RFEnshpej0pFTM3INNLvjr6EU6NcnUWfbNuu56sLIertijn5WqXS7GRiVVUlEo1SLpcZGhqq67ov1AduVmvzqqrgxst3wx4aICZV7KFxApqKR6pIaVMJ+/FHo8s+9yWEpW7YPw6cBhxZ/fwI0C6lzAHHTXWAEKIXh653SibB9VLKbwkhosBvgJ2A9cC7pJQJ4Yx63wJOAvLA+6WUj1XPdTbwxeqpL5NSLnqKnZXNc//qEyZtXzxBFgWXJ4Rtm2iaIJPNkkmnCYVCZLNZBgcGJlHxTz+b5hvXbqm69dkvP8UvrzuYvu75Py6qqtISCU8qN1sqWfzu1s387DcbAfjzX4d5/SFRvvSZ1ZhTDHbT4d4HJ1dhu+u+EQ45ILJNgvIax7HGdKPjXrgb7049i369qWDbNqVqEJeqaSQTCcLV3HDDMBxqdgcccMcTJXJ5C5eh4PVoBOaYU741LMtiaHAQIQStbW0MDgwghCDa0kL/wDABv59oS0v9XrndGpYyTWZB9X3Z+t6OJ8oMDhdwu1RaopMZj5qiZDQaxeVyMTg4SHtHB92dHrra3QwMb1HJfu87+1CU5sSkZUmS6TKViiQa3qLkJ6Wsr6oXMqkzdAVFcQy7Uixw3xQxGkc/ewepQg6vz4drBygl/VrBkjbsUkophHgJOAw4HXgZ+P0Mh5nAZ6WUjwkhAsCjQog7gfcDd0sprxBCXABcAHweOBHYtfrvUOA64NDqROBi4CCcCcKjQohbpZSJSVdcwhgdL/HUuKC700MgiLNCb2/H6/USDIUolSbGFxdLFv9759CEbVLCA/8Yp++0mTO6p6Mj3X4/Yiu1tGzO5Dc3T4zi/fvDcbI5E+8cB6V9Voe46eb+Cdv23yv0ikTaLxbmSudKKSkUCgSDQaItLSTicXK5HEY1T792r7dVUGKxZJHJmpimxO1S6n74hWBopMh5Fz7O0EgJIeDdp/Rw1ul9TVM6Z4tAMIinGnPQ3tHBQH8/Q4ODuNxuIlOsOOdqE5OpMgKby7/1PCv7PJx/7q4k02XCwS33RBGClpYWxqplmH1+Py6XC6+qcu2V+3PLnwfZsCnP29/Sye6r/DA+3OxyvLwxx/lffoqPvX8n9t9Tw7Ztenp7GR8bY2R4eFoqfkIdgSYFZBRF8I2L9+FbP3xxUqW8GlRVpTUaqV/HtqxJ7/gyXnksScMuhNgNOLP6bwxnpS2klFOu0hshpRwEBqvtjBBiLdANnIwTVQ+OuM09OIb9ZOBG6VRZeUgIERZCdFb3vVNKGa/26U7gLWzRrd8hoKkKa17I8fpDWusDo6qqKIqCoij1dg26JljZ5+W+ByeeZ0Xv7HTS50yRCsHV5++EXylVr6+g6wr+3BhiGrWwqbDvXiGOPryF+x4cB+CQA8IccWjLnM6xvdHs/pXHkxPSmGwbyhWbjGXg7wgRCGooilJfrW/tXpkPdT0TcnmTu+8f4Vs/XEepZLPbzn6u+OLetMVcMx/cBPmCyQ9ufJmhEed5kBJ+/YfNvO1NnQsy7Kqq4qtWWKvEk1TSWaKWAFQomJQ2DU7w81uWhWXNnjGqmBYCk1xmjKsv2QuwyKSGibV2TIorUKUkJlWE143ZoFkQi7r4wLtXYJoSoxr0WS5PPSHD6+VLF69hLF7mquvW8Z2v7UM07CNfhLb2dkc0Z5Z6/s0KyAgBhxwQ4buX748Rbz7BoCElL1+t616TbV7G9sGSNOzAs8D9wNuklC8CCCE+PdeTCCF2Ag4A/oFD4Q9W/zSEQ9WDY/Q3NRy2ubqt2faprnMOcA5AX1/fXLu5KFC9Ho5aexfJtJOmYugKoZCO6vfx6XNCEyqkTVWKsX4eVeHUk7q4674R+gcdWvCAfUKsnkdpzdnA79PoDNo8vN9ktbA3bLi/XnENQCgqAjFplWlZluNnDBlc/Nk9SKZNpASPWyEUXBriOwtFM9/06gdu4+Szn+N97+rjfe/qW1BNbMeYWRMC87auUtaITNbkG997oR4LYVmSdeuzOBkJ2rQV8JqhVLInpXMCDAwXZj25bIba9zAzOe7Z7fhJf290f6mqihEKcOzzd9dX7lI6xm4qlsM0JRXT2bGQG0ZKiW64yRUsvM2K8Tx3J4lCDpfLhacqlKQoAsMQ1etJRNCJbdkao+MlNm52dAnyBYvzLnySYEDn21/dz2EI5lIBcoIc7cT4ECEE0bBBPtncSGczGYrFIv5AgEw6TUtLC1pVNW8Z2wdL1bCfBrwb+KsQ4s/ATTSvjTElhBB+HNr+U1LKdOPssUrxL5p8lZTyeuB6gIMOOmibip03o1RtTeMT39rIwFCBQtHG71NZ0ePliovaicyx7Gks6uK6rx/AeKKMrjsvtqIIsjkTv29xHxmXoeBp0j+7VCLrNSjk8wgh6OzqxOWauBIwTZNEPE4k6gTIpVNxWqLReRUomSu2Z8791vjNLZs57a1dCzLslUSKcjKNoqiA46dVVa1pZb2BoWLdqB+0X5j3nt7H93/2Mhs35zny0BbO++DOk8qZznTP/H6NY18f46UNW4y7pgl23sk3ZZ+L1QCzhXzvZnDFIrhis6uu53FrDAwV8HuD5DIOY+QPRCmXnWyPqaAoCp3tXVOubuOJMrffM8yzL2R4yxva2XP3IKEGxkLXBLvv4ue5Fx0moFC08XrlvEocLzQ+pK29nf7Nm8lU9e0DweCyr307Y0kadinlzcDN1ej3k4FPAW1CiOuAP0gppxVDFkLoOEb9l1LK/6luHhZCdEopB6tUe025rh/obTi8p7qtny3UfW37PQv6YlNgurSdqRSktIB/yhdveLTAV/5zdyoVyUVXPssV/7WaiikxTXteOubRiEE0YpDPm6zbkOMnv96Args+d+6u+Lw6Ho86Y/nO2aLZKWoCJe0dHaRSKYaHBunt65swCNq2TS6Xo1wu1yOOpyssspjYFvT29oQ9x0DO7k43qgKWDe9/9wouvOwZMjkTgDvuGUFVBJ/+6C4TVu4z3TNdUzj1rV0k0xVu/+swsaiL88/dtW7UttRmh2TG5Oe/dRTjzj5jBd2dnm1i4GcDKSXdHTqDA6MYhhspLdLJYTq7ukmPN6f03dXqgo1IJMucf8lTPL/OeWfvvn+UT354Z047qQtNc16WcMjg0s/vyUVXrOG5dVl6uz1c+vk9Cc+Q2jnfd3Y6NcF8tUqfqqrk83kqlcoyFb+dsSQNew3V6PdfAb8SQkRwAug+DzQ17NUo9x8Da6WUVzf86VbgbOCK6v+3NGw/TwhxE07wXKpq/G8Hvla9LsCbgQsX7ctVMZ0s5FT03dHP3kVe806SO42EdEbLcVQdrv/GfiQTI/jcOgG/B3Nwairw2OfvZrhocO/fx+jq9LD/3qFJ5SoHR0qc+/nH0XWFb122N7aVQ4gglkW9dvi2Wh0LIejq6kbTNFwuF7Y1OchH13XaOzoYHBgAoKe3F01/7ZWPPOPknkVnU2ZC0K9z2YV7cdX3X6BSkXWjXsPfHh7nI2evnDMlHwkZnPuBVZz9rj6EIurPZCJZ5pJvruX5l7Jc/l9788kvPE7NDX7v38f4xbUH09u9MLp+vhBC1KVl/cEQAsikUyiKYDrp9qmMXzZn1o16Db/8/SbeeGQrLdEt8QtdHR6uumQfKqZEVcWMpWZrmgeeBp2M2aLZOGVZFvHhYaLRKMFQiOGhIYqFwjIVv52xpA17I6rR6HXKexocAZwFPCWEeLy67Qs4Bv23QogPARuAd1X/9iecVLcXcdLdPlC9XlwIcSnwz+p+X6kF0m1PjI6XuOLap/nqF/aitWXLSy4UQSTSwvDwIKMjm1FUlVi4DV1Tm+pqW5bkhZcy/PhX69lz9yB+r2CXVcEJA8Qtfx5ASmiPuejucJNODlEuFeo1y2s56fOdnVuWhd1k5JNSkk6liFZ9dkwxgbAsi/GxMRRFQQJjo6O0tbdvs8lGsWiRylRYtz5Hd6eHSEhfcLT21piqKFAjDr71elSvU6zDCGv88aqV6JqCks2Aa+LgG0+UKZUtdE0hGNDrQVlTQc5ROMDjcfT1f3z1gVRMiaIwwYit6PGia/N7LtwudcLq27Yld903wiNPJHnjUa389YFRGmPbLBtuuX2Q8z6487yutxjQNI1wJFI3aLW22zW3FfJUWRyGrkwZpj/bOg9SSkqlEiPDw4TCYVwug6PW3j7pPZmrG0lVVdra26v9VurtZaO+fbHDGPbZQkr5N5r74yctW6vR8B9vcq4bgBsWr3eLgzXPZ/jhz1/m0x/dte6f1jUVgURTVSq2jaaq6Lo6oTDM1lAU2GNnwbVf38/JgzXz6JozuNcMSm+nh39/zwp+ctNGRuMV2lraSYw7MYj+YIxyRcHlmnnwrlXFEtVI/HK5gmnB3/8Z58g9/Ry19vZqn9SqeIdD83kiwWkHidqkoLunByklI8PDzFnZZpawbclTa9Oc/+Un60blrNN7ec87evH7Fse4W5ZFOp3G7/ejKEq93UiFStOale77wFCB8y95io2bC3g9Kl/41O4cdmC0qR92PpMzTVNoibrI5U0+/oGd+d5P1mHbEApqfP683RYteLFi2vzraacwSbFk4/NM/g4z0dD1Pm/D2Iip1AH1kJ+j1t5Ftspo+Hwamjo5CLQGn0/j0AMi/ONfWzJrzzlrp1l/v6kghMDtdhNtaSE+7sQA9PT1zlp2djrMRSZ4Ga8MXnWG/bWCp55NUyhYdcNuVYvJ2LZNa1sb42NjjI+NEWttnfY8xUKGoLdCIVdG1XQUxakgls1m8QcCvP3EdtKpDAcfsC8tYZ1c1hH8E0JQLmbQNBe2rc2YK27bNiPV/rXEYoyMjOB2uwkGdF4YFbSGDQqFArqm0NU9B+36TI6oJaj0O+k4UQTl/mHsWdRBnyuSqQrf+N7zE1aKv/z9Jk49qRv/1LFd80I2myWdSuF2u8nlnKhpdyRY/z6zqd6Vzla48rvPT4icvuQba/ntjw6dV4DVTPB5Nd725g6OO7KVfMEk4NMWtWqgy1A57ogY9z04xsOPxTn7jD7+eMcg8aQj4BIN65xwXPsMZ3HwSsdGuGMR3LEIRsmqZmtMf//DQZ0vfmYPnn42zfMvZTn6sBid7e4FF2uSUpJvkK/O53IEgtNPnJexY2LZsO+geN2+YbzeiSlsLbEYAtB0HaNUwczkKW0abCpAYUvw+cPkssmqClc7liWpmCbj4+OUSiUqpkmlXGbXlT1UKja5TAlfoA0hFAq5UVTFxrLsaiR1c6iqSnt7O/1VURBN0ylVfCRTWXo7NQp5R2Qlk8kwNjpKrLV12qpfTsS2ipmZXZGMxYAExhIThTpq+eSLBVVV6erqYsP69eRyOSLR6LwKuVTKkrUvZCZuMyWZrDnBhdOIBdcC8Gr4vBow/zz26XDw/lHefUoP//OnAa77yUt894r9efaFDELAgfuEJ0XgLzXMJbAvEjY46rAYRx0Wm7A9lS7z0oY8jz6Z4OD9o+zU651VLYQaFV8ul+np7aVUKjE+NkYgMPc01vkE4y7jlcWyYV+imEC9Sie/N5WpkKroHHxAhA+cudOEgUIIgV4NGhNCYGXz3LObY/Ca6ZgrHjdkMnjQQErswUE0VQGPm3ZhYGUKuAFV1TEHhpFuL9FYF9+89gVGx8t8/aK9GB0rEwrNPGBJKev/qlvQdYUn1qTZf69uvH4dn99PIBicVt+8RumPj48Ta23dVqz7lPC6VU44ro0/3r5Fma+n04N3EVfAtYIe4FRxS6dSdVp+LnC5FPbfO8QDD8cnbAsGmr/ySz3KPxzS+ff37sSZpzlZIUG/Tt92CpbbHsgVTG783aa6UuNPb9rI+07v46x39c3IAgghcLlc9Up5qqrirbbnisXS+1/GtsOyYV+i2HqQNSo2dqaC34ZL9plahauZMZwqT9W2bQob+qdMbzp27R1T+nCPff5unh0SbB4sUqlI/vFYgkMOnF2BlRoVr+s6rW1tDA0OopDhmMNjXP2Dl3nTMa0cfpAf9yz0zSVQLBYZHBggNAd1sIXC41E556yVxKIu7ntwjF1X+vjwWSsXfaVYqKb4uata4pVKZZJC4Ezw+zTO/9huZLJreHJNmtYWg4s+s8eCNde3N7YOqnstIZ+3+O8/TpRMvunmTZz61q4ZDTss+8JfS9ix3/LXEHRdIRZdPIpTmYeesxBw0P4Rrlq5D7Z0fIGz1WFXVZX2jg7AiR7u6OyiVLZ56NFNnPTGDvbbK1SlcacP4qoxE7HWVidQji0DVGO0uDStui96MSnCSMjgfe/q47STHDEYzxRBXAuBqqp0dnVVVciUCe0aZkuZt8ZcXP5fe1Mu2ygqhIPGgv20iwnTNJFSomkalmXV28v5z00gJ4vdWNYrSFktY4fBsmFfxiRMl/ZkWdasgqJyeZNy2SYY0OqR+Y2pNYahYxjwHx/eZc59MysVxsbGHNdDQ1161evmoePfN+mY4164m6LhI1+wKJVsAn5tQatsXZtfsZPZ+iZnWlnNhTLfFrXoFwO2bZNMJMhms3R0djI+NoZt23T39NQrk6mqOqE9V4P/avMFu90Kxx/Vyp33bali+JY3tONd5MnlMnZ8LBv21xhsW1Kp2Oh6c1p3OkGN8fFxotNIttq2ZGC4yLU3rKN/qMgJx7Zz0vHtixohbUtwGS40VxjdU6jqySswhYCN0ye49icv1avWdbW7+e4V+9EWcy9an2aDZd/kFtQK1hRLJQb6+50a4t1OKYZcLkd8fJyu7m4ymQyZdJq+FSvmbNjnc79rpU9VVZ3QXgoI+HU+ec4uvG7/CA8/luDwg6Mc/rponelaxjJqWH4iXqVopGtNS5JIlrEsycujkI0nOHDfucuumqZFIZ9HTiPZmkiW+ej5/yKZdtKQrv3pS5TLFu85vQ9dW7j8rBCCZ57N4nJ7+Px//osvf24PujtaOe/CJ/nmx6ZO7bNsOaEU7cBwkZ/etJH/+PDOuF7F/tpmK9/pUChY5ApOvrXfp83Jn21ZVt1t0NieFg3skMT5fX1eL9lMhs2bnBpMNRfOtoZlWYyNjmJZFh0dHYwMD9frty8V4x4JGbztTZ2ccGz7tJPzbYmlVCNhGVNj2bC/SlGja5OpMp+75Ol66tN3L1xJh5KksjmP5nZx7FpHndeSMJZwjLHt9rD6gduIRgwMXUFK6QzUXhcdLZF69P1UGB4r1Y16DbfdPczb39JJNLIlRmC+K6Nc3uRXf+jnoUedaO/PXvw0p5zYyTe/vA+t5pYI8EZ/uyptbrzIWQ2mTYPzLn+ZlzbkKJbsWRn2HZHStW2bcrlMPp8nFApRqVTq7Wb3OZku8/PfbeIPt/WjKIL3vrOXU9/aPaH4SDNYlkU8Hsfv82G4XPW2q0mqXo2KNy2L7u5uxsbGGB4aorunB4TAMAyKRae64GKIqMwGiqIQiUYZ6O9n/fr1jqRxd/e0k5OFPhvzmgzBdjPqsPSzJ5axbNhf9bBseG7dlnzmoFZmzesnl0g9+tm7OPfqIbI5x8juvUeQK764F4ZPYWhwEBMJpQLaqElHR0dTKn6qqOvWFmOCAp5lWRRH49i5/CTD3mxArA+gEs5/R4D8SY7edc1QH31YjPbQlsG/mb999QO3AfDGo1tnra2+o1LopmmSTCQolUoUCwW83ulTw554OlVPpQLJj365gQP2ibDfXqFZX3NwcBCXy0WpVMLva67aU6PiQ+EwmqbR3tFRj+3I5XKk02lira1kMxkG+vvnRcXPFUII5xnUdcqlEpquzxjMt5BnwzJNBgcHiba0YBgGQ4ODtMRiuFyu5epoy1gQlg37qxy6Jthvz1BdjrMZVFXwi2sP5tkXMoSCOj2dHsIhg0rFWX139zi5w8NDQ9MG1wUDOie+oZ3/+4ujBOdyKXzqnF0mBHEJIaBQ5L49ZpZFrWG6euQH7x9m1QofmiUmyK5OBUUIzjq9lzcd3b6kIsQXG4qi4PV6CQQCZDIZVFWlta2tvjKEiWwJCO75+9ik8/z9n+NNDfvWq1Uf4JIqQtEoBV1NV+s1NE4OG9s+rxe9qwuXy4XP66VcqUx1+KKjRsVXymVaYjES8TijIyPbjooXApfbzdDgYD04UNO0ZaO+jAVj2bAvASRTZXJ5Z4D1elUiixhoFgzo/Nen9+CiK9aw9oUM6jTpabGoiyMPnZhSp2kanV2OxKuUst5uRkF6An7O+9Aqzjytl9HxEqtW+AgHJz5m80m1m67PF5/fVw3OM2aUXY21GHzg3d3TFkPZVnglfZM1Kj6bzaLrOpVKhWQiQTAUolQqMTY2Rnd3N8VCgfF4nJ6eHg4/OMqd945MOM+B+zRfdTabbB397B2kCya+aaj46aBqGu5aFLyibGnPEXO93zUqPhxx3E0ejwcp5TYztKqqEo1GyaTTWJZFS0vLkvHlL2PHxrJh385IJMtc/I01PPaks6Lee48gX/uvvWYswTgXdLS5+cbFe1OpSDzpkSn3UQyjaf33mrGsUZUwPQUZ2ilMKGiwasXUVKxlWViLJCyjaQJvw0RopnrTiiK2i1GHV943aZomXp+PWCxGoVAgl8vVFchURWHTxo1IKYlEHZGhQ/aPcPThjh67EHDS8R3svsvcJx2qqhJcoHh+oyGfj1EvlSxMjx/fLO53TelQVVVkOoeVzdHI9xTYNvEUpmkyODCAqmm4DIPx8XEMl2uZil/GgrFs2LczHn0yWTfqAE8/m+b+h8Y4+S1dszp+tsE3tXSzfHbqQdLKF2ZVMWwx4PRx8Wlwy7LI5/Mz+pJfC6hR8R6Px5EPbWjbto3f7yced4INA4EAqqoSDqlc8Ind+I8P74wQ4PVo867xHolEZh0ItjUWEpBmWTaDwyV+ctN6UmmTM07uZo9dAwT8UwcA1oonKYpCrLWVcio9JxfRQiCEcGSUAwEURSGVSi1T8ctYFCwb9u2Mtc+nJ3zeb68QnW1u4okSoaA+bdlVy7JIJpO43W7cbne97fF4mg4OzehJOV3y+gyYq+LbYlLxjbBtm7HRUbw+H36Pi6PW3j5J2GQ+tPeOmt7T+Aw01ncvFArE43GCoRCFQoH+zZvp6e11VtqBxakvPxtKuZkBl7bNPbu/adL22RjXeLLCBz/1KPmCs+Z+6NE4V39lHw45YGrpY0VRiEajDAwMsGH9emJyblT4Qp4NVVUnZClMl7GwjGXMBcuGfTvjDUe18ZtbHP3n09/ezV67BfneT16iULQ445Qe3nR024wD7fDQUD0S2T1Dzm8zOriZT7oZRd84EZhO8a3xWqWyTSZboVCwaPF65zQgzmYAVVWVjo4OBgcHyQGt7e3EMwKvWcBlFlAUgZnJ1o2JFvCjhQOI6kTDtqx6uxGvpvQeRVFwuVzEWlvx+XyEw2Hy+fx26Uszd04tBXM+eOLpZN2o13DTHzaz527BKdkHIUQ9+r1Sqcx5wrnQZ2M2+u1LWTRnGUsTr0rDLoS4AXgbMCKl3Lu6LQr8BtgJWA+8S0qZEM6b/C3gJCAPvF9K+Vj1mLOBL1ZPe5mU8meL3de+bg8XfGI3brp5M8cd0crHL3i8rtnx/77/Im0xF0cdGpvyWFVViUQi5LJZSqUSPr9/2tX6fNCMop/r4Fsu2zzyeIKLr1xDseRIzV59yb7svot/VoPpbAZQKSW5hnrT6XSW8YRBJZ9i7REnTdr/uBfuJq+Cx+NB13XSmQwejwfDMF7VeuWapk2oGDef6nGwNJmMYEBHVUVdQ11VBaGgjqY1cUFZFiPDw9XgtRhyLPFKdndGWJbF8PAwuq7T0tLiTOLdbsLh8LJxX0ZTvCoNO/BT4LvAjQ3bLgDullJeIYS4oPr588CJwK7Vf4cC1wGHVicCFwMH4YhiPSqEuFVKuahvfsCvc+Ib2zn68Bh/umtoUhnS2+4c4uD9IrinqN5kmiaJRBLTNHG73eSyWbxeHz6fd5v76RSvm9UP/AmQ6KGpH6PG1b5tS7pEmev/s7Oee/7lb6zl2q/vPyvd9sYa7I3tRti2TSaToaOzE8uCsdEh+roC5Dc0N9KFfJ5EIoHX4yGXy9HW1vaKCaJsT0xF088VS5HJ2H2XAP/7i8O44VcbeOypFN/+2r5Ypt1UQa9GxQtFwZYKppKecr/tBSEEkXCYwcFBspkMQghira3LfvhlTItXpWGXUt4nhNhpq80nA8dW2z8D7sEx7CcDN0onOfshIURYCNFZ3fdOKWUcQAhxJ/AW4NeL3V9VVQgGFFb2TY4kXrXCh65PbWQqFUm5IvH6WsgWVDxunWLRRtUsvJ65vfhz9b3n00XOvmwzUlJXddsazVb7NZGYzYMFLHvm6lRSSkzTJJVKEYlEsG273t6ayqwJmTzyRII9d+vhBzeu59TXNb8X7R0dbNy4kVwuRzAYxOvzLQ+aOxgaffU6zoT3Q8e7+cipLYzEB2lta0NKOeVkTQiB4XLV2wW/j8OevIN80cJlKHg9Goqy/VgIRVEwXC40TatP4OdTEGcZry28Kg17E7RLKQer7SGgvdruBjY17Le5uq3Z9kkQQpwDnAPQ19c37w7utrOfg/cP88/HkwD0dHo47a1dkwLobNtGCMFYvEK+YPDEM2m+e8NL/NenduOFl0Y487RevJ65XXuuvndNFdx642F8/2cvo00T4Dcd9t0ziDELacyapG0mnaZSLlMulx2DvpVmfaNB7uv2cdbHH2V0vMypr5t64gGQTqWwLQtN08hkswSCwVc9Fb/UoXo9U04yVb+vXpu+kbVp5qs/au3tKC51Rgam8W+etih6NIxesPB6VLRFqG+wENSoeNu2iUSjJOJxksnkMhW/jGnxWjLsdUgppRBi0QoZSymvB64HOOigg+Z93kjY4OLzV5POmJQrNtGwQTRiTIoetm1n9dHq95LSBMccHuWOe0eS5vVpAAARQ0lEQVS59Orn2X0XP+995/wnF7OFpimMp4f5wLu7CGBy1No7UNWJgWfTRdofsE+YL35691mVFVUUBcMwiLa0MD7mqKPVoribIRI2+MbF+3D9z1+edvJQKBRobWvD6/UyMjxMpVx+TVDxSwHNWCLFZeDuapuwTUpJsVikf+NG2tvbqVQqxONx+lasmPYawWBwzgyMpjkM2lJAjYpXNQ1N03C7XKjLKXHLmAGvJcM+LITolFIOVqn2mlJLP9DbsF9PdVs/W6j72vZ7tnUnwyFjUonTZiuSN2y4D0++gBAKX/tQlEIhRCRi4DbzwOII3DQbfFW/D7ddIZsZpagoqIZKZ1fnBGnQZqv9tpiLr164YtZpVbUVezKRqFOS42NjtMRiTY27y1DYZaWfi89fjZJNT/oOtg14vbRGQwjh0Pht7Q6J81oaNLdngZu5+OhFtTBMKBRieNiRK57J1yyEYHRsDN0wcLvdO+RkTVEUXNW+i6oEba29jGU0w2vJsN8KnA1cUf3/lobt5wkhbsIJnktVjf/twNeEEDW+983Aha9wn6eFlS9w/+oTJm1fTDGN6QbfqGmSzWSwbZuWlpZpB9nGXHdh22jjw+THZ2dAaoZd0zQ6OjuplMuMj4/Pqv8+rwbeKODkMVcqNi9vzHHVdS8yPFrkhDe0c+YpPYRD6janNmulU2uDcq29mBOJuRrqHa3AjdIYUzHDfVNVlWg4tMMzMIsR6LiM1xZelYZdCPFrnNV2TAixGSe6/Qrgt0KIDwEbgHdVd/8TTqrbizjpbh8AkFLGhRCXAv+s7veVWiDdqxVTGZ1mME2Tgf5+dF1HNwxGR0fRDQOXy1U/rnG1L01r3sp2NSq+o7PTCRxyuertuSKVqXDu5x+nWHLcBL/87024dIWz3rU49eKng2ma9G/eTEdnJ1LKeplSw1gYu9JozBdyn5cypJSUy2US8TgtsRhmpcLw8PA2oeKXsYwdHa9Kwy6lPLPJnyYtTarR8B9vcp4bgBv+//buPTiu+jrg+Pfs3Zd2pd2VLMmxZDs2lKGABz9wE5ommQxJmgRooS0ttKRJExImk5KmaTMp6R+0TB+ZTpjQtHlMmDxI0k5KAE8hkCYllBkydHjYoRjMY8wAsb2Sbcl6P1d79/SPe3e9lq2HpV3v1d3zmfH43qtd7e+nn7Rn7+9xfjUsWk0JtbsLcV2XQqFAIpGovInG4/EFg6eI0NrWRiaTQUQYjccrW1yWc2/H1+WIZL116rOH+8/4fZar+s25ODy24u7jQ0emK0G97JHHj3PtlT01zc9/Jo7j0NraSn9fHwBtmUxNegmq77ov/9n3lni0p+AnC0rUJmV/3ZW74nt7e4nF46hqZf39YuvpLaibZhTKwG7OjqoyMz3NsWPHWNfZydTUFDPT04veDTmOQy6Xq7xxlo9LpRL5fJ50KkU2l6Mvnyeby9VoxN+z3O7j6g1hysed604vyaaelmXNzl8tESGVTjM+Pg5AKpVqSBfxyGiBex44wo/++yhf+8zimQqDxHGcM2ZqC+J6emMayQL7GlCP/O7VRIRkSwu59vbKrPPejRuXvNtZaOyvq6uLo/39jI2NEY/HaW1tpTBy+h12Pbmuy/DQEDl/M5LycS4b43ev6mHPw95dcy4T41M3nb/izU7ORrFY5NjRo7S2tYHfFb9x06ZVd8Wfza+B6yo/eewY37/XW8lZrNEue8aY4LDAvgYsdEdSODFS05SeszMzJ793oUA0Gl12V7HrukQiESKRSGWykqo2bE24qjI1NcX09DSO4zA7O0tbJkNbOs7HPriFG67dyPhkkc6OOLlMfbvgyxzHobu7mxZ/97lUKrXqrvjJqSLjE3PLfvz4RJFHHx+onI8V41z0xMPksnGSiZMfzoK+wY0xZmEW2NewWnVBlrviZ2Zm6N24kempKQYHBpacmFTmui5DQ0OkUm0kkzH6+/qIxWJkslkGBwaIJxK0tKXPaV7xaDTKhp4eDh86xNzcHOvXr698yMi0xsgssI1nPTmOQ7r1ZG786uOVmpp2mZ45uemJOzVTGWdP9r4JiXofHMo/52QywnlvTvHSQW844JYvvA7Ad758GRdsCV8wL3/gFJFTjo0JMwvsAVPy+1XL49Xl43oqd8Vv2rwZx3G8TUL8PaKXw3WV2ZlZJicmyGSzdHZ2EovHvdnssVhl9yzWtS/9zRYwVywxMjrHgZfH2NG9dPex67oMDg56a34jEYaGhkgkk6ess2+E6qBSiwAjwLgbr6TpnfCvdnXGiWXbTvvgl0w4fPSPtrBv/whHj88CcPV730R357nptTiXXNdl6MQJbzvUaLRyHLPMgibkLLAHyOzgMLMjo373rOC6RRzHIZZpJb6KoLgcy9k+ciGv/XKKTT3rOXb0ECPDw7R3dPHMc8PsurSd1nRtEoPk+6f5+F/8gumZEl/5/Fa2P/1f5LJxqj97VN/9l/PL9/T24jgO/f39uK4bujzb6VSUJw+6fP/efOXa9df0ctONG4i3nPnPe31Xkm/csYvxiTmScYdUyqnJHuxBNFcsku/rIx6LUSgUaMtkllzKGQSu61ZyHFQfG7McovO3EzOrsnv3bt27d++Knjv1xpEFZ3untmxcbdHqZnRslvGxIeYK3nh2qVSiLbueeDxGWw26vCenivz9nS/z8ydPTUrzjTt2csmFmQWfV86pP78bdi28sZ+N0bE53jg8ydPPDnPZpe2ctyVVt3kD5WRB84NOUPOWl0ol3njdG27oWLeObDYb+LYv9zSkW1tJJBKV42QyGergLiL7VHV3o8sRBnbHblatJekwMVYi1dpFqeRQKg6TiEMqVZs3+2JRGRo+fYLYyOjik8aql7rNzc0Ri0aRSIRCoUAsGsVpcLd8rWQzMbZfkmP7JfVf8lUqlThy+DDZXI50Ok1fPk9nVxepVP23Cj5brusyODCAiBCNRhnxt+ddC13xEolwtL+feDxOoVDwVlIYs0zB+ks0a1Is5tDVvZ79L05y9z2HyHV0EXFiNXujz7RFue63ek65lk45XHj+8iZ7qSr9fX0MDA4yOTFBXz7P9PQ01lu1Mus6OxkeGuLI4cPE/TzsQQvqZarKhp4eenp7SSaTlFQD3+6O49DR0YHjOJXhg0QiEdifsQmecNyymIbysoJFueId3bzzbV0k4rXtlhUR3rqrg9s/dxF7Hu6js8Nbsta+zExxkUiEnp4e8vk8U5OTZLJZWhqUHGati0QiJPz9y4HKpiRB5DgOXd3dlWGD6uMgc12XEydO4LouyWSS8bEx0ul0oD9AmWCxwG5qxnEi1GuoNdMW493v6ObXdrQTi0ZoaVn+C5Un0pUV5+Yg4HdtQVUqlejL50m2tJBOpzkxOEgikQhkVzysblJoIzmOw4aeHuLxOCMjI4H98GSCyQJ7gCyW89p4VjJ7W1U5fvw4uVyOVDpNf18f09PTNVlH3oy6/ZwA5WRE5WNTG+V0zeXehepjY5bDAnuAWM7r+ohEImzavLny5lg+tqB+9hzHoaWlpfKzqz42tbNWexpMMFhgN6FXnhVd1ugkNWtdrZPsGGNqy/p2jDHGmBCxwG6MMcaEiAX2JYjI+0XkFRF5VURubXR5jDHGmMVYYF+EiDjAV4EPABcDfygiFze2VMYYY8zCLLAv7i3Aq6r6mqoWgP8ArmlwmYwxxpgFWWBfXC9wuOr8iH/NGGOMCSRb91MDInIzcLN/OiEir5zF0zuBwdqXKtCasc7QnPVuxjpDc9Z7tXV+c60K0uwssC8uD2yqOt/oXzuFqt4F3LWSFxCRvc22VWEz1hmas97NWGdozno3Y52DyrriF/cMcIGIbBWROHAD8GCDy2SMMcYsyO7YF6GqRRG5Bfgp4ADfVtUDDS6WMcYYsyAL7EtQ1R8DP67jS6yoC3+Na8Y6Q3PWuxnrDM1Z72ascyCJ2vaVxhhjTGjYGLsxxhgTIhbYjTHGmBCxwN4gzZKDXkQ2ichjIvKiiBwQkU/71ztE5BEROej/397ostaaiDgi8qyIPOSfbxWRp/w2v8dfaREqIpITkftE5GUReUlEfj3sbS0in/F/t18QkR+ISDKMbS0i3xaR4yLyQtW1M7ateP7Fr/9+EdnVuJI3HwvsDdBkOeiLwF+q6sXA5cCf+nW9FXhUVS8AHvXPw+bTwEtV5/8E3KmqvwIMAzc1pFT19WXgJ6r6q8B2vPqHtq1FpBf4M2C3qm7DWz1zA+Fs67uB98+7tlDbfgC4wP93M/D1c1RGgwX2RmmaHPSq2q+qv/CPx/He6Hvx6vtd/2HfBa5tTAnrQ0Q2AlcB3/TPBbgCuM9/SBjrnAXeCXwLQFULqjpCyNsab3VRi4hEgRTQTwjbWlUfB4bmXV6oba8BvqeeJ4GciGw4NyU1Ftgboylz0IvIFmAn8BSwXlX7/S8dBdY3qFj18s/A54CSf74OGFHVon8exjbfCgwA3/GHIL4pImlC3NaqmgfuAA7hBfRRYB/hb+uyhdq2Kd/jgsICuzknRKQVuB/4c1Udq/6aemsuQ7PuUkSuBo6r6r5Gl+UciwK7gK+r6k5gknnd7iFs63a8u9OtQA+Q5vTu6qYQtrZdyyywN8ayctCHhYjE8IL6v6vqHv/ysXLXnP//8UaVrw5+A/htEXkDb5jlCryx55zfXQvhbPMjwBFVfco/vw8v0Ie5rd8DvK6qA6o6B+zBa/+wt3XZQm3bVO9xQWOBvTGaJge9P7b8LeAlVf1S1ZceBD7sH38YeOBcl61eVPXzqrpRVbfgte3/qOqNwGPAdf7DQlVnAFU9ChwWkQv9S+8GXiTEbY3XBX+5iKT83/VynUPd1lUWatsHgQ/5s+MvB0aruuxNnVnmuQYRkSvxxmHLOej/ocFFqgsReTvwc+B5To43/zXeOPsPgc3AL4E/UNX5E3PWPBF5F/BZVb1aRM7Du4PvAJ4FPqiqs40sX62JyA68CYNx4DXgI3g3EKFtaxG5HbgebwXIs8DH8MaTQ9XWIvID4F1427MeA/4G+E/O0Lb+h5yv4A1LTAEfUdW9jSh3M7LAbowxxoSIdcUbY4wxIWKB3RhjjAkRC+zGGGNMiFhgN8YYY0LEArsxxhgTIhbYjQkYf4e0T/rHPSJy31LPWcVr7fCXXhpjQsICuzHBkwM+CaCqfap63RKPX40dgAV2Y0LE1rEbEzAiUt7t7xXgIHCRqm4TkT/B2z0rjbcd5h14iWD+GJgFrvSTg5yPty1wF15ykI+r6ssi8vt4SUVcvM1K3gO8CrTgpfv8AvAQ8K/ANiAG/K2qPuC/9u8AWbzkK/+mqrfX+UdhjFmB6NIPMcacY7cC21R1h78j3kNVX9uGt0NeEi8o/5Wq7hSRO4EP4WUzvAv4hKoeFJG3Al/Dy1d/G/A+Vc2LSE5VCyJyG95e4rcAiMg/4qXA/aiI5ICnReRn/mu/xX/9KeAZEXnYsokZEzwW2I1ZWx7z97UfF5FR4Ef+9eeBS/1d9N4G3Otl9QQg4f//BHC3iPwQb7OSM/lNvA1sPuufJ/HShQI8oqonAERkD/B2wAK7MQFjgd2YtaU633ip6ryE9/ccwdsLfMf8J6rqJ/w7+KuAfSJy2Rm+vwC/p6qvnHLRe978cTsbxzMmgGzynDHBMw60reSJ/l73r/vj6fi7a233j89X1adU9TZgAG9bzfmv9VPgU/4mHojIzqqvvVdEOkSkBW+s/4mVlNEYU18W2I0JGL+7+wkReQH44gq+xY3ATSLyHHAAbyIewBdF5Hn/+/4v8Bze9qIXi8j/icj1wN/hTZrbLyIH/POyp4H7gf3A/Ta+bkww2ax4Y8yS/FnxlUl2xpjgsjt2Y4wxJkTsjt0YY4wJEbtjN8YYY0LEArsxxhgTIhbYjTHGmBCxwG6MMcaEiAV2Y4wxJkT+H9q1HKKDEoqUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot of agent activity per timestep\n", + "param_plot(median_df,'timestep', 'AggregatedAgentSpend',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEWCAYAAAAJory2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vbdvZXWBhd1mqSBGkKIJdEFFjN7Zo7MYakxjz2RKjxhIxmihRE4MahehnjS1+icGgqFEIEcQGIihll7Jsr3f37r33/f6Ys8vdfmHL3TK/57nPPWfOOTPvOWfOvDPvvDMjqorFYrFYLJbWccVaAIvFYrFYejpWWVosFovF0g5WWVosFovF0g5WWVosFovF0g5WWVosFovF0g5WWVosFovF0g4dVpYicreIFIrITmf/dBHJFZFKEZnecRH3Wq5uk0NERomIioinK9PpCYjI90VkSazlsFj6OyJysYj8u4NxHCEi6ztLplbSSBCRv4lImYi81JVpdSXtKksR2Swifkfp1P8ecY6NAH4G7Keqmc4lDwDXqmqyqn6yt4I5ymfs3l7fnhxO/FXO/WwTkd+JiLsD6bWJiJwnIh876e0QkX+IyOFdlV4U8jwtIgERqXB+X4jIvSKS2tZ1qvqsqh67l2neISJ1TfLSjXt3B72biOdfKSLFIvK2iEyItVzt0RkFdAtx+kTktyKS5zyPzSLyUGem0RMRka9E5NIWwn8iIh93hwyq+oGqjo9Ie7OIHBPt9WK4QUQ2OHpiq1OOxEWcdiYwFBikqmc5eUhF5MEmcZ3qhD/d0fvqCqJtWZ7sKJ3637VO+AigSFV3RZw7EviyU6XcO6KRY6qqJgNHAecAzTJuZyAi1wMPAb/GZJoRwB+AU1s5v7taqL9R1RQgA7gEOBj4UESSulCuF5rkpd+0kI6ISH/oIviNk/9ygF3A03saQW+zZrQi7y3ADGAmkALMBlZ3o1ixYhFwYQvhFzjHegO/B67A3EcK8B1gLvBixDkjga9VNRgR9g1wdpP8cBHwddeK2wFUtc0fsBk4poXwYwA/EAYqgeecfwWqgG+c87KBvwIFwCbgxxFxuIGfYx5cBbAKGA68HxFPJXBOC+m7gFuBLZiCZjGQCsS1JEcL1yswNmL/ReDRiP1U4ElgB7ANuBtwR8j9AFAIfAv80InP00I6qY48Z7XxjO8AXgaeAcqBHzj38RCw3fk9BMQ55w8G3gRKgWLgA8DlHLvJkbcCWA/MbSXNp4G7m4SlOPd7rbN/MfAh8CBQ5DyDi4F/N3mOP3aeQyFwf70srdznM60cWwbc46TnB8Z25B3QJN82TRtTMfjIeYafArObyHKXI0sFsAQYHHH88Ihrc51nchCQXy+fc953gU+jef7AiUClsz0TWO7EvwN4BPA1eeY/BDYAm5ywBY4s5Zjv6Igm9/4SJn9VAJ8D4zBKapdz3bHt5X1gIlADhDB5utQ5P855F1udZ/AYkOAcmw3kYfLlTuAvLTyLN4HrWnlOlwB/i9jfALwUsZ8LTHO2JwBvY76J9cDZEedFI+PPMflpM/D9Nr7XbOANJ52NwOVNnvWLmPKoAlNhn9FKPDlAEBgZEbYfEMDJb629i4jvM/JbPBT4L1Dm/B8acWwg8BSmLCkBXou8d2f7L5jy3O+83xuB/wN+1ETuz4DTgX2dvDCzyfHhQC1wNPAr537qnDgvq5cbeAs4MUK+nZjy4+mIuE5xnmEp5rucGHFsM/A/jjxlwAtAfMTxk4A1zrUfAVOc8BuAvzaR+ffAgtbeuaruvbJs+qCbfMhjnW0X5sO9DfABYzAF23ERQn8OjAcEmIppqjeKp5W0L8Vk1DFAMvAKER9iFNdHyjnByYw/jTj+KvAnIAkYAqwErnSOXQV85WSKgcC7tK4sj8d8EM2ONfnA6oDTnGeWANwJrHDSznBe9l3O+fdiPnav8zvCeX7jMYVHtnPeKGCfVtJ8mibK0glfjGn9gcnUQeBHgMeR62KaK8t3necwAlMz/EEb99mWstwKTHLS8nbkHdCGsgSGYZT/Cc7znufsZ0TI8g1GoSQ4+/OdYyMxheC5joyD2F1YrwW+0yQP/ay954/Jv/8LfODsH4hR5h7nHa4jQpk49/m2c9/1Bf75jiweTNfITpyCw7n3GuA45/hiTMX1F849XI6jdKPI+43evxP2IEZ5DMRUuP4G3BtRRgSB+zAKK6GFZ3Gr8+6vAfYHJOLYGExh58IoqS3sLtzHYAp+lyNrLka5eoDpGMW33x7I+DtHxqMwFe3xrby79zGWoXhgGqYhcHSTZ30CpoJxL7CijW//beDWiP17cRTZnrwL575KMK1SDyZ/lrC7PP0/jDJJd975US2V4TT/bs4G/hOxPxXzrfgw3+CWVu7rvYjneweNK6oXY5Tleewua65x7vNuHGWJ+f6qMN+nF6O8N+JUHB1ZVzr5YiDmO7nKOTYdUxGc5byHi5zz44AsJ94051yPc+6Brb0n1eiVZSUmw9b/Lm/pQUd8yPVKaBawtcnxW4CnnO31wKmtpNueslsKXBOxPx6jcDxRXq+YWniVs/0cu1tuQzE1o4SI888F3nW236l/Kc7+sbSuLL8P7GznGd8BvN8k7BvghIj944DNzvadwOtN7w/TGtuFafV720nzaVpWlvOBtyMyddP3dzHNleXxEfvXAEvbuM9Ak7xUr9iXAXdGnNuhd0DbyvImmrRwgH8CF0XIcmuTe3orIv++2sr93QQ862wPBKqBrDaef43zDHZiCvLWKjbXRabp3OfR7bzfEkw3Q/29vx1x7GTMN13fQklx4kyL4rk3ff+C+Yb2iQg7hN0t3tnOO49vQ1Y3pqX8oZP29vp34RzPBQ4AvgcsxBSQEzCK8Q3nnHNwKhsR1/0JuD1KGYNAUsTxF4FftiDrcExrKiUi7F52F/B3AP+KOLYf4G/j3s8H1jvbLkyl4fQov4GGd4FRkiubxL3cOScL02JMbyH92bStLOOdvLSvs/8A8Adn+1ZaqQgAzwOPN/32IuXGVETzMa3nFcBhNFaWvwRejLjOhWldz46Q9fyI478BHnO2/4jTuIg4vp7dlYR/sFuPnQSsbet7UlWi7e84TVX/FeW5kYwEskWkNCLMjTEbgsl43+xFvLC7llnPFkwNYSjmgUbDAU76Z2GURBImc47E1GR2iEj9uS7MR1ufdm5EPJFyNKUIGCwiHm1ss29KbpP9lu4v29m+H5MBlzjyLVTV+aq6UUSuc45NEpF/Ater6vY20m3KMIx5qTW52pM9Us6WeFFVz48ins58B00ZCZwlIidHhHkxrdN6dkZsV2Naf9B2nn0GWOf0+Z6NKbx3tCHHA6p6a9NAERmHaeXMABIx+XpVk9Nym1zzPxgTVzZG8Q3AmOvryY/Y9gOFqhqK2Adzj9m0/dybkuHIuCrifMF85/UUqGpNK9fjyPEo8KiIJGCsRn8WkZWqug7TSpmNqQy+h6lgHIVReO850YwEZjUpazwY02I0MpaoalXEfmv5OBsoVtWKJufOiNhvmnfi2/j+XwH+ICIHOzImYlqB9fcU7btoWl7UyzUMk2eLVbWkhevaRFVrROQF4HwR+RVGWZ/pHC7EKOKWyMJYL9qK2y8i/4dRuoNU9UMR+U7EKY3uSVXDIpLr3FM9TZ91/TsbCVwkIj+KOO6LOL4IuBp4HFNh+UtbskLXj7PMxdTe0iJ+Kap6QsTxffYy7u2YB1LPCEztML/l01tGDS9iamG3RchVi+k3qJd7gKpOco7vwGTAyLRbY7kT12ntidJkv6X72+7IXKGqP1PVMRib/vUiMtc59r+qerhzrWLMX1EhIsmYVukHEcFN5WqJps9iT5RzJJFpdfQdVGEKnnoyI7ZzMS3LyHyZpKrzo5Cx1Tyrqtsw7/u7mJp+ux9gK/wRY2LeV1UHYPrSpMk5Dc9KRI7AmKjOxrQe0jB9OE2viYb2nnvT/FCIUbaTIs5PVeO41EzW9lBVv6o+imnN7OcE1yvLI5zt9zDK8ih2K8tc4L0m7zRZVa+OUsb0Jo5treXj7cBAEUlpcm60FfSm91uN8Ve4EJNnnlfVQMQ9tfUumso1sklYvVy5jsxp0YjUQtgijIVsLlCtqsud8HeA4SIyM/JkERmO6UZYGkV6izHdBs+0cKzRPYmpMQwnumedC9zTJD8kqupzzvHXgCkiMhnTsny2vQi7WlmuBCpE5CZnrI1bRCaLyEHO8SeAu0RkX8cDcoqIDHKO5WP6JFrjOeCnIjLaKeR/jbF/t9V6a4v5wOUikum0BpYAvxWRASLiEpF9ROQo59wXgR+LSI6IpAM3txapqpZhlPCjInKaiCSKiFdEviMizTxBm9zfrSKSISKDnTieARCRk0RkrJN5yjBmobCIjBeRox237Rp2O2C1iYjEiciBmAxUgnEE2BNuEJF05yP5CaZvpEN0wjtYA3zPedYz2F0bBvMcTxaR45w8GS8is0UkJwrRngWOEZGzRcQjIoNEZFrE8cUYxbU/ptWwN6RguggqxQwnuTqK84OYvjOPiNyGaVnuMVE893wgR0R8zvlhTO38QREZAiAiw0TkuGjTFJHrnOef4DzTi5x7qh/y9R4wB2OOzMNU5o7H9NHWn/MmME5ELnDeuVdEDhKRiXsg46/EDGM5AlOANhsTqKq5GP+Be518MwXTom+psI+WRRgz8hlEeMFG8S4i+btz/+c5z/AcTGXjTSeef2BasOnOszmyFVmalbuOcgwDvyWiAqiqX2N8J54VkYOdb2kSxqHzX1FaI9/D9Ek+3MKxF4ETRWSuiHgxSrUW8/zb43HgKhGZ5eiWJBE5sb6S41g6Xsb4CqxU1a3tRRitsvybNB4b92o0FznmlZMwneCbMDW8JzA2ajCmphcxGaIc4/WV4By7A1gkIqUicnYL0f8Z8+Led+KuwTii7BWq+rkT1w1O0IWYZvtajAJ5md0mh8cxfVyfYlzc2ywUVfW3wPUYc0MBptZzLUY5tcbdwMcYT6/PnXTudo7tC/wL0++0HNOH8C6m83o+5jnvxDgE3NJGGjeKSAXGVLwYY+o7tIk5Khped65dgzEhPbmH17dGR97BLzEtwBKMR97/1h9wCrxTMS22+vdxA1F8D85HdQLmwy3G3PPUiFNexdSGX3VaDXvD/2CcHyow99le5eOfGM/CrzFmqxqiM5+3RlvP/R2Md+JOESl0wm7COF6sEJFyTN4cT/RUYwrinZi8+0PgDFX9FhoK5Uoci4eqlmMcBT+sNyU7ZtFjMf2a25246p2KopFxp3Ov2zEVoqtU9atW5D0X43i1HfO+b9/Lbqp63sdUevNU9b9NjrX1LhpQ1SJMWfszzPd8I3CSqta/owswPh1fYfwarmtFlnsxlfRSMab9ehZjKoBNKwXXYsr0ZzDv6C1Mn/8Zbd7xbrlVVZeqanELx9ZjTKQPY/LFyZhhjIGm57Zw7ccYx7VHMM9tI6avNJJFzj1FZQES1agtJBZLM0REMebCjTGWYxSm0uTtgHWhs2T5BuOx2JEC1NJNiMhsjANKNJaFfomIXAhc4XTx9AnETKrzFZDpVMDapD8M/LZYug0ROQPT7/NOrGWxWDoDEUnEeIQvjLUsnYWYSU+ux/QRt6sogai9YS0WSzuIyDJMP9EFTj+ZxdKrcfp1X8GYrf+3ndN7BWIcufIxXRbHR32dNcNaLBaLxdI21gxrsVgsFks79DozrJixQk8AkzF9Q5diZmZ4AeOhthkzJ2SbA3AHDx6so0aN6kpRLRaLpc+xatWqQlXNiLUc3U2vM8OKyCLMzChPOGO9EjFDAIpVdb6I3IwZmH1TW/HMmDFDP/64W1bBsVgslj6DiKxS1Rntn9m36FVmWDFrLR6JM45PVQOqWooZM1c/mHcR7c+WY7FYLBZL1PQqZQmMxgwif0pEPhGRJxzPpqG6ew7OnZj5YZshIleIWYD544KCgm4S2WKxWCy9nd6mLD2Yyc//qKrTMfN/NprmTI1duUXbsqouVNUZqjojI6PfmdwtFovFspf0NgefPMyUUP9x9l/GKMt8EclS1R0ikoWZzsli6TXU1dWRl5dHTU2ri3NYLN1KfHw8OTk5eL3eWIvSI+hVylJVd4pIroiMd+YNnIuZM3EtZnHP+c7/6zEU02LZY/Ly8khJSWHUqFGI7M1iIRZL56GqFBUVkZeXx+jRo2MtTo+gVylLhx9hZrn3YSZTvgRjTn5RRC7DzMrQ0sTrll5MoKiUYEVls3BPSjK+QdGsPNSzqampsYrS0mMQEQYNGoT17dhNr1OWqrqGxgut1jO3u2WxdB/Bikre3bf5K56zYWmfUJaAVZSWHoXNj43pbQ4+FovFYrF0O1ZZWiwWANxuN9OmTWPy5MmcfPLJlJaW7tH1d9xxBw888ECLxxYvXszkyZPZf//9mT59eqvndTajRo1i//33Z//992e//fbj1ltvbdOJ6tBDD92j+GfPns348eOZNm0a06ZN4+WXX+6oyJYeilWWFosFgISEBNasWcMXX3zBwIEDefTRRzsl3n/84x889NBDLFmyhM8//5wVK1aQmpra7LxgsGuWIX333Xf5/PPPWblyJd9++y1XXnllq2l/9NFHexz/s88+y5o1a1izZg1nnnlmo2OqSjhsF6DpC1hlabFYmnHIIYewbdu2hv3777+fgw46iClTpnD77bc3hN9zzz2MGzeOww8/nPXr17cY17333ssDDzxAdnY2AHFxcVx++eWAaZldd911zJgxgwULFrB582aOPvpopkyZwty5c9m6dSsAL730EpMnT2bq1KkceeSRAHz55ZfMnDmTadOmMWXKFDZs2NDmPSUnJ/PYY4/x2muvUVxczLJlyzjiiCM45ZRT2G+//RrOAVi2bBlHHnkkJ554IuPHj+eqq66KWult3ryZ8ePHc+GFFzJ58mRyc3NZsmQJhxxyCAcccABnnXUWlZXGWe2tt95iwoQJHHDAAfz4xz/mpJNOApq30idPnszmzZsBeOaZZxru+8orryQUCjXI/otf/IKpU6dy8MEHk5+fD0B+fj6nn346U6dOZerUqXz00UfcdtttPPTQQw3x/+IXv2DBggVR3V+/RVX75e/AAw9US++htrBEqzblNvvVFpbEWrROYe3atbEWQZOSklRVNRgM6plnnqn/+Mc/VFX1n//8p15++eUaDoc1FArpiSeeqO+9955+/PHHOnnyZK2qqtKysjLdZ5999P77728Wb3p6upaWlraY5lFHHaVXX311w/5JJ52kTz/9tKqqPvnkk3rqqaeqqurkyZM1Ly9PVVVLSsw7v/baa/WZZ55RVdXa2lqtrq5uFv/IkSO1oKCgUdjUqVN1xYoV+u6772piYqJ+++23zZ7Bu+++q3FxcfrNN99oMBjUY445Rl966aUW5R83bpxOnTpVp06dqoWFhbpp0yYVEV2+fLmqqhYUFOgRRxyhlZWVqqo6f/58/dWvfqV+v19zcnL066+/1nA4rGeddZaeeOKJqqp6++23N3qWkyZN0k2bNunatWv1pJNO0kAgoKqqV199tS5atEhVzWQsb7zxhqqq3nDDDXrXXXepqurZZ5+tDz74oKqad1taWqqbNm3S6dOnq6pqKBTSMWPGaGFhYbP7aylfAh9rDyjDu/vX67xhLf0T36C0PuP12lPx+/1MmzaNbdu2MXHiRObNmwfAkiVLWLJkCdOnTwegsrKSDRs2UFFRwemnn05iYiIAp5xyyl6le8455zRsL1++nFdeeQWACy64gBtvvBGAww47jIsvvpizzz6b7373u4Bp/d5zzz3k5eXx3e9+l3333Teq9Ex5b5g5c2ar4whnzpzJmDFjADj33HP597//3czMCsYMO2PGbgf9iooKRo4cycEHHwzAihUrWLt2LYcddhgAgUCAQw45hK+++orRo0c3yH3++eezcOHCNmVfunQpq1at4qCDDgLMOxsyZAgAPp+voWV64IEH8vbbbwPwzjvvsHjxYsD0S6emppKamsqgQYP45JNPyM/PZ/r06QwaNKjNtPs71gxrsViA3X2WW7ZsQVUb+ixVlVtuuaWhX27jxo1cdtllUcc7adIkVq1a1erxpKSkduN47LHHuPvuu8nNzeXAAw+kqKiI8847jzfeeIOEhAROOOEE3nnnnXbjqaioYPPmzYwbN67dtJsOndiToRSR8aoq8+bNa3h+a9eu5cknn2zzeo/H08jsW++UpKpcdNFFDXGtX7+eO+64AwCv19sgo9vtbrcP+Ac/+AFPP/00Tz31FJdeemnU99ZfscrSYrE0IjExkd///vf89re/JRgMctxxx/HnP/+5oZ9t27Zt7Nq1iyOPPJLXXnsNv99PRUUFf/vb31qM75ZbbuGGG25g586dgGlZPfHEEy2ee+ihh/L8888DpsV2xBFHAPDNN98wa9Ys7rzzTjIyMsjNzeXbb79lzJgx/PjHP+bUU0/ls88+a/O+KisrueaaazjttNNIT09v9zmsXLmSTZs2EQ6HeeGFFzj88MPbvaYlDj74YD788EM2btwIQFVVFV9//TUTJkxg8+bNfPPNNwA899xzDdeMGjWK1atXA7B69Wo2bdoEwNy5c3n55ZfZtcvM6FlcXMyWLVvaTH/u3Ln88Y9/BCAUClFWVgbA6aefzltvvcV///tfjjvuuL26t/6ENcNaLJZmTJ8+nSlTpvDcc89xwQUXsG7dOg455BDAOJI888wzHHDAAZxzzjlMnTqVIUOGNJgGm3LCCSeQn5/PMcccg6oiIq22ZB5++GEuueQS7r//fjIyMnjqqacAuOGGG9iwYQOqyty5c5k6dSr33Xcff/nLX/B6vWRmZvLzn/+8xTjnzJmDqvFKPf300/nlL38Z1TM46KCDuPbaa9m4cSNz5szh9NNPj+q6pmRkZPD0009z7rnnUltbC8Ddd9/NuHHjWLhwISeeeCKJiYkcccQRVFRUAHDGGWewePFiJk2axKxZsxpawvvttx933303xx57LOFwGK/Xy6OPPsrIkSNbTX/BggVcccUVPPnkk7jdbv74xz9yyCGH4PP5mDNnDmlpabjd7r26t/5Er1v8ubOwiz9behLr1q1j4sSJsRbD4rBs2TIeeOAB3nzzzT6bZjgc5oADDuCll15qtb+3pXxpF3+2WCwWS79g7dq1jB07lrlz50btGNXfsS1Li6UHYFuWlp6IbVnuxrYsLRaLxWJpB6ssLRaLxWJpB6ssLRaLxWJpB6ssLRaLxWJpB6ssLRYLYGaJmTlzJlOnTmXSpEkNE6Zv2rSJWbNmMXbsWM455xwCgUCMJbVYuh+rLC0WC2BWA3nnnXf49NNPWbNmDW+99RYrVqzgpptu4qc//SkbN24kPT293anaLJa+iFWWFksvZMmyfM64dAVHnPIeZ1y6giXL8jscp4g0LFFVV1dHXV0dIsI777zTMIH4RRddxGuvvdbhtCyW3oZVlhZLL2PJsnzue+Rr8gtqUYX8glrue+TrTlGYoVCIadOmMWTIEObNm8c+++xDWloaHo+ZGTMnJ6fROpcWS3/BKkuLpZfxp8WbqK1tvBBxbW2YPy3e1OG43W43a9asIS8vj5UrV/LVV191OE6LpS9glaXF0svYVVi7R+F7Q1paGnPmzGH58uWUlpY2LPeUl5fHsGHDOi0di6W3YJWlxdLLGDI4bo/Co6WgoICSkhJUFb/fz9tvv82ECROYM2cOL7/8MgCLFi3i1FNP7VA6FktvxCpLi6WXceWFo4mLa/zpxsW5uPLC0R2Kd/u2bcyZM4epU6dy0EEHcfTRR3PiiSdy33338bvf/Y6xY8dSVFS0Rws/Wyx9BbuepaXXUFsborI6BChpA7y43f2zrnfs7KGA6bvcVVjLkMFxXHnh6IbwvWXK1KmsXLmS+sUVBOMhO2bMGFauXNlRsS2WXo1VlpZeQWl5gGdfzuXVv28nMcHNDy/dh8NmDiQ5yRtr0WLCsbOHdlg5NkVE8Hg81DmTDnh8vk6N32LpzfTKqrmIbBaRz0VkjYh87IQNFJG3RWSD858eazktnYOq8uHKYp57NY+a2jDFpXXc9buvKCy2M8l0JhoOU1dXByKIy0VdXR39dQk/i6UpvVJZOsxR1WkR66rdDCxV1X2Bpc6+pQ9QXRPinQ92NQv/eE1pDKTpw4jgcrnw+Xx4vV5cLhciEmupLJYeQW9Wlk05FVjkbC8CTouhLJZOJN7nYtL4Ac3Cx+2THANp+i71ZlgRabRtsVh6r7JUYImIrBKRK5ywoaq6w9neCXRuh44lZrjdLk77TjYT9k1pCDvxmKGMGJYYQ6n6JpHK0SpKi2U3vdXB53BV3SYiQ4C3RaTRNCOqqiLSrLPFUaxXAIwYMaJ7JLV0CgPTfdx/22T8NSHcbiExwU1Kcv907rFYLN1Pr2xZquo2538X8CowE8gXkSwA579ZJ5eqLlTVGao6IyMjoztFtnQC6Wk+sjMTGJoRbxVlF1FaWsqZZ57JhAkTmDhxIsuXL6e4uJh58+ax7777Mm/ePEpKSmItpsXS7fQ6ZSkiSSKSUr8NHAt8AbwBXOScdhHwemwktFh6Lz/5yU84/vjj+eqrr/j000+ZOHEi8+fPZ+7cuWzYsIG5c+cyf/78WItpsXQ7vU5ZYvoi/y0inwIrgf9T1beA+cA8EdkAHOPsWyx9DlVlx/bt7Ni+nXA43LDd0WEeZWVlvP/++w0z9Ph8PtLS0nj99de56CJTD7VLdFn6K72uz1JVvwWmthBeBMztfokslu5l544d1NTUALB1y5YGJblzxw6ysrP3Ot5NmzaRkZHBJZdcwqeffsqBBx7IggULyM/PJysrC4DMzEzy8zu+FJjF0tvojS1Li8WCaWGGw+FOmzggGAyyevVqrr76aj755BOSkpKamVzrh5VYLP0Nqywtll7G0MzMZgpLRBiamdmheHNycsjJyWHWrFkAnHnmmaxevZqhQ4eyY4cZlbVjxw6GDBnSoXQslt6IVZYWSy8jf+fOZq1JVSV/584OxZuZmcnw4cNZv349AEuXLmW//fbjlFNOYdEiM9+HXaLL0l/pdX2WFovFUG8S7cz5Wx9++GG+//3vEwgEGDNmDE899RThcJizzz5jtd3PAAAgAElEQVSbJ598kpEjR/Liiy92WnoWS2/BKkuLpZeRmZXFTscsOjQzs6FFmek44XSEadOm8fHHHzcLX7p0aYfjtlh6M1ZZWiy9DBFp5PXaEQ9Yi8USHbbP0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxWCyWdrDK0mKxNLBgwQImT57MpEmTeOihhwDsEl0WC1ZZWiwWhy+++ILHH3+clStX8umnn/Lmm2+yceNGu0SXxYIdZ2mx9DreGngAoYqqZuHulCSOL1691/GuW7eOWbNmkZiYCMBRRx3FK6+8wuuvv86yZcsAs0TX7Nmzue+++/Y6HYulN2JblhZLL6MlRdlWeLRMnjyZDz74gKKiIqqrq/n73/9Obm6uXaLLYsG2LC0Wi8PEiRO56aabOPbYY0lKSmLatGm43e5G59gluiz9FduytFgsDVx22WWsWrWK999/n/T0dMaNG2eX6LJYsMrSYrFEsGvXLgC2bt3KK6+8wnnnnWeX6LJYsGZYi8USwRlnnEFRURFer5dHH32UtLQ0br75ZrtEl6XfY5WlxdLLcKckteoN21E++OCDZmGDBg2yS3RZ+j1WWVosvYyODA+xWCx7h+2ztFgsFoulHayytFh6CKoaaxEslgZsfmyMVZYWSw8gPj6eoqIiW0BZegSqSlFREfHx8bEWpcdg+ywtlh5ATk4OeXl5FBQUxFoUiwUwFbicnJxYi9FjiJmyFBG3qoZilb7F0pPwer2MHj061mJYLJZWiKUZdoOI3C8i+8VQBovFYrFY2iWWynIq8DXwhIisEJErRGRANBeKiFtEPhGRN5390SLyHxHZKCIviIivKwW3WCwWS/8iZspSVStU9XFVPRS4Cbgd2CEii0RkbDuX/wRYF7F/H/Cgqo4FSoDLukRoi8VisfRLYqYsndbhKSLyKvAQ8FtgDPA34O9tXJcDnAg84ewLcDTwsnPKIuC0LhTdYrFYLP2MWHrDbgDeBe5X1Y8iwl8WkSPbuO4h4EYgxdkfBJSqatDZzwOGtXShiFwBXAEwYsSIDohusVgslv5ELPssp6jqZU0UJQCq+uOWLhCRk4BdqrpqbxJU1YWqOkNVZ2RkZOxNFBaLxWLph8RSWWaLyFIR+QJARKaIyK3tXHMYcIqIbAaex5hfFwBpIlLfSs4BtnWRzBaLxWLph8RSWT4O3ALUAajqZ8D32rpAVW9R1RxVHeWc+46qfh9jzj3TOe0i4PWuEtpisVgs/Y9YKstEVV3ZJCzY4pntcxNwvYhsxPRhPtkhySwWi8ViiSCWDj6FIrIPoAAiciawI9qLVXUZsMzZ/haY2fkiWiwWi8USW2X5Q2AhMEFEtgGbgPNjKI/FYrFYLC0SM2XptAaPEZEkwKWqFbGSxWKxWCyWtojlROpxwBnAKMBj5hYAVb0zVjJZLBaLxdISsTTDvg6UAauA2hjKYbFYLBZLm8RSWeao6vExTN9isVgslqiI5dCRj0Rk/ximb7FYLBZLVMSyZXk4cLGIbMKYYQVQVZ0SQ5ksFovFYmlGLJXld2KYtsVisVgsURPL9Sy3AGnAyc4vzQmzWCwWi6VHEcv1LH8CPAsMcX7PiMiPYiWPxWKxWCytEUsz7GXALFWtAhCR+4DlwMMxlMlisVgslmbE0htWgFDEfsgJs1gsFoulRxHLluVTwH9E5FVn/zTsaiEWi8Vi6YHEcm7Y34nIMswQEoBLVPWTWMljsVgsFktrdLuyFJGBEbubnV/DMVUt7m6ZLBaLxWJpi1i0LAuBPHYv9BzZT6nAmG6XyGKxWCyWNoiFsvw9MAf4EHgO+LeqagzksPRBwuEwLper2bbFYrF0hG4vSVT1OmAa8BJwAfCJiPxGREZ3tyyWvkUoFKKyspJQMNho22KxWDpKTBx8nJbkuyLyCfA94C5gA/B4LOSx9A1UleKiIiorKvD5fJSXl+PNzibe7aZ+vVSLxWLZG2Lh4JMEnAqcA2QArwAHqurW7pbF0rdwu91kDxtGXm4uNTU1DM7IIC4uzipKi8XSYWLRstyFaUU+7/wrMENEZgCo6isxkMnSBwiHw1SUlzfsV1ZUkJSYCLbf0mKxdJBYKMsXnf/xzi8SxbQ0LZY9RlWpqKhgaGYmXq+X7du2Eairs2ZYi8XSYWKhLNeo6gIROUxVP4xB+pY+itvtZsTIkQCISKNti8Vi6QixsE9d4vzbCdMtnYqI4HK5cLlcjbYtFoulo8SiZblORDYA2SLyWUS4YBxlp8RAJovFYrFYWqXblaWqnisimcA/gVO6O32LxbL3BIpKCVZUNgv3pCTjG5QWA4kslu4hVuMsd4rILGCsE7RRVWuiuVZE4oH3gTiM/C+r6u3OpAbPA4OAVcAFqhrofOktlv5LsKKSd/ed2yx8zoalVlla+jTd3qEjIh4R+Q2QCywCFgO5ziw+3iiiqAWOVtWpmJmAjheRg4H7gAdVdSxQgllc2mKxWCyWDhML74f7gYHAGFU9UFUPAPYB0oAH2rtYDfV2IK/zU+Bo4GUnfBFmfUxLHyccVgqLanntH9t5+c08dhXWEgqFYy2WxWLpY8TCDHsSMC5y8nRVLReRq4GvgJ+0F4GIuDGm1rHAo8A3QKmq1k8EmgcMa+G6K4ArAEaMGNHB27D0BIpLAlz8k1WUltUB8PhfNrPo4RlkDomPsWQWi6UvEYuWpba0yoiqhjAtxGgiCKnqNCAHmAlMiPK6hao6Q1VnZGRk7InMlh7KO/8uaFCUAFXVIV79+3bsQjYWi6UziUXLcq2IXKiqiyMDReR8TMsyalS1VETeBQ4B0kTE47Quc4BtnSaxpcfirwk1D/OHUAU7F0Hn40lJZs6GpS2GWyx9mVgoyx8Cr4jIpRhTKsAMIAE4vb2LRSQDqHMUZQIwD+Pc8y5wJsYj9iLg9S6Q3dLDOHb2UBa9uJVAwPRTut3CGScPw+WymrIr8A1Ks16vln5JLMZZbgNmicjRwCQn+O+q2ry62jJZwCKn39IFvKiqb4rIWuB5Ebkb+AR4srNlt/Q8Bg/0svjhGTz/Wi6BOuW87+aQmRHX6BxVJRQKNczqU7/tdrtbjbesvI6vNlTw3vICZkxL54D900hL9XX17Vgslh6KxKpvR0R+C/xZVb+MRfozZszQjz/+OBZJW7qAYDCMAl5P8274cDhM7tatJCUlMSA1le3btpGenk7KgAEtTodXUxti0Qtb+MtLuQ1hxxyZwc+u3peU5GhGN1ksfRcRWaWqM2ItR3cTk0kJHNYBC0XEAzwFPKeqZTGUx9KL8bSgJCPJGDKEnTt2UF5eTlxcHEnJya3OG1tZFeSF1xt3eS/9oIBrLh5jlaWlS7AzI/V8YqYsVfUJ4AkRGY+ZXP0zEfkQeFxV342VXJa+h4jg9XgQEVQVr9e7RyuRPHLLaAZ4AiRUFFBdtfs6W5BZOgs7M1LPJ5Yty/rxkhOcXyHwKXC9iFypqt+LpWyWvoOqsn37dnw+HwNSUynYtQtfXBxeXxKqQnJS488gOcnD907LYfGLWwEY4Amw7rATWdckXluQWSz9h5gpSxF5EDNBwTvAr1V1pXPoPhFZHyu5LH2ToZmZeDweQBiamU1JWYhrfvRf9p84gOuvGseggbudd+Lj3Jxz6jCmTU7l/eWF1rHH0uWEW5l0yg4X7jnEsmX5GXCrqla1cGxmdwtj6bu4XC7i4uIQEQqLa1mw8FtWf15KWXmQ95YX4fVu5MZrx5GYsPtzSB3gY+b0gcycPpDqzXkxlN7SHwi3ohXt5Bo9h1iujHt+U0UpIksBrKOPpbOp76MsK6/j3Q8LKSsPNhxbsaqYan/zyQ0slu6i9R50O164p9DtLUtnia1EYLCIpLM7NwyghflcLZbOJCXZi9sFkXOtjxmZjNcby3pjz6S4NMDWvGqqqkOMH5tMeqoPt9sW3l2BJyWJA1a91WhGqvQ0H77UpFavsR603UsszLBXAtcB2cDqiPBy4JEYyGPpRyQnubn+qn15cOFGgkFlULqPm340jtSU1oeE9Mcp3opLA1x/22ds3GSMPwNSPDz54IFkDbUT1HcFCUMGUhuXTPHOGjbnVjNtUipxaV58Ca0X0ZEetAe9sRB3onk38cMyG5SoVZydRyxm8FkALBCRH6nqw92dvqV/k5jgYd7soRw6cxA1tSESE9ykt+PA05+meCstC1AbCPP1N5UNihKgvCLIM3/dyk8uH4vPtsI7jbKKOsrK6ygpDTAsK4EJY5OZNH7AHsfjToxnxTEXNgu3HtudRyzMsEer6jvANhH5btPjqvpKd8tk6V8kJrhJTGh9qrv+SklZgDsfWEdtIMxhBw1qdrywMEAwFLbKspMor6jjT4u+5Y1/7gRMvnzs/umMGdm66dUSO2KR649y/k9u4XdSDOSx9HJCoVCL25Y949MvyvjvmlK+2lDBtMlp+LyN+yfPOmUYifExHZrdpygrr2tQlADV/hAPLdxIeWVdG1dZYkUszLC3O/+XdHfa3UU4HG6YSi1y29L5BINBioqKGDTItITqt82YSsuesP6bCgACdcpzr+Zy/+378+Lr26jyBzn39OGMH9t3+2hjQWl5c6W4M7+Gujo7XKQnEstJCX4N/EZVS539dOBnqnprrGTqDILBIH6/n8TERFS1YbutFS4sHUCV2poatm/fjogQDoXs2LS95HvHpDJvwm43YXewmF+cl4p3QBIJQwbGULK+SdbQeJKT3FRW7baGHH/0UAYkR1csRzqeadBaVLqaWK468omqTm8StlpVD+iO9Lti1ZFwOIzf7yd/505S09LwV1cTCoXIGT7cKssuJBAIkJdrVgjJzs4mLj5+j+Z+tRgqN+Xx3riW5ydNHJUTA4n6NqGQkru9mgWPf8OOnTUcN2cIp5+QvVczRnXnMBK76kj34xaROFWtBXAWco5r55oejcvlIiEhgfSBAykpLgZg+IgR1gzbhQSDQXbt2oXL5UJEKCgoICs725ph9wK7Xnb34nYLo4YnceeNE6mrU1JSPC0uMRcN/cljO1bEskR5FlgqIk85+5cAi2IoT6cQDoepqtxdw6uqqiIlJcW2LLsKVQQYlmNaPrvy8/fIDFtZFaS8oo6du2rJyU5gQIqH+Dj7rtoiEAhTXllHKKTE+Vx27twO0nTZNzvZQM8klkt03ScinwLHOEF3qeo/YyVPZxAOh6mtrSUUCjF8xAj8fj8lxcWkpKTEWrQ+i8frJTMrq6FlWb8NxjO2Pjxyu55qf5C/LdnBo3/+FjA1/Qfu2J8Dp6Thss2sFqn2B/lwZTG//ePXVFaFmDxhAHfdvB8Zg3q1UahHYZfr6pnE2j74CfAesMzZ7tXUm2Fzhg/H4/GQnJxMzvDh1gzbxbjd7gYlWL8dCoUoKS4mGAw22o5sdVZVh3hs0aaG/VBImf/79ZSWWdf91qioDHLX79Y1OKV88VU5f1r0LdX+YDtXWiy9m1h6w54N3I9RlAI8LCI3qOrLsZKpM4hUjNbJpGN0xBylqtTU1FC1bRter5fa2lqSU1Ia9WUGAmFCocYm28KiWvqrL2000/pt31nTbDmpT9eW468Jk5jQ1RJaLLEjln2WvwAOUtVdACKSAfwL6NXK0tJ5dMQc5fF4yMrOZsvmzYRCIQYPHozP52tUgUmIdzM8O4Hc7f6GsKMOHUx8XP+0BETjJJKdGY/L1Xj9xamTBpAQ3z+fmaX/EMsc7qpXlA5FxN4sbOkjhEIhCgsLERE8Hg8lJSWEmozBHJju45F7p3L2qcMYlhXPT68ay/VX7UtS4t7VISPj7qtjPVOSPdz2s4kkJxknqP0nDuDKC8c0WgvU0jUEAmF27qqhqnrvTd6hkFJUEqC4NNBn82hXEcsc/paI/BN4ztk/B/h7DOWx9CFUlWAwSFZ2Nl6Ph535+YRCoUZmWFUlOQmuunAkl547Eq8n3ODYE3aaTtH2N4dCIeoCAbw+4xlav93XvKATEzwcefBgpk1ONd6wcS7SBlhv2M6k0WQDCjW1IcrK69hcCD/6n//wy+snMPvQDHy+PWtblFfU8e6HBTz711zifC6uvHA00/dP2+vKYX8jlt6wN4jIGcBhTtBCVX01VvJY+hYej4fMzExEBJfL1bAtIoTD4Yb/woICgsEgQ4YOJRAI4nLOr6mpQUSIj4/H5XJRUVlHoE4RgYFpjZWDqlLj95Ofn8/gwYPx+/1UV1czYuTIGN19y4RDIVyO8o7c3lN8PheDB1rv164i0hxeWFzLeVf9t9Hi5L97bAMHTEnb43ewfmMF9z+6oWH/5ru/ZPEjMxgz0irLaIjpU1LVvwJ/jaUMlt0UlwQoLK7F63GRnubtFePnonUCqm/hhUIhqquriYuLw+PxMGToULZv20awro6a2loqystJTkmhsqKCtLQ04uLiKCiqZf7v17PykxJG5iRy288mMGZkEh5nALmIEJ+QQFpaGoWFhQBkDxvWoxy8gnV1lFdUkJqaiobDDdt9reXb1wiFtJGiBKisCjVzTGuPurowb769s1n4ex8V2FVOoiQWS3RVQIsOhwKoqu75Ym7dRP2KFm63u9F2X6CwuJYf3ryGbTtqAOO0cffNk0hPi53CjMY7c2+cgMrLyqirqyN94EC8Xi/hcJiCggKG5eQQqK2lsqKC+Ph4UtPSqPaHuf/Rr/nP6hIANudW85NbP+OZR2cwqEnNvq5u95CTYF0dXm/rC0rvLX5/CH9tiKREN3G+5nmvtcqDKymR0vISArW1BAIBRIQBA3rsp9Yvaal8iY9zs//EAXy+rrzhvGmTU/d44gy3Wxg7OomlHxQ0Ch8zyirKaInFqiO9coR+KBSitLSU2poaMrOyKC4uJlhXx5ChQ3u9wgyFldff2tGgKAE+/bKcL9eXc/iswTGTqyum8HK73WRmZZGXm0t8fDyFBQUkJCQweHAG/ho/tbW1eDweampq8FfXgHj57ycljeKoqAxS5Q9Rv+JjvRm2urqa7Oxs/H4/BQUFnW6GLSiqZeHiTXz5dTkHTUvnorNHMjC9cWWmrcrDoMGDKXJaviNHjer1+bYvUe+QlpSYSEJiotlOSiIlOZG7bt6Px5/ZzGdfljFtcio/+P4oUgfsWUXM5RJOOCaLJct2sWlrNWCU7pSJqV1xO32SmJphReRwYF9VfUpEBgMpqrqpvetigcvlIiUlhYrycrZs3oyqkpmV1TAAHlpvcZaV1+F2C8lJe/a4S8oCbMmtZnt+DQfsn0Z6qpe4LpiKLRgMs2lLVbPwzXnVHD6r05Prdpq2tsJhJT0MdcWlDBo82Ly3sBmXmTIgFY8vharKUsorqklNS2Of0cl8taGi4XqfV0iI3/0e6s2w9fMAe30+UgYM6FQzbElpgBvv/IIN35r72JrnZ0d+Db+8fkKz6dJaRKGstBSX2004FKK4uJiBAwdahdmD8Hm97Nq1C6/XSzAYJDXVKLLBA+P46RVjqfaHSEx07/V0jIPSfSy4ZyqlZaY8Sk3x9Iqulp5CLCcluB2YAYwHngJ8wDPsdvhp6ZrhwGJgKMaUu1BVF4jIQOAFYBSwGThbVUtai2cv5cXtdhMXF4ff78fj8RAXZ8xwNX4/paWlZGZl4ff7KXO2q/xhVn9WyvOv5pGU6Oaqi8YwMicxKi+2krIAv7p/HR9/WgqAxyP84b5p7Deu801ncT43Jx+bxbKPCiPuF45so1XZm+avbKu1VVJcTGJSEr7aEJ5SP6pQUlZGeqoXBcTt5hfXjee6Wz+jqCTAo78YzfA0Ja68gOrd+rPN++6M9U1rAuEGRVnP8o+LqakNkxLFMpOK4nK5yM7Koi4QoKioyA4d6EG43W5S09IoLy+nrq6OlJQUfD5fQ16Jj3cTH9/xis3ANF8zBzVLdMSyZXk6MB1YDaCq20WkPRNtELPm5Wrn3FUi8jZwMbBUVeeLyM3AzcBNnSlsvRnW7/eTnp5OWVkZu/LzyRgyBK/PRzAYJC83l1AoRFp6OgDrvq7g1nvXNsSx+rPVPPenmWQOiW83veKSQIOiBAgGlUee/JZ7fzFpj00w0TBxXAo3/2gcz76SS3ycm6svGs3gQa1/VH1l/sohQ4cC4C/azkeT5jU7ftT6pYwYmc6ihw+koipIek0R741vfl5r9x0KBiktLSU1LQ2Bhu09XRXF4xZ8PheBwO7ZANJSvVGvFCIiZGVn4Xa7cblcZGVn21ZlF7KnlclQKERhQQHhcJjExEQqKipISEwkMTHRTpfZQ4ilsgyoqoqIAohIuz3NqroD2OFsV4jIOmAYcCow2zltEWYKvU5VlvVm2MSEBOLi40lKTiYUDOJyufDXhImLT6K6qhwRISExhcqqEH99c1ujOOqCyspPijnluOx206uubr6Ya0VlHaFw17QGBqR4+c7cTA6dOQgRSO8l5plonIBaw+XzUZu7AwBpOodb/TkuUA2RlCikDkigenPr2qmiso6a2jAikJLkIS7OTTgcpqKigpoa0x9cV1e3V441yUkefnjJGB7808YGuW64Zt89qjjVK8eOFr7tTVBv2bvKZFxcHKlpafh8PsrLyuwycz2MWL6NF0XkT0CaiFwOXAo8Hu3FIjIK0zL9DzDUUaQAOzFm2pauuQK4AmDEiBF7JKyI4PV68Xg8pl/K2a6pDVNbU0N1VTnxCUnUBWoo3LWToZlZZLXQghzSzuoMqoqIkJ0Zz7Gzh/DBikL8NaYgP+uUYaSmdH6rsh63W3qdiaYjTkChaj/LJh4LwMH/WtzqeaUlJVRWVjI0M5NwqOUV6cNhuO/hr3lveSHj9knm1p9OoLIqyMA0L0Mzs9ix3VScsocNw7MXXrIJ8W6OmzOEQ2YMZNsOPyNyEklJ9jYMX6mnI5WH9qgNhBCUyooykp1l58pKS0lOScHr9fYIhRkoKqWuvJKwKp54H+Fqx2nNJYhTSYi2q6A7uxrcbndDP7fL5Wq0bekZxGLoyKPA/6rqAyIyDyjH9FvepqpvRxlHMmZ85nWqWh75kUa2VpuiqguBhQAzZszY4yZa/aD2yO1AIIjiISEpjS3blNHDMwiHa6isCnLud4ez9IMCSsvNkILxY5MZNzal1Y/QnZKEJiXg9XpJS/Vww9Wj+MH3R/DQwm85bs5QDpqWjtsd+wKpv5GWnk5NbS07tm9nMC2bLqv9QZZ9VIjP5+JnV+3LDb/6nKqqEI/M35+iwvKGfFNcVMSQoUP3qtWQnOQlOclLdmbjGcu7ulAPhZT8ghr+8tIWzj9zOBKupby8vKH/PiEhAY/H03CPsezPDpRX8t4406I7+F+LWXHMhc3OibaroLu7GiLN4pHboWAQHJ+JyG1L9xKLluXXwAMikgW8iFGcUS/PJSJejKJ8VlVfcYLzRSRLVXc48e5qPYa9p6VCwKtQE/bx3uc1PPrnTYwfm8LxczKYfWgyQwb7WPTIgWzcVEVSgpthWQmkp/mo3ryr1Y8wv6yEhIQEEpOSKCwoIGPIEO68cb9O6dzvK+xpYdxaa0tbMb22SDvOMPV9iUfMGsQ7/y5g565axoxMYkCyG39ViIyh2fi8Lnbu2LFn6UZBVxfqJWUBLvvpaioqg7y/oogX/nQQBbvy8Pv9pKWnE+fMctRd8rRFuIu6KWJFKBSiwOnLHJqZSX5+Pi63m4yMDKswu5lYjLNcACwQkZHA94A/i0gCZo7Y51T169auFVN1fRJYp6q/izj0BnARMN/5f70rZG+tEDhq/VK276wlJdmDhpVJE1JJHeAhWFJGQkUl+w90TiytoLq07UI6e9gwtuXlUV1dzYDUVBITE3vkR9GV5r72aKswro1Lwu8PEQwrifFu0lJ9rZpqqzfnNWyHqmsaTLHxwzIRj3nm7pQkSktKCIZCDBs2jLqSco5Yt8SYIMvrqKkNER/nJhRnWntpqV52FdYC8O2WKu54YAP33DKRj1aWMG/2UHKGD2/XXBkMBhu8ryO3YzUpxtffVFJRGUQEbrt+PKVlJagqHq+X8rIykpOTe4wZdk9ntokFe+IR7XK5GDhoENu3bWPL5s3Go3nYMGuejQGxnBt2C3AfcJ+ITAf+DNwGrdi5DIcBFwCfi8gaJ+znGCX5oohcBmwBzu4ywVvA5YJrLhnDRWePwOWWBueY6lYK9dnrlrQaV7DJLDDttWhihW9QGu60VErLA6iaPrVYT8gcDsNjizbxxj938PDNoxmUEMST6iOyXGmt9fnfU65o2J6zYSmJo3Ia9t3BYIMHqztjIDpYKa8Mcfsja/H7Q2zb4WfBPVM5aHo6qz8r5eLvjeSdf5uZUj79soxTLlzBM384qJEZvzVCoRDbt20jKSmJ1LQ0tm/bxoDUVJKTkykuKsLtdpM+cCCFhYV4PR5S01pvqYnPR8U3udTUhvG4Ba/Xhcu15+bQ+vHBbrcwaKAPtIIBaUNIS02gYNcuQsFgIzNsVxGNRcHjib3ChuaVyXoF6U5Oory8nOTk5KhM8fUVJbfHQzgQMHkwYrFzS/cRy3GWHuA7mNblXIwH6x1tXaOq/8ZMi9cSzbVSNxIft/eDhSPZtWsXaWlpJCYlsWP7dqr9fpKSknpcTbLaH2L1ZyXc/4cNlJYGmHN4Bj++fGxMHYSCoTCvv2X8vAZ4Anw288Rm50SaAqNtHUcWaiKCqpKa4uWeWybiEuWOB77m5/d8yaXnjeSQGQPxeFzc/j8TePblXOLiXFx10ZioJ70WEQYNHkz+zp2UlZXh9XpJTk7G5XKRlJxM/s6dVFZWEg6HyXImxWiNUJWf9/c7ts1nEA3DsxOYuG8K6zZUcO0tn/Hwr6cQF+9pmFu33hElFFJKywL4uqh1F41519VDlEikNSMYDLItLw+3W/CFAlSWVRIfFxeV0guFQg0VksEZGRQXFVFQUEBGRkbDOX1x+s2eSCwcfOYB5wInACuB54ErVLX5FDL9DFUYlmNaNB6Ph+EjRnSpR1xHHDHKK+r4+a+/bFgE+F/vFwOWklIAACAASURBVDB0SDw/OG8UXm/nyBsOh1E1g+lVtWG7NYJ1e1ZI76knbTgcprysjLKyMrKyswnXleKvrWX+rZO4/rbPGD82hUHpcfh8Lo45cggzpqXjEtmj4R0ul4u4uDhcLhfhcJi4uLiGPBAfH4/P5yMQCJCQkIA3YtB6i/J2klUiPc3HfbdNZuOmSgqLAgxI8ZGWau6pvnAOBsN8tbGCX85fy2+vyWgruhYJhbRhxqq0VC+DBvr2aukv7wBTAQqHwR3v3W3FcQmIyUfh+ESKSgKkp3oblmRric7qanC73WQPG0bu1q0EAgEyMjLwOe+1PerNsABer5f4+N0e9pUVFVRWVZGVlUV5eTn+6mqGZmZahdlFxKJleQvwv5jJBTp1lp3egjsxoZmJJhwOE47zUFpSwqDBg3G5XF3emuyII8a3W6po2vW6/L/FfO/UnE6ZfD0cDuP3+yksKCB72DD8fj8lxcXkDB/eLN169nR9vz3F5XIxYMAAqv1+tuWZ/s7sYcOoDSi/uW3/RlOHichejVWtN8O63W7S09MpKirCFxfXYIatq6sjZcAAKsrLKauf4KCFQj0chlCw5WEue8PANB8zpw9s9XhpeR033vkF5RVByoM+Jn74f87qNT488T5C1X40HG7UT+xOTsKdloLH42HbTj+XX7+aKmd88eGzBnHzj8Y3KOVoMd0DKQ0VjLq6IBWVQUrLQ+Ruq+buB7/CXxNmyOA4HrxzCiOHJ7YZV0vfQaCotNF91NNaJTMcDlNWaiYYERHKystJiHKygfoha023ARISEykpKWHrli3/3955h8lxVXn7vVXV1TlPHo0kZ8uWc8AYHIgmLWmXHJacFsNiMNj4wybsmmDALLAEL7CGJSwsacFm19gmGGwwtvE6S3KUNHmmp3Ouqvv9Ud2tnpnumZ6kkUb1Po8e3a7prq7qqrrn3nPP+R0sy6Knp2fR/Tksn/UI8Hn6/v7O1WK1RppWpdJYE5NSUqlU7M63mKera/2Ey5fC0IB33rZtRwdnaaYuRKVikclWmUyUiUd1An5t1ppnfYalahp79+wBaIywhc/HeTtvolK161K6NIGUoIUCXPqeo/nqtY/T3lu/QoRAVfaV5lIUhVBw9YJbhBB0dXejaS6qVejt03G79YYbNhQKobvdduBXTQygVaduWZLkrj3LPo6leh1KJYtM1gDg3Z/cJ+/882+fhS8z1chnbebcHTeSLubo6x/gq9c+1jCUAH+8PcHUq8tLNpamaTI5MUE0GkXVbK1VzRVEEYKPf34H5bI90pqcLvOJq3fw2Su2L1kfdamDTCkl+Xyevv5+XC5XoyRcp2uPze9pbmuahtfnI5/Loaoq3gM0GHCj4EhELIGljjRVr2dR41qfSXg8XlTNZQdu6Doej+eAXsSPhF289XVb+db3d/MvH9xKzGMQjbiwxsco1N7TrmOVUvLgrgwXXXEflYqFosD73n4Uz3l67yxjqygKfr+fStmOLvX7bZEn0+dhOp9E9wcBi0o5T2/fJrx+Nxc8zeKs0+O4kxM81OK4FV1f0qygmbobtlgs0tffTyqZZGx0tOEuXw2qVcnYpMVnvnwfD+zM8rbXb+EFz+onFtHweu0BiqIos9pzMU1JLm+0LOHVCtO0SGeqgO0yVlWxZIMQU4v8x+WbZunNapqC38i3rMcHIKVFvKuXctlkYqo87++JZIWjOjqD2aiqytjYGJqmYZommh6iYlgNQ1nn4Ueza6aINfd4hmoiKEKIWe3lYlkW2UyGfC5HOBwmm80yMT7uuGHXEMdYrgILdSzNUZV1TNOkVCpRKILfp9LV3Y1pufjrfWlOODaOEFojkKT+QDW39weLhbcHAy5e9oJBnveMPjypSW459rnz3tOuY02mKlz5hZ2N3ETLgi/+2yM89UnxhrGsu2GTMzOEIxGKhQKjIyNsGhoilwePN0qpaHvxvf4usnkTv9/uoONRnYoVbDlQMUslfrcEbddm6m5Yfy1Vwq3rmJa1qtclkzN4y/v+StWwO/FrvrObJ/YU+cC7jsLnnT3zbkUqXeGmW6a46ZZJLnljH+ftvKkWhbvvParX0xgwWBaUyib5vEEON3fmXDz59NiCIemtkMUCD579vHnbW12DZuyUE5W/eXYfn/vqI43tXo/CkXNqLXbi2VFV+3nK5XJUq1X8gQg3/X6GbUeHCAY0sjmj8d5TT4qu2vr6QsyNgl6N+8WW1fTRo2n4fD6CoRCVSmXF+3Voj2Ms14HGbNIbwjRUwETVFH756wnuud+DlHDhW46gWi03Kg+USiV0XW8Zbp7OVDFMiaYuLZhkIfL5/KI5nj6fhs+nUcgu7eGXEsYmS7O2VQ05SyS87obt6enB6/MRDocpFYsAxOM6yZl9LkJVMQiHZ689dZJbuRxUTWsYkub2ajGdKDcM5ZcvPYyQVkFRBNbYGIVaMEqrWbCUkqohufGWSW6/a4b7d2R47Ycy9Pd6+PpVp8yqe1l4Yrjl4G7brdfz8c89yjevPpWhJfYMy+3+x8fG6B8Y4OlP7cay4Bc3jNEV13n3G4+Y54LtJCDLNE0mxsdRFAVd1ynk0zzz3G5+9ZsEV156HP/yjUd55PE855/dxXvecgShOeXNLNNEYhvd5na1apJKGzz0SJaT4uufztVOfvNAi5rfSDjGcg2pVCxKqcq8dIrH95YI+qKUCklKRXB7wvzpzzPccXeSO+6GZ5/XjaLA1OQkqqoSCAaZSSTo6uoiEAw2HggpJcNjRT7xuR089HCWE7aF+MhF2+jv9XSWk9Y0UpdS2qLYQkF6dKanphgaGoImY9lun0tVpHG7VZ5yZpw/3p5obBvo9cxb79Q0DV9T2ky9bRhlCvksvX39WJYdWh+Nrn7psrVmJlXh4UdzpDJVTj0hQiTiYnPY4DsfGQSgK2zxh+0Lp7+ALc5umSaGpXLeWTHOOyvCl7+1m9/8cZqxiRLpbHVekehWuFwKP/nmmfzutgRDJ6/eebZDCJVINI5pSsIhnRc/1zaaLpfStvarZUlbPlLWqq60iGbVdZ2umsLNTGIG1aWSTlc58nAfX7/qJIolic8rUFX7vmq+ry1LIqVlryf6PGSlSbyri93DRd72gbupVKzG9VlvWslvOqwdjrFcQ2ZSFT719fv51Ee2zzKYlYqJ9DYbGEkoqDVcZS9/0VAj3Hx4715mEgmCNfdf88gxmapy8UfvZ3jMnnHd+2CGD1/5AJ//+Am4O1hzah6pW5ZFPp9ncnIS8lUGBgdR58xi27mbFxJZaEXAr3HxPxxNKPAYt/81yVGH+7noHUe17NCbz7fedrlcbNm6tdE5+Jra60X7wYkfNRKaN0OfSVW46CP38sgTdsaU16PwrS+cRqxS4KGn2AZyIXH3OqZpkk6lyGazxOJdFPMzaJrG2163ld/80a5P2mn+byTkIl2e5gXP7oHJqY4+0wlqwM/THr4ZKe10FgEkklX2JgX/+ePHec9bj6QrpqGqYsFI6myuyl/uTvKt7+/GkpI3vWoLZ50Wm1X8ui7aUK+EEovHKJUs3v3mwxkbG0WruWnHRkfx+nzE4/G29/U5D92AKxZhYqrEF7/xaMPzUY/27Yq5Z4kgrKZ6lWEYCGzvRXPbYf1wfv015sFdWUbGirOM5dGH+xkZ3ovbG0HTVPLZBGedNsBbX7uVJ50aY2jQi2VZlMvlRsBEuVSaV6y3UrUahrLOw4/lqFQsOkuB34eUknxuX2efz+dxuVyzOvnVlDSNR3X+8e1HUiya6Loyq8NbjAPR1dR2ILHrZiYLOfr6+2e50B95PNcwlADFksU3v7+bi/9usZKus6kbh0qlQmJ6ynYN6zHe+cF7AHju03vx+9obyzN+cQ2qz87dE9IkXBYwMYXiWzw4rVNSZoWyMOnt72dyYgJFESh9vbztHXcC8ObXHEZX+6yUBsNjRa74zL6wrY99dgdf/+wpHH/M7HtnriC5368ipaSnp4fRkRH27tmDy+UiGo0uei8Z0sNd98yQTO1bD6xH+375kydx8vZ9M3zLkkzPlPm/+1K4dIUzTo7g87qWVdtyYnwcIQTdPT2MjY3hcbuJd3WtKHjnYCrYfiDiGMtVoO7OtCxbdLpa3TcCBWYFFdgoDAwOcdudSQqFMs88dwiE4JUv3oRei2C0TJPE9DSRSIRQKMTIyAiFfH6WG1bTBOGQRjqzb/89Xe4lS35JKalWqxSLRQY3bcIwDCYnJgiHQrPcsKbZpuajz8t5O29ESsFMsoKqCsJh16Idq8+rzQpa2R+spqZtJ6oppmmg6K55a3rZ7Nx7AtLZ6rxtnWBZFtWaTKJlmoQCgo9dvA23W6W3201ogbJuqs/TtjLHhFUhFo/j1nXGxsbo7evD5Z2fMgT273f+rpsb3hEpQQh7ezwcYHRkhJHhvfZaoqeHj3x6JwBerzrPmLfr1P3G/HvlVzeOcfwxi7vg62k+QlGQpolSS9uoi120o1xMsu3oAJ/+x82UktlZ++v2ZakkaBia6ZkKb/rHuyhXLL585Qnksmk0NbzkyGJFUeju6WGkZtg1TSMWj684ynWjFGxfLxxjuQo0uzPv+OMkH/n0vtFv0K9x9BGzO2K32/7ZTzspBhI8nvmdmaKqbNq0qVGOp95uHglHQi4+dvFxXHrlAxSLJgG/yscu3kYkpFNOd378Qgh0XWfzli2NYIF6uxnDaN2pmMUSk1QJhLr4yY0T/PT6MZ55bjcffHc/B1p1zJXUv2zGsixKpRIziQT9AwPIBVIQunt65rnQTjw+jM+rUijuyy185Ys3IURh7scXpO6GVVWVTUNDTE9NkZxJcPyx/W0711lr1QsIF8TjcaanbVeu3+9vqAm1Qo0EmSxkbSPS3c3Y2Jjt5owEZykvCSFQVEEma9Ad17niA9sIBztz9z/p3vnu/qOO6Gwmbpom4+PjqIpCd3c3kxMTzMzMEI1G21YqEUJFUXXuvSfN+UdI7n7KwuvHv/z1GKl0lU39XqIRF8VcknKpSKTNILMddcOuCIGJ3Rc4q5Hrj2MsV5nTToryqf93PD+5fpTumM4bXrmlrZLLYoWcmztYiUIqXcU0q7h1hUhYR9MUTjwuxA++dgbFoonfp+L2qKQyVTxLDNhrNoztOsR2CjmWtPD4Qvzprhw/vd7WZr37/jTFojlr5mjV/Lh1Kbe533swUY/WlVKyd+9e4la77kwwNjpqF31uup6xiItvfeE0rv3hbpKpCq988SaOPSoI0/uMZbtKKFow0JhJappGJBJpDKS6uruRUi44C2keMCwUHay73S3b7X6P3t5eRkZGGB4exuVyEYvZvtVEIoFhmvT39zM1PU2lOMN3/vVUsjmTSEjvuEarpgmOOSLAzkftWedRhwc498mdiXgoikJvTw+KqqKqKoODgyiqWhMmb30Pmqbkd3/K8ZV/f4KTFwnqkVKSStvXZHisyD9d/TBXvP9I0slxpFzajLDZDdvb18fU5CSJRIJ4XbBEStRaDmm93UyxZJCYqfK726bo6/FwxskRQKCtfxDvQY1jLFeZUNDFU5/Uxcnbw7g0BfcSxNXbuZ+UgJ+7n7D456t3kspUOebIAFd++Hh6uz3oukpXzP6ORLLCl77xKH+9J8Wn/nEz5+64aV5HtJIgBFcowNkP3Eg2a+D3q+gugZQWwuchEHBz9ukBBnrdvPbvhpieqeDx7CtWaxfKriClxO122zlhUqLXdFAPRhRFIRgMkkwmaVcsR9NUvF593sxAVRU2DXj5wLuOwjRlQ72oUm7vJq4buLq4drlcprunh+mpKXRdt2ewq5iQPjY6as8oPR5mEgncbjder7flYEoI0bjOjdfYLup4PI60LDSXi4GBAbutqcSjS+t+Uukqr3/5Znq7PbUBo6tjaUUhBC5dbxxXvS2lRAn4OOehGxrvrSvrCJ+P449WeP4zexd0Zdf3/9LnD/Df/zuK263yD2/cSjGfsr+vjZGqC8/PVRCqu2EVRWkE+tWfkWQySbVSobevj5mZGQzDoGfOdX98d4F3fvBuTAsueseR/PmuGX5y3SiXvy7a0W/l0BrHWK4RAf/S8x3b18u8icuufJxKTSh85yM5PvfVh7n8/dsaIfbZXJUrv7CD2/9qJ+q//tJdHLnVz9WfOHFVtFoBPN1R3F0RZKpKMKAwNjpCJBrD4/WRyaQJBnQ+97ETcKlFIpEuXC5hB3TUOsxMk+JIOp3G7/fvGy3vBwzDomrIjiX5FqIhmpBMEgwGEYbknId+jabNSX8JBohFgm2NmMet2gpQk50HXqhNEZ3jNaWarjUoBtzb12e7XrHTMRZywzbyG1WV3t5eJmpuzng8PmtG3UlZqnZYluSyTz7I+991JC957tLTN1oJA1iWRdYyMHx6YxYnpWwMPE7qgROOC1PaM7Lo/vt6PPzb50/l+hvH6e3WyaQMBgYGMcbaRBa7XJT3jpJLqLNSYLRgAFcsvM+w12qFSikJBoOMjo6y+4knkFLOqzyTzVX5+ncex7TguKODnHR8iO64zo2/n8S9xtrJGx3HWB4EqB6db1wyMGubEAIllwG/7eoqlS3+cvdsXfpHnshTKi9dTNs0TUzDaLh36u36iLue4jG4aVPjIS6Xy2QyGbweD4V8gWDQi8ulEY3F7FJj+Tz9AwNUKxVSqRS6rq84um8pTE2X+dEvhtkzUuRFz+ln+7GhRWcLC1F3w8a7uggEAg39T3cgsORzWk7ghZSy4cq2akEqy1F5WijgydU0i2w3o6wHOdXdsKJpNlSvxbiaBPwqTz1z9QZYqqramsO1ddWu7m7btdl03AtVJpkrnzikwtsv8KJWS4Rqhb5FyN/4jQ1TMp2wpf1kucydp1wwb59zr3vzbF3TNDxuN8ViEZfLNc8zY1l2lDzAK18ySDQMiakRPvTuw/EaJc556AZUdV+aGuyfgu0bAcdYHgSYhVIj966Zvt1/aDyoXkty3ecOw5KwOwHvvvJx3G4FTVv6aNI0TYaHh4nXhMsTiQSbhobmdXzNr/v6+tizezeFQoFwOIzX622K2tVwuVxYlkWlUkEIQbVapVqpIPaDG3YmWeEdH7y7oT96618SXPreo3nu0/sW7AgXw0rncGVzlGtRki6gnMx2FIrfbOyWilmLlFYUhYHBQSbGx5memiIW7yabtwgFXG3Xl01L2tWqar1lpwFP7Qzl9NQUfr8fr89nV9PwevF6PLOqY7Sj3bJDs6aylPaMMl80MVwevv2l01e9ZurcVJNWtBtULCSfqHTZbk89HkWP2+3f/2mKy658DJcm+OXnDm97TOlMlfGpEg8/luOEbWHiURdej0IymaRYLBKJRkmn00xOTs5yw4ZDLl73ss188OP3c/+OLMceGcDlcpNNT5AF3L4wmuajt6d9tRWH1jjGcp1p7jDaRSa2686tQrFlNYcn338jT3tqnDe/aguRkKtRF7LTUb6qqsS7ukjUIiHjXV0YhiCbrxAJzQ+IME2TVCqFZVlomkYmmyUYDKJqGpMTE5imSU9vL0YyQ5dUG8Vqq6OTWKq65nleY5OleULd//mzYc4+Pb4iF/VKQvEt02Tv8DBd8ThiiYEXdTcsUHPB9pFMV3j1O+8ikzP42MXbOO2k6Cy3W75gMDxa5CfXj9Db7eGFF/TTHV9qNu58dLe7VtnDhWkYtku6w8FPJ5rK9ecjFNAAA/LTlPMryw1sZaQtS4LPT0n3Ew665mnGrpZ84pFbAwT9Gtm8MSt3sxkp4T/+aw//+fN9+/5/7zuGZ57bTTAYxO/z4fZ48Pv9WKbZ8O5Ylq08dNLxYX527Zn8+w/24PVqFC03YMtLer3eFbnCD2WcX22dae4wOlFs6QSXJrj0wiMolcoMj+aJx1SkWSUQXIKLsCn3zDAsbr87wfd+sperLt+O16cR9Ltsebxax1gpl+nt68Pj8TA5MUG15rqtq6m4XC6MYplbjp1v3Nc6z6vVWo3Pq65oVrlihCAcCjE5OUnXEqMlYd/aXzJd4fJPPcju4QIzqSr/8MbD6O/VyeWquCKuxiBp16M5LvzwPY3P/+KGMb71hVOJR5dvMFVVJRwOk0mnMapVgsFgY32tFdWqtWTh8qUMSJLpCpYF4aC2oEel3T633Xo97/r8g1z54eM58bjwsrwyixENa/zs2jP59e8m8bhb59VaUvKjX8w2wl/65qOccXKUWFRvpOLout5wvVerVfK5HKFwGJdmoYkiF73jSCrlMslimmAoQrVSJp2caFQ9cVgajrE8gGiXKrBU7VVFERSLZdKpBF6vn8RUAd3txePz04mtNE2zEapuWZLkTIIzTu7nuKOPw6ymUESs4YKLxWJoLhc9vb2N/LDmdl2zcm7li/1JPKZz4nEh7n0wA4CqwLveeMSqic4vB0VRCDQiaZdOfXbksiTve0kACNg1QeM+ZqoZQsFecrkcuVyO7u4evvOj3bM+n5ipsOvRHE8+ffnG0jRNpqamsCwLn89HNpvF6/Ph83pRmm60VKbCX+9J8bvbpjntpAjnntXV0Yx+McGAOsWSyc5HsnzxG4+SzlR5yfMG+Jtn9y/r+n7qPZuJm0lKe/Moc9b1FhvQNashScNszDqbP6sWcpRTaZ5+tIJok24khJinlpUv2KLurfRg66IUyWSScrncKLoQCodxe9yNQSxAqVRad2nIgxXHWB5A3PHCtzXaz9j9B6x6yZ1l1Nx7bK/JUK+fQiFvBwX4oswkDfp7F7/k9QR3TVXZ8WiW/p5+fn/rDKecGEZKg6mJUbSaZqVs+gwt2uudFlKtWnh0lX+69Hh2PZpjeLTIk0+PEYvuX0OZqanz1IOKLNNkZHgYt9uN5nLXAi9mFwNeKPCi3ezo3B03YSoGoyPDmKZJLB7HsloHqSxV6akVHrebaDSKpmlkMxl7Ztl0zYslk//4r738sOZS/M0fp7j1Lwkue9+xtLsCUoJhmPz695Ocs3XxY0hlqrz3snuo5/5/7duPEw3rPO+ZvS0Nw0L2dygq+fOJnZeba2YhNaSKJ0ChaODL5vjDNjuo54xfXNNycCx8Po4/JsgDO/cpBj3vGX34vWr79DK/D38gTD6XRigK8e5eSmU7Jcnn8+3TUW5qOywNx1geoJhN65FzHyoTiRDKgg/9lkGdfDbdMGqlYp5QqDO1E7WWuA0wkzT48jcf594HMwwNernmsycxNTFMpVKhu6dnQbfbvHMy919WtGlKpqbLfO8ne5hMVHjZ3wxywrFBzjqtAxHSVaRQMNj1WI5vfu8JAN7xhsM4bMiP2y2Ix+N4a52X6XXj9vlWvJ5kmBJf0E8um0VVVUKhEIqi8JbXbuXO/0s2DMqZp0Q4YkuAcsXsuEj0XFRVJVjbvxBiVrtOvmDws+tnp13cdscMpZLZ1liCZGR4L2ee3IOSmVn0OO59IM1ckZz/+c045zw5Pq8EF9B2tur1qEsuBt2JGpJlwTe++zg//dUo37tiqLG9eXA8t/btlZcF+PEvR7j/oTTnnNXFs87vwevVyI3l+P0xrdPLisJoPO9TUzPEYnZQ0WrX0jxUcYzlQUDzQ3X+rpsp+vwgdFIjKU69639RVYHPq1Ef0KsBP5piobu96J4o1UoBaZVx660flFLZRFVEy/Wk448JobsUvF6Vf7rkWNKpqUaydCKRwON2o3VgMJOpCtn08rRPl0MyXeFN77uLTE2D9da/JPjMR7Zz9pnxVfuOTnRmxyfLXPjhe5ASnnVeN5sHPRRLBh6Pjs9vFzdWVXVeRZnl4tIEyWyWQCBAoVBgfHyc3t5etg75+O5Xz+DG301y6okRFEVw1Vd2EfBrvP7lW+jrceNaxhpdJ5GkqqZAdZ8hqekXtPz9pAR8PpRynmo5hbddRn8TZx2tziub5fNquEs5CMxPxG83yPR41IYKT6d0ooZkmpIfXzdKMKARjXTm0YhHdd706i2UShY+r4qqCioVk2KxtUGWUqK5dHRPDMssY1Tz8060Hn1dDwiqtx0D2hmOsVxnWnUYlgXI1uuUpiX5+Q0z/PW+NA/s2Oemue67Z+Hz2usXLl0nYBgEAz5u/MM0xx0dpL8niK7PflBz+SqP7ynww58PE43ovPqlQ/R0uWep/kQjOh+9eBu5gkFX1EVyJkfP4CCqqjI5MdFBV2ZTqVrMlDS23Xr9rO3dcfea5HntfCTXMJR1vv+zvWzftrL8ymbaRUhWEqlGx9mrubj+qi0gbNUec3wMt6JQMQOMZVP09/ejeDyr5q4WAuLxLoLBIEa1SrFUi4L0aAwNaLzp1Vt5YEeGt198d+Mzv/3jFN//2hn0dHlW5RiaCfo13vCKzXz12scb217wrD58Xg3dP//3KxQN/nRHgm1H+SkWkoT8IZ728M1UDWuWMW++Z9Ry69Sqpz18M3TNN5Zq0M8Jt/8PhmE/Y6qqEAxo6OEApDtbQ65WLTLZKqomMAzJAzsznBhv/cxWa9+TzRmUyp3HH7g0BVdg3zlncwa5wnwBfvs7JGU1xFsv/CsvfE4fFzyth0JJ4mvKEKlWq41i25ZlMTE+zsDgYEdpPg6OsVx3Zo1Miyb3PJDi6q89wqff3jrxWhHw0+vHyBf2jTCPPSqIx6OQTiXJ5XJEYzFSySRut5sLzu9tO+Lf9WiO91x2b+P1Tb+f5D++cjpdsdlBH5Gw3pDk6untbbjamtuLoWkKV3x9hMSMvQ775UsPI+KqIoS9/lZfh1mtNJJWZan8Pq1jHdKVMDfCudU61jkP3YAv6G/IrhmGyeR0mYceznHuWTGkBF1f+uMphCBQm6W6dL0hJlGnVDb5/s/2zvpMqWzx57tmeOEFA3N3t2LcbpUXPLufk4+PcNudCU4+PsxRhwfaFnf2elTOOi3IxPgYutvPTKWEVCT9WwZwuVp/ZqnjDF9PDLfwcc03H+WhXVlOPynCW183iB50EUhkF/18KlPlp9ePcPMtk1z+/m287/J7yWSNtkWh9SaPTWaZlWXAYf8MeAAAIABJREFUVs1rNyt2uRS+9u0nyBUMbvz9FKefHGOwb3YupaaquFwuRoaHkVKumjfjUMExlkvAsiTJdJVy2a7B2CofayWkMxU+9In7saz26yqqx80PP7GZVLqKJSWqqhCNuFByeWLxOJVqlZlEAlctQrWdocwXDL73k9mdZjZvcO+DaZ7+1J5Z2+spInONYidpKOWKRTZbxTAtrnj/sVzyTw9QKJqEXVUeOPt5895//q6beSKl8qubxtm62c+5Z3W1LAq9GJs3+TjyMD+PPG7XjNRdgre9bmtDg/VAwFuLUDQMg9GRETQ9yCnbQw0ZQU3zt+3MFnIB169LKwUdRRHEIi6e9pQufnvrNLpL8JQz40uqJzoX05QYhtVWBzkcdBE+1sXxx3ZWSkvXdWLxOJMzCl1RF4qorLqrsLfbw6XvOYZSyRb793rtYw90BXnKAzdSKu9zfwphz0ZN00QIhfsfSvGUM6Jkc/bzcvXHt3PRFfc3ikJHwjoed1NhAr+fS99zNP/674+RNXVO++sNBPzaLCPfiXcl4Ncw29QmnUlWefvrD+OD7z4aRRFEQq55A0OhKIQjESbGxwGIRCKOsVwCB07PcRCwe7jA+6+4j8npMkG/xicuOY6Tjg/hcq2OpNcDO7ONkPH6g+dyKUTDeuPBskolbj2+tWIIQR/VWgStYRhUq9VGCsdcFCHweVvMvubUlzQMg/GxMXsWKQTj4+P09Pa2DeyZJbIgoVKxyGaqpKsufnFrjmu/eBqGKYmVEy1/g0rF4k0f+Gvj9U+uG+GL/3zSksUDYhGdz3/8RHY8nGUqUeZJp8aIdbhetD9QFIXJ6Wl0XadiKKiuAKVCknIxhaZplCsqStEk4G/dmS231JjuUnjXGw6jUCxx8vYwR2z1sXlAx+NZXgpJIlnhuhvH2PlIjuc8rZeTjg8TDrnIZKtMTpd5YGeG7ceG6O5ytwy2aYXLpREKhQgE7fsUlq/yZNaS9hVFmdUG29Mwd/Dk7Ynh7YlhmSb5QoF0JkNvXx/5fJ7E+DhdPb1sO9JHqZTi9S/bhJQmxUKKL3/yRN72gXsoFk0ueseRvPT5s2eZFzzNagSXNRvnpeBxq8ieEE++/0bADh6rS9slyxoXfeBufnTNmcTbDC6r1SqTExP4/LbhHxsdZXDTJscN2yEHnbEUQnwLeAEwKaXcXtsWA34IbAWeAF4upVxeAlsbkukKH73qISanbSWYbN7g8s88yHe/cgaxyOoYyy2b9rlN6tXYX/zcfi58y5ZGxOJCiiHpmuZqX38/U5OTJGdm6Ontbfler1flTa/eyq13zFCp2A/c5k1ejjp89gjXTGUJVyxKe0YBCCEwRiehjbt0oYTvm26Z4sFdWb72mZNRqq1nCtn87DWZx/cUmEyUl6W0E4vonH3G8gJ61rqqvKIo9Hb34dJ1Htubo7/HT7mYskUENC8PPZzjhONWX6jBzl2skk5Oct5ZUYxqhXQqRWgZierJVIX3X34vjzxhz95v+dM073zjYbz4OQP8/H9GueY/nmi8991vOpyXPH+g48hbRVFompst+djqJKanCQaD6G53o+3uYI1Y1LR/E5UKw3v3NtJwBPYaZ7VSIWdOYhgGLpeHSsXCNCW6S7S85zRNIR5b+oCk1X3ocSvg9fGyyx6gPGcNNF80iJp2+S5N05BSNtqaqhKJRgmFQiAlmWzWmVkugYPOWALXAl8GmuVuLgFullJ+SghxSe31h1bzS01T8mitUwC44Gk9vPR5gzywI8Omfi/xmL7iwJGeLjcvfcEAP73ONkybN3n5+1ds6biDWUwQei6DfR6+/9UzuO2OBNGIzknHhee5PM1cflVVd0bHS/PC/JuTuX29fn712S0AWAhm0lXiMkUlYe7Xau77o6p8PeftqMP8jI2O4HK5UDUPpWKGE7d1Ewqu/uMphMDtdhOLxZiZsdMy+gcGltVp5vJGw1DW+dHPR3jmOT1c+5+zRRC+8b0neOZ5Pbhjqy+crwb8nLfzxsY5WJZlR2wH/AhpMDY2hq7rVKtVQuEwsE8Avi69WG/XqYuWBwIBMpkMiqraEo6qiqJJfP4Iuaz9+/X09vCpLz3MWadFectrDus44rUT2lYi2nUzJx4X5o6m4glej0I8qlNJpKhm7NShutSlpmlowQDhaLjxO4XDYcdYLoGDzlhKKW8RQmyds/lFwPm19reB37HKxlLTFI4/JtRwK5335G7edcn/NXIH/+4FA7z5NVtXtPYTDrl462u28pqXDlGtSnw+dUmi0Z2E8Tej6yp9Peo8l9FaUk9FaaY5mbtdQMxaS+KtJs3riYquc/5Dv7b/oIhGwr4WDDTc2IoiiESjmJaLx3YXOXJLN16fd007skqlMqut60ufubcKlnK7FSxJo5xcnXLFWjAveCWokSDj+QyKsHC73eRyOfp7B9A9HuJSks/lqFQqhMPhhkTc1ORkY1A5OTGBVitWXX9u6m7YTCbTSMOZGB+3y5a5LBI5O4CuWq0yNTnOpe85iqrBrGLna4ki4EMXHs1lVz7AzkdyxKM6l3/gWHSXglEoNoQPmpn7DDmGcmkcdMayDb1SyrFaexxo6XsUQrwNeBvA5iW6nSIhFx+9eBsf+fSD/M0F/fzbdx+flWT/4+tGedVLh1ZkLAGCAdey99GJ63Ct3YsLccr2MJdddCzhkItKdfFk7oOVpa4nqqpKIBDANGHb0S48bmXNOrJ6ObV8rWRapVJhJpHAX8v5XAp+n8rZZ8a47S/7hAPe+feH4/OonH1GjNvu2Lf93Cd3zQp6WU00TWNwcJA9u3dTrVaJd3XhdruxLIvp6WmklHg8HtLpND6fD93tJhKJMDY2Rj5vz4wH4vFZv3ndDVsvwRYxTYrFYkOL1ef309XVhWmaJJNJFKV1DMBa0tft4bMfPYFqxUJVBZGwjqoKWieXOKyUjWIsG0gppRCt6zhIKa8BrgE4/fTTlzzO7e/18NkrtlMqW3z5m4/O+3uptLySS0thoSjITlyH+8O92IqeLjf//OEtDVd1J8nchxKKoqAorGp0dSvqbtihzZsbYtx+f/uo24UIh3QuvfAYdj6a45HHc5x9RpyeLp2A38Wl7zmGX/56jDvvSXHmKVGe/6y+eYPAxVyhnVKvelM/v0wmg9/vb0QD9w8M4HK5SCaTiFpUt0vX0TSNarWKx+NB07R5Sjcul6uhZlUX4lBVFSklXbVarIqiNNrrQTQ82yNgWZZdQcVh1dkoxnJCCNEvpRwTQvQDk2v1RZGwTrls8txn9PKj/94n49Xb7SYQWPjnNE2z8VA1t5fCQrOWVjNGmF2gdq1ncQsZc32VxADasZ6z5v2NYVikMlVKJROPR11SGtNqduzRiM5Zp8XmyQhGIzqv+dshXvK8gVoKxuxjsyyLQj5POp2mf2CAXC5HNpOhf2BgyccnpaSQz9PX34+u64yOjDSMYDQabUTA1tt1N6xhGI2c5JmZmVluWJidetNJ+0DAHnTtM/qdiLs7dMZGMZa/AP4e+FTt//9eyy9zu1Ve/7LNRMMufvPHaQ7f7OOtrzusbcg22CkYM4mEHYQDjfb+qC3XrDO71DJgnUi6NbPclIbVYDVnzUs97/2JZUl2Pprj4o/dRyZrEPCrfPKy7ZywLbQmZaXs77S9JoqizGq3oz5TDAbsUm5zB4eKouDxepmZmWHP7t2N2dpy4l41TWPT0FBjv/V2syGbO5AKSklQuNAs8Pb3I5TVd31bliSVriKhZR3YTljpfbiQuLtjLJfGQWcshRA/wA7m6RJCDANXYBvJHwkh3gzsBl6+1scRCeu86iVDvOBZ/Xjc6qJ5U1JKCsUi5dExJNJOQlyriIdVZDnGzzCMRkfV3G5HZwEx/kaH21zodq1YT6O/GMl0lY986sGGnF8ub/KRTz/ItV88bZ760mpgGgajo6PE4nHcbjdjo6PEu7pQi2XMbH7e+9WAn7JuV1Dx+Xzk8/lGe24Qmt/vJ5PJ0O31oyazlJKzFXQWmgE1G+Dm4uatjN5CAylPNLzqGqnZXJW77knx9e88jmFKXv3SIZ5xTveSI+aXcx92Iu7usHQOOmMppXxVmz/NfxLWGE1TOs7/K5YkgWCcTMr2EMe6BiiUYB1LKi5IuWKSy9mdcTCgoXeYvmLVkp01TaOru5ux0VF8Ph+xOQEUQCNYQo9HcMXCbTsrKSXVapWJiQl6enoagRs9PT2HZNV307Aa+b51Uukq1eoaDb5qhm5ifLzm5rPXOiuTM20NkBX2MzMzg9frpVgsNjwqdSzLIp/LkclkCIXDyFSO33YQwVnHNE1mEgmisRhCiEZ7OffDWgRTTUyV+X+ferDx+nNffZhNA17OOHm+Vu1q48QDrA2HXk+zxrRbN3P5fKRLucbMKJueJhztabGH5dO2ikNTJdl2Baab3Trpmvbl93+6F4TgtX87xIufO9BRMV1RK/48OjLC3j17cLlcRKLReR2SYRi26LvLdtNZlkWxDJqqzFNVqY/6q5UKoyMjDbH4Q4H6gKK57XIpHLHVPyvvd7Dfg1tv3+mvZD1XrSWzp9NpLMsi2uJ6ziUUCpEvFCgWi3g8nkaOYp26G7a7pwe/308xW1pwf3ORUlIsFimOjKCqKtVqlXAkMuv3Wk9+d9vUvG2/ummcU04Ioy3DHeuw/jjGcpVp5+55+u5biFQlUOswLAsxNUmlElw1d18rl00uX0HWtCChfQ295koZVsXivCMMzru4n4yh8+5PPs72Y0OcdtLio+J6MEU9kGJuQWOozQpmZijk8/T09pKYnkYoCro7zlXf2MW73ngE/b2e2YWQNY2uri4mJiYA6O3t3fCzSsuyqFQqjSjMejsa0bnysuP52FUP8eCuLEcfEeCjF29bMBl+Jeu5pmEwUvMWeDweEonEooOVXD5PuVRCd7splUoUCoV5bth6tKl9vyzyY8xB0zT6BwbYu2cPhmHQ29e3pNqqa80RW+evKR51RAC1RRFuh4ODjd3bHECYhRK3bFs9JZxOEULB9Pg4d8evG+LsijJ/NrmQTB3Ab2+d6shYWqbJ+NgYqqrS3dPD5MQEyZmZWW5YVVWJx2JUK5XGe93uOO/9yH3sHSly/44s3/zCaY2AqbobdmpqCl3XMWvf0dffP8tgHshBOctBSsn01BSWZRGJREgkEoRCISLRKIN9Xj5z+XZMUzZy7NYKI5UlZtTum2IVn3DB5AzSap8qZdXk4ULBIJlMphHwMxdFUdoWDVjwmAyDqcnJxuBsJpFA1/U10zltXifvZM385OPDnLI9zN33pwE4YqufC87v3e/GfKM9E+uJYyz3E+s1nvT7NMpqiInxPKZpS19FozH8ft+SSkCdemJnBl0oCr29vSi12dDg4CBKbfbQjGRfxKQlJUJI4lGdvSNFpmcqZLPVhrGsu2G9Xi9d3d1YlsVMYr4Q+4EclLMcVFWlr7+fkeFhpqen8Xq9RKLRRie9lgayGTOX5/fHzBfvbwRitSAYsiuMKKraaKuqOssdbEl7/bVQNAm0qabR9phSGYJFg6BwgQkYFpXhcWQogB6fP6hbidGoD9YymQzRaBTTNBvtdgYzGtH5xCXHkc0ZmJYkFHQtSY1rtdhoz8R64hjLDY5lmpRKRYQQDG3eTCaTIZdLEwp1rthy/tldnHJCh8aylvBdH0E3t+vU3bAAm4aGmJyYpFpJ8eH3Hs3L33oHwLzoYpfLRVd3d8MlWW9vZCzLwqhWMU2Tbq8fWShR2jM2y2W5nvlyqs+7aJkwmJ3X2c6Dce6jv+eE2/+HWGRfhZ36vlqRm87y5xPme2rO33VzS2O5EqNRFyPPpNNUKxXK5XJH8oDNdWAdDn4cY7mfkKxPmohSk1ILBOwOLBwOEw6HFzQ0zYnM7piLS17hQUlOUjE665jnKqHMpe6GldhrT9F4D9lclfddfj8Ar3jxYEvpsKVq3x7sSCmZnp62r12xuqRo0f2BVak01rxXytR4jtd/YoRvf+m0lut9HbMGLhylJn0XjcVIzswghKCvv9/RVj3EcIzlKjPX3WPLT1ksOYJhASzLargmm9vtWKqRWa1E5k4jMF2ahssluejtR9Lb7SESXr4+7kai7oYVQlDeO7b4BxbgYFm76nRNr13k71osd0gpMQyDdCqF5nJhVKskpqeJxeOHxKDNwcYxlqtM3d0jpaRUKjE5OkooHMJjSM556IZ5EZxL7awsy6JUKtkldzSt0V5OJGBdiUUIgRr0r3oic6cRmLquENfdxKOrn1B/sLNaEb8Hw9rVMUcEFozotSwLaVk1tZ39FwVQd8O63W56enupVCqkkvPL5ZqmiWEYjWtWbzsGdWPgGMs1QgiBXltn8/v9ICV5vwe337+ih0dKSSqVolIuEwqFSKVSRCIRwpHIkvYrpaRcKjE5OcnA4CBVt4tE1mBw0yYqw+OL72A/Uq6YqIpYMym3VqyWyPdGYH/MSsMhF1d99IR5wuDNGIbB8N699Pb27lf1q7obtqe3txa5va899/hGhoeJx+NYlkUymWRoaOiQvW82Go6xXEPUWvHY+tpGc3vZ+1RVent7GRkeJpVK4fX5lmwoYV8gjqppDO/di5SSSCRywOSpgV1c+NEncvz4lyP0dHt4+QsH6elyr/kxmqZJPp/HqFaJRKON9nJ+53YcTKLvqzkrXVBof5FoUVVVCUciTExM0O2dXfC5eT9rQfP3tHuGNU0jHo+TqEVqd3d3oziGcsPgGMsV0EpdZS6dPGRLwbIsyuVyQ3O1XCphmmZDCGApKIpCMBgkMT0N2OH+B1LQwv07Mnzgo/c1Xt/w24k10z9tpp67l0qlKBaLlMvleXJty6HZQErDbIjbNzPXRV2uWGRzVTweH+ftvJm5l+dAW3NcjJUY3np5MYCpYp6enh48yywvtlZYTbmn1gJ5qA4HH46xXCaGYWCaJi6XC8uyGu21fnDrbthwOEw0FmN8bIxcNtvxrKcuLSeEQqVSJjE9TSgUolQqMToywuCmTfs9GKSVyzNfsPjuj/fMel8qXWXXo7k1N5aKouDz+fD6fBQLBXRdJ7QKA4nmNdxOqr+UyyZ/umuGf756B8WSRU+Xm6s/cSJbNvlWdBwHK4ZhMDkxQSgcRgCTk5Ns2rQJ3X1grHUbhkEymaS7uxtLShLT0/NUixwOXhxjuQws02zMEgxVxTTtEaSpqWvuRqu7YcHu1Hv7+hrbFz1uyyKXy9XKg/Xh8ajE43ECwaBdFaVQaAibr8Y5dGJ0LdOkWCiQzeXo6emhUCiQy+Xo6urG455/TvujGn3dDVssFBpC4KlkclXdsJ2QzRl8/HM7qFTs+2tyusw/fX4HV12x/ZDM36tHB9dnl16fD/UAkjzUNK1RVBvA5/MdULNeh5Vx4NxpBxGKqkKxxB/WKe9tufmGiqKA8KC53CSmbZm5WLyXYtEiEHCtyppqM50YXaEouHSdUrHIyPAwhmEQi8VQFMHbX38Yd96TxDDsYI7DNvvYvB9mVXU3bCweJxQKUSgUMAxjxfs1l1jBvlAyG4ayzq7Hckvez0ZBVVW8Xm9juaG5fSBQF8xofu2wcXCM5SFEKlNhZLRIyG8bRNM0KZZMsnmDQGB1Xci5nEG5YhLwa7hbzBDr2FU0bEOdzWZRVZVQOIyiKGwe9PKDr53JH/48TXeXm5OOD+8XybC6G1ZKOau90s6vXF7aGpbfqxL0a2Tz+wz16SdF0F2H7mxlMcELB4e1wjGWy8CqrfsdbLh1hd4uSSZdwOuPYVYLFHJTbBnavGrfIaVkZLzE1V97mMf3FHjqk+K84ZVb2ho5yzQpFApks1n8fj/VapVsNksgEMDtVuntFrz8RaujErMUVjsway6dlEoLh1x8/uMn8LHP7mB4rMgp28N86MJjHMEGB4d1wDGWy6CVMPjBgNejYZl+hND5wc/HePb53XTHNEoli0BgdVxGM6kqF176f0wlKgD89PpRCgWDi955FD7v/Nut7oatV6gwLYtisQiAUa1SLJU2TJCENxbkuNt+hZQSOyZW0BXTcUVbl2nTNIVjjwrylU+fjCUlLpdCOOgYSgeH9eDg6/EdVoSiKphSJRbRGZ+qomouAqs4UykUjIahrPPb26YpllrPxIUQ6LpOMBgEISiVSkxPTZFKpRgdHW2plHKw4umK4j9skN/s0rjuXtA3DeAeGlhwXVcIQSyq0xVzO4bSwWEdcWaWy+Rg0dqci9ej4fVovPpvV8/12ozHraIo0OylHuj1LCiNK4RozBz9fj/lcJh0KoUQgs2bN2+IWSWAqgp6ujy85bVb99t3dpILfCBgmiamaaJpWkNeTtO0g8KDY1lW4zib2w4bC+eqLhM9HsG3ddO8fwea+sr+xudTefvrDmu8drsVLrnwmI4DcyzTpJDPI4RASkk+n29bONhhYQzDoFwu26W+mtoHGpZlkc/lGN67l2KxyPTUFKMjI+t9WB1hGAbpdLqhC1tvO2w8nJmlw6ri92m86LkDPP2cHhLJCn09bkKBzm4zy7IolkqNGWUunyedTuMPHNiz9QORugFKJBL09PSQyWSoVqsMbV4bj8JKUBQFfyBAsVRiYtzWJR4YHFzno1qcejWS5MwMlXKZqmFgGIa9pOCw4XCMpcOqE/BrBPwa/b2eJX2unqZRD+hprsPpsDQURSEQDFIul5mcnEQIweCmTQesGxZs49OqfaBSX2/v6elhcnISsIuZO/frxsRxwzocUDQnds9N8nZYGlJKqjUxBSklpmEckEaoPgsuFgr0DwwQCAQaM8wDHcuySKfTjUFIKpU6IF3dDivHmVk6OGxA6gaoWqmwaWiIdDrN5OTkAe2G9Xi9aJqG3tVF5CBY96u7YQ3DYNPQUEO7VsZi631oDmuAYywdHDYgdTesv+bGjsViRKPRA9YNezBKxdXdsEObNzciuutth42HYywdHDYoB5vxORhpThNxjOTGZkOtWQohniOE2CmEeEQIccl6H4+Dg4ODw8ZgwxhLIYQK/CvwXOA44FVCiOPW96gcHBwcHDYCG8ZYAmcCj0gpH5NSVoD/BF60zsfk4ODg4LAB2EjGchDY2/R6uLbNwcHBwcFhRWwkY7koQoi3CSHuFELcOTU1td6H4+Dg4OBwkLCRjOUIMNT0elNtWwMp5TVSytOllKd3d3fv14NzcHBwcDh4EQeiosdyEEJowC7gGdhG8g7g1VLKB9q8fwrYvcSv6QKmV3KcByHOOR86HIrnfSieM6zsvLdIKQ+52caGybOUUhpCiHcDNwAq8K12hrL2/iVfbCHEnVLK01dwmAcdzjkfOhyK530onjMcuue9EjaMsQSQUv4K+NV6H4eDg4ODw8ZiI61ZOjg4ODg4rAmOsVwa16z3AawDzjkfOhyK530onjMcuue9bDZMgI+Dg4ODg8Na4cwsHRwcHBwcFsExlg4ODg4ODovgGMsOOBSqmQghhoQQvxVCPCiEeEAI8d7a9pgQ4kYhxMO1/6PrfaxrgRBCFULcLYS4rvb6MCHE7bVr/kMhhL7ex7iaCCEiQogfCyF2CCEeEkI8+VC41kKI99Xu7/uFED8QQng24rUWQnxLCDEphLi/aVvL6ytsvlg7/3uFEKeu35EfuDjGchEOoWomBvB+KeVxwFnAP9TO8xLgZinlUcDNtdcbkfcCDzW9/jRwtZTySCAJvHldjmrt+Bfgf6WUxwInYZ/7hr7WQohB4D3A6VLK7dj52K9kY17ra4HnzNnW7vo+Fziq9u9twFf30zEeVDjGcnEOiWomUsoxKeVfa+0sduc5iH2u36697dvAi9fnCNcOIcQm4PnAN2qvBfB04Me1t2yo8xZChIFzgW8CSCkrUsoUh8C1xs4t99YUv3zAGBvwWkspbwFm5mxud31fBHxH2vwZiAgh+vfPkR48OMZycQ65aiZCiK3AKcDtQK+Ucqz2p3Ggd50Oay35AvBBwKq9jgMpKaVRe73RrvlhwBTw7zXX8zeEEH42+LWWUo4AnwX2YBvJNHAXG/taN9Pu+h5yfdxycIylwyyEEAHgJ8A/SikzzX+Tdp7Rhso1EkK8AJiUUt613seyH9GAU4GvSilPAfLMcblu0GsdxZ5FHQYMAH7muyoPCTbi9V1rHGO5OItWM9koCCFc2Ibye1LKn9Y2T9RdMrX/J9fr+NaIpwAvFEI8ge1ifzr2el6k5qqDjXfNh4FhKeXttdc/xjaeG/1aPxN4XEo5JaWsAj/Fvv4b+Vo30+76HjJ93EpwjOXi3AEcVYuY07EDAn6xzse06tTW6b4JPCSl/HzTn34B/H2t/ffAf+/vY1tLpJSXSik3SSm3Yl/b30gpXwP8Fvi72ts21HlLKceBvUKIY2qbngE8yAa/1tju17OEEL7a/V4/7w17refQ7vr+Anh9LSr2LCDd5K51qOEo+HSAEOJ52Ota9Wom/7zOh7TqCCGeCvwBuI99a3cfxl63/BGwGbuk2cullHMDBzYEQojzgQ9IKV8ghDgce6YZA+4GXiulLK/n8a0mQoiTsQOadOAx4I3Yg+cNfa2FEB8DXoEd/X038Bbs9bkNda2FED8AzscuxTUBXAH8nBbXtzZw+DK2S7oAvFFKeed6HPeBjGMsHRwcHBwcFsFxwzo4ODg4OCyCYywdHBwcHBwWwTGWDg4ODg4Oi+AYSwcHBwcHh0VwjKWDg4ODg8MiOMbSwWEF1Kp3vKvWHhBC/Hixz6zgu06upTE5ODjsZxxj6eCwMiLAuwCklKNSyr9b5P0r4WTAMZYODuuAk2fp4LAChBD1KjQ7gYeBbVLK7UKIN2BXdfBjlz76LLYAwOuAMvC8WkL4Edgl4LqxE8LfKqXcIYR4GXYiuYkt+P1M4BHAiy1F9kngOuBLwHbABXxUSvnfte9+CRDGTrj/rpTyY2v8Uzg4bGi0xd/i4OCwAJcA26WUJ9eqtVzX9Lft2NVbPNiG7kNSylOEEFcDr8dWhboGeIeU8mEzsogSAAABtElEQVQhxJOAr2Dr014OXCClHBFCRKSUFSHE5di1GN8NIIS4Elue701CiAjwFyHETbXvPrP2/QXgDiHE9Y4qi4PD8nGMpYPD2vHbWm3QrBAiDfyytv0+4MRahZezgf+yFccAcNf+vxW4VgjxI2zB71Y8G1sE/gO11x5sKTOAG6WUCQAhxE+BpwKOsXRwWCaOsXRwWDua9UWtptcW9rOnYNdSPHnuB6WU76jNNJ8P3CWEOK3F/gXwt1LKnbM22p+bu77irLc4OKwAJ8DHwWFlZIHgcj5Yqxf6eG19klrVh5Nq7SOklLdLKS/HLtQ81OK7bgAurAlhI4Q4pelvzxJCxIQQXuy101uXc4wODg42jrF0cFgBNVfnrUKI+4GrlrGL1wBvFkLcAzyAHSwEcJUQ4r7afm8D7sEuJXWcEOL/hBCvAD6BHdhzrxDigdrrOn/Brk16L/ATZ73SwWFlONGwDg4bjFo0bCMQyMHBYeU4M0sHBwcHB4dFcGaWDg4ODg4Oi+DMLB0cHBwcHBbBMZYODg4ODg6L4BhLBwcHBweHRXCMpYODg4ODwyI4xtLBwcHBwWER/j8opU/nLc0x6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'VelocityOfMoney',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAEWCAYAAADIJfYaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3WmYFNX59/Hvj5lhR1kEVFBABQVBtlHARAMSFPd9j+JuoolRExUTE01iIsYlamJUomyJD4kSVDRq4A8SjIIEEDdARUEZZF+UHWbmfl6cM9A0s3YPPcNwf66rr646tZ1TVV131anTVTIznHPOOZcZtao6A84559zexAOvc845l0EeeJ1zzrkM8sDrnHPOZZAHXueccy6DPPA655xzGZR24JV0r6SVkpbG/rMlLZK0XlL39LOYcr4ylg9JbSWZpOzduZzqQNKlksZXdT6cc640kvpKyqvqfBSnzMAraaGkTTGAFX3+FIcdDPwE6GRm+8dJHgR+aGYNzezdVDMWA9lhqU5fVj7i/DfE8iyW9LCkrDSWVypJl0iaEZe3RNJrkr69u5ZXjvyMkLRV0rr4+VDSfZL2LW06M3vWzE5McZn3SNqWtC/dnloJ9mwJ63+9pNWSJkg6oqrzVRZJV0j6byXPs7akhyTlxfWxUNIjlbkMV7rKClKS9pH0iKQv47b8LPbvF4cvlPTdhPEPkPRMPCaukzRP0q8kNYjDE4/TKyWNltQ43XxWtfJe8Z4eA1jR54cx/WBglZktTxi3DfBRpeYyNeXJR1czawh8B7gQuGp3ZETSrcAjwO+AloT19mfgzBLGz9SV8+/NrBHQHLgS6A28VbTT76Z8/SNpX/p9McuRpL3hNsjv4/7XGlgOjKjoDPa0WpYS8nsnkAscAzQC+gKzMpitGi0TvydJ2ZJqAxOBI4GBwD5AH2AVYdsmT9MUmArUA/rEY9EAoDFwaMKoRcfpQ4AmwD27ryQZYmalfoCFwHeLSf8usAkoBNYDo+O3ARuAz+J4BwL/BFYAC4CbEuaRBfwM+AxYB8wEDgKmJMxnPXBhMcuvBdwFfEE4aI0C9gXqFJePYqY34LCE/ueAxxP69wWeAZYAi4F7gayEfD8IrAQ+B26M88suZjn7xvycX8o6vgcYA/wN+Aa4JpbjEeCr+HkEqBPH3w94BVgLrAbeBGrFYXfE/K4DPgb6l7DMEcC9SWmNYnl/GPuvAN4C/kD48dwb0/6btB5viuthJfBAUV5KKOffShg2GfhtXN4m4LB0tgFJ+23ysgknGW/Hdfge0DcpL7+JeVkHjAf2Sxj+7YRpF8V1cjSwrCh/cbxzgPfKs/6BU4H1sfsYwgFpbSz7n4DaSev8RuBTYEFMezTm5RvC7+i4pLI/T9i/1gEfAB0IAW95nO7EsvZ9oCOwGSgg7NNr4/h14rb4Mq6DJ4F6cVhfII+wXy4F/lrMungFuLmE9XQl8HJC/6fA8wn9i4BusfsIYALhN/ExcEHCeOXJ488I+9NC4NJSfq8HAuPicuYD1yat6+cIx6N1hJP/3FLmdSzwP+Dr+H1s0n54HzA9bteXgKYV2IeTf09XAnNjvj4Hro/jNmDnY/n6WMbSjkG7bFfCcWsZ0LCU8i4k/i4J+9UHlHC8KOE4fQMwPmn/2KVMiXlM6B/MjlgzBzg7YdgVwH/jPrKGEKtOThjeFBge18Ma4MWEYacBs+N2eBs4qqTybJ+mzBFKCLzFFSx5RRGC40zgl0BtwhnL58BJcfhtccUfDgjoCjQrboUXs+yrCDv9IUBDYCwJP+pyTJ+YzyMIB5lbEoa/ADwVd8oWhJ2/aEf9PjCPcJLQFHiDkgPvQCC/uGFJP9ZtwFlxndUDfg1Mi8tuHjfob+L49xEOHDnxc1xcf4cTDkQHxvHaAoeWsMwRJAXemD6KcFVatDPmAz8CsmO+rmDXwPtGXA8HA58A15RSztIC75eEs+XsWK6UtwGlBF6gFeFE4pS4vgfE/uYJefmMEJzqxf4hcVgbwg/34pjHZuw48M9h5x/rC8BPylr/hP33/wFvxv6ehINqdtyGc0kITLGcE2K5i4LH92Jesgm3f5YCdRPKvhk4KQ4fRTiw/DyW4VpiAC/Hvr/T9o9pfyAEoqaEk7eXgfsSjhH5wP2EA3m9YtbFXXHb3wB0AZQw7BDCAa0WIRh8QTzmxGFr4rAGhH3/yljG7oQg2qkCeXw45vE7hJP2w0vYdlMINVZ1gW6Ei4oTktb1KYSTlfuAaSXMp2nM/2UxzxfH/qJj4GTCiU/nWL5/UrF9OPn3dCrhSlKxjBuBHqUcy0s7Bu2yXYG/AyPLG0/ivH9VxviJx+kmhJPgXycML3eZgPMJ+1AtQg3nBuCAhP16G+G3kAX8gBBkFYf/C/hHzEMO8J2Y3p1w8torTjcolrFOqeUqbWDCilpP2PmLPteWsrESV1Qv4Muk4XcCw2P3x8CZZa3wEoZPBG5I6D88rrjsck5vhLPIDbF7NDvO5loCW0g4SBB+FG/E7knA9xOGnUjJgfdSYGkZ6/geYEpS2mfAKQn9JwELE34QLyWXj3BWu5xQG5FTxjJHUHzgHQJMSNgZk7ffFewaeAcm9N8ATCylnFuT9qWik4TJ7PyDSmsbUHrgvYOkKy/g38CghLzclVSm1xP23xdKKN8dwLOxuynhIHBAKet/c1wHSwlBoaSTpJsTlxnLeUIZ23cNoYquqOwTEoadTvhNF9UeNIrzbFyO9Z68/UX4DR2akNaHHVfifeM2r1tKXrMIV/BvxWV/VbQt4vBFQA/gImAo4UTgCEKQHRfHuZB44pIw3VPA3eXMYz7QIGH4c8AvisnrQYQr/kYJafcBIxLW9f8lDOsEbCqh3JcB05PSpgJXJOyHQ5LmtTWur/Lsw78ubrkJ478I/DhhHSQfy0s7Bu2yXQkng0PKWOZCdgTeT0n4DZcwftFxem1c7/OAVqmWKWnc2cT4Q9iv5ycMqx+XvT9wAKE2oEkx83iCeDKSkPYxMTCX9Cnv/aGzzOz/yjluojbAgZLWJqRlEapGIezEn6UwX9hx9lvkC8KZXUvCWWJ59IjLP58QcBoQfvhtCGc1SyQVjVuLcAAoWvaihPkk5iPZKmA/Sdlmll/KeIuS+osr34Gx+wHCD3x8zN9QMxtiZvMl3RyHHSnp38CtZvZVKctN1opQhVZSvsrKe2I+i/OcmX2vHPOpzG2QrA1wvqTTE9JyCFfNRZYmdG8kXJVC6fvs34C58R75BYRAsKSUfDxoZnclJ0rqQLj6yiUcALIJNUeJFiVN81PgasJ6McL9tf0SRlmW0L0JWGlmBQn9EMp4IKWv92TNYx5nJowvwu+8yAoz21zC9MR8PA48LqkeoTZrmKTpZjYX+A/hIHpY7F5LuLrpE/shbNNeSceabEIVaHnyuMbMNiT0l7QfHwisNrN1SePmJvQn7zt1S/j9J//Gi+bVKqE/eR/PIWzX8uzDyfvIyYQTkQ6EbVqfUONYktKOQbDrdl1FCFLlVd7xe8RjWw7hJPhNSZ3MbHNFyiTpcuBWQi0ShP098TeyfbuZ2ca4rzQknESvNrM1xcy2DTBI0o8S0mpT+jFwt/+PdxHhrLJxwqeRmZ2SMPzQUqYvzVeEQhc5mHDWuqz40YtnwXOEM81fJuRrC+G+XlG+9zGzI+PwJYQDcOKySzI1zuussrKS1F9c+b6KeV5nZj8xs0OAM4BbJfWPw/6fmX07TmuEqqBykdSQcLX8ZkJycr6Kk7wuKhLoEyUuK91tsIHwIyyyf0L3IsLVQuJ+2cDMhpQjjyXus2a2mLC9zyFczfy1HPMrzhOEM/v2ZrYP4d6jksbZvq4kHQfcTgj2TcysMeGeYfI05VHWek/eH1YSAveRCePva6ExzC55LYuZbTKzxwlX7J1iclHgPS52/4cQeL/DjsC7CPhP0jZtaGY/KGcemyQ1KixpP/4KaCqpUdK45T3ZT55Xm6S05Hkl7+PbCOUpzz6cuI/UIVRVPwi0jPvIq+zYR4rbRiUeg0qY5v+Ak0pqnFmM/wPOLm/DLzPbBjwNtAM6l6NM20lqA/wF+CGhKr8x8GFx4xZjEWGbF9eaehHw26TtUN/MRpc2w90deKcD6yTdIamepCxJnSUdHYc/DfxGUvvY8u4oSc3isGWEezglGQ3cIqldDBi/I9ybLO2qsjRDgGsl7R+vUsYDD8Xm8bUkHSrpO3Hc54CbJLWW1IRw075YZvY1IaA/LuksSfUl5Ug6WdIuLXqTyneXpOaxKf4vCVdUSDpN0mEKp2RfE6pgCiUdLumEuENuZkeDiVJJqiOpJ6GaZg2hEUFF3CapiaSDgB8T7oWkpRK2wWzgoriuc4HzEob9DThd0klxn6yr8HeK1uXI2rPAdyVdEFtyNpPULWH4KEIQ7EJod5CKRoTqtfUKfzH6QTnGzyfca8yW9EvCFW+FlWO9LwNaxxasmFkh4YD2B0ktACS1knRSeZcp6ea4/uvFdToolqnob4D/AfoRqr/zCCeGAwn3tIvGeQXoIOmyuM1zJB0tqWMF8vgrhb82HUdoMPN8MetnEeFe531xvzmKUNPwt/KWN8GrMc+XxHJfSDjZeCVhnO9J6iSpPuEW05hYQ1DRfbg24V7sCiA/Xikm/i1wGdBMO/+dsMRjUAn+SghE/5R0RNx3mkn6maRTihn/YcJ+OjIGxqLt8nBcrztR+LvnlYTj2uflKFOiBoQThRVxXlcS7p2XKf4mXgP+HI9zOZKOj4P/AnxfUq8YwxpIOlU7n5jtoryB92Xt/N/LF8qZ4QLCDtyN0JhjJSHYFm3chwkH0PGEA80zhJv0EKpLR0paK+mCYmY/jLChp8R5byY0AkqJmX0Q53VbTLqcsGHnEILRGHZUi/yFcD/lPcLfHko9wJrZQ4QqjrsIG34R4czrxVImuxeYAbxPqDqZFdMA2hPOFtcTrrD+bGZvEHbCIYT1vJTQKOLOUpZxu6R1hCqfUYTqzGOTqtzK46U47WxCI4RnKjh9SdLZBr8gXJmuAX5FaLwEbD94nkm4kizaHrdRjt+DmX1JaNDyE0KV/GxCo8AiLxCuEl4ws43lLunOfgpcQmjE9RfKPpH5N/A6oWHbF4TfQnluEZSktPU+idBSd6mklTHtDkJDx2mSviHsm4dXYHkbgYcI++xKwv3ec83scwAz+4Swr78Z+78hHHjfKqouj1W/JxLuA38V51XU8Kc8eVway/oV4eTq+2Y2r4T8XkyorvyKsL3vTuVWnJmtIhwff0L4Dd4OnGZmKxNG+yuhPcBSQmOum+K0FdqH4/q5iXC8XUPYv8YlDJ9HCLSfx2PugZR+DCpuGVsINWbzCPd7vyFcfO0HvFPM+KsJrbq3Ae/EY9FEwsXE/IRR35O0PuZ7EKE18uqyypS0rDmEfWwq4SSjC6FNQXldFvM5j9CO5uY43xmEBll/inmYT7hfXKqiFlvOpUSSEapE55c58u7NR1vCCVhOGrUelZWXzwitgFNpF+EyTFJfQsO78tR4ZIykyYR8PV3VeXGVa294SIFzGSPpXEKV1qSqzotzrnrao55641x1Fq9QOgGXxfuKzjm3C69qds455zLIq5qdc865DPKq5jLst99+1rZt26rOhnPO7VFmzpy50syaV3U+qiMPvGVo27YtM2bMqOpsOOfcHkVSRZ4mt1fxqmbnnHMugzzwOueccxnkgdc555zLIL/H69weZNu2beTl5bF5c4kv+3Euo+rWrUvr1q3Jycmp6qzsMTzwOrcHycvLo1GjRrRt2xYplZcPOVd5zIxVq1aRl5dHu3btqjo7e4yMB974BptRhPfmGuFdso9Kakp4GHxbwsuSLzCzNfENPI8SHky/kfCS6FlxXoMILx6A8FL3kTG9J+HB4vUIbwD5sZlZScuozPJtXbWG/HUbKCgwsuvVpnBjuDKpVb9uyt0mkVWvLoUbN+3cbZDVIIy3UzeQVb/83RnP356U10rMn0nUygp3d7IbNaR2s+LeMla6zZs3e9B11YYkmjVrxooVK6o6K3sWM8voh/CWkx6xuxHhjSqdgN8Dg2P6YOD+2H0K4ZVMAnoD78T0poQ3lDQFmsTuJnHY9Diu4rQnx/Ril1Hap2fPnlYR6z9fZK9kd7BXsjvYysnTKqW7Mue1O7qrSz6qe14TPxsWLKrQflVkzpw5KU3n3O5U3H4JzLAMx5c95ZPxxlVmtsTiFauF1zrNBVoRXnE1Mo42kh0vjj8TGBW35TSgsaQDgJOACRZeD7WG8BqqgXHYPmY2LW78UUnzKm4ZlVm+yp6lq4F8N3Fu71WlrZrjq9y6E97V2NLCC4chvHuyZexuxc7vFs2LaaWl5xWTTinLSM7XdZJmSJpR0SqULVv92fiubHty4M3KyqJbt2507tyZ008/nbVr11Zo+nvuuYcHH3yw2GGjRo2ic+fOdOnShe7du5c4XmVr27YtXbp0oUuXLnTq1Im77rqr1AZsxx57bIXm37dvXw4//HC6detGt27dGDNmTLpZdnuwKgu8khoC/wRutvBi6+3ilepuPTSVtgwzG2pmuWaW27x5xZ54VrdOVmVkz9VwtfbgP/LVq1eP2bNn8+GHH9K0aVMef/zxSpnva6+9xiOPPML48eP54IMPmDZtGvvuu+8u4+Xn757XLb/xxht88MEHTJ8+nc8//5zrr7++xGW//fbbFZ7/s88+y+zZs5k9ezbnnXfeTsPMjMJCP2nfW1TJz19SDiHoPmtmY2PyslhNTPxeHtMXAwclTN46ppWW3rqY9NKW4ZxLQZ8+fVi8ePH2/gceeICjjz6ao446irvvvnt7+m9/+1s6dOjAt7/9bT7++ONi53Xffffx4IMPcuCBBwJQp04drr32WiBcMd58883k5uby6KOPsnDhQk444QSOOuoo+vfvz5dffgnA888/T+fOnenatSvHH388AB999BHHHHMM3bp146ijjuLTTz8ttUwNGzbkySef5MUXX2T16tVMnjyZ4447jjPOOINOnTptHwdg8uTJHH/88Zx66qkcfvjhfP/73y93AF24cCGHH344l19+OZ07d2bRokWMHz+ePn360KNHD84//3zWr18PwOuvv84RRxxBjx49uOmmmzjttNOAXWsPOnfuzMKFCwH429/+tr3c119/PQUFBdvz/vOf/5yuXbvSu3dvli1bBsCyZcs4++yz6dq1K127duXtt9/ml7/8JY888sj2+f/85z/n0UcfLVf5XMky/lrA2Ep5JLDazG5OSH8AWGVmQyQNBpqa2e2STgV+SGhk1Qt4zMyOiS2UZwI94ixmAT3NbLWk6cBNhCrsV4E/mtmrJS2jtPzm5uZaRZ7VvHXVWvLXraewELLq1qZw4yYgvZa4SNSKrW936k5zvpXVXd3zV13yioTSbNU8d+5cOnbsWOHpKlPDhg1Zv349BQUFXHTRRVx99dUMHDiQ8ePHM2bMGJ566inMjDPOOIPbb7+dBg0acMUVV/DOO++Qn59Pjx49+P73v89Pf/rTnebbtGlTFixYUOxVbt++fenUqRN//vOfATj99NM577zzGDRoEMOGDWPcuHG8+OKLdOnShddff51WrVqxdu1aGjduzI9+9CN69+7NpZdeytatWykoKKBevXo7zb/omez77bff9rRu3brx1FNPsWnTJk499VQ+/PDD7X+ZKVoHkydPZuDAgcyZM4c2bdowcOBArr/++l2uaPv27cuSJUu2L3fixImsW7eOQw45hLfffpvevXuzcuVKzjnnHF577TUaNGjA/fffz5YtW7j99ttp3749kyZN4rDDDuPCCy9k48aNvPLKK9xzzz00bNhw+7rs3Lkzr7zyCps2beL2229n7Nix5OTkcMMNN9C7d28uv/xyJDFu3DhOP/10br/9dvbZZx/uuusuLrzwQvr06cPNN99MQUEB69evZ82aNZxzzjnMmjWLwsJC2rdvz/Tp02nWrNlO5Stuv5Q008xyy71j7UWq4n+83wIuAz6QNDum/QwYAjwn6WrgC+CCOOxVQtCdT/g70ZUAMcD+BvhfHO/XZrY6dt/Ajr8TvRY/lLKMSlO7WeOUDqjO7Sk2bdpEt27dWLx4MR07dmTAgAEAjB8/nvHjx9O9e3cA1q9fz6effsq6des4++yzqV+/PgBnnHFGSsu98MILt3dPnTqVsWNDZdlll13G7beH8+dvfetbXHHFFVxwwQWcc845QLgq/+1vf0teXh7nnHMO7du3L9fyEi9KjjnmmBL/p3rMMcdwyCGHAHDxxRfz3//+d5fAC6GqOTd3Rxxat24dbdq0oXfv3gBMmzaNOXPm8K1vfQuArVu30qdPH+bNm0e7du225/t73/seQ4cOLTXvEydOZObMmRx99NFA2GYtWrQAoHbt2tuvmHv27MmECRMAmDRpEqNGjQLCffx9992Xfffdl2bNmvHuu++ybNkyunfvvkvQdRWX8cBrZv8l/M2nOP2LGd+AG0uY1zBgWDHpM4DOxaSvKm4ZzrnyK7rHu3HjRk466SQef/xxbrrpJsyMO++8c5d7o4lVlaU58sgjmTlzJieccEKxwxs0aFDmPJ588kneeecd/vWvf9GzZ09mzpzJJZdcQq9evfjXv/7FKaecwlNPPVXiMoqsW7eOhQsX0qFDB957771Sl538n+qK/Mc6cb5mxoABAxg9evRO48yePTt5su2ys7N3qtouahBmZgwaNIj77rtvl2lycnK25zErK6vMe+bXXHMNI0aMYOnSpVx11VVlF8qVaQ9u4uGcq0r169fnscce46GHHiI/P5+TTjqJYcOGbb8vuXjxYpYvX87xxx/Piy++yKZNm1i3bh0vv/xysfO78847ue2221i6dCkQrviefvrpYsc99thj+fvf/w6EK8njjjsOgM8++4xevXrx61//mubNm7No0SI+//xzDjnkEG666SbOPPNM3n///VLLtX79em644QbOOussmjRpUuZ6mD59OgsWLKCwsJB//OMffPvb3y5zmuL07t2bt956i/nz5wOwYcMGPvnkE4444ggWLlzIZ599BrBTYG7bti2zZs0CYNasWSxYsACA/v37M2bMGJYvD81YVq9ezRdflP6Wvv79+/PEE08AUFBQwNdffw3A2Wefzeuvv87//vc/TjrppJTK5nbmj4x0zqWse/fuHHXUUYwePZrLLruMuXPn0qdPHyDcB/3b3/5Gjx49uPDCC+natSstWrTYXv2Z7JRTTmHZsmV897vfxcyQVOIV1h//+EeuvPJKHnjgAZo3b87w4cMBuO222/j0008xM/r370/Xrl25//77+etf/0pOTg77778/P/vZz4qdZ79+/ba3Lj777LP5xS9+Ua51cPTRR/PDH/6Q+fPn069fP84+++xyTZesefPmjBgxgosvvpgtW7YAcO+999KhQweGDh3KqaeeSv369TnuuONYt24dAOeeey6jRo3iyCOPpFevXnTo0AGATp06ce+993LiiSdSWFhITk4Ojz/+OG3atClx+Y8++ijXXXcdzzzzDFlZWTzxxBP06dOH2rVr069fPxo3bkxWlv9rozJkvHHVnqaijauc252qQ+Mqt8PkyZN58MEHeeWVV2rsMgsLC+nRowfPP/98iffHvXFVxXhVs3POuWLNmTOHww47jP79+5e7UZorm1/xlsGveF114le8rjryK96K8Ste55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zpXb5s2bOeaYY+jatStHHnnk9hchLFiwgF69em1/lvDWrVurOKfOVV8eeJ1z5VanTh0mTZrEe++9x+zZs3n99deZNm0ad9xxB7fccgvz58+nSZMmPPPMM1WdVeeqLQ+8ztVg4ycv49yrpnHcGf/h3KumMX7ysrTmJ2n7K/G2bdvGtm3bkMSkSZO2vxhg0KBBvPjii2nn3bmaygOvczXU+MnLuP9Pn7BsxRbMYNmKLdz/p0/SDr4FBQV069aNFi1aMGDAAA499FAaN25MdnZ4Am3r1q13ekevc25nHnidq6GeGrWALVt2fin7li2FPDVqQVrzzcrKYvbs2eTl5TF9+nTmzZuX1vyc29t44HWuhlq+ckuF0iuqcePG9OvXj6lTp7J27drtr5fLy8ujVatWlbIM52oiD7zO1VAt9qtTofTyWLFiBWvXrgXCy9UnTJhAx44d6devH2PGjAFg5MiRnHnmmSkvw7mazgOvczXU9Ze3o06dnX/iderU4vrL26U8zyVLltCvXz+OOuoojj76aAYMGMBpp53G/fffz8MPP8xhhx3GqlWruPrqq9PNvnM1VsbfxytpGHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJcZqLgZ8BBnwFfM/MVkpqCvwDaBvndYGZrZEk4FHgFGAjcIWZzcpEmZ2rCif2bQmEe73LV26hxX51uP7ydtvTU3HUUUfx7rvv7pJ+yCGHMH369JTn69zeJOOBFxgB/AkYlZD2NPBTM/uPpKuA24BfANcCmFkXSS2A1yQdTbhSfxToFIPt74EfAvcAg4GJZjZE0uDYfwdwMtA+fnoBT8Rv52qsE/u2TCvQOucqX8arms1sCrA6KbkDMCV2TwDOjd2dgElxuuXAWsLVr+KnQbyS3Ydw1QtwJjAydo8EzkpIH2XBNKCxpAMqsWjOOedcmarLPd6PCIER4HzgoNj9HnCGpGxJ7YCewEFmtg34AfABIeB2AooeldPSzJbE7qVA0el+K2BRwjLzYppzzjmXMdUl8F4F3CBpJtAIKHrQ6zBCgJwBPAK8DRRIyiEE3u7AgcD7wJ3JMzUzI9wDrhBJ10maIWnGihUrUiiOc845V7xqEXjNbJ6ZnWhmPYHRwGcxPd/MbjGzbmZ2JtAY+AToFod/FoPrc8CxcXbLiqqQ4/fymL6YHVfSAK1jWnH5GWpmuWaW27x580otq3POub1btQi8seEUkmoBdxFaOCOpvqQGsXsAkG9mcwgBs5Okoqg4AJgbu8cBg2L3IOClhPTLFfQGvk6oknbOOecyIuOBV9JoYCpwuKQ8SVcDF0v6BJhHuGc7PI7eApglaS6hZfJlAGb2FfArYIqk9wlXwL+L0wwBBkj6FPhu7Ad4FfgcmA/8Bbj1zOrxAAAgAElEQVRhtxbUuRpq7dq1nHfeeRxxxBF07NiRqVOnsnr1agYMGED79u0ZMGAAa9asqepsOldtKdTUupLk5ubajBkzqjobzgEwd+5cOnbsWKV5GDRoEMcddxzXXHMNW7duZePGjfzud7+jadOmDB48mCFDhrBmzRruv//+Ks2ny5zi9ktJM80st4qyVK1Vi6pm51zlMzOWfPUVS776isLCwu3d6Zxsf/3110yZMmX7k6lq165N48aNeemllxg0KNzh8dcCOlc6D7zO1VBLlyxh8+bNbN68mS+/+GJ799IlqTdtWLBgAc2bN+fKK6+ke/fuXHPNNWzYsIFly5ZxwAHhb/H7778/y5al9+pB52oyD7zO1XBmRmFhYVpXukXy8/OZNWsWP/jBD3j33Xdp0KABQ4YM2WkcSYTn2jjniuOB17kaquX+++8SACXRcv/9U55n69atad26Nb16haetnnfeecyaNYuWLVuyJF5JL1myhBYtWqSecedqOA+8ztVQy5Yu3eUq18xYtnRpyvPcf//9Oeigg/j4448BmDhxIp06deKMM85g5MjwpFZ/LaBzpauKlyQ45zKoqOq3sv7B8Mc//pFLL72UrVu3csghhzB8+HAKCwu54IILeOaZZ2jTpg3PPfdcpSzLuZrIA69zNdT+BxywvSFVy/33336lu/8B6b0bpFu3bhT3F7uJEyemNV/n9hYeeJ2roSRxwIEHbu9P7HbOVR2/x+ucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zlXIo48+SufOnTnyyCN55JFHAPy1gM5VgAde51y5ffjhh/zlL39h+vTpvPfee7zyyivMnz+fIUOG0L9/fz799FP69++/y/ObnXM7+P94nauhXm/ag4J1G3ZJz2rUgIGrZ6U0z7lz59KrVy/q168PwHe+8x3Gjh3LSy+9xOTJk4HwWsC+ffv6+3idK4Ff8TpXQxUXdEtLL4/OnTvz5ptvsmrVKjZu3Mirr77KokWL/LWAzlWAX/E658qtY8eO3HHHHZx44ok0aNCAbt26kZWVtdM4/lpA50qX8SteScMkLZf0YUJaV0lTJX0g6WVJ+8T02pKGx/T3JPVNmKa2pKGSPpE0T9K5Mb2OpH9Imi/pHUltE6a5M6Z/LOmkjBXauRrk6quvZubMmUyZMoUmTZrQoUMHfy2gcxVQFVXNI4CBSWlPA4PNrAvwAnBbTL8WIKYPAB6SVJTnnwPLzawD0An4T0y/GlhjZocBfwDuB5DUCbgIODIu/8+Sdj5Vd86Vafny5QB8+eWXjB07lksuucRfC+hcBWS8qtnMpiRehUYdgCmxewLwb+AXhIA6KU63XNJaIBeYDlwFHBGHFQIr4/RnAvfE7jHAnxTqvc4E/m5mW4AFkuYDxwBTK7eEztVs5557LqtWrSInJ4fHH3+cxo0bM3jwYH8toHPllHLglVQf+AlwsJldK6k9cLiZvZLC7D4iBMYXgfOBg2L6e8AZkkbHtJ7AQZI+icN/E6ufPwN+aGbLgFbAIgAzy5f0NdAspk9LWGZeTCuubNcB1wEcfPDBKRTHuaqX1ahBia2a0/Hmm2/uktasWTN/LaBz5ZTOFe9wYCbQJ/YvBp4HUgm8VwGPSfoFMA7YGtOHAR2BGcAXwNtAASHfrYG3zexWSbcCDwKXpVaUnZnZUGAoQG5ubuW8Pdy5DEv1L0POud0rncB7qJldKOliADPbqBSbMprZPOBEAEkdgFNjej5wS9F4kt4GPgFWARuBsXHQ84R7uxBOAA4C8iRlA/vG8YvSi7SOac4551zGpNO4aqukeoABSDoU2JLKjCS1iN+1gLuAJ2N/fUkNYvcAIN/M5piZAS8DfeMs+gNzYvc4YFDsPg+YFMcfB1wUWz23A9oT7hU7t0cJu7Nz1YPvjxWXzhXv3cDrhHuuzwLfAq4oa6J4v7YvsJ+kvDifhpJujKOMJVRjA7QA/i2pkHB1mliVfAfwV0mPACuAK2P6MzF9PrCa0JIZM/tI0nOEAJ0P3GhmBSmU27kqU7duXVatWkWzZs38v7KuypkZq1atom7dulWdlT2K0jlbkdQM6A0ImGZmK8uYZI+Tm5trM2bMqOpsOAfAtm3byMvLY/PmzVWdFeeAcDLYunVrcnJydkqXNNPMcqsoW9VaOq2azyZU4/4r9jeWdJaZvVhpuXPO7SQnJ4d27dpVdTacc2lI5x7v3Wb2dVGPma0lVBs755xzrgTpBN7ipvVnPzvnnHOlSCfwzpD0sKRD4+dhwv96nXPOOVeCdALvjwgPuvhH/GwBbix1Cuecc24vl3LVsJltAAZXYl6cc865Gi+dVs0dgJ8CbRPnY2YnpJ8t55xzrmZKpzHU84QnTD1NeH6yc84558qQTuDNN7MnKi0nzjnn3F4gncZVL0u6QdIBkpoWfSotZ84551wNlM4Vb9GLCG5LSDPgkDTm6ZxzztVo6bRq9ufWOeeccxWU1pOmJHUGOgHbX01hZqPSzZRzzjlXU6Xzd6K7Ca/36wS8CpwM/BfwwOucc86VIJ3GVecRXkC/1MyuBLoC+1ZKrpxzzrkaKp3Au8nMCoF8SfsAy4GDKidbzjnnXM2Uzj3eGZIaA38hvBxhPTC1UnLlnHPO1VApX/Ga2Q1mttbMngQGAINilXOpJA2TtFzShwlpXSVNlfSBpJfjFTSSaksaHtPfk9S3mPmNS5pXU0kTJH0av5vEdEl6TNJ8Se9L6pFq2Z1zzrlUVTjwSuqR/AGaAtnlDGYjgIFJaU8Dg82sC/ACO/4bfC1ATB8APCRpe54lnUO40k40GJhoZu2Biex4kcPJQPv4uQ7wp24555zLuFSqmh8qZZgBpb4kwcymSGqblNwBmBK7JwD/Bn5BaDE9KU63XNJaIBeYLqkhcCshiD6XMK8zCa2tAUYCk4E7YvooMzNgmqTGkg4wsyWl5dc555yrTBUOvGbWbzfk4yNCYHwROJ8djbTeA86QNDqm9Yzf04HfEE4CNibNq2VCMF0KtIzdrYBFCePlxbRdAq+k6wgBnYMPPjidcjnnnHM7qS4P0LgKeEzSL4BxwNaYPgzoCMwAvgDeBgokdQMONbNbirl63s7MTJJVNDNmNhQYCpCbm1vh6Z1zzrmSVIsHaJjZPODEON8OwKkxPR+4JWGZbwOfAN8BciUtjGVoIWmymfUFlhVVIUs6gPA3J4DF7Px3p9YxzTnnnMuYavEADUkt4nct4C7Ce36RVF9Sg9g9gPAqwjlm9oSZHWhmbYFvA5/EoAvhirnoBQ6DgJcS0i+PrZt7A1/7/V3nnHOZlk5V8yYzK5RUoQdoxPu1fYH9JOUBdwMNJd0YRxkLDI/dLYB/SyokXJ1eVo58DQGek3Q1oXr6gpj+KnAKMJ9wX7jMvz4555xzlS3jD9Aws4tLGPRoMeMuBA4vY34Lgc4J/asIV+LJ4xlwY3K6c845l0npvBbwhtj5pKTXgX3M7P3KyZZzzjlXM6V0j1dStiTF7oMI/63NqsyMOeecczVRKk+uupZwP/eL2D2R0NDq75LuqOT8OeecczVKKlXNNwOHAo2AuUAbM1spqT7wP+D+Ssyfc845V6OkEni3mtkaYI2k+Wa2EsDMNkraWsa0zjnn3F4tlcBbT1J3QjV17dit+Klb6pTOOefcXi6VwLsUeLiY7qJ+55xzzpUglZck9N0N+XDOOef2Cqm0av6epF2eICXpMkmXVE62nHPOuZoplf/x/ojwsvpkY4GfpJcd55xzrmZLJfDmmNn65EQz2wDkpJ8l55xzruZKtVVzgxhot5PUCKhdOdlyrubZumoN277ZgJlRq05tbNNmAGrVr0vhxtBtiKz6dSncuGnnboOsBmG8cnVDnLbk7uRlV7R7d+e1uudvd+W1EFErK1wTSZDdqCG1mzVOY89z1Y6ZVegD/BR4jfDgjKK0tsC/gNsqOr/q/unZs6c5Vxk2LFhkr2R3sFeyO9jKydOK7S5tWHXrri752FPzV1peEz8bFiyq6l03JcAMqwbH8Or4SaVV84OS1gNTJDUk/H93HTDEzJ6onNMB52qegkKr6iw456qBlN5OZGZPEt5K1Cj2r6vUXDlXA5nHXeccKQReSbcWk7a928weTh7unIPsLJU9knOuxkvlirdRpefCOeec20vIvP6rVLm5uTZjxoyqzoarAbauWkv+uvBPPNWuTeHGTcDOrVupJbLq1qVg46adu0mv1ezu6K7uea3u+Sstr6q145+ee2qrZkkzzSy3qvNRHaVS1fwAMN/MnkpKvx5oZ2aDy5h+GHAasNzMOse0rsCTQENgIXCpmX0jqTbwFJALFAI/NrPJ8RWEzxNeT1gAvFy0XEl1gFFAT2AVcKGZLYzD7gSujtPcZGb/rmj5nUtV7WaN98gDqHOucqXyAI0TgKHFpP+FEFDLMgIYmJT2NDDYzLoQnop1W0y/FiCmDwAeklSU5wfN7AigO/AtSSfH9KuBNWZ2GPAH4vuBJXUCLgKOjMv/s6SscuTXOeecqzSpBN46Vkz9tJkVEv5aVCozmwKsTkruAEyJ3ROAc2N3J2BSnG45sBbINbONZvZGTN8KzAJax2nOBEbG7jFAf4XWX2cCfzezLWa2AJgPHFN2cZ1zzrnKk0rg3SSpfXJiTNuUYj4+IgRGgPOBg2L3e8AZkrIltSNUHx+UOKGkxsDpwMSY1ApYBGBm+cDXQLPE9Cgvpu1C0nWSZkiasWLFihSL5Jxzzu0qlcD7S+A1SVdI6hI/VxKeXPXLFPNxFXCDpJmEVtNbY/owQoCcATwCvE24PwuApGxgNPCYmX2e4rJ3YWZDzSzXzHKbN29eWbN1zjnnUnpy1WuSziLch/1RTP4QONfMPkglE2Y2DzgRQFIH4NSYng/cUjSepLeBTxImHQp8amaPJKQtJlwV58XAvC+hkVVRepHWMc0555zLmJSeXAXMBVaYWc/KyISkFma2PDacuovQwpnYellmtkHSACDfzObEYfcSguo1SbMbBwwCpgLnAZPMzCSNA/6fpIeBA4H2wPTKyL9zzjlXXqk+MrJA0rdSmVbSaKAvsJ+kPOBuoKGkG+MoY4HhsbsF8G9JhYSr08viPFoDPwfmAbPik7P+ZGZPA88Af5U0n9CI66KY548kPQfMAfKBG81se7W1c845lwkpP0BD0hOExknPA9tfEWhmYysna9WDP0DDOecqzh+gUbJUq5oB6hLunZ6QkGaEK1bnnHPOFSPlwGtmV1ZmRpxzzrm9QSp/JwLCfVZJL0haHj//jPdenXPOOVeClAMvoQHUOEIL4QOBl9nRKMo555xzxUgn8DY3s+Fmlh8/IwB/2oRzzjlXinQC7ypJ35OUFT/fIzS2cs4551wJ0gm8VwEXAEuBJYSHVVxRCXlyzjnnaqx0/k7U2szOSEyID9VYVML4zjnn3F4vnSveP5YzzTnnnHNRha94JfUBjgWaS7o1YdA+gL9Y3jnnnCtFKlXNtYGGcdpGCenfEO7zOuecc64EqbwW8D/AfySNMLMvdkOenHPOuRorncZVGyU9ABxJeG4zAGZ2QsmTOOecc3u3dBpXPUt4LV874FfAQuB/lZAn55xzrsZKJ/A2M7NngG1m9h8zu4qd31TknHPOuSTpVDVvi99LJJ0KfAU0TT9LzjnnXM2VTuC9V9K+wE8I/9/dB7ilUnLlnHPO1VApVTVLygLam9nXZvahmfUzs55mNq4c0w6LrxH8MCGtq6Spkj6Q9LKkfWJ6bUnDY/p7kvomTNMzps+X9JgkxfSmkiZI+jR+N4npiuPNl/S+pB6plN0555xLR0qB18wKgItTXOYIYGBS2tPAYDPrArwA3BbTr43L6wIMAB6SVJTnJ+Lw9vFTNM/BwEQzaw9MjP0AJyeMe12c3jnnnMuodBpXvSXpT5KOk9Sj6FPWRGY2BVidlNwBmBK7JwDnxu5OwKQ43XJgLZAr6QBgHzObZmYGjALOitOcCYyM3SOT0kdZMA1oHOfjnHPOZUw693i7xe9fJ6QZqbVs/ogQGF8EzgcOiunvAWdIGh3TesbvQiAvYfo8oFXsbmlmS2L3UqBl7G7Fzi9wKJpmCUkkXUe4Kubggw9OoTjOOedc8VIOvGbWrxLzcRXwmKRfAOOArTF9GNARmAF8AbwNFFQgjybJKpoZMxsKDAXIzc2t8PTOOedcSVIOvJJaAr8DDjSzkyV1AvrE//ZWiJnNA06M8+0AnBrT80loKS3pbeATYA3QOmEWrYHFsXuZpAPMbEmsSl4e0xez40o6eRrnnHMuI9K5xzsC+DdwYOz/BLg5lRlJahG/awF3AU/G/vqSGsTuAUC+mc2JVcnfSOodWzNfDrwUZzcOGBS7ByWlXx5bN/cGvk6oknbOOecyIp17vPuZ2XOS7oRwdSqpzGrgeL+2L7CfpDzgbqChpBvjKGOB4bG7BfBvSYWEq9PLEmZ1AyH41wNeix+AIcBzkq4mVE9fENNfBU4B5gMbgSsrWmDnnHMuXekE3g2SmhEaVFF0FVnWRGZW0t+QHi1m3IXA4SXMZwbQuZj0VUD/YtINuDE53TnnnMukdALvrYTq20MlvQU0x9/H65xzzpUqnVbNsyR9h3BFKuBjM9tWxmTOOefcXi2dVs11CfdZv02obn5T0pNmtrmyMuecc87VNOlUNY8C1hFekABwCfBXwgMwnHPOOVeMdAJvZzPrlND/hqQ56WbIOeecq8nS+R/vrNiSGQBJvQhPmHLOOedcCdK54u0JvC3pS8I93jbAx5I+IPx756jKyKBzzjlXk6QTeAcCTYDjYv8UwtuDnHPOOVeCdKqazyI0ptqP8B/evwJnmNkXZvZFZWTOOeecq2nSueK9GuhtZhsAJN0PTGVHK2fnnHPOJUnnilfs/Iq+gpjmnHPOuRKkc8U7HHhH0gux/yygwq8EdM455/Ym6Twy8mFJkwlPrgK40szerZRcOeecczVUOle8mNksYFYl5cU555yr8dK5x+ucc865CvLA65xzzmWQB17nnHMugzIeeCUNk7Rc0ocJaV0lTZX0gaSXJe0T03MkjYzpcyXdmTDNLZI+kvShpNHxNYVIaifpHUnzJf1DUu2YXif2z4/D22a25M4551zVXPGOIDxuMtHTwGAz6wK8ANwW088H6sT0nsD1ktpKagXcBOSaWWcgC7goTnM/8AczOwxYQ3jQB/F7TUz/QxzPOeecy6iMB14zmwKsTkruQHjWM8AE4Nyi0YEGkrKBesBW4Js4LBuoF4fVB76SJOAEYEwcZyTh/8UAZ8Z+4vD+cXznnHMuY6rLPd6PCIERwlXuQbF7DLABWAJ8CTxoZqvNbDHwYExbAnxtZuOBZsBaM8uP0+cBrWJ3K2ARQBz+dRx/F5KukzRD0owVK1ZUXimdc87t9apL4L0KuEHSTKAR4coW4BjCoygPBNoBP5F0iKQmhEDdLg5rIOl7lZUZMxtqZrlmltu8efPKmq1zzjmX3gM0KouZzQNOBJDUATg1DroEeN3MtgHLJb0F5BKqoBeY2Yo4zVjgWOBZoLGk7HhV2xpYHOe1mHAlnRerp/cFVmWifM4551yRanHFK6lF/K4F3AU8GQd9Sbhni6QGQG9gXkzvLal+vE/bH5hrZga8AZwXpx8EvBS7x8V+4vBJcXznnHMuY6ri70SjCa8PPFxSnqSrgYslfUIIql8RXsAA8DjQUNJHwP+A4Wb2vpm9Q7j/Owv4IJZjaJzmDuBWSfMJ93CLXtzwDNAspt8KDN7NRXXOOed2Ib/oK11ubq7NmDGjqrPhnHN7FEkzzSy3qvNRHVWLqmbnnHNub+GB1znnnMsgD7zOOedcBnngdc455zLIA69zzjmXQR54nXPOuQzywOucc85lkAde55xzLoM88DrnnHMZ5IHXOeecyyAPvM4551wGeeB1zjnnMsgDr3POOZdBHnidc865DPLA65xzzmWQB17nnHMugzzwOueccxnkgdc555zLoIwHXknDJC2X9GFCWldJUyV9IOllSfvE9BxJI2P6XEl3JkzTWNIYSfPisD4xvamkCZI+jd9NYrokPSZpvqT3JfXIdNmdc865qrjiHQEMTEp7GhhsZl2AF4DbYvr5QJ2Y3hO4XlLbOOxR4HUzOwLoCsyN6YOBiWbWHpgY+wFOBtrHz3XAE5VaKuecc64cMh54zWwKsDopuQMwJXZPAM4tGh1oICkbqAdsBb6RtC9wPPBMnOdWM1sbpzkTGBm7RwJnJaSPsmAa0FjSAZVaOOecc64M1eUe70eEwAjhKveg2D0G2AAsAb4EHjSz1UA7YAUwXNK7kp6W1CBO09LMlsTupUDL2N0KWJSwzLyYtgtJ10maIWnGihUr0i+dc845F1WXwHsVcIOkmUAjwpUtwDFAAXAgIdj+RNIhQDbQA3jCzLoTgvPg5JmamRGumivEzIaaWa6Z5TZv3jyV8jjnnHPFqhaB18zmmdmJZtYTGA18FgddQriPu83MlgNvAbmEq9U8M3snjjeGEIgBlhVVIcfv5TF9MTuupAFaxzTnnHMuY6pF4JXUIn7XAu4CnoyDvgROiMMaAL2BeWa2FFgk6fA4Xn9gTuweBwyK3YOAlxLSL4+tm3sDXydUSTvnnHMZkZ3pBUoaDfQF9pOUB9wNNJR0YxxlLDA8dj9OuI/7ESBguJm9H4f9CHhWUm3gc+DKmD4EeE7S1cAXwAUx/VXgFGA+sDFhfOeccy5jFG6DupLk5ubajBkzqjobzjm3R5E008xyqzof1VG1qGp2zjnn9hYeeJ1zzrkM8sDrnHPOZVDGG1c555wrm5mxZWshOdm1kIxt24zsnFoIY1u+kZ0lJMjPh1q1wie/ACTIqgUFBWE+WVlQUAhmkJ0FhYVQWGhkZwszyC8wcrKFIfK3FZKTI8zEtvxC6tSuhaSqXRE1kAde55yrZrasXE3+ug1s3lxI/X3rUbhxE2ZQ2KAuhRs379wNZNXfuXvrxs0A1Erq3lZC96ZiugsRBVkCRM4+DandrHFG10FN5oHXOeeqkW35BWz9ej1TjhgAQO//G8W0716e8e5E/T6Z6IG3Evk9Xuecq0a+WVeAWfWq3i30f51WKg+8zjlXjdRSuE/rai4PvM45V400aphFCu922a1qeaSoVL46nXOuGsnOzqKWR7oazR8ZWQZ/ZKRzLtO2rlpL/rr1ANSqXZuCjZtCd2y9nIluagnFE4DsRhVv1eyPjCyZt2p2zrlqpnazxt6KuAbz+gznnHMugzzwOueccxnkgdc555zLIA+8zjnnXAZ54HXOOecyyP9OVAZJK4AvKjDJfsDK3ZSd6mpvLDPsneXeG8sMe2e50y1zGzNrXlmZqUk88FYySTP2tv+u7Y1lhr2z3HtjmWHvLPfeWOZM8apm55xzLoM88DrnnHMZ5IG38g2t6gxUgb2xzLB3lntvLDPsneXeG8ucEX6P1znnnMsgv+J1zjnnMsgDr3POOZdBHngriaSBkj6WNF/S4KrOz+4i6SBJb0iaI+kjST+O6U0lTZD0afxuUtV5rWySsiS9K+mV2N9O0jtxm/9DUu2qzmNlk9RY0hhJ8yTNldSnpm9rSbfEfftDSaMl1a2J21rSMEnLJX2YkFbstlXwWCz/+5J6VF3O93weeCuBpCzgceBkoBNwsaROVZur3SYf+ImZdQJ6AzfGsg4GJppZe2Bi7K9pfgzMTei/H/iDmR0GrAGurpJc7V6PAq+b2RFAV0L5a+y2ltQKuAnINbPOQBZwETVzW48ABiallbRtTwbax891wBMZymON5IG3chwDzDezz81sK/B34MwqztNuYWZLzGxW7F5HOBC3IpR3ZBxtJHBW1eRw95DUGjgVeDr2CzgBGBNHqYll3hc4HngGwMy2mtlaavi2JrynvJ6kbKA+sIQauK3NbAqwOim5pG17JjDKgmlAY0kHZCanNY8H3srRCliU0J8X02o0SW2B7sA7QEszWxIHLQVaVlG2dpdHgNuBwtjfDFhrZvmxvyZu83bACmB4rGJ/WlIDavC2NrPFwIPAl4SA+zUwk5q/rYuUtG33ymPc7uKB16VEUkPgn8DNZvZN4jAL/1GrMf9Tk3QasNzMZlZ1XjIsG+gBPGFm3YENJFUr18Bt3YRwddcOOBBowK7VsXuFmrZtqxMPvJVjMXBQQn/rmFYjScohBN1nzWxsTF5WVPUUv5dXVf52g28BZ0haSLiNcALh3mfjWB0JNXOb5wF5ZvZO7B9DCMQ1eVt/F1hg/7+9+wmxqgzjOP79FZkWkQhtoiKSiGKokaAkXAj9A2sTWS4szUoQqZ3Qn8WURLUwalG0CIoWQWAlabaIIhcxQVqYTlZi1CKKIlqIIFjkr8XzTt1kRBw9Z+z6+2zmnnPuOee9886d557zvvd57N9s/wlsovp/2Pt60tH69rT6H9e1BN6TYwdweZv5OIuajLFlhtvUiTa2+Srwje3nBzZtAVa2xyuBzX23rSu2H7N9ke1Lqb792PZyYBuwtD1tqF4zgO1fgB8lXdFW3Qh8zRD3NXWLeaGkc9rf+uRrHuq+HnC0vt0CrGizmxcC+wduScdxSuaqk0TSEmoc8EzgNdtPz3CTOiFpEfAJMMG/452PU+O8G4FLqDKKd9s+cuLG/56kxcA627dLuoy6Ap4H7ATusX1oJtt3skkapSaUzQK+B1ZRH9iHtq8lrQeWUTP4dwIPUuOZQ9XXkt4EFlPl/34FngDeZYq+bR9CXqJuux8EVtn+fCbaPQwSeCMiInqUW80RERE9SuCNiIjoUQJvREREjxJ4IyIiepTAGxER0aME3oiOtQo/a9vjCyW9fax9TuBco+2rbRFxikrgjejeXGAtgO2fbS89xvNPxCiQwBtxCsv3eCM6JmmyWtVeYB9wpe0RSfdR1V/OpcqtPUclqrgXOAQsackL5lNlJy+gkhestv2tpLuopAd/Ucn8bwK+A+ZQ6fyeBa9Ihg8AAAGxSURBVLYCLwIjwFnAk7Y3t3PfAZxPJYd4w/b6jn8VEUElQY+Ibj0KjNgebRWdtg5sG6EqPM2mguYjthdIegFYQWVDewVYY3ufpOuBl6l80WPArbZ/kjTX9h+Sxqhasg8BSHqGSnF5v6S5wHZJH7VzX9fOfxDYIen9ZCOK6F4Cb8TM2tbqGh+QtB94r62fAK5uVaBuAN6qrH0AnN1+jgOvS9pIJfOfyi1UgYd1bXk2lQ4Q4EPbvwNI2gQsAhJ4IzqWwBsxswbz/R4eWD5MvT/PoGrBjh65o+017Qr4NuALSddOcXwBd9re+5+Vtd+R40wZd4roQSZXRXTvAHDedHZstY5/aOO5tOow17TH821/ZnuMKlh/8RTn+gB4uCW5R9KCgW03S5onaQ411jw+nTZGxPFJ4I3oWLudOy7pK2DDNA6xHHhA0i5gDzVRC2CDpIl23E+BXVT5uqskfSlpGfAUNalqt6Q9bXnSdqqu8m7gnYzvRvQjs5ojTkNtVvM/k7Aioj+54o2IiOhRrngjIiJ6lCveiIiIHiXwRkRE9CiBNyIiokcJvBERET1K4I2IiOjR37sN9U3E5qF0AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorCICBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAEWCAYAAAC+H0SRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecFdXZwPHfs30X2AbLUhbpRUAWFCkqCiJYQLEbjYrdWKJJjDFGoyZixGiMxvjqa6Jie62xxwIqiFEJ0hSk9+2993vv8/4xs8vlsrsssJfdhef7+dzPnXvmzDlnzpQzc2bujKgqxhhjjDm4Qtq6AMYYY8zhyBpgY4wxpg1YA2yMMca0AWuAjTHGmDZgDbAxxhjTBqwBNsYYY9rAATfAIjJHRPJFJNv9fY6IpIlIuYiMOfAi7ne5Dlo5RKSfiKiIhAUzn/ZARH4qIvPbuhzGmI5DRH4nIv9so7zb7f55rw2wiGwXkSq3Iav//N0ddwRwGzBcVXu4kzwC3KyqnVV15f4WzK2wQfs7/d7K4aZf4c5Phog8KiKhB5Bfs0TkEhFZ5uaXJSIfi8gJwcqvBeWZJyK1IlLmftaIyIMiEtfcdKr6iqpO38887xORuoB16Tf7Nwcdm1/9l4tIoYgsEJFhbV2uvRGRK0TkP62cZoSI/EVE0t362C4ij7VmHqZ5IjJZRNJbIQ1fwPb9AYCq/klVr2lhOvNEZE5AmH87VCQi/xaRPgdS3vagpWfAZ7oNWf3nZjf8CKBAVXP94vYFfmzVUu6flpQjVVU7AycBFwFXBaMgIvIr4DHgT0AyTr39DzCrifgH60jtz6raBUgCrgQmAF+LSKcgluv1gHXpz43kIyJyOFwe+bO7/qUAucC8fU2gPR7VN6eJ8t4JjAXGAV2AycCKg1isQ9rB2J78lmtmwPZ9Zitmc6a7vfQEcoAnWjHttqGqzX6A7cApjYSfAlQBPqAceNX9VqAC2OLG6wX8C8gDtgG3+KURCvwO2AKUAcuBPsBiv3TKgYsayT8EuBvYgbPzehGIAyIbK0cj0yswyO/3G8CTfr/jgGeBLCADmAOE+pX7ESAf2Arc5KYX1kg+cW55Lmimju8D3gJeBkqBa9z5eAzIdD+PAZFu/G7Ah0AxUAh8BYS44+5wy1sGbACmNpHnPGBOQFgXd35vdn9fAXwN/BUocOvgCuA/AfV4i1sP+cDD9WVpYj5fbmLcIuABN78qYNCBLAMC1tvAvHEONr5x6/B7YHJAWe53y1IGzAe6+Y0/wW/aNLdOjsXZKYT6xTsX+L4l9Q/MAMrd4XHAt276WcDfgYiAOr8J2ARsc8Med8tSirMdTQqY9zdx1q8yYDUwBKfhy3Wnm763dR84EqgGvDjrdLEbP9JdFjvdOngaiHbHTQbScdbLbOClRuriQ+AXTdTTlcAHfr83AW/6/U4DRrvDw4AFONvEBuBCv3gtKePvcNan7cBPm9leewHvu/lsBq4NqOs3cPZHZTgnAWObSes44DugxP0+LmA9fBBY6i7X94DEfViHA7enK4F1brm2Ate7cTux+7683J3H5vZBeyzX+rCWbPs462O2O9+LgRFu+HVAHVDrluODJrbnM4CNAdvPSree0oD7/Mb1Y/d9Q6P1EDBft+FsG1nAlX7jo4G/4LQ7JcB/2LUeNbk8mlz+e43QRAPsX9iAsIaGDaeRXA7cA0QAA9wZPtUdfzvOzmAoIEAq0DUwnSbyvgpn5R8AdAbexm/jbsH0/uUc5lb0L/3GvwP8L87K2R1nI6hfYX8GrMc5WEgEFtJ0A3wa4GlsXMDKWQec7dZZNPBHYImbd5K7YO934z+IswMJdz+T3Pob6q58vfxWvIFN5DmPgAbYDX8R5ywVnIbFA/wcCHPLdQV7NsAL3Xo4AtgIXNOSjTBg3CKcneMIN6/wA1kGNNMAA71xDijOcOt7mvs7ya8sW3AaqWj391x3XF+cDfdit4xd2dUArAVOD1iHbttb/eOsv/8HfOX+PgZnYw5zl+E6/Boodz4XuPNdv/Ff6pYlDGfnkQ1E+c17NXCqO/5FnIPhu9x5uBa3IW/Bur/b8nfD/orTICXiHMR9ADzot4/wAA/h7NCjG6mLu91lfyNwFCB+4wbg7NBCcBqFHbj7HHdckTuuE866f6U7j2NwGtPh+1DGR90ynoRz8D60iWW3GKcHKwoYjXNycXJAXZ+Bc9DyILCkiXQS3fJf5pb5Yvd3/T5wEc4B0Eh3/v7Fvq3DgdvTDGAgzr7iJKASOLqZfXlz+6A9lmtjaTS17ePsv7uwq5Ff1dy+Cb/tGYgBXgBe9Bs/GWfdCQFG4Rxkne23H/TfN+ytHjzuvIe79VsJJLjjn3Trtre7fI9z56HZ5dHkvr+5kX4zXo6zEdR/rm1mofk3bOOBnQHj7wSed4c3ALOayHdvDejnwI1+v4fiNGJhLZxecY6WKtzhV9l1dJcM1OC3s8DZOBa6w18AP/MbN52mG+CfAtl7qeP7gMUBYVuAM/x+nwps99sw3gucP5yj3Fyc3onwveQ5j8Yb4LnAAnf4ikaW3xXs2QCf5vf7RuDzZuazNmBdqj9YWAT80S/uAS0Dmm+A7yDgTAz4FJjtV5a7A+bpE7/1950m5u8O4BV3OBFnw+3ZTP1Xu3WQjdM4NHWw9Av/PN35PHkvy7cI5xJL/bwv8Bt3Js42Xd+b0MVNM74F9R64/AVnGxroFzaRXWfmk91lHtVMWUNxzui/dvPOrF8W7vg04GjgJ8AzOAcEw3Aa2/fdOBfhHsD4Tfe/wL0tLKMH6OQ3/g3g942UtQ9OD0AXv7AHgXl+df2Z37jhQFUT830ZsDQg7FvgCr/1cG5AWrVufbVkHf5jY/n6xX8XuNWvDgL35c3tg/ZYrm6Yj9237wsDt79GyhGPs/7F+W0bjTXA9e1QnbuOHNXMvD0G/NUd7kcT++cm6qHKPy7OPnUCTsNahbtdNbLtN7k8mvq09PrR2ar6WQvj+usL9BKRYr+wUJwuU3BW5i37kS7sOhqutwPnSC8Z56ixJY52878Ap+HphLMD6Itz9JMlIvVxQ3B2BPV5p/ml41+OQAVANxEJU1VPM/HSAn43Nn+93OGHcVbo+W75nlHVuaq6WUR+4Y4bISKfAr9S1cxm8g3UG6drraly7a3s/uVszBuqemkL0mnNZRCoL3CBiPhfnwrHOYuul+03XIlzlgrNr7MvA+vca+gX4jQIWc2U4xFVvTswUESG4JyNjcU52g/D6UnylxYwza+Bq3HqRYFYnEsV9XL8hquAfFX1+v0GZx570Xy9B0pyy7jcL77gbOf18lS1uonpccvxJPCkiETjnB09JyJLVXUd8CXOjnGQO1yMc+Yy0f0NzjIdH7CvCcPpGm1JGYtUtcLvd1PrcS+gUFXLAuKO9fsduO5ENbH9B27j9Wn19vsduI6H4yzXlqzDgevI6TgHJENwlmkMTg9kU5rbB0HjyzVTVVOaSRP3ZtcHcPa7STiNNjjzVdLMpGer6mfu9LOAL0VkuKpmi8h4nH34SJze1kicbu7G8t9bPRQELKv67b8bTq9HY9t/S5bHHoJ9o0sazlFmvN+ni6qe4Td+4H6mnYkz0/WOwDmKzWk8euPU8QbOkec9fuWqwbnuV1/uWFUd4Y7PwtkR++fdlG/dtM7eW1ECfjc2f5lumctU9TZVHQCcBfxKRKa64/5PVU9wp1WcLqIWEZHOOGfPX/kFB5arMYF1sS8Nvj//vA50GVTgbFj1evgNp+Ecrfqvl51UdW4LytjkOquqGTjL+1ycs5uXWpBeY57C6V4frKqxONcmJSBOQ12JyCTgNziNfoKqxuPsyAKnaYm91Xvg+pCP04CP8Isfp87NMnuUdW9UtUpVn8Q5gx/uBtc3wJPc4S9xGuCT2NUApwFfBizTzqp6QwvLmBBw82FT63EmkCgiXQLitvSgPzCtvgFhgWkFruN1OPPTknXYfx2JxOnCfgRIdteRj9i1jjS2jJrcBzUzTUtcgtOAnoJzv0G/+mK2JF1V9arq2zg9EfX/JPk/nF6kPqoah3OJbo/1vwX10Jx8nF6rxrb//dqnBLsBXgqUicgdIhItIqEiMlJEjnXH/xO4X0QGu3fqjRKRru64HJxrPE15FfiliPR3G44/4Vy7bO4sszlzgWtFpId71jIf+IuIxIpIiIgMFJGT3LhvALeISIqIJAC/bSpRVS3BadifFJGzRSRGRMJF5HQR2eMO4ID5u1tEkkSkm5vGywAiMlNEBolzOF+CsyL6RGSoiJzsrmTV7LqxolkiEikix+B0xRQBz+9tmgC3i0iC+7eAW4HX93H6PbTCMlgF/MSt67HA+X7jXgbOFJFT3XUyyv0LRbNH7q5XgFNE5EIRCRORriIy2m/8iziN4VE49yXsjy44l0fKxflr0g0tiO/BuRYZJiL34JwB77MW1HsOkCIiEW58H/AP4K8i0h1ARHqLyKktzVNEfuHWf7Rbp7Pdear/++CXwBScbvF0nAPE03CuedfH+RAYIiKXucs8XESOFZEj96GMfxDnL1GTgJk0cgalqmk410IfdNebUTg9Dy+3dH79fOSW+RJ3vi/COej40C/OpSIyXERicC49veX2GOzrOlx/VpgHeNyzQP+/E+YAXWX3vyE2uQ86QF1wDvIKcA6S/xQwvtl9v9tWzAIScO6PqE+zUFWrRWQcTiPfmL3VQ5Pc9eg54FER6eXW+0R3f7tf+5SWNsAfyO7/7XqnhQX24qzIo3Fu+sjHaXTrF/KjODvS+Tg7nGdxLuaD0436gogUi8iFjST/HM4ZxmI37Wqcm4X2i6qudtO63Q26HGdhrcVplN7Cuf0dnI35U5w73Vawlx2tqv4F+BXOzSZ5OEdLN+M0eE2ZAywDfsDpHlnhhgEMBj7DuSbyLfA/qroQZ8Wai1PP2Tg3T9zZTB6/EZEynA3hRZxuzuMCuuJa4j132lXAv3GWY2s4kGXwe5wj1SLgDzhHyEDDTnQWzpll/fK4nRZsD6q6E+dGi9twuupX4dw8WO8dnLOGd1S1ssVzurtf4+xAynDmc28HNJ8Cn+DcALcDZ1toyaWDpjRX71/g3NmbLSL5btgdODdELhGRUpx1c+g+5FeJc2dpNs66exNwnqpuBVDVjTjr+lfu71Kcmzm/ru9Gd7uEp+NcJ85006q/QaglZcx25zUT5yDrZ6q6vonyXoxz1paJs7zv3Z9LdKpagLN/vA1nG/wNMFNV8/2ivYRzTTQbp/vzFnfafVqH3fq5BWd/W4Szfr3vN349ToO71d3n9qL5fdCBeBFnPc3AWceWBIx/FhjulsN/H/mBiJTjtBUP4Fxfrf+r6Y3AH9392T3ufO5hb/XQAr/GqYvvcLb/h3D+9bFf+xRR3d9eBGOcB5rgdJVubuNy9MM5EAs/gF6Q1irLFpy7hvfnvglzkInIZJwbhFrSA3LQiMginHK1yROkTPAdDg87MOagEZHzcK5hfdHWZTHGtG8d6ik6xrRn7hnLcOAy93qRMcY0ybqgjTHGmDZgXdDGGGNMG7Au6Bbo1q2b9uvXr62LYYwxHcry5cvzVTWprcvRXlkD3AL9+vVj2bJlbV0MY4zpUERkX55Qd9ixLmhjjDGmDVgDbIwxxrQBa4CNMcaYNmDXgPdTXV0d6enpVFc3+ZIXYw6qqKgoUlJSCA8Pb+uiGGNawBrg/ZSenk6XLl3o168fIvvz0hljWo+qUlBQQHp6Ov3792/r4hhjWsAa4P1UXV1tja9pN0SErl27kpeX19ZFMUHg9fooKqljZ0YlSV0jiYoIJSO7isT4CKKjQ8nOraZTdChdOoeTW1BDeJiQEB9BQVEtPq+S1DWS4tI6qmo89EyKoqzCS0lZLb17RFNZ5aWgsJYjekdTXesjJ7eGI1KiqatTMrOrOCIlhtjO4URHh+69oGafWAN8AKzxNe2JrY+HrvSsaq67bQVhYcKff38UN8xZRVW1lyceSOWX9/xAfkENf587mrsfWsvO9CoenzOKh57YyIYt5cy9ewRPzdvKyjUl3P2rYbzyVjpfLy3g1usG8tFnOXz8eQ5X/KQv3y4r5LV30zn3jF506xrBMy9tByAkBP70uxFMHJtIaKjdNtSarDaNMaYdq6j08ORzW6io9HLKid1556NMikvqOHFCNz77KpecvBqOSU1gxQ/F7EyvYuigzuzMqGLDlnJ6JUdRW+dj5ZoSYruEkRAXztdLCwgPE4YO7MLHn+cAcNzYRF5/Lx2AU07qzrzXdv191+eDP/99I8WlbfqSsUOSNcAdWGhoKKNHj2bkyJGceeaZFBcX79P09913H4888kij41588UVGjhzJUUcdxZgxY5qM19r69evHUUcdxVFHHcXw4cO5++67m73R7bjjjtun9CdPnszQoUMZPXo0o0eP5q233jrQIhsTVLW1PnLzagCIj4sgt8Adjg0nL78+PJxcdzghLoI8N05cbDi5+bUAdO4URmGRMxwZGUJZxa4Gtc6j+L8WoLZu93cEFJXUoT57b0Brswa4A4uOjmbVqlWsWbOGxMREnnzyyVZJ9+OPP+axxx5j/vz5rF69miVLlhAXF7dHPI8nOEfECxcuZPXq1SxdupStW7dy/fXXN5n3N998s8/pv/LKK6xatYpVq1Zx/vnn7zZOVfH57EVGpv2I7RLOGdN6ALD8+yKmHN/NGf6hmMnHO095XLWmhBMnOOE/ri9l3JgEQkJgy/ZyjhoWS1iYkJ1bzRG9Y4iOCqG8wktMdChxsc5VyMoqDz26RwKQm1fDoH6ddivD8eO6EhlpzUVrsxo9REycOJGMjIyG3w8//DDHHnsso0aN4t57720If+CBBxgyZAgnnHACGzZsaDStBx98kEceeYRevXoBEBkZybXXXgs4Z5C/+MUvGDt2LI8//jjbt2/n5JNPZtSoUUydOpWdO3cC8OabbzJy5EhSU1M58cQTAfjxxx8ZN24co0ePZtSoUWzatKnZeercuTNPP/007777LoWFhSxatIhJkyZx1llnMXz48IY4AIsWLeLEE09kxowZDB06lJ/97Gctbki3b9/O0KFDufzyyxk5ciRpaWnMnz+fiRMncvTRR3PBBRdQXl4OwCeffMKwYcM4+uijueWWW5g5cyawZ2/CyJEj2b59OwAvv/xyw3xff/31eL3ehrLfddddpKamMmHCBHJynO7AnJwczjnnHFJTU0lNTeWbb77hnnvu4bHHHmtI/6677uLxxx9v0fyZji00VDh1cjI/v3ogJaV19Ogexe03DUbEOWC857ZhxMWGk5lTxdy7R9C7VzSr15Xy6B9GMWRgF776bz5P/CmVUcPj+GRhNk/8aTRjRyfwwaeZPD4nleOOTeT9T7L48z1HMfn4bvz78yzuvf1Ipk/uTp/e0Zw3sxe/uWkIXTrb39tanaraZy+fY445RgOtXbt2j7CDrVOnTqqq6vF49Pzzz9ePP/5YVVU//fRTvfbaa9Xn86nX69UZM2bol19+qcuWLdORI0dqRUWFlpSU6MCBA/Xhhx/eI92EhAQtLi5uNM+TTjpJb7jhhobfM2fO1Hnz5qmq6rPPPquzZs1SVdWRI0dqenq6qqoWFRWpqurNN9+sL7/8sqqq1tTUaGVl5R7p9+3bV/Py8nYLS01N1SVLlujChQs1JiZGt27dukcdLFy4UCMjI3XLli3q8Xj0lFNO0TfffLPR8g8ZMkRTU1M1NTVV8/Pzddu2bSoi+u2336qqal5enk6aNEnLy8tVVXXu3Ln6hz/8QauqqjQlJUU3btyoPp9PL7jgAp0xY4aqqt5777271eWIESN027ZtunbtWp05c6bW1taqquoNN9ygL7zwgqqqAvr++++rqurtt9+u999/v6qqXnjhhfrXv/5VVZ1lW1xcrNu2bdMxY8aoqqrX69UBAwZofn7+HvPXHtZLExwej1cLimq0rKxOPR6fFhbVaElprfp8Pi0qrtHiUmcdKyqu0aKSGlVVLS6p1aLiGvX5fFpSVquFRTXq9fq01B32eHxaVl6nBUU1Wlfn1fIKZ7i21quVlR4tKKrR6hrPfpcZWKbtYB/eXj92F3QHVlVVxejRo8nIyODII49k2rRpAMyfP5/58+czZswYAMrLy9m0aRNlZWWcc845xMTEAHDWWWftV74XXXRRw/C3337L22+/DcBll13Gb37zGwCOP/54rrjiCi688ELOPfdcwDlLf+CBB0hPT+fcc89l8ODBLcrP2Y4d48aNa/J/ruPGjWPAgAEAXHzxxfznP//Zo4sZnC7osWPHNvwuKyujb9++TJgwAYAlS5awdu1ajj/+eABqa2uZOHEi69evp3///g3lvvTSS3nmmWeaLfvnn3/O8uXLOfbYYwFnmXXv3h2AiIiIhjPoY445hgULFgDwxRdf8OKLLwLOdf64uDji4uLo2rUrK1euJCcnhzFjxtC1a9dm8zaHltDQEBLjIxp+J/gNx8c1PhwXu+usNdbvDNb/bLZzp13NQFhYCJ2c3QPh4dhfj4KsXXVBi8hzIpIrImsCwn8uIutF5EcR+bNf+J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yISQQdWfw14x44dqGrDNWBV5c4772y4zrl582auvvrqFqc7YsQIli9f3uT4Tp06NTmu3tNPP82cOXNIS0vjmGOOoaCggEsuuYT333+f6OhozjjjDL744ou9plNWVsb27dsZMmTIXvMO/BvOvvwtxz9dVWXatGkN9bd27VqeffbZZqcPCwvbrcu7/sYxVWX27NkNaW3YsIH77rsPgPDw8IYyhoaG7vWa+jXXXMO8efN4/vnnueqqq1o8b8aY9qldNcDAPOA0/wARmQLMAlJVdQTwiBs+HPgJMMKd5n9EJFREQoEngdOB4cDFblyAh4C/quogoAhoeavUjsXExPC3v/2Nv/zlL3g8Hk499VSee+65huuWGRkZ5ObmcuKJJ/Luu+9SVVVFWVkZH3zwQaPp3Xnnndx+++1kZ2cDzhngP//5z0bjHnfccbz22muAc2Y5adIkALZs2cL48eP54x//SFJSEmlpaWzdupUBAwZwyy23MGvWLH744Ydm56u8vJwbb7yRs88+m4SEhL3Ww9KlS9m2bRs+n4/XX3+dE044Ya/TNGbChAl8/fXXbN68GYCKigo2btzIsGHD2L59O1u2bAHg1VdfbZimX79+rFixAoAVK1awbds2AKZOncpbb71Fbm4uAIWFhezY0fwb2qZOncpTTz0FgNfrpaSkBIBzzjmHTz75hO+++45TTz21uSSMMR1Au+qCVtXFItIvIPgGYK6q1rhxct3wWcBrbvg2EdkMjHPHbVbVrQAi8howS0TWAScDl7hxXgDuA54KztwcXGPGjGHUqFG8+uqrXHbZZaxbt46JEycCzs0+L7/8MkcffTQXXXQRqampdO/evaFbNNAZZ5xBTk4Op5xyCqqKiDR5xvXEE09w5ZVX8vDDD5OUlMTzzz8PwO23386mTZtQVaZOnUpqaioPPfQQL730EuHh4fTo0YPf/e53jaY5ZcoUVJ27kc855xx+//vft6gOjj32WG6++WY2b97MlClTOOecc1o0XaCkpCTmzZvHxRdfTE2N83eOOXPmMGTIEJ555hlmzJhBTEwMkyZNoqysDIDzzjuPF198kREjRjB+/PiGM/bhw4czZ84cpk+fjs/nIzw8nCeffJK+ffs2mf/jjz/Oddddx7PPPktoaChPPfUUEydOJCIigilTphAfH09oqHUNGtPhtfVF6MAP0A9Y4/d7FfAH4L/Al8CxbvjfgUv94j0LnO9+/ukXfpkbtxtOw1wf3sc/n0bKcR2wDFh2xBFHaCC72aV9WbhwYcMNUYdqnl6vV1NTU3Xjxo1NxrH10rQn2E1YzX7aWxd0Y8KARGACcDvwhhyEZ+6p6jOqOlZVxyYlJQU7O2OatXbtWgYNGsTUqVNbfPOaMaZ9a1dd0E1IB952j6aWiogP52w2A+cstl6KG0YT4QVAvIiEqaonIL7p4CZPnszkyZMP2TyHDx/O1q1bD0pexpiDoyOcAb8LTAEQkSFABJAPvA/8REQiRaQ/MBhYCnwHDHbveI7AuVHrfbcBX4jTRQ0wG3jvoM6JMcYY42pXZ8Ai8iowGegmIunAvcBzwHPuX5NqgdluY/qjiLwBrAU8wE2q6nXTuRn4FAgFnlPVH90s7gBeE5E5wEqc68bGGGPMQdeuGmBVvbiJUZc2Ef8B4IFGwj8CPmokfCu77pQ2xhhj2kxH6II2xhhjDjnWAHdg1dXVjBs3jtTUVEaMGNHw0oVt27Yxfvx4Bg0axEUXXURtbW0bl9QYY0wga4A7sMjISL744gu+//57Vq1axSeffMKSJUu44447+OUvf8nmzZtJSEjY62MUjTHGHHzWAB8k8xflcN5VS5h01pecd9US5i/KOeA0RaThdXx1dXXU1dUhInzxxRcNLyGYPXs277777gHnZYwxpnVZA3wQzF+Uw0N/30hOXg2qkJNXw0N/39gqjbDX62X06NF0796dadOmMXDgQOLj4wkLc+6vS0lJ2e09wcYYY9oHa4APgv99cRs1Nbu/HL6mxsf/vrjtgNMODQ1l1apVpKens3TpUtavX3/AaRpjjAk+a4APgtz8mn0K3x/x8fFMmTKFb7/9luLi4oZX26Wnp9O7d+9Wy8cYY0zrsAb4IOjeLXKfwlsqLy+P4uJiwHnR+4IFCzjyyCOZMmUKb731FgAvvPACs2bNOqB8jDHGtD5rgA+C6y/vT2Tk7lUdGRnC9Zf3P6B0s7KymDJlCqNGjeLYY49l2rRpzJw5k4ceeohHH32UQYMGUVBQwNVXHxKvPTbGmENKu3oS1qFq+uRkwLkWnJtfQ/dukVx/ef+G8P01atQoVq5cuUf4gAEDWLp06QGlbYwxJrisAT5Ipk9OPuAG1xhjzKHDuqCNMcaYNmANsDHGGNMGrAE2xhhj2oA1wMYYY0wbsAbYGGOMaQPWAHdwxcXFnH/++QwbNowjjzySb7/9lsLCQqZNm8bgwYOZNm0aRUVFbV1MY4wxAawB7uBuvfVWTjvtNNavX8/333/PkUceydy5c5k6dSqbNm1i6tSpzJ07t62LaYxtBhFuAAAgAElEQVQxJoA1wAeBqpKVmUlWZiY+n69hWFUPKN2SkhIWL17c8KSriIgI4uPjee+995g9ezZgryM0xpj2yhrggyA7K4vq6mqqq6vZuWNHw3B2VtYBpbtt2zaSkpK48sorGTNmDNdccw0VFRXk5OTQs2dPAHr06EFOzoG/9tAYY0zrsgb4IFJVfD7fAZ/51vN4PKxYsYIbbriBlStX0qlTpz26m0UEEWmV/IwxxrQea4APguQePfZoBEWE5B49DijdlJQUUlJSGD9+PADnn38+K1asIDk5mSz37DorK4vu3bsfUD7GGGNanzXAB0FOdvYeZ72qSk529gGl26NHD/r06cOGDRsA+Pzzzxk+fDhnnXUWL7zwAmCvIzTGmPbKXsZwENV3B7dWFzTAE088wU9/+lNqa2sZMGAAzz//PD6fjwsvvJBnn32Wvn378sYbb7RafsYYY1pHu2uAReQ5YCaQq6ojA8bdBjwCJKlqvjj9uo8DZwCVwBWqusKNOxu42510jqq+4IYfA8wDooGPgFu1NVvERvTo2bPhhqvkHj0aznx7uDdKHYjRo0ezbNmyPcI///zzA07bGGNM8LTHLuh5wGmBgSLSB5gO7PQLPh0Y7H6uA55y4yYC9wLjgXHAvSKS4E7zFHCt33R75NXaRISevXrRs1cvQkJCGobt5ihjjDl8tbsGWFUXA4WNjPor8BvA/2x1FvCiOpYA8SLSEzgVWKCqhapaBCwATnPHxarqEves90Xg7GDOjzHGGNOYdtcAN0ZEZgEZqvp9wKjeQJrf73Q3rLnw9EbCG8vzOhFZJiLL8vLyDnAOjDHGmN21+wZYRGKA3wH3HMx8VfUZVR2rqmOTkpIOZtbGGGMOA+2+AQYGAv2B70VkO5ACrBCRHkAG0Mcvboob1lx4SiPhxhhjzEHV7htgVV2tqt1VtZ+q9sPpNj5aVbOB94HLxTEBKFHVLOBTYLqIJLg3X00HPnXHlYrIBPcO6suB99pkxowxxhzW2l0DLCKvAt8CQ0UkXUSubib6R8BWYDPwD+BGAFUtBO4HvnM/f3TDcOP8051mC/BxMObjYHj88ccZOXIkI0aM4LHHHgOwVxEaY0wH0e4aYFW9WFV7qmq4qqao6rMB4/upar47rKp6k6oOVNWjVHWZX7znVHWQ+3neL3yZqo50p7k52P8BDpY1a9bwj3/8g6VLl/L999/z4YcfsnnzZnsVoTHGdBDt7kEch6JPEo/GW1axR3hol06cVrhiv9Jct24d48ePJyYmBoCTTjqJt99+m/fee49FixYBzqsIJ0+ezEMPPbTfZTfGGBMc7e4M+FDUWOPbXHhLjBw5kq+++oqCggIqKyv56KOPSEtLs1cRGmNMB2FnwB3UkUceyR133MH06dPp1KkTo0ePJjQ0dLc49ipCY4xpv+wMuAO7+uqrWb58OYsXLyYhIYEhQ4bYqwiNMaaDsAa4A8vNzQVg586dvP3221xyySX2KkJjjOkggtYF7T7B6jbgCFW9VkQGA0NV9cNg5Xm4Oe+88ygoKCA8PJwnn3yS+Ph4fvvb39qrCI0xpgMI5jXg54HlwET3dwbwJnDYNcChXTo1eRf0gfjqq6/2COvatau9itAYYzqAYDbAA1X1IhG5GEBVK+UwvSNof/9qZIwx5tAVzGvAtSISjfv6QBEZCNQEMT9jjDGmwwjmGfC9wCdAHxF5BTgeuCKI+R10qmp/8zHtRgd9qJsxh62gNcCqukBEVgATAAFurX+E5KEgKiqKgoICunbtao2waXOqSkFBAVFRUW1dFGNMCwXzLuhzgC9U9d/u73gROVtV3w1WngdTSkoK6enp5OXltXVRjAGcg8KUlJS9RzTGtAtB7YJW1Xfqf6hqsYjcCxwSDXB4eDj9+/dv62IYY4zpoIJ5E1ZjadujL40xxhiC2wAvE5FHRWSg+3kU53/BxhhjzGEvmA3wz4Fa4HX3UwPcFMT8jDHGmA4jmHdBVwC/DVb6xpi2U1ZeR15BLavXlTDmqDjUB6t+LGHU8DjCw4QVq4sZPqQLMdFhrFxdzIB+nUiIi2Dl6mJSekXRvVsU3/9YQreuEaT0jGbN+lI6xYTR/4hOrN9URogoQwZ1Ycv2CqqqfIw8MpYdaRUUFtcx+qg4MrOrycqu4pjUBHLza9i2s4JxYxIpKqll45Zyjh2dQEWll7UbSzlmVDx1HuWHtSWkjogjNERYuaaYEUNjiY4KZcXqYoYM6EyXzuGsXF1MvyNiSEyI4Ps1JSR3j6RXchSr15YSFxvGESkxrN1YRkR4CIP6d2bjljK8XuXIIbFs21FBaXkdqSPiSMusIje/hqOPiic7t4a0jArGjk6ksKiWTdvKOXZMAuXlHtZtKuOY1Hhqa5TV6926VGHVmmK3LkNYuaaYPr2i6dsnhoS4iLZe9KYVBfMu6CHAr4F+/vmo6snBytMYE3y1dT4WfJnLo09v5vhxXRHgz09uYtTwWLp0DuO+h9fRNyWGm68ayDVzVpIYH8E9tw3j0hu/IzwshEfuO4rZP19Gba2Pv88dzTW/XEFxaR1Pzh3NTb9dRVZONY/PGcVt965m285KHrxrBL+f+yM/bijj7l8O5aG/bWTpyiJuuWYgT83bymeL85h90RH839tpvP3vTM45oxf5BbU8/9oOTj4hido6H48/s4WxqfFERobywF/XM3hAZxLjI7jrwbUkJ0Vyx81D+NntK4mJCePBu0Zw2U3LUJ/ytz+lcuWtyykv9/A/D43h+l+vJK+glr8/mMqtd31PWmYVj9x3FL+ds4aNW8r5w2+O5P6/rGflmhJ+feNgHn9mM4uXFHDdZf2Y9/oOPpyfzUWzUsjMruaVf6Vx2snJlFd4eWreVo47NpGQEOGhJzYyclgssV3CuffPa/H5nHo/YXxXfnvLUOJjw9t0+ZvWE8wu6DeBlcDdwO1+H2NMB1ZaVsfTL2wDYMYpPXju1R0AnD61By+8vhOfD06bkszL/0rD41FOObE7b32QQXWNjxOP68ZHn2dTXuFl/DGJfLWkgMLiOkYOi+PH9aVk5VTTNyWGnPwatu2sJDE+HBH4cUMZkZEhJCdFsXRlEQAjhsby2WLnb4ATjknkvY8zAZhyfBL/904aAKednMy813aVb96rO1CF009O5qU3d+L1KtMnJ/Pau+nU1iknH5/Eex9nUVXl5fhxXflscS4lpR7GjEpg2fdF5BXUMmRgZ7btrCQts4oe3SOprPKwcUs5nTuF0rlTGCvXlBAaAgP7dWLxkgIAjh6VwL8XZANw4sRuvPFeOgCnTk7mxTec8p1xSg+ed+vyjKnJvPD6jobGF+A//y2grLwuOAvVtIlg3pXsUdWngpi+MaYNqEJNjReA6KhQyis8ew5HNz4cExVKQVHtHvFjokMp849f7gxHRYZSXunkFR4mVLv5Anh9u578pQpet7EKDRVqa30N01e60+9Wpii//ALKnZNfs0c5YqJCGp/PqF1xIsJDqKp28goJEerqdpXP51PqH1QmAnUe50d4uFBdvasuyxqpM381Nb49wkzHFcwz4A9E5EYR6SkiifWfIOZnjDkIYqJDmXpidwC++a6AM6b2aBg+vWG4kDNOSXaGlxZwxilu+LICTjvZCV+6soiTJyURGgLf/1jMcWO7Eh4mbNpazshhsURHh5KZU03vHlHExYZRXuElPCyE5KRIAIqKa+l/RAwAO9MrGTU8DoA160s5YXxXAP67opDpU5J3lfWUXWWd4Vdu//Azpjrx/7u8kOmTkxGBFauLmTShG6Ghwjr3unJkZAjb0yoZ0K8zXTqFUVhcR1xsOF0TIqjzKNU1XlJ6RgOQnVvNsMFdANi4pZxxYxIAWPFDMSdP6r5H3t98V9hQr/V6JkeRGG/XgA8lEqznx4rItkaCVVUHBCXDIBo7dqwuW7asrYthTLtRVFLLpwtz+G5lET+bPYA160tZ/G0e11zan53plXy6KJfLL+hDabmH9z/J4twZvQgPC+HNDzKYPrk73btF8urb6Uwcm8DQwV146c2djBway7ijE3npzZ2k9Ipm2kndefnNNOJiw5h1ei9eeycdEbj4nD68+UE65RVervxJX977NJOcnGquvbw/n36Rw+ZtFdxwZX++WlLAqjXF3HjlAFb8UMzXSwu4fvYANm8t5/Ovcrny4r7k5tfy78+y+cnZKXg8Pt7+dyYzp/UgNjac195JZ/Jx3ejbJ4aX30rj6KPiGD0ynpfe3Mmg/p2YNCGJl97cSfduEcw4pSev/GsnUZGhnH9Wb954N52aOuXyC47g7Y8yKCyq5Zqf9uPfn+WwI62CG64YwOdf5bF2Qyk3XDmA/y4vZOnKIm64oj8/bihj0dd5XHtpP9Iyq/hkYS79j4jhknP6kNQtsq0X/T4RkeWqOraty9FeBa0BPpRYA2zMnrxeparaQ1RkKCEhQmWVh8jIUMLDnO7ayIgQwsNDqKj0EB4WQkSEMxwWJkRGhFJV5UFChKjIUKqqvCBON2x1jRefT4mJDqOmxovXHa6t9VLnUTrFhFFX56Om1kfnTmHUeXzU1HjpFBOG1+uceUZHOVfXqqo9REeFIuKULyoylNBQoaLSQ2RE6K7yhYcQ0VBWISIilMoqD6EhQmRkKJXVHkIQoqJCqa72oup0E/uX1b98tXU+6up8u5W1U0xoQ/liosNQVaqqdy/rbuVrpC47GmuAmxfUBlhERgLDgYYnxKvqi0HLMEisATbGmH1nDXDzgnZI5T73+Qn3MwX4M3DWXqZ5TkRyRWSNX9jDIrJeRH4QkXdEJN5v3J0isllENojIqX7hp7lhm0Xkt37h/UXkv2746yJiF1SMMca0iWD2aZwPTAWyVfVKIBWI28s084DTAsIWACNVdRSwEbgTQESGAz8BRrjT/I+IhIpIKPAkcDrO2ffFblyAh4C/quogoAi4+oDm0BhjjNlPwWyAq1TVB3hEJBbIBfo0N4GqLgYKA8Lmq2r9/fhLgPr3rc0CXlPVGlXdBmwGxrmfzaq6VVVrgdeAWeK8tPdk4C13+heAsw90Jo0xxpj9EeyXMcQD/8B5CcMK4NsDTPMq4GN3uDeQ5jcu3Q1rKrwrUOzXmNeHN0pErhORZSKyzN75a4wxprUF81nQN7qDT4vIJ0Csqv6wv+mJyF2AB3ilNcq3N6r6DPAMODdhHYw8jTHGHD5avQEWkaObG6eqK/YjzSuAmcBU3XXbdga7d2mnuGE0EV4AxItImHsW7B/fGGOMOaiCcQb8l2bGKc512BYTkdOA3wAnqWql36j3gf9z3zPcCxgMLAUEGCwi/XEa2J8Al6iqishCnJvDXgNmA+/tS1mMMcaY1tLqDbCqTtnfaUXkVWAy0E1E0oF7ce56jgQWOPdRsURVf6aqP4rIG8BanK7pm1TV66ZzM/ApEAo8p6o/ulncAbwmInNwXhTx7P6W1RhjjDkQ9iCOFrAHcRhjzL6zB3E0L5jvA74X52x2OPARzv9y/wN0uAbYGGOMaW3t7UEcxhhjzGGhXT2IwxhjjDlcBK0Lmj0fxFHOgT+IwxhjjDkkdJgHcRhjjDGHkqB0QYtImPvsZUSkDzAW5y9BxhhjjCEIDbCIXItzvXeHO/w57sMvROSO1s7PGGOM6YiC0QX9C2Ag0AVYB/RV1XwRiQG+w3kloDHGGHNYC0YDXKuqRUCRiGxW1XwAVa0Ukdog5GeMMcZ0OMFogKNFZAxO93aEOyzuJ6rZKY0xxpjDRDAa4CzgUXc422+4/rcxxhhz2AvayxhEJEpVq/3HiUhka+dnjDHGdETBfBLWN42E2YM4jDHGGIJwBiwiPYDe7LoWLO6oWCCmtfMzxhhjOqJgXAM+FbgCSGH3679lwO+CkJ8xxhjT4QTjGvALwAsicp6q/qu10zfGGGMOBcF8FvS/RGQGMAK/vx+p6h+DlacxxhjTUQTtJiwReRq4CPg5znXgC4C+wcrPGGOM6UiCeRf0cap6OVCkqn8AJgJDgpifMcYY02EEswGucr8rRaQXUAf0DGJ+xhhjTIcRtGvAwIciEg88DKwAFPhnEPMzxhhjOoxg3oR1vzv4LxH5EIhS1ZJg5WeMMcZ0JMF4EMfJqvqFiJzbyDhU9e3WztMYY4zpaIJxBnwS8AVwZiPjFLAG2BhjzGEvGA/iuNf9vnJ/pheR54CZQK6qjnTDEoHXgX7AduBCVS0SEQEeB84AKoErVHWFO81s4G432TnuA0IQkWOAeUA08BFwq6rq/pTVGGOM2V+tfhe0iMzzG569H0nMA04LCPst8LmqDgY+d38DnA4Mdj/XAU+5+SYC9wLjgXHAvSKS4E7zFHCt33SBeRljjDFBF4y/IaX6Dd+6rxOr6mKgMCB4FvCCO/wCcLZf+IvqWALEi0hPnOdRL1DVQlUtAhYAp7njYlV1iXvW+6JfWsYYY8xBE4wGOBjducmqmuUOZwPJ7nBvIM0vXrob1lx4eiPhexCR60RkmYgsy8vLO/A5MMYYY/wE4yasFBH5G87jJ+uHG6jqLQeSuKqqiAT9mq2qPgM8AzB27Fi7RmyMMaZVBaMBvt1veFkrpZkjIj1VNcvtRs51wzOAPn7xUtywDGByQPgiNzylkfjGGGPMQRWU1xGKSCjwkKr+upWSfR+YDcx1v9/zC79ZRF7DueGqxG2kPwX+5Hfj1XTgTlUtFJFSEZkA/Be4HHiilcpojDHGtFhQnoSlql4ROX5/phWRV3HOXruJSDrO3cxzgTdE5GpgB3ChG/0jnL8gbcb5G9KVbv6FInI/8J0b74+qWn9j143s+hvSx+7HGGOMOagkWH+BFZGncG5wehOoqA/viE/CGjt2rC5b1lq96cYYc3gQkeWqOraty9FeBfNlDFFAAXCyX5g9CcsYY4whuC9j2K8nYRljjDGHg6C9D1hEUkTkHRHJdT//EpGUvU9pjDHGHPqC1gADz+PcpdzL/XzghhljjDGHvWA2wEmq+ryqetzPPCApiPkZY4wxHUYwG+ACEblURELdz6U4N2UZY4wxh71gNsBX4fxfNxvIAs4HrghifsYYY0yHEcy/IaWo6ln+Ae7DOdKaiG+MMcYcNoJ5BtzYIx7tsY/GGGMMQTgDFpGJwHFAkoj8ym9ULBDa2vkZY4wxHVEwuqAjgM5u2l38wktxrgMbY4wxh71gvA3pS+BLEZmnqjtaO31jjDHmUBDMm7AqReRhYATOc6EBUNWTm57EGGOMOTwE8yasV4D1QH/gD8B2dr0e0BhjjDmsBbMB7qqqzwJ1qvqlql7F7m9GMsYYYw5bweyCrnO/s0RkBpAJJAYxP2OMMabDCGYDPEdE4oDbcP7/Gwv8Moj5mcNYYXEt360sYkd6JWdO78m6TaVs2FzGWaf2YntaBatWFzPz1F7k5tewZFkBM6b1oKzcw1dL8jnlpGRUlc+/yuOkCd2Ijg5l/qJcxo1JoFvXCOYvzGHEsFj6psTw6aJc+h8Rw7DBXViwKJekrhEcPSqBL77KIyYmhIlju7L423y8PmXK8UksWV5IaVkd0ycns/yHYjJzqph5Sk/WrCthy/YKzjy1J1u2V7B6XTFnntqLzKxqlq4q5MxpPSksruOb7/I5dUoyNbU+Fn2dz5QTkggPExYszuW4sYnEx0Xw6cIcRo+Mo3ePaD5ZmMPQgZ0Z2L8z8xfmktIripHD4vhscQ7xseGMOzqRhV/nERYWwqTxXfl6aQHV1V6mntid71YWkVdQwxmn9GDVmhK3LnuwfnM56zeVunVZyYbNpfzk7N6EhQkREeF4PB5UlbCwMLxeLz6fj7CwMHw+X7PDoaGhqCo+n4+QkBAE8NYPi+D1epsdDgkJwev1IiKEhobi8XgQEcLCwqirc47/w8N3la9h2OcjLDwcr9eL+nyEtqB8gWUFdpW7ufJ5PEhISKPlqx/21NWhAWUNrMu6whI8ZRWIQEhEBN7KKgBCYqLwVVYHbZgQQSQEBMK6dCaia3xwN+TDTFC6oEUkFBisqiWqukZVp6jqMar6fjDyM4e34pJa7vrTj9z/6HqSukby6NObuOehdcREh/H8qzu44/4f8Sq890kmv/z9D5SUevhqSQE3/fZ7dqRXsW5jGdf+aiWr15aQW1DDFbcs56v/5uP1KrNvXsa/P8uhU0wYl920jNffTSe5WxSzb17G86/toF+fTlz1i+U89cJWBvTtzPW/Xsnj/9jCoH6dufWuH3j4yU307dOJ3z3wI396bAM9u0fz4OMbuO+R9cTGhvP0C9u484EfCQkJ4fV307ntvtVUVflY8GUut9z1PVm5NaxYXcLPbl/Fhi3l7Eyv5KpfrOC7FUWUV3iZ/fNlLPgyl/CwEC67eRnvfJRJQnwEl9+8jJfe2knvntFceesy/vHydgb07cy1v1rB35/dysB+nbj5zu959OnN9O/biV/ft5q5T2ykT68Y7nt4Hfc/up5uiRE89r9b+P3ctURFhTHv9R3ccf8axhwVR1lpIdlZmdTV1VFUWEhmRgYej4fSkhIyMzLwejyUl5eTkZ6Ox+OhqqqK9LQ0amtqqK2pcYZra/F6PKSnpVFdVYVPlfS0NMrLy1FVMtLTKS0pASAjI4PCwkIAsjIzyc/LQ1XJzsoiNycHr9dLbk4O2VlZeDwe8vPzyc7Koq6ujsKCAjIzMqirq6O4uJgMt6xlpaWku+WrrKggIz2dutpaqqurSU9Lo66ujrq6Oqd81dX4fD7S09KorKwEID0tjbLSUqd86ekUFRUBkJmRQUF+PqpKVlYWebm5+LxecrKzycnOxuPxkJeXR1amU38FBQUNw0VFRXvUpcfjoa60jEVDprJw8FQqNm1j0ZHTWXTkdCo3bQ/q8KKh01jo5uspK2+DrfvQFpQGWFW9wMXBSNuYQKVlHlavc3aEgwd05ttlzo56zFHxzP8yB4ATxnXj3Y8yATh5UhKvvZsOwNQTu/N6/fCk7rzxnjN88glJvPVhBl4fnDixGx/Oz6bOo0w4JpHP/5NLVbWP0SPi+G5VEaVlHgb178yW7RXkF9aSnBRJaXkd6VlVREeHEhUZwoYtzs7riN7RLP+hGICRw2L54j95AEw4JpEP5mcDMOX4JN74IAOAU07szmvvpLnDSQ1lPXlSd978IAOfz4n/7seZeDzK8eO68skXOdTU+Dg2NYH//LeA8govw4fEsnp9KYXFdfTpHU12TjVZOdXEx4bj88G2nZWEhQndukY01OWQgV34+jvn/SnHjIrn04VOXT74t0143b/4Z2Zk0CU2ltDQUDLS04mOiSE8PJz09HQiIiKIiooiPS2NEBE6d+5MZmYmXp+P2NhYsjIzqa6uJiEhgdzcXMrLyujarRuFBQUUFxXRLSmJ4uJiCvLzSe7enfKyMvJyc+menExlZSU52dkkJSVRU1NDdlYWXbt1w+PxkJWZSWJCAj5VMjMyiI2LIyQkhIz0dDp36kRYeDjpaWlERUURGRlJRno6oWFhxMTEkJGRAap06dLFabRra4mPjycnO5uKigoSu3YlPy+PkpISuiUlUVRURGFBAd27d6estJT8vDy6JydTUVFBbk4OSd27U11dTXZ2Nt2SkqirqyMrK4vExER8Ph9ZmZnEx8fvqssuXXavy4gIMtLTEZFW215M+xHMLuivReTvwOtARX2gqq4IYp7mMORTbRhWv2Hnt/MtAj53ODRE8Lk/QoSGYQkBrw83fFccEfDWxw8BnxtHQmRXuH86Aj6vGwdQ357lCSQiDSPFLy0n3V1xdi+Hf/kaKbdfHP/4/nHwLzfQRPF2K3tdnQ+vTxERfD6fM0LEqXvVhsZCVRu6a9U/3L8b1y+Oz+0a3iNcFfEfdutC3Xzrh/3DNWB+GvIOHA4JceL7la+pvOu7q+vL6l9u8R/2S8e/LhrqsT6Of1n96lIC6tKZz2YWjOmwgnkX9Gic/wD/EfiL+3kkiPmZw1Rcl3AGD+gMwI60So4e5ZxRrF5XyuTjugGwZHkhM07pAcDCb/I4b2ZvABZ9nce5DcP5nDejlzP8TR7nnNELEfhqST4zp/UgNMRJZ+qkJCIiQvh+TTETjk4kJjqUjVvLGTqoC/Fx4WTn1tA1MYLkpEgqq7x4fEr/I2IAyM6tZuSwWADWby7j+GO7ArBsVRHTpyQDsHhJPuec7pRj4de7yrrw6zzOP3PX8HkznOEvv81n1mk9CQmBr5cWcPrUHoSHCctWFXHihG5ER4Xw4/pSRo+Io0vnMHakV9KndwzdEiMoLqkjMjKElJ7R1HmUktI6hg506nLrjgrGpjp1+cPaEqYc77zO+/e/GkpESDk+n4/eKSmUlZXhqaujd0oKVVVV1NTU0Kt3b+rq6qisrKR3794oUFZWRs9evQgLC6O4uJjkHj2Ijo6moKCAbklJxMbFkZebS0JiIomJieTm5BAbG0tSUhLZ2dnEdOpEcnIyOTk5REZF0aNnT/JycwkPD+f/27v3KLvK8o7j39+ZM5MrJCEMSWYmCMWIIiqXEUKlaAG5eCEICCgtlKayXFK1tq6K7Vra1kuXS5d4K3SxRARrRYwoESjKJWjFEpyAXMI1C4TcM7lN7pk5M0//2O+EkzCTkGHO2XPO/D5rnTXvvj/v7GSes/d+9/vOaGlh7dq1FAoFZrS07Lod3NLayqauLnp7e2lpbWXr1q30dHfT2tbGzh072LF9O61tbfT29rJlyxZaWlspFAp0dXUxfcYMxowZw4b16zlk2jQmTpzI2rVrOWjqVKZMnsya1auZNGkSBzc3s3rVKiZOnMgh06axetUqxo0bx/Tp01mzejVNY8YwfcYM1nZ2UiwWaWlpYd26dSjF17VxY/a7bG1l85Yt9JT/LnfsoLWt7RVfLK0+yCd239rb26OjoyPvMGwv1m/oZsEDnSxdvpWLzp1Jxx828uRzm7jk/ENZ/PQmHn58Ix8+r40/Lt3Gbxeu46I5baxd3809v1nD+e9tYcfOPu66bxVnnTqdpv8llUwAABDMSURBVMYCv/jVSt75jmYOntLEz/9nBW8/ZgqHzRzPz+5cwZvecABvfuOB/PzOFcxsGccJxx3E/F+u5MADipx68iHccc8qGgrirFOncfev17B1Ww/nnt3Kr3+3llWd27nwnDYWPryBJX/cwoc/MJNHF3fx6OIuLjl/Js8+v4WFi9bzofNmsmLVdhY8sJYPntPKps0lfnX/as45cwYRcMc9q3j3KYdwwMQit921gpPePpXW6eP42Z0reOtRB3LkEQdw650rOOKwCRz3lsncdtdKpk5t5JQTm7n97pWMGVPgjHdO4677slvr7z9jBvf9dg3rN/RwwftbeeChdS//Lh/dyJPPbuKS8w7lyWc38ezzW7j8ojYaG0VTUxOlUom+vj4aU8Om8sZMvb29NDY27ioXi0Uigt5SadfV5KDl3l4aGhqQRKlU2lXuLZUoNDRQKBQolUq7GjyVSiUKEg3FIqVSCUgNm3p66EuNsF7RSKy3l+JA8e0Ra7Gx8eVysUiUxSqgNFisZQ2yBotvzwZjA/0ud7y0ggWzTgNg9j038eDpl1alXO7Pn7uX8Ye17df/S0mLIqJ9vzYaRSqWgCVNA74MtETE2ZKOAk5K7wbXFCfg2tHXFxQKqlg5BritWD696/ZjheMYKbFadXSv27irEVTVW0Gn2+tDaQXtBLx3lXwG/H3gBuCf0/SzZM+Day4BW+0oTwyVKJc3htmzYUz5dKXjGCmxWnU0TZ3sV4DqUCWfAR8cEbcAfQARUQJ6h7ozSZ+StFjSE5J+JGmspMMlLZS0RNKPJTWldcek6SVp+WFl+/lsmv+MpDNfWxXNzMyGppIJeKukqaSGiJJmA11D2ZGkVuATQHtEHE02rvDFwFeAqyPi9cAGYG7aZC6wIc2/Oq1Hug1+MVnjsLOAa9I7y2ZmZlVVyQT898B84AhJDwA3AR9/DfsrAuMkFYHxwEqyvqXnpeU3Auem8pw0TVp+mrJ7bnOAmyNiZ0S8ACwBTngNMZmZmQ1JxZ4BR8TDkt4JHEn2FtszEdGzj80G29dySV8DXgK2A78CFgEb061tgGVAayq3AkvTtiVJXcDUNP/Bsl2Xb7MbSVcAVwAceuihQwnbzMxsUBW7ApY0luy28RfIhiO8Ms0byr6mkF29Hg60ABPIbiFXTERcFxHtEdHe3NxcyUOZmdkoVMlb0DeRPWv9NvCdVP7BEPd1OvBCRHSmq+hbgXcAk9MtaYA2YHkqLwdmAqTlk4B15fMH2MbMzKxqKpmAj46IuRGxIH0+QpaEh+IlYLak8elZ7mnAk8AC4IK0zmXAbak8P02Tlt8X2YuQ84GLUyvpw4FZwENDjMnMzGzIKvke8MOSZkfEgwCSTgSG1JtFRCyUNA94GCgBjwDXAXcAN0v6YprX/47x9cAPJC0B1pO1fCYiFku6hSx5l4Ar08ARZmZmVVXJnrCeImuA9RLZq0ivA54hS3wREW+tyIErwD1hmZntP/eEtXeVvAI+C5gC/Fma/g2wsYLHMzMzqxmVfAZ8Llmjq4OB5lQ+JyJejIgXK3hcMzOzEa+SV8BzgdkRsRVA0leA/yNrFW1mZjaqVfIKWOze93MvHlbazMwMqOwV8A3AQkk/S9Pn4pGQzMzMgMp2Rfl1SfcDJ6dZl0fEI5U6npmZWS2p5BUwEfEw2bu7ZmZmVqaSz4DNzMxsEE7AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsB07AZmZmOXACNjMzy4ETsJmZWQ6cgM3MzHLgBGxmZpYDJ2AzM7McOAGbmZnlwAnYzMwsBzWTgCVNljRP0tOSnpJ0kqSDJN0t6bn0c0paV5K+JWmJpMckHVe2n8vS+s9Juiy/GpmZ2WhWMwkY+CZwV0S8EXgb8BRwFXBvRMwC7k3TAGcDs9LnCuBaAEkHAZ8HTgROAD7fn7TNzMyqqSYSsKRJwCnA9QAR0R0RG4E5wI1ptRuBc1N5DnBTZB4EJkuaAZwJ3B0R6yNiA3A3cFYVq2JmZgbUSAIGDgc6gRskPSLpu5ImANMiYmVaZxUwLZVbgaVl2y9L8wab/wqSrpDUIamjs7NzGKtiZmZWOwm4CBwHXBsRxwJbefl2MwAREUAM1wEj4rqIaI+I9ubm5uHarZmZGVA7CXgZsCwiFqbpeWQJeXW6tUz6uSYtXw7MLNu+Lc0bbL6ZmVlV1UQCjohVwFJJR6ZZpwFPAvOB/pbMlwG3pfJ84NLUGno20JVuVf8SOEPSlNT46ow0z8zMrKqKeQewHz4O/FBSE/A8cDnZF4hbJM0FXgQuTOveCbwHWAJsS+sSEeslfQH4fVrv3yJiffWqYGZmllH26NT2pr29PTo6OvIOw8yspkhaFBHteccxUtXELWgzM7N64wRsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8uBE7CZmVkOnIDNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAdOwGZmZjlwAjYzM8tBMe8A6lVEUOoNIqDYAH190NcXFIsiAkq9QWNRBKLU00djo4gQPaU+mhoFiO6e/jJ09wRNjQUg6O4JGosFpFRuLCCCnlJQbBASlEpBoSAKBSiVQAVoKEBvbxZfQ0NWDsrjg2JxgFhLMWh8Y5qy73A7u3cvDxRrT09QLIu1oSy+QiH7lHpBZfHtirWPff4uC4Xs+H19fQOW+8e+lrTX9fIqR8Su2PacHgnx7S1WM9t/TsAVsHPtBkqbt9DbC43jm+jZtgOAwvixu5W376MciBg/lr5t23cvB8SEsfRt2/GKcl9ZuaG/DDSMH0v3HuWBYtrfWLftZ6x9A5VTTHvG2n+MVxNreUx9A5QpiMLYLKbdynvZpprlkR7f3mJtGDuW3hEU624xjcD4hhIrBaH05ad4wESapk7G6kBE+LOPz/HHHx/7Y8vzS+P24hvi9uIbYu39Dw65/Fq3r2Z5pMTh+BzrSIljOGMt/2x9Yel+/T3KE9ARI+Bv+Ej9+BlwBfT09OUdgpmZjXBOwBVQKPjZmJmZ7Z0TcAU0NDgBm5nZ3jkBV4Abh5qZ2b4oe05ue9Pe3h4dHR2vev3udRspbd4CQKGpacgtMOuxNafjq834ainWkR7faGoFLWlRRLTnHcdI5deQKqBp6uSa+Q9iZmb5qKlb0JIaJD0i6fY0fbikhZKWSPqxpKY0f0yaXpKWH1a2j8+m+c9IOjOfmpiZ2WhXUwkY+CTwVNn0V4CrI+L1wAZgbpo/F9iQ5l+d1kPSUcDFwJuBs4BrJDVUKXYzM7NdaiYBS2oD3gt8N00LOBWYl1a5ETg3leekadLy09L6c4CbI2JnRLwALAFOqE4NzMzMXlYzCRj4BvCPQH8vF1OBjRFRStPLgNZUbgWWAqTlXWn9XfMH2GY3kq6Q1CGpo7OzczjrYWZmVhsJWNL7gDURsahax4yI6yKiPSLam5ubq3VYMzMbJWqlFfQ7gHMkvQcYCxwIfBOYLKmYrnLbgOVp/eXATGCZpCIwCVhXNr9f+TaDWrRo0VpJL+5HvAcDa/dj/XowGusMo7Peo7HOMDrr/Vrr/LrhCqQe1dx7wJLeBXw6It4n6SfATyPiZkn/CTwWEddIuhJ4S0R8VNLFwHkRcaGkNwP/TfbctwW4F5gVEb3DHGPHaHv3bTTWGUZnvUdjnWF01ns01rmaauUKeDCfAW6W9EXgEeD6NP964AeSlgDryVo+ExGLJd0CPAmUgCuHO/mamZm9GjWXgCPifuD+VH6eAVoxR8QO4IODbP8l4EuVi9DMzGzfaqIRVg26Lu8AcjAa6wyjs96jsc4wOus9GutcNTX3DNjMzKwe+ArYzMwsB07AZmZmOXACHmaSzkoDPSyRdFXe8VSCpJmSFkh6UtJiSZ9M8w+SdLek59LPKXnHOtxe7YAg9UTSZEnzJD0t6SlJJ9X7uZb0qfRv+wlJP5I0th7PtaTvSVoj6YmyeQOeW2W+ler/mKTj8ou8PjgBD6M0sMN/AGcDRwEfSgNA1JsS8A8RcRQwG7gy1fMq4N6ImEX2jnU9fgF5tQOC1JNvAndFxBuBt5HVv27PtaRW4BNAe0QcDTSQvcpYj+f6+2QD05Qb7NyeDcxKnyuAa6sUY91yAh5eJwBLIuL5iOgGbiYbAKKuRMTKiHg4lTeT/UFuZfdBMMoHx6gL+zkgSF2QNAk4hfSOfUR0R8RG6vxck72iOS71pDceWEkdnuuI+A1ZXwnlBju3c4CbIvMgWU+EM6oTaX1yAh5er3qwh3qRxlo+FlgITIuIlWnRKmBaTmFVyv4MCFIvDgc6gRvSrffvSppAHZ/riFgOfA14iSzxdgGLqP9z3W+wczvq/r5VmhOwDZmkicBPgb+LiE3lyyJ7v61u3nHLY0CQEaIIHAdcGxHHAlvZ43ZzHZ7rKWRXe4eTdVk7gVfeph0V6u3cjjROwMNrSIM91CJJjWTJ94cRcWuavbr/llT6uSav+Cqgf0CQP5I9WjiVsgFB0jr1eL6XAcsiYmGankeWkOv5XJ8OvBARnRHRA9xKdv7r/Vz3G+zcjpq/b9XiBDy8fg/MSq0lm8gabszPOaZhl559Xg88FRFfL1s0H7gslS8Dbqt2bJUSEZ+NiLaIOIzsvN4XEZcAC4AL0mp1VWeAiFgFLJV0ZJp1Gllf6nV7rsluPc+WND79W++vc12f6zKDndv5wKWpNfRsoKvsVrUNgXvCGmZpyMRvkLWc/F7qe7quSDoZ+F/gcV5+HvpPZM+BbwEOBV4ELoyIPRt41Lw9RuT6E7Ir4oPIBgT5i4jYmWd8w03SMWQNz5qA54HLyb681+25lvSvwEVkLf4fAf6G7HlnXZ1rST8C3kU27OBq4PPAzxng3KYvI98hux2/Dbg8IjryiLteOAGbmZnlwLegzczMcuAEbGZmlgMnYDMzsxw4AZuZmeXACdjMzCwHTsBmVZBGFPpYKrdImrevbV7DsY5Jr8OZ2QjmBGxWHZOBjwFExIqIuGAf678WxwBOwGYjnN8DNqsCSf0jYz0DPAe8KSKOlvRXZKPNTCAb5u1rZB1e/CWwE3hP6gThCLKhLpvJOkH4SEQ8LemDZJ0n9JINGnA6sAQYR9ZN4L8DtwPfBo4GGoF/iYjb0rE/AEwi62TivyLiXyv8qzCzpLjvVcxsGFwFHB0Rx6QRpG4vW3Y02YhSY8mS52ci4lhJVwOXkvWsdh3w0Yh4TtKJwDVk/VF/DjgzIpZLmhwR3ZI+RzaW7d8CSPoyWdeZfy1pMvCQpHvSsU9Ix98G/F7SHe7dyKw6nIDN8rcgjau8WVIX8Is0/3HgrWnUqT8FfpL1BgjAmPTzAeD7km4hGzRgIGeQDSTx6TQ9lqybQYC7I2IdgKRbgZMBJ2CzKnACNstfeX/CfWXTfWT/RwtkY9Ees+eGEfHRdEX8XmCRpOMH2L+A8yPimd1mZtvt+QzKz6TMqsSNsMyqYzNwwFA2TGMtv5Ce95JGo3lbKh8REQsj4nNAJ9lwcXse65fAx1Nn+kg6tmzZuyUdJGkc2bPoB4YSo5ntPydgsypIt3kfkPQE8NUh7OISYK6kR4HFZA26AL4q6fG0398Bj5INm3eUpD9Iugj4Alnjq8ckLU7T/R4iG9f5MeCnfv5rVj1uBW02SqVW0Lsaa5lZdfkK2MzMLAe+AjYzM8uBr4DNzMxy4ARsZmaWAydgMzOzHDgBm5mZ5cAJ2MzMLAf/DzTNvnxnjUfaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'operatorFiatBalance',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAEWCAYAAAAzRH40AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vLVvudrYvS7UgiDSxYBRBBKMSFTV2xV6SWBI/WzTRKEaNJRIlGo0NNaLy2T+jKAgYSxAQEwUVlLK9l3u33TbfH3Pu5e5lG+zC7tX5Pc997jlz5sy8M2fOzHtm3pkRpRQGg8FgMBgMu4KtvwUwGAwGg8EQuxhFwmAwGAwGwy5jFAmDwWAwGAy7jFEkDAaDwWAw7DJGkTAYDAaDwbDLGEXCYDAYDAbDLtNrRUJE5olItYiUW+dzRKRIRDwiMrH3Iu6yXHtMDhEZLiJKRBy7M56BgIicLSJL+lsOg8Hww0JEnhaRef0tRyzQXZsjIreJyHPW8VCrHbTvLnm6VSREZIuItFiChH4PhwQErgXGKKXyrFvuA36llEpWSn2+q4JZmbT3rt7fnRxW+E1WekpE5IHdmdEicpaIrLbiKxORf4rI4bsrvh7I87SIeEXEbf2+FJG7RCStq/uUUs8rpWbtYpy3iYgvqixdv2spiG0i8t8jIrUi8p6I7NffcnWHiJwvIv/q4zDjROR+ESm28mOLiDzYl3EMZETzvYis729ZekMf1NkdhTlCRIIi8khfhttNnB2WcRE5WETeFpF6651dJSIXWNemiUhxlP9jRGSlVb9WicgKETmhmzi2iMjRfZkepdQ2qx0M9GW4kfS0R+JnliCh368s96FAjVKqMsLvMOCrPpVy1+iJHOOVUsnAkcDpwIW7QxAR+Q3wIPBHIBedb38FTuzE/57q2fiTUioFyAYuAA4FPhKRpN0o14tRZelPHcQjIvJjGHb7k1X+CoFK4OmdDSDWesE6kfcmYDJwMJACTAPW7kGx+pupQA4wUkQO2l2RxFpZsTgPqANOF5H4/hJCRKYAy4AVwN5AJnAFcGwn/k8FXgYWot/vXOD3wM/2hLx7HKVUlz9gC3B0B+5HAy1AEPAAL1j/CmgCvrP8FQD/C1QBm4GrIsKwA78FvgPcwBpgCLAyIhwPcHoH8duAW4Ct6Ep4IZAGxHckRwf3K2DviPOXgAUR52nAE0AZUALMA+wRct8HVAPfA7+0wnN0EE+aJc/Pu8jj24DFwHNAI3CxlY4HgVLr9yAQb/nPAt4C6oFa4EPAZl27wZLXDXwDzOgkzqeBeVFuKVZ6f2Wdnw98BPwZqLHy4HzgX1H5eJWVD9XAvSFZOknnc51cWw7cacXXgn5Zd/kZEFVuo+NGK00fW3n4BTAtSpY7LFncwBIgK+L64RH3Fll5chBQEZLP8ncy8EVP8h84HvBYxwcDn1jhlwEPA3FRef5LYCOw2XKbb8nSiH6PjohK+8vo8uUG/gvsi27AK637ZnVX9oHRQCsQQJfpest/vPUstll58CiQaF2bBhSjy2U58GwHefEWcE0n+XQB8GbE+Ubg5YjzImCCdbwf8B76nfgGOC3CX09k/C26PG0Bzu7ifS0A3rDi2QRcEpXXL6HrIzf6Y2ZyN3Xsk8DzwCvAw1HXRqDrQzfwPrCA9uX4PHQdWAP8johyT8f1ig24EV3n1liyDupheJ2WSzqps4HZwDrrno+BcRFxTUQrjG7gRWAR7d8JseS8wnpmp0blzSzrOTegP8xWABdHXL8Q2IBWRN4FhkW9Q5ejy1O9la9C52X8X0S0Dx08w2lAcYTc24DruvB/PhH1aIR7ZH532MZZ14bTvr4bYaXfjX4HHg6Vkw78Lqfr+q3TMtBperq62FGF3FnmRT2gvSMyYg1aE4sDRqIr/WOs69ehK7VRVuaPBzKjw+kk7gvRL/FIIBn9Ej7bkRyd3B8p537oF+PXEddfBf4GJKG/FlYBl1nXLge+Ris9g4AP6FyR+Cng7+haVOXjA06y8iwRuB341Io7G/0S3mH5vwtdETqt3xFW/o1CV6wFEQVor07ifJooRcJyX4juNQBd2P3AlYDDkut8dlQkPrDyYSjwLREvcwfp7EqR2Absb8Xl7M0zoAtFAhiMfkmOs/J7pnWeHSHLd+jGNtE6v9u6Ngz98p1pyZjJ9oZsPXBsVBm6trv8R5fffwAfWucHohUdh/UMNxDR0FrpfM9Kd6gxPMeSxYEebiwHEiLS3gocY11fiFbqb7bScAmWQtKDst/u+Vtuf0Y3rIPQyuibwF0RdYQfuAfdmCd2kBe3WM/+F8ABgERcG4mu6G3oBnwr2yvskehGwmbJWoRWPBzoRqoaPezaUxkfsGQ8Et0gjurk2a1EN1wJwAT0R9JRUXl9HFr5ugv4tIt334Vu5I8DTrFkjlQaP0ErQHFoBbaR7eV4DLqxO9y6fh+6HolUJKLrlavR9Uqhlda/AS/0MLyelMvIj7OJ6AbwECsv5qLfy3gr/K3Ar9Fl8FQrrkhF4gigDcgAHqK9Qpll5cXJljxXW/dfbF0/Ed0+jLau3wJ8HCXrW0A6ut6qAn7aURm3nlEAmN7Fc5zG9nK5nxX+iC78t4sjwn1LRH532saxo3LwCdvL71R0HdWVItFZ/dZlGeg0PV1djEiYB/0yh36XRGdeR4XJKkDboq7fBDxlHX8DnNhJvN0pAkuBX0Scj7IS7Ojh/coqiE3W8Qts/+LPRRfgxAj/ZwIfWMfLgMsjrs2ic0XibKC8mzy+DVgZ5fYdcFzE+THAFuv4duD16PShv+Ir0b1Fzm7ifJqOFYm7gfciCnv08zufHRWJn0ac/wJY2kU6vVFlKaT0LAduj/Dbq2dA14rEDUR9GaO/WOZGyHJLVJreiSi/r3aSvhuA563jQUAzkN9F/rdaeVCObuQ6U/quiYzTSudR3TzfOvTQXSjt70Vc+xn6nQ717qRYYab3IN+jn7+g36G9ItymsL2nZJr1zBO6kNWO7mH5yIq7NPQsrOtFwCTgDOAxtGKzH1ppeMPyczqWIhZx39+AW3soox9Iirj+EvC7DmQdgm5UUiLc7gKejsjr9yOujQFaukj7OehGzIFWTBqAOda1oZZcrgj/z7G9HP8eSwmwzl1WXkcqEtH1ygYieimBfKx6s7vwelguIxWJR7A+fiLcvkEralOt5xypNH5Me0Xi78BrEc/LB+RY5+cBn0SVwyK2KxL/BC6KuG5Dv4/DImQ9POp539hJGR9s+d+vi+c4je2KxE8s/12V+fOtZ1sf9QtGPL9O2zgilIOIchJZfv9B14pEZ/XbTpWB0K+nY2YnKaXe76HfSIYBBSJSH+FmR3fFg34pv9uFcGH710mIrehMzUV3x/aESVb8P0c3oEnoimwYWksuE5GQXxu6oIbiLooIJ1KOaGqALBFxKKX8XfgrijrvKH0F1vG96EpiiSXfY0qpu5VSm0TkGuva/iLyLvAbpVRpF/FGMxjdZduZXN3JHilnR7yklDqnB+H05TOIZhjwcxGJHK90ons1QpRHHDejvwig6zL7HLDBsjE5Dd2wlXUhx31KqVuiHUVkX/TXxWT0i+xA9+xFUhR1z/8AF6HzRQGp6K+2EBURxy1AtdpufNVi/Sdb93eV79FkWzKuifAv6Pc8RJVSqrWT+7HkWAAsEJFE9JfYkyKySim1Ad1lOw2tKK9AV7hHohuXFVYww4BDouoaB/BsD2WsU0o1RZx3Vo4LgFqllDvK7+SI8+iyk9DF+z8X/U74Ab+I/K/l9mpEXM0R/ovQZTAkS/i5KKWaRaQmKvzo5zYMeFVEghFuAXS92WV4PSyX0XHNFZErI9zi2F5GS5TVWlmE32GrHPwcPRyDUuoTEdkGnIUe5o2WVUUZOw4D5ovI/RFugq7fQvF09o5HU4du4PPRvaDdEcqzfHTPX2d8qpRqZ3AvIlsiTrtq44jy11H5HULndJb2npSpHdjdBm1FaK0/PeKXopQ6LuL6XrsYdim6sIQIaWUVHXvvGKV5Cd019PsIudrQ40YhuVOVUvtb18to/5CGdhHFJ1ZYJ3UnStR5R+krtWR2K6WuVUqNBE4AfiMiM6xr/7AK5zArzHu6iTeMiCSjezM+jHCOlqsjovNiZxSXSCLj6u0zaEJXdiHyIo6L0D0SkeUySSl1dw9k7LTMKqVK0M/7ZOBcdCO2KzyCrrD2UUqlosfuJcpPOK9E5AjgerTykqGUSkd/2Ubf0xO6y/fo8lCNVkT2j/CfprQR6Q6ydodSqkUptQBdeY+xnEOKxBHW8Qq0InEk2xWJImBF1DNNVkpd0UMZM6KMjDsrx6XAIBFJifLb04+XMCJSCBwFnCMi5aKn0J8KHCciWegyPkhEIstxZJkvQw9RhMJLRA9vRRKd90Xo4bfIfEqwym534fWkXEbHdWdUXC6l1AtWXIMlQrOj/Ts8B60M/zUibwajlayO0i6R51bcl0XFnaiU+rgLeUO0yzNLkfsEPfTUE76x4u+p/87oaRtXRsfld1foSZnagd2tSKwC3CJyg4gkiohdRMZGWCb/HbhDRPaxLPXHiUhI6Ar02FBnvAD82poelIyeEfFiN1/9XXE3cImI5FlfkUuA+0UkVURsIrKXiBxp+X0JuEpECkUkA2281CFKqQa0grJARE4SEZeIOEXkWBHZYcZCVPpuEZFsq1L5PfqLFxGZLSJ7Wy9PA/qLIigio0TkKMu6uZXtxrBdIiLxInIg8Bq6An+qu3uiuE5EMkRkCHqs8sWdvH8H+uAZrAPOsPJ6MrqCDvEc8DNrepZdRBJET98qpHueB44WkdNExCEimSIyIeL6QnSjfgB6THNXSEEPu3lETwm9ogf+/Vhd5CLye3QlvNP0IN8rgEIRibP8B4HHgT+LSA6AiAwWkWN6GqeIXGPlf6KVp3OtNIWmba8ApqOHW4rRiu5P0RVcyM9bwL4icq71zJ0icpCIjN4JGf8geirqEWgjwZc7yJ8idBf8XVa5GYfuCXqup+mN4Fy0TdEotK3FBPS4dTFwplJqK7AauM2Sawrtrf4Xo8vxYdbzuI3ulcdHgTtFZBiAVb+EZo91F1535TK6zn4cuFxEDrHq9yQROd5Swj5Bl9mrrGd1MtqYM8RctBHqARF58xNgvIgcAPwfcIBVpzrQQ2ORHwuPAjeJyP5WOtNE5Ofd5E1kOsJl3OJ64HwRuS7URonIeBFZFH2z1cvyG+B3InJBxHt0uIg81kMZoIdtXEQ5CZXfw9n12SG7UqZ6rEi8Ke3n/r/ak5usLsvZ6EKwGf1l8He0VTjobrKX0BVXI9pSPNG6dhvwjOg5u6d1EPyT6C++lVbYrWijwF1CKfVfK6zrLKfz0N1w69GN62J0VxXoF+RdtLX/WrppMJRS96ML1i3oyr4I+BW64e6MeejC8R+0Qepayw1gH7QFtwf9Qv5VKfUB2tDmbnQ+l6MN5W7qIo7rRcSN7opbiO6mPCyqi6wnvG7duw79gj+xk/d3Rm+ewe/QPQd1wB/QY4ZAuDE4Ef1FFXoe19GD90EptQ1tGHcteghoHdpIOMSrWN3HUV3SO8P/oLtw3eh0dqeYvQu8g26UtqLfhZ4MSXVGV/m+DD0ToVxEqi23G9BGYZ+KSCO6bI7aifiagfvRZbYa3SicopT6HkAp9S26rH9onTeijbY/Cg3PWEMNs9B2FKVWWCEDz57IWG6ltRStLF6ulOqsG/tM9LhzKfp537qLQ79z0e9ueeQP3QiGvrzPRg/hhGZNvYjuMUIp9RW6zluE/pL0oG2k2rqIcz7aHmeJ9e5/irZl60l43ZXL24ios5VSq9GGvA+j83YT2jYApZQX3XN3Pvo9Oh3rHRaRwcAM4MGovFmDLudzlVLV6KGPP1l5MwZdX4by5lX0819kPe8v6WSqZgfsUMatnoyjrN/3IlKLttd5u6MAlFKL2b6kQClaOZmHrit7ys60cWehn2Mt2i5o4U7EEyn3rpQpbehiMOwqIqLQXZ2b+lmO4eiXzdmLXqm+kuU7dLfqrjQuhj2MiExDG6b1pEeqXxGRF4GvlVK3dnAtGW0/so9Sqqux+Z7G1afh7U5ErztTjJ62+0F3/g09o6dl4Mew6I/BsMcQkVPQY6zL+lsWQ+xjDc/sZXWN/xTdk/ZaxPWfiR4uTUJP1fsvesbSrsbXp+HtTqyhyXTRQ7khe41P+1msmGdXyoBRJAyGPkJElqMN0n5pjcsbDL0lDz1dzwP8BbhCtV/y/0S2L1q3D3CG6l03c1+HtzuZgp5BVY22CThJKdXS9S2GHrDTZcAMbUQhIr9GTzlSaE3sAvT48CK0cdca4FyllNfShBeiF2qpQa/mtsUK5ya0EVYAvZrnu3s4KQaDwWAw7HZMj0QElpHPVeglbcei55mfgTba+bNSam+00dBF1i0Xoefv7o1eOe8eK5wx1n37o63L/yq7cUMwg8FgMBj6i1jcxGV34wASRcSHXoegDG2pe5Z1/Rm0dfIj6C6g2yz3xcDDIiKW+yKlVBuwWUQ2sX2d+g7JyspSw4cP7+u0GAwGww+aNWvWVCulsvtbjh8zRpGIQClVIiKhjX1a0NNS16A3bgnNBChGL4yC9V9k3esXkQb08Mdg2hv9RN7TIcOHD2f16tV9lRSDwWD4USAiO7OqrWE3YIY2IhC9sNGJ6J3UCtBLZv90N8Z3qYisFpHVVVVVuysag8FgMBh2G0aRaM/R6CW9q5RSPvQCKT8B0q3V00AvHxpaDrcEa8la63oa2ugy7N7BPWGUUo8ppSYrpSZnZ5ueOYPBYDDEHkaRaM824FBrDq2gV1dbj97MKbTE8ly2r072BttXoDsVWGZNk3kDvTxzvIiMQE+hWbWH0mAwGAwGwx7D2EhEoJT6t4gsRi+57Eev4/8YetnnRSIyz3ILLQH9BPCsZUxZi56pgVLqKxF5Ca2E+NHrCgQwGGIEn89HcXExra2dbtppMOxREhISKCwsxOl09rcohijMOhIDhMmTJytjbGkYKGzevJmUlBQyMzMR2ZVNRA2GvkMpRU1NDW63mxEjRrS7JiJrlFKTO7nVsAcwQxuGHwTBoKKmto11X9azabOH+gZvf4sU07S2tholwjBgEBEyMzNND9kAxQxtGGIWnz9IfYOP77Z4GJyfyBXXr6O+wQfA5PHp3HrdaDLS4trdo5Sirt6HAtJTHdjtRpfuDKNEGAYSpjwOXIwiYYhZikqaufTaz5k9Kx+3pzKsRMTH2xgzKpXm5gCBQBspyQ7i4+w0NftZ+596Hnnme7zeIGefMpQZR2STmmLGXA0Gg2FXMZ9jhpgjENDDGAue/J7WtiDpqU4qq/VQhgjMu3EM1TVtnHXFZ8x7YAPlla383/vlbCtp5qY7v2JbcQvllW3c/8hGNm9r6ufUGDrDbrczYcIExo4dy89+9jPq6+t36v7bbruN++67r8NrCxcuZOzYsRxwwAFMnDixU399zfDhwznggAM44IADGDNmDLfcckuX3fWHHXbYToU/bdo0Ro0axYQJE5gwYQKLFy/urcgGQ7eYHgnDgKfR7aOotIV//buaY2fk8dGqGrIGxVFTq5WHNV/UMf3wbD7/bz2TDkhna1Ezby+tID7exqXnjeTy69Yxdr9UikqSwmHmZsdz09WjqKrxUr2livhgK36fIj4pnmBrKyhQIiCCzSY4U5OJy0zvryz4UZKYmMi6desAmDt3LgsWLODmm2/udbj//Oc/efDBB1myZAkFBQW0tbWxcOHCHfz5/X4cjr6vIj/44AOysrLweDxceumlXHbZZTzzzDMdxv3xxx/vdPjPP/88kyd3bHuolEIphc1mviENfYcpTYYBRSCgaG7xEwzqCq+p2c/7Kyu57H8+p7bOx5ov6nDYYdmHVZx9aiFXXzKSdV81kJhg55cXjuSgiRl8sb4BgEMmDWLFx9W4PX6qatoYnJ8Yjuemq0cx/7FN3HbvBuxtLawcdTQfj51Jy3dbWDF6FivGzGLl6Jms3O9olu87A7/b019ZYgCmTJlCScn2Nd3uvfdeDjroIMaNG8ett94adr/zzjvZd999Ofzww/nmm286DOuuu+7ivvvuo6CgAID4+HguueQSQH/RX3PNNUyePJn58+ezZcsWjjrqKMaNG8eMGTPYtm0bAC+//DJjx45l/PjxTJ06FYCvvvqKgw8+mAkTJjBu3Dg2btzYZZqSk5N59NFHee2116itrWX58uUcccQRnHDCCYwZMybsB2D58uVMnTqV448/nlGjRnH55ZcTDPZsp/otW7YwatQozjvvPMaOHUtRURFLlixhypQpTJo0iZ///Od4PLp8v/POO+y3335MmjSJq666itmzZwM79u6MHTuWLVu2APDcc8+F033ZZZcRCATCst98882MHz+eQw89lIqKCgAqKiqYM2cO48ePZ/z48Xz88cf8/ve/58EHHwyHf/PNNzN//vwepc/Q/xhFwjBgqKv3svjNYub9+Wu2FTfz+jtlbPzew5P/0Evpz5yWzeEHp3P4QS5Onp3PlAPTmX5YEvfeuj8fr6phxhHZ/OyYfCYeoHsO4pxCm1dXtps2N5GTGc/EA9IZVuiiqrqNzduaGZTupCcToHtYZxt2A4FAgKVLl3LCCScAsGTJEjZu3MiqVatYt24da9asYeXKlaxZs4ZFixaxbt063n77bT777LMOw/vyyy858MADO43P6/WyevVqrr32Wq688krmzp3Lf/7zH84++2yuuuoqAG6//XbeffddvvjiC9544w0AHn30Ua6++mrWrVvH6tWrKSws7DZtqampjBgxIqx0rF27lvnz5/Ptt9/u4HfVqlU89NBDrF+/nu+++45XXnmlwzDPPvvs8NBGTU0NABs3buQXv/gFX331FUlJScybN4/333+ftWvXMnnyZB544AFaW1u55JJLePPNN1mzZg3l5eXdyr9hwwZefPFFPvroI9atW4fdbuf5558HoKmpiUMPPZQvvviCqVOn8vjjjwNw1VVXceSRR/LFF1+wdu1a9t9/fy688MJwr1AwGGTRokWcc8453cZvGBiYoQ3DgKDR7ePuv3zDR5/VMvf0oTy3uIh3Pqjg3lvHEgjopj7OYUMpPy3N9QzOcVFd1YjTGcfEsTmMG5OOK1EX55lTc1i9ro5/r63jT78by2v/LMXvV/zh/g1cc+nejB2dyhdf6l6L+Hg7Zi2VgUlLSwsTJkygpKSE0aNHM3PmTEArEkuWLGHixIkAeDweNm7ciNvtZs6cObhcLoCw4rGznH766eHjTz75JNxgn3vuuVx//fUA/OQnP+H888/ntNNO4+STTwZ0r8mdd95JcXExJ598Mvvss0+P4ossfwcffPAO6yREXhs5ciQAZ555Jv/617849dRTd/AXPbThdrsZNmwYhx56KACffvop69ev5yc/+QmgFacpU6bw9ddfM2LEiLDc55xzDo899liXsi9dupQ1a9Zw0EEHAfqZ5eTkABAXFxfu0TjwwAN57733AFi2bFlYabDb7aSlpZGWlkZmZiaff/45FRUVTJw4kczMzC7jNgwcTI+EYUDQ0hbgo89qAZg8IYP3VlYCsPzjai49bzjHzchh/uPfYXfEk5ySSmtLMwCDsnJo8xJWIgAy0uO45df78fRfDiQ/N4Gn/3Igx8/MY+qULEbvk0JmRhyTJ2SQmGinrKIVu737aWVmSHnPE7KR2Lp1K0opFixYAOiG96abbmLdunWsW7eOTZs2cdFFF/U43P333581a9Z0ej0pKanTayEeffRR5s2bR1FREQceeCA1NTWcddZZvPHGGyQmJnLcccexbNmybsNxu91s2bKFfffdt9u4o6c/7sx0yMhwlVLMnDkznH/r16/niSee6OJucDgc7YZSQgaiSinmzp0bDuubb77htttuA8DpdIZltNvt+P3+HcKN5OKLL+bpp5/mqaee4sILL+xx2gz9j6keDbuVYFARCATDx37rWCmFz7/9WJBwgx7wK+LidNHcUtTEzKmZ/PKCIfzmir1ICjST0NhElrKTjYNgWQWOmgraquvw+XwopfDW1OOoqSClqZrktgay26q56rgErj4lnUEtVfi3FZPcVs+rfxzCP+8fhgMzbjGQcblc/OUvf+H+++/H7/dzzDHH8OSTT4bH9UtKSqisrGTq1Km89tprtLS04Ha7efPNNzsM76abbuK6664Ld917vV7+/ve/d+j3sMMOY9GiRYD+0j/iiCMA+O677zjkkEO4/fbbyc7OpqioiO+//56RI0dy1VVXceKJJ/Kf//yny3R5PB5+8YtfcNJJJ5GRkdFtPqxatYrNmzcTDAZ58cUXOfzww7u9pyMOPfRQPvroIzZt2gToIYhvv/2W/fbbjy1btvDdd98B8MILL4TvGT58OGvXrgX08MvmzZsBmDFjBosXL6ayUiv+tbW1bN3a9a7eM2bM4JFHHgH0sFVDg+4dnDNnDu+88w6fffYZxxxzzC6lzdA/mKENQ69pavbT3BIABfHxQptXYbOB3694/Z0ygkHFSccW8M6ycuobfZxx0hA++FcVxWUtnH3KED5ZU0tSop3TThzMC68Us/TDSs46eQhPPL+F2TNzcbs9tDQ3MGxwLv7KOj4cvWMlc+TX71HtrmfosGH43R4+2GcGAIe+v5BPjz6vy+OD3niMQ9/XXa2ufYYzbcMSHagIYi1Y5UhJ3q15aOiaiRMnMm7cOF544QXOPfdcNmzYwJQpUwBt1Pfcc88xadIkTj/9dMaPH09OTk64uz2a4447joqKCo4++mitxIp0+gX80EMPccEFF3DvvfeSnZ3NU089BcB1113Hxo0bUUoxY8YMxo8fzz333MOzzz6L0+kkLy+P3/72tx2GOX36dJRSBINB5syZw+9+97se5cFBBx3Er371KzZt2sT06dOZM2dOj+6LJjs7m6effpozzzyTtrY2AObNm8e+++7LY489xvHHH4/L5eKII47A7XYDcMopp7Bw4UL2339/DjnkkHAPypgxY5g3bx6zZs0iGAzidDpZsGABw4YN6zT++fPnc+mll/LEE09gt9t55JFHmDJlCnFxcUyfPp309HTsdvsupc3QP5i9NgYIsbjXhqfJT5s3wHOLi3jl/0r5zWVgn4OBAAAgAElEQVR7U17VyouvFfPgvPHcctdX1Nb7ePCOcfzp4W8prWjlzpvG8NSirWza3MSNV+7Lv9fW8e+1tbS1BfjD9WMYlOFk/bdujpySSUtrkM/W1XH8jFw87hqam5vJEScrRs3cQZapXy8hcWgBNrud1m2lO6VIRDJ941Jcw7s3kvuhs2HDBkaPHt3fYhgsli9fzn333cdbb731g40zGAwyadIkXn755U7tSzoql2avjf7H9EgYdpqmZj/ffufh3Q8qOHhSBi+/UUJ2ZhxZWfHc+9eNDCt0UVTSTG29j/Q0Jy2tAUorWnE4hNRUJ5s260Wg9tkrmcnjUznvtELE4yE/pQ1oY6/xgj3gIdXXwuwDBFtjPcnNbSRjR9T2YYiD3ngMuysBAEdiAq1bSxDMMroGQ6yxfv16Zs+ezZw5c3pspGoYOBhFwrDTFJW2cOVvv+Cow7NZ9189vjl0sIsN3+pu0EBA4XDoIYFgUIVtH5QCW4SB2PDCRKoqy0hw2hiUoli+74zwta56EkLYXQnd+tkV/H4/drsdESEQCGCz2cw6/4Z+Zdq0aUybNu0HG+eYMWP4/vvv90hchr7HGFsaOkUpRU2dl2+/c1Nc1kKD24ffH+SVt/TCQJu3NbH/fqkAbCtpZvS+KQAUl7WQnRlPYX4ijW4/SsE+I5MJBBTlla1MHJsGwKdraklKzsTvayMYDPRPIjvA4/Hg8/kIBAJ4PB78lhGnwWAwGHbE9EgYOqW8so3Lr/88vBT1WScXct7Ph5KdFQ/A5m3N2O3CScfm8+aScqqq2zjvtCEserWYexd8yx03juGbTW5Kylu453f7s+7LBqqq27j1utFs+KaRqro2XElOGhtsKH/PGupAc2u4xyFhcG63fiKNJ22uhHbHR254FwCx2QgEFaCwJ7to8nior6/H5XLhcbux5+ZidzhMr4TBYDB0gFEkDLjdPjYXNfPeikqOmZaD3SGUlbey8tPqsBJx3mlDGb1PCn9a8C3nnzGct5aUU1PnZd6fv+aSc0bw0mMHY7MLcXHCnOMGI6K36d5ruAubzUYgEGDGEVnYbDb8fj9TDspARCgrLcVms/V4O+/PTrg0fByeXdGFn+kblxLMySDRWqSopaWFxMRERIRgMEjRtm047ELB0MFs27oVu6eRwYWFFBcV4XG7SUtLw+Vymb0JDAaDoROMIvEjx+8PsOyjKu5dsJFJ49LZWtLCXfO/4VcX7UVxmV50ZsRQF/vtk8JNd34FQElZK3f+dgz1DT7i4mzsPTyZQRlxUeH6KS8rJTMrC6fTSUV5OWnp6bhcLspKS3HGxZGZmUlmVpZerKa0crekTymoqqoiLT2dlJQUqquqSHS5SE9PD89fHzRoEHV1dQBkZGTQ2NhIMBjEbrfj9nhITU1FIhbXMRgMBsN2zPTPAcLunP4ZCCjavAES4u0oBa1tAXw+xYaNjSQm2rntTxuorvVy3S/34a33yvH7FXk58UwYk0ZVrRe7XSivasXnC7Lyk5pwuHfeNIYjD8vuJM4AtTU1uN1ucnJyaG1ro7GhgaSkJFJSU6koL0cpRVJyMpmZmQQbPO02xrLFxRFobgGbYE9I0McANkGs3gF7YgKBltb2/qP9pCThT4ijorycpKQkUtPSqKyoIC8/n8qKCrKys3E6nZSXlZExaBDx8fFUlJeTkppKUlIS5WVlYQXox9QrMRCmf7a2tjJ16lTa2trw+/2ceuqp/OEPf2Dz5s2cccYZ1NTUcOCBB/Lss88SFxfXfYCGmMdM/xyYmB6JHzi19V7+b0kZX29yc+l5I/l0dS02O9TWeXn25SLuuHFM2K/dLtx45d6kpzr428KtzDk+j4DfT0mFjySXncQEGDnUxcKXi5g9Mx+x7fiFHprlYLfbGTRoEG63m5qaGgoLC3E3NpKkbKiKGjKDNpyuRALuFtrcJe0af0dK323ZHQgEaLA2LnIlJdHc1EQgEKCyooL8/HwQweFwkG/tBGm328nLz0cpFT4GflRKxEAhPj6eZcuWkZycjM/n4/DDD+fYY4/lgQce4Ne//jVnnHEGl19+OU888QRXXHFFf4trMPxoMYrED4SmZj9NzQFa2wIkuxwkJdlxu/384b4NfP5lA5fPHcHfFm5m5SfVPHjHOP72jF7i9oN/VXHmyUN4+Y1iEuJtpKf4aayv5lcXDae1pZnq6mpysrKwO3Qje/YpQ5g9K5eMNAdKaXuHQCAQXomusrKSrCxtC1FWWorT6STHlUzz1hIylQ1pamH56FlA14tC9aUi0eTxUDB4MHa7neqqKnIt48mioiLyCwqw2+3tVtLr7NjQOUuWV/C3hZuprG4jJyuey84bwaxpHRvD9hQRCW+j7fP58Pl8iAjLli3jH//4BwBz587ltttuM4qEwdCPmM+sHwCeJj+L3yrh1Is+5Ybbv6Siuo0FT35PVa2Xz61dLg8YncamzR4KchNQCkbvm8JBEzL4ZHUNM6dm8ezDk6it95KSkkJCQgLVlaWICKlpabS2tqKUorSkhEDAR1qKjZLiYgIBL8FgkJLiYjweD8FgEBUMUlpSgq+ugQw/DArY8Ne7WbnfLD4cfQytJd1vTdyXOBwOhg4bRlxcHDabjaHDhpGQmEhcXFzY3dg+9I4lyyu45+FvqahqQymoqGrjnoe/Zcnyil6HHQgEmDBhAjk5OcycOZO99tqL9PR0HA79DVRYWEhJSUmv4zEYDLuO6ZH4AeD2+Hj82S0A/OKCkdx+/waKSlqYeWQONhsEg+B0CPPnjQVg3Zdu7r9tf5RSfPt9MyrgobLCw0k/LQiv5yA2Gw6nE7fbTWtrK4kuFympqVRWlJGfkkaOOAmUVWFzJZKrHKjqegKuNtJbAyiEYIObFdaeGL1dIKo3mCGJ3c/fFm6mra39xmdtbUH+tnBzr3sl7HY769ato76+njlz5vD111/3KjyDwdD3GEUihgkEAogI9Q0+3lk0hfdWVDJuCDx+fT5eX5D4pFbevn84SilstnpsgXgCzS1MHWEjUF1LoLmFkU7B5k0g3g++bWXYXAmkNHtJxQZ1jaS2+EjDgc3dTGJzK4nYCTY2saKD4Ym+XF3SEDtUVrftlPuukJ6ezvTp0/nkk0+or6/H7/fjcDgoLi5m8ODBfRaPwWDYecznWowS8PuprKjA6/Wy9wgXnsYaZh2ZgcPbyopRR/PJ2Fm0freFFaNnsXLMMSzfbybNG7ewYvQxLB8VcTx61k4cz2JFPwxPGAY2OdYCZT117ylVVVXU19cDev2P9957j9GjRzN9+nQWL14MwDPPPMOJJ57Yq3gMBkPvMD0SsYpI2KAxLyWNpGYfgaYq7AN806rOVp2MnrVhiB0uO28E9zz8bbvhjfh4G5edN6JX4ZaVlTF37lwCgQDBYJDTTjuN2bNnM2bMGM444wxuueUWJk6cyEUXXdTbJBgMhl5gFIkoRCQd+DswFlDAhcA3wIvAcGALcJpSqk60ld584DigGThfKbXWCmcucIsV7Dyl1DN9KWeg3k1Kq5/EoI1Ag5uVA8AeoTPaL2udhzj0TAh7fDyJBb0bQzf0PyE7iL6etTFu3Dg+//zzHdxHjhzJqlWrehW2wWDoO4wisSPzgXeUUqeKSBzgAn4LLFVK3S0iNwI3AjcAxwL7WL9DgEeAQ0RkEHArMBmtjKwRkTeUUnV9JaSv0RPeLTOWlIe+XCPCMHCYNS2314qDwWCITYwiEYGIpAFTgfMBlFJewCsiJwLTLG/PAMvRisSJwEKllwf9VETSRSTf8vueUqrWCvc94KfAC3sqLbuTnmyKtbsWmDIYDAbDwMIoEu0ZAVQBT4nIeGANcDWQq5Qqs/yUA6FPr8FAUcT9xZZbZ+7tEJFLgUsBhg4dulOCer3BDt27skGwJ1gNfeQxO+6K2d1xuyWozfCEwWAw/KgxikR7HMAk4Eql1L9FZD56GCOMUkqJSJ9sUKKUegx4DPReGzslqKNjo8ronS+T9h7WCwkNBoPBYOgao0i0pxgoVkr92zpfjFYkKkQkXylVZg1dhLaqLAGGRNxfaLmVsH0oJOS+vC8FtUXsc9GVPYLBYDAYDLsTo0hEoJQqF5EiERmllPoGmAGst35zgbut/9etW94AfiUii9DGlg2WsvEu8EcRybD8zQJu6ktZnanJTNu4FBVUKPS+BDYx9ggGg8Fg2LMYRWJHrgSet2ZsfA9cgF646yURuQjYCpxm+X0bPfVzE3r65wUASqlaEbkD+Mzyd3vI8LKviMtMNwqD4QdPfX09F198MV9++SUiwpNPPsmoUaM4/fTT2bJlC8OHD+ell14iIyOj+8AMBsNuQfSEg9hCRH7TgXMDsEYptW5Py9MXTJ48Wa1evbq/xTAYANiwYQOjR4/ubzGYO3cuRxxxBBdffDFer5fm5mb++Mc/MmjQIG688Ubuvvtu6urquOeee/pbVMMeoKNyKSJrlFKT+0kkA7G7RPZk4HK2z5C4DD298nERub4/BTMYfmwopSgrLaWstJRgMBg+7u1HSkNDAytXrgyvXBkXF0d6ejqvv/46c+fOBbSi8dprr/U6DQaDYdeJVUWiEJiklLpWKXUtcCCQQ8QaEAaDYc9QXlZGa2srra2tbNu6NXxcXlbW/c1dsHnzZrKzs7nggguYOHEiF198MU1NTVRUVJCfnw9AXl4eFRW9367cYDDsOrGqSOQAkVsL+tBrPbREuRsMhj2EUopgMNjrnogQfr+ftWvXcsUVV/D555+TlJTE3Xff3c6PiKBXqjcYDP1FrCoSzwP/FpFbReRW4CPgHyKShJ5hYTAY9hC5eXk7NOYiQm5eXq/CLSwspLCwkEMOOQSAU089lbVr15Kbm0uZ1dtRVlZGTk5Or+IxGAy9IyYVCaXUHWi7iHrrd7lS6nalVJNS6uz+lc5g+HFRUV6+Qy+EUoqK8t5tN5+Xl8eQIUP45ptvAFi6dCljxozhhBNO4Jln9B54Zhtxg6H/ieXpn2vRCz85AERkqFJqW/+KZDD8eAkNM/TlTLCHHnqIs88+G6/Xy8iRI3nqqafCW4o/8cQTDBs2jJdeeqnP4jMYDDtPTCoSInIlenfNCiAACHqXzXH9KZfB8GMkLz8/bFiZm5cX7onIswwie8OECRPoaFr00qVLex22wWDoG2JSkUBvpDVKKVXT34IYDD92RIT8goLweeSxwWD44ROTNhLonTUb+lsIg8FgMBh+7MRqj8T3wHIR+T8ipnsqpR7oP5EMBoPBYPjxEauKxDbrF2f9DAaDwWAw9AMxqUgopf7Q3zIYDAaDwWCIMUVCRB5USl0jIm+iZ2m0Qyl1Qj+IZTAYDAbDj5aYUiSAZ63/+/pVCoPBsEeYP38+jz/+OEopLrnkEq655hpqa2vNNuIGwwAipmZtKKXWWP8rOvr1t3wGg6Hv+PLLL3n88cdZtWoVX3zxBW+99RabNm3i7rvvZsaMGWzcuJEZM2bssP+GwWDYs8RUj4SI/JcOhjRCKKXMglQGwx7mnUGTCLibdnC3pyTx09q1uxzuhg0bOOSQQ3C5XAAceeSRvPLKK7z++ussX74c0NuIT5s2jXvuuWeX4zEYDL0jphQJYLb1/0vrPzTUcQ5dKBgGg2H30ZES0ZV7Txk7diw333wzNTU1JCYm8vbbbzN58mSzjbjBMMCIKUVCKbUVQERmKqUmRly6QUTWAjf2j2QGg6GvGT16NDfccAOzZs0iKSmJCRMmYLfb2/kx24gbDP1PTNlIRCAi8pOIk8OI3bQYDIZOuOiii1izZg0rV64kIyODfffd12wjbjAMMGK18b0I+KuIbBGRrcBfgQv7WSaDwdDHVFZWArBt2zZeeeUVzjrrLLONuMEwwIipoY0Q1uyN8SKSZp2bfTcMhh8gp5xyCjU1NTidThYsWEB6ejo33nij2UbcYBhAxJQiISK/6cQdMHttGAz9gT0lqdNZG73lww8/3MEtMzPTbCNuMAwgYkqRAFL6WwCDwdCe3kzxNBgMsU9MKRJmjw2DwWAwGAYWMWlsKSKFIvKqiFRav/8VkcL+lstg+CGhlFmaxTBwMOVx4BKTigTwFPAGUGD93rTcDAZDH5CQkEBNTY2pvA0DAqUUNTU1JCQk9Lcohg6IqaGNCLKVUpGKw9Mick1fBCwidmA1UKKUmi0iI4BFQCawBjhXKeUVkXhgIXAgUAOcrpTaYoVxE3qKagC4Sin1bl/IZjDsKQoLCykuLqaqqqq/RTEYAK3cFhaajueBSKwqEjUicg7wgnV+Jrox7wuuBjYAqdb5PcCflVKLRORRtILwiPVfp5TaW0TOsPydLiJjgDOA/dG9Je+LyL5KqUAfyWcw7HacTicjRozobzEMBkMMEKtDGxcCpwHlQBlwKnBBbwO17CyOB/5unQtwFLDY8vIMcJJ1fKJ1jnV9huX/RGCRUqpNKbUZ2AQc3FvZDAaDwWAYiMRkj4S158YJuyHoB4Hr2T7NNBOoV0r5rfNiYLB1PBgosuTxi0iD5X8w8GlEmJH3tENELgUuBRg6dGjfpcJgMBgMhj1ETCkSIvIQXW8jflUvwp4NVCql1ojItF0NZ2dQSj0GPAYwefJkY9VmMBgMhpgjphQJtBFkiD8At/Zh2D8BThCR44AEtI3EfCBdRBxWr0QhUGL5LwGGAMUi4gDS0HYaIfcQkfcYDAaDwfCDIqYUCaVUyCYBEbkm8rwPwr4JuMkKexrwP0qps0XkZbQNxiJgLvC6dcsb1vkn1vVlSiklIm8A/xCRB9DGlvsAq/pKToPBYDAYBhIxpUhEsaeGAm4AFonIPOBz4AnL/QngWRHZBNSiZ2qglPpKRF4C1gN+4JdmxobBYDAYfqhIrC44IyJrlVKT+luOvmLy5Mlq9erV3Xs0GAwGQxgRWaOUmtzfcvyYiakeCRFxs70nwiUijaFLgFJKpXZ8p8FgMBgAAoEASinsdjvBYDB8HNpF2WDYWWJKkVBKmd0/DQaDYRdQSqGUwuN2U1dXR8HgwTQ2NNDU1MSQoUONImHYZWJqQSoROUhEju3A/VgRObA/ZDIYDIaBjt/vx+v1IiIkJSfjdDopLiqisbGR7Jyc/hbPEOPElCKBXoZ6fQfu64F797AsBoPBMOAJBoM0NjRQWlJCc3MzXq8Xh9MJgIjgcDhMb4ShV8SaIpFirWrZDsstqx/kMRgMhgGNzWYjLT2dhIQE2lpb8ba10eTxkJ2TQ1x8PGWlpWaXV0OviCkbCSCji2uuPSaFwWAwxBBKKQKBAI2NjeTm5ZFfUEB8fDyJiYn4/f7uAzAYuiDWeiTeF5E7JaIfTjS3A8v6US6DwWAYUCilCAaD4aGNQCCgDSwbG2ls1BPeHA4H8fHx2Gyx1hQYBhKx1iNxLXpnzk0iss5yG49eOvvifpPKYDAYBhBKKbxeLz6fD5fLRUpqKikpKYjNRlZWFioYDNtFGPsIQ2+JKUVCKdUEnCkiI4H9LeevlFLf96NYBoPBsNsJBAKICDabLTwc4XA42rmHCAaDtDQ3U1tbS2pqKh6PB1dSEpmZmdjtdrDb+ysZhh8gMaVIiEjkSpahjbDSQ+5KqbV7XiqDwWDYvQQCAWpra0lJTsbhdNLQ0EBCQgIiohUJAIeDYDCIPnSQkppKa2srjY2NOByO7UqEwdDHxJQiAdzfxTUFHLWnBDEYDIY9STAYpKysjJzcXIKBABXl5RQMHkxdbS0iQlZ2NjU1NQT8fnLz8vB6vbS0tGC32/H7/bQ0N5PochllwtDnxJQioZSa3t8yGAwGw57GbreTnZ3NtuZmKsrLGTpsGC0tLdTX1ZGekUF5WRmVFRVkDBpERXk57sZGgkqRkJhIbm4uDfX1uD0eEl1mcpuh74kpRUJEzkFvNPZslPu5QEAp9Y/+kcxgMBh2jdDS1aANH0PHkTYPgUCAmpoagsEgObm51NfV4ff7cTqd2KxFpdra2rCJ4HQ6qa2tJTsnh9TUVGw2G6lpaaSC6Y0w7BZibc7PlcCrHbi/gp7RYTAYDDFFIBBg29attLa24vV62bZ1K16vl0AgEP4PKRf5+fkkJCSggJzcXHJyc6mtrQ1P7axvaMDr9ZKZmUlNdTXVVVUEAgHsdrtRIgy7jZjqkQCcSilPtKNSqklEnP0hkMFgMPQGESElJYXysjIAEhMTcTqdiAilJSXh6Zsul4ugUthsNjIyMsIzNTIGDcJms2G320lPTyc9LQ1nXByJLhfK8m8w7E5irYQlikhStKOIpABx/SCPwWAw9JjQrIrIY5vNRnKK3tjYZreTlZ0d9pObl4fH46GstBSP201CQgI2mw2HwxHe+js+Ph6n04ndbsfpdOKMi8Nms+F0OomLizPrRBh2O7GmSDwBLBaRYSEHERkOLLKuGQwGw4DE7/fTUF9PIBDA7/cTCATCv1DPQ35+PtVVVfj9fq1oROyB0ZlCICLhazabLdwDEeluMOxOYkqRUErdB7wOrBSRGhGpAVYAbymlzO6fBoNhQBLa66K+vp7amhoCgQBVlZXhXolBmZlkZWdjt9tRQFlpKQAVFRW4XC7y8vJobm7G4/G069UwGAYCsWYjgVLqURFZAlRZ524AERmhlNrcr8IZDAZDB4g1myInN5fqqipSUlMJBIOUluh19VJTUwG9kFRubi5bt2yhprqa/IIC7HY7NpuNwYWF4WODYSARqyVysVLKHVIiQm79Jo3BYDB0QqgHIRgMUl9XRzAYpK62lqysrPDQhsvlwuFw4Pf7KS8rw2a34/P79ZRPawnsuLg4M/PCMCCJqR4JEdkPvcdGmoicHHEpFUjoH6kMBoOhY/x+Py0tLSQmJoZtIwYXFgJQXlaGw+lEgPKKCgoKChARHE4nOTk52Ox2qqurjZ2DYcATU4oEMAqYDaQDP4twdwOX9ItEBoPBEEXQ2l3T6/VSVVlJWloaQFiJAIiPjyczKwuAGkthcDgcZGVlYbPZ9LLXEccGw0AlphQJpdTrwOsiMkUp9Ul/y2MwGHaNUEMrIu2O+xOlVFiGYDAYtkWIdO/KX+jY7/PhaWoiJSWFuLg4BmVmUltTA0BKamp4jYiQcSXQ7jhy+MIMZRhigZhSJCLYJCK/BYYTkQal1IX9JpHBYOgRwWAQr9cbXusg8ri/lAmlFD6vF5tlzOj3+8M9BD6fL3zs9/tRSuF0OgkEAgQDARxOJ8FgkEAgoJeq9nqpranB5/WSkppKU1NTOJ4mj4fUtLQdVpo0CoMhlolVReJ14EPgfSDQz7IYDD86QsqA06kXlPX5fDgcDmw2Gz6vF4e1QFJHKKWoq62lra2N9IwM/D4f8QkJ4QWWlFJ7vGFVSlFeXo7NZiMvP5/KykpUMEhefj411dV4fT4KCgqora2lpaWFgoICGhsacHs8DC4owNPUREN9fXhnzvSMDHw+HwG/H5/XS+GQIXjb2qiuribFmqFhMPxQiNVZGy6l1A1KqZeUUv8b+vW3UAbDj4WgNXWxoaEBpRRlpaXU1tTQ1NRESUkJrS0t4f0horHb7eTk5urtrS0lAkCAlpYWWpqbCQT27PeBiJBfUIDf76estJTs7GydxtJSBmVmIkBJcTFpaWk47HZKiotJSk4mLi6OkpISEhISSExMpLamBmdcHB63m5bmZlrb2igcMgSbzUaiy8WQoUNN74PhB0esKhJvichxfR2oiAwRkQ9EZL2IfCUiV1vug0TkPRHZaP1nWO4iIn8RkU0i8h8RmRQR1lzL/0YRmdvXshoMe4qQQqCUIhgMhm0EcvPyqK+ro6amJryUc8iwMCExEREJT28EPYMhtGKjz+cL717pswwSq6qqqCgvx+v19ks6Q2mz2+3hHTntNtv2Y0sBCNlCiEh4amYorfHx8fitoZDCIUNIiI+nvKwMEQkPZ/S3LYjB0NfEqiJxNVqZaBWRRhFxi0hjH4TrB65VSo0BDgV+KSJjgBuBpUqpfYCl1jnAscA+1u9S4BHQigdwK3AIcDBwa0j5MBhiiUAgQGtrK4FAAJ/PR3FRET6vVysDVoNvt9vb9SA4rOGO0NLPoWWhK8rLqaurw1fbgK+kgixlx1nvIb6xmWwcuIJ6JkNaenq/DG1UlJeTkJhIbl4e1dXVxMXFkZefT11tLXa7nfyCAhoaGhARBhcW4nG7CQaDDC4spKWlBZ/PR3p6OkGlyM3LC/dChBaVMhh+qMSkjYRSKmU3hVsGlFnHbhHZAAwGTgSmWd6eAZYDN1juC5X+ZPtURNJFJN/y+55SqhZARN4Dfgq8sDvkNhh2B0opvF4vZaWlZAwapBdNcjqprKwMb1+dmZVFclIS27ZtIy09nZTkZNosRUNESM/IoKqykkAgQFp6OpUVFcQrOx+OPmaH+I7YsIQ28dPS3Eyiy7VHGt9ARI9CvrWOg81mIzc3N2xgmZ2TA+hVJzMzM1FK4XA4SM/IIC09HafTSWpqKikpKXozLYdjwMxE6QhvTT1+9w6bKONISSYuM70fJDLEOjGpSIh+O88GRiil7hCRIUC+UmpVH8YxHJgI/BvItZQMgHIg1zoeDBRF3FZsuXXmHh3HpeieDIYOHdpXohsMnRLZiNji4gg0t+gLNkGsaYyhBkVEiI+LIzMzk5qaGuLafKS16aGKtqJycm3xSJ0bvy9I4ZAh4YaztqwMu91OckoKLpcLm81Gc3Pz9p4Gf8ey2e120lNT8Hq9JLpcuz0vQr0kaenpJCQkUFtTQ0pqKgkJCWEjUtAKxM4cR8/IGGj43R4+2GfGDu7TNy41ioRhl4hJRQL4KxAEjgLuADzAAuCgvghcRJKB/wWuUUo1Rs0hVyLSsRXZTqKUegx4DGDy5Ml9EqbBEE1o2MFut7drRA59fyGfHn0eAAe98Rh2lzZ6TBicF1Y27MlJeIM+4uLioKWN5fsevUP40zcuJT5Lj9x5a+rJVg78bX6cdi/e6nqyEOyuRLzbSskEhI6/0iuqWtm01cHEsWkEg8Luaosj14hA69gAACAASURBVH6Ij4+norwch9WLkDFo0IDsRTAYBjKxqkgcopSaJCKfAyil6kQkri8CFhEnWol4Xin1iuVcISL5Sqkya+ii0nIvAYZE3F5ouZWwfSgk5L68L+QzGHpCaH8HpRRNTU34fT7SMzLoZCIFdldCWKmI5KitK4lvbsFlt0Ng+66TkYqHxDlp2rQ1fG356FlAe0Ul+jiSUFjONAfgwbO5icT/b+/Ow+Qoq8WPf09Xd8909+z7lo0kQCK7YVG8QARZVbyIK4Iogooo3osKooKIu7grIioKei+IKD+iomERLosSSSAQSICEQEIms+9b7+f3R9V0ekKGJJNJenrmfJ5nnqmqru55ayqZPv2+5z1vZRAtLZ70T8ipVIqB/n6KioszQy/9/f0kk0nKysvx+/3TMpDI7onSpM2YN5MrXwOJhIg4gAKISDVuD8Ue8YZMfgWsU9XvZT20DPgg8E3v+11Zxy8RkdtwEyv7vGBjOfD1rATLk4HP72n7jNkV6XSa4eFhRITCwkJEhN7eXoIFBbCbS1Cnh6OZfIbsACA78HitIGFXjBfE7JWudlX6+/vpHxigtrY2s5ZFKBSit6eHwsJCCgsLp90Km9v3RBkzmfI1kPgRcCdQIyJfA84GvjgJr3sscC6wRkRWe8euxA0gbheRC4BNwLu9x+4GTgc2AMPAhwBUtVtErgUe9877ymjipTF7m6oSi0bp6+sjUlREcXExoXCYjvZ2anyBnT4/u7fBi9UnVWo4mnkzK2ioJb0PB/Ucv5+GxkY2b9rk5mIUFlLtlafu6+ubtj0SxuxNeRlIqOr/iMgq4ETcOjbvUNV1k/C6j3ivtyOvyk7yZmt8YpzXugm4aU/bZMzuchyHsvJyotEoAb+fRDzOyPAwkaIiGN55jYbtexsm2+NvvyizffCKv1FasvPgZjypVIp0Oo3jOJk6EJkaD14uxGjJa7/fTyqVoq+3F3AXyqqorMTn8+E4DqWlpXmxQNZrJcw6hYXufvb2drIDucLGOsTvJqP4i4v2zQWYaScvAwmvTkM7WdMpRSSgqonctcqYqSHW1UOyf5DiVApffAinsIBa9cNQDF9hAcevW44g+MKFme1dsX1PwmSoKJv4+hqqSiwWo7WlhYZGd1LU1uZmamtrCQSD7vTUykrS6XQmaBARhoeHqa2ro6CggJatWzOlvafyTIts4yXMbr8/3pBTdiC3dP39hOduW5HUmInIy0ACeAI3ybEHtwehDGgVkTbgQlVdlcvGGZNLqYGhMbMrtn+zGbV0/f0UzGnE7/cT7+rhhBfuZ3AoSWHhjt/Ys9+Ajl97z45/dlawEV4wl+PX3kNalUAkxHHPLsfnk1dNNd1RTYNdISIUFBRQXFLC1uZmqqqrKS0tpbOzk9q6OuLxOG2trVRVV5NIJNja3ExBQQF19fXgVapsbGwEr3aEMWZi8jWQuBe4Q1WXA4jIycA7gV/jTg09OodtMyZvBAIBYrEUN9zZxcZNw1SUBfnYqaHM49mBQbC+lo7eJAVBB8IhFj36VwJ+H4U1Ef7jmeUA+Pw+OnsSpNPKK5ti/OC2Dq689AAqQ0HClVWECnf8qX/p+vtfdWy8rvbRstt+vz9Txnr0+OjwRXdXF7W1tTRv2UJnRwd19fVs3rSJ4eFhimMxwpGIW/ciT3oh9pQNZ5i9KV8DiWNU9cLRHVW9R0SuU9WPikhBLhtmTL4ZHkmxcnUvL20e5iPnzCWR2DY9MLsX4sjVyznv2mYOWFDE204u4Lrrm6mvLeTj5xdx1bc2UVtdwMc/uB9fvu6lMa//7Z+u57qrDxo3iAhWlu3y7IzRGSkd7e00NDaSSqXo7e2ltq4Ox3HY2txMZWUloXCY9rY2/H4/VVVVtLW1ZfIlOjs7aSgoGFN0arqz4QyzN+VrINEiIpcDt3n77wHavSmhezwN1JiZJBx2OOKQMl7aPMzGTUNweAWLHv0rIkJFWZDevjiptBIsLWJ2U4jnNwxy8fkhDphfxPMvDhIM+Dj8oFJe3jJMKPTqYCEScnCc3c+DGF0kzHGczGJffr+fUChEUVERW5ubqamtpaGxMVNZsqGhAX8gkEm6rK2ry1TcbGhowOc47hLh3kJcUz2xcpTVgTBTWb4GEu/HXRTr/3n7jwLvBRy2Tc00xryG0WmXBUGH8949h83NIzz0WCdnv62R2+7t5OEVXRy4oIgvfPpABgYSaNLPD689lPauGH5H+OaXDqKrJ04qqVx12SJ6+xOEQg6L9y9m7QsDAPj9wsc/tB/FRbv36V9VSSQSRKNRIpEIgwMD9PT0uIEB21YkbW9ro7GxMdPbkF2qerSXAqC2tjYzIyN7O19kJ1geuezGbXkoC+dywjovX8WbqXHCunvGbnuPZeelGDOZRMcrdZdHRKQQeJuq/iHXbZmoJUuW6MqVK3PdDDMNjPn0quArCJAcHCGNgM/H8EiKWCxFqiBEUV0Ffkfw+91P7dFYGscBxxEScUV8UBzxU1Cw67kE3b1xXtgwQGtHjKOPqKCiLLBbzwc332F4aIiOjg6KiospKiqir6+PgN9PMBiks7OTuvp6hgYHGRwcZPacOXkz62JXbd8LMVoxNJsNU4CIrFLVJblux0yWrz0SeMMYpwDvA94CPALkbSBhzGQJVpYx7A/z6OPdFEUc7vzrVlY+1csH3z2bV7YO8Y9HOgiFHK67+mBu/d3LPLKik8a6EJ+7ZH/2mxsh4N+zGQwVZUGOWVK5R6/hOA6RoiKisRiDAwMUFxdnqlLW1tbSNGsWjuNklh3Pp96FXWXVKE2+yLs5TyJyvIj8HHgZuAA3iNhPVc/OacOMmSIGBhP84MYNfOOHz1NaHGDlU24BpsMOKuORFZ0AnHFSHX/7Ryt//0cbg0Mpnn9xkEuufIq+/qlRikVVSSaTDA0OUu4V14pGozQ0NDA4OJgpbe04DsFg0KZvGpNDefW/T0S2AN/A7X1YrKrvBEZUdTi3LTNm6hiJprj/4Q4ABoeSVFa469l19cRoqHOndh50YAn/Wjm2avvISIqOrti+bew40uk0sWiUYDBIcUkJkXCYhsZGAsEgVdXVVFdXT8teiFHRaGrcBdaMmWrybWjjDuAduLM0UiJyF3tjMQBj8piI4BNIKdx591Y+ecF8vvr957jz7q1c/KH9+NK31tLeGWN2Y5iu7rEls8tLJ2UR3QlLJpOoqjs7IxwmFA67iZF+PwqZPIjplg/R1RPn6bV9HDpL8CdGGBxMUhzaFihNtA5Eb1+cRFIJOIL4IJ5QHAcSCWXNun7qqgtobAjl/L6b/JZ3yZbeCp0n4OZGnA6U4g5x3K2qEyuRNwVYsqXZFdkJeNn8xUWZWgxDw0luX7aF2+9qZmAwySlLa/jA2bMZGk5SW+0uxtXbF8fv9/HJK5+ity+BCHzknLm8862NFEVy8/kilUrR1dXFyPAwdXV1dHS4vSr1DQ3TLnDI1tUT52OffZL2jijLrtuPRxa7VUlfqyLpayVYxuMphqMpRkZSXPWtdbR2RPnOVQfzk5tepK8/wac+Mp/PfeUZEkn3b//Rr6/gS/91AGV5GkxYsmXu5VuPxOhCWQ8AD4hIADgVd+rn9UBVLttmzK5Ie0t5+3w+0uk06XSaweE0qFIUcTJTGFOpVOYNNJVKuYtPbTcNcHSVzsLGOhL9g4hAoLiIc85q5N1va+CPd7dw6OJSKsqCzJsdybShurKAVEq5+cdL6B9IEAn7CYecnAUR4PYyVFRU0BKL0dzcjM/no7GpaVrlP8TiKQaHUohAIpFm1VM9JJJKS1uUhfsVkUhuK4OT3QsRqKulsy+J3++DcHjc1+/qifO7OzZzwPwili1vZd36AT78/jncfPsmVj/Tx8Uf2o+bb9+cCSIAVqzqpqsnnreBhMm9vAsksnmLdP0Z+LOIhHZ2vjG5MlrW2XEcEokE7W1t1Dc0ANDT3U1ZeQWqQndXF+UVld4bTYJAwF3Uqqe7m9KysdUfs1fp3D6oSPX0IuLjPUtLKKjacdVIxxEqy4NUlk+tN5B8z3xIpZTevjhbW6NUlgcIBB3aOqJUVRSwbHkLf16+lW9fdTCXfvFpFi0s5rCD3fszPJIkO+0juxrlokf/ynnXNrPk0DKuvWIWPb1xnnmun+dfHOS0E2t5pXkYv+Pj1jtfYcUTPfz4G4fy9No+ABbMK+IPy5oBKAo7O0yoHRxK7sXfiJnu8iqQEJE1jJ8TocCh+7A5xuyS7LLOdfX1OI6Dz+ejra2NqqoqhkdGSCY7qKysYCQaJd7aQlV1Nf39/VRUVAAQjUYZam6mMr3jT+fZQUW2pevvh6ryvXp9kyWVStHd3U0qlaKxsZGOjg7aWltzNrQRjaUYiaYoivjRNAyNJImE/QgwOJwkHHJwfMLAUJJQgUMg4GNwKEH/QJKPfvZJNA3fveZgPv/1p6irLuS0E2u55fbNHHdMJQ882snwSIo1z/XzlYubOGF+E6rKa5XbOOb15fzXRxcyEk3z/RvW8/CKLi78wFx+fesm/v6PNn76zcNY8UQPAM1bR9h/fhEvvDjIK80jHLCgmJWre/jXqm5OWVrLDTdvK2NeVhqgqX7PP4el0+lMFdFUKuXm6vh8pFMpZAcFwEbzYQKBwJhtk3/yKpAA3up9/4T3/bfe9w9gSZdmivL5fITDYYqKimhtaaG0tJTS0lI6Ojro6+2lpqaG1pYWurq6qKuro2XrVhgcJjQQZWSgmUA4RHksjQIyjf+Zjw5taHk5fr+fuvr6TKnrfa2jK8avb32ZlrYYl140n7v+tpUXNg5x2ccXcs+DbTz5TB+XfWwB/3y8i0cf7+bTFy3gmef68PuEx5/qpX8gyTtOq+euv7fQ1R1n6bHVrFztvsmLTzKVOePxNIOd/ax94+kAlI5TL6KiLMh7zqzgks+v5torXsfDK7oAOPzgMn71vy8D7rBJccTPwFCS39+1hcs+vpCvfv85/vTXZr5y+WLaOqI8+u8uTjyuhis+uT9/+0cbDXWFfPh9cykv27NeqVQqxcDAAJFwGPH5GBwcJFRYiD8QcIMKr7x5KuWW9xYRurq6iI6MUFdXR3tHBz6RTKBt8kteBRKquglARN6iqodnPXS5iDwBXJGblhmzcwqEQiFC4TCtLS0UFxdTUlpKe1sbgUCAispKOr0Ew0TfAA97lQyzk+6me2Gi7BLX2dv7Uk9vnMuuXsPGTUN85uKFXHf9elY/08dF587ll//zMg/9q5P3nNnEnXdv5c/3tHLqm2t5+LFOfnfHK1x60XzaOtwptOWlQdasc4cXtraOcOl7a/jwiQWICHUNRZx77BwAsuOk8WZnaCjM5Vc8QzyhbJ8g76XccPd9rVx03ly+d8MGXto8zE9u2sg3v+gulhYOO/zk64cSS6QJ+H2UFvs57g1VBIM+Cnez6uh4hgYH6evtpa6+npGREXq6u2lsaqKjvR3x+aipqaGjo4N0KkVtXR1lZWW0e/kwjuNQ19hoQUSeytcsJhGRY7N23kj+XouZptLpNKlUKjO0MTw0RFFxKY7jUFZeTll5Rab7t7qmDp/PQYG6+kZ8vh3/QR19oznmvlsobKzdtxc0DaTT+qrtVCpNLOZ+Uk6lleGRlLt4GTBvdoTVz7jBwMGLSzMFvY48vJz7Hmp3tw8r597/c7efXNPH8W9wc76fWNPL8W90t1es6iYiMdYdewZr33g6wxte5uGDTuHhg04htrUt06bH334Rj510Ho+ddB7idwjPbSI8t4nNfX7iCbe9W7aOcMjiEgDWrR/gTUe7VUTve6iDra1Rfv3D1/Ptqw7ims8uoq6mgMZ6d3pnZUUBDbUhqisLCAYdSooDkxZEOI5DXX096XSarc3NVFdXZ1ZarayqIhaN0tbaSnl5OYlEguYtW8YERNO3n21myKseiSwXADeJSKm33wt8OIftMWaM0YJKvb291NTWUlBQQENjI/2DaRLJNIWFEb71k/UkEsqVl+7PSDTNiie6WHpsHT+9aSMXnbLjzPzsBLw3b3qYpevvdwsXpWxFyPGk00pnd5xlf28hEBBOWVrL8gfaSCbTnH5SPcuWb6VvIMkH3jmL5Q+0cezRlTg+SKXd5xYW+IjG0oyMpCgpCtDbn2BgMEFleQFbWkYYGExSVRGkrSPGoys6+e9zajj94DmMRNNU1/l5y/fmkFbw7cHCxJXlQXw+t/fh+t9s5NrLF7P2+X5e2jTEJRfM501HVbLq6V4W719MVUWQBfP2zsJco8Hx6HBT9nZ/fz+qSlVVFQP9/aRSKfxesODz+Ugmk5lqpBUVFfT19ZFOpzO9Fu1tbTa0kafyMpBQ1VXAoaOBhKr25bhJZgbLLqKUSqVQVRzHwXEcorEYW5ubSSQSRIrKiCUK+PnNm2jtjPL8BrcexP0Pd/DVKxZx5Hw/W1a/zLuO9pNO7jyLvqdjiJGyan596ybOP6Oc/1h3H4PDSZIJpaDARyTsz8uVHkeLKDk+obwssMcVLLt743zo0pX09Sf56TcP4+LLV9PeGeMH1x7CJ69cTWt7jK9f+To+/7VnefHlIWLxNO8+s4lb79zCvf/XzvnvncMNN7/EX+9r5aJz5/Kd69ezbLk7jHDNd9Zljn/h688STyj9bf2sO9bNeZisYamiiJ/Pf+oArvvZenp6E3zn+hf40dcOo6zEj+P4aKoPcdqJtTjO3u2YVVVe2byZsvJySktLad6yhaKiIsrLyxkZHqa6poZQKERHRwdV1dVEIhFaW1oQEeobGujs7MwkZZaWllJWVjYmH8aCiPyUl4GEiNQCXwcaVPU0EVkMvEFVf5XjpplpTFUzb2qj3bLpdJru7m5Ghoepra1ldP6ez+fD5ziUlpTQ29uLiBCJFPOH32+mqMjP84+NLSrl9/sIJqOsO/YMYNfedEIhh4uvWkNnd5yTjq/hqp9tYfOWkczjJ59Qw2Ufr2NqTe58bS1tUa7+9lrWvjBAY30h13xuMQvnRUim3ABjzbp+5s0OURQJ8Ozz/VSUBZnTFH7NZMGVq3vo60/SVB+ipW2E9s4YpSV+orEUre0xHB+UFPt58WV3OON///QKF5+/Hz/5xqH09Sc4cGExx7+hipdfGWbhfkXcduNRbHx5iPlzI9x249FseGmQWY0hbv35UazfOEhVxci4bdmRXalaGQ77WfqmapYcVk4ikaaw0KFiu2ve20EEkFmGva2tjWQySU1tLW2trQwPD1Pf0JBZyr26uhpw/x9UV1cjPh+O41BZWYkA/kCAZCIB3tDedC53PhPkZSAB/Ab4NfAFb/8F4PeABRJmr1BVEokEPhEcv9/9I4j7B7GiooLWWIxYPE4ykWBgYIC6+npSySS9vb2EQiGisRg9PR2cflIt0RHloX91MuDN3d9vToTFB5Tg641mfl72m0t4wVyOe3Y5ivuHub07DgiEwnR6Ja7LS4NjggiA+x9q5xMf2o9IOD/+m/f1x7n2e+tY+8IAAM0tUT5z9Rp+d/0SWtqjXPy51VSUB/nifx/Ixz67mpFomoBfuOjceZx4XDWOI5SVBF71hvr6/Rxu+VIjjiMURWLc8qVG9xOxl2Lilt7e9kaWTsNPbtrIgnkRfvDVQygrcd+wZzVuG25qrNs2XbK+tjCzXVtdyPDLW3brurOHq16ramVhgTNpOQ2jVJV0Oo3jOKiqOxyxg4Jo2cQbylCvZ2H03N6eHiqr3JyQ7ETZQDCYOc/v92emiPq9qZ4WROS//PgL82pVqnq7iHweQFWTImKDxGbSpdPpTAXKjvZ2UqkU9Q0NdHV1EYvFqKmpQXw+VJWe7m5q6+qIxmJeYakKSkpLGRgqoKqqnJGRIQZ705T6otz+tdkkkopP3N4IX287mt42hp795vKmdfcRr6wnGksRi6U5/9pViMAN367OnOPzuW+GqdS2tLWqygLIoz/SyaTy9Nr+zP7C/Yq44P1zGB5J8eNfbiSRVE4+oZbb79rCSDSNCNzxg0Uk+ocYeqmZ6roII10xUHAihaSH3cAsDPzb6+k5ctmNlHqFu0JOEXd/dw4oBIqj/O27c1CFQFGIxOAIPp/gDPYw1O4FeD7BKSwkNTwydhvwhbf9vPGMCQ4XzuWEdfdkXnf0zXlfDkWpKslEgh4vABjtXausrERVM9vZQYGqZqYwl5WXs3nTJiKRCEXFxbS1thIKhYgUFY2ZspsdKIx33OS3fA0khkSkEi/ZV0SOASxPwkyqdDpNLBbD7/eT7h+kLOFWLRzZ1ExpOEQqCemWTnyhAsrjaQQf6ZYOStSdopfqGyBUXMrXfvQcqnDOWU1UVTqUpRI8uL+7nsKRy24klalIueNZGAG/UFpZALif2k86rob7Hmpn9bN9nHmqW6vgkRVdvP+sWfz2D5sBcHzw2U/sT3lp/hT48TnCgrkRNrw8RENdIf/10QVc+73nOO/dszPVGLMrM77+kDLSQ8OsOuIU4NX5CDvKTcgu3PVa5+9oe3eesyPb9zxEFsyZ2C9qEqVVGRoaQoGSkhJGhodpjcfHJFFmExEam5oywUWDN2VztJy53++fViXNza7J10Div4FlwHwReRSoBt6V2yaZ6UZV6fKSwypSPv7vgJMyj433JpJdqjq8cC6plha+el4ZvlAhicEBfPGxuRHbv7HtTGlJkP/66ALOe/dsunvjnHx8Ne96eyPtHTHmzg5z+km1bG2NMndWmJJiPz5f/nzqKy8NcvVnF/GZL6/hrDMa+cVvX6KlLcq/VrrVGG/87UuZyoxPr+3nwIXFxOMTnwmxt0y1nofxiAiBQIDKqio6vYJQ1TU1tLW2AowJGEbzg3w+H8GsoYrsoY+CgoJ9fxFmSsjXQOJZ4HjgANzS/M9jdSTMJBudG9+8ZcsujxDs6ifeHdnVpaJLSwKUlgTYb467CFc1MHfWtgW5ZjWMv6jTVDenKcyN3z2CeDzNb257GYBHVnSy9NgqLr1wPg/+s5PaqgKuvXwRL20ewu+feoHSVOx52BFVJZVM0t3dTWEoRHFJCe1tbW4PXDpNX28vpWVliAiJeJxA0M0VGd22GRZmVL4GEv9S1SNwAwoAvMqWR+SuSWOJyKnADwEH+KWqfjPHTTK7KdbVQ7J/kPIUKHs/BWdXk+6mM5/PXUhsaDjJkkPLefCfnaTTcM11z/GGJeVc/ZkDKWGE9OAIRzYGEKufsUfSqgSDQWpqakh7ZaxramszycXgDvFt3bqV0lK3mFp3d3dmSMMYyLNAQkTqgEYgJCKHs22hwBLcnKopQUQc4KfAW4AtwOMiskxV1+a2ZWZ3pAaGMrkM07009VQTCfu58sP1fOy0MPF4iuq6IiQWQ3rbSAEPZpUP35mxPT1WDXSUiBAMBqmtrcVxHNLpNLV1dTiOQywWo7WlhfLycvyBAFXV1Zny7ZVVVQSD+TSp2OxteRVIAKcA5wNNwPeyjg8AV+aiQeM4CtigqhsBROQ24EzAAok8kj0DYlJf197Yds3IME8deSrgLma1o6Gh8fIRfKFC/uOZ5QCkEbr7EhQWOkSKi9wVUQFfMLjt/HDhTrdHZ2qcsO6esds7OG8q5UK8ltFKkzB2RoXf788EDxWVlZBVzjqZSLxqvQ8zs+VVIKGqNwM3i8g7VfWPuW7Pa2gEXsna3wIcvf1JInIRcBHA7Nmz903LzIRkv2EVNNbhhEPuG4cIvlABJ6y7x1udc+eyhzBO9Mpcb2+qvwFNFePlIzz0r06u/PqmMed+5uMLecchVfu0ffksEY8TDAYJhUI0b9lCVVUVjuPQ1tZGpKjIhjZMRl4FEqNU9Y8icgbwOqAw6/hXcteq3aeqNwI3AixZssRC/Ckme5779m9YoYaaHT4n3tW700+82Z9YfQVBCsd5LTNxBy8q4T+OqeThx7zltg8qzSygZXYumUzS19dHbW0t6VSKplmzMr0Xs+fMsSmeZoy8DCRE5AbcnIilwC+Bs4F/57RRYzUDs7L2m7xjJo9M5G9lsLKMYGXZ5DfG7JbysiBXfPIALr0whSqECn2Uldq4/q7y+/2ZgEG9uig+ny/zZUy2vAwkgDeq6iEi8rSqXiMi3wX+lutGZXkcWCgi83ADiPcC789tk8zu8meNp29/3Owd8a5ekgNurQ1N7nhGxu5OkzW7z4YtzO7I10BidFGBYRFpALqA+hy2ZwyvZPclwHLc6Z83qeqzO3mamWKsd2HfSw4M8sDCEwG3uNeuFHaye2RMbuVrIPEXESkDvgM8gVsq+5e5bdJYqno3cHeu22FMvsqXwk7GzHR5GUio6rXe5h9F5C9AoaraWhvGGGPMPpaXgYSInLWDY33AGlVtz0GTjDHGmBkpLwMJ4ALgDcAD3v4JwCpgnoh8RVV/m6uGGWOMMTNJvgYSfmCRqrYBiEgtcAtu0aeHAAskjMlDNlPGmPyTr4HErNEgwtPuHesWkUSuGmWM2TM2U2Zqy56em81mz8xs+RpIPOglWf7B2z/bOxYBenPXLGOMmb62n57rhN3CwoWNdZkAw4KKmSdfA4lPAGcBb/L2bwb+qO5KMktz1ipjjJkhnHBhZiG1bEvX32+BxAyTl4GEqqqIrAT6VPU+EQkDRbirgBpjjNmHsnsnJBhgaIO3YJoVD5sR8jKQEJELcVfNrADm4662eQNwYi7bZYwx00F2LoQvGCQ1PPKa52f3ThyTteR7NuupmL7yMpDAHdo4ClgBoKrrRcSWUDTGmEmQnQuRHRiMliyfDJa4OX3kayARU9X46DLPIuLHLZNtjDFmLxm7YFrtTs9/rSEP0sqDi05+1XOs5yL/5Gsg8X8iciUQEpG3ABcDf85xm4wxZlrLXv/kxE0PZ2p+jLdS62sNeUxm74bJrXxdWP4KoANYA3wUd3GsL+a0RcYYM4Ok43HCc5sIz23KLOVuZqa865EQEQe4RVXPAX6R6/YYY0y+Gi9PQdPp3Xqd7IqkvmBw25LvZkbIu0BCVVMiMkdEgqoaz3V7jDEmcbNoTgAAEMdJREFUX2UnVWbLHrYYExhsN51z1HgVSYdf3rIXWm2mmrwLJDwbgUdFZBkwNHpQVb+XuyYZY0z+yk6MTA2PZIYrfAVBChsmf1LcaOJmYWPdmKERW1cl/+RrIPGi9+UDinPcFmOMyXt7o1LluEMeVqhqWsnLQEJVr8l1G4wxxrw2W4RtZsjLQEJE/syr60b0ASuBn6tqdN+3yhhjjJl58jKQwM2RqAZu9fbfg7vOxv64MznOzVG7jDEmb2QPPYxXC8KYncnXQOKNqnpk1v6fReRxVT1SRJ7NWauMMSaPZA892AwLM1H5GkgUichsVd0MICKzcVf/BLApocYYs5uyeye2P27Ma8nXQOIy4BEReREQYB5wsYhEgJtz2jJjjMlDlhhpJiovAwlVvVtEFgIHeoeez0qw/EGOmmWMMcbMOHkZSIjIWdsdmi8ifcAaVW3PRZuMMcaYmSgvAwngAuANwD9whzZOAFYB80TkK6r62xy2zRhjjJkx8nX1Tz+wSFXPVtV3Aotx60ocDVw+kRcUke+IyHMi8rSI3CkiZVmPfV5ENojI8yJyStbxU71jG0Tkiqzj80RkhXf89yISnPCVGmOMMVNYvgYSs1S1LWu/3TvWDSQm+Jr3Agep6iHAC8DnAURkMfBe4HXAqcD1IuJ4q5D+FDgNN5B5n3cuwLeA76vqAqAHtwfFGGOMmXbyNZB4UET+IiIfFJEPAnd5xyJA70ReUFXvUdWkt/sY0ORtnwncpqoxVX0J2AAc5X1tUNWN3iqktwFniogAbwbu8J5/M/COibTJGGOMmeryNZD4BPBr4DDvayWgqjqkqksn4fU/DPzN224EXsl6bIt3bLzjlUBvVlAyevxVROQiEVkpIis7OjomodnGGGPMvpWXgYSqKm6Z7CTwn8BSYN3Onici94nIMzv4OjPrnC94r/s/e6n5Gap6o6ouUdUl1dXVe/vHGWOMMZMur2ZtiMj+wPu8r07g94Dsai+Eqp60k9c/H3grcKIXrAA0A7OyTmvyjjHO8S6gTET8Xq9E9vnGGGPMtJJvPRLP4eYfvFVV36SqPwYmZaUZETkV+BzwdlUdznpoGfBeESkQkXnAQuDfwOPAQm+GRhA3IXOZF4A8AJztPX80h8MYY4yZdvItkDgLaAEeEJFfiMiJuHUkJsNPgGLgXhFZLSI3AKjqs8DtwFrg78AnVDXl9TZcAizHHVa53TsX3Cmo/y0iG3BzJn41SW00xhhjphTZ1oOfP7zZGWfiDnG8GbgFuFNV78lpw/bAkiVLdOXKlbluhjHG5BURWaWqS3Ldjpks33okAPBmZ/yvqr4NNwfhSSZYiMoYY4wxE5eXgUQ2Ve3xZj+cmOu2GGOMMTNN3gcSxhhjjMkdCySMMcYYM2EWSBhjjDFmwiyQMMYYY8yEWSBhjDHGmAmzQMIYY4wxE2aBhDHGGGMmzAIJY4wxxkyYBRLGGGOMmTALJIwxxhgzYRZIGGOMMWbCLJAwxhhjzIRZIGGMMcaYCbNAwhhjjDETZoGEMcYYYybMAgljjDHGTJg/1w0wxhgztQ0OJRkeSaGqhAp9JBKKApGQQyhkbyMznf0LMMYYQyKZprsnzj8f76Io4ueIQ8qpLA/S2xfnF797mT/f08JHzplLqNDhpv/dxEgsxYXnzuUtx9Xg+HwUFzkMjaRIp5RIxE80miKVUsJhh3hcSSbTFBY6pNJKPJ6mIOijuCiQ68s2k8ACCWOMMbR3xDj/UysZiaZpqC3k8k8G6e1P0N4R5a6/t1Ba4mfxASV8+otPA3DGW+poqA3x6S89zaIFxZx+Uh0/+uWL1FYXcO67ZvPDX7xIQVC45IL5/PiXLxKNprjiUwdw/W828uxz/ZxwbDUXvH8ufkfwOUJFWTDHvwEzURZIGGPMDBdPpPntHzYzEk3jOMJVn1nEN374PHOaQtTVFgIwd1aEZ5/rByDgF95+cj0XX/4kaYUvXHogn/zCU8TjaT590QI+95VnGBhM8q2rDuKL31hLW0eMqy47kK9+/3k2bhqiqT7Emac2cNW31rL2hQHmNIW55nOLmDc7guNILn8VZgIs2dIYY2a4ZCLN0EgSgKMOL+ffT3azacswL24a4uBFpQBsbR1h/twIAI31Ida/NEgqDWWlAdo7Y8TjbhCSTisDg+5rRUIObR0xAGqqCti4aQiA979zFj+8cQNrXxgAYNOWYS778hp6+xP79LrN5LBAwhhjZqjBoSRPr+3j5799ibNOb0QEKsqDtLZFAWhuiTI0lOScd86ifzBJ/0CCs85ooLc/TkOd21MxNJSkssIdlkillFChg+O9s4gIBQXuTiyeprTE7QSf1Rhi3fqBMW3p6o4Tjab2xWWbSWaBhDHGzFDrXujn4stX88e/bOWRFV1c9+WDCRf6OOm4msw53/npC0RjKX77kyUcdUQFH37/HH79gyXMaQrzn6fXE08oTz3bx/vPakIEHni0g498YB6OD/56bwuXfHg//H7hzru38umLFhAM+ujqijO7KTSmLUURJxN0mPwiqprrNhhgyZIlunLlylw3wxgzQwwMJvjCN9byxNO9mWMNdYVce8Vi6qoLWPVUL7/5/WYcR7jwA3M59HWlRML+V73G8EiKWCxNOOTOyIhG00QiDuk0DI8kKYr40TQMDicpKfKTVjcnY2goyWeveYaunjhFEYdrL38dhx1USiCwe8GEiKxS1SWT8ksxE2LJltsRkcuA64BqVe0UEQF+CJwODAPnq+oT3rkfBL7oPfWrqnqzd/z1wG+AEHA3cKlaxGaMmUJ8PiG0XQ/A1tYog4NJSucXs/RN1Rx+cBkIlJfueEZFcVFgJ1M4CzJb1Vnb4A6D3PSD1xONpSgo8FFa7N/tIMJMDXbXsojILOBkYHPW4dOAhd7XRcDPvHMrgKuBo4GjgKtFpNx7zs+AC7Oed+q+aL8xxuyqSNjPhefOw+/fNkti7qww8+a4CZUiQnlZcNwgYk85jlBZEaSxPkRVRQGBgLNXfo7Z+6xHYqzvA58D7so6diZwi9ej8JiIlIlIPXACcK+qdgOIyL3AqSLyIFCiqo95x28B3gH8bZ9dhTHG7IJZjWFuveEoHn6sk6rKIIe9rszqOZjdZoGER0TOBJpV9Sl3NCOjEXgla3+Ld+y1jm/ZwfEd/cyLcHs5mD179h5egTHG7J6CoI/62kLefWZTrpti8tiMCiRE5D6gbgcPfQG4EndYY59R1RuBG8FNttyXP9sYY4yZDDMqkFDVk3Z0XEQOBuYBo70RTcATInIU0AzMyjq9yTvWjDu8kX38Qe940w7ON8YYY6YdS7YEVHWNqtao6lxVnYs7HHGEqrYCy4DzxHUM0KeqLcBy4GQRKfeSLE8GlnuP9YvIMd6Mj/MYm3NhjDHGTBszqkdigu7Gnfq5AXf654cAVLVbRK4FHvfO+8po4iVwMdumf/4NS7Q0xhgzTVlBqinCClIZY8zus4JUuWdDG8YYY4yZMOuRmCJEpAPYtBtPqQI691JzprKZeN0z8ZphZl73TLxm2LPrnqOq1ZPZGLN7LJDIUyKyciZ2583E656J1wwz87pn4jXDzL3u6cKGNowxxhgzYRZIGGOMMWbCLJDIXzfmugE5MhOveyZeM8zM656J1wwz97qnBcuRMMYYY8yEWY+EMcYYYybMAgljjDHGTJgFEnlIRE4VkedFZIOIXJHr9uwNIjJLRB4QkbUi8qyIXOodrxCRe0Vkvfe9PNdtnWwi4ojIkyLyF29/nois8O7370UkmOs2TjYRKRORO0TkORFZJyJvmO73WkT+y/u3/YyI3CoihdPxXovITSLSLiLPZB3b4b311jT6kXf9T4vIEblrudlVFkjkGRFxgJ8CpwGLgfeJyOLctmqvSAKXqepi4BjgE951XgHcr6oLgfu9/enmUmBd1v63gO+r6gKgB7ggJ63au34I/F1VDwQOxb3+aXuvRaQR+BSwRFUPAhzgvUzPe/0b4NTtjo13b08DFnpfFwE/20dtNHvAAon8cxSwQVU3qmocuA04M8dtmnSq2qKqT3jbA7hvLI2413qzd9rNwDty08K9Q0SagDOAX3r7ArwZuMM7ZTpecylwHPArAFWNq2ov0/xe4y6aGBIRPxAGWpiG91pVHwK6tzs83r09E7hFXY8BZSJSv29aaibKAon80wi8krW/xTs2bYnIXOBwYAVQ6y3VDtAK1OaoWXvLD4DPAWlvvxLoVdWktz8d7/c8oAP4tTek80sRiTCN77WqNgPXAZtxA4g+YBXT/16PGu/ezri/b9OBBRJmShORIuCPwKdVtT/7MXXnLk+b+csi8lagXVVX5bot+5gfOAL4maoeDgyx3TDGNLzX5bifvucBDUCEV3f/zwjT7d7ORBZI5J9mYFbWfpN3bNoRkQBuEPE/qvon73DbaFen9709V+3bC44F3i4iL+MOWb0ZN3egzOv+hul5v7cAW1R1hbd/B25gMZ3v9UnAS6raoaoJ4E+493+63+tR493bGfP3bTqxQCL/PA4s9LK7g7gJWsty3KZJ5+UG/ApYp6rfy3poGfBBb/uDwF37um17i6p+XlWbVHUu7n39h6qeAzwAnO2dNq2uGUBVW4FXROQA79CJwFqm8b3GHdI4RkTC3r/10Wue1vc6y3j3dhlwnjd74xigL2sIxExRVtkyD4nI6bhj6Q5wk6p+LcdNmnQi8ibgYWAN2/IFrsTNk7gdmI277Pq7VXX7RK68JyInAJ9R1beKyH64PRQVwJPAB1Q1lsv2TTYROQw3wTQIbAQ+hPtBZ9reaxG5BngP7gylJ4GP4OYDTKt7LSK3AifgLhXeBlwN/D92cG+9oOonuMM8w8CHVHVlLtptdp0FEsYYY4yZMBvaMMYYY8yEWSBhjDHGmAmzQMIYY4wxE2aBhDHGGGMmzAIJY4wxxkyYBRLGTCPeKpoXe9sNInLHzp6zBz/rMG8qsjFmBrNAwpjppQy4GEBVt6rq2Ts5f08cBlggYcwMZ3UkjJlGRGR0NdjngfXAIlU9SETOx11hMYK7RPN1uMWfzgViwOleQaD5uMvUV+MWBLpQVZ8TkXfhFhJK4S4wdRKwAQjhljD+BvAX4MfAQUAA+LKq3uX97P8ESnELLv1OVa/Zy78KY8w+4t/5KcaYPHIFcJCqHuatmvqXrMcOwl1FtRA3CLhcVQ8Xke8D5+FWS70R+JiqrheRo4Hrcdf8uAo4RVWbRaRMVeMichWwRFUvARCRr+OW9f6wiJQB/xaR+7yffZT384eBx0Xkr1ax0JjpwQIJY2aOB1R1ABgQkT7gz97xNcAh3kqrbwT+4FYqBqDA+/4o8BsRuR13gakdORl30bHPePuFuCWQAe5V1S4AEfkT8CbAAgljpgELJIyZObLXbEhn7adx/xb4gF5VPWz7J6rqx7weijOAVSLy+h28vgDvVNXnxxx0n7f9GKqNqRozTViypTHTywBQPJEnqmo/8JKXD4G3AuOh3vZ8VV2hqlcBHbhLPW//s5YDn/QWXkJEDs967C0iUiEiIdxcjUcn0kZjzNRjgYQx04g3fPCoiDwDfGcCL3EOcIGIPAU8i5u4CfAdEVnjve4/gadwl7xeLCKrReQ9wLW4SZZPi8iz3v6ofwN/BJ4G/mj5EcZMHzZrwxizV3mzNjJJmcaY6cV6JIwxxhgzYdYjYYwxxpgJsx4JY4wxxkyYBRLGGGOMmTALJIwxxhgzYRZIGGOMMWbCLJAwxhhjzIT9fy71xIjQVvC9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCICHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAEWCAYAAACexWadAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXeYVcXZwH/vLdsrsMAuIIjSO6KIioIIGkURC8aKvcVPjYndKBqN2HsPCsTEWGJLYgEpVogCoiJFuixb2ML2fu/7/TFnl8NlG7sLC+z8nuc+d87MnJl35syZec/MO+eIqmKxWCwWi8Wyv+NpbQEsFovFYrFYWgKr1FgsFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgaLZSIyL3i0i2iGQ4x5NFZIuIFInIsOaL2GS59pocItJDRFREfHsyn30BETlfROa0thwWi+XAQkRmisj9rS2HZfcQkYUicnkdYTuNjSLysYhM3ZPyNKjUiMgmESl1lIPq37NO2EHAH4D+qtrZOeVR4DpVjVHV75sqmFMRhzb1/IbkcNIvdsqzVUQeFxFvM/KrFxE5T0SWOPmlOxf3mD2VXyPkmSkiFSJS6PxWiMiDIhJf33mq+ndVndDEPKeJSGVIW7qlaSXYv3HVf5GI5IrIXBHp29pyNYSIXCwiX7VwmmEi8piIpDr1sUlEnmzJPPZlxLBBRFa2tizNoQX67NrSPFhEgiLyQkum20CetbZxETlCRD4SkTznnv1WRC7ZW3LtKWq7bk5f/XpL56Wqv1HVWS2drpvGztSc6igH1b/rHP+DgBxV3eaK2x34uUWlbBqNkWOIqsYAxwHnAJfuCUFE5CbgSeAvQCdMvT0PTKoj/t6a8XlYVWOBJOAS4EjgaxGJ3oNyvRnSlh6uJR8RkbawNPqw0/66AtuAmbubwP42O1iHvLcDI4AjgFhgDLBsL4rV2hwLdAR6isjheyqT/a2tOFwEbAfOEZHw1hJCREYB84HPgUOB9sA1wG+amN4uD9B78qG6TaGq9f6ATcAJtfifAJQCQaAIeMP5V6AYWO/ESwH+BWQBG4HrXWl4gTuA9UAhsBToBnzhSqcIOKeW/D3AXcBmzIAwG4gHwmuTo5bzFTjUdfwW8JzrOB6YAaQDW4H7Aa9L7keBbGAD8DsnPV8t+cQ78pxdTx1PA94BXgcKgMudcjwJpDm/J4FwJ34H4D9AHpALfAl4nLBbHXkLgTXAuDrynAncH+IX65T3Ouf4YuBr4Akgx6mDi4GvQurxeqcesoFHqmWpo5yv1xG2EHjAya8U03E0+RoQ0m5D88YocN84dfgDMCZElj87shQCc4AOrvBjXOducerkcCCzWj4n3hnAD42pf+AUoMhxHwEsctJPB54FwkLq/HfAWmCj4/eUI0sB5j4aHVL2tzHtqxD4CeiNUSa2OedNaKjtA/2AMiCAadN5Tvxw51r86tTBi0CkEzYGSMW0ywzgb7XUxX+AG+uop0uAf7uO1wJvu463AEMdd19gLuaeWANMccVrjIx3YNrTJuD8eu7XFOBDJ591wBUhdf0Wpj8qxDxYjWigj30V+DvwLvBsSNjBmP6wEPgMeI6d2/FFmD4wB/gTrnZP7f2KB7gN0+fmOLK2a2R6dbZL6uizgYnAcuecb4DBrryGYZTXQuBN4J/sfE+II+c1zjU7K6RuJjjXOR/zkPg5cLkr/FJgFUYp+hToHnIPXY1pT3lOvQp1t/GvcI0PtVzDi3H1i648DnXd7y8AHzl1dEIdfo1pp3/A3LfpwCWu/CKBx5zrl+/IHAn8F/i/ENl+BCaHyllPf3kU8J2T7nfAUSH95eWN7JfdcS92ZHzUuUYbgd80tu3XeS0ajFCHUuOu5HoupAfTwd4NhAE9nYKe6ITfjOlg+zgNagjQvq6KDsnnUkyH0hOIwXQIf6tNjjrOd8vZ12kgv3eFvwe8BERjnqK+Ba5ywq4GVmMUsHbAAupWak4CqmoLC2lAlcDpTp1FAvcBi528kzAdwp+d+A9iGrvf+Y126q8PppNPceL1AA6pI8+ZhCg1jv9szGxKdaOrAv4P8DlyXcyuSs0Cpx4OAn7B1bHUd6OEhC3E3MgDnLz8zbkG1KPUAF0wnfbJTn2Pd46TXLKsxwz8kc7xdCesO+YmO9eRsT07BtWV7HxTvgf8oaH6x7TffwBfOseHYZQun3MNV+Ea9J1yznXKXd3hXeDI4sN0ehlAhKvsZcCJTvhsTAdyp1OGK3CUo0a0/Z2uv+P3BGaQb4dRjP8NPOjqI6qAhzAddmQtdXGXc+2vBQYB4grriRl0PBhlYjNOn+OEbXfCojFt/xKnjMMwHWv/3ZDxcUfG4zCDTJ86rt0XmEE0AhiKeWA7PqSuT8Z08A8Ci+u596MwCsfJwJmOzG4FdhGm0w/DKNMF7GjH/TED7zFO+KOYfsSt1IT2Kzdg+pWuTllfAt5oZHqNaZfuB8VhmMF3pFMXUzH3ZbiT/mbg95g2eJaTl1upGQ2UA4nAM+ys3HZw6uIMR54bnPOrB8xJmPGhnxN+F/BNiKz/ARIw/VYWcFJtbdy5RgFgbD3XcadzahljZmIUgqOdaxFRh19j2ul9Tp2dDJQAiU74c5i+qotT30c5dT0F+J9LriGY/i6stutWS3/ZDnOfXejU5bnOcfVYvdBV7w31y+64FzvX7ApH3mswD/DSUNuv79dYpaYI07FU/65wVXJ9Ss1I4NeQ8NuB1xz3GmBSHfk2pJTMA651HfdxKsjXyPPVqaRix/0GO2ZCOmFupkhX/HOBBY57PnC1K2wCdSs15wMZDdTxNOCLEL/1wMmu4xOBTY77PuCDWhrioZhO5ATA30CeM6ldqZkOzHU1utDrdzG7KjUnuY6vBebVU86KkLZUrYAtBO5zxW3WNaB+peZWQmYMME9yU12y3BVSpk9c7fe9Osp3K/B33dERlADJ9dR/mVMHGZiOrC4F9EZ3nk45j2/g+m7HLK9Wl32uK+xUzD1dPesV66SZ0Ih6D73+grmHDnH5jWLHDNIY55pH1COrF/NE97WTd1r1tXDCtwDDgd8CL2OUrL4YBeZDJ845OEqh67yXgHsaKWMVEO0Kfwv4Uy2ydsMMcLEuvweBma66/swV1h8orafsF2AGVB9mUMtnxxP0QY5cUa74r7OjHd+No5A4x1FOXbuVmtB+ZRWu2VsgGaffbCi9RrZLt1LzAs6DmMtvDUZpPBbXAOaEfcPOSs1fgfdd16sS6OgcXwQsCmmHW9gxYH4MXOYK92Dux+4uWY8Jud631dHGuzjx+9ZzHXc6J7Q+MPf77Fr6gNkhZWionZbiGmcw/f2RTvlKce75kHwiMP1BL+f4UeD5EDkL2LlfLnO1swuBb0PSXARc7LgXuuq9oX7ZHfdiYF1Ie1OgMw20/fp+jV1jPV1VP2tkXDfdgRQRyXP5eTHLJWA6iPVNSBd2PLVVsxlzY3bCTJk3huFO/mdjBvNoTKfaHaMJp4tIdVwP5qapznuLKx23HKHkAB1ExKeqVfXE2xJyXFv5Uhz3I5gOa44j38uqOl1V14nIjU7YABH5FLhJVdPqyTeULphp9brkakh2t5y18ZaqXtCIdFryGoTSHThbRE51+fkxTxXVZLjcJZjZFKi/zb4OrHJskqZgBtn0euR4VFXvCvUUkd6YWYMRmBvdh5nxdLMl5Jw/Apdh6kWBOMzTbDWZLncpkK2qAdcxmDKmUH+9h5LkyLjUFV8w93k1WapaVsf5OHI8BzwnIpGYWdhXReRbVV2FWVYYg1HaP8d0usdhOvzPnWS6AyND+hof8LdGyrhdVYtdx3W14xQgV1ULQ+KOcB2Htp2Ieu7/qZh7ogqoEpF/OX7vufIqccXfgmmD1bLUXBdVLRGRnJD0Q69bd+A9EQm6/AKYfrPe9BrZLkPzmioi/+fyC2NHG92qzmjlUHMPO+3gbMySGaq6SER+Bc7DLMWHyqoikhqS91Mi8pjLTzD9W3U+dd3joWzHmFkkY2Yhmkpt95DbrzHtNCekHVXL3QGjvOzSN6lqmYi8CVwgIvdiHlLOCok2XFXX1WQqMg1zv8GuYxHOcZdayrO7/XLNNXDaG67y1Nf262RPG2NuwWiZCa5frKqe7Ao/pIlpp2EabjXVml1m7dFrRw1vYTTPu11ylWPsKKrljlPVAU54OjtX7kH1ZLHISev0hkQJOa6tfGmOzIWq+gdV7QmcBtwkIuOcsH+o6jHOuYqZ9m8UIhKDmeX50uUdKldthNbF7ihRbtx5NfcaFGM6iGo6u9xbMDM17nYZrarTGyFjnW1WVbdirvcZmKebvzUivdp4AdN59lLVOIyth4TEqakrERkN3IJRpBJVNQHzxB96TmNoqN5D20M2Rika4Iofr8YAehdZG0JVS1X1OcxA0t/xrlZqRjvuzzFKzXHsUGq2AJ+HXNMYVb2mkTImhhjI19WO04B2IhIbErexD1I1iEhX4HjMYJMh5rUYZwEni0gHTBtvJyLuduxu8+mYZaTq9CIxS5BuQut+C2aJ1F1PEU7bbSi9xrTL0LweCMkrSlXfcPLqIq7Rm53v4ckYxfx5V910wSh8tZVd3MdO3leF5B2pqt/UI281O9WZM7AuwiwP1sVO/Y2IdK4lTm33gduvMe20LrIxsyt1jaezMKsG44ASVV3UiDSrCR2LoO42vztjY3001PbrZE8rNd8ChSJyq4hEiohXRAa6LPz/CvxZRHo5O14Gi0j1TZSJWTOvizeA3ztb/mIwO4vebGA2pD6mA1eISGfn6XoO8JiIxImIR0QOEZHjnLhvAdeLSFcRScQY3tWKquZjlKXnROR0EYkSEb+I/EZEdtn5E1K+u0Qkyeng7sbMBCAiE0XkUOdGzsc8aQVFpI+IHO/sEihjhyF3vYhIuIgcBryPGUxea+icEG4WkUQR6YZZ235zN8/fhRa4BsuB3zp1PYKdn0xeB04VkROdNhkhImOcQaYh/g6cICJTRMQnIu1FZKgrfDZGwRiEsfNqCrGY6eAiMdu8r2lE/CqcZQwRuRszIOw2jaj3TKCriIQ58YPAK8ATItIRQES6iMiJjc1TRG506j/SqdOpTpmqX8XwOTAWsySWilG6T8IMuNVx/gP0FpELnWvuF5HDRaTfbsh4r5jt5aMxBq5v11I/WzDLJA867WYwZoasKdtfL8TYoPXB2OYMxdhxpQLnqupmYAkwzZFrFGbpsJp3MO34KOd6TKNhRfZF4AER6Q7g9C/VuzAbSq+hdhnaZ78CXC0iI53+PVpETnEUwkWYNnu9c63OwBgiVzMVY0A9yFU3RwNDRGQQxvh1kNOn+jDLl25F4kXgdhEZ4JQzXkTObqBu3OWoaeMOtwAXi8jN1WOUiAwRkX864T9gZseHikgEpu52i+bcS865rwKPi0iK06+NcsYCHCUmiDEk3t2HrY8w99Z5zv15DuaB4z+1xG302NhAeRpq+3XSWKXm37Lzu0Xea6RgAUznMBRjmJiNUWSq34XyOKYS5mBulhkYYzYwjWKWmHcCTKkl+VcxF+cLJ+0yjEFrk1DVn5y0bna8LsJMla7EDPTvYKYfwTS8TzENeRkNDF6q+hhwE8ZYLQvzFHEdRomoi/sxF/VHjDH1MscPoBfGGrwI0zk8r6oLMEZh0zH1nIEx8ry9njxuEZFCzBLZbMxU8lEh0/CN4QPn3OWYzmbGbp5fF825Bn/CPLVsB+7FGOICNQPTJMyTZvX1uJlG3A+q+ivGQO8PmGW65RjDu2rew5niD5k63R3+iJlmL8SUsyEl8VPgE8wAuRlzLzRm2bAu6qv3+ZgdPRkiku343YoxylwsIgWYttlnN/IrwXS2GZi2+zvgTFXdAKCqv2Da+pfOcQFmw8HX1UtoznLQBIzdTZqTVrVxcmNkzHDKmoZRXK9W1bqWGs7FGMqmYa73Pdq05fmpmHs3w/3DDMjVMxLnY5bZqncfvomZSUNVf8b0ef/EPNkWYWwsyuvJ8ymM/dYc595fjLF9bEx6DbXLabj6bFVdgjECfRZTt+swdhSoagVmRvNizH10Ds49LCJdMDMKT4bUzVJMO5+qqtmY5amHnbrpj+kvq+vmPcz1/6dzvVfQ+O3Xu7RxZ4bneOe3QURyMfZdHznhv2BsHT/D7Khq6rucmnMv/REzVnyHqdOH2LlPm41REndLAVfVHMw4/gdMXd8CTHSuQSi7NTY2QJ1tvz6qrYwtliYhIoqZjl7XYOQ9K0cPjHLrb8ZsXUvJsh4z9d2Ugc6ylxGRMRgDxMbM1LUqYmwjVqvqPbWExWDsjXqp6sYWyKtF09uTiHmvVSpmK/6ChuK3RUTkIuBKxzxhv6O+tu+mLbzgzGLZa4jImZh18vmtLYtl/8dZQjvEWQY8CTPD+L4r/FQxS9rRmF0tP2F2/jU1vxZNb0/iLB8nOEss1fY9i1tZrH0SMbYp12Jml/YLGmr7dWGVGoulhRCRhRhjyt85a9wWS3PpjNkGWwQ8DVyjO3/2ZRI7XtDZC/itNm/6vaXT25OMwuz2ycbYW5yuqqX1n9L2cGxysjC2Qv9oIPq+RENtv1bs8pPFYrFYLJYDAjtTY7FYLBaL5YBgf/zAmaUOOnTooD169GhtMSwWi2W/YunSpdmqmtTacliaj1VqDiB69OjBkiVLWlsMi8Vi2a8Qkd15I7llH8YuP1ksFovFYjkgsEqNxWKxWCyWAwKr1FgsFovFYjkgsDY1BziVlZWkpqZSVlbnR5Itlr1KREQEXbt2xe/3t7YoFovlAMMqNQc4qampxMbG0qNHD0Sa8tFmi6XlUFVycnJITU3l4IMPbm1xLBbLAYZVag5wysrKrEJj2WcQEdq3b09WVlZri2JpQSqrghQUmk+uxUR5KSoJABAb7SMszFg55BVUkru9grz8CrqlRBIIQkFhFe0T/STEm1k7r9fEDQSCNe6qQBBfLf5ut8VSjVVq2gBWobHsS9j2eGBRUFjJpwsymfnmZi44sxvR0T5m/H0zqsq9t/QnqUM4Xg+8MHMD87/K5vLze7BoSS5vvJdKQryfv9wxgAXfZLNuQxEXnn0Q36/I44ef87ngrG6s3VDMN9/lcN6Z3UjPKGP+V1lMmdSFwqIqPpmfydAB8Ywa0Z6gKl6vEBfjr1GiLG0Te/UtFovF0mQ2/lrMU6+sx+MRDj04loefXUvO9gquu+wQ3vsojct/v5St6WXM/yobrwcOH5rIG++lAvC7S3ry0uyNPPnSOnocFM1zr65n+tO/kNQ+nDfeS2XaI6uIjPAyd+E2bn/gZ6qqgiz7MZ+b7v6Jb77L4ZAeMUx7dBVnXvo/zr/mOxZ8nUVxSVUr14ilNbFKjWWP4/V6GTp0KAMHDuTUU08lLy9vt86fNm0ajz76aK1hs2fPZuDAgQwaNIhhw4bVGa+l6dGjB4MGDWLQoEH079+fu+66q15j7KOOOmq30h8zZgx9+vRh6NChDB06lHfeeae5Ilsse4QFX5mlxF4Hx7B8hbm327cLIzrKx/yvsoiO8pGbVwFAWLiXgqLKmnO7dYnih5/zARjQJ5YvFucAcMSwRD6elwnAcUd14N2P0hx3Eu/+dysAJ5/Qmfc+Tqs5v7gkwP1PrKawyCo1bRmr1Fj2OJGRkSxfvpwVK1bQrl07nnvuuRZJ9+OPP+bJJ59kzpw5/PTTTyxevJj4+Phd4lVV7ZlObsGCBfz00098++23bNiwgauuuqrOvL/55pvdTv/vf/87y5cvZ/ny5Zx11lk7hakqwaD9ELil9RnYz9xz6dvK6HFQFAAdEsPYmm4+mL0tu5yUzpFERnopLQ0QFekjJtoLQOhCpMcZkVTB6zWhgYDic7n9PhPp4IOiWbGqYKfzVSE1zX6ouy1jlRrLXmXUqFFs3bq15viRRx7h8MMPZ/Dgwdxzzz01/g888AC9e/fmmGOOYc2aNbWm9eCDD/Loo4+SkpICQHh4OFdccQVgZjpuvPFGRowYwVNPPcWmTZs4/vjjGTx4MOPGjePXX38F4O2332bgwIEMGTKEY489FoCff/6ZI444gqFDhzJ48GDWrl1bb5liYmJ48cUXef/998nNzWXhwoWMHj2a0047jf79+9fEAVi4cCHHHnssp5xyCn369OHqq69utHKyadMm+vTpw0UXXcTAgQPZsmULc+bMYdSoUQwfPpyzzz6boqIiAD755BP69u3L8OHDuf7665k4cSKw66zXwIED2bRpEwCvv/56TbmvuuoqAoFAjex33nknQ4YM4cgjjyQz0zxBZ2ZmMnnyZIYMGcKQIUP45ptvuPvuu3nyySdr0r/zzjt56qmnGlU+y/7JYYMTGDk8kS1bS/H7PYw9ugObUkvo1zsWr8coGq+9sYmH/zSQw4cl8tFn6Tx+32AG949j45Zijj6iPQBLf8jjxLGdAPhicTZnnGzu68++2Ma5k7sBMPfzbZx7RlfALHsN7Bu3kywi0DUlci+V3LJPoqr2d4D8DjvsMA1l5cqVu/jtbaKjo1VVtaqqSs866yz9+OOPVVX1008/1SuuuEKDwaAGAgE95ZRT9PPPP9clS5bowIEDtbi4WPPz8/WQQw7RRx55ZJd0ExMTNS8vr9Y8jzvuOL3mmmtqjidOnKgzZ85UVdUZM2bopEmTVFV14MCBmpqaqqqq27dvV1XV6667Tl9//XVVVS0vL9eSkpJd0u/evbtmZWXt5DdkyBBdvHixLliwQKOionTDhg271MGCBQs0PDxc169fr1VVVXrCCSfo22+/Xav8vXv31iFDhuiQIUM0OztbN27cqCKiixYtUlXVrKwsHT16tBYVFamq6vTp0/Xee+/V0tJS7dq1q/7yyy8aDAb17LPP1lNOOUVVVe+5556d6nLAgAG6ceNGXblypU6cOFErKipUVfWaa67RWbNmqaoqoB9++KGqqt5888365z//WVVVp0yZok888YSqmmubl5enGzdu1GHDhqmqaiAQ0J49e2p2dvYu5dsX2qWl5cjLr9C0jFJNzyzVrJwyTc8s1Yxtpfrd97l6wbXf6mkXfqNvfbhFs3PLNGd7uVZVBTQvv0Jzcso0O7dcv1ycpa/8bYOmppXo4qU5+tLs9bo5tViX/rBdX5y1XjdsLtIVq/L0xVnrdc26Al2zrkBfe2OTbkkr0WtuWaZHT1yoE6Z8qR/PS9ei4srdlh9YovtAH25/zf/Z3U+WPU5paSlDhw5l69at9OvXj/HjxwMwZ84c5syZw7BhwwAoKipi7dq1FBYWMnnyZKKizFT2aaed1qR8zznnnBr3okWLePfddwG48MILueWWWwA4+uijufjii5kyZQpnnHEGYGaTHnjgAVJTUznjjDPo1atXo/IzfaPhiCOOqPM9LEcccQQ9e/YE4Nxzz+Wrr77aZXkJzPLTiBEjao4LCwvp3r07Rx55JACLFy9m5cqVHH300QBUVFQwatQoVq9ezcEHH1wj9wUXXMDLL79cr+zz5s1j6dKlHH744YC5Zh07dgQgLCysZqbnsMMOY+7cuQDMnz+f2bNnA8ZuKj4+nvj4eNq3b8/3339PZmYmw4YNo3379vXmbdn/iY/zEx+368sUOyVF8PQDQwgGlbhYP36/x3XODvcxIztwzMgOAHRJjmTk8HYAHNQliuGDE2riDei7Y3m59yGxADx450DKygN295MFsMtPlr1AtU3N5s1mm2e1TY2qcvvtt9fYjaxbt47LLrus0ekOGDCApUuX1hkeHR3dYBovvvgi999/P1u2bOGwww4jJyeH8847jw8//JDIyEhOPvlk5s+f32A6hYWFbNq0id69ezeYd+iW5t3Z4uxOV1UZP358Tf2tXLmSGTNm1Hu+z+fbabmr2rhZVZk6dWpNWmvWrGHatGkA+P3+Ghm9Xm+DNkqXX345M2fO5LXXXuPSSy9tdNksByaJCWG0bxe+k0LTksTH+emUFEGHduFWobFYpcay94iKiuLpp5/mscceo6qqihNPPJFXX321xg5k69atbNu2jWOPPZb333+f0tJSCgsL+fe//11rerfffjs333wzGRkZgJmp+Otf/1pr3KOOOop//vOfgJkBGT16NADr169n5MiR3HfffSQlJbFlyxY2bNhAz549uf7665k0aRI//vhjveUqKiri2muv5fTTTycxMbHBevj222/ZuHEjwWCQN998k2OOOabBc2rjyCOP5Ouvv2bdunUAFBcX88svv9C3b182bdrE+vXrAXjjjTdqzunRowfLli0DYNmyZWzcuBGAcePG8c4777Bt2zYAcnNz2bx5c735jxs3jhdeeAGAQCBAfr7ZhTJ58mQ++eQTvvvuO0488cQmlc1isViagl1+suxVhg0bxuDBg3njjTe48MILWbVqFaNGjQKMQerrr7/O8OHDOeeccxgyZAgdO3asWRIJ5eSTTyYzM5MTTjgBVUVE6pwZeOaZZ7jkkkt45JFHSEpK4rXXXgPg5ptvZu3atagq48aNY8iQITz00EP87W9/w+/307lzZ+64445a0xw7diyqZhfS5MmT+dOf/tSoOjj88MO57rrrWLduHWPHjmXy5MmNOi+UpKQkZs6cybnnnkt5eTkA999/P7179+bll1/mlFNOISoqitGjR1NYWAjAmWeeyezZsxkwYAAjR46smVnq378/999/PxMmTCAYDOL3+3nuuefo3r17nfk/9dRTXHnllcyYMQOv18sLL7zAqFGjCAsLY+zYsSQkJOD1eptUNovFYmkK4rYDsOzfjBgxQpcsWbKT36pVq+jXr18rSWQJZeHChTz66KP85z//OWDzDAaDDB8+nLfffrtOeyTbLi37EiKyVFVHNBzTsq9jl58sFkuLsXLlSg499FDGjRvXaANri8ViaSnsTM0BhJ2psewv2HZp2ZewMzUHDnampgmISDcRWSAiK0XkZxG5wfF/RERWi8iPIvKeiCQ4/j1EpFRElju/F11pHSYiP4nIOhF5WpxtJiLSTkTmisha579hC1SLxWKxWNowVqlpGlXAH1S1P3Ak8DsR6Q/MBQaq6mDgF+B21znrVXWo87va5f8CcAXQy/md5PjfBsxT1V7APOfYYrFYLBZLHVilpgmoarqqLnPchcAqoIulAEORAAAgAElEQVSqzlHV6pd4LAa61peOiCQDcaq6WM064GzgdCd4EjDLcc9y+VssFovFYqkFq9Q0ExHpAQwD/hcSdCnwsev4YBH5XkQ+F5HRjl8XINUVJ9XxA+ikqumOOwPo1JJyWywWi8VyoGGVmmYgIjHAv4AbVbXA5X8nZonq745XOnCQqg4DbgL+ISJxoenVhTOLU6tFt4hcKSJLRGRJVlZWE0uyZykrK+OII45gyJAhDBgwoObDlRs3bmTkyJEceuihnHPOOVRUVLSypBaLxWLZn2nzSo2IDK/ld4iI1PtiQhHxYxSav6vquy7/i4GJwPmOMoKqlqtqjuNeCqwHegNb2XmJqqvjB5DpLE9VL1Ntq00OVX1ZVUeo6oikpKTdLv/eIDw8nPnz5/PDDz+wfPlyPvnkExYvXsytt97K73//e9atW0diYmKDr/i3WCwWi6U+2rxSAzyPsX95GXgFWAS8DawRkQm1neDsUJoBrFLVx13+JwG3AKepaonLP0lEvI67J8YgeIOzvFQgIkc6aV4EfOCc9iEw1XFPdfnvUeYszOTMSxcz+rTPOfPSxcxZmNnsNEWEmJgYACorK6msrEREmD9/fs2HHKdOncr777/f7LwsFovF0naxSg2kAcOc2Y7DMPYxG4DxwMN1nHM0cCFwvGub9snAs0AsMDdk6/axwI8ishx4B7haVXOdsGuBvwLrMDM41XY404HxIrIWOME53qPMWZjJQ8/+QmZWOaqQmVXOQ8/+0iKKTSAQYOjQoXTs2JHx48dzyCGHkJCQgM9nJsS6du3K1q1bG0jFYrFYLJa6sd9+gt6q+nP1gaquFJG+qrqhrq8nq+pXQG2BH9UR/1+YparawpYAA2vxzwHGNSx+y/HS7I2Ulwd38isvD/LS7I1MGNM8O2Wv18vy5cvJy8tj8uTJrF69ulnpWSwWi8USilVq4GcReQH4p3N8DrBSRMKBytYTa++zLbt8t/ybQkJCAmPHjmXRokXk5eVRVVWFz+cjNTWVLl26NJyAxWKxWCx1YJef4GLM0s+Nzm+D41cJjG01qVqBjh3Cd8u/sWRlZZGXlwdAaWkpc+fOpV+/fowdO5Z33nkHgFmzZjFp0qRm5WOxWCyWtk2bn6lR1VLgMecXStFeFqdVueqig3no2V92WoIKD/dw1UUHNyvd9PR0pk6dSiAQIBgMMmXKFCZOnEj//v357W9/y1133cWwYcO47LLLmlsEi8VisbRh2rxSIyJHA9OA7rjqQ1V7tpZMrUW13cxLszeyLbucjh3Cueqig5ttTzN48GC+//77Xfx79uzJt99+26y0LRaLxWKpps0rNZit2b8HlgKBVpal1ZkwplOzlRiLxWKxWFoDq9RAvqp+3HA0i8VisVgs+zJWqYEFIvII8C5Qs82n+oOVFovFYrFY9g+sUgMjnf8RLj8Fjm8FWSwWi8VisTSRNq/UqGqb2rZtsVgsewpVxfnkHSKCBoMo5uWbgUAAVcXn8+3krqqqAtjFHQgYE0ev19sqZbHsn7RZpUZELlDV10XkptrC3d90slgsFkvdBAIBo7hUVbF161Y6deqEz+8nbetW2nfoQER4OGlpaSQkJhIVFUV6ejoxMTHExsaSmZFBWHg4iYmJ5GRnIx4PHTp0qPlGHFCjKNWmBIlIjdIEVglq67Tll+9FO/+xdfwsLUheXh5nnXUWffv2pV+/fixatIjc3FzGjx9Pr169GD9+PNu3b29tMS0Wy25SVVXF9txco2yIEBERQVpaGmWlpURGRZGZkUFRcTHR0dFkbdtGYUEBMTEx5ObkkJubS3xCAoUFBeTm5hIdE0NRYSGlJSUU5OeTk52NqpKXl0dGejpVVVUUFhSQnpZGIBCgpLiY1NTUGv/U1NQa5cbSNmmzSo2qvuT831vbr7XlO9C44YYbOOmkk1i9ejU//PAD/fr1Y/r06YwbN461a9cybtw4pk/f49/stFgsLYyqUlRUREZGRo2SAuZBJsFx5+flERcfj4iQn59PTEwMHo+HkuJiwsPC8Hq9FBcVERYWRlhYGPn5+cTFxVFRUUGGM6sTCARIT0sjMioKVSU1NZWw8HA8Hg+/bt5Mbm4u7dq1a82qsOwDtOXlp6frC1fV6/eWLPsKqkpGejoAnTp3JjMjA4DOycnU9XHPxpCfn88XX3zBzJkzAWo6rg8++ICFCxcCMHXqVMaMGcNDDz3UrDJYLJa9i8/nIzk5mczMTOLj40lPTycyMpL2HTqQnpZGWFgYnTp1Ij0tDa/XS3JyMhkZGYgIKSkpbNu2DYCULl3YnptLZWUlcfHxAPj9fsrLy1FVwsLCKC0tJRAIEBERQVFREZWVlURGRlJZUYGIEBkZaZef2jhtdqYG87K9pUAEMBxY6/yGAmGtKFerkZGeTllZGWVlZfy6eXONu1rRaSobN24kKSmJSy65hGHDhnH55ZdTXFxMZmYmycnJAHTu3JnMzMyWKIbFYtmLBAIBsnNyCAaDVFVVERcXR1LHjng8HuLi4ujcuTPiuJNTUmrcKSkpeLxeEtu1IzklBZ/PR6wTJyEhgYKCAioqKkjp0oXi4mJKS0tJTkmhorycoqIiOnfuTDAYpCA/n8TERHx+P1u3brXLT22cNjtTo6qzAETkGuAYVa1yjl8EvmxN2Vqb0B0MzaWqqoply5bxzDPPMHLkSG644YZdlppEpEXyslgsexdVJRgIkNKlC2Dudw0G8YeFERsXVzNzEhMbW+OOjo7G4/EgIoSHhyMieDwewsPNx3M9Hg8JiYnEJyTg8/mIi4sjOjqa8PBwfD4f4RERhIeHExYM4u3UicjISGLj4igvL69dSEuboS3P1FSTCMS5jmMcvzZHp86dd1EsRIROnTs3K92uXbvStWtXRo40rwQ666yzWLZsmZmSdmaB0tPT6dixY7PysVgsex+fz0eXrl3x+/34/X5iY2Px+f3AzjuRQt3VfY3X68Xj8dS4q8P8fj9hjr2Nz+cjLCwMj8djlJrwcOPv99csOfl8Prv8ZLFKDTAd+F5EZorILGAZ8JdWlqlVyMzIqJmhqUZVa2xrmkrnzp3p1q0ba9asAWDevHn079+f0047jVmzZgEwa9YsJk2a1Kx8LBbL3qd6lqV6trXa3RLpVqfj8XhqlJXqLdzVuN3VypGl7dJml5+qUdXXRORjdrxZ+FZVbXAUF5FuwGygE+YNxC+r6lMi0g54E+gBbAKmqOp2MXfnU8DJQAlwcfWnGERkKnCXk/T9rqWxw4CZQCTwEXCDhmode4DqzqQls3rmmWc4//zzqaiooGfPnrz22msEg0GmTJnCjBkz6N69O2+99VaL5WexWCyWtkebVWpEZHiI1xbnP0VEUhrx7acq4A+qukxEYoGlIjIXuBiYp6rTReQ24DbgVuA3QC/nNxJ4ARjpKEH3YD7ToE46H6rqdifOFcD/MErNScAe+/hm5+TkOnc/NZehQ4eyZMmSXfznzZvX7LQtFsv+Q0VOHlWFRbv4+2JjCGuf0AoSWQ4k2qxSAzxWT1iD335S1XQg3XEXisgqoAswCRjjRJsFLMQoNZOA2c5My2IRSRCRZCfuXFXNBXAUo5NEZCEQp6qLHf/ZwOnsQaVGREhOSak5drstFoulIRqjsFQVFrGg1zgADv/wZbxREQBEdOlcc65VcCxNpc0qNS35zScR6QEMw8yodHIUHoAMzPIUGIVni+u0VMevPv/UWvwtFotln6QuhSWqVw+K123eJb43KoLFJ1y0i//YtfOsUmNpEm1WqalGRPzANcCxjtdC4CVVrWzk+THAv4AbVbXAbSCnqioie9QGRkSuBK4EOOigg/ZkVhaLxbIL7tkZrdrxjhi3wnLkZ7N3cteGWwnSqgBladsIlJSCRxCXAbCdxbHUR5tXajB2K37geef4Qsfv8oZOdBSifwF/V9V3He9MEUlW1XRneWmb478V6OY6vavjt5Udy1XV/gsd/661xN8JVX0ZeBlgxIgRe9yI2GKxWNy4Z2fqUlgaQ+isjVsRqmvWxxMVQbCkzJzgUn6s4tN2sUoNHK6qQ1zH80Xkh4ZOcnYzzQBWhXzR+0NgKmar+FTgA5f/dSLyT4yhcL6j+HwK/EVEqt+NMwG4XVVzRaRARI7ELGtdBDzT9GJaLBbL/kl9sz52+crixio1EBCRQ1R1PYCI9AQa857tozGzOj+JyHLH7w6MMvOWiFwGbAamOGEfYbZzr8Ns6b4EwFFe/gx858S7r9poGLiWHVu6P2YPGglbLBbL3iBQUlYzoxPRpVMDsS2W3cMqNXAzsEBENgACdMdROOpDVb9y4tfGuFriK/C7OtJ6FXi1Fv8lwMCGZNkfeOqpp3jllVdQVa644gpuvPFGcnNzOeecc9i0aRM9evTgrbfeIjGxTb7M2WI5IGiMwvLdaVfWuMdt/pKxa81rHdz2OBZLU2nzSo2qzhORXkAfx2uNqtoPiLQgK1as4JVXXuHbb78lLCyMk046iYkTJ/Lyyy8zbtw4brvtNqZPn8706dPtV7otlv2YuhQWT1gYY1bNMQEu2xdPeBgRKebzKCWbUrFYmkubVWpE5Iw6gg513qb7bh3hByyftBtOoLB4F39vbDQn5Tb0LsK6WbVqFSNHjiQqKgqA4447jnfffZcPPviAhQsXAjB16lTGjBljlRqLZT/DFxtTo7y4cSssTUmnRhHyCATtHghL42izSg1waoj7365jBdqcUlObQlOff2MZOHAgd955Jzk5OURGRvLRRx8xYsQIMjMzSXbeVty5c2cyMzOblY/FYtn7hLVPaBGj3PrSqcjJq3XWxxMVUesMkC82ptnyWPZP2qxSo6o1djMi8r372NKy9OvXj1tvvZUJEyYQHR3N0KFDd/mSrvvjdRaLxeKmpRQny4GP/aSpwc5t7mEuu+wyli5dyhdffEFiYiK9e/emU6dOpDvfmkpPT6djx8ZPVVssFovFEopVaix7hW3bzDsIf/31V959913OO+88TjvtNGbNmgXArFmzmDRpUmuKaLFYLJb9nDa7/CQi/8bM0AjQU0Q+dIer6mmtItgByplnnklOTg5+v5/nnnuOhIQEbrvtNqZMmcKMGTPo3r07b731VmuLabFYLJb9mDar1ACP1uFus3hjo+vc/dRcvvzyy1382rdvz7x5u+6asFgsFoulKbRZpUZVPwcQkVOB/6pqsJVFanWas23bYrFYLJbWxtrUwDnAWhF5WET6trYwFovFYrFYmkabV2pU9QJgGLAemCkii0TkShGJbWXRWgzzhQaLZd/AtkeLxbKnaPNKDYCqFgDvAP8EkoHJwDIR+b9WFawFiIiIICcnxw4kln0CVSUnJ4eIiIjWFsVisRyAtFmbmmpE5DTMBywPBWYDR6jqNhGJAlYCz7SmfM2la9eupKamkpWV1dqiWCyAUbS7du3a2mJYLJYDkDav1ABnAk+o6hduT1UtEZHLWkmmFsPv93PwwQe3thgWi8VisexxrFID04D06gMRiQQ6qeomVbX7jS0Wi8Vi2U+wSg28DRzlOg44foe3jjgWi8Wyd6moCFBQWEVaZhmdk8IRj5CxrYykDuF4PcK27HLaJfrxeT1k55QTG+MjPNxL7vYKfD6hXWIYifFhrV0Mi8UqNYBPVSuqD1S1QkTs3WmxWNoMv2wo5vo7fyC5YwQ3XX0otz/wM9FRXu69pT+3P7CCQEB5/N7B3Pngz+QXVPLsg0O5b9oKUtNLARjQN5bpdw4kMcF2nZbWxe5+gizHWBgAEZkEZDd0koi8KiLbRGSFy+9NEVnu/DaJyHLHv4eIlLrCXnSdc5iI/CQi60TkaXE+VS0i7URkroisdf4TW7TUFovFAmzPq+ChZ9ZQURHk1AmdefWNzZSUBjjp+M78870t5BdUMW50R/49J52snAqOOrw9XyzOrlFoAH5eXcgPK/NbsRQWi8EqNXA1cIeI/CoiW4Bbgasacd5M4CS3h6qeo6pDVXUo8C/gXVfw+uowVb3a5f8CcAXQy/lVp3kbME9VewHznGOLxWJpESorA2TnllNWHiA9swyAdolhZGyrdvtJ31Zu3AlhO9yJYTXx3WzeUrKXJLdY6qbNKzWqul5VjwT6A/1U9ShVXdeI874AcmsLc2ZbpgBv1JeGiCQDcaq6WM2LZGYDpzvBk4BZjnuWy99isViaRTCorPylkHOv+pb3P07nuKM6ALDspzyOHWXc3/+Yx3GjdvgfN6q98XfFqUYExhyVtBdLYLHUTptXakQkXETOA64HbhKRu0Xk7mYmOxrIVNW1Lr+DReR7EflcREY7fl2AVFecVMcPzA6s6l1ZGUCnZspksVgsbM+rICu7nD8/vprSsiDvf5zGqROSOf03yfywIo/xx3bkwrO7sWFzMUMGxHPlhT3Izi2nc8cIbrjyEKoCSjCo3H5Dbw4+KIo+h8Tw2LRBJLW39jSW1scaCsMHQD6wFChvoTTPZedZmnTgIFXNEZHDgPdFZEBjE1NVFZFaXwksIlcCVwIcdNBBzRDZYrEcSOTmVaCqhId5iYn2oaps2VrK3Q+v5IYrDyXDWU4qLgnwx2k/cdLxnXjs3sHExfq5tGcPzjq1K2F+YVC/OCaOT8bnE44Y1o5xx3TE44W4GD+jRrRHBLvzybLPYJUa6KqqJzUcrXGIiA84Azis2k9Vy3EUJlVdKiLrgd7AVsD9atWujh9Apogkq2q6s0y1rbb8VPVl4GWAESNG2G8hWCxtnMqqIOs3FnP/E6vZll3G9D8Norw8QHysn/seW01qeinrNhQxbFAC3/+UB0BZeZBvv9/Opef2ICbaDAvtE3coKu3qctvdTpZ9jDa//AR8IyKDWjC9E4DVqlqzrCQiSSLiddw9MQbBG5zlpQIROdKxw7kIM3ME8CEw1XFPdflbLBZLneQXVHLDXT+waUsJF/+2Bx98nMbN966gvDJYs2PpH+9u4ZqpB3PMyPZERXoZNjCeJ+4bTGKCv5Wlt1iah52pgWOAi0VkI2Y2RTArPoPrO0lE3gDGAB1EJBW4R1VnAL9lVwPhY4H7RKQSCAJXq2q1kfG1mJ1UkcDHzg9gOvCW86mGzRjDY4vFYqmV3LwKlv24neROkRSXBAAY3D+e51/bAEBpaYB2CX5y8yrJyqngtvtXcN4Z3fj9VYcSGeElLtYqNJb9H6vUwG+acpKqnluH/8W1+P0Ls8W7tvhLgIG1+OcA45oim8ViOTCorAyCgN/nobIqCAqFxVX8mlpCWXmAnt2jycwyb/j98+OrWbOuiJcfHYbXKwQCitlUaXjrg1Ruua43Dzy5hsKiKgJBZVD/eDq0C8frlVYspcXScrR5pUZVN4vIMUAvVX1NRJKAmNaWy2Kx7FkKiiopLQ3g8QrBgPLJgkyKSwJMOjGZjh3C8fubvzofCCjFJVVERnjxeoWi4ioiwj34/R4Ki6sI83uICPdSWFSF3ydERHgpKq4iqEFycyv5x3up9OkZw4hhibz1YSqnTUjmwafXsG5jMX+5YwDTHlnF+k3F3Hdrf9asKwLg04WZXHtJT16cuYENm4sZMSSBJT/kseSHPHw+D08/MISICA+REV4S4vxNUmgCgQCBQACf14s6xz6vF4/X2+w6s1iaQ5tXakTkHmAE0Ad4DfADrwNHt6ZcFoul6RQWVVJWHsQjEBbmobzczHjExfgJC/OQl1/Bky+vY8HX2bzw8FD+OO0nCgqrOLRHNGOO6sCCr7MIBJWTxnbii0XZbM+vYNKJKfxvWS5rNxYz+ZRkYqJ8iAhhYR7ia1m6ycuv4JMFmXz9bQ7XXtKT1WuLmPflNi4/vwcZ28r4z9wMLjizG+UVQf713zROOzGZuBgfH85J57wzunHNLcvx+4RJJyZz6Y1LSekUQf/ecazbWEz7dmEg8OPKAmJjfAQCO2Zk/vWfNE7/TTLPPzyM2GgvRztvAF6+Ip+xxySR1D6chPjdX2oKBAKoKiJCZUUFaWlpJHXsSFVVFdtzczmoe3drpGlpddq8UgNMBoYBywBUNU1EYltXJIvF0lRyt1fwyPO/sGhJLk/+eTAffpLGvC+ziIz0cs8f+tK3Vxzfr8jjsy+yGDYwnmU/5lFQWAXATdf04o4HfiY7t4In7hvMjXf9yJa0Uh64vT93/OVn1qwv4sjD2pG5rZzbXvqZtIwyRh/Zgd9fdQhejxAZ6UUVysoCvPrGZj74JJ1TxndmwVfZ/OPdLYw+sj0/ry7ghVkbGdw/nqzcCh565hcOPigKv0+46Z6fOGlsJ/47N4NAQDliWCJff5dDeXmQmGgfeXnmM3XRUV7yCyoBKCyqwusRuqVEsiXNGAK//3E6QwfEM+7YjogIk09O4dQJyU2efVJVysvKyMzMJCUlBUSIi48na5vZlJmUlITzhReLpVWxSg1UuN8DIyLRrS2QxWJpGhWVQf7x7ha+XJzDsaM6sOSHPOZ8ngXAZef3IC2znOU/p1JYVLXLuT27R7NpSwnZuRW0bxdGSWkVW9JKCQ/3EBPtY816s7xz/pnduOOBnyksrqJ71yjOP7Mbjz6/lpztFdxxfR9mvfUrZ5ySwkefZQAwakQ7Hn/BvIdz1GHtePvfW2v8P5mfCcCRh7Xj0wWZNWWIizNdc2VlkPAwo4isWVfIdZceQphfSE0rpedB0URFeikpDfDES+v40019+e6H7fyaWsKkE5Pp2SO6RtEQEfz+xikdFTl5VBWasnrCwgiUON948ggd1Et5agb+uBg8vh0KkohgVRrLvoCdLTQ7jF4CEkTkCuAz4JVWlslisTSB4uIqvv1+OwC9esbwwwrzHpae3aNJjA/jiZfW8c13OQwdGA/Aj6sKGD44gbjY3Xi+E2OsC3DZ+d2Z/vQavvkul1MnJPPYi2uZ/1UWhUVVNbuJiksCxMc57tKAy7+KeCff4pIAcU6cRUtzOeHYjsREe/l+RT6HD00kMcFPRaXyj/e28Oi0QRx1eHvmf7WNFx8ZxtijO9Au0U9GVhlnn5rCnTf2YcjABGJjGr/EVJGTR8mmVEo2pVK5PZ8FvcaxoNc4itduZGG/CSzsN4HiNRupSM2gcmsmVAUIyy2gk/rohJ9gZg5lW9KpyMlrfD1aLHuANj9To6qPish4oABjV3O3qs5tZbEsFksTiIz0MrBvLBs2F7Nlawl9Do3l+xX5DBsUzxeLsgHY+GsJQYVzJ3fl3Y/SeGHmBp6fPpSF32QxqG8cSe3DyMqpIDrKV7OkU1RcRZ9DYlizvgivx9jRVFQEaZcQxibnQ449ukXx48oCAP77WQaXnd+Dh5/9hf/OzeDSc3sw7ZGVfDwvk99d0pPb1qxg7ufbzOzK8u0s+DqLR+8ZxOdfZ1NYXMULr23g6QeG8NOqArKyy5jxxHD+t2w7lRVBDuoaxV2/74MqxMb4uf2GPlRWaa12PfXNuojHgyr442KoKixiQS+z2fLIz2bXWrfeqAgWn3BRTZxqt5uxa+cR1j6hGVfQYmkebVqpcV6I95mqjgWsImOx7OdEhHu55NwerFlfxMKvs3j6L0NYva6Q7XmVdEoKr4n34JOrOf3kFF578jCiosxnBC7+bQ8AXnl8OHM+38bPvxTw5P2D+XJxDr9sKOQvdwzgf9/n8mtqCX+6qS9/eWoNCkSEeygrD1JaFiAh3k9efiVf/S+HbimRvPDwUFLTSjmkRzRvvHQEP60qoGNSGP948QhWrM4nJsbL688fzopVBfh8wqxnR7DylwKiIr10aBfOmRO71Mh86oTkWsscFblzN+5WZLQqwMJ+E4BdFZHDP3wZb1QEdOncElVvsewTtGmlRlUDIhIUkXhVzW9teSwWS/NJah/Oo9MGUVYexO8T7rulPxWVQTwe+PybbNIyywgEYfXaQmJjfCSGvOq/Q7twzpvcreb4rFO7OIpCNif0MX6qAd6b3h2JDvKHa3ox/ek1vP9xOv932SE8+PQaqqqUtz5IZWDfOE44tmONgW5K58iadJM7RdS4OyXtcHfssPPXruuabfFERRAsKdvFDeykyNRF6MyLxXIg0KaVGoci4CcRmQsUV3uq6vWtJ5LFYmkOdX1g8YVHhrEtqwy/30P7xDASE8IapTTADkXBzdi18zjuqM4cNiSBnNwKktqH89YrI8nJLad9u3Bio31N2nHUmNmW+twWS1vFKjXwrvOzWCwHOO0Tw3b6UCOwiz1JQ4pCzbINIGF+glu3Eg1E+wRveQSBklLjroggkFdKMSEKkmPPAuCLjanVBqUxNi57ikBJWU2eUb16MGbVnL2av8XSHNq0UuPY1ExQ1fNbWxaLxbJ/UJ/BbGNmUtzsK4a1bkUmoktnVASP14OE+amIDCMuLo5AXiFj184DzIxWjbIToqRZLK1Jm1ZqHJua7iISpqoVrS2PxWJpWRq7tLQvELrk1BKEzroct+pTBAGPQHDHW4i/O+3KGvfYtfMI79oZn8+HquIPBvF6vXjbJ+wTCpjFUh9tWqlx2AB8LSIfsrNNzeOtJ5LFYmkJdndpaW/gXr7SqgAlm1KNOxhkYZ/xzZYpdNYlKACCJzyM7QSICA8nPiFhp5kXN77YGHw+MzSICF77PSfLfoRVamC98/MA9vMIFotlF3ZWFDo1Ky338pVbwakr3dpmW0w6kYxZNQdFa9wAeIRAUAHFExeNJ9a8WdgfFkYnjTPn2pkXywFKm1dqVPXe1pbBYrG0HLu7jFOXYawnKqJWuxENBltM1rq2VYfOtuD1EAgEwO+jPDGW+Ph4RITULVtIbNeO8MhI0rZupUNSEhEREVRUVOD3+fB4vZSXl5svaHvsC+QtBz5tXqkRkQWAhvqr6vGtII7FYmkmu7tzKNSeJPrQ7vXGr8jJq9Ng1hMRbuxWxIMnMrzGhsUTFbHDnqURuGUa88tnFEeHU1RYiBTmk9SxY82yUNdu3RARPB7PTu7w8PAaJcbttlgOdNq8UgP80eWOAM4Edv3ancVisQBhIcs2quO3D+8AACAASURBVFrz4chAIEBmRgZlZWUkJyZR5FFKiovpGBdNqU8oLCykozT+m0zVlBQXk5ySgsfjIT0tjeSUFLOE5LJ3cbvdSoxVaCxtiTav1Kjq0hCvr0Xk24bOE5FXgYnANlUd6PhNA64Aspxod6jqR07Y7cBlQAC4Xv+/vTsPk6OqGj/+PdV7T89Mz74kmRAgQAAxQIC4QRRk81UUBRUUXH4iL+AKL4sLKK64vqKALwoCyiqIBETZZBNFSAxbCIEACZl9X3um1/P7o2qGTpghmSwM6T6f5+lnqm5XVd+aSmbO3Hvuvap3eeVHAr8AfMBvVfWHXvk84AagClgOfNJGaBkzPdPtWprukGRVJZ1OT7ScJJNJxsbGKInFUFVGEwmi0Sg+n4+RkRHC4TCSmrz7auMupyzqBi6xEmZXlKGq+P1+mua+fkuSMcWs6IMaEanM23WA/YHyzTj1KuBXwMbt2z9X1Z9s9Bl7Ah8D9gIagXtFZDfv7UuA9wLNwOMislRVnwUu8q51g4j8Gjcgumw692ZMsZtu19LmymZfzdXp7uoinclQX19PIpEgVlpKZWUlQ0NDRCIRamprGRkZIRgKUVtbS7pvgIOfuxufz7dBzs+GXU73EZldh4C38KQb4IjIRKuQMea1ij6owW0FUUBwu51exg0gXpeqPiQiO23mZxwD3KCqSeBlEVkDHOi9t0ZVXwIQkRuAY0RkFfAe4ATvmKuBb2FBjTEzbryLKRwOE6+ooKq6mo72dlqam6mrqyMUDuP3+yktLaW0tBSfz0c0GiUajeL3+5HKOMHKuNuy09036bBqX2kJPkvuNWbaij6oUdV52/iSZ4jIScAy4ExV7QNmAY/mHdPslQGs36j8INwup35VzUxyvDHGk0xmGU5kCAV9BIMOQ8NpoiXRKedfmYyqouqOFRARct7oJp/PRyaTmehaymQyOI6DiFBeXk5HRwejY2NUVlZOnNPd3U3jLPe/6vhcLxtv5+e+hKoroLpiK78LxphxRftngIh8QkQ+OUn5J0XkhMnO2QyXAbsAC4E24KdbUcXNIiKniMgyEVnW1dW16ROMKRC9/Skuveolzjj3CV5pTnDFtWv5/FkrOPd/19PpVBCaM4voTrMnXlPNyZLJZFj/yiukkkmy2Swtzc2MjY2RyWTo6+sjk8mQyWQY6O8nnUqhqgRDIXx+P1VVVfT19hIIBmmaOxfHcejt7d2ge8oY88Yp2qAG+AJw6yTlfwLO3JILqmqHqmZVNQf8hle7mFqAOXmHzvbKpirvAeIi4t+ofLLPvFxVF6nqopqami2ptjE7nMRohkuvfJFb7mhlv30quOuBDq69ZT3tnUmWP9XPf5/zBH0DU+fVZ7NZ0uk0uVwOESESidDa2sro6CiRaJTOjg7S6TTpVIq21lYymQypdJpWb7ursxPN5RgdHaWyqoqamhpEhIbGRqqqqmwWXmNmSDEHNQFVHd64UFVHgOmPuQREpCFv90PAM972UuBjIhLyRjXNBx4DHgfmi8g8EQniJhMvVbct/H7gI975JwO3bUmdjClEo2M57v9nNwD77h3n4Ud7Jt6LlwVYvH8FXT1J4NWk3lwuRzabRVXJZrOsf+UVhoeGSI6NUVbmzrQ70N9PPB5HVens6KCuvp5cLkdbWxu13vwwQ0NDlJWX0zhrFuXl5RPXdxwHv9+/QVeTMeaNVcz/+yIiUuIFMRNEpBQIbupkEbkeWAJUi0gzcAGwREQW4iYerwU+D6CqK0XkJuBZ3GTk01U1613nDOAu3CHdV6rqSu8jzgFuEJHvAiuAK7budo3ZcfUNpMhmlGBQyOUgk8nRUBtm7foEPf0p6mvDdHYniZcF+OUP3kIsCpFwiHQ6zcDAAPF4nEwmQ3tbGw2NjQDE43H6+/upq6+nrbWVSCRCVXU1rS0tBIJBampq6O52A6fa2lp6e3vJ5XKMJhJoLkcgEJho5bFRSca8ORRzUHMFcLOInKqq6wC80UyXsBkBhKp+fIprTnX894DvTVJ+J3DnJOUv8Wr3lTHbxOBQmlQ6R0nUx+hYjmxWCQUdslklk1X8PqEivsmYfptJjGYYSWRJpXKEww6ag7FUjkjYR2XcbTB9pWWUCy56lmQqxwVnLeDn//cCIJz+mZ35+g+e5fa72vjK53flvO+t5KhD6yiJZBka6CEcqiWT9jE0OEgmnaY8HicUCtHS3Ey8ogKf3z+RL1Mej1Na6i79Vl5eTszbzmWzNDQ2EggEGBocpK6+nnA4TFdnJ9lMBg0EbISSMW8iMp71X4xE5FTgPGB8WMQw8ENV3SGHTi9atEiXLVs209Uwb0K5nNLcOsqPL3meUMjhpOPnctEvn8fnE875wm78+JLnWfPyCKd9ah7vOKia514YYpedSqipClFe9vq9se4IJLcLpiTqMJJwRwLFSnwMj2QZb8AYHsmQTucoiwVIprIo8I9He/j1NS/zwaMamNMY5dLfvUgqrdTXhrj0hwvx+YXTznmClrYxzvnCbsyvzhHMjAIQDvkoifpRlEBZjIS/hI6uMebNiTCaGGRwcIDy8nKCwSBdXV2UlZcTCoUYGhyksqqK1pYWKipfnaaqpKSEYDBINpudyInJZrMTSw/kj4TKLzc7PhFZrqqLZroeZusVc0sNqvprEbkbbwZgVR0CdzZfVX15RitnzBbKZpX+wTSoEon4iEb89A2k+cLXnqSnL8WPzt+b8y96lu7eFBectQc/+MVq1q5P8K7FVcRK/Jz4349PXOukj87hEx9uwu9z6BtIsfK5QeY2RYlF/ax6foj5O8e47W9t3HpnC+d+cXfWt4xyw5/X8/mT5pHOKFffuI6vf3kPbr69hcdW9PGNr+zOP/7dwyOP9XDx99/KJb97CYAjltTx32evIJuD0pifc7+4Ow/+q5u3LCinpW0MgNmNEYKJbla9432Au8J1xlvhOiD1lPgT7BwG32iOZHKMQCBASSxGZ0cH0WiUkmiUtrY2YqWlZNJpGhob8fv9EwHLeCAz1dIDUw3LNsa8eRR1UOO5WVX327gMd2ZhY3Yoo2MZnlw5yI8veZ6evhSf+mgTRx9Wz+holp4+dzRQJOKju9fdrq4KsXZ9AoD3HVbPj371/MS1jvvALA7at4p/Pt5DfW2YL5z3JJUVQb751T049awV7LlbGW8/sIrr/rSeXeeVkE7n+O21a6mvDVFTFeLc765kTmOERCLLYyv6iJcHKC8L8MA/u6mqDNLR5SbyBvzCSCJL1ls94PMnzeO6W9bz2Io+fvKtt1AZD9Dbn6a3L0Vl9NWWkfwVrvMdsvpe0pJh1uzZE3PLVNfUoKpUVVVREoshIoyNjeE4zmvWUDLG7LiKtu1URPYQkQ8D5SJybN7rU7gLWxqzw+jrT/HcmiG6e1Occ+HTdHQlefuiSubvUspXvvk0w4ksPu9/ezajlMbcv2eGhjPU1YQAiIR9DA678z3uv0+cPXYt5YzznqC7J8Wlv3uZdEY5fEkdN97WzOhYjgW7lfL4ij4AFswv5fEn3O3ddill+VP9AFRVBmlpd7uLKsoDtHcmJ+rbWBfG7xfSGSUUcohE3MBi13kxHvOue+NtzfzP6btRGvNzw63NlJdu+u8wxxHmzJmD3+8nEAhssPhjrLQUv9+Pz+cjEolYMGNMgSnaoAbYHXdByjjw/rzXfriLUhrzppXNKp3dSa6+cR3PrRni6z9YyQU/epanVg5MtHh8/Ng5nH/Rs6xrTnD/P7r4zAk74Tjwx6UtnHPGbpSWuIHC2WfsRrw8wONP9PHeQ2oBOOqweq66YR2qUFLiZ2AwDUAs6pvYbusYY15T1N3uTLJzUwkA7Z1j7DzX3X7+xWH2fUscx4H1raPstnMMv98dwfSnv7Ry/pl7UFcT4rpb1vP9r+3FnMbIBvf5+Io+bvtbG987b0/OP3MP/P7JRxgdsPRyFt97DYvvvQbNZEk2tzO6roXcwPDEmknjrTLjLB/GmMJTtN1PqnobcJuIvE1V/zXT9TFmKn39KUYSWQJ+wecTkqkccRllZH0fS3aFmkiCH37GnWrf8adZ8M1ZiAhl0RTJpBvh3HhbMyd+eA7/95N9cUSorgpyzSWLSKVyRCM+rrp4f1KpHMGgw7ymEqoqAowk3FabR5f3csS7a7n892t5dHkvhy+p46lnB3n40W4u/v5C/vN0P8uf7OPkjzaxcO9ynnhmgKqKIO84oJJHHu/l3oc6+c65e/K769Zx70Md/Ozbb+HSq15mxTP9LFpYzmU/WojP5xAJO1xy0UJCyWFu+m4TY8ksNfUxdHQMcQZwkg7kJh/YMFVX1LtfuG/KmYSNMYWnqEc/AYhIDW7LzE7kBXmq+pmZqtOWstFPO4axZJaRkQzBoEMo6DA0kiHgdya6f/w+mRhx1NOX4n++/TQvvDTM0kv2Yrh7EAHKYw4P7XkEAIvvvWbiF/oBSy/H5yXPRnfdifSw2/UTiEVID48iAo7PQby+KH9p7DW/9LNZZWQ0w5/+0spv/7AWx4Hzz1xAX3+K+x/p4uTj5zKccN/fuSnCiR+ZSy6n+P2C4wjptOI44Pe5XUuqEIv5yaRzqCrlZQGGhrNkc0pZqZ+Af8MWk8TaZu6ff+hr7i3//sKz6gF4YMHhkx437t0v3Ed0p9lb/rBMUbDRT4WjaFtq8twGPAzcC9iCLWa76u1L8dtr17LsyT6+9T8LuO+hTh78Vzff/OoePLaij7/9vYP994nz6Y/PZSyZIzQ2zDdOKCcYqMA/NsxTBx4FuL/EJ5PfYpH/i/71fulvHNT4fEJZLMCHjmqkvibM3Q90sHtdjorZcNTeNfjCGXKJURb/vwqcaJjcYAeAu50YIzK+PTBGeHy7bcyd0dIRkgMOQdyAKuB3PzvV009myJ3gWzNT/zd8/AOnTNTbXxqbWLjy9c4xxhQPC2ogqqrnzHQlTOEaGk7T159mcDjNzbe3cO9DXXzo6Eb+el8Ht97ZynveWcNjK/q4+sZXKCv1c8yRjZxy1goOe1ctxx3kmxjCPFUgM135rTmayTLW2kk2MQqO4AuH3W0gGA3zrqYx3nVSOZDkgd1f2yoy3e18+QFVZmh4g9aZzRGsik+cn1jbPO3vgzGm8FhQA3eIyNHezL7GbFPpdI4H/9nND3/5PD+/cB8e9NYreute5fzyihcBWLh3OX/+axsAhx1cSzQ7wi++UEvA71AW3fZT72+cf7K5gcm2sHFANR6MaC437Wvlcm53lo1gMsaMs6AGvgR8TURSQAoQQFW1bGarZQrBwFCaS650J5jr6UsyqyHirlfUl2JWfYSe3hQ9vSku+HwjMpogVuInEkjy0DZunXmzyA+o8gOc8Ky6aV9rbGyMsdFRyuNxfLEoS56/d2L9JVVFRPCXxjZxFWNMISn6oEZVS2e6DqZwqbrrGwHcemcrp316Z7550bMs/VsbXz11V772/ZXceV87xy2exSP7bX4gk02MTRwXnb8TS1bdvf1uYjvZOP9n3Mb3dsiquwFFxCEHqOZwSiKks1n6+/vxBwJkfUJfLkVVVRWDg4OoKrPnzLFh28YUmaIPasT90+5EYJ6qfkdE5gANqvrYDFfNFIBI2Md73lXLPQ92snL1EHfc3cZlFy0klc5RVxPiD5ceQFdPEp9vYJPXyv9lH55Vj/i9af1DISKNbktHqqd/InnWCQYngh0nGt5hAp/xZGCAd626i3BTI12dnaRSKRoaG+np7iY52E9dtJ5YaSndXV3U1dcTi8Xo6elBHIc5FtAYU5SKPqgBLgVywHuA7+AuankJcMBMVsoUhliJny9+bhd2mVvCP5f1MndOlOrKEJUVwYkRPyVB0MzkOSVTBTKTDcUG8FeUkSsJT6xplEqlJmbQHV+QMdXcPu37eG3ryV0IghMNb7C9ZNXdKIovGpl0W5g8R2jj+1RHyOVy+EtLSCWTJJNJwpEIqJJOp4nFYqgqw0NDRKJRfD4fyaQ7W7HmciSTSRzHscDGmCJjQQ0cpKr7icgKAFXtE5HgTFfKFI6K8iAfP3Y2HziygUjENzEvy+aM+MlvtdjcOVfa29oIhkKUlpbS1dlJdU0NJSUltLe1uesgxUo4+Lm7UQWfz8EJBTlk1V0ggi8S3qB155BVdwEgjoPizkPjBAMkQn4G+vupCAdwoiF6enqojkVIe+WV0RBEgvT29hIP+fHHKuju6qJaJ0/q3fg+h8J+QsEg0bIy+np7KSsrI15RQW9vL4FAgMqqKkZHRyktLaWyqoohr8upae5cBgYG6OnuZvacOZvxdIwxhcSCGkiLiA9QmJiMb/pDMYyZwniLjB/IBoOkvCHTU3m91plNEREaZ82ief16UsnkRF6J4zjU1dfT0tJCpw5TM6uOjvZ2stkUjZU1DGqGWGkpY8kkY2Ef9fX1DA4MMJJxaGxsZHBwEICy8nJQZayjAxEhFA4zMDBAJBIhEAjQ3dVFfX09/kCA5vXrqamtJRKJ8Mq6dVRUVBDK4QVUim+KVhuA6upq9579fioqKye2K/O2I5HIxPpNpaWlE+s6xeNx4vG4tdIYU4QsqIGLgVuBWhH5HvAR4BszWyVTSDZukdlUcuxU3UyqSi6XmxjhM77tOA7ZrDv5nIiQSbtrM9U3NNDV1UVZWRmRSMQ9fqO6VdfUMDQ0xNjYGJFIhFgsxsjICK+sW0dtXR1lZWWI41BWXj4xoigxOko6lWL2nDmk02nGRkdpbGxEYSKIEhHmNDVNBBZzmppwRFBgYHSEqqoqnESSQ1bfg4hM3NP4Pfv9r/5o2pxtX/62DfE2pmgVfVCjqteKyHLgUNzh3B9U1VWbOk9ErsRdELNTVff2yn6MuyhmCngR+LSq9ovITsAqYLV3+qOqeqp3zv7AVUAEuBP4kqqqiFQCN+Iu37AWOF5V+7bBLZs3oam6mcYDGcdxyKTTtLe3U1dfj4jQ3tZGbV0dPp+PtrY2qqurCQaDdHZ2UlZWhuM4RMJhujo7mdPURFdnJ4FAgLr6ejra23F8PkKhED7HIRqJEPYCn0AwSHZ0lN6eHmbNmvWaFo9IJDIRsIgITXPnIiKML7kyXp4fXORvNzQ2usFYNIq/omwiMDPGmK1V9D9JvOChE7geuA7oEJHAZpx6FXDkRmX3AHur6j7A88B5ee+9qKoLvdepeeWX4a49Nd97jV/zXOA+VZ0P3OftmyKiqqRTKVqam0mn0+D98m9tbSWTTuP3+2ltaSGVTBIMBGhrbaWzs5PGWbOIV1QQCAQo97phOjs6qK2ro66+Hp/PR21dHQ0NDYRCIYKhEKGwO1/MwMAAybExqqqrUVXaOzomWoHG+Xy+iZWvx5OQx1fAHi9/PePHb7xtjDFbq+hbaoD/AHOAPtyWmjjQLiIdwOdUdflkJ6nqQ14LTH5Z/pjZR3G7sqYkIg1Amao+6u1fA3wQ+CtwDLDEO/Rq4AHAlnMoIFMO0Y6VkM1m3V/4XpDQ0txMOBymsrKStrY2evv6qKmpoXn9enp6e2loaGBkZITRRIJULEa0pIRcLkd7uzvSyR8I0NnRQUVlJdFolEDg1bh9fFtVKS8vJxaLEQwGiUajZLPZTQYpxhjzZmFBjdu6crOq3gUgIocDHwZ+hzvc+6AtvO5ncLuPxs3zRlgNAt9Q1YeBWUD+ojXNXhlAnaq2edvtwPSnXDVvavldTkuev5c+P9TV15NJp2lrbaW+oYFcNks8Hqevv594RQXtbW1Eo1EqKitpa20lFA5TU11Na2srfr+fQCBAV1cXDYEAgUCAWEkJkZoa/H4/Q4ODBIPBKYOUjVtexruQrCXFGLOjsKAGFqvq58Z3VPVuEfmJqn5eREJbckER+TqQAa71itqAJlXt8XJo/iwie23u9bwcG53is04BTgFoamrakuqa7SiXyyElEQ5ZfY8bKAQDrw6TFoesusm+vtISMsODdLS3U1VdTS6Xo6uzk3hFBV1dXe4cLUAsFiNeUQFASUnJq9vRKGXl5TiO486y6wUnpWVlE4m4+dtTyX9/U8caY8ybjf0JBm0ico6IzPVeZwOd3jDvaQ/tFpFP4SYQn6he5qSqJlW1x9tejptEvBvQAuRPPDLbKwM3t6fBu2YDbt7Pa6jq5aq6SFUX1dTUTLe6ZjtTVVJBP52aZjDkI1dWwkhphE7JkqutIBWP0UWGMZ9QVl5OMplkZHiYeEUFqVRqIhipra3F7/dTEotNtKhUVFbi9/vx+/2Ux+MEAgF8Ph/xeHxiZNB4i8vG28YYU4gsqIETcIOJP3uvJuBjgA84fjoXEpEjgbOBD6hqIq+8xguSEJGdcROCX/K6lwZFZLG3XMNJwG3eaUuBk73tk/PKzQ7E5/NRGosRiUYJhkKkMxlGhoep9hJxBwcGqKysxB8I0NfbSzweJxKN0tPdTTAYpKe7m1AohKri9/sJBoMTI4nyRxT5bUizMcZY95OqdgNfGN8XkTDwflX9I7BmqvNE5HrcRN5qEWkGLsAd7RQC7vH+Ih4fun0wcKGIpHFbf05V1V7vUqfx6pDuv3ovgB8CN4nIZ4F1TDPAMm8OuVyO0bExRhMJ/D4f4ViMqupqoiVuMnBFZSWx0lJyuRzxeJzyeJxcLkdpWRnxeBxUGRgYIBqNAhawGGPM65HxuSWKmdeKcgTwceC9wD9U9XVHLr0ZLVq0SJctWzbT1TB5stksw8PDZNJpKiorSSTcBrxIJIKIt76R308ul5vYVlWy2exE68v4SChjzPYhIstVddFM18NsvaJuqRGRQ3C7n44GHgPeAeyc33VkzNbw+XzEYu7yBo7jEPESfseDlPGRRfmLL47nzORfwxhjzKYVbVDjdRm9gjv53VmqOiQiL1tAY7a1qWbWNcYYs20Vc6LwzUAj8FHg/SJSgreopTHGGGN2PEUb1Kjql4F5wE9xE35XAzUicryIbHo5ZGOMMca8qRRtUAPupHaqer+qnoIb4JyAuzzB2hmtmDHGGGOmrWhzajamqmngduB2EYnMdH2MMcYYMz1FG9SIyNNMnUOjwFvfwOoYY4wxZisVbVCDu5QBwOne1997Xz+BJQwbY4wxO5yiDWpUdR2AiLxXVffNe+scEfkPcO7M1MwYY4wxW6KoE4U9IiLvyNt5O/Z9McYYY3Y4RdtSk+ezwJUiUu7t9wOfmcH6GGOMMWYLFH1Qo6rLgbeOBzWqOjDDVTLGGGPMFij6bhYRqRORK4AbVHVARPb0VsY2xhhjzA6k6IMa4CrgLtwlEwCeB748Y7UxxhhjzBaxoAaqVfUmIAegqhkgO7NVMsYYY8x0WVADIyJShTc3jYgsBiyvxhhjjNnBFH2iMPBVYCmwi4g8AtQAx81slYwxxhgzXdZSAyuBQ4C3A58H9gKe29RJInKliHSKyDN5ZZUico+IvOB9rfDKRUQuFpE1IvKUiOyXd87J3vEviMjJeeX7i8jT3jkXi4hsw3s2xhhjCo4FNfAvVc2o6kpVfcZb2PJfm3HeVcCRG5WdC9ynqvOB+3h1VuKjgPne6xTgMnCDIOAC4CDgQOCC8UDIO+Zzeedt/FnGGGOMyVO03U8iUg/MAiIisi8w3hJSBkQ3db6qPiQiO21UfAywxNu+GngAOMcrv0ZVFXhUROIi0uAde4+q9np1ugc4UkQeAMpU9VGv/Brgg8Bft+BWjTHGmKJQtEENcATwKWA28LO88iHga1t4zTpVbfO224E6b3sWsD7vuGav7PXKmycpN8YYY8wUijaoUdWrgatF5MOqest2uL6KyHZf7VtETsHt0qKpqWl7f5wxxhjzplW0Qc04Vb1FRN6HmyAcziu/cAsu1yEiDara5nUvdXrlLcCcvONme2UtvNpdNV7+gFc+e5LjJ6v/5cDlAIsWLdruQZQxxhjzZlX0icIi8mvgo8AXcPNqjgPmbuHllgLjI5hOBm7LKz/JGwW1GBjwuqnuAg4XkQovQfhw4C7vvUERWeyNejop71rGGGOMmUTRt9QAb1fVfUTkKVX9toj8lM1IyBWR63FbWapFpBl3FNMPgZu8taPWAcd7h98JHA2sARLApwFUtVdEvgM87h134XjSMHAa7giriFcfSxI2xhhjXocFNTDqfU2ISCPQAzRs6iRV/fgUbx06ybEKnD7Fda4ErpykfBmw96bqYYwxxhiXBTVwh4jEgR8D/8FdLuG3M1slY4wxxkxX0Qc1qvodb/MWEbkDCKuqrf1kjDHG7GCKPqgRkWMnKRsAnlbVzklOMcYYY8ybUNEHNcBngbcB93v7S4DlwDwRuVBVfz9TFTPGGGPM5rOgxv0eLFDVDgARqQOuwV2P6SHAghpjjDFmB1D089QAc8YDGk+nV9YLpGeoTsYYY4yZJmupgQe8BOE/evsf8cpKgP6Zq5YxxhhjpsOCGnf+mGOBd3r7VwO3eHPLvHvGamWMMcaYaSn6oMZbeHIZ7tIF94pIFIjhrtZtjDHGmB1E0efUiMjngJuB//OKZgF/nrkaGWOMMWZLFH1Qg9v99A5gEEBVXwBqZ7RGxhhjjJk2C2ogqaqp8R0R8eMulWCMMcaYHYgFNfCgiHwNiIjIe3FHQd0+w3UyxhhjzDRZUAPnAl3A08DngTuBb8xojYwxxhgzbUU9+klEfMA1qnoi8JuZro8xxhhjtlxRt9SoahaYKyLBma6LMcYYY7ZOUbfUeF4CHhGRpcDIeKGq/mzmqmSMMcaY6SrqlhrPi8AduN+L0rzXFhGR3UXkibzXoIh8WUS+JSIteeVH551znoisEZHVInJEXvmRXtkaETl3K+7RGGOMKXhF31Kjqt/extdbDSyEiZydFuBW4NPAz1X1J/nHi8iewMeAvYBG4F4R2c17+xLgvUAz8LiILFXVZ7dlfY0xxphCUfRBjYjczmvnpRkAlgH/p6pjW3H5Q4EXVXWdiEx1zDHADaqaBF4WkTXAgd57a1T1Ja+eN3jHWlBjjDHGTMK6n9ycmmHc0U+/wZ1ZeAjYja0foxPbWwAAFBVJREFUEfUx4Pq8/TNE5CkRuVJEKryyWcD6vGOavbKpyo0xxhgzCQtq4O2qeoKq3u69PgEcoKqnA/tt6UW9EVUfwJ3MD+AyYBfcrqk24KdbWe/xzzlFRJaJyLKurq5tcUljjDFmh2RBDcREpGl8x9uOebupyU/ZLEcB/1HVDgBV7VDVrKrmcFuAxruYWoA5eefN9sqmKt+Aql6uqotUdVFNTc1WVNcYY4zZsRV9Tg1wJvAPEXkREGAecJqIlABXb8V1P05e15OINKhqm7f7IeAZb3spcJ2I/Aw3UXg+8JhXl/kiMg83mPkYcMJW1McYY4wpaEUf1KjqnSIyH9jDK1qdlxz8v1tyTS8gei/usgvjfiQiC3GTkteOv6eqK0XkJtwE4AxwujcpICJyBnAX4AOuVNWVW1IfY4wxphiIanEvSC0ix05SPAA8raqdb3R9tsaiRYt02bJlM10NY4zZoYjIclVdNNP1MFuv6FtqgM8CbwP+jtvlswRYDswTkQtV9fczWDdjjDHGbCYLatzvwYLxhF4RqQOuAQ4CHgIsqDHGGGN2ADb6CeaMBzSeTq+sF0jPUJ2MMcYYM03WUgMPiMgdvDqfzIe9shKgf+aqZd5II4kMjsBYMkdPX4psTqmpClEZtwXcjTFmR2FBDZwOHAu809tfBtSp6gjw7hmrlXlDJBIZXlw3wtU3ruP/fWIeP/rV8zz/4jAAHziinpM/Ohe/z6G01E/AL+QUBgfTvLRuhNaOMRa9tYKKeIBwyDfDd2KMMabogxpVVRF5CVgMHAe8DNwys7Uy28PQcJqxsRw+P6gKmXSOvsE0p53zBG9ZUM6TKwcmAppPHtdEQ12Y0855goa6EP9z2m7c82AXB+wb57d/WMuKZwYA2GfPMs774u5EIj4iYR/JVI5cTgkFhWwWsjnF73MoLwvM5K0bY0xRKNqgxlsJ++Peqxu4EXeIu7XO7OBGEhlGx7L4fUIo6CMxmkVRfnLpCzy+opff/mw/EOUv93RQGvPzm58u5M9/bae9052eqDTm54CFFXzx608CcMFZC/jiN54imcyyz15lEwHNOw+q4v1HNHDWt5/mO6fNoTaaYWgoQ2VNFEkmcVRBhcFEFqcsQCheSrAqPmPfF2OMKXRFG9QAzwEPA/+lqmsAROQrM1sls7V6+lJc/Js1LH+yjx+d/xZuu6sNnw8iIR//+HcPnzxuDpUVPkaG+vjYB2cR8MPIcB+f+MgsOrsz/HFpC7vOi/HESjedqml2hOa2UXp6U1TGA4yOZic+64Rj53DmBU8xOpajJprhkb3eC8Die6/h0cNOek3dDll9nwU1xhizHRVzUHMs7tID94vI34AbcOepMTuoxGiGX13xIvc93MUxRzbw17938Jd72jnjs7uQTme45coDWf5UP44I6XSKbLaLMRGqqqrp6svy0rphbrv6IC67ei07zy0BIJtVfI77z6K3P80+TcIfLphNLgf15WPc8l13eS6fs+lJLJXinujSGGO2t6INalT1z8CfvVFOxwBfBmpF5DLgVlW9e0YrWGSGRzIkRjOk0kok5JDLQTKdJRT08cJLwzz/0jCHH1JLc+sozzw3wOFL6ujqTfGfJ/s49OBaRhJZfD7hn4/3ALDXHmVcdf06ACJhhyOWVDMy1M3b9q/BP5agKucjl8ni8/nItHVS5fh43+IoYyQ4+/RdyPQNsfTH8+gfTNMwC/7607mogjM6zMq3HQ1AeV6LzOJ7r9nkPVrEbIwx21fRBjXjvFFO1+EuKlmBmyx8DmBBzXbW25/ileYEJVE/f/9HJ9fesp5PfqSJQNDhd9ev46un7so//t3Dv5b1cson53Hldev42/0dfOyDs/nTna3cdFsLRx1aRy6bA3KsXpPgqov3pbwsyO13tfPjC/akvjbCt3/6HEcsCuNLZpFUBzmFBxccDsABSy/HFw0DEJ2/E8GBMdK9QwD86y3uMdMNXqbiOBbWGGPM9mST7+VR1T5VvVxVD53puhSSTMad+6WnL0U2mwPcgOZ/vvU0Z1/4DEPDGX7/x/WICG87oIorrl1LNqvsulOMfy3rBWC/feLc9YA7R+I7Dqri1r+0AvDZE5qIhJKUl4xy+JIa4jJKtrWV/3qrUOtLkF7fzNePLyXbP8TDC47goT0OZ6ylfaJuvmiYRw87iUcPO4nEC2t5YMHhPLBgw2OMMcbsGIq+pcZsO+l0jsGhNOIIZTE/A4NpVOHhf/dw9Y3rcBzhvC/txs5NJax5eYTVLw4zpzFCS/soACVRH719KcbXWM2pst8+cdo6xlBVjn1fI+uaEzginPiR2aRSOYZGslTHI/T3DTLQ103pWIaH9nBbWBZvoxaWzZFNjE18RnT+Thyy6i4AxHHIqQKCL1ayXetgjDHFzoIas9WGRzKk0zn+dGcrt/21lTNPm09L6xiPPNbNRz80h59e9gIAZ3xmZ55/cYRrb1nP2xdVAdDeOcbOTSX4HBgazlBVESQYdEilcuSyyrfO2pWxJCRGs/z3yU2ICC3tKU78UAM5Vdo6spSUBEmORUgkEpQ6MzMD8OMfOGVi++Dn7sZpqKGjvR0RBZSGxkYCQZud2BhjticLaswmZbNK/2CaxGiWWMQhq+5yAqGgw9PPDvD8S0NUxEP87vp1LJhfiiNw4H7ldPcmGRpO8fdb3sFFv3yBvfYopbEuzIP/7GKv3cs47OBq7nu4m7/c287F338rP7x4NTctXc/vf7U/v7ziJWbPCjMy3AWqNM1qoKurk0wmw6z6egYHBhgaGqKxvp7hoUESiQQ1tbVoV9/2/V5s1CKzZNXd7qgmEcTxkc1mIBIiEAgQDAZJpVKEwmECgQCOY729xhizPVlQYyaMJDIMj2Ro70wyuzECqogj9Pal+Mr5TxEO+Tj/zD34wS9W01gf4cB9K7jmj+s47v2zeWbVAF86ZWcyGeUtC2Ikhnv5xHGziUUdOjvaOPuMXcjmwO+Dn124F680j/L1L+/GaZ+exzOrB9lzfpSrf7k/2ZySTY9x4dm7k1MoLamjtaWFZHcv8VSObFZJrm8jFo0QUR/a3kMkEiKkfujo3az7zA9MwrPqNnnMxsGL4/ORyWSQYID+XJpMJkNDYwM93d0kk0pDZZy+3l7S6TTxeJz+/n56e3uprKzE57PlFIwxZnuxoMYAkExmWfZkHz/79QvEogG++dXdueK6tRz8thruvLedXE754JENJJMZfnbh3qx4epB99irlQ0fX87f7Oznv/fNJJkdIjAWJRnwM9GfIDXURDdcA0N3VSU1tLc3r11NZVc0uVcrouhaijsPb54VJvtIKiDsSKTFKCvBFI6QTY1QjSGKMB7wRS/DafJlN5c5sGMjUI343uPBFwrz7hfsAcIJBlqzyBr05gngtK04wyKCjJBIJ6urqGB4eZng4SaVPKC0rIxwO4zgOZeXl+P1+/H4/pWVllMfjBINBItEoIoKIjX4yxpjtyYKa7UBE1gJDQBbIqOoiEanEXYphJ2AtcLyq9on7m+4XwNFAAviUqv7Hu87JwDe8y35XVa/e1nXNZDKICKPJLIv3i3P9rxfx9KphdqrI8K2TKslkMhz25UZyiTEUxRfNkB3s5OC5gpMTkuu6eM/OgvT3EUiMUg5kNUJ1GpQs2jtARTKHomS7+6hTP9rdRwbh4QVHAK8foEw30XeyFhZggyDFXxqb1sy+mUyGbEeCxsZGfH4/2YEBGhoaCIZCDA0Nkc1m8fv9hMNhRATHcQiFQu7HbrRtjDFm+7GgZvt5t6p25+2fC9ynqj8UkXO9/XOAo4D53usg4DLgIC8IugBYBCiwXESWquo2SxpJdveR6h8EgXAkQrozAcDecYdMf44Hpxl0THd7e8hP2H33C/dRsuvcrb6m3++nrr4ex3EQEWpqa3EcB8dxKC0tnQhk8uV3M1kwY4wxbwwLat44xwBLvO2rgQdwg5pjgGtUVYFHRSQuIg3esfeoai+AiNwDHAlcv60qlB0e4aEFrx3+PL5vXpUfpPj9/knLjTHGzCz7E3L7UOBuEVkuIuNNB3Wq2uZttwPjGaqzgPV55zZ7ZVOVbzO53La8mjHGGDOzrKVm+3inqraISC1wj4g8l/+mqqq4E5hsNS9oOgWgqalpmuduixq8MTZO9PVFI26+jCP4wuEpc2eMMcYUDwtqtgNVbfG+dorIrcCBQIeINKhqm9e91Okd3gLMyTt9tlfWwqvdVePlD0zyWZcDlwMsWrRoWoGS6sytGj1VQq8TDU+6vTWJvsYYY4qDzOQvtkLkrfrtqOqQt30PcCFwKNCTlyhcqapni8j7gDNwRz8dBFysqgd6icLLgf28S/8H2H88x2YyixYt0mXLlm12XYdfaubB3d1lrjbOqRlf6HG8VSSbcJcycKJhcomxrd62IMUY82YhIstVddFM18NsPWup2fbqgFu9OUn8wHWq+jcReRy4SUQ+C6wDjveOvxM3oFmDO6T70wCq2isi3wEe94678PUCmi0RLI9xyOr7yGRyBKIhDll1NwIWcBhjjNkhWUtNAZluS40xxhhrqSkkNvrJGGOMMQXBghpjjDHGFAQLaowxxhhTECyoMcYYY0xBsKDGGGOMMQXBghpjjDHGFAQb0l1ARKQLdw6czVUNdG/yqMJTjPddjPcMxXnfxXjPsHX3PVdVa7ZlZczMsKCmiInIsmKcm6EY77sY7xmK876L8Z6heO/bbMi6n4wxxhhTECyoMcYYY0xBsKCmuF0+0xWYIcV438V4z1Cc912M9wzFe98mj+XUGGOMMaYgWEuNMcYYYwqCBTXGGGOMKQgW1BQpETlSRFaLyBoROXem67M9iMgcEblfRJ4VkZUi8iWvvFJE7hGRF7yvFTNd121NRHwiskJE7vD254nIv73nfaOIBGe6jtuaiMRF5GYReU5EVonI24rkWX/F+/f9jIhcLyLhQnveInKliHSKyDN5ZZM+W3Fd7N37UyKy38zV3LzRLKgpQiLiAy4BjgL2BD4uInvObK22iwxwpqruCSwGTvfu81zgPlWdD9zn7ReaLwGr8vYvAn6uqrsCfcBnZ6RW29cvgL+p6h7AW3Hvv6CftYjMAr4ILFLVvQEf8DEK73lfBRy5UdlUz/YoYL73OgW47A2qo3kTsKCmOB0IrFHVl1Q1BdwAHDPDddrmVLVNVf/jbQ/h/pKbhXuvV3uHXQ18cGZquH2IyGzgfcBvvX0B3gPc7B1SiPdcDhwMXAGgqilV7afAn7XHD0RExA9EgTYK7Hmr6kNA70bFUz3bY4Br1PUoEBeRhjempmamWVBTnGYB6/P2m72ygiUiOwH7Av8G6lS1zXurHaiboWptL/8LnA3kvP0qoF9VM95+IT7veUAX8Duv2+23IlJCgT9rVW0BfgK8ghvMDADLKfznDVM/26L7+WZeZUGNKXgiEgNuAb6sqoP576k7p0HBzGsgIv8FdKrq8pmuyxvMD+wHXKaq+wIjbNTVVGjPGsDLIzkGN6hrBEp4bTdNwSvEZ2u2jAU1xakFmJO3P9srKzgiEsANaK5V1T95xR3jzdHe186Zqt928A7gAyKyFrdb8T24uSZxr3sCCvN5NwPNqvpvb/9m3CCnkJ81wGHAy6rapapp4E+4/wYK/XnD1M+2aH6+mdeyoKY4PQ7M90ZIBHETC5fOcJ22OS+X5Apglar+LO+tpcDJ3vbJwG1vdN22F1U9T1Vnq+pOuM/176p6InA/8BHvsIK6ZwBVbQfWi8juXtGhwLMU8LP2vAIsFpGo9+99/L4L+nl7pnq2S4GTvFFQi4GBvG4qU+BsRuEiJSJH4+Ze+IArVfV7M1ylbU5E3gk8DDzNq/klX8PNq7kJaALWAcer6sZJiDs8EVkCnKWq/yUiO+O23FQCK4BPqGpyJuu3rYnIQtzk6CDwEvBp3D/cCvpZi8i3gY/ijvZbAfw/3BySgnneInI9sASoBjqAC4A/M8mz9YK7X+F2wyWAT6vqspmot3njWVBjjDHGmIJg3U/GGGOMKQgW1BhjjDGmIFhQY4wxxpiCYEGNMcYYYwqCBTXGGGOMKQgW1BhjNuCtdn2at90oIjdv6pyt+KyF3vQCxhiz1SyoMcZsLA6cBqCqrar6kU0cvzUWAhbUGGO2CZunxhizAREZX7V9NfACsEBV9xaRT+GuhFwCzMddSDEIfBJIAkd7k5/tAlwC1OBOfvY5VX1ORI7DnTQti7vw4mHAGiCCO439D4A7gF8CewMB4Fuqepv32R8CynEnlvuDqn57O38rjDE7GP+mDzHGFJlzgb1VdaG3uvkdee/tjbvaeRg3IDlHVfcVkZ8DJ+HOUn05cKqqviAiBwGX4q5BdT5whKq2iEhcVVMicj6wSFXPABCR7+Mu7fAZEYkDj4nIvd5nH+h9fgJ4XET+YjPFGmPyWVBjjJmO+1V1CBgSkQHgdq/8aWAfb0X0twN/dGerByDkfX0EuEpEbsJdeHEyh+MuyHmWtx/GnQYf4B5V7QEQkT8B7wQsqDHGTLCgxhgzHfnrB+Xy9nO4P08coF9VF258oqqe6rXcvA9YLiL7T3J9AT6sqqs3KHTP27iv3PrOjTEbsERhY8zGhoDSLTlRVQeBl738GbyVkt/qbe+iqv9W1fOBLmDOJJ91F/AFb1FCRGTfvPfeKyKVIhLBze15ZEvqaIwpXBbUGGM24HXxPCIizwA/3oJLnAh8VkSeBFbiJh0D/FhEnvau+0/gSeB+YE8ReUJEPgp8BzdB+CkRWentj3sMuAV4CrjF8mmMMRuz0U/GmDc9b/TTREKxMcZMxlpqjDHGGFMQrKXGGGOMMQXBWmqMMcYYUxAsqDHGGGNMQbCgxhhjjDEFwYIaY4wxxhQEC2qMMcYYUxD+P3apmpGtPKynAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentCurrencyHolding',swept)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEWCAYAAAD7KJTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzsnXl8JEXZ+L9P99zJTCb3uQewsBxyLwiC3CogiKgIiBxeiKJ4oCKKCIiivqDgT1BREUHk0FcUb27FA31dQEEWlgX2yn1nkknm6K7fH9UzO5lkkkk22WQ2/f188klNd3V3dXUdT9Xz1FOilMLFxcXFxcVl6WIsdAJcXFxcXFxcFhZXGHBxcXFxcVniuMKAi4uLi4vLEscVBlxcXFxcXJY4rjDg4uLi4uKyxHGFARcXFxcXlyXOdgsDInKtiPSISIfz+3QR2SIiwyJy4PYncdbp2mHpEJGVIqJExDOfz1kMiMg5IvLgQqfDxcVl50JEbheRaxc6HTsjIrJRRE6YKs60woBzk1GnU838fds5txy4FNhbKdXgXHI98BGlVLlS6untSLwSkVWzvX66dDj3H3Hep1VEviEi5nY8b0pE5F0i8i/nee0i8nsROXK+nldEem4XkaSIxJy/50TkOhGpmOo6pdRdSqk3zvKZV4lIKq8sfWZ2b1Da5OT/sIj0ichDIrLnQqdrOkTkAhH5yxzf0yciN4jIVic/NorIjXP5jMWMaF4RkecXOi3bwxy02ZPdcxcRsUXkO3N532meOaGMz7a9LCWKnRk41elUM38fcY4vB3qVUl05cVcA/53TVM6OYtKxv1KqHDgaOBN473wkREQ+CdwIfAWoR+fbLcBpBeLvqBmGryulwkAt8B7gMOCvIlI2j+m6N68sfX2S54iILAUV1ted8tcCdAG3z/QGpTYbVSC9lwNrgEOBMHAM8NQOTNZCcxRQB+wqIofM10NKraw4nAf0A2eKiH+B0zKj9rLkUEpN+QdsBE6Y5PgJwChgA8PA3c5/BYwALzvxmoD/BbqBV4FLcu5hAp8DXgZiwFpgGfDnnPsMA2dO8nwDuALYhG5I7wAqAP9k6ZjkegWsyvl9H3Bzzu8K4IdAO9AKXAuYOem+HugBXgEudu7nmeQ5FU56zpgij68Cfg78BBgC3u+8x41Am/N3I+B34tcAvwEGgD7gCcBwzl3mpDcGvAgcX+CZtwPX5h0LO+/7Eef3BcBfgW8CvU4eXAD8JS8fL3HyoQf4n0xaCrznTwqcexz4svO8UWDV9nwD8spt/rPRFflvTh7+GzgmLy1fctISAx4EanLOH5lz7RYnTw4BOjPpc+K9Dfh3MfkPvBkYdsKHAn937t8OfBvw5eX5xcBLwKvOsZuctAyh69Hr8979Z+jyFQOeBfZAd8JdznVvnK7sA3sBY4CFLtMDTny/8y02O3nwXSDonDsG2Ioulx3AnZPkxW+AjxfIp/cAv875/RLws5zfW4ADnPCewEPoOvEi8M6ceMWk8XPo8rQROGeK+toEPOA8ZwPwgby8vg/dHsXQA5I107SxtwF3Ab8Avp13bhd0exgDHgZuZnw5Pg/dBvYCXyCn3DN5u2IAn0W3ub1OWquKvF/BckmBNhs4BXjGueZvwH45zzoQLfTFgHuBexhfJ8RJ54ecb/aOvLx5o/OdB9GDqz8B7885/15gHVqY+COwIq8OXYQuTwNOvgqFy/jtTNNeFvnMDzvPjKHbmN2cfBlyvkUmPyvR9aLbuddvgJYZtFHn5nzHz1OgHx/3PlOdnKxRzTt3DLA171i2k0UXvLXAlYAP2BXdcL/JOf9pdMO02vkQ+wPV+fcp8Oz3oivirkA5uiLdOVk6Clyfm849nY/6iZzz9wPfA8rQUvs/gQ865y4CXkALLlXAYxQWBk4E0pOdy2tAUsBbnTwLAtcATzrPrnUKzJec+NehGzOv8/d6J/9WoxvHJifeSmC3As+8nbzC7Ry/Az16B93JpYGPAh4nXRcwURh4zMmH5cB6cirkJO85lTCwGdjHeZZ3e74BUwgDQDO6kpzs5PcbnN+1OWl5Gd1hBp3fX3XOrUBXvrOdNFazrTN6HjgprwxdOl3+o8vvT4EnnN8Ho4UVj/MN15HTWTrv+ZDz3pkO7d1OWjxo1V0HEMh59zHgTc75O9CC+eedd/gAjlBRRNkf9/2dY99Ed45V6Aby18B1OW1EGvgaukMOTpIXVzjf/sPAvoDknNsV3Vgb6E54E06b45zrd86Vocv+e5x3PBDdse89gzR+w0nj0ehObXWBb/dndOcTAA5AN9jH5eX1yWgB6jrgySnqfgjdEZwMvN1Jc67g93e0EONDC6FDbCvHe6M7rCOd89ej25FcYSC/XfkYul1pcd71e8DdRd6vmHKZO8A6EC1svtbJi/PR9dLv3H8T8Al0GXyH86xcYeD1QALdMf4/xguFNU5evM1Jz8ec69/vnD8N3T/s5Zy/AvhbXlp/A0TR7VY3cOIUZfx2pm8vi3nmr4AIup1LAI+gy3EFuv0434lb7ZSHELq8/gz4ZV57WaiNynzHo5y8/ga6fM+JMDCMrpCZvw/kVKKphIHXApvzzl8O/MgJvwicVuC503XmjwAfzvm92ikMniKvV05hGnHCd7Nt5F3vfKhgTvyzgcec8KPARTnn3khhYeAcoGOaPL4K+HPesZeBk3N+vwnY6ISvcQrVqrxrVqEr3wmAd5pn3s7khfurwEM5lSL/+13ARGHgxJzfHwYemeI9k3llKSO4PA5ckxN3u74BUwsDl5E3QkVL8efnpOWKvHf6Q075vb/A+10G3OWEq4A40DhF/o85edCB7qgKCW4fz32m857HTfN9+9FqsMy7P5Rz7lR0nc7MsoSde0aLyPf87y/oOrRbzrHD2TZjcYzzzQNTpNVEz3T81Xl2W+ZbOOe3AAcBZwG3ooWTPdEd/wNOnDNxhKmc674HfLHINKaBspzz9wFfmCSty9CjxnDOseuA23Py+uGcc3sDo1O8+7vRHZEHLVwMAqc755Y76QrlxP8J28rxlTgdufM75OR1rjCQ366sI2e2EGjEaTenu1+R5TJXGPgOzgAm59iLaGHrKOc75wp+f2O8MPADnA7Q+V4poM75fR7w97xyuIVtwsDvgfflnDfQ9XFFTlqPzPven52sjOfU1+nay2KeeUTO+bXAZTm/bwBuLJDXBwD9Ob8fp3AbdSVwT865sqm+Y+avWB3SW5VSDxcZN5cVQJOIDOQcM9HT2qAr1suzuC9sGyVk2IQu0PXoqc1iOMh5/hnoj1qGboxWoKXVdhHJxDXQhS3z7C0598lNRz69QI2IeJRS6Snibcn7Pdn7NTnh/0FX9Aed9N2qlPqqUmqDiHzcObePiPwR+KRSqm2K5+bTjJ7+LJSu6dKem87JuE8p9e4i7jOX3yCfFcAZInJqzjEvenYhQ0dOOI4evcPUZfYnwDpHh/hOdOfUPkU6rldKXZF/UET2QEvza9ANsgfdcOSyJe+aTwHvQ+eLQo8+anKidOaER4EepZSV8xv0OzYxdb7nU+ukcW1OfEHX8wzdSqmxAtfjpONm4GYRCaJn/W4TkX8qpdahp3+PQQu7f0ILUEejO4g/ObdZAbw2r63xAHcWmcZ+pdRIzu9C5bgJ6FNKxfLirsn5nV92AlPU//PRdSINpEXkf51j9+c8K54Tfwu6DGbSkv0uSqm4iPTm3T//u60A7hcRO+eYhW43p7xfkeUy/1nni8hHc4752FZGW5XTWzlk67BTDs5AqzZQSv1dRDYD70KrTPPTqkRka96zbxKRG3KOCbp9yzynUB2fCbntZTHPzK+H+b8bAEQkhJ7NOhE9MwIQFhEzp94WSn9+3oxMUi4mMN9GWlvQ0nc05y+slDo55/xus7x3GzrzM2Sk6M7Jo0+O0tyHno67MiddCbQOJpPuiFJqH+d8O9sqZObZhfi7c6+3TpeUvN+TvV+bk+aYUupSpdSuwFuAT4rI8c65nyqljnSuVejp2aIQkXL0rMITOYfz0zUZ+XkxE+Ejl9xnbe83GEE3WBkacsJb0DMDueWyTCn11SLSWLDMKqVa0d/7bWid3Z1F3G8yvoNWgeyulIqgddmSFyebVyLyeuAzaAGkUikVRY8w868phunyPb889KAbsX1y4lcobRg5Ia3ToZQaVUrdjJ7Z2Ns5nBEGXu+E/4QWBo5mmzCwBfhT3jctV0p9qMg0VuYZghUqx21AlYiE8+IWOwDJIiItwHHAu0WkQ/Ty7HcAJ4tIDbqMVzkdQ4bcMt+Onu7P3C+Inl7OJT/vt6BVWbn5FHDK7nT3K6Zc5j/ry3nPCiml7nae1Sw50hnj6/DpaIH2lpy8aUYLSpO9u+T+dp79wbxnB5VSf5sivRmKKq+TtJfb88x8LkXPdr/WyeujMo8t4tpxbaNTfvLLxQTmWxj4JxATkctEJCgipoi8Jsdi9gfAl0Rkd8eCfD8RySS6E61LKcTdwCecpSflaEv9e6cZfU/FV4EPiEiDM5p7ELhBRCIiYojIbiJytBP3PuASEWkRkUq0Qc6kKKUG0ULGzSLyVhEJiYhXRE4SkQmW9Hnvd4WI1DoNw5XokScicoqIrHIqwCBasrdFZLWIHOdY3Y6xzcBzSkTELyIHA79EN8I/mu6aPD4tIpUisgytu7t3htdPYA6+wTPAWU5er0E3shl+ApwqIm9yymRARI5xGufpuAs4QUTeKSIeEakWkQNyzt+B7pj3RduxzIYwWoU1LHq54YeKiJ/GmW4WkSvRDemMKSLfO4EWEfE58W3g+8A3RaQOQESaReRNxT5TRD7u5H/QydPznXfKLAn+E3AsWnWxFd34nohu4DJxfgPsISLnOt/cKyKHiMheM0jj1aKXOb4ebfj2s0nyZwt6Ovs6p9zsh56R+Umx75vDuWgbm9XoaeAD0DrgrcDZSqlNwL+Aq5x0HY5W8WT4Obocv875HlcxfWfxXeDLIrICwGlfMquaprvfdOUyv83+PnCRiLzWad/LROTNjiD1d3SZvcT5Vm9DGyhmOB9tWLlvTt4cAewvIvsCvwX2ddpUD1rNlCvwfxe4XET2cd6zQkTOmCZvct8jW8bzmaK93J5n5hNGt98DIlKFVncVy8+BU0TkSOcdrqGIvr5YYeDXMn5t+P3FXORMZ5yC/pCvoiX0H6CNJUBPOd2HbnyG0BbMQefcVcCPRWRARN45ye1vQ4+8/uzcewxt6DYrlFLPOvf6tHPoPPSU1vPoD/5ztH4NdCH/I9oK/SmmafSVUjcAn0QblHSjJciPoAtTIa5FNwT/QRtZPuUcA9gdbVk8jK5UtyilHkMbi3wVnc8daOOvy6d4xmdEJIZWZdyBnvJ7Xd50aTH8yrn2GXQl/eEMry/E9nyDL6BH8P3A1WgDPSDboJ+GHtlkvsenKaI+KKU2o429LkVPDz6DNnzNcD/OVGze9O5M+BR6OjSGfs/phKs/An9Adyyb0HWhGPVOIabK90fRFvIdItLjHLsMbTj1pIgMocvm6hk8L47Wl3agy+7FwNuVUq8AKKXWo8v6E87vIbQh8l8zU6bOtP0b0XYFbc69MkaLxaSxw3nXNrTAd5FS6oUC6T0bbUDXhv7eX5ylGvV8dN3tyP1DdyqZEfA5aHVIZjXPveiZG5RS/0W3efegR4PDaJuhxBTPvAltn/KgU/efRNt2FXO/6crlVeS02Uqpf6GNU7+NztsNaH08SqkkegbtAnQ9OhOnDotIM3A8Wn+emzdr0eX8fKVUD1qN8HUnb/ZGt5eZvLkf/f3vcb73c8BJU+RLLpOVcZimvdzOZ+ZzI7ov7EF/oz8Ue6HzHS9Gt3nt6LzfOuVFOMYbLi6zRUQUetpwwwKnYyVaKPRux+zQXKXlZfR04Ww6CJcdjIgcgzbKK2ZmaEERkXuBF5RSE0aKomdIB9D18dU5eNac3m8+Ee2XZCt6Sehj08V3mchScOzi4rLDEJG3o3WOjy50WlxKH0fVsZujrjkRPaP1y5zzp4pWPZahlwI+i15JM9vnzen95hNHzRd11KIZ+4UnFzhZJcuSFAYcPfHTIvIb5/cuIvIPEdkgIvdmdEWObuhe5/g/nNFn5h6XO8dfnIl+1GXnRUQeRxtZXezoqV1ctpcG9DKyYeBbwIfUePfqp7HNMdnuwFlq+6Z75/p+88nh6JU9PWhbircqpUanvsSlEEtSTSDaPfAaIKKUOkVE7gN+oZS6R0S+i/Ya9x0R+TDaY9ZFInIWev3vmSKyN9rA71D0Mo6HgT3UtiUfLi4uLi4uJcOSmxkQbTH+ZrQhY2ZJynFoIymAH7NtGeBpzm+c88c78U9DO3VIOLq0DYy3hHVxcXFxcSkZSnHjiu3lRvTSr8w64Wq0/+mM0dlW9HpWnP9bAJRSaREZdOI3M143lXtNFhG5ELgQoKys7OA991z0m9K5uLi4LCrWrl3bo5SqXeh07OwsKWFARE4BupRSax0L4nlFKXUr2n0qa9asUf/617/m+5EuLi4uOxUiMhPvoi6zZEkJA2inFW8RkZPRfsAj6HW3UdnmLrSFbd7EWtGenLY6ji0q0GtMM8cz5F7j4uLi4uJSUiwpmwGl1OVKqRal1Eq0c5JHlVLnoH3SZzzUnY92ogPaOUfG+cc7nPjKOX6Ws9pgF7TV7T930Gu4uLi4uLjMKUttZqAQl6G9Rl2Ldm+a8aD3Q+BOEdmA9pJ1FmgPT84KhOfRLjUvdlcSuLi4uLiUKktyaeFC4NoMuLi4uMwcEVmrlFozfUyX7WFJqQlcXFxcXFxcJuKqCVxcXFxKnGTvAOnY8ITjnnA5vuroAqTIpdRwhQEXFxeXEicdG+ax3Y+fcPzYlx5xhQGXonDVBC5ZLMvCsqwJYZfCuHnm4uKyM+AKAy6A7sh6e3qIx+PYOWG3cyuMZVm0tbYyGo9jpdO0tbYyNjqKbbt7FLm4uJQWrprAJYvP56O7q4sBr5d0Ok0kEkFvxeBSiPJwmK6uLgzDwDAMfH4/huHK2C4uLqWF22qVOOl0mlQqzb+f6+eVTTFSqfSsRqamaRKpqMDj8ZBKpSgrK8Pr87kd2xSYppkVmGzbJhwOY5rmQifLxaUgg0Mp1r8c44+PdbK1fZSReHr6i1yWBO7MQAmjlCKZTNHR3kZ9bQ22lWLL5i5ali3H55tZJ55RE1iWRSgUYnh4mGAoRCgUcju4AmTUBKZpEgwG6e/vx+fzEQyFXCHKZYfiCZdz7EuPTHo8w/BImjvu28S9v9Ke00Xgmsv25qjDajBNdwZwqeMKAyWMbSu6ey18/jLiwz0A+AMVtHcmWLHMO+P7+fx+IpEIXp+PWCyG1+Nx1QTTEKmoIOR0/j6/31UTuCwIvurotKsG4qMW9z2wbQsVpeDGWzew394VVFf65juJLosct9UqYWwb2jpHQbZ1/KbHR2dPYsb3Mk2TcDiMz+8fF3Y7tsKYpkl5eTler3dc2MVlMZJO2+Q7nI3FUkw46LIkcVv6EsbjEfbfu5zk2AA+f8SZIejmgH0is7qfaZrZzj837FKYXBXKjlan5K70cFd9uExHMGCyapeyccfefEIDoaA7QeziqglKGhHB4/VSV9/Ai68kqIwEqG8Il8TUvlIKpVQ2rZlwKaR9MZBKpejq6qK+rg4F2bDHnZlwKUBl1Mf1V+3L3fdvYd36YY4+vJo3HVtPMOjaBLm4wsCiZ7IOMxef14PXY7LP6gCGCF5vaXSo6XSatrY2GhoaEBHa29tpbGzE53N1l8UgItiWRWur1gGbpqktwhaA/oEk8VELr9egLGRSFnKblcVKTZWfi87bldExi7KQxzUcdMni1tpFTDqdxkqn8fp82LadDedP34sIAX9pSfeGYeD3+2lzOjPXPmFmeDweauvqsvnX0NiIx7Pjq3NXT4JPXvkfNm6JYxhwztuXc/bpLUTC22YoXL/5hbHSaSzbxuPxoGw7G57PuuD1Gni9bl1zGY8rDCxSbNsmNjREf38/dfX1DA4MkE6nWbZ8+UInbU4wDIPKykriIyMAVFZWuksYZ0AqlaKzowOv14tSis6ODpqamnaommAsYXHb3RvZuCUOaIPWO3+2mTcdWzdOGHD95k+ObdsMxWIM9PdTX1/PwOAgqWRy0dZxpRS2bWOa5riwy86BKwwsUgzDIFJRQTKZpKuzExGhZdmyklABFEM6naa9rQ2/MyPQ2dFBc0tLSagJevsSPP63Hnr6Epx8fAM11T6CgcJVKZGwiI2kiY9ahIImFWHvdo/MRIRAIEB1TY1OU0/PDlcTjI5ZvLhh4oh/S+soK5eVTXKFSy6GYRCJREiMjdHR0YGI0NTcvEPq+FSzNQl/GZ3dCZ5c28eeq8LstksZ0YiXVCrF0OAglVVVWJaVDbsCwc6BKwwsYpRSpFKpbDidTmOa5k4hEGSEnYwHv8HBwZJQE/T2J7nwU0/T2a2Xb/70f7dw6w0HsXpVeNL4qZTFv/49wBe+9jzJpE0oaHL9Vfuyz+rIdulrPR4PNbW12YY4N7yjCJd5eP1rq3nplW2dimHA7ruWT3GVyzicEbYOqgmGtfPFVLM1TzwzxldufDF77A1H1fKpi3fHFItYLEYymSSZTGrB3V2WuNOw+FvfJUpGTZC2LFqWLaO8vJyuzs6FTtacYZom0WgUj8czLrzYeXFDLCsIAFg23Hb3JuKjk7t1HYyl+dI31pFM6gY/Pmpx9fXrGBhKbXdaFnJZI4DHY3D6m5s45Q0NeD1Cfa2fr17xGirC7oqGYsioCRLJJE3NzZSVldHZ0bHAaYLv3v7KuGMP/bmb2LCFPxCgsrKSsbExbNumobERswTqrEtxuF9ykZIZOYfDYUyPh+qaGpRt7xSzAhlyZwJKYVYAwLInjoQsSxUcICWTNsMj430AdHYnsKydY0RVWeHjkg/sxgfO3QWAaMTrWqgXSUZNUF5enp3psRdBHU8kJ+5tYhraTmVgYACvV6sMerq7qa6pcdUEOwlLShgQkQDwZ8CPfvefK6W+KCK3A0cDg07UC5RSz4iulTcBJwNx5/hTzr3OB65w4l+rlPrxXKfXNE1wKlpu2GXmKKXoG0gRH00T8JmEZrkEbu/dw1RX+ejtSwJaTf+es1cUvJffb9LSGGRr+2j22D6rw/h8O0+HGQp6CAULny/Gb/5SxTTNbGeaG14oROCMt7Rw+z2bssf22TNMIGhgWxZ+v5+6+npSyST9/f2ummAnYkkJA0ACOE4pNSwiXuAvIvJ759ynlVI/z4t/ErC78/da4DvAa0WkCvgisAZQwFoReUAp1b9D3sJlxrR1jPGRy5+huzeJacCF5+7CW05sJFw+syntqkofP/jGQfzu4Q66exOcfnIzjfX+wvGjXq6/al++ctMLrFsfY//XVHD5JauJRha/oeRcUYzffJfFgQiccWozu64I8fCfuthnzwgnHddAuEwvb66rr9d2S45QsNDCi8vcsaSEAaWUAjLWTl7nbyrR9jTgDue6J0UkKiKNwDHAQ0qpPgAReQg4Ebh7vtLuMntiwym+8b2X6O7Vo3nLhu/8+FWOO6puxsKAiFBb7ef8M1cUZeglIrQ0Bbnu868hnVZ4fUJkhs90cZlrppqtCUW8HHdkHa87pBqvx8iqfUpRredSPEtKGAAQERNYC6wCblZK/UNEPgR8WUSuBB4BPquUSgDNwJacy7c6xwodd1mEJFOKVzfFJxzv7UvSWBeY9X1notutiMxOAHAd9rjMB8XM1pSaIzOX7WPJCQNKKQs4QESiwP0i8hrgcqAD8AG3ApcB12zvs0TkQuBCgOWL1JHIUqAsZHLEoVXc/7v27DG/36ChrvD0/mLBddjj4uKyI1iycz1KqQHgMeBEpVS70iSAHwGHOtFagWU5l7U4xwodz3/GrUqpNUqpNbW1tfPxGi5FEPCbvOeslbzp2Dp8PoOVy0LcdO3+RMqXnCzssoRRSpFMJkmn0+PCLi6wxGYGRKQWSCmlBkQkCLwB+JqINCql2p3VA28FnnMueQD4iIjcgzYgHHTi/RH4iohUOvHeiJ5dcFmkVFX6uPRDu/PhC3ZDDKiKLh0DPpelh2VZGIaBiGTDyrbp6uxEKUV1TQ1dnZ2UlZVRVV09b4aA/QNJevqSpNI29bUBqivderdYWVLCANAI/NixGzCA+5RSvxGRRx1BQYBngIuc+L9DLyvcgF5a+B4ApVSfiHwJ+D8n3jUZY0KXxct0S+AWG4mkNX0kF5c8LMuir6+PSCSCx+PJhn0+H/UNDbS2ttLR3o7f759Xd8J9A0kuu+Y51r0UA6CpPsAtXz+AmqrFr55biiwpYUAp9R/gwEmOH1cgvgIuLnDuNuC2OU2giwswNJxi/YZhfvn7Nj566sx8/Gfc2YI2cMyEXevvpUU6laKttRW/308ikSBcXo5t2+PKR8YN8nzx7/8OZgUBgLbOMR74QzsXnLUCw9h5/GzsLCwpYcDFZbGjlOKfa/u46voXAHjH0WFe8/ffUV3lJ7c/z3fYMxRLkUhaVIRN2ttaqa2rw+v10tbaSn19Pf5AYME927lMz8BgkrGEjWkK5WUegoHxo/ZiVpeYpkl9QwObNm5kbGyMyqoqfH4/KEVXZyd+n4+a2lo62tvp7+ubNzXBltaJK3g2bomTthQ+VxhYdLjCgIvLImJgMMVdv9ia/f2R614F4DtfP4B996oocE2Sm27dwKN/6ea6K/ZmZXOIjvZ2RASfz4fH63UFgRKgty/B5697nudeGMLnFS48dxfe/IaGcb4willdYlmW3sUS8Hq9DPT3EwqF8Pl8NDQ2Anqjq6ZmvRp6ewWBdFqrs15YHyMS8dDUEMQwhKNfV8v3f7JxnJPCt57UiG87d+x0mR/cr+LisogwDCHgn1gtfb7CVfWFl2I89OduLBt+fO8WAkG9g6JSinAk4qoISoBk0uLOn2/huReGAPjGp1ZyaHMC1dlBfOPW7J8qcmrftm0aGxtpam4mGAyiHBWBx+PJbgiWG54tmVUJWzZvorbGxGum2LJ5E5ZlUVfj48Yv7cdeu4fZbWUZX/zUnqxyd7RctLgzAy6LlqXocKci4uWi83flo597hky7v9fuYeqqCxtdPet0ILXVPr7yub2IDXbi8/nw+Xz0dHfj83pdNcHtfwGhAAAgAElEQVQiJz5qEQmb3HvrGi7+7H9ojNj868A3T4h3zLoHp72XaZrU1tUhIhiGMS4811iWon/QxusLMBLrAsAfiNDdm6SpoYyD96/kf75YhlIQrXBnqBYzrjBQosSGU4yN2Yih95X374Tewpaqw509divnp985lCee7KG5Mchr9opQOcVSyCMOrebH926mrz/Jiy8Ps2pFhFCojGDQg9/vn1ZNkOtWuRgXyy5zT1nI5G0n1TEy3M/3rt+f8uHe7brfjtre2rYVL28cYbcVAUBvxuX1Bnh58yhNDdr4NVrhLicsBVxhoATpH0xywy0v8ae/9xDwG3zg3F046dh6wu4+8jsFwYBJS1OQs9+2bPrIQEtjkI9fuBs/vGsTV/3PC1z3+X3YfVfBNM1p1QRKKVKpFIZhYJpmNry908eFsG0by7Jp6xgjwhi+9Bj5skfuzE8pzA7ZtmJgMIVlK3xeY1aup71ek2DQy+BAmnS6i2CJrCr1eg0O3i9MZ0cbPn8YpdKMDHdz8H7FlV2XxYMrDJQYlmXz2wc7ePxv2kBodMzmW99/mTX7V7rCwBxSCp1QhkjYy2knNnHskXWgFOXlHvw+PRqcbmrYtm26u7qwLIua2lq6OjsJhULztk+9Zdls2bwJfzCKZ3SUx/c8YUKc17/wMDEjRFXUu+hnh1Ipi3UvDXP19evo7E6w714Rrv70XtTVznzPC6/XQ0U0Sl9vLzB53puh4KLaDlpE8Hq91NbWs2FjkqqqEDW1EXd2qQRxhYESIz5q84+nJvo3en79EC3lqZLpwGbKIQ/cihnSDaxKW8Q3aov7+Xq3HdUJjSUsRkbS+P0m5WW6Os5GEPF6jVl5d8ssQ2vdupWO9nZ8Pt+8eqRr6xjDH4ySGB1Aqcmf0dOb4FPXPsW3r9ufxV5qB2NpLr3qWUZH9VD+2XVDfO3m9Vz1qb1mtCOmbdskEgn6ensJhkIwkpg8XjJJaGXLnKR9rvD5PHi9ZeyxKoAhQiBguMJACeIKAyVGMGBw0P6VPP3c4Ljje64Kk44NLOpR1PZghgI8ecJ5E46X8rvFu/oY6hwikbAY8xiosAfTFJRt8/jqN0yIPx/vqpTKOqOB+XdE09uXpKlBd5JC4Q6jqyfBLT96mcvPWtzfdmTEygoCGZ55bpBE0iY8g/tkVDMV0SjRaJR0/yBHvfAQlgWDQynC5V78fmPBZgCmQ0QoC7ndSSnjfr0Sw+MxOO3ERp57YZB/rO3H5xXOP3MFdTV+2D6bo0VH7p7rKl0iStQiGYmnGWwf5Ok1J044V4zF+FyRURN4fT7q6upob2+nr7d33tQE++4d0WqCQDlGMjVpnIyjnVc2x1FqcQsDoZCJzyskU9sW06/eLYx3FmvpvV4v0WgU0zQxa6owKiIMxSzKa6Ei4sM03dG2y/zhCgMlSFXUx5WX7sXYmIVhbPNUFt/JhIHcPdczaoGdhbGExVhi4QWcjJoAHEc0TU3Z4/OBCDQ0NNLdZ2Or/knjJJJ6duKY19VOMC5cbITLPVz16b249psvEh+1aG4M8LmPr6ZilvY7ufnu9XqornKbaJcdg1vSSpSKsHfWDY7LwiPIohnp5a4cmOkqgkL2DWZ5GUZFOaZpZlURpmni8XgwTZMmn8IaTHHM+kewLL2NrmEYJJKK1kGD009q5IxTm/Fa8UVlMJdPwG9y2MHV/PS7h5BM2gT8JpVRt166lB6uMOAyDttWpNJ21hp9qZKrosg/vj1kdPOVUS/mTrD+upCh5THrH6ZzsI+6+nqsdJre3l6WLV+e3VbX6xWMygidw4OYfpNAMMjQ4CD1yxrYpdnLxfubBAIm4Fv0NiE+n+HuxOdS8pSUMCAizwKq0Hml1H47MDkLRqKnH2t4ZMJxIxBg3yd/T9rS06ymaVBd6S26A+sbSPKHRzv574tDnHBUHQftG53Vmun5wBMu55j1jzi7ruF4VJu/EWKuimKuyKzpV0rh9XrxFJoZ8Ps56oWHJ8wcLJbRcDGICBXRKF2dnQDU1NRgTrLMsbKqilAolN1Hwe/3z5uPAxcXl8KUWq07xfmf2Vb4Tuf/OQuQlgVBKUU6Nszje0xcn33Ysw/yrqu2jDv28Qt34x2nTt+p9Q8mufzLz/HfF/SWo3/6Ww/vfdcKznn7cvxT+MXfUVhl5fxzXYqv3PQCo2M2TQ0BvnnNfjRXBxc6aUVj2zb9/f3ER0aorq5G/B6OeuFBTNNkeCTN8IieLn9pS5Iv/aCNW284kOrKxTvitG0b2y4om4/TfxumSb4BgGmalJeXZ30h5IZdXFx2LCUlDCilNgGIyBuUUgfmnPqsiDwFfHZhUrbjEJGCa3hTqYkN86ato+N+J3sHSA0NYysFSm+MIwK+QIiLL9iFx/7aw89+3QbAvb/cymknNuH3Lfx09vCIxdU3rCOd1u/Y1jHGV7/1Il/+3D5ESsR2wjRNampq6Eil6Onpwev10rSyhcGhNB+48il6+5Pj4g8OpRe1MGAYRsF96ZVS2VUJ6XSars7OrJog/x6ThbcX27az98sNL1UGhpJYaUUoNHFbZBcXKDFhIAcRkSOUUn91frwOdwdGgsGJlfzUNzaM+50aGubxPSbT8T5CVYXJmafVkUzZ/OoPHTt0RmA6//jDw+msIJDhhZeHSaXmd138XKKUwrIsUim9pC6dTpNOp/F6hcoK7wRhYLLdC3ckWiWjMAxjXLgYRITm5ma8Xi8KKC8rm1RNMB+kUymSqRSBQADbsrLh+RIIbNvOCum54YUi36gznVbEYikGkl5++884F757F6pm4aDKZeemVIWB9wG3iUgFIEA/8N6FTdKOIdMoT4bHFG64el9+eJfeQ/y971pBU8P4afRC07qWZZFSSby+MD19ulO66PxdiUbmv4hYlkUikcDv16PgTDh3mjkc9hAMGIyObev8D9q3oqQ2aMqoCXw+H/UNDXR1dtLX10ddXR2fuGgVl3z+P1iW/j4nHVdPWdnCVc/M1rSpVBqFF49pY9sWwWBw3IhbQkFev+6PmKYHpWxs29Zb44bL8QW2ueSdz81ycrFtm+GREfp6e6msqiI2NISI0NTcPC/PsyyL0dFRfD4fHo+HeDyOz+fDO83mUPNJIaPOvf76W37zYAcicMn7V7kzBC7jKElhQCm1FtjfEQZQSg1Oc8lOw1SjDhF47UFVrF5VDmry3cLSViEdryIciWBjss/qCO8/Zxca6/2MJWwC/vldBqeUorOjg2AohN/vp7+vj4bGRoLBYPZdK8Ierr9qX6654QU6uxMc8JoKPvWhPbIufEuBjJoApTBNk7r6+mx4z1Vh7vv+oaxbH6OpIUhdrX9Bl47atk0sNszQ4AChsgij8RiBQBC/358VBgzDwFcdxVtVgWmaWU+GpmkuWEdoGAaRcJhkIkF/Xx+GYdCybNm8CiNDg4Mkk0nKw2GGBgeprq7GE4lgWdqPhMfjIZ1OZ8MLzZ//3sP737XSFQZcxrHwJXMWiIgfeDuwEvDkTC9fs4DJ2mFMt+wtGpl8CnB4JF3Qgl1EGBocpKExxLvfsYyBoTT/+5s2nn5ukCMOqeINR9dNuRVpMf70C65JD5fR1NREa2sr8ZERqqqq8Pv94zoUr9dk370quPWGA7FtZr073EKQ6RQyHVLagr7BBKYpVDlbE/v9JvW1JvWz2OBmPhgcsugb9FIeCBIfGdIjXU8FA4MWNdXbmo0dtVXuTLBtm7GxsWw4kUg49g1zrybIOG3aumULQ4ODlJWXE45EUErR3d1NOpWirr6ers5OPB4PdfX1C55Py5tDeDxLXqvqkkdJCgPAr4BBYC0w+Y4ekyAiAeDPgB/97j9XSn1RRHYB7gGqnXueq5RKOkLHHcDBaGe/ZyqlNjr3uhytrrCAS5RSf5yjd5uWmS57S/T0kxgYJjacJlI2uTBgmiYV4XJMwyA+anH19etY++8BAP71TD/rXx7m4x9cVdD/eDEb+0wVJ5XTOI0lEpP6dTcMmdagLrfjze+EFwLLsujq6sIQobaujs6ODsTw8OpWg1t+tJEvfXZvVrSEChriLRSmCRVhg/jwGIZhkEql8PpTmKa5qHd0zKgJRIQVK1cyODBAX2/vvKoJ4vE4lmVhGAaj8bhjB+KltraW1tZWWrduxTRNamtrF1wQiIQ9fPriPUpGkHbZcZSqMNCilJro1H16EsBxSqlhEfECfxGR3wOfBL6plLpHRL6L7uS/4/zvV0qtEpGzgK8BZ4rI3sBZwD5AE/CwiOyhlFp4/7KTkBwc5om99FLEQx64lcMevgMAf3MDYpqI6IY8Gg1jGAYD3YmsIJDhwcc7+eB5u8zLZiRKQV9vLzU1Nfj9ftra2kgkEuPUBMVgWRbDw8Okkkmqqqt1OJWisrJywRphEaGyspL2tjY2vvoqhmEQLKvg7vs3sHFLnE9d9Sy33nDQrHYcnE/8PmE0PobXF6AiWsPgwABWaoRQtIx0++LdVtgwDMLhMOFwWAu40SgVjr//+SI2NERlVRUVkQjtHR2MxuN4IhGA7FZMIjJhaeWOpqbKz53fXjPlDJ/L0qVUhYG/ici+SqlnZ3KR0pZ3mSGN1/lTwHHAu5zjPwauQgsDpzlhgJ8D3xbdO50G3KOUSgCvisgG4FDg77N9ofkkmWNx/39vuTAbPnr9I5TtMnE7VMPUNgJWjn1BIGAyxSZz28XgUIqaXZsRQ/D6PCxfvhxmYZGd2Vu9t6eH0dFRUqkUNTU1s05230CSzq4xFNBQG5iVBbZhGNrBkMejR9deL7ERm+fXa38Ond0JEsnFJ0MGAl4iFRF6epOceeE/+crn9mb1blG8XpPFl9rx7EjVRe7eDoZp0uCEM2oCgKbmZro6O+nu6tohaoKp1IiRPE+JQ7EUyZSN32fMaMtll52PUhUGjgQuEJFX0aN9Qff103ogFBETrQpYBdwMvAwMKKXSTpStQGZOsRnYgr55WkQG0aqEZuDJnNvmXpP7rAuBCwHdwS0QhYz/CnWSoZDJWae3cNfPtzkw+uB5u8zbev6xhMVHP/Y0bzq2nvefsxJzlkZWhmEQCAQIhULE43G8Pp92ZDOLxrevP8nHrvg3r26OA7CsOci3rztgxiP4jJrAsiyqqqrp7+8jFBjlS5ftyWeueZ5ohRffLHa42xGEgj6iFcKdNx+CaQjBoDuinIxCwkdtbS0ohcfr1WoKx7hyvilWjdjWMcp1N73IupdifOcLu0G5NanXy4We7XHZMZSqMHDSbC90pvIPEJEocD+w55ylauKzbgVuBVizZk1hV23zjMecvLMpNPAuC3p41+nLOPaIWl5YH2O/fSqorfZN6LRyN6DJ5ZAHbsUMaUM4lbayOw4qu7BPgM7uBD19CWfZ5OzG8hk1QTweJ1RWRnxkhL7+/lmpCZ74R09WEADY0jrKo090ccZbJs6kTEVGTZDZr97r9xOP29x9/0tURDx8+fK9qaxYvCOyUnHotBjZng2g5pu+gSSfvvo5Nm3VZdxMxPnzmjdPiHf8picm3THUFRJ2PhZXCS2SHE+EdcCszK+VUgMi8hhwOBAVEY8zO9ACtDrRWoFlwFYR8QAVaEPCzPEMudcsOmZjRF0R8VIR8bLnqslM+batQ4+PjBCpqMAoD3H0iw9pBzVpi8f3euOEa47f9ER2+tKyFN29SUAxlPYhAmec2oJZQHAphoyaoKa2lvKyMsYiEdLp9KxEi0wjOd2x6TAMA5/Pl10SGvD5SKUtPnvJavw+g2jEu13v7LKwLGZjyqlIJOyiyrMVH520Li8G+xCXuaUkhQEReQtwA9p4rwtYAaxDG/RNdV0tkHIEgSDwBrRR4GPAO9ArCs5Hr1YAeMD5/Xfn/KNKKSUiDwA/FZFvOGnYHfjnnL7kHDIfO/BlNt3p7+8nkUgwOjpKMBSitraWxJb2Sa+xk0lCK/XIOpGwsGSUH/50I+n0KLd87QCaGoqX6zKOl0QkG86oCZRSGKY5LjxTTj6+gft+NV6+O+UNjTO+TyZdGUyPSTRiEo3M6laLgvna0bEUKWYVzVxgWVZ2dis3PFu8XiFc5iE2kp4+ssuSoCSFAeBLwGHAw0qpA0XkWODdRVzXCPzYsRswgPuUUr8RkeeBe0TkWuBp4IdO/B8CdzoGgn3oFQQopf4rIvcBzwNp4OLFupIA5mcHPsMwCIVCRCIRhoaGMEyTurq6otdy+/0mu+9azpWX7olSzGiVgm3bJJNJTNPUS92csMfjmTNf9411AW64al9+cNdGbKV479kraWlaHD4AFpr5KE87A4XUY/mzBDOdTUin0/T09GiHVZANb4/qoSLs4YpP7skXvvY8yaS9oO6TXRYHpSoMpJRSvSJiiIihlHpMRG6c7iKl1H+AAyc5/gp6NUD+8THgjAL3+jLw5ZknfecgMzMQi8XweL2kUykG+vupiM6skwgFZ14ElVL09vaSdpYN9vb2Eg6HqayqmjMDrbIyD6892PHmyOTeHF1ccjFDAZ484bwJx/NnCWY6m6CUIjE2Rntb26T7dswGr9dkzf5R7rv1UIbjaWpSfdt9T5fSplSFgQERKUc7ELpLRLqAkQVOU0lg2zbpdDrrMjYTnmknmhEGMqqB0dFRhmMx0mnFFHaCc4JpmjTU19Pa2kpPTw+BQGBOBYFcXCFg6bJY7AG8Xi919fW0t+ndRFuWLZsTg0S/38TvN6mp9pPsTU2q+pnK6Ndl56JUhYHTgDHgE8A5aMO+JeGKeC5oa20lGAwSjkTo7OigqrqacDg8o2n1jJogGAxqwcLwowyDcz78L669eBlHPv8wHo+MW7EwVzpl27ZJpdNZD4OpVCq7Ta073ekyV8yVPUCx/anh801quW+Wl9E9MoTH48FWiq7OThoaG4sWCKbbERQKq36SvQOTCglmMOCuMtjJKElhQCk1AiAiEeDXC5yckqOhsZG21lZGRkYoKyvTa/FnoV/PXJNK2fz0F1v58b2bAXj/Fzfg9xvc871Dqa2e2n3wbMioCUKhEDW1tbS3tTE4MDBvswMuLoXINaa004XMhopbVVzIcv+Y9Y/g8Xnwh6owBEZH+gruXJpPxr4mY0+TCRcrSBQSEuIbty5aL5Qus6MkhQER+SBwNXp2wMZxOgTsupDpKkWKaVKmmy6NjaR59C/d484lEjZbWkfnRRgwTZP6+npERKsMGhuz4VKjmFHbfDMwmOTZdUM889wARx5Ww64ryibsmLiQU+ax4RSx4TTtXWMsbwoRDnsILJKtq3M7y+FXthSItX3f1LIVY+kKPv6Z/1AW8vCFT+5B36BFfU1xPiC6OjsRw6AyGqW7u5uKaJRoNDovGze5lC4lKQwAnwJeo5TqWeiElCId7e2UlZcTCYfp6OhgeHh4SjXBdNOlPq/B8uYgW1pHx52vrZ4/fftiduhSLGlH1eHz+bAsKxvekQJBbDjFjbdu4OE/a2Hu3l+18sHzduGdp7Xg920rDztqCV0+I/E0v/xDO9/78asAeDzCDVfvy0H7RhedSsgbKeeI/z7EwGAKWylMQ6iM+vBVjFePFVqaWUg/PzKS5rzPP5X9fd5HnuKD567k3HeumDZNhmHQ2NRE69atdHV1EQqFqKiocAUBlwmUZiuqXQjP3AOMC6B9pWcMCJtbWjBNc7sah/IyDx99/yqeX/80/QMpAM48rXlJ74w23e6JlmXR39/PcCxGbV0dfb292YZ7R85wjI5aWUEgwx0/28zJx9fjrypuViez7n0+Zg/ioxY/uPPV7O90WvG1b63nu9cfmN3+ebHgr6nEjFaQHsr4+zcpr/BO2JFyqqn3yZhsR8tIkXXLtm2sdBrbETRSqVTRKgaXpUWpCgOXozcr+gc5WxgrpS5ZuCSVBhmPeBlyw9tDU32A27+1hoHBJGUhD2Uhc8lufGJZFp0dHfj9fiqrquhobyfojMgyHb1pmlRVVZFKJunq7MyqO3a0qmOybsG2VZFabq3a6Orqoq6ubl5mDxJJGytvwNzVm2BH9Gezca7k8RjUFClEFUsoaBIu9xAb1g6C6mr8HHloddHXd3V1UV5eTmVVFW2trQwNDblqApcJlKow8D3gUeBZtM2AywJjGEJ1pW/RbcW7EIgI0WiUjo4OhoaGEBFqJzHSVEqRTusG3rbt7Ag7f/q7kPe5RNJm2PEgFyn34J3FhkeBgMmRr63mL//ozR4787QWwmXFNQ2WZeH1zJ8zplDApLkxQGv7WPbYcUfWEvDPf0e2o50rFRI+zPIy7rx5Df96ph+fz2D/faJF1zPDMGhqbs7a1DS3tCAi2y0IuF4odz5KVRjwKqU+udCJcHGZDMMw8AcCmB4PVjq9bfllTiefUROICMtXrKC7u5vurq4JaoJUKpVdKWHbdjY8PGJz/+9auesXWzENOP/MFbz5hIYZbyxUEfZy2Uf24OjD+1j7nwGOO7KWfVZH8M/AQK+qunreRplVlT5uunZ/vn3by2x4ZYTXHVLFu89YPiOPlZNh24q+gSTr1scIBk12XV42qy2q55KphA8/cOJxDbO671zZ1ywWvwsu80OpCgO/d7YH/jXj1QSuG615YLGOAizLJpG0CQYmjqYXkoyaQNk2lZWV9Pf3Mzg4OKmaQCmFx+Ohrq4OlbfFrVIKy7KIxWIkk0lSqRSmaaKUYv0rw/zgrk3ZuDff9gp77xFh/30qZpzeyqiPk45v4E3H1k+qn4bxZSCTLhGBoJ/Ojg7q6utn/NxiaagLcPklqxlL2ITLTHy+2alScjszy1IM9yVpNhRDIz4u+fwGvvXl/ScIBH39Sdb+p5/BoRSvP6yGqqgXr3dxrGSYLyzL0tstezzjwgtlROqyYyhVYeBs5//lOcfcpYXzxGL0Rd/Xn+SBB9t59vlBjjq8hqMPr1k03gJFhGhlZXY9tz8QmLBvAow3KJzMVkBE8Pl8VFdX09OjF860LFuGYRg8+HjnhPh/+lv3rISBDIUEAdhWBjK7VY4NDxONRkmn0/iGnQ7Wnj9FvrZDGX8snU5nhSnLsrLhQoJhoc5sr7/+lo1b4vz7v4Mce2Rt9nhff5IPXfZ0VkVxy+2v8qObDmZFS2jCPXYWLMtiYGCA0XicxqYm+np7SSaTNDTObpMul9KhJIUBpdQuC50Gl4VjYDDJFV/9L/95fgiAfzzVzysbR7jo/F0JBhd+1JbZPTG7bXFOeKZk1AmmaWLbNj3d3dTU1nLQvlF+/8h4gWC/7RAEiiUjoESj0ewqlGg0im0L/Ukve/31t+PiV1X6xs0g5U8127aesrcDQaxQmKrK4pZWWpZFb08PY2Nj1NXV0d3djcfjob6hYdZGmL39iXG//7t+aJytQjJpc/s9G7nso6sXjZ+DucY0TSKRCMOxGJs2bgSgsalpUc28ucwPJSkMiEgI+CSwXCl1oYjsDqxWSv1mgZPmsgMYHbOygsC3L9+FiCcJCFZ7G3FndLsQesyMS+QMmQZ0tvr0zHR8ppNLp9P09vSglOLwNVUcdnAlT67tB+Cow6u3a1ZgJuQ6eMqExxJpvvnTLv7v6f5xcT998e6ctvv0m/Ts9dff8rH/t55brz+IxvrpDRJN06S6pob2tjba29u1qqW+ftaCgNcjHHFozbhjo6MWy1uCbN66zX9GPG6j5nEGZDFgGAY+v5/ReBzTNPF5ve7KgyVASQoDwI+AtcDrnN+twM8AVxhYApim3vNAKYh4kqw74s0ArMuJs6P1mJZlMTY6is/vxzRNRuNxfH4/Xu/sl1dmRuGZJYeGYWTD0Qr4wif3YnRM+zAIBs0JXgMLMR+GYGUhDyceWz9OGDAMWLN/ZdH36B9IcdvdG7n0Q7sXPfLOrJmv9AZIbOkgmTeALead/H6Tn9yyBq9XGBlJ4fdra/vDD67k8DVRfv1gJ7f8SPs6ePcZywgGPfQPJHlhQ4xNW+MccUg11VU+QkEPtm1nZ4Fyw6VCrpqgurqagYEBvXR0Hm1CXBYHpSoM7KaUOlNEzgZQSsWllGqcy3YRCno4/eQmfvHbth32zNxRf25YKUX/YIpwmUF/fz+WZREOhxkYGKC6poby8vLt8h2QOyLLH51VRLyzcuw0X4Zghx1cxUXn78IvfttGWcjkkvevonKGjoFa28dIJu1phYGMmkBEWLZsGWOb2yf161/MO1WEvfxjwzCPPtHFZz+6is2bWqmpqcXj8dDR0c4pJzRi23DQflFWtIToH0xy5dee5+nnBgFtvPmNq/fj4P0rGBsbwzRNvF5vNryjvUpuDxk1QSgUwu/3U1auVTwiglletigNiV3mhlIVBpIiEsTxmSIiu5GzqmBnwV3KMznlZR7e966VvPGYOiL2wLw/z7Is+vv6iFZWIiLZcNoS1q2P8fWb16Nsxfe/cSC93a0MDAwQDoe3WxAoNSoiXs58awsnHV+PITJjQQDglDc2EC6fvlnKqAlAL5dLeabP50KrYlLeIF/8+nMAHL6mkgP3qaCnR3tl1B2jj3e+pTm7iqFr00hWEAA9Q3XL7a/wvf/Zn8HBQcZGR4lUVDA4MJDdB6CUyoHX682mdzgWY2hoiKbmZoaxGDFsWlpaXLXBTkipCgNfBP4ALBORu4AjgAsWNEXzgLuUpzB6VFxBfGOsYBzbtrPL9RK9/VixkQlxihGslFLE43FGR0f1vRIJIpEI8Th84sr/kE4rLjx3BbHYSHZqOB6PE62sLKlOYC7wegyqK2fugc9jGnzig6s44pDqokfR9uAw6dgwSUAV3DFwG5OtilFK8f9uXp/9vf6VEQ7eb9tI1+vzYRgGHs+2zi+VnujnbCxhMTxiU1dXR1trK4MDAwSDwYKCwFxuUJVO29gKfLNwOlWITGdfHg4Ti8XYvEkvY21omJ2vA5fFT0kKA0qph0TkKeAw9JZgH3M3LXLJJ5lMZkdp6aFhHt/jhAlxihGsPB4PjU1NbNm8mVQqRX1DA16fjw3/7SedVhgGvOnYelJjPQRDFdTWVtLR3kY8HgeKZSAAACAASURBVC+p2QHD55v3PeonG53bNhjlId56QCWmWXynmCssH/bwHbNKj4iwaqXu/FetLON9Zy+nt6eVsrIwPr+X3p4e/H4/gcA2o8aaKj9NDQHaOratNDj79BYiYQ+JxBipVAoxDMbGxkin0xiGMa6zT6fT2JaF19mgKhOeqUBgWTadPQnuvn8rIyNpznprCy1NQULBuWvWRQS/308qlcoaFrqzAjsnJScMiIgHOAnY0zm0Dpj/uWKXRclULlxTqRR9fX2MjY0RsqYfORbCsix6uruzxmB9vb34/X6am4KA7sw+9Jl/c8tX96Oja4xopaKxqUmnYwcJAoVcFs/oHvHRWevdi2Ux+qw49ohafvWHdjZsHOGJf/TyukPqCYX8eD0GgUmMQKsqfdzytQP4xW/b2Lh5hFPf2Mg+e0YQUQwODhKJRKiqrqbT2RE0d3bAtiwGBwcZGhykrr6e/r4+lFJZN8Ezobc/xQUfXUt8VJfth/7UxQ++cRCrV4XnJF9s2yY2NMTw8DDV1dUMDQ3R1tbmqgl2UkpKGBCRZvSeBO3A0+hZgVOAG0TkWKXUjrMoc1kUTNW5eG2b8nCY4ViMELPvlDN7CDQ1N2MaBu3t7diWRUXYw7lnLOcnP99MV0+CS696jhuu3o9gYH6qVSEbErO8jP7UGNU1NYgIPd3dVNfUFFzJMNMtdEsBKz6WnR0INDcgjg1BMcZtVZU+brx2P/r6k4iA1+sn4Nd5FwgGJ+2ka6r8vO9dK0il1Thjx7q6OkBPs2cs8HMFM8M0iUajJMbG6OzowDAMmqfpXAt9d2X7soIAaNuFu/53C5//+GpsBcMjaVJpm6DfnNR+I7MvhsfjGRfOptUwKA+H8fv9+AMBysrLSSWTBdPpUtqUlDAAfBn4jlLqxtyDInIJcB1w/lQXi8gy4A6gHm18eKtS6iYRuQr4AJDZy/VzSqnfOddcDrwPsIBLlFJ/dI6fCNwEmMAPlFJfnZM33AnI1dXnhnd0GpLJJCPDw7pTTM6+o/N4PDQ3NyPOdG8m7PML57y9hdNPbiSRtCkLeubVv/1UNiQpw6attRXDMLLb1RZiplvobg9DsRSGIZQXufHRbPm/t1yYDR/70iOEVrbM6PqqqI+qqE93vD0DxPOUjpOpSkzTIL9YT+dVEhz/Ec43Ukpl68hMPSce9uyDE46FgiZjSZuHHu/k5tteIZVW7LqijOuv2pe6mm22HJZl0d3VhW3b1Dc00NHejsfrpba2dly6PR5Pdl8NwzAm3UjLZeeg1ISBw5RSF+QfVEp9S0ReLOL6NHCpUuopEQkDa0XkIefcN5VS1+dGFpG9/z975x0mR1k/8M87M9v39nq/SwETkhDSSAIBhAQMvQWpiiAdBIGfokhRFFFQqgVRFIQAggKKNCFUUYqBhAAhgRTSrve9vbZl5v39MbubvV5zt3s3n+fZ5959d8o7c7vzft9vBc4E9gWKgFeFENOjH98LLAfKgPeFEM9KKTcM6ap6IVlrAvSFlJJgMEh9XR0FhYWEw+F4ezhFUoYwECLhMB6Ph+ycHDp2DE9ppHRZ3cXwemx4PWNfqrmgoIBdu3ah6zqFhYXDym8wErS0Rti4OcDKv+5AsylcfPYUpk7y4HQmt//EnnbajZkJDF2ntLSUuvp6aqqrh2QmcNgV8nMdVNeagVROh8LZp06itS3CPfdvjW/3xY5Wfv/QF1xz+bS4P4GiKOTk5FBeXs7OHTtQVbXX7I2J47IEgfFLqgkD7X181tbfzlLKSkwTA1LKgBBiI1Dcxy4nAU9IKYPANiHEFmBx9LMtUsovAIQQT0S3HVFhIBntqwChkE5Lm47ToXRzVhJCYNPM5CtlZWUY0bj70X6IKKqKy+3G5XajqiqaL/UEq8FQXV0dX7XV1tZSWFQ0pgLBzrI2/u+HH8ffr/2okcfuW0xJ1M9iJEhFYVlRVTLS00n3+dBsNrNAVZfMlQM+liK4/875rF7bSGtbJFpIyc5HG/zdtt24OUB7h4E7evuFEAhFiWuSFGvFP+FJNWEgXQhxSg/9AvAN5kBCiCnAfOB/mKGJVwghzgE+wNQeNGIKCu8l7FbGbuFhV5f+A3o4x8XAxQCTJk0azPBGlJgqEuikRh6K6r6hKcSjT+7k3Q8amLaXl2+dvxcFuZ3TxyqqSnpGBvXR4jpZ2dlj4lGfeE5HTibkDDwbXqqhRFd2QghqamqGdIyRmlwjusHTL5R36tMNeO0/NZx7xuQhja0nklVY7g81QUOmqirdbA2DIDvTwTFHdA73Ky1yoSrmPY+xeEEmXvfu88TMBFJK8gsKqK2tpa6urpuZwGLikGrCwL+BE3r57K2BHkQI4QWeBq6WUjYLIe4DforpR/BT4E7g/GGOFSnl/cD9AAsXLhyzhOaGYbBz506ysrJwuVyUl5eTl5eH2+0e1GqgtS3Cr/+4hVffMl0rdlW0s/mLFu69bV7cVp5oJnC73YRCISrKyyksKhpdMwETK2lTfkJe/vwh5ugfqclVEYL83O71BfJzB59/YLjo0SgSVVU7tcczvjSNn98wm1/+dhMNTSEOOSCbc06fjCPB0TFmJkAI0yemqAgSak5YTDxSShiQUp4HIISYKqXclviZEGJAlQyFEDZMQeAxKeXfo8etTvj8j+yucVAOlCbsXhLto4/+pCQrKyu+Une6XDgcjkGrBTuCOm+83dmzaldFezw/Puw2E2RkZJCekYE0DJqbm8dEBTnekjb1tXIfiOPaaKEoghXHFvHCq1XUN5je55NKXCyenzWq4zAMg9bWVhobGiguLibQ0kKz309Jaemo3aNQSKe1TcftVnHYh3bOwWpsXE6NA/fP4sF7FiAlOBwKad7OJiMhBJrNFv9dJrYtJiYpJQwk8DSwoEvfU8D+fe0UrV/wALBRSnlXQn9h1J8AYAWwPtp+FviLEOIuTAfCacBqTLPEtKgAUo7pZPi1YV3RHkRRFFyu3bZaVy/hUv0hEPzuhr1wyd3JVlRFkN5eT6h+92pbs9lIj8VWR00GYz1BJQvD0Vakklo8J8vOg/fsz5ZtLdhsClNK3Hs00qInFEXB7XbT7Pezc+dOAHKjoX+9MZJ+CPWNQR55chdrP25i3ux0zj19MtlZg78HQ/m/q6ogO6tvTYzlGGiRSEoJA0KIGZie/V19B3xA/3VPTd+AbwCfCCHWRfuuB84SQszDNBNsBy4BkFJ+KoT4G6ZjYAS4XEqpR8dyBfAyZmjhg1LKT4d5eXsMwzAoLy/H6XLhcrlobGjAbrcP2kyQkW5DpBu8s+9x3T5bsv4VhOqOxzPHJv+RUNU3+kMYuiTNq2KzmY5Ouq53y+yWCow3bUVvCCHIzrSTnTk0bUBDU4h/v13Hpi8CHH1EPlNLPfgGWJWx6zicLhehUMhsO519CqYjJXD5m8PcfOdnrPnIzIf2xY5Wtu1o5Zbr9h1Scan+GK5fkL85zLZdrbz3QQPzZ2ewz5e8ZKSPrvBmMbaklDAA7IOZZCiDzr4DAcw8AX0ipfwv5qq+Ky/2sc/PMPMbdO1/sa/9ko28vLy4acButw/JTKAootf8503+EHc/vIGfXjur00NkOJNfOGywdXsrt9+7iROOyueQRV68XheitY2wvyWaEXD39qPhCzAWfggNjSFa2yLY7Qoul4rPaxvX/hCNTSG+95NP+HyLeX3Prariuiunc/ThBYNKVxwzEzT7/WRlZdHS0kJFefmomAmCIT0uCMT4cL2fjqBOOiMvDBiGwa6dO8nIzMTtdlNRXk5ubi5uj6ff33lHUOfpF8p58C9m/YFHn9rFCUcWcPn5e+/x/BAWyUNK/aellP8E/imEWCKlfHesx5MqqKraSQswWI1AIn3t9uEnfgKtkRFbUfibw1x+3TqCQYMbZ02no72ZlkAj2YbKWzOWd9t+NFbXo72yr60LcuUNH7GrwoyqPenoAi76xlTs41jD0ByIxAWBGA//dSdLFmaRNYgiSDEzQX5BAS6XC29aGsHg6BQ3VRSB26V2yhDocqmDEmYGgxCCrKws6urqaKivx+l04nQ6B/Q7b2mN8NjTuzr1vfBqFeedNaVPYaC3st4xxrPAOh5JKWEggS1CiOuBKSRcg5Ry2BEA45XRsg/KEcxoW17VQTBoHvBb137MY/ftT8BfhRzgSVIxDj2RUEhn5ZM74oIAwD9fquLEo4soHccuGD19PYUCPSv1+kbTNJRoPH3ia0+T5rVx1UV7c+uvzYqILpfKNZd9ibQ9tNKOmUNiuFyuviX3Lhh652AnwzBND70RiURob2/H7XYjpYy3EzUuE8UkNl5IVWHgn8B/gFcx0wRbJAHT9/YOqBb9QMlJcLY676xSOtrbouFhA5sJU8nhrifagwabv+hednlnWTulIxeun3T40jRmz/Cx/rPmeN8FX5syZFt74uQ/WgV2HHaFww7KZf5+Gewsb2Pevj5UVWCzmSGOUko0TaO9Xae+McS7H9RTWuRiny+l9VhHoD8Mw0xH7XQ6cbvdNMT8ggZgJnC7VE4+ppAnn9udpXPpwTm4eskWKaUkFApRW1NDeno6HR1mpUZ3aWmP21ukBqkqDLillNeO9SBSnaGo8RJX24Zh1lJv69ARbg933DRpSA+y3vClaXzjtFIeeXIXi+ZlYhjNZGZlo/m7jzlZ6XqPFbudpRtXgWJmgIvRk7bC69Y44su5nSZFRYHZM9KgvX7QY2loCvHO6nq+2NnK0cvyKSpwYu9oTTpVbka6nZ/fsC+r1zawaWsLy5fmUVLoGrKKvTkQJhg0EAqkp9mw9eL3MtJ4PRpej0Z+rp36+nqCHR0UFhVRU12NlJKCwkI2bglw9Y0fESsnMX92Oj/9waxBm9qEELv9ghRlUH5BbpfGuWdMZu6+Gfz73ToWzctkyaKsXh02Y46YWdnZNNSb38PSSZM6pem2SD1SVRh4XghxbKyYkMXQGIoar6fVdppuoKo9P2AHo6qXUmJIM1wRTFXr106ZxEnHFNHRoZOXl4+iCEIpJAz0dY/7K6ajqoLlh+VRUxfk+VVVpPtsXH3Jl8jw2ZF9JebugcamEN+96RM2f2Heu7/9s5xbb9yX/fM7klKVm5Vh5+jDCzj68OEdp74xxM/u/ozVHzbiS9P47mXTWLJ/Fm736D36VFUlKzOTiooKdu7YES921dau87s/f0FiXakP1/tpaAoPWhhQFAVXgi+Qa9CRQnaWHpzLlw/M7vW3nIhhGLS27P4dtrS04PP5rBDiFCZVhYGrgOuFECEghGlMlFLKQaUkthgZ+np4DERVbxiSuoYg/3ixgqMWusmyh1FVM1JAxYwbzUrzYrd7zO3H0BdgtP0QMtLtXHj2FM5cYRayyUw3k8OEBjmO+sZQXBCI8cCj25n/fwU9bj8eCAZ1HnpiO6s/bARMx8Qf376RJ/90wKgKAwAiWvEvEomYfguqihE0aG/vbuUMhYZm+RwJv6CBCAIxM0E4EqF00iSCHR3U1dfjS0sb0jktkoOUFAaklNa3bhzR0Bjim1euoTkQYfmMYv5zcPc8Bokr1bH0BRiLczvs3bPXDXYcPfmCGWOWIHt0aG2LsObjzuF9UsLO8jYK8gaSlmRk0HWd+vp6wuEw+QUF1NfVUV1VRUFhIWeeXMIvfrspvm1BnoPcnNEb21AQQuBwOCgtLTUFG7ebUre7mz9GqjvwTjRSUhiIZhL8OjBVSvlTIUQpUCilXD3GQ7MYAms+bqI5EBnrYYxrsrPsTJ3kZtvO3cU9v3nmJBQlNIaj2jO0tkaorQ9SWdPBz68oxWjt7ISZ62slVK+MmlAXMxNkZGRgs9lwFBVhSImiKBx2UA5ZmTaefbmKKaUuTj2hhOxRztQ4FAaS/jrVHXgnGikpDAC/AwzgcMzCQi3AvcCisRyUxdDQtNTKIpiKZGXYueeWubz5di1btrdwwvJCSotdUFfd/85JREeHTqA1QnMgTHqajbQ0Gw777hWplJIP1zfxg1s+Jc2r8cTNk/jvvM6apo1094mQUsZV64ntkUKz2eLHTWz70mwcvDiHBXMysWkCTRsd50YLi66kqjBwgJRygRDiQwApZaMQIvnF6SQjWdR482ank5ttp7a+71XqUFIQNzSFCIUMNE306Em+pxOjJMs9BsjOtPPV44s79YWCyTO+/giFDP63toEf376RcETicCj84oezmT87Ix5p0OgPk6V2sPKH5nUK2b/9Xdd1Otrb43H6sfZIO8P1ZdPvLYzPwmK0SFVhICyEUDFrCSCEyMXUFFgMgkQ1XuKkGAm0xNujEWKWnengT3ct4K336vGlhXvdrqGhAZ/Ph91uH5BAUFHVzvdvXs/2XW2keTV+9N0ZLNgvo1Mp1z2dGCXZVaXJPr5EmlvC/PxXnxOOmM4OwaDBT+/6jAfv3j9eAEhK8BBkfdTv5MBXV/Z7XF3Xqa6uxufzYUhJSyAwqpUNLSySgVQVBn4N/APIE0L8DDgVuHFsh5TajHW2sOwsByuOLSJY18iXN65CCBEtuGImaDEcdgLNzXi93gGpcf2BMLf+6nO27zJt5IGWCDfcuoG//XFxJ2FgIITqmwj5W9ANCVKiqgqKYqVVHW3CYUlrW+eVfn1DyPy/RMnwachBZvnTNI38/Hyqq02TSX5BAZqWqo/GzlgpgS0GSkp+46WUjwkh1gBHYIYVniyl3DjGw7IYAUJOD83OEKFgC5qiUVRazK6dO5FtATIyM3E4HAPKIhcJG3y6KdD52CGD1jadnEEW0gv5W/j3PskXiz/RcDgUppS64wIewOwZvk4+A6qq4ByksCelpK19d+KG9vZ2nM7k9ugfKGMt5FukDikpDAghsoAa4PGEPpuUsncds0VKsGFTgJnTMqiraSE7J4f6+nqklNjtdvxNTXg8ngGZCWx2hTmzfHywbndomcup4HEPXvUbClsWqGQgK8PO7Tftxy/v3cTGTc3Mm53Bdy6d1i1NcaKsqLd1xE0FzuIChGb+/xN9InRdpyUQoLCwEAlUV1VZCXQsJhwpKQwAa4FSoBFTM5ABVAkhqoGLpJRrxnJwqUSTP0RFdQf5Ru+OVpFIBCHEqDwc589Op7qqIlpgRo2nbXU4HNTV1mIYxoDMBD6vjR98ex9uuPVTPt/SQnaWnZu+OwPfEGon6HrPAfl91HGx2EMU5ju5+fszCYYMnA613xK77594cbzdW9ZHTdOYNHly/DuV2LawmCikqjDwCvCUlPJlACHEkcBXgT9jhh0eMIZjSxn8zWHu+v1mXv9vXdz7uieqq6qw2Wxk5+TscYFACHB7vBjSyeZt7UzfKxMlmr0tJzc37kswEArynNz54/0IhQ1URSEj3dYtv/1AvP2djp7PZ80XY0Oa10ZfWccGG8ExWsWLLCySmVQVBg6UUl4UeyOlXCWEuENKeYkQYuAFzyc4gZYwr/+3DoDmiJ2Zb7+ApilkZdoRSHRdR7drhEMd5OXljcpD02bTyMzMINASobhARVVVbDbzazoUQaS/HO8D8aZXlOSa9Q1DIsSeLUWdyqRShISFRbKQqsJApRDiWuCJ6PszgJpouKFl4B0g7R27b9UVt24DID/XwR/vmk+6V6W8ooJIe6vptKeqozb5KIpCui950kbYfOZKM1ZQJiYTjXYsfnuHTk1tB089X4HXo3LyMUXkZDmGXM3PYvyTTHkuLJKbVBUGvgbcBDwTff82cCZmXZvTx2pQqUZWpp28HAc1dcF430lHF+LzalTXVGMYBjm5udTX1VFfVzcqZoKxINASpiNoJibyelRsUSczXddRVTVpVpqVVe2cd9Ua9KhQ8sy/Kln524XkZlvKMIueSZbvrkXyk5LCgJSyDvh27L0QwgmcIKV8EtjS237RGgYrgXzMhEX3Syl/FY1O+CswBdgOnB7NaiiAXwHHAm3AN6WUa6PHOpfduQ1ukVI+PKIXOQpkZ9q575fzeOivO9ixq52jD8/j0CW5qKpCdnY2SjR1qsPhQBmErT7ZSYy9NgwIBMKEI5Kc4nTq20Jk5eQikNTX1ZGTm5sUMeehkMGjT++KCwJg5k54b00DJxxZOHYDs0gZrJwDFn0x9k+5IRI1CRwFnAUsB/4LPNnPbhHgu1LKtUKINGCNEOIV4JvAa1LK24QQPwB+AFwLHANMi74OAO4DDogKDzcBCzGFijVCiGellI0jfJl7nPxcJ1df/CWCQYM0rxY3BdjtpppeCNGpDT3ncZdSYhgGqqp2aicjvcVeH/rZqwRVnerKCgzDQEmm8Qt6NAdolonAYoBYOQcs+iLlhAEhxGGYZoJjgdXAwcBeUsq2PncEpJSVQGW0HRBCbASKgZOApdHNHgbexBQGTgJWSikl8J4QIkMIURjd9hUpZUN0TK8AR5OQ9yCV6Foit6cVhGGA4nWjZaQBEpvNhq7rGIaBpmlEIhGam5vJzMxE1/V4O1kFgp4ItERwF2UTaK4FoKi4OCm0AgB2m8I3Tp3Ea2/VEAqbMY1ZGTYWzc8c45FZWFiMB5LjSTdAhBBlwE7MFfo10Ql920AEgR6ONQWYD/wPyI8KCgBVmGYEMAWFXQm7lUX7euvveo6LgYsBJk2aNNghjhm9rSCWrH+FsBGhvb2V3Lw8GurrEUJQUFhoCgB+P6FQiFAwGNcmpBJpXo2GtkY0TUNKGa85nywCQX6eg0d/t4iX36jG69FYdnBuSpS7tehMe4dOkz/E+s8CTCpxkZ/rJKNL4iQLi9EmOZ5yA+cp4GTM6AFdCPFPosWKBoMQwgs8DVwtpWxO9JKXUkohxIikk5FS3g/cD7Bw4cKUT1Hjbw6j2zNwaEGqq6pQVZXikpJogiCFzKwsGhsa4gJCKvoY2G02snNzEUBdbe1YD6cTDrtKUYGL886aMtZDsRgiUko+2eDnmp98Eo9OOX55Ad86by98aZZAYDF2pNTTWkp5NTAVuBNTVf85kCuEOD06wfeLEMKGKQg8JqX8e7S7Oqr+J/q3JtpfjpnpMEZJtK+3/nGNooDbpSKjTzHDMDCipoJIJIK/qQlbtFZ7fV0dut5/+dhkQghBbl4+dpsNm81GXn5+0mgFxjuh+ibatpd1e4Xqm/rfOYVo9Ie5+/4tcUEA4PlXqmhrT63fisX4I+WedFH7/RvAG9GJ/WjMsMLfATl97RuNDngA2CilvCvho2eBc4Hbon//mdB/hRDiCUwHQr+UslII8TLwcyFEzGB7JHDdSFxfMpPmtRGiFYCS0knU1dVSU1MTNxM4HA7y8vMJhUI0NSavL2VfsdeattvHoSd/B8Mw0HUdRVEQQsTbqeQbkYxMFOc2aUj8zd1LqIxG/Qsr54BFX6ScMJBItDDRc8BzQgjXAHY5GPgG8IkQYl2073pMIeBvQogLgB3szlXwIqaj4hbM0MLzoudtEEL8FHg/ut3NMWfC8Yy/OYzhyKAoPwNFUcnLywOImwny8vNRVTUuFCTrBDmc2GspJWW7duHz+XC53VRVVpKXn4/H47EyAlr0S5pX44QjC3ns6d0uR8WFzn5rLIwEVs4Bi75IKWFACPEJvfsISGBuX/tLKf+LWdioJ7otS6JaiMt7OdaDwIN9nS9V6bqCkJgrGtwegnYHmqaiaQqJVqZE/4BU9BUYKEII8vLzqa6qwu/34/V6cblcliBgMSDsdpWzVpSQk23n9f/UsvcUD+ecPpmsjLF1BI0VAFNVtVO7K03+EMGQgaoK0jwaDodq5S8YJ6SUMAAcH/0bm6Afif49myE4Elr0TF8rCEuhOHEEH4s9Q0a6nVOOLebIw/JxhFowWmpp6zKXjuZEahgGHR0dGLqO2+MhVN+EHmhFdK3J4XJz/V07+HhDMy6XylUX7s2yg3MRE8TEM95JKWFASrkDQAixXEo5P+Gja4UQazGTBVlY7DGklFRVVuL1enF7PNRUV+N0uSwzgcWgUFVBus9G2/bWMZ9IpZSEgkEaGhrweDy4Wjr4z8yjum23/9qX+XhDMwDt7Tq3/WYTC+ZmYE3344OUEgYSEEKIg6WUb0ffHESKRUZYjC66roOUqJpGOBwB4MNPzBVOSZGLzH6qG8YQQsSTEQkh4qGVliAwPCzntsHTVT1vGBAOG4RsTkjzkZluw27v329HVVXSfD7a29tpbW3F3cu0EAp1d3LcWdZORvbQr8EieUhVYeAC4EEhRHr0fRNw/hiOxyKJMQyDQCBAs99PUXEx/qYm2tpambZXASd/83/MmeXj5mtnDUggUBQFh2N3YaDEdjKi6zoiWlcisZ1sWM5tg6e3CIyZb7/Ahd/7nAfuWsDUyZ5+j2MYBsFgkPb2djSbDdnDpA9gt3f+3ggBk0vc0D7onG8WSUjyPRUGgJRyjZRyLqbD4Fwp5bxYASELi64oioLX60UIwc4dO2hu9mNzpvP4P8rQdcmHn/iprukY62GOOHokQlVlJcFgsFPbMKwq34mMxxwHoZDBHx/bRlt7pN9tY2YCn89HSUlJr8Ki16Ox/9yMaFvlhv/bB19aqq4nLbqSkv9JIUQ+8HOgSEp5jBBiFrBESvnAGA/NIkkRQuBwOgmHwwghsGkO3nl/dzSov7n/h2bKES0yVVlREfcMj4WBWuxmvOY4CLToRPT+/apjZgIwBefevh+KAjd/fxbBkI6iCHxeG3a7Qsgy8YwLUlIYAB4C/gzcEH2/CbMEsSUMWHQjZiZoCQTIzs6mubmZtpYafvPzOZz8zf/hcirsPbV/dWr/55E0+cMYUuKwK6R5xza9rKqqZGVnEwgE0HWd7OzspM39AD1Xwxzv7Elfia+dUoJvgN/BxO9FX2Ny+2xA52NaJp7xQaoKAzlSyr8JIa4DkFJGhBBWPk+LHomZCex2O06nE5fbQ0dHiFf/U8uyg3O48OypA3Yg7I2OukY6GgME/GF0Q+Kwqwifhj09bcwelHokQmVlJaqqYnc4qK+vx+5w4HA4kk47YBgG4VAIzWZDCBFvdxVeYimuVVXt1A6HDfyBiA+csgAAIABJREFUMI1NYdJ9Gl63htud/I+3PTGROuwq99wyh332HppAYU3uE5Pk/7X0TKsQIptobgEhxIGAf2yHZJHMaJqGqqoIIbDbFWw2ja8caueYwwtxuYa/Wo40t/D2rOXd+pduGkNVsxC43G58Ph+KotDU1JTUZoLKykrsdjs+n4+amhqyc3JIS0uLj1fXderr6lBUlaysLOrr6lBVlYzMTDZva+WqGz+mvV1HUeA7l07jyKX5uEfgf5us9LSClxLUNA/FOVZpa4vBkarCwHcw6wbsLYR4G8gFThvbIVkkO4lqZyHEiFaJ03vxyTOTWI4NqqqSkZERX10ntpONWMhm2a5ddHR04PV68Xq9nQQXIQTetDSqKitpaWlBGgaFhYW0tev87O7PaY8W+zEMuOf+LRy8ODtphIE9kaXPWsFbjCSpKgx8ChwG7IOZXvhzUjQywmJ80Otie4zt3omTf7IKAmAKTXpktxNnJNLdoTMW1mm32wmFQjidTmx2O63NOmUVncPbIhFJMDgwy+Fg7fZSyh5DNvu6v+PVSdFi/JCqE+i7UsqIlPJTKeX6aMGid8d6UBYTF6WXSb9rRleL3qmuribN56O4pIRQKERLS0unMMiYmSAcDuNLT6ejo4Omxka8boVDDuic+SYny47LNbC1jj07A/eUkk6vYGYeLaobw9it2YmNRUpJeVkZjQ0NRCIRysvKCAQCfYZsWtGcFslOSmkGhBAFQDHgEkLMZ3fRIR/gHrOBTVD6Un222zx0BHVUReD1aDidybsqHQmSxfF9tIrG+JvNgjWKYqbVtWl9ryt0XY+vnBPbMYQQlJSUIKKhbYntxG28aWn4fD7sDgdutxtFCGw2he9cNh2nYyvvrmlg78kevn/FdDLTB28Gam2LsP6zZv6wchuhkMHZp07i4EVZuN0KLS0teDxm1ElObi7VVVU0Nzdjt9u7mTQSaWuPEGgdh6GrFuOKlBIGgKOAbwIlwF0J/QHMUsQWo0hvqs/DPn+NG/+4nQ/X+7HbBBd8fQonHlU45qF2e5JkSac7GurouoYgP759I+vW+8nw2bj229NZOC8Dl3P346SrUBITAFSvh8ZwBzm5uWja7u2FEGi23d+PxHYMRVFwOp09trMz7VzzrWm0tuvYbcqQ/UFq64Jc8+NPiLl63HL3Z9x761xmz0zD39REs9+Px+vF7XYjhEBKic1u7zMMsr1dj/szjBfa2nWqajp45l8VZGfZOe6IArKz7BiGQSQSif9vY+1kNlFZmKSUMCClfBh4WAjxVSnl02M9HoueaW2L8OF6M7gjHJG89p9aDl6UPa6FgYnizNXWHuG+P3/Buuj/t6k5zI23fsqTDxzYSRjoTSj58sZVhGxDd6zsq2Kky6UN2DTQG2+8XUfXof3jXxXM2mcGRcXF7NyxA5/PR3lZGTabjfT0dGpra3E4HPGojZ5IFs3RSLF9VyuXXPNh/F79/YUKVv5mIS6HQXlZGdnZ2Uigob6ektJSSxhIAVJKGIghpXxaCHEcsC/gTOi/eexGZREjFDYNpELADf83nQMXZFBVHSYSiWAYBus+DbBtZzuHH5JLVoYdVR1nT8pxTHuHzrpPO0fx6gZU1XSQlzOQOg2SvPwCbD2s/JOByaXdrY1TJ3sQQhIIBABobGggNy8Pu92OoijYbDY0m61XQSDdZ0PPSWPm2y/E+9wujTSvlpJZ+lrbIvz58R2dhKb6hhAfb/Bz0KJMsnNyqK+rAyAnJ6eTBsgieUlJB0IhxO+BM4BvY/oNnAZMHtNBWcRxRAuaHH5ILgvneGmoq6C4UMHvb6Zs1y5mfsnLP16o4JwrPqChMTTGo7UYKFJKXE6Vgxdns3j+7jh2RYH83IEXbKqtqekxWiAZmD87nX33SYu/Ly1yccLyQoSAQHMzeXl5ZGZl0RIIEAqZ312H09nnhKdpCu68LNTCQj5pcBPKzMM1uRjP1JKU1CYJAUoPnrGxvkStj5RyTMNrLQZOqopsB0kp5wghPpZS/kQIcSfwr7EelIWJ26Vx6IHZ/PudWo5fns+kwjRqa6oBcLqz+PuLlZRVtgPwyls1fO2U0mGdL+bFrShKp7bFyBGJRIhEIjgddi4/bwotrSF+/cB23n2/ke9eNo00z8AeJZqmoWpK0k4QmRl2bvvhbBoaQ0QiktwcB1kZZnbK4pISwAzRzM7JAQb+PfN6NLwejcmlw097Pda4XRrnnzWZ9z6oj+fXyM91MHumDz0SoaG+npycHCRQX1eHy+22zAQpQKoKA+3Rv21CiCKgHigcw/FMSPpymrvuqnw6ggYet0JHWyD+mRAKDU27tQHh8PBirgzDiK/QYvHnsfZEFAj2hCOjruv4/X6a/X5ycnNpamwE4If/N4Mmf4S0NFtcGzQQ8vPzk3pyyEy395ieOlVyNowGk0pcPPK7RbzwShU5WXaWHZJLepoNXdcpKS1F0zRTk+RyWWaCFCFV/0vPCyEygNuBtZhpif80tkOaePTlNGcHvB5Je3s7TU2N5OTmEuwIEgjUceHXJvO/NU3UNQQ5aln+sMYgpaTZ76e1tZX0jAz8TU14vV6ysrP733kP4m8OUVUbZPvONvad4SMr3TYiufL7K+YT+5+EwwaGIXE4hj9pxTIZhoJBamtqzNC/0lI0TSUnu+fj9yWUTPSJdDzgcmpMKta47Jt7depXVRVVVWkOhAHwpQ2v5ofF6JGSwoCU8qfR5tNCiOcBp5Sy39oEQogHgeOBGinl7Gjfj4GLgNroZtdLKV+MfnYdcAGgA1dKKV+O9h8N/ApQgT9JKW8bqWsbTwghcDgcFBcXo9lsuFxuvGlpfPRpgIMWZXHqicVkZw3vYRFT2YbCYZoaG3E4HGSNcXW+QEuYBx7fwd+frwBMG+vPrpvFwYtzhuUsqes6oWAQu8O0z8faideq6wbVtUEe+/su/P4wZ60oZUqpG88A1fi9IaWM2/lj4WN9lbudKNEVFp1pr20k2Bgg0BpBAIZHw2ZTsPlGNs+FxciTksKAEOKUHvr8wCdSypo+dn0I+C2wskv/3VLKO7ocbxZwJmbEQhHwqhBievTje4HlQBnwvhDiWSnlhqFcy3gntlIw22CzaSxe4GDxguwenZAGi2EYhMNhwqEQQghCoRDhcDieKnYsaGvX+ccLFfH3UsLdf9jCvjPSyc4cmvAjpSQUClFZWUlWdjahYJCWlhYmTe7sN9vQFOa8q9bQ2mbGtb/5Th33/XIe+81MH/L1xMwEUkomTZ5MfX09tTU1cRu6hUWMkL+Ft/ftXrDLSruc/KSkMIC5Wl8CvBF9vxRYA0wVQtwspXykp52klG8JIaYM8BwnAU9IKYPANiHEFmBx9LMtUsovAIQQT0S3tYSBATISQkCMmJnA7fGQm5tLbU0NgebmMTUTRCKyW6x6c8vwvOfNaot2srKzaaivB6CwqKibwLPmo6a4IBDj0ad2cdP3PLidQ/u5x8wE6enpaJpmOodJOSF9Miz6ZrwlV5pIpOqvWQNmSim/KqX8KjAL02/gAODaIRzvCiHEx0KIB4UQsZipYmBXwjZl0b7e+rshhLhYCPGBEOKD2tranjaxGCYxM0FOTg6KopCTmzvmZgK3S2WvyZ29xk84sgCPe/hjCgWDu9uhUDev/J6q9Hk9Kuows96oqhp3BEtsW1gkYuUMSV1SVRgolVJWJ7yvifY1AOFBHus+YG9gHlAJ3DkyQwQp5f1SyoVSyoW5ubkjdViLLnQ2Rahj7qCWmWHnrpv344yTipkzK52rLtqbb54xGecwnPliZoKWlhYKi4riiV26CgOzZ/goKXTF3zscCt88Y/KIOBIOh4amEBs3N7NhU/Ogc0vouo6u693aFsmHy5mqU4pFqor3b0YdB5+Mvj812ucBmgZzoEShQgjxR+D56NtyIDEAviTaRx/9FmNMS2uExqYQGzYF2Huqh9xsB+n95Kk3DCOu8k5sD4ecLAeXnLsXHR06Hrc27BVTzEwwafJkFEXBbrfj8Xi6jTUr087vfjGPdZ820RyIsGRhVjxOvut1hsKS9g6dNI+G1k+hoeHQ0Bjiqhs/YttOs8xwaZGL3942b0D+E7quU11Vhd3hICszk6rKSlwuF+kZGWMu9Fl0ZyRNgBajS6oKA5cDpwCHRN8/DDwtzWXSssEcSAhRKKWsjL5dAayPtp8F/iKEuAvTgXAasBoz4+E0IcRUTCHgTOBrw7iWXjEMSaM/TGtbBKdDxeNW8YxAeNp4JRIx+O//6rjl7s/jfeecPomvn1qKp5ec9ZFIhKamJjIzM5FSxtvDmWgSi/RoQNA08Q+7cuBAx5SVaefwQ/I69em6TkdHBw6HA0VRaGtrJxRWuO03W5g9w8eJRxWS0UNs/Ujw9ur6uCAAsKuinVf/Xc0ZJ/efbEoIQUZUCAg0NyOEIDcvz/JXSFKSpWCXxeBJyZlFSimFEB8Afinlq0IIN+DFrF7YK0KIxzGdDXOEEGXATcBSIcQ8TJ+D7cAl0XN8KoT4G6ZjYAS4XEqpR49zBfAyZmjhg1LKT0f+KqG8qp1vX/cRdQ0hVAUuPmfquK/+Nxz8zRF+/aetnfoee3oXK44t6lEYkFKi6zqB5mZCoRCRaBRCRsbwvJ5Ho3LgUKivqzPLAHvTaGxswOPNZOa0NO5/ZDuN/jCXnjN1j5gTdpa3devbXtbWY56EriiKgsPhQNM0MwOiy4Wqqv3uNx7oTWOl6xJ/cwiJIMNnSyo7vRVSmrqkpHgthLgIeAr4Q7SrGHimv/2klGdJKQullDYpZYmU8gEp5TeklPtJKedIKU9M0BIgpfyZlHJvKeU+Usp/JfS/KKWcHv3sZyN9fWDGqt/1+y3UNZj2Vd2A3z+8rZuneJfrwzAMDMOITnQG5ZVtrP/MPyFqAEhkt/uj65JIpOfUt0IIbDYbObm5dLS3E4lEKCwqGpfOcaqqUlRcTCQSobGxAYfTy+dfRHjw8R1omuCl16ppad0z9QJ6Six10lFFA5rQY2YCwzDIzMykva0Nf1PTuPcbiGmsdF3v1A60hHntPzVc+v11XHLNWl54tTKe4MfCYjik6lPvcswwv/8BSCk3CyHy+t4ltQiFDLbtaO3UJ6Vpfy3Ic/a4TzgcpqK8nILCQqSE6qpK0tLzuef+rTQ2hfj97fPJzR54QZlUw+VUWX5oLi+9sTvVxL77pPXp1GQYBo0NDaiqimEY1NfVkZObO+7s0bqu09HeHg8JzMnJID0D9tnby4++uw9lFe2IPuy94bCOvzlCZU0H2Vl20jw20rwDe3wU5jm58yf78adHt2MYkvPOmkxJkav/HdltJtA0DU3T4kWBxrOZIJbgqamx0cybEQphGAY+n4/q2iA33/lZfNtf/nYzk4rdzJttrcYthkeqCgNBKWUotrIQQmiYav5xg8ejccgB2Tzzr7iiAqdD6bNMrKqquFwuKspNf0a7w0V1bYjtO1vpCBr844UKLjh7Cuo4dfLxuDUuv2Bvpkzy8M779cye4eOMk0t7tYXHzASKolBQWEgkEqGutjZpi+gMl4aGBjIzM/H5fJRXVNDR3s53LnLjb9xGuluhqqKW6sqevxvhsEFDUwgpoa7GLLzjdqkDdhjzueDqC0whVlFq2bVz4KG2/aVgHo/Eqv21tpoLAlXT2Lx5M4GWMD+9xtdp247WnWzYUEmq3xan00lJSUnSlrce76SqMPBvIcT1gEsIsRz4FvDcGI9pRHE6VM7/2hQ6OnTefKeOogIXP7hyOum+3v9liqLgS0+PP0Bsdi9P/7WMjqBZDGhneRuRiIFqH1+r3kQy0+2ctaKEE48qxOVUsdl6X0HGzARFRUUoqoqiKPH2eENV1U4ZA4PBIGk+H5mZmfH7IITocaKNRAx2VbRjdyUUlRKw92RPn/fXYuhIKQmHw6ZgKiVKNLdDoCVCRVVHp23zcx1kZqR2DQApJfX19ZSVlTF16tSxHs6EJFWFgR9gZiH8BNPh70XGYaGirAw737lsGpedtxeKInqspJZIOBymqrISt9uNBNpa6vjWeVPYUd7BZ5sDnHxMEY5xLAjEUFUFX9rAJqlEdfNIqZ6T1aM60fQRiURMQQDzunsTBGJ0qy4pwRinGpSxJqYVkFLGV8nhsOkX4HapuFxqPNOf06EM2FyTzAghyM7OxkrONnak3LdICKECK6WUXwf+ONbj2dO4XRruXsLiuqKqKllZWXi9XgwJLS0tNDXrKArcdM0M9tnbCu8ZDZLdozrmlCaEQFUUM5GPEL166SuKIM2r4W/e7WCoaWLcmpvGmtj/wG63I4RAShlva5qguMCJYUgkoCpij+aIGE0mgvknmUk5YUBKqQshJgsh7FLK8e8iPwhUVSXN50NRFFQgPd2Hour84oezyfDZkvbHlhiXn8hw4/ItekdRlN2mgahmoPdtBbnZDhRFEGiN4LAr5Oc4kyqkbbyR+P/o+r8ZL5O/RXKRcsJAlC+At4UQzwJxl3sp5V1jN6TkoKvaO92X/A+OZI3LH6/ENACxV+w705dAoGkKudkOsjPtCGGaYkZiHPvttx+RSISpU6fyyCOPDCrHw49//GO8Xi/XXHNNt89WrlzJL3/5y+hqWuPrX/96j9uNNFOmTCEtLQ0wNTCnnHIKN954I05nzxFABx10EO+8886Aj7906VIqo1kYAa6//npOO+00YLdzZbIK/RbJTfLPFD2zFTNtsAKkJbwsLCwGQOKkMdAJRImqpEdCEABwuVysW7eO9evXk5WVxb333jsix/3Xv/7FPffcw6pVq/jkk0947733SE/vXMLZiEQItrahB0OdXkakc66FxMiSWNuIRLrtl7jvG2+8YZ73nXfYunkLF194UbftItFtByMIxHjsscdYt24dH374ISedeCK6rpulvEMhq3aDxZBJSWFASvmTnl5jPa5kwzCMHtvJQKi+ibbtZbRtL0NGrIfXRGfJkiWUl+8u8XH77bezaNEi5syZw0033RTv/9nPfsb06dM55JBD+Pzzz3s6FLfeeit33HEHRUVFADgcDi666CLAXFlfffXVLD7gAG6/8SY+XfUGyw75MnNmz+bwLx/Kjm3bAXjyySeZPXs28+bN49BDD0VKySeffMLixYtZsP/+zJk9m3UvvkJg/ab4S+qdf2Mel5tffOtqnnnmGXa+/T7/eugxDjlwCSedfDKzZs0CwOs1/XjefPNNDj30UI477jj22WcfLr300gH9ZjWbja1btzJz5kwuuPBC5s6dS1lZGatWrWLJkiUsWLCA0047jZYW0wz30ksvMWPGDBYsWMCVV17J8ccfD5haljvuuCN+3NmzZ7N9u3kvHn30URYvXsy8efO45JJL4sKG1+vlhhtuYO7cuRx44IFUV5tlXqqrq1mxYgVz585l7ty5vPPOO/zoRz/innvuiR//hhtu4Fe/+lW/12cxeqSkMCCEeE4I8WyX1yNCiKuEED3r4yYYwbrG+GSb+ArVD6qO0x4jZhp4Y9oRdJRXjfVwxpxE4SjxFaxvHPcrPV3Xee211zjxxBMBWLVqFZs3b2b16tWsW7eONWvW8NZbb7FmzRqeeOIJ1q1bx4svvsj777/f4/HWr1/P/vvv3+v5QqEQ/3vnXa44+1y+f/utnHX8ibz9xN857ejjuPq73wHg5ptv5qWXXmL16tU89dRT6LrO7++7j8uv+Dar313NG4/8laK87pkVu+LzeplcXMzWXTsA+Pizjdx9x51s2rSp27arV6/mN7/5DRs2bGDr1q38/e9/7/GYX//615k3bx7z58+nvt4sfLFlyxYuvfRS1q9fj8fj4ZZbbuHVV19l7dq1LFy4kLvuuouOjg4uuuginnvuOdasWUNVVf+/u40bN/LEE0/w5r//wwcfrEVRFB577DEAWltbOfDAA/noo4849NBD+eMfTX/uK6+8ksMOO4yPPvqItWvXsu+++3L++eezcuVKwFyYPPHEE5x99tn9nt9i9Ehln4Fc4PHo+zMw6xJMx4ww+MYYjStp0Fta+fc+y7v1W3b45KQ3v4mlm16lIdhOXn7+uMuK2N7ezrx58ygvL2fmzJksX25+X1etWsWqVauYP38+YEbFbN68mUAgwIoVK3C73QBx4WGwnHHGGfH2+x9/xCO33232H3c8P/6duVo9+OCDOe+88zj11FM54fjj0SMRDlyyhJ/feitlO3Zw9Oz57D1p8oDOl2hqWLDv7F7j6BcvXsxee+0FwFlnncV///tfTj311G7bPfbYYyxcuNAsax0M4vf7mTx5MosWLsQwDN599102bNjAwQcfDJjCz5IlS/jss8+YOnUq06ZNA+Dss8/m/vvv73Psq1a9yvvvr2H/BYtAgB4JkpdnJnu12+1xzcL+++/PK6+8AsDrr78en/hVVSU9PZ309HSys7P58MMPqa6uZv78+WRnZw/o/lmMDqkqDBwkpVyU8P45IcT7UspFQog9UjTIYs+ht3Vw4Kvmw8NZXIDQzElvrOPyR5VeQvZ1XUfV+k4hnarRGDGfgba2No466ijuvfderrzySqSUXHfddVxyySWdtk9UM/fFvvvuy5o1azj88MN7/Nzj8fR7jN///ve89957PP/88yw56CDefecdzjzzTBYuPICXXnie06/6Fndf/yMOXXRAn8cJtLays6KCL02azPpNm3C7ek/D3NVvYyB+HDa7HU3T8Hg82KLhhwDLly/n8ccf77TtunXrej2OpmmdzBIdHR3ouqQ5EOakk7/Gd675cXRMsNcU8/7FolHAnPQjkb5rW1x44YU89NBDVFVVcf755/d7bRajS0qaCQCvEGJS7E20HZs5rHDDFOP9Ey/mva+cw3tfOQehqbinlOCeUpLUE9lIYhgGhuzdPpyTk9OnViDR5JL46klASEbcbje//vWvufPOO4lEIhx11FE8+OCDcTt3WVkZNTU1HHrooTzzzDO0t7cTCAR47rmek45ed911fO9734urwUOhEH/6U885yRbPmcfTL78EwJP/eoFDoqvprVu3csABB/DDH/6QvLw8qqqr2bp1K1/60t5ccfkVHHvYMj7d3F3Vn0hLSwvX3HYLxy09nAxfep/bgmkm2LZtG4Zh8Ne//pVDDjmkz+1jkSCxCTnWPvDAA3n77bfZsmULYKrzN23axIwZM9i+fTtbt5qVPROFhSlTprB27VoA1q5dy7Zt25BSsnDRobz88jPU15vJgBobG/hi6/Y+x3XEEUdw3333AaYw6/f7AVixYgUvvfQS77//PkcddVS/98NidElVzcB3gf8KIbYCApgKfEsI4QEeHtORWVgMEkVR+sx+WFVZSX5BwbgzEyQyf/585syZw+OPP87ZZ5/Np59+ypIlSwBzJf/oo4+yYMECzjjjDObOnUteXh6LFi3q8VjHHnss1dXVfOUrX4mH23VdiQpVIW32dO790/1ccPHF/O7Jv5CTk8ODDzwAwPe+9z02b96MlJLDDz+cOXPmcvvtv+Thhx/BbrdRkJ/Pj355G2lZWZ2OCbBs2bJ4BdGTTjiRG6+/HqfTiau+Ei3NE9+uK4sWLeKKK65gy5YtLFu2jBUrVgzpXubm5vLQQw9x1llnEQwGAbjllluYPn06999/P8cddxxut5svf/nLBAJm1fevfvWrrFy5kn333ZcDDjiA6dOnI4Rgv/1mcdXVP+TC807GkAaaZuMPv7+XffbZq9fz/+pXv+Liiy/mgQceQFVV7rvvPpYsWYLdbmfZsmVkZGSM6+9yqiJStSiLEMIBzIi+/VxK2dHX9mPNwoUL5QcffDBq52vbXtZr7L57SkkPe4wue0q1naoq87ZtZbwxvSefgddoT3OSmZnZ6wN0KP/rjRs3MnPmzOENeg8hpSQcCpkZ9lQVPRJB1bReMySOFrohzcx/EhQxssl/3nzzTe644w6ef/75ETvmSJwzHDbrUoRCBooC+XlOvB5tSNknDcNgwYIFPPnkk3G/ha709L0UQqyRUi4c9AktBkVKagaEEKd06dpbCOEHPpFS1vS0z0QjWfPjx9hTKXtTMYGRYRgIj5Mvb1yFppmllAUCoQi0NA/ODN+EWklJXUdFmDW7IzoaAnQDCQit50dWbFETS98ba48kqjLxUjDbbAqTil0Y0vQXUBUx4EqViWzYsIHjjz+eFStW9CoIWIwtKSkMYBYpWgK8jmkmWAqsAaYKIW6WUj4yhmPbYzQ0hmhpjeBwKLhdKmne3kt9Jnt+fIvdKIqCPTsTe7a5+o+FEk4kASARqRsE1ne3x6fNnt7jEytWitowDGw2W6d2qmTjW7p0KUuXLk3Kc46EBmTWrFl88cUXwz6OxZ4jVYUBDZgppawGEELkAyuBA4C3gHEnDFTVdHD5D9ZRXWvaAE8/sZhzz5hMui+1an/ruh6f5BLbE53E+zDYe5LsWqDRQIkWXAqFQiAlmi21fhcWFmNNqgoDpTFBIEpNtK9BCBEeq0HtKdraI/xh5ba4IADwt2fLOfGowpQSBiKRCI0NDWRGna5iba0X1a/FwJjoWqBEb3pD16GLl72FhUX/pGpo4ZtCiOeFEOcKIc4F/hnt8wC9ptgTQjwohKgRQqxP6MsSQrwihNgc/ZsZ7RdCiF8LIbYIIT4WQixI2Ofc6Pabo+ffowSDBtt2tHbrr6hOap/JbkgpaW1tpaqyksrKStra2khVB1aL5CFuJtB1lKhWJRwOW98tC4tBkKpLssuBU4BYIO4HQL6UshVY1sd+DwG/xTQpxPgB8JqU8jYhxA+i768FjgGmRV8HAPcBBwghsoCbgIWYqWLWCCGelVI2jtC1dSPNq7H04Fy2bN8tEGia4EtT+k+ekkxomkZBQQEVFRUAFJeUYBthda6lMp+YKIqCsNlQFAUppSUIWFgMkpQUBqSUUgjxBXAgcBqwDXh6APu9JYSY0qX7JEwHRDBzFLyJKQycBKyU5lPlPSFEhhCiMLrtK1LKBgAhxCvA0exOjTziaJpUs/+SAAAXdklEQVTCSccU4g+Eeem1anKy7Xz3smkpZSIA00egrq4uHlNfV1tLfkHBiJoJRkplHptQYqrmnsrDpmoYY7LQ0dHBoYceSjAYJBKJcOqpp/KTn/yE7Tt3cNZl59NQX8+CBQt4+ME/Y7fbe43P76n6olXK18JicKSUMCCEmA6cFX3VAX/FzJXQlzagP/KllJXRdhUQqz5SDOxK2K4s2tdb/x4lM93OJedM5exTJyEEZGXY9/QpR5zYaq24pAQpJTXV1Um7gotEIlRWVFBQUABCUFVZSUFhIXb77vueimGMQ2XVm9X8YeU2auqC5OU4uOScqRy5tP9CPX3hcDh4/fXX8Xq9hMNhDjnkEI455hjuuusuvvOd73DmmWdy6aWX8tCjj3DZZZf1eazEid8SAiwsBk+q+Qx8BhwOHC+lPERK+RtgxEq6RbUAIzY7CSEuFkJ8IIT4oLa2dtjHczpUsjPtKSkIgGkmKCoqwmazYbPZ4u1kRAiBZrNRXl5OeVkZmqah9pElcDyz6s1qfvHbTVTXBpESqmuD/OK3m1j1ZnX/O/eBECJewjccDhMOhxFC8Prrr8cL9Jx77rk888wzw74GCwuLvkm1p9spQCXwhhDij0KIIzDzDAyH6qj6n+jfWNKicqA0YbuSaF9v/d2QUt4vpVwopVyYm5s7zGGmPkKIuINXYjsZUVWVrKysuLkgMysrqce7J/nDym0Eg51rJwSDBn9YuW3Yx9Z1nXnz5pGXl8fy5cvZe++9ycjIiJuOSkpKKC/v8edlYWExgqSUMCClfEZKeSZmGuI3gKuBPCHEfUKII4d42GeBWERALDIh1n9ONKrgQMAfNSe8DBwphMiMRh4cGe2zGEdEIhGqKitxOBw4nU6qqqoIh8dd1OqAqKkLDqp/MKiqyrp16ygrK2P16tV89tlnwz6mhYXF4Ekpn4EY0aiBvwB/iU7Ip2E6/a3qaz8hxOOYDoA5QogyzKiA24C/CSEuAHYAp0c3fxE4FtgCtAHnRc/dIIT4KfB+dLubY86EFuMHIQQ+n4/09HQk0Oz3T1gzQV6Oo1OOi8T+kSIjI4Nly5bx7rvv0tTURCQSQdM0ysrKKC7e4y45FhYTnpQUBhKJhvTdH331t+1ZvXzUzQss6j9weS/HeRB4cBDDtEgxNE0jIzMzHvmQ2I5vM0HCGC85Zyq/+O2mTqYCh0PhknOmDuu4tbW12Gw2MjIyaG9v55VXXuHaa69l2bJlPPXUU5x55pk8/PDDnHTSScO9BAsLi35IeWFgomOFt+05Eif/nkoMT5TMf7GogZGOJqisrOTcc8+N1xI4/fTTOf7445k1axZnnnkmN954I/Pnz+eCCy4YicuwsLDoA0sYSHEmUnibxdhx5NL8YU/+XZkzZw4ffvhht/699tqL1atX97u/rksiukFHh4HDoWDTBGovuQiAXsNYrVBECwtLGLCwsEhBDEMSaAlTVbPblyEn205mhr3HMsNSSgzDIBKJYLPZMAwDXdc75Y2wsJjITEyPKIsJTWwi6Nq2SB10Q3aLZqhvCGEYva/+Y8WLwqEQeiSCNkFDRS0sesLSDFhMKAzDIBQK0djQQF5+PuFwmMaGBnLz8sZd9cS+/EnGA13n/YGkDFMUBd0wHSHFBI0OsbDoifH19LOw6IfYCjEYDFJRXk4kEsHt8YxLu3Ff/iSpjiIEaV6NQCAS73O7VEQv83vMTKBHIghFBSThcNgyE1hYRLGEgRRnooS3jRRCiHjYYEN9PQC5ubk9RgtMRGJOdkKITu1kQ1UF+TkOnHaFljYdt0slM92G1osDoZSgG6CoNlradFxOFVWBSMTAZrPMBRYWljCQ4kyU8LaRItFM4HA6CYdCVFZWkp+fP+7MBIMltnoGU52e2E5GgUDTFLIy7WSkS4QiUPoYo5SSmtogqirwN0dQFLM0uMetWcKAhQWWA6HFBCNmJvCmpVFQUEBRcbFZHjcJJ7uxQEpJJFo0KBIO7/Gqkk1NTZx66qnMmDGDmTNn8u6779LQ0MDy5cuZNm0ay5cvp7Gxsdf9hTDDCfsSBABUVSHdZ8PfbJoVDAOaWyK4nAMTBIxIBD0Y6vYyIpH+d7awSAEsYcCiXyKRSDwvf2I7FRFCYLPZyMrKQlXVTu2JjjmxqghFQRoGQlHi96WyooLKigoMw4i3R0JQuOqqqzj66KP57LPP+Oijj5g5cya33XYbRxxxBJs3b+aII47gtttuG/Z5wPQpKCpw4nKpeL0aU0rdqNrAhECpGwTWb+r2krrR/84WFimASNZ68uONhQsXyg8++GCshzFodF2ntqaGUChEfn4+NTU1qJpGfn6+NYEmOX1FE2ytqWTmzJmd+uOx+OFwXCDQbDZqqqvp6OgAOvsSOJ1OCouKhjy+/2/v3qOjrNMDjn+fuYRcyU1ygeHqIoWT1qBo3NatKJbipetuQemKFZHi8ezaxZ5uS6rn2O72tI1HT7eUpZ7Cusqe3bpSREDX2rWsulYLqFAVN6IWEIkhCZGEiEiSmad/vO+EyYVLLpOZed/nc07OvO9vZvL+3vwy7/vM79re3k51dTX79+/vVTMzY8YMXnrpJSorK2lsbGTu3Lns27dvyMfpKxqNgciA8xGc8T2nOunY+36/9IKqiwiOGb1OiF6fOKm+vr7f/6WIvKmqc1KUJd/wdyOpOadgMMgF48bxSUMDDQ0NBINBKseNs0AgA5y1P0lz44DJqkowFCIYDBKNRnvdfOLLOcPI3HwOHDjAuHHjWLZsGW+99RaXXnopq1evpqmpicrKSgAqKipoamoCnKr6gb6JSzBAYBD9Pc42S2G6U3VGQYTDYYCeba8EAyZ1LBgwg+bVuiS/r/MQbybou11eUcGhjz7qFRiICOUVFcM6Xnd3N7t372bNmjXU1NSwcuXKfk0CItJzo4tX1fdVUHWRb65k8T4vXZ2dzn6adu40mccnHyEzVNFolKMtLQBMiERobmqipaXFk80EXlznIRZT2tq7UJw283N1mEu8scS3jzQ29queVlWajhwZVjNBJBIhEolQU1MDwKJFi6irq6O8vJzGxsaeZoKysrIhH8OLgsEgMXfWTK99Bk3qWDBgzireTADOsr7xi79dhNLfyS+ivP1uOw8/8gGtxzpZcE05K26bQnHh0Nq449/SR6qfUUVFBRMnTmTfvn3MmDGD7du3M2vWLGbNmsWGDRuora1NmyWMJRhwaiAGSB9N8WaCeI1AfK0Fqx0ww2XBgDmnxPH3gx2Lf+pUlOajp9jyH40U5Ae54dpKSkuyCAyi85YZmvbjXfzF997BnS6Abc83Un7BGJYsnDio31NRWcmRRqePQXlFBU1HjvSkD9eaNWtYsmQJnZ2dTJs2jccee6xnOeNHH32UyZMns3HjxmEfZ7gCoVBaXC3jzTfxYDwajVogYEZEGvx7Gy9rOPIFy1a+STTqfJvc9MwnPL7mUi4oGZPinHnf+//X0RMIxL38P0f56oLB3cRFpFdzwJmaBoYye2F1dTUDjbLZvj3zp0xOhp7hn+7fNXHbmOGwYCBDZGLnts7OKD/ddKgnEABoO97F63uOcd284XU+S4a+N85MFxmf2y9t+rT8QU20c7699+MjDeLV1onbI3WzSpeq+lQbqF+HMcNlwUCG8GLntnTzuYxh5qs/75VWWpyVses8lJZkcesfTuSJpz9GFSZOyGH5rVPIHnN+wcBgeu/HawNUlc54T/cRvlGlS1W9MV5kHy2TNFlZQW67eRLb/7uF7m6ndqCoMMxls4tTnLP+OrtirHmymRdfPdor/c5vTObOWzMz2CosCHP7LZNY9Afj6exScnOClBQlb4Kc+CJQ3e4MlWGb5tmYjGHBgEtEDgIdQBToVtU5IlICPAlMAQ4Ct6jqMXGucKuB64HPgTtUdXcq8p3uxpdn85O1l/HsC40U5IWYf3V5Um5I0ajyxako2WOCBIODvwGFQ8Jls4v7BQPVVZkZCMTl54XIz0v+xzyxmUACgV6T41hAYEz6s2Cgt6tVNfFuUAtsV9U6Eal191cB1wHT3Z8a4BH30fQxZkyQyPgc7l46LWnHONbeyfO/bOL1PceouaSY+VeXD3r4nIjwlSsuYOfuY7z82lGCAfja9eOZNjkvSbn2lngzQSAQIBQKoapE3bHw6UpVT09olLBtjB9ZMHB2NwFz3e0NwEs4wcBNwI/V6TK9Q0SKRKRSVQee43WYYrFY0lePy1Qdn3Xx0A/e51c7WgHYtecY77x3nFX3XERBfnhQv6u4MItV91zEt1dciCDk5QbJy7WPyPmKL3Xc9ycdxWIxot3dhNzOjvHtdM2vMclmV7rTFPiFiCjwr6q6DihPuMEfAcrd7QnAxwnvPeym9QoGROQu4C6ASZMmDTljgUCAUEE+X6n/BfHJgAOBQE+6n538IsorO1t7pb382lFWrvgSQ/nTjC0IM7ZgcEGEVw2l9/5ge7qvXr2a9evXo6qsWLGCe++9l08//ZTFixdz8OBBpkyZwsaNGykuHrl+JvHAOqZKV2cnep55NcbLLBg47UpVbRCRMuAFEXkv8UlVVTdQOG9uQLEOnFULh5O5UPFYTkiMtrY2ACZNigx6AiAvEhHCIaGz6/SfNysrgF3ahy/ee//5kkuIdpzo93ywII8Fnw69q8zevXtZv349u3btIisriwULFnDjjTeybt065s2bR21tLXV1ddTV1fHggw8O51R6id/4e3V2tFoB43P+GqB7Fqra4D42A08DlwNNIlIJ4D42uy9vABKncYu4aUkRi8U4efIkbW1tFBYVEc7KouHw4bRvkx0N+Xkhbr+5d63LHYsnk5dvgdJIGSgQOFv6+aqvr6empobc3FxCoRBXXXUVmzdvZuvWrSxduhSApUuXsmXLlmEdZyA9nR1FQISu7m5rijO+ZldMQETygICqdrjb84HvAduApUCd+7jVfcs24B4R+RlOx8H2ZPUXAKdJIDs7m7KyMnJycyksLOSLkyeTdbiMkpMd5Os3TODLl5eyt/44vzlzLBVl2eSc51h6kzpVVVXcf//9tLa2kpOTw3PPPcecOXPOuITxSEmcHTFxgiRj/MyCAUc58LRbTRgC/k1VnxeR14GNIrIc+Ai4xX39czjDCj/EGVq4LNkZDIVC5OblEQg4lTmJ235XODZM4dgwMy4sSHVWPMEZJgjOl+bkVZ3PnDmTVatWMX/+fPLy8qiuru63AFYyOiHGf19i04A1Exi/s2AAUNX9wMUDpLcC/ab9c0cRfGsUstZL4s3fAgEzGH2ns451dxM91dlvauHu7hgdJ7o5cSJKXl6QgiTPUbB8+XKWL18OwH333UckEhmVJYxtSl9jerNgwBgf6DuddeUza+nolF5TC0ejStPRU3R0OFXmn53o5mRBcvulNDc3U1ZWxqFDh9i8eTM7duzgwIEDabeEsTFeZ8GAMQaAWEx7AoG44591E8zPI/rZwKMJhmvhwoW0trYSDodZu3YtRUVF1NbWpt0SxsZ4nQUDxhiH07GexE71AsxreYNwKDnNUq+88kq/tNLSUlvC2JhRZg3PxhgAggGhpLj3NM4lxVkEA9ambozXWc2AMQaAQEAoLgqTnxvk85NRcnOChLMCBCwYMMbzLBgwxgdCBflc/cHpqveDHcfInz6939TCoWCAUE6AnBy7NJjRZZM+pZZ94o3xgazSIrJKTy/HnHOgi7bPOigtLU1hroxxqCqtra1kZ2enOiu+ZcGAMT4UiUQ4fPgwLS0tqc6KMQBkZ2cTiURSnQ3fsmDAGB8Kh8NMnTo11dkwxqQJG01gjDHG+JwFA8YYY4zPWTBgjDHG+JzYcI7RISItOCsfDsYFwNEkZCed+fGcwZ/n7cdzBn+e93DOebKqjhvJzJj+LBhIYyLyhqrOSXU+RpMfzxn8ed5+PGfw53n78ZwzjTUTGGOMMT5nwYAxxhjjcxYMpLd1qc5ACvjxnMGf5+3HcwZ/nrcfzzmjWJ8BY4wxxuesZsAYY4zxOQsGjDHGGJ+zYCANicgCEdknIh+KSG2q85MsIjJRRF4UkV+LyLsistJNLxGRF0TkA/exONV5HWkiEhSRPSLyrLs/VUR2umX+pIhkpTqPI01EikRkk4i8JyL1IvJlr5e1iPyZ+7+9V0SeEJFsL5a1iPxIRJpFZG9C2oBlK45/ds//bRG5JHU5N3EWDKQZEQkCa4HrgFnAN0RkVmpzlTTdwJ+r6izgCuBb7rnWAttVdTqw3d33mpVAfcL+g8D3VfVLwDFgeUpylVyrgedV9TeAi3HO37NlLSITgG8Dc1S1CggCf4Q3y/pxYEGftDOV7XXAdPfnLuCRUcqjOQsLBtLP5cCHqrpfVTuBnwE3pThPSaGqjaq6293uwLk5TMA53w3uyzYAX0tNDpNDRCLADcAP3X0BrgE2uS/x4jkXAr8LPAqgqp2q2obHyxpnZdgcEQkBuUAjHixrVf0V8Gmf5DOV7U3Aj9WxAygSkcrRyak5EwsG0s8E4OOE/cNumqeJyBRgNrATKFfVRvepI0B5irKVLP8E/CUQc/dLgTZV7Xb3vVjmU4EW4DG3eeSHIpKHh8taVRuAh4FDOEFAO/Am3i/ruDOVrS+vcenOggGTciKSDzwF3KuqxxOfU2fsq2fGv4rIjUCzqr6Z6ryMshBwCfCIqs4GTtCnScCDZV2M8y14KjAeyKN/VboveK1svciCgfTTAExM2I+4aZ4kImGcQOCnqrrZTW6KVxu6j82pyl8S/A7wVRE5iNMEdA1OW3qRW5UM3izzw8BhVd3p7m/CCQ68XNbXAgdUtUVVu4DNOOXv9bKOO1PZ+uoalyksGEg/rwPT3R7HWTgdjralOE9J4baVPwrUq+o/Jjy1DVjqbi8Fto523pJFVf9KVSOqOgWnbH+pqkuAF4FF7ss8dc4AqnoE+FhEZrhJ84Bf4+GyxmkeuEJEct3/9fg5e7qsE5ypbLcBt7ujCq4A2hOaE0yK2AyEaUhErsdpVw4CP1LVv0txlpJCRK4EXgHe4XT7+X04/QY2ApNwln2+RVX7dk7KeCIyF/iOqt4oItNwagpKgD3Abap6KpX5G2kiUo3TaTIL2A8sw/lC4tmyFpHvAotxRs7sAf4Ep33cU2UtIk8Ac3GWKm4C/hrYwgBl6wZGP8BpMvkcWKaqb6Qi3+Y0CwaMMcYYn7NmAmOMMcbnLBgwxhhjfM6CAWOMMcbnLBgwxhhjfM6CAWOMMcbnLBgwJoO4K/99090eLyKbzvWeYRyr2h3maozxOAsGjMksRcA3AVT1E1VddI7XD0c1YMGAMT5g8wwYk0FEJL6K5T7gA2CmqlaJyB04q8Ll4SwN+zDO5D5/DJwCrncnfLkQZ4nscTgTvqxQ1fdE5GaciWKiOAvqXAt8COTgTBX7D8CzwBqgCggDf6OqW91jfx0oxJlQ5yeq+t0k/ymMMSModO6XGGPSSC1QparV7kqPzyY8V4Wz8mM2zo18larOFpHvA7fjzGq5DrhbVT8QkRrgX3DWR3gA+H1VbRCRIlXtFJEHgDmqeg+AiPw9zvTJd4pIEbBLRP7LPfbl7vE/B14XkZ/brHLGZA4LBozxjhdVtQPoEJF24Bk3/R3gt9zVIX8b+HdnRlgAxriPrwKPi8hGnAV1BjIfZ5Gl77j72ThTzQK8oKqtACKyGbgSsGDAmAxhwYAx3pE4v30sYT+G81kPAG2qWt33jap6t1tTcAPwpohcOsDvF2Chqu7rlei8r297o7U/GpNBrAOhMZmlAygYyhtV9ThwwO0fgLtq3MXu9oWqulNVHwBacJaY7Xus/wT+1F1oBhGZnfDc74lIiYjk4PRdeHUoeTTGpIYFA8ZkELcq/lUR2Qs8NIRfsQRYLiJvAe/idEYEeEhE3nF/72vAWzhL7c4Skf8VkcXA3+J0HHxbRN519+N2AU8BbwNPWX8BYzKLjSYwxgyLO5qgp6OhMSbzWM2AMcYY43NWM2CMMcb4nNUMGGOMMT5nwYAxxhjjcxYMGGOMMT5nwYAxxhjjcxYMGGOMMT73/5ZOeWlesb16AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "param_plot(median_df,'timestep', 'AggregatedAgentDemand',swept)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/Simulation_param/images/agentDistribution.png b/Simulation_param/images/agentDistribution.png new file mode 100644 index 0000000000000000000000000000000000000000..d58f733e22d790888ca96bfe8f2055b9c35dd40d GIT binary patch literal 67977 zcmeEuXH-*N*KHIL5d;A#N>e%_gd);G1q7vcsX-`{(|=j);SBID4P9SD96b1enDe?Q8)~dQ10Du<{0N@t@02~qD@>>A_ z+=T&vHA?_MItc(^bV{kwkp%$Gm1?W&E1#a8o}8R)ZfpLG&F=79^XMNb+xn|EpP7c?{{~1;}+M)divqD zbx`-WM%sFfB^ArVlXlNv;uhA{re>!*`?nGEeef3Iei-Q)G7~s$MH{p@bz0(Nh2kBNzimYz}1>P^+;M#$IVxZ?Vs19Oi4 zkr^2om6eq;GBQR=bTLjhGkv-Gz6wnj2yfSl<69(4!g=lVnFKj6bMmt*Ys)@&H}Xqx zjL7o(-kDG_oZ7xp*u0RJR1)A4Xe}-$$Vf{HwPtBd5Kz2J1w&-f(qGMlM;JVRvRo>L zYmgA*y)1BxJkmd?wEr^)FKcpCEG5-tA4}#tcX@nb?JX@WRa8`hgM$+j6McPso12>% z7#O6aq>PM=7#SHaUAjaYGVT3XuMw{Mr0mI?|AYG`P%v$LnBrhZT6gc0p{ z&Pq*12@pccs!IHZ+)35g6#x+8Jo|g@ZMK33@l7(f#~R9H3#6pf5`vbs5=2Mx13XrG zp#OGq<0KeL*FMv}eS?-X;PI@sy+8lGaDFM?m^%|6%^H<+X1vL7@se|M-M<|@J>v~L z-5s$@wIBTMVI(HtGgCaan_^jPSP(C}ix_aU$;lxu_5c6;zp=o5qhKm_`2{?dH{CGh z6u;47(+f3}KM9DKNc#P%l4T}ocz(R`s@!YXfi23QV5E5zs);4IP9F6&*PqI^wb^z5 zewigioU?2SZ5wc4Ri1xU8A-pLZeSatRF>tT*ZI#ig{N%*VN_%o!!~ZYiSebP=R^GR z<6Q-zo^Sdb0ND9bqd*Gq`Q{LF4$$GhMz{vp`&y%X5pa__|5y*uALN!RNKBipsTBar z7@MvOfG>qff^-0u!7w8LAdW%6;+)_7w^uaF`juS(z;l;}ZZ?#2B!0qzCN0JzSHu8- ziSAIs#*g36gqaw4vyThi5EKx8AY^v8r$C_XS~E045m``HGqdaY=fnLVw#mr(pxRPZUfH0Bv2W0BmQ zJYW7;tEC0r{91kDw%6`?mYCIA=3bni3-lZz)BB<(Ap`=0RtL*})_kdU8S*k8gDBK{ zH2O4F3W1ni#;lvK6CyK?#%a55p+F_z#uvzM{}^e3+~pU=yPRY->&b1P*NqsMfo@VXVu5ftA@{~tHl|lv^_Sx+H-OfSQ zxnv!i`q{`!ZaDx=iK+$i9HfdnSm~!b7uIQf)Qh$ zA^sV9;6)4gTj$k`yI-Jc`#%@gK3-cCvZ(Vp%!q>m1timK-<`vD3tb4p6n8i-wo8I-7izsBdQ{Nuknm`BpB`J?I)D-c@eApBC7aNM$D;eie(Sk?7d+ zrp}gHBEk-Ay+`JDYdHYg>dU`%6=s^@il}xx`X~eX_*3|ZF{MDD`Q=Wah}1dHs@^=N zc(DuxncNy9QUEIpo#0%`nujMI;lYs(InJiLFci6G5t`(3GWZaKB;i4T?!46W#X4A3 zbG4tK_P^y`>mpIgO+N>;62a7VxL^F<&IQ>uK2CivFhDnj{DD+iMsCS?tKI(POaacA znVdB(XTt8Z7B5*ZkHO2FGSSWlA4oOGHNfTrzWBc$;ONbFNNP_L!!R?o zz;3pGnHn|su`sI^1g5+}?tyC=pE!UjIoIv6@(qWkFcy#I>qan7(DwgioyS)KNV?b5- zXRuah6RFe#3u70>eS62ZCmDKI+=t*7Hp?k`8TllD9mVS(Yq70W%x;^k(ors;9}4hl z8t4qx!h#lf-?w1e_+BxHQf{mcTi*w{d6#$>IABMk9_`Cf=onImT^_Wzu^9sf!&R$Y znomA2CP;MUN?t!0!p&@uVg>x+eQh~#VSHaJf{2d*xs^22_PAJ z{R+%-e&@^n34V6VT#5(h-_(~LW6>W#)|SCseOXs z`#P5gGn1(hB*s;9GrkMPuI7rrBgrh(cI89{J0X4Qu_ZudXq@a_Q||T)I!@6W`UA<2 z46j?2Ij2TA1}~z0@x_K|!NVs?W*DF8@3`gH_4Fal6cU_Z#yi=SzFwP#NFUPP1-}5a z>CL$usOf2(`dD_XHM~7k0OFq@(IM z7$rdDno4g#mP+ZN{R{hJ2;PdQ<%4)rm`Z?FjJN%~tm}%t*#V4no65T}@w#FxMit!} z*if9s$Ldu+BOXQva+FMGST{gW%Fk9n>YZek@;K-S*|TjT;25qaxJFNdY;!>iD)~NT ztebSY_i1SKOaZ2)jPZS?1}+Ce+iJbjIvUXsj)`0|oOWn-4BLCDnL5R@VNq&wEtP3(B5!}UdIv%2!5w$IsADnUwd19o&#WJs ziids8-p*WIuCabh7~8zR=hm*I_;u*Y&))E8ij=0+&KbSg;8EA$j7+z%lu}4D_R_?Q z)fQFs#+OjtlmK*{<#uT+=1%e!KNXz5cR#^xsG_}kwedQl0&3?ouO>)^<^EHodHv|vmyYe@_)ti<^L23;gybE2-kb$DftwDv$T^RjIaP_Q z4yx6wt@L90=1x}8oO>j}yBjFRHR@ECw2x^$q0cn&w7{lcEov}EXJdk9Lv1bi7h+l# zbALe;jB16iGuBglAVqH1x_%03E;y-sx0d{F=+?wk^(TFNcl~fx-NKB^Y~(Zod+RT_)WnIk?gEYx9(<}5RHJDzS$@YR$W3bmOH{ajCRgo)3Hx8* z@um4x^G`@kN$XL~TQT+7`=3*XtmS^a09oy8RcswAO_ylCr^5o1*h6jK*^*UJ!W@uly<^}mRVnutG%=y|`Wl9XdG({-PT;r` zubPXH5W@m=V*kVtQpbkNX}B#{g6{Ru+*l(z#AuvareE7Q?OvlQ##XIjI*LvxrOL>qu!~rJHq*Dof#TTHMp|_H~Q%NGix>9hQ+3e!z;Nd${a5p^NA5 z!y~?vLM_|R^M;y%C>^efJltd`10}j-#)_tzBniM&WZ>p|=wFmNyM*Ys52#w@dy`g{ zx8XG$3KKoEjy*Q;4YgWLixMHZY051FDH(9DMGU9}Rjf|^TsNtCs23K{no5**vpy&vp<-0Ss9 zuMr^3Q`V)cy#o{40<)7mx97*o+ z43<|m5rMOr=gFb`Wv2YylJkjMnnEfqYZUK57I9cK&jW$=>AQ-dtPUwLYsnU6p}t>r z{A*z6)3gtd#1F|DhdoWb3%%U3Q80eQ#J}t2LEo zO>?VCV?18VWQp%CZttq+kN}#ViLet4h(Mr9Ee@mjOI#F%tfQSQx@+mJ5y{mQ5%P4i zt<-b%N6H5mnVoT=j_T!)Kss)puQB9EZxLNpSE|}CP8wW_WNtM zp!a8Y7iMg|p7lqN`P0HqdunvR9yZxtwge!;R*v}rUO9TbFgdV+QK*GexTA5Y2p!WDZ zi{(SkIQhhdn{Q=&yX0T2>X4sWt;8f|E0V)5fi6-sX=4U;0 ztT`r_V`q${sE!?DuE?5vw%!@tv^~)!d%e^pzUTQ@#IK&Wovf--L-=o^@PClUU>s*hlEel%7c-0RNdOELSqacxlzaAD4%2%UcBuf^${0dfQCI}HV(T@j=TgP`3c01>dvD1b~aUJ zdf6CHCTK?LZv$3l=>|A_i)x;+fxp_Zwo;w@%KZ9-9BSdEB-s~e6jovu9XV&U!k-Ol z(>Rtyzxb~FI#C38_YIISi2Y~;e%wWM}A~v2}SPfHWzvDNwqH&p`H>x#dq*w+5tdisE4Y1@nwJs zZUO&kC_j1eC*yTB|A)73ilVxzZ+W!bQ({AGq+_h9df6uEt&twzB3SC`X`JH-ilrZo zBvEQ)iF~N8+DOR#xd7-bEA&tB$BT}^k#FzMN+1J1k-RCw6s3d#04E-&D-Ke4b z>XGy#*u}`V%6ttI1+GJJC=x#n_e>(*>kK~hWezN{8Vq3X{dLQqj)3>0v|6+j8TOnw zDgJ?*q*%U&jNa`%x)-5}v*4)Xrjpqs z1aV~Qzjo!sWw!=aX({zu+D3g_|C&Na;P%{wkt;xe?waJMh8SbTU{;7;mPzr0 zbb*CO?$FDCBW(nS)_YUb__OM_>p^0^UUE#HkRh+EC%A#_TE`~#ID5uvVa6vwQEwpX z@vTHi9KfWqpUDW#<;(lAx!EtF)NO}?$_?e zxE&wc2Z3nEkWXqh{e|M&zxF!C`4?5xrxb)y$Pa|@5YIxi%2!7}S|0p2u&`&7mRl_Z zEuv;|B_8|rCMxQ~e>js1&ZSjdoDJ_@$`1V~`>&4hQJ;er{E`L45EE=z-hJEM=55Wjf&X^EWcyrI0QG*!RVApovlkwmi zqMhJMki0&nh+aeuto%!sR)FiA^-{CMdG?xfyQt%8>}4gEy@misIGx4MqbuvX6)WbR zPmsnqA^nHsr$KvRDdw8(Zu!AcSQ7SEhHOeuhT&%2K;tuU~QBzt)Jvj`Kw8bBhMW#5>b`7y<)oe;YQFH zKEiD1p0H`ovHmvsX_%Ye&Zn@?`fHQ!r&IM;y&mv|ogIgpGY)?}p-eC>Rwlw!_o|y{ zok2O<(`&!Tt@3DLvC`AG4s6xbc6%=bp3wO^875IQYFnLH{z~t9I6d{;QScES^KzE# zYuEK%^$W%BLZAGz3C0ZdsbmlHW2;Wck<}$GE?JCS4!<6|S~gLq@7U@9t17>`YKYxL zO_8~@!Vl+~1_Q$fN4}(H_1ILo*{|*t^|Rn47L5d;91mYlR3``{SNiF-W-pM+Uo&EG zn1=EB1Z?ioI}6?uMv;-NIjW-lcV9oH-0A@{s<<^#7uPJ|H+xi4GZuDHGVEPl?-(rw z%Vpti+lH?mW?MF~>!bV&d(%>q<#TJaNCAQ@47+4>+u_R$f*>#hux4r0=y*OL9$S3j zb|D=P#D;fwRDrQrO(zf91dfeye>;Yk`B-s4ws6z2C}(}Qw>%7d{I#?)yCIT@(J1Re z1a{;)ei}%(WkCBp3~4*v#0I! z`8rqzmQvSj3HK%X!)|3R$Z6g_!Dj&LAyxTE2FW0qE_Mu(fD{v4oR(<a10Y``fn zFIXGy*{COy1M~`C%ZP>#cJndEVf z+1j8ua#!Zu(&&4pk8V^(N1YEok8yjza1Co|jE+bcpWKGWY)5NU3!T|+lx6MDDF{tC z?B|fvMeu=pHCQ{`LDxgHVAqt_tlCI(30D7{6?^5uUO{ZZ)*|>|v^6`MVn@K^(ZM{r ztR68n`w={pUu|O}J0;&^wD8$|xie4xUrw>Xiz9sLtc|tA2VPc+M_WuCi_YJ(@M@F>Wh&`TgOnElfi8 zbrUG$DBDyYytvyM*tH`<3X^sIY}VrrNJhqBF2+ zjy#{LD7Wh8Oqbq)z;7xNTN?YkYiryGpl=6ZsW>oq85UqeQoSO7kV^jv{bV8UAoYFt zU?X;BKid;6x-j~2wq?r`*;Q{x=vAm;jmIEdfb*lI=qF9A!C2V)s*RrRc{9_u@On?3 zEXXpa%WlQnEs91TWnU`J3%!1Oo~}YI)8M5gQgq+k%jsWxrwzwP>p5<>SWEeyehxtU z-pMAZfT=snzZe5{IEH~2>CE`9wEmza{DErc45T^5*i9&hpRhSRHQPJ2S`7k*Gohld z#$)PJwmwz*(p_$UmsQ3je;;K0?wDI~`Z=zbBI1|(VDE+vjOFd4$~%i5xB+M2LksE7 z4+e>Kl&94!*c3)DfjUQYf0H+LNavfe45TrqSM{`wi}U!sH5b z>e7i1b=Ys`G_%X)y8#-AN(QIv>Pw}|RZPyyMXAdS5aX6`xB^V(&;$m3!-m;E}o|eX`O0*Mh~Slq|4sv zbjyC6Q()+Qo+4W&oO@_>nC>; zs#VTgzLUWCV=h(Pj9qeM@}OMZSKgYHw4QU;I2{{wN$v7;Vv*Sk7Ia%nr9&=%-rKd5 zVhL*|sxdcp5PVwEhnBQ;8>cfCVdV7-3eTGo3u><9Hkkat@@lNGQVJ7NTwLXUSlb-? zc6qhc^{=bJSXLg1^3Q>=^w?w98Z7=roT1%;^D*@=4&Z|eNPw_^8F`uY|E&U$~ zUX>)Phc3?>wBj%%p;AX;b9fi|y<}VfdtF#9|H%lYLSp3Mz;>$FVJsc~LdOuRvIRp1 z({G_Ec#Xj`!z|X}YrW^Ky9~ZPpCZg!{M8sWc1Mc~p=NQ-6LpRxzpfO|DR$mFAUKdg zZ?^Z^Cf3tpFauNY%L=G3jMD5O?<}}#tr!JC)TxxK%BosS&fU6{LSW0BW{f0pIUQ(*nTex-Atw~j zu25;0%>VFwJ#$S>?~}6Ry*74t)pmEC;ZLleq1y0Gb52nyaGDd z{)q8Js8@4fcHjyoc24xd9JD20T>otBi1)>+#%`#XkTSl5Vk)J$UTpe*Sq;K;*HUNXv> zl6AOz1rg>t?cLjuYz0NTiZ#MwKK%pQ9vP2kQ%iNPu^N==(zb|a4KHV0t=9Vo4Dp4k z?d%vUxLxEaSv(ByQDpEv~)9c6_>e!~o%!?mvKBle=5mfKzqinwe|+zWXRKBrr7 zI5VY-*TIlt{xMP4YmyRyVqTB*i0)PV__2bZ{nW1g{F7dZSd3g3<1KQVOX+=Gmr~Z; zZB#;Wfc{-z3?lLv~5z5XYl%0pc3@p({H`g>DAH7_C#s^)QgoK=Egq$;RG3!3`Kg$BmRp&jW+9l zjm)a1;4-{6LVl~a&LNPfb14QYt_64bJe!u69&@<{RvW0;J#r8J-C1xcLWxqSi#dya zA)!XNJFMh$)pJ&b@{tvE*!}~Qu9KTSHW%=PdPGnZ0Py?|MG62cJou+IApt~_{bt4H z`g3`!M;HLwUShda1zWmA)i0g3$S^A15OIfiQP0Sma<7f(-_IZ{Xn5(90Yd2P?Ua>1 zrdBe)H0umy+3z*xM2R@|Owc;b{v*WE2+r~Uk$h8VP9~&&+w03t@tghd>m!@QO--Z_ zwDwp2O4YZJB!IRC@~u)*K=2yRb%3AjKP}4tU6O9I;nkP;MO2%?H5oN3qyRbnUZVn= zBn>ivwhK`nH+V@@sT<9<*VO(jnr$o0-!(wmR$ zs|U)d<4vsT1 z5_VB)286H8Mt%7X3B;A({FUFmz71#3rC3x^+jxU|(XEg?vs`%|lEeI|e-8Ic;EBf= zYc29d^j3Wwd@*tnJawE8ddNm3_5YgmKFP6zXK&-EW`-Mjd_vkO+`aAQe8GQ)6#QH) zU~sU6L0#o^y@dRA(7z_XRxq53I^H~1T<}H_D#W5e2VRhWgF?ID1rp@F{Gep+IO!vv z%tP5XH~Wb63c5eW+BG*x{mg~LO50C++;9ySrW_~dvD9KM-d&2`EO6sV-PC3)d3?bi zyL_TQG5!VDCljt){BE8e`vO11+FohvUelEi8jX$&WpLJXuO*tAM=V38K=aJ4zUllV z!&L5cU|+T&OMDJoSn#6I5eA zoVkrRLm6-K=jcFTgx{g*clnBKosUdA1ZZbkYyZvHvsqF?&fCPjl(?v&5geDFg3KZ5 zX#3tj@ixx20XgMerZe}1m6%`uW(VzOBcC~Uoh|5bC5ZOXx=#i9poOddW&U@cjo(9s zyDwKfo)+gFSsm4fckliCW6M1gWrLLqx7|A{kK)%D{)yiYDfAdLz0TM9@p_})km7&G zNHSlN;)~Aj*8ebQ3h6VG2KYHQm`OLZ{5(%+eosP}nQ0zWhAcIc0X~orzw-2cJMT-* zDNh94fHnZ}E1iwoIXHyoH0c%1X=cr{e-aP;%*B~LOn2EG0 zUke#e+Z%A)IbgFF*Z`alc$7VO-M*oc(>GUk{!%_O z(dU0p#0X3G=%~l8+Gu{B&_8LS(?f9lO`m=-uahXuBks8DZX0fxz}U*a9qHD{Z#4poY0iN3MUoL+dGP?1yRAx-)i*looPhEG3ZEH;++wK z8vMR5ygVMcC!d{XE?lzdV?~3~QwFKypYQ$PmDs1U`z331!sGvx!?X1Ir|dOc7)R&x zHB}~M;}AY0xt3p`p#i6XYaYZivWpBSZ0Hdav)|k&ap_E8Q>E-}mDJw9^^X|8&;O}( zeof^{Z8L_~FxZ2N)}c!M^neFc;SAeZYe8qXd8z!T#N8k0Zncw$BgNO(M~L3B_g*Q; zY=_Gh{4Nd2bfqKK*H!`Z#X@cU;A=d1R%d|wNba*Q#JB`BFeT|AzMkisfpv_TUOsbx z1j!30jui$7u79jNSKex3^k!+mc_YldcrstB<^I3ZO4?OE<&_gA6>1{??PGyMmY3jn z{Bi$v-Cfs9r(fsJ?DgYN%)KnTee5 z!{709&xn|rMMhF@`#m(MsegWQ-@Oj)*)J3Mz1MY4E1dq}%fCLvdsNzd1|gL5*R=zI zN%1)8zEG%oS%~ZJ6e0SF24U=OLgZGzsIp$+8T=Wt>L#79rNXYF6#n+fpJ=vGfm6jgGc>2mNNh`@^48gQZztVrO!llb`a=FRkB9+rmz!$rRNX z5aXb>KpJ^)@n&fllLWj#dU9$j%zvO}K<8gGJ}htXsmPD5SDUt-()D?Ar1P)0JuJeC z?kB8Sq9@l_durD72BZEB4zV<+{|Wa9sUYanGeh%bP(o|9sF16R7?nUSh={G`a9^dkP)jZq zJ3yG~TQgbP)E7~_OdukJIT2GX)M6vV3TSw0Da2}-a)qy%(OD*4`b4I&`0`x7TlYiA zNG^BUzu@Fr?mf$Uc<&%*OD5_PGCYFNdY@o>uK8P@yvWagWBiL`*NJ0UJ@R;&Uacx2AeI%t$~{}oC;c_ zqf`60sD%w}Kr=U4o8R&oeu_tzBN(hVlBqpfpVqSOqa8jk9x+FO5jwckdNQn6;>ET` zMVqHHmmua>!MR1o$4Gr2t2q|wf||!?4s(5kl^FhoOkd9(-5;Gncyl3bYipkc?_UAi zLBU;4cGF-w0?D$?)N48zt~HFfi_Lzwa%r_TGCENK5iySon%Plg5{-Guj zY!kz9>BCB2Z{FGIXIizi+M!^nsBCY0cB!FxQ|m*S14HJQKcG&Qj8oxVek7$rr(d6e zSnYz=FxGU0wDHokp*^-glV5+)oMGzO91ven(j8aMdnkp9*pu%@ox9^#j%ziWkS^z8 zpO(>*0sU<*063-sQquK?H8I-n=W zk!rh3P6Trq6cSwEb#I6VuVGI|kQ(49$rmL0xaNLMX=boKai%M5Kmw)UX1j;3Ipx-< zcO83z!(LgnK*(%GlxrII&HsFY(~IZKeW@>THYn+Cbs&6>oyo|(S%L1Q@GBX(>sWdG z96oX%IS0MRO6Jf6wR0@DPdu0X7&kYHAVw#h%I{L}8&zJ`Lzm9RGo`>Q?I(VaEiRrr zRvCpV+{IU%IQvfZZoj4_+#_cP_*vxCnVS2kU&VyG}iDXl7H+0V=Rm_3s}K*izz{H;2m(Q!0R{N2ybe(R$hEN!G_PeN#V{? zvqIjVT4Fqq?vq2rtI_EvhPAc^qs9Aq&BzjTbo?$Z(%`c-&pzS`FADwk_$u{ega(d` z;Bq3$ga4l?B!4L1dn8o5)Igv8Qk(IMq5)^eRP!w{cEZ*Jr*4ErkKr`b8{OD@z}lQQ zD8g7-55^KQ$v9fuBT(VPuyR3=Mx3)e9vaH9{o#+#oR!j$H4AqR$vm~8Y*~?uZ}#au z9a0YT)5Y!C_k6ec?*4$)R)V3;zBoCsMJmF3Mzg3XEhONy}vk>vmmYQ3!iG4_?NhzJ4C&Q@pul2%Kl1 z_O7a3*N8prPcwF%|IR$%PmZ*>Ua&w8T`OIkpvzA_!|q2%;hc)uyQ5(W8g6Tgmku?o zqhCJgQ*TnyscZ5+)EdNxUn7TF1B(zU9uKj%_rc(bN-*2L&+thqnGBY06RNnZaN!SP zWXhqob8q@pH8o>|5a+$$)c$sxex?f=HJYds-%#asV=6;8_v+l2GFDom1V$|3!FzJE zYfscA9S$X!Ir{H)w_h9gUQWR1vA=#F05{t!Xip-)Hq$k_p+U)6$6>D!wPi1@W`QWp z_t>c{*k3mLllXMOe(~els3=^-En45)yW|S{F+8d`0WJuakuiE##KNP3mOVf9?&@(v z8gLnwB*|+$pkb16AF8~+8lL?Jd*;bB_};1(v>$t%jwyO}D$0f5Q<0WLp&1ElB8Ep? z5Hz(8WDcDZinRKe>fck;J~uOI6@=-L!iMJub!q)-75c}$E0Gw#h8^?$$>YsP-3(4nAyQ8>zwCU)8tw967U$`Y_*V+6QEpC6pj#-; z_{AhYWFD?^LY=Vz?T8TBJ;`*VR?}2ZsFuZd34N40n|0_pYp#=aQMq9_hi^|~cq74N z2Qphx(yMeZxebMq59?-0SwJSHIaQ+ibwUI8iUaKlikKg2>8U4r=6?GopC$7ec%rf_ zdxp0=(RN4T_J~Q)X{UD2Y?RSF$);~nMV(neAn%x6i_P?tBEtd|IiBzb08hmKkbN~87WB}4JU9Vv9YvElN$O&J45Df!vHWc2XUpdLJ${)LhK^_h)sKKX>Me?LSjCN z+wPLfd;9m~aQY+VF}9D9eLdy<0k;r!91eC(Q8oU~*`l+moTKDVV}#Oz)N%VEipIH5 z$tq5tt%xyBKg17Y*Ns$I&OI`X0O}b?bP`+PTQ9K7JiQK(?hk6XqL8x5@<$8SuCBw@ z=dl1vK_OISX4=q7;ep&>M_|KfeJWKvMqnVg1tbCS}`TBJ-oKo!i5i_>A9@sta76sA1$FTrQZ}qg(CpT zgd5+dw>h-1XFCMqq!UpTe*kuL$?;U;oDwIGO_+>5;?5f4^?Cv&c&dEl1-N4>bPXe4!z18tJ!*c9ct zKPaw~YwoBToMC@m?9r1W)ufEAW`@L2#T0-p3{zF{||LikIYKe?s5`RlLTnY|KMK5NdoYx#E@~ZN)HpeW`={b zy=P-{;wY!6!^&;TqU3odkLOL`(rP2}dA4eAtmBF*LU`tiY+L=db4UOP?aC)j{oYEy zg|}+;MEMbv@AjOLOulQqtqMyd%;4p6j*V75_nEsJ zwsvqCR&+yY{@)6DiaqHcz4juEX~M?;&j(~!in?8(akZ&U=X(;tJB|=SlD>< zdyei)A?=DN+B7xaf9ZSZB9b+ zXzKLFwUPia2e~~uth}FWzJ3NR%vQSYym+M7=~S z9=9f%+>2;P)cq_)B&Vc)6OEs`L$(T~Q)`$DTV6nb&lf&oQf*$VMy&+|j|bBeg|Wv# z0UcA1`N+F>yqly z>g(_dvto(vRiRQ|2B8WBl zc&G4BgQwZec8bky_6Ulfbdh1&Mcln{{guGZ#?JTg0MKeIhLglW&a2&-I7RGM=m9nh zm)Bj--PCMxUP{G`ai%lJw%-~2Nim;rOdTFhy;QO0P+$|vmjy@R{~sLnKiJBqEtxD+{qR0%`OWEAy>eB zN%~h-i|ubZ7Z*{jPloN=iNpFvv;L&4!@aN~%Zw|F+K%B4^)Cr`nSRWx{G2Kmu5ZI6 zZ^hm-9i@dIazjqPR#jr&$kT>djWn@G$agDb2j}me%rxIM;?DmY%bJJ`nTL*JR|3u# z)jmLk<`5P0+SshXS}88b@=IgrJJ*|r?VxbC6e$Wsd})#z8L6^H zl&yRKbOmFOGk6XVH`Dz~YtZ9ef$jeOqm^8T`{mZ|!u^IR>~9A=xuY%T#T*8;qv!2D zJz7X`E`3px$gm}CTs}*#nvTf?-c!XTl@v?S8KNkb#J{brx>fA6H=Uk+It?GN_VSEk z`EFP+V$FX9Hynyg{pv8Ofe|5BcuOiw&z7lKkz*g3;en1EJGkERVvEF_qje;zK|XL{gFz)>2i<5&}BSN(kuT}H>th*mBI?dF?CtwWd+l0 zgMvkRT4G|6c_akvn*T0Z&LBBBn>HQqgb>B=kweAHsH@d;uTN6O<}%b_)EerfkvdEm zaHrEVFQu{&UW4CUsp}&mYmmJHs5dZW-l?jQ7^{zU_E$tX__>cd?ktUxb3=d^YDYx2 zVkfc%1U$I{zXhO2+TNb)l+)+k4<_0w+BLJtTZ3q;;%Wt#A&3A$TR8Odqa#tl-I?ht zf#gs{h@E@-xqKIx$;o?D`*Q$pu-A95y@I=}UlO|_9Hy?TAwdW4;d(FE@maP};IQ|3wiBUmLUaEmN5X^7_rO2U-d{ zc4H<+2Kb#;Ru>qKjVv`pcN7abyz{&Hnz7!;5YJot({P)$v-28{(Gb&`rtNO*iK>1v_oPhBMhJ-t^ITn|eW zq)|pziMjhvkp3z)>@(x_nAN+KogQ;zXKEnmyky;M_D{E_;Fj^_=^n#F3)h@7>0tV~^SlO3 z0g+`i(^dSZs?&Fcg;AA|sLFe$Vj1yY#?J-5zM&Wylw4V>VE7Tk9-gb|>G*@=FKU31 z*|oH2W=@4o<+J%FsjklaD7*d?pSgVC%faDm!8tBM4t*p3<{A<^_fW-T6<2AI*Rd+A z(}ZQbKao7bLH)x1a;)w6Ej<4*9n|PS1DtsuoWuWz)nUq@n08cJ>aBshJz`sCps5_( zvlrC$>Ow?~93I2ioeoM_ASId>+_#;HOTb@WD8i)=W35`K@j7+p+x1D$$>AKJZpq}L zAnNSLp}k6`?DBV#jdI8`fvr%k(VEWOvhPmQuPFdbWUtX><=%~6mfg~EXm7)M`@(Is zIFNK|7gMD(`S^}S3c5|!SPXt{V>|#!u|cpzP%iJhXohCdqh-P(<)+cFndjsn`3Hkz z*ZiqTV_OQL%m+~oc&pb7*|?W9g#LC}U8{<2vF8xL{a>kRYUQ)>c5nknlV7z{c0d&> z0i!ov`|gK{@#RNHPjV-|dxNKoMosp;dc1K2lllR>dnN?$9mB+_9(w1#H*$TDT9Z;G zcDxB%((pt4Ok<%kmHebi%@W%x!6kFTe3iAfQlrSQxU$gGd1E<$pS5EeZ4b2YnWgZ5 z5d5B;1IEnkD}G^DdT%C#jv%+4Rjm#+kaTS=(EB65h#1vLpM3x@TED%cOtkPYqJLDC zgkads_(J-BW~7N9{y4y+-onyf!s}V?TDWGKi}>J|izbg@kk3R0C^4V;B{AGS(Va~2 zo>95vp~rS(r5g>O`QNzFoIaa{(boH%F~gdy@`BSG%+42Khn+An;rxK3&aN(d^6+2ohPLZ%deI9v8hF6D^Z;rA z6UEu^!{ZUr85>(>gBGB5122lGjJ_vI;`ep;3$YWEg(0B5tWTydC~;g6B3F5)?5aNL zehE)$k1Py<7I%!;gVFJ#vqnje$pFF^HCc3t+N7$g(h`Ixt&D@vmf3WkkQpI*5wAEj zvbJITdyf+-l6rDpN<>-nCXG%Ivd0#*REHx2Q(VS@sk=QfU1AzJiy=gsHtr8R=?x)# zI23)S+fhJ?EPM0a!B$o%L)QlTvl^{w%uwUP`hVczR5>a|A$r-y`q`1@Uxy06$v?}} z_}}HnXeHklxP+kVEfJe3B!r4`BI`LM9?(am$4!2VXZLu$5feIF<)ocA`$QpKCSy0+ zkiSHb=%*w&g!o9VEnjeC3b9!N++XeK7JW}0r}+H^j-gh!eY~^a26XK61^5Sg>3jc5 zUaCAuQOHz@_y_2ZRFyU)LjK1^jH^O7kuLv_w)1>PsJU`usu@Q{Ek=e9COZHSU~78u z@BU@RxjsU#!-`(?B)^{ajDEoa#Wu3qN~C@)a-sj*UY(t1=r!#i$AaN2-Yn2#Li8a4 zW}a@%v_EJ#Yx*xyd^6@@C&vERUM8Ix8)UqAuqC&Q+7xA6QP*Jo`*95-#+dF-Z0{5M zM5TSPH4Y_HN8EY5!%lZcp@fZ+?#*M%y7Y z3_rrX!RwK`UmR9M4-GWL~hUvMTo3>R-1FQw=n;A7@kNr zC;u~CZW$eRX)u$|Kd)>w!Y`tyr^vo*bZO}kW^BF4nF&@2aUpb{&2#_&*Hi1ICFIPO z>r6_ou}IxM7#g-Bq;f9POJPN~$OuKFzRp0F?0(vKVNT+IFJV$^%{BD8I6|vVBF`a? z*hDo)BP@qL;cLccDwZyUCP9}wJe4($k^2qsk$gsMlg{M~uN;x4WmEer>W8TwYEkP* zvp)cr_=`8mp=GMLSk0Eravg=&XX1Nk$ALgk+fJ2l>R%M9=;6ds@MFJF8!%J!p|k1W(2@fHqNzjPd`Eq*Jx5PM0B&?;&OW0&92^ZM!^$x z&7k~zgE&m^4}}G)9W|Uet-L5L8fvuvKpo(!G4;3W`Z-!AC#tUXG%WyLD2*~zmga&y zzbPNFo=;n7VVfWetAD-4P6ePT>YApDT&5JZ6= z<2t@^%p8fBnLknZU4clNk*{rWbiUaYqxr2o(I!O|W(AwP2rO)TvSv$_#m<}TX3iQF zsOS#$c;lPtXJmA~MWgvwVh1-lQab_^W?MGAwH`O6znW7V*73PY_wY}X60~t~F#wb| z)jW)NBw1*fkoul2b4v3Ek4=$1+Adq1o~oiiBN;7XyQR06rubygs`)$Ja9|Mbb=OR5 z{vpyK#Bp4~VVwGa8=tUCxxS<3bTAx=Gj5jhi#+LwZ*VqB7^^+e>^7N_@+;@3B?Q>+ z%^Z3hAa0)fTf0k`<7i>E)A=3w@4l@CL3xX)Zge=RF&FE9>`pL#?GDj;=C&5!@W4w8 z=)0zbO*pn&ib~$Orw0pw-&XLyR?$<$%+K*m`{L!EY>HwXLsGF=iiQBM1TI1kSHgv)R04^lJv7LfhfrEFd8^* zcYSL4{U2Az5Fvg*p(_xw>#-PH*cp9%GF#xp>8sy_-Q*EM6;nxye5L#OuqpldoNWpH z2$=}~pUm{E!=YcJ7FD>$(1cc5e9G&i^7?3M$tdX00R``qWfocH^> zt`l@~<9LAMl_k}a#HqJyorfci{~8giKSY)CNe3SvMc-Wg>au(Tl3~*@@xsj8u{H!d zt??f`*O4O+)83PIe%#~y2nwzk$r8g%>8z;E#{1Tml{4)7-_x41@}Knbw}dcgV^h(_a; zw?9+)u6c^DPy|JKQg@YYrAgjWvtwR&3$v$#=SfXzEyehQ@6kEjV4AA-<79*l_&NatbS+K; z-{UmFINLR3h4H+;({#T{^zzVcw@%e_XNtH(|GUf4xD%*)c}=%nXHXS+tGZlE4amS@+I?dk)n48= zuzZVt{3o44U3aSs4ahSi7D0n#-QD>ZD7rpgd+IsiW-LzP7P>l^Z_;%lRxjJEU@lDt z=NcLadU=eC`NHCloxa)9KNtgq96epb)AQ-*Lckwi z3~s|6c_A()@f37Xyly?~dFjb1*1m-NjTH3KifilYJQ2y!*6QMcS6FXrSKa3)mP0y! z28x2^+@Yd&-vcr7eVX|8?(md4>%c5}7-!=7v%Gs#Omli3Z-F+~CBTto&U^ue?dmy zWrCt)bvx#47;QN~9F#6!w@~;}v6tyNO=>&aNzQ-yJrEU%Y8zE1->`IUz<51rQnml6 zrmf*6HOFE5p*GBW99N2=ZvT(#u`CbdlHw&h(;!P2iVr;bYp5XU;*DtF^K5xeL_rt{ zd{6c8yFYj{z|;atomf;#z?1)k#Se_P5;9>|7%(dzF0)HMYDmxfqPB({KfPWzZu>3} zBN{Av3$6A(ZG!5oq~L}C<7;Y5);>QUm%6gz+21^b3ShtaP}amA^;o;@3?d3|=5A z2@-R2hg1bG#>>V3q@Ih#0`!2hIt*+nSQ8%Ih*P@-KX|jh4|uvJNx!8lvpLb9!Ymxv zmG`UPY@@qls}wn-#!pj3@I19(wg#LNOS}`c`DWISHg?qmmrGN-VNsJ`Q*NR4 z3OxPI=3=l}dE7X*7B&m;HpKwDut@j*s&rN*3wQlcB}b2NOt$)jbOs&UtSLINjBHuxil&n;R@)3yo{hfHhN&9J4*;~C6R0|1y{ zhrg)`4sqJ>JmVx}&ifsAufdCp-~VB;K>9`8!x~n@cacl4TD~)KHGZln0i=gg4v~UD z(zGPd6D2pZA>dwJ^@(w;;asRpfUN2(^w*R-O-OIBMf zE9R&lIeSV#*7x45j8H#yZYN$qeN`M_sp%zjBj5~Eo(b!qVEYAF;b)l4mABm0ca~p$ z?;isU&qrxWS9wp!*!Z1Ej!;?EHs*T<6;A62Py@PAhMb6d&nJtne&{_(b7$l6mlJgE zSw^GMf-`z)*hr^Z+)jSy)a@z*{nBfW0}pPxc`v>D$%HwwS3ng51NvMBWxj%Yxg*_z zQB}@$%I7P5-2rQC2b_RZ#gYKwI5$7oVqf|#az)~(GJQhzb}ilV`X`f$#_!hD6!uy{ zGec6?$6{cj(mypRsD-E>BTp1lU9#}`TdFTPTL;n7wd*MX)wOa@Hq!aQYXa5{7&bDm z_@`t0VVKt`DFr8Rz^6KbI6D&+KnLHiviIL((=Okg)|UKO=`JL!dYmw9hB^s6+!uTG(+e)PCWxP{z&9&`hq4OM zIGwTYwD~PdhD69g3=8^VK;_I(0#M@M7YTjbc19`cu3|BCdvI@EqTP$asXav=#q~JB zzIq!P8JCN zxwFX7Hd1v63ZD2}{*G^NyVt^YQac#HYlYGgsxFQSE?s7iT@&Ran68dkoMQ=n6u6Cq zT@7TVz*iJnJEz=gxuEJZb_ufOp%T1RrRbBJS#_0T?jW_adw1?+iKvbC)CEvoJzEsg z2V3m(H?A22@8!(zP8%v*FOmf-QwC|^c|7y$o|ei+`)Ru?JbM<~A^|n_(eI#+Kc1hU zw##Dddz8k5))Ux7+W`UVP4fFVaj3qfvrL~iDP8Y9(Q=W%_i8iK+LjFQ4W(2ZFPb+N zUFkJwcxA}U;&koo_mdm1_q~cN{4a`K19QaU{d_31;Vk}i+Y8NSv_?+tzqN8&5+^2i z@2h2wN&@)prDLf>^PZ&%HYwfvrU9HL?^3#*Dk_TOUz@Bi7E?Jl<7%c121l9=LaaWk zO|(`cjWL{$Gp&mZm`dpma`IooG1Y2A&kHMfganM6^D#S~TrM`LEJpbwDcyS|lrs_j zi%pUlBGA2p9EUN{EBhbBr<$@Jzd^FieRBO`n#R5;OVr{ipv@D*_i}lNC+VYWk{_+9;~sMxVVkv(gwOxF6~5^ZfniS7Nd2vq9@B zXM3n8UH!F(Da%8x-#^1iGwVJ=BP|o7Zx;=5pO0jO?lLC>aYYh<(^r}$Voabwsq7ewVHllC@>ERPWZ!TLqE00RQ$p=aPLjWztW5e^+u-wfpSd!7^-kbkP(7mMNRP zIK8{N^a1`h5mbJN*nbkz;w5$96ce<#L90aCG2(>0a& z5E)mP-`2qZq_ygzU@hjoKSlD!5~|AiRU$}+c~LY_Bv_@KEBNt&Hwfnn`>IUYpJ)F> z+{`$9H=VA;szTtDu9MXyvHa-agDQ@5IFO>xerqY*Fz0zBiL|ziq0f@5aFWQDAvY|O zN#Q13EszPtmXwhq3$kVh7x*{rK$(HD?%bn08PDR!Olzl{PIGQkDpq&P#=aMpn#q6* z-e0wD0jDDUg>Q`K_w-tCnj7{YVLqYt#Lcqv_>`p2&Z0h~0WHci^6r`K!TIQy18zzp z-X}g-GW88^*rIxW*mbUF)8~v@Txx7){Rite5cc^7ejA5jt>9`vp%l*+q>KjmtAv+DBG4(H3EZP~&3Z*v#M5 z6Ww`J=QVOKgq-+Q#&v72w=@TYw<7O$N+;UbMm(xSR~PJ!cyYB@Bby^3oWMQUmPg!}K?YRv{R4tNaojkejN8Mk( zE`GHGtRaA$v!ezWK&3y&^bk%ENS9F52s4wqI+{ ztXxlH)vik$0Lz|x$qeyxdqKpXl^%*}1Hp-wFFD>c#lJVRAMjhHodbVTEO0oS2hU(LhZIn2l*%E)R>}7WQ#HGuow==|gbM`V zeH077&&D7nu4dn$KqE%9 zPPg*l-a`&ZdALWi5X(&W!Y}HHdz$uQvcfsStbss}{%Vp$3_Qu_xRzymJ1)=7HA#k* z!rX|T7e6E|04U05IXr9wL;CV>4L+2XrCddwsW!6~9g+b6lgPX(^Cwi%c`33Iw(nYiYGMZ*!Xf4~tX$i9>b!r>A|uB z7vcZ#?w3FG*{hE?gStxqY;Y{pv+IuMmtCjo%v`aKaX{Rx(gw5_oM z*>NcS?2c8`G&1M5APbz-aRnBdsvxp2(cyk%GQ-Na+QQV7H&;GsHu^(->f8k;y|ncTtK=*lreri-1FN~ zNR6G&$I>Ldmr;g!Ryt{;SFN&oDt`ec=TB916ELiGBi&pJF#@aez$%u+~pRGmrWvWilPIorqCmWD~R{~aU%5*RtLu8Xb=&IRgd|y}K z#rycyL=Gij6>Lnk80@+Rvz6W_3&^5l)V?{#cM3qI`kdwPp7RJJXIYp6BuHx?{4q`Xeny+ z!setx*-oAguNf=dq^N9VCbHU4toH<-U#UWt_W;S%) z^@6@VwqWI2xH@Ha%Fj({m-={Lld>!*SGQ?);VerT|F4OEyJj48-I>B<&rA$HaT4Hp z1P^!Nt-}wE`N~Neuo>m;l;1YUh;;Ohzo0QQ1N+`69O-n z62nsLU6qd_Bj{17bQA!+iRvhq|ITjpHG!w(}qWt|!1j1peD0DfxzNC*Q`BW{pg5(peA~gKtX+EX!X1 zCFJu^X(Ge)=T!GY_nTqK%B>Ku%tsO{90Rw|jGMbwC!jM?gcEJQ_Kk%&X6~+U7A{e@cN`#bC>9Y88qM zgJ)c}w*3^hvc!Rw%@*|aIqiV3XLoRC#(eCRrSRwSnUUA>$1lmcI&6Gev61O=hBk^J z6yKAc#b9@Bkf1L<@hR!)+p(h2Nu#riAbo&b5fgfT>gqF889g;raAw3XeXz+;xwC*=l$@~uU{(=4?TxFs!!Hs6`jVTcd_3l-1tUUDD_)ytoRq^U6mhgEtIbK?T zmn1iHwOYkrFjnqxkGPzq5b8yS2(MhAyJYgDuQcpn@2ZO$cq0LfB!7`*kA5Y+pi|yL zNsfm4{2I=~_w14>w_ka7-&N0#`Co&xlJ6aEa+TCN3K=(!S~Dc<$PFF!YVfy@MzMp4 z+h7JnOBVy@YJqR77|a+_a5^oT!mhYA{}IS}rb|Ul`<`rlP5jjQlg$O-u#MjcJ22+) zI^2B54Y-XpN!avzGi$QX${;GmOYtpMN?k)pmUu{0Fu4V z_F;rKOUa^?+xxCqYGSQ|TTj;$#JjdMAkPa+!%_}V7?{@$ax{uqAiJWQ0Vm_@{i(@f z@VgBoiAh+vkCpAf;#1;B83LIU3|7bgvg_&6DSObW%G!6HFf5&_lwP)j$%Nzhb)_`j z-_$LR1p%ncEIUY%e=d3u1XmZN&>aNxK_eg1P!hnf63BUfa+qn_W2iSbszkd%G;#pU z@mRy`w%}w&_Ivt-b1mj4j=~|BLj5Hki%J>61vrsgA-+!_LCoD7>s{X+=Xs#Vs0 ze(Cf1!Uqt|6hr_5*q@>`$BY(U0j2qP0FU-_s<}Q^f$}ynYKcb3rD@>V+!)ECNaAk4 z59K|j={C%jOR;LP`>HDsI-%JGK*JT*9L-3p?te;V96)V9 z!*WjV>Kp}s!1alkA@8@ZEIWiGUAhviRBe(-(G<~FsV z5(W&~m4NkQr40Gqg+1Y#Qo!{L+b^>K3z5h~8nrzfHY)6yp2;=}lh?t}HdInmfKf{x+xg0i7@xoU&O>lnQ-JWL5B^rvY2N45W05LZ%Sd zsXj0~Ljcs0QZcnuyGfh`BfxL4oij}iyBAetUnnY zQf7mvF&aP~kXfa4;xc`+7cnH8q>lgP`7bZ; znD!cztIfp+zj*L7u39ja#+keaPFDIS`JfUhCpBAi^kDG)2s7umK6|YLf}oRnmH{d3 zhXZTi6^iC#p%U|y-Of*bq?OmH8>rUFyxR?;^oQ*8Uc@ug?R3{{e$V`kn`YrYrH)5U zL<#qSK&BCc)q%q)2kEMYJ+|_oDNrvWx@~XfeGugB1-V$P6mvQjPTx2r3dP{Jqd~P~ z>${}gy~!f-+szH7wH7`i!y%sq`z?%hkr_qnAaqEwOgS-W6(bCIvbaw)sMBBc;2|M| zmS{bM&wj)QQNrRVmmb`k!6gqkly!53_Fe!!t3M;GH-%0#{Qz|U2J4!3QC45Umn>+f zD1*2&XBl9jhhENmOqJeEvv64~5JER&k60T5&ci8lr=Bw)=0|ZTWowgI3pjkgH85dA z-fwSb`7MZ7uQwVbPr5nT&W*NrxYr=fxG`?ofoUe16bXKmr0kA+i5?TJP1vB;6;lTM zK&fEwp%(Y|s@G4avze9f!Ox*qA?5V8cpFkiOF_zCF>WVe z7e&U+fN!pqj4c>ESeZTe5j;x@Pbjj8?)yf7*OHfq!WYq?02a)Y0AeUH5X}4!@!ayE z$kQ0JIP!#k+J=r-#NCBs-Q7SDiLB;P&GF_cTJ8>RJO_yjtyBQYG1zYj9<5JqkdP|; zJ<@tS8y|MfC*(D6$g#$I2gsR)9h&|B^GOaIKagv{w2FV97 z{f$YQ06DO(f2}O7(+Bg7C)uUU4K3Ftv$>rvbVd3P9h2jYT7y?6Bwdr~>VYDmMf-ri zN(z^5%QFNbp*1M07aQ~L?ei9$VFd!#eL?5|aI97&vyu9IHfN05-;jHYPzYaEDLaTo zMa{lg6OQrF=ko4L2yGtK39*sJ2{DUQK0piBl1nl}VBKOTj_Ld@1i?Gi{ zkRo13yWQYL=e&TE^lPZ7C7(B2;d#Bt zBC3eEF-vY+@g}b*jOf|q!Nr&KW?qNvRbHFW`t5qoe>2U$ZuSxe1V6pjFrvNex!v%- zy$SmVO_SB^07uro@yfLBD|w*oof*>Wh}JiHlJE`W^X5y08lzs9A!sFq8rbTLT;Wiv z-SOiZs9~+iCs2x!=z}v!jl1k_(p*iKR5CEQ?tnRea>cnAtd=s6c06cO_s<+%i;%n^ znX>xC9sKsreAul|6VWPbj@1PV) zAub+a&x7!OTFYv=#MUoM`u^wSfjt-6t4q&1vYpVj4^#y4QnP~cEWK$d$HM%(e>>bK z_X~zsBKdgtc-o4p<9C+r?7yVAbPJJH8^iQN$H%?Z9bxSQ(F1OGEK+IDd{n< z0(J0@v|{5q%n33A#eT@*i4{c%>2{b-$(du;-OW6{Bsj32n9xa0=qR@HaN@D)RMrK) z7rSEvPNH)G&TvAS3(O~)f>|_i17R#iy|#tSo+kh<3CvYw+?&5)C@y1cwreAuO;`ze zfV??&H_6{c55fy`fM=O=p}i3g_1+!~gr+Ip=UnBFZaNydmYTiuhsx}FiUte@mMT{p zFHZJd_Z=@fM~SaUE4jk;3K*XPh@l)p3$+6PaKG=5385DzB=i0}AGzCe(q|@Z{2lpT z&t|+Az@^-4zHm@=&C8lT+~O(%%{~05sIH`r-#^Te8UsNmf#598TP5+X=5GDo2wV5( z>50Ok=LtJ|Dm3~{S?ad_l~^mLUCG@VFH_9=&iglf$N|5F&*>=P8S8~Wap))IhLMXj z$Wwrqu%zWWF%BtHqMA*!sm(I~M#te|_P6k8-D~){W`m zH+Okj%Dbz*4(7I~RV}<`F7drDR+G;}aGd~Bn+psG1n^OL(JU_m!8|}|B_eYu2!e%W z_4P~l@f+k99S9sX?FG$+=Y5zE3@bW&F#|bpQ1;kiUMw&js@rom5>m#G=H&!@xH?|t zGCJWsV}W@3iYo*cvgb+^FT*OY%DrgMact4~7ztcx7=D^s_q^%O#+P zH)BKDX*H+;h^oj~Z1|t7rbSz;>Q33f1NH=W%mZ_agboij8JJYDfbN5hRyoVs{Ohq4 z%*7TZLNJcY33NefH`>!Pb&j&Mv9~ZA>?9t&n=)B#hAZb91D*F98;$Ms_w@42fE@YZ z+bztXcpu0aA_Bq3eSrL#q z_Infmey8X|ns|#^mig19D&tS=XJzdPYxmd0P*q$X$8m~d>lSZNqp z=Wawnbba4ato13m?i&yI<#C@({bScL8yl1G%l8rSSWJj1c?z!J3@^D_c=V>{-UbLU z`v_oz=e>Nwh>%I@Swel~`={Fc$6o$<;2$ZXmilCg&yyl{2=8@6(+&HcOWkHOg>w^h z`j4bJnobg{Yf)1bkO*Mt2o1?YUP|Ol{e{4gZ`TkWK^Whi6sS zAIMEGa3WXv$D-aO{t3Y@QIZC2q*bkm_nj z_THPkg}3VBy;2Kmv;uT+vUMcK`h5RR%ngDXy1rK|Zs{z)$5)+w{1RD>*5Z}8VI;Q5GdK&k9wmH9bt z^lCV8Mr44|0|!`_ypc3cqsiQi9U13uzGeJiBNWcm0=*Onl0&;wZa zxZke(|BP4PclCAG_JbSogRiiPk%Qo)h7m`7Um_<((V)HVIQU4Y9xWK)^o7HTsmj_7V%Fdg>t_MR#E7c3W}&QD(tW0)ls8 zFH{dtN7XDnK3rQqzOhxlz#%K=w-vp2iF3jS3c87=E~M&6#L|TmuzCQv=5Leh0u+iQ zfX&*`{Xw&}XNeO0nCp7KuWh33n%oP};X?a{k0fuH?aBa32cF$xa7#hrw`De|{bT18}nm|PL_2H%)H@SYY zoQPi6X?|V5uwb=n_R^2K)Sr<&Xgg2}=%aQ1ZIuY}Oxx4wS{~pIKhNDS)fZoC z4z#_)HisP(&P^{PBiY4XfUFBtJ#8Vk=z`%(F9JminZMOuHk=et`}e9GmIhRoEBi{) zTyG|d_pMxHWhC#Pk1qH^%TdP?@iUQ=y(_I9!xe1XuI=~w{Py6?2ScR&p*V{E|5`!@ zQ<-XU^=|ut>Sr6|4#g@c5TyeyV_?Cuzx29IT!VEyaGKvg@S>e{dKU;66*G%oRipv& z|9AY4d!ID2rn#fhiT6ZE8yl}S3PSa-p>%LDi7!wz=7J%!;~H-}RU&Jye1SVpYo|)2 zPNsb~JJPk4mc8O7@(!r|0r|*b?)HD7T(g%g*4)j`Xl%^*!D7M8@Zz_EA**0*{LIJI z+)Krflf-z+?2DtstHNlI`r9tAnn_N1&F$MrM>o1YgH6z7bPkYZvHX+d9G(Hf`b+Ia zgmw!h-qgs`oFLdc3erfY{ThZqLiRO`gbG2}|*b+#U9Y7aFr~te0`x^BkZV z5lI7Y;hX4G>*8ZCYnF_7w<3y~hdXxK@#8o^@$LT5ULei|vOU$9hzivT87!ql2mRI) z_$Q(Ly(nkg6p5QrPp+i8qdrMTK`wR|bGC!+y=qLBX;bOau_~u9d{bk&b*PR9j4H#wFv}hYQRtniU|m^0gKeX{?CU^k;MIfwiDmpQ<(ds@ zHuZJo7^ANt#S5yAkM5K0>}!Q(gj=n8qwmAWXxD@XqsPF;br+pI@-YqVD zY>^(jl&wj<9P^*d)+V?Ajt#w1Nj@S5r9~(xFyXY{xfeqm6P&M4#shwpfOAO!4r;|FfIIe~AL*0I{%Lg~j~KFv+0YD`mILwS@?r z1hDtV=yCLPX;_0ebnr36clo6qu&~w|Icnt|#!U@KU8NEQ zRK)*lf3x3`>L8o)roM}GDm4cWh%8}7-mP}WWBWXZ6ArjmztVtQSjjO*QSx8?@~mp- z-uGDJ4fvp+l>SMc4hwe~J8yJg7xQeqs9REYeRT*>x%@KY+Q~I#PRkOxQ$ad-jZSRv zS^RJWzWR_qZ^99kU5ZZm|GSoU2E_9+BZz0@v$O@@T7)tC@@F!jV(|zfnIazi^vkzZ zjUt8LBaQ^q;tdRDN>tJbH@F0l#SdP)4U`^Ab^Pr;3t^k_EA<9(=3#-5ypX$zQS?RQ z7ak)m@`u8J+deABjm?|(;}wG~Ll`m)U3`BArhlb{`z*bHSST$SWb=l(vz@3ZAmEj| zxQJyyPbcu-8A@{kpvCy9%0#6yO9x**WGZTdJF~y>6TyV4wdL&QAfRGeNl%FgtO?eQ7@cF6MhDE0-1 z^Rw2%i--?TJriIZ>WwAr-WD0Utt3EvYJJEYbbY5ZVBME5*O->AFLTXQnZyj7v;LKA z0=+JY)0?pxx-_U#p$&LJMKF5=mpUzJq}$KejWkD>gk_9Jr>NjpmAJ+b-uNh>P&P&% zoUz&80u<$M;^rR$m9jsl?B7l)oDooIB;^9isr(6k4LCR9nXaD&(T z=I=$aleh^M>XPi~NsT)|C+mMQ)T|sK^s4pu!1PbFATxS|#v@*b+$fxa8I8y@!^8IM z|HjW)>}xawEZ_z)LIt1w?$Rs#!g*LgJ0ht%hv*juP%lZrSdg4)!6nc~p!xLg=~=s!0e=>* z8gLMN*iSvL(!dg=iKptsc0Y99O0+1+g6R^|7!1+>2=(1nVlbQew%sreJnz*i1o)&T0@uW=q8%GBDv_Dr%l>iq6;+soB= zHw_#?VTodoZxu9%(I6!(GyJw!zQ+z64SVfKH#q6wN4ZUzckt^TBG~PoAvyiM!(D!n z#Gh1mSqnd)19?t8E8OYEb>CLD!;QmU%N^TN1E!~rFFUFtyMQs-lD%EZ_srm71L~Sa znT55gM?S~Pe>;WNP^A-IiJZcww)x0ONP*h?u9JcdbA6fT;KI68?c(MYVFm=yDPT$O zSJZl#1crNTpK11p_mHLAN@9F={IHDrSH5*&!n{1yJI&)29|z7sLSs7I#m8d3oP-V^w+$Z~Y)cEvss$@ZBtxF<6 za^N_0d7Ns%HzTJ`OdWrBKM=K+GHt@>-!Z_IS)6rw8WNwa8XOqy{(n`U=Dm0K6`%{x zCD{-RX)pV71R#Y3&E$Dt2KNPtBt+vFlM9uWG)5n?Ekr=KQIQ)TvAyU!RPTNJ_ae6d z0K~Ah>$v&2G>`Kr=^&)Mvm3a<_H^1Yz(5CSkd&wR)po`Ct4YGoSTjYM;ZNuMI-Oq% zwdM`UkZcD2vV_guO}ky_OOiEjZ``^T{#EN-!hCn9{?SMG`Jmh$4H!9Avg@5J>je)? zh;6g9ZA0(#$-)esKT4ASAH(>%al_foq2*3ZoXHuFO7)zt38xqk{Eoi{vXj>5A3NWr z6&yJUP?;wq?;@hEwESHw{C(j3?Yhk$crCN5_R5A}^6?sC!IlygwyJPoR={A=tOzN3 zLvgTtnHtAt!3*#^WL=SRI6iA7=)Xb~9FVlucsyy{nvN}<+*nCrx5X|n`M70wTw|aC zt0!R(bb}z-SfFVwUUW&dqP(E;ouiCRLwd$JuH66B1+Ik^G=e3L-LPi%Ng6wTq5~ml zE0D$mtaKa=67>|nU|aDu*Y=C(DOD-kY#BY9p0_aOm5Jv=1+K^cowHmrIkV=MQXiQ9 z{5+U^_wpV6BIuoa$@EP?ANtHyMwkS`y*U+|T}Lo4pz$bI)&E>-f0F2`ojH4NlJ9TV zdjFALrCrv3YMwRJ8c!n>H-9ET)kTzn52^+5h9EbfZV|O@xwc&g-fH^ckfG^C#eDex zo?|YI7?@@*MKWEr^9n+l2~Rq?riF3=rI6R|G)Q{N(EUt&ct5=g@%~BZUsb#d!}?>a zekiZtHS8<=YQF`8b{9IOCFkqNsh0-VK55}Maihbk`X)92n50?6e|Jfjl}eF@EB8Ms zs`Ba8E33K}6IR`WkpB0kv;rz`0MkFld@djmux3qs!B0&;x2Uw4Gb1M5Lgla0j!}`L zDt{Q|I2=W0ptJ$^pZ1@xBCpFKl$W_Cd*a4czkw1<*Ov}C4QIxT8Xpbj@vGMv5HUjN zR+R0ywl_^myi{h?=7+B@D0NlswaTSSrw%U)2Gq^X=Fk883o#4!7)D>Znw{@ZX|;!V zgMUoDIo}z0oS#;TAfqMqR*eQ&9ze>CtT^u5AoOibXrV07r6}t?g4p`&ia_JiaYwSf}KflG!Zj=_dtNPmK z`7;tdH;%%`v4xmUYtwHbrFrZNf4}WvL-Ucc-e{cg^!!mgfK;Dnva5b2jbl0)`Qfuq z3GlKPXh3_4OFMt2VolT?|ow=eRv&bf#R zOu9Nu+G#VArpa#ERCqk9`BEzw_`>S=v_#0ecZ{%_ZG+;)RNqvv6nVqyp!ZuU+zVjD z_hVGee$~+al*!p7N?%7z%jKKPP~un;*Ut@Xcgm?_Cy|c`;GMyl%jh%hj4`Gj8vZ~)U&qMbR&b7F`ixR)w$ z-fvexW9ZDfvhHsMa!CY2n9=OKqK=~#_DdV`UECy!S1heve7iAfpOT!jen+F#e=MGVi>XrI8sEjcP z5)-+JeJlX~y~j}`sbw>5(=SuM=QI?!jpDy1$+OQ*9Y1yC$crNy%6AOaA!WkBMO^}< z%LpRV?SRet>~EFHU6T4+x_F!6Zn5O`e421WE#Mgt#y7x~Yur$N6}(7}Ve9u&fB0u_ zIDEVvXD#wW{IJ*fR|a=ABRbBw+EsFvYS80}Bw}RhrksE^gdbkHDw|IZ$;^VHs{ZTqBNrm0UW~;HqwWS=acZADS2Nxz= zOlS0W18G1ur@#;C5v`qgYP08e$&&@IT>dRX@OK~sM538v9~(;;oq3?aecoh_ATn@n zrW1UGPyLQ-9|g->uP(G0i0WD`*q$Ul=KlfXx9I!`1?z3w#)$oTt7{DjgP$ZkF?Zg$ zrXA32_|QF1P()kGbI`CJ4%PK?GbN9)mqUdP2pWljp`JsdJ?ZK1 zwfoL@3h|~*8tpgR_B_1uu3b=XT@jr4TK1}_*c*Og8#i=b1z%EDj**-gh1U3cEyiA0 z=UShbgw^<{O?@7}lz=SN17dR7|HS0OW8;O5#nihrR#~yWm&+L5qS;;f)TKg1K_wE- z0!>wrIpbF@eZ>j(4GBfPB{mkQGK+xTM+Q^!>lL6-2H4Jd#7PyrqWvlfVss8VQmiPl zY4OhufMS0+blajH9X0Fe>>?_#uGGw>M}T#Oo8<~!mJJP1{nXW1ck$W?z>n?85?(mH z9f=miw-Fd%W0)d9!vJ`@ZL>4L3&P4&2h=l?V5e?-<+0EI?M-;(DlIWn&-u8r&lGsh zV9gn|*Ji};LYd?c}4{MZc4-}eCJir z>7>H5Z~2IyxuFu%US*^Y!$3pZ#z1#J&8Acz%--n?`JaQ?;lTXRzKRNJJvzh_CsrBz zP{?gDg2Uo!%a5wOfd=I^3G@MVq=Bw2BcEPElBM=k#aGjnwzSJ=wXq1v#5=kzdYTQkmddkcoMH zYd~gQ2w&g1!ykdkjQNoFRAo$_REC}oCp-W6_~ z8i-qIZ+-J&@NVIlo&wkDAZ}d`ML)Y>#plcU))}~WmNzs}C+_UCA2}&N#GXgUxST%< z76fSbwuXyu+CF5+w)3zZLMQ0dJT6@V0bOtVy@PpQ;hW^2Zk#RW(he9NHQa#`xM@_4 z=QTfk3uk_OWyWx^g!ka|51f%+&>d(cEvSC*)>TaBS++!MqY{3V1~hPy6-ea{+wny7 z=bpydU^z#vnKb|a$w`BA+oXY8SE80|ChSbk0l~4|?imzkac*h?M>{K*nQrW=h3{!q zLuj(Yx=ToL=~9FM%MdvzHUHt%34Oy3S@{}j@wzSuKRbPY4jBO6@~4Ff^i!_!l(g~@ z7(etoZJnD3kP3pp#67f zK$3xwp`~Zv`-hZgb;ldzODW$Cxzu|8bC_bb)$7qo4_{gU#07K2zgpgcl?hXrp95(O zjV?o+XAim|zG7k*>NV|jOc%wENxS}sO2y4GEFD4~B2HZuZc2z@+ zJo`KX)CAGMUzGaQWaI}7`lad*!?86w=Y@ko%*)*Sm#ks$ql8j$Kw1sB(+@iLBLD>9IE7FK5qT&$ZLfZa z@SkBIdu?QXQ~OW7Gjwfk;>D1yO;-#VNXwunF1}Lw{>U!Yaz?rG)U&o?aGM>C;t>KL z(TFfRTMf1f33bdSdOhX)sl+?fdgCrK5OUqT8gr1-mvs`XbqM0Iip37#-v>r>#QZ`e z9IlKeo@CoX`&{s}0okbNUh&%w=Y69T%iA=6)m1_2l9Gzz1a_lb*w6?V9XiOSM_BD&bDh+3< zU`&JC=lWehY?lcO5H1G($aT1?S2B<>y#Zw1%1lg9waC4Ie+vA+o7Isa_;qE2Mf}4g z2j}MzMbkb%nr64=ZwJI0`2;j^zvEX4G3mYpic8mOpu6_YIJUDiC^tDa--%(+p3o5x zRCO~#2Ty(hw%^}Y{I>PyW~kseVYDrHV8xF?aSMQQ93oq~q#QxrIgmA413K}gOKlfe zsOr0e^QVH+;TxGthpz*Z#$Gzu7`d1+o%ePFz1j|X>)&HIXxqbrEr0@U^FO$q79O

E=}O~8hCfKfw4N+`jvByJ zOkVVXDh^r>s4^DaWg)9j@5!_LHlce|zz2_9PR4>$($`t?=&aNa(Smn(Yzc$; zW@vs5kK&>uneY>@5BH(VWuNWGz=En@L95ZuFUDePhYC5mwG-@Jhjao~sZeETXM&t8 zTI(pP9j6-nqNqS=KrOoWJ#bG{aD;UOrg7tB@YMkCh>scpJNSL0fL>czP}_@RF|iEnbsJ zzV9!UU`a|A?5YC9Aa-mmw3kEARPGZP!POhcMT-yG%t=WEgo>JEZ30k5?HzN7xALHg52A_oIZVn$*0lOK*WhY4kX7RNP~ zJq9E&H+~*Xhk`Ewklrg+iCBsY6*+x_FGVk{2@v`g`HdS=SFC+f0<6i_5ql(cdloYd z;u5wym;pER;w49t5@7~(8jlC`RN^`l2+XP%YkX9upl!65VzC9CQ&L<0xd0zDGlVXB zg)ilHav&v`RD@D-j53H3)!an-?R6zA4fbOJ)K?`RE3kY$ z3~?+%G5XD-fyVjGxo#`bQ-cCCn*+IvF<4T*`6v-*|H&-v4ta&UJ`tK>-*{YanQ~=3 zy_I4xAY(Lla08HMR|8gdNaN;9NgCADp7b_(4F09vEy5OYy^ISX4O9jM6jhrAEf^HP z#cSmxx*r~Mj_|_HgRFB^GORU>1ZRr-9gB44#e%@ad(1>Ueq%(vqQ}9&_i2Fdb;6kQ zPmc?CX^`t6levR8zaMt_@L?BdC~^l}s0YY{7Mwa@Y}|^fnO%rsYTRz!x;p-1>?7Ic zPlvA1D!bU49&tas{={uW_rn{KT>dNANRNZa&Q$Db9~T$O@uG%soi-C8wzKRdgE_l^ zH@#;A*l{m0i$qzZoFO0{o%8p--)QF88INtWA4{g%t(SAGMGko0ZZ% zzSy&eMEGxassp*vj9rtibN>zQ9!p^=F)Adpn?#^iIPvJLV*LKb!CQteM2?5eCITnZ9&uuI7pokK}qiN??+> z&!Z{6`ZsD@3ys&c!eRg=`{&0IU)qzgjlkEO)3`R!~tmJ)nXRjr|8c z6=B;z*@)&M??BWV)Cvs+iAdO4B0rRtpD5kCPIUTzeEoM+Q%n0lfX0egKtV)Az(P?_ zA|N0&DowhGfPxUE_egIcu^>_eM5IYmQIIAg(jn1EQEAdkgcy2Hs0omACy3{q_xHW` zu65S=!?0)1p7PAhGoP}6U@}TR;dv2*LD+x;Jmj~!ySP+UnMjsJ(PVzjYZFL@D`*F% zTkq6!pz%gIZUm)Xo=3q z`0odRkKeU{a~t7G_0tFs7#G*l$nbulnQ>^UH$yIojE>*NFznXEV*H)lm{tZ<=m;#n zr=3B-`cr-|M!mRHl>txLSJI_0$)2@Y#Wj7qZ(PxN;>(lA3u9`Mx)J-)ICu;)PDYfr ztops*534x@4X4R_X3H#<-0{XSv2@sCpxC+H{|L6I)t@6W7u9Ng!7{7kfh%itZh8^p*mQDTKpo}Q6|Zr9@OdpyM6E>033b1K+l+J zYf_`GgiZGUKCL^H1r1MkFdjVdeI$&C)9PQ?KLH+J}wlYt{usHIDC)eh>~{? z8~R{M``9EVe7BIZ<6eTJ=&5rLRmA}p=c5Qs%LT&s_4nZv3Ewh5P`yLR0pZAO#{;mPx6Q zVQcYPB_e9jhppcEVGr+Tt`?VQtrKA}j^YAbsASu@{dCR$LA*w?H8 zDKD3aL36AgJNmP=6Q)d-XeN_Khuye@$qOSE?yKpOuBoA8M=brOZD||9ln?C2dVa%J z8zR4hj?;I;p+(rdT%Hba(0p-aS#2I-^{b7Ib8}d$fT|J){OV{8MYvn!%VHTjM^p$b zS=uk`W<u{WbP(ajD-iA7!s~`k~nUE_RCA(EE)G;XNz`kjPPHM{$lXc5rE`}C-cS5{n%D|QOQ z+jw;s(HhTf_g0^P9s5F4S{P%O+%>eFi*Y@(uShyL&uNNlUYA%5yiG=S*`$z}E6g9e z5IHJfw+_CX@|_FyGPi*gZ~=rd!KIEMLN`=P`YAxf$8_AB-uVI?1wIRlGVp$E&8VB~ z$k>Ylj8k^n)b1Cibj&GoO^LRt^rEE~$6$3r2V1tFV)c)R)JchD$pi49_{FX%K5*f4 zTKktiFcHybdhlWv5UZB29ZUe!Pzqp)<*W2>;rzsxGr2HrFd}ndEE6#uBaHMnXtlE> zJ9mAHgpTgO@=d_gjV#z*Tcp)8pC2bu!2X9=)jcihZzGeR`E;}~<1Wtc1ggd=k*QtV zlk`UgX7p*1E|porT-Q1YEXt(||Z<5Lgd+DWoaCajY%^6pPKK`1P{J@MF>m zPjbX{Ow7n{&Wj?W%WC;R&0CZ98KxUQFHuqwSTpFo#0YXjj<00c?*(Fv?93eE;y7Ur ztx7LMd)(@RI)ijQ7#~QN4+CjuJ6_aSrJwDHnl_azJM=+%uy&@@5XZ||YT6JC>gFOj zeHbMOmaQiISr>ZQe2;d|vsv!CBdSCSE2E5!IC`Nh2I=DdfX6x5Z^52@FqWP0eJPKD zP7od@^-N7mw4ra*>(uU`9Da8+&vg9VSD|YWA`lO{4po1d+=A8u=8k+gam^12ppD%RdI zt$H@B#EwPQh6_&J-^NN42Y>hcX)yX7%H8z-G+OQH?+3@Myn#kr67LtQ`QXOYmYf30 z1uDZch^$hOSL_?Bu&QQBI3l&Qcjlnyv+c2gWK z0bF-pwWGPw;<Vr#n}T zmm`k=9F0^7JAtnjeR>CN9I=(1fZ2QQA(P)FB?eJF%bZFi2R~vUMjP3=RL=ma!1KYM z?1YHehlRNI{HWh4znsYDDiDi$MzV55i+F{FN8xevJtar$;Vx{LWIRyusG;9&ShyPm zbUZ@Q55F`DCWeCyn~pXYN{65lw6-p9m=VA|Mspi*n5M17WE*DWsMdc0i525iGTMWL zE)i??_~G#;1R>^CtV~!%4A`^fO4HWvjo%b;kog9$#(0R)A!f0oG_e#s0)$@V0*|Q4c zep5Ea?=xA!IGr7>46X^Y6u|(3KmCzb2=*;2cApC|x?59f9>l|lx`qqVAJ${{6645? z8_-04Iih?VN9wv*ldD*7j>wnYC7xZV2YVi<4sm0A9t{;r=AM66on#azmOc=+hk{9h zzNL*N<;$=_|0WJBmm78aQZA)sR}~n=UNbjj`j`jfd+6*;vq^1aO3bO>|GY|?D0Tx( zB#Zc5Qd$L1z}M}uARGPtLB;%H78a!*PD1eMMuxR{Ls1{pY)}7UOV6h4)~4aJ0fmlqvZ)U{d^x2ND4OI^`jC;B$Pq%9BFf zTFL^wrgnaieU(x#I&8)g16yhY0gi=nmzx5)7d8IWpNwU^8Of^V*)WCQt12UyxgfZ* zh#wpiLUGJ>(|vwxTVVs27wW3agcxgf>MXQ1VIls^_ zN&>)_3N=d`8Uhvng&MVm7xGYUDn}Fvdtypw=#H2qGuZ!M`oceDg59#|vu3VeU#Iad^^<~t zpl-V4VQ~QVHKELUAnEp7^rvLNW*yjg|1W&{LLXqX=gwU>@>CO{ zZJZss?dwA+rJsx*T8Z?kT;pHFGD^$gDO|@Fx%@@>i+^O2LXa8`Fw~H4bGzAY|p>eP8Z-5oT|6V(?DAPKKu#gPv5(zCl?|i0KSmN8WT(RHvl_!Yi+>W!O)yb?x%+VQ_v6`K?) z9Vl24-BTZ5&}8pJ{rdI%`!CG z5!XI>ZrJ*+>1P2r=|8yCMr->ODmEE#9NrjEc?g|}Y7x|}0I_KJ;c`KB0Ell}o(Utp zGT#+S9`WEk`^bscUx1+EX}!w~U9G3WMKY++uyvufpk6&JQ?1pEIDdI0R8jofp%QDQM6LV~*~CIfrZ zqX+!bVuQs~)PZL1e!`hLAKC)NpcGwG9Syavm#-?u0CW1|`FobD+HGAbm*UAqo zHjq1HT}ATQDSi`n!@>DGTST}kzPE|e#ImSVYF1+Yc3=D?dbEGH!FXJSs^}eDj8JV^La%9StkIN6M?s zc{Dd@=~U-1YFb-^S$>i^uFZ|2ftt=1U%Ok20AA2a2e9h8@PBXflhT32M+^fqK6TZj@mjEHc$I02oLYB*ES{sRF4OW$H%tPdiUc;jhnk zx6_~v4d$F4j~;B>L9?orCq%~ny8U#|zcB8O^F*u;56~tV#?#`bGJ$ADIG{7WO%x}N ze+2XUNmR42*_LSgkHH+rJ#d9#4&j(*?+&V-#rTw6ZtJjJQ#lXK(DB0l2ae(Nf=u|K z(z5sk-ew_v(1|6^ z677G|+lShliqh?W#zNEgBxSJ!SRK>%_Za$nN}dporRvdV+|Zg~Jdpi*1Qbd)Pp=g; zTX#Qj_!(TFyzx%Mi#RbBXXe*#iyehXyM!wP{4Cj*DhFXzg$RK|i^OT(O*)}oM+mfs zh(*iXUF`A1F%`Zr_5fmPB=8B1ADi}?IBkLxviQ!8Nh*hx_F{g<7dD0K$op!gll|mB zcEY0CH+>NPVvN9dk7~~mM07h(I|uI8!a>6~JPO~kP|pCtGXmUM3~tQ$_}rI(Cu>ko zrfN3W7`!tMy+->(Zuo~eq|c4|A+;JaDY@%UAq^U6Uv;0t2+xxnARFvuTFwbGjCA6B z@XKQ??Ui$D&qbX=#06NyTrgtbtjm$%e1y1wk3?S}*fd;<=lBR7J{S3!Z722LeG4i^ayXDmo7JJ!N5# z;0K2&e6>)=QHeZFhb0Ya!obJQ$#WK>EOMz{qTUSUM3IXZnu~5;wZdHF%tSXQA2`=P6$J{#kzUqD&{+s4eB_JSN;-QaS|+NEFm8S76 zChp%%`9l2mi7&MTSmt zgJzH>a#r@qjmH<(?q`Iu+|0{f(T_3yiuP=7!xcr50Sk?059QH`n?>At@3fx7;@Gf| zv7)s5^7ygJh4=uKqD)2bDUPuJcZCAAXpDnn49ZrOx*FV%6BBFyO7J}A2e7yla&wT= zdQabY*+P7IYVY+lQjnZahQauU|AAHmnmQ?k=1Cqy^MPrg30T^PieJOl^)_dL6F1|! z4H=mfP=G8cRO7*r@BZfHjSyIynwW>S{>vl;r9cf)t5O4FBom>kC{TzPpe&whza$4n zqz?|xP3d1D2p2ldqwk`bzN#;#}`)W+(y&q zaYQ?qN?_3y`Qqq4BL{%t2ir9}T^qL6F=~uD!!41Cri{jA3vTB`t`;j@}Rx&zA)t{doyFuGzjb&A$ z*s0o9hfxVBld%LqZ@{;saC-lVQSimN<$& zN}+tJzHF7Pi;V>W$zNtb`+`y; z*^#`d&;EB`Q?=QI{j4ae83KBqg|N)ujKshP_#+6SPY%GZue!c#S$?)J&7p(k2gwAA z=l>SLRJH7is$P}oYM2B1R2#z>4kQ4L-2YVM!+t{YA@sK}?0b{gXp^ks_iFJF}uLcFv|x?2WfkG1Ie$wXTDei2}Wr2)D38#)Oo9= z+y#>Ja?=xVud+$-@z$jlK6zCG0y4wwixy@tCOywI8@NZEQUK_EJ)EI=Scb?@WS<=8 z_3S{Qq6riIWjxRHe=*M;XNgQjz0xw|_23ynE>ys+f_HO9M&N?rPEtrl`F=ta^;LlA zw97WZQ}#m@@(TyC6%~9++n6e9)2q@Z|BwLmibI(8)O#7W3p67ztN)H@K$fsSj>35a zNDT2eUmQU7+#sQ2C4Z31GBZ~UppOwGp4V`@pQSC2z|ogQ)k?BwXR3vQ^?!jD`+tgQ zC%P&Ptv{ZxD}xMRzEXpKkn3)*eR1aqU@#2se#XFYJ(c@2{-F3f&JeLjRe!@kvv7fR z=1Kl=ey38ief!OYy=f9YL>5m%hx$51balbdC$9jZgFZ5*`~u`XnhV*jJu6mwA1esc zg6i!fLZB$82@8RD|E?o1L}=sJY|*RE#}tTSNy=zj5YC^yr&tuoD@`|EBUKYzMXOBi z!k>tUMgwsXuH(c#;N)oHG4~A0{8Y)+M75k|oBv83(!?kAk%jo{(~wy|uyK+^!~|`; zIj!^xI7vy>a53PXwnEjH3lPrD;FJ>s6o!=B2b`+xcSP`zE;YXiE;;NvLv0|NxfJzj zj_rHn@FGc8>`bwZiPbG1TDaExkgc9IkW{S-(hUdcvytA|U-5Hs76yv=jIjH& zKVznXOGSx^I{=?Xk{G!vZ9L#JwRhOUtk12GEsU?8*Fqhz+pjjguCP07fyqz}BwxKg zMj-T6kQhLUqLcz%muKly^cJDXpU=sGlWq8*F11Rj{rwrd=8(NjCx%NR1PLtJ|I&bJ zKF(`xRBq+br`0`O4U#88wsM0kFf><~IL=>_iXAd-oAZlu$3eH?x_0FW)8;RN{?(V62+y~HgSg?+tgKlXRhEdeb#7kc3DZcL6W`daXeG#83Rgg8_8 z%uHY6d&w`{gF()n`VF(YvOgc%$d&;v7ACnZjm&TEWVBRQi2O#6M4fTNoz$ii*Ay1CjP_Kl85mLa#aLFk! z0Ow3FLNZK*ssW1Y(CG$pl_~a?*K55z!$)7H%!6wNKiaH0>pwB+cD_aoE+}jR=;f5FIM)LzF7@Y3W^C#rhn#GI)RDYebh^sd7mD)ZTR<>7J9>w7NrO+f8*{>sDw{YX8d_S=n4Md z#r{)(h1kqKYYY>Y8)ADrPqE=<+?Vx7aE_)7&$1a9G1MHsSwFfT_ zUR0mrdrG!wA3HlsrmzSR*b0g>RWUO6zG~sgi7gYn7h_; z?j4RKwa8IUD0}ZFlPW0v5w{RMBZOjZ6ts#^g#LtIZ?jY)A}TBdmh`DHvklwbIF?^% zsRKIEW^Tn>hl;6?W-}Y0%Axbteh0I{P8Mk~hFDnFGvOUrQC$Kv$tk#D8DJaV5@Gz- zcrv0$%V9BiIyry)hq>*v1O?Tbc}d3MpJp>Byrb5f-;Ofg-GR*lb3uXN#7;hW5bnQ) zKvjoYdagO;%cV3k3BT{qdPA_sqk8a^e)oVKN`A8;*wgwYPO!_u$SP0J^F=*8mvitjP|$H&!$jYD40ZNi$#$N$%q$i>d=8;d z@$2YAzk2$^(;p^exm7odgAsBJ+jJ?QowIncWNl&-Lv_9mrX|wRKB+~7s?>Jg!2uKztTwS_iF~{8&(icZ*lugV9In@QbyF+@*6R`*B z8D`Hr?uz@=#<(yT{k(lCz8Xj*F0o-eO(^1yJ`fI)xUVifijDrjjZsN7$kq>UIR%bS zuedR%B>C;Ii_y-1-)u5@l=CscQpB5;VE z=!w1RIuDoFxfq?OuP=lM6K7=NTfTvFG^k9)%*_62`6Y>VkH_=Cjy7y;@JxdB8wP;4 z%sQQGUPzt&`~lS;!u*+A7Gr+Zj1cnwqyam`h}hVaG0sUj!*ckUAQcks(y z1M$%&$2&f05k{Z5M=ez`9s9kUIbz8gu~>o5pw^yzUGX+{EU?7eH&VENUh5GULK)<` zeWTNpLfvIo8U*WOw5b*=QzoTB-Oa`AhGqNwN}HnYDjFt`gW6DjCo2!a2_dkv=CwDw z_IYh`se!pT?At!CAI)rr=`eG!XJ-iw5noA%_g#`7$T>F}lJSuPD*~NzGW0*K+I`jt z^V7F%UkeI2zy+CV2Q_n2{QX!0Ji=f(c;g^e%oLN zyUxetGmA8T`H^}pl+XXtmZiwam6CwMiPHV-4}QxN$B^MKfmV%}c`ZvMAKcfn6uwyP z6lXrk`%peHyIT)5m18VGKwU3XQc}DwTvR`o*#JJh!rgNI$LA1I)v zP+K_rLt5HE=;Y%<;djxth!hbB#Q)HABybNV>5v2LQNFLxi^czDhrM z!sl`Gm3{|UOActax>IN7HAQG_KqyDZ z&CUHq$$2GwO8wZ%Nv|XV$4r&AGS;DyK~W1bmhvUdIGVY79*ZF&D%IAk0TPVkA1#>< zQ6l;|SI~p+(9vdYy>ys0I2vdZw!Obn^!sbr> zaqdSXq5^H|&Sv;=UmOsumd~z4$W2Ypbv_`5Aly5g%BGrM?M{&r28Zb5#1!2U*-)e_ zdZDEy^_Y#dybLzp_tMc}eaSJ;Q`M&j3R zxw3X}KiLm$AJ^w^l|?@KditkTh7Qf)>p-=UM`@vdw5b7V$pJInDsr5>IN^4sAki^M+ z^PfYxHWjNAtMX+e5#Wn*SF~8krT=EAlDSY{4_jlJ)YWn5q;mlz!LYK0&(+1gN<^E` z`K$joo(qF`p69Om1|ATK4d-i1Gs!lg@M;OnlZEvLdQ)m= zocH(xntf>qG{R~3%~6vx`#i2XS{agFzH3ZAij@0vl_Sci#TX0N9hmeRipGF?E!;}p zC<&dt)_W3+%i(Eg^g)?NY@%!+I3$o0_ekg)N+q|1IV#6TzpT`c_RRCE$C$ASCN8YSs7{A+|7jzgWD{ROI zX3rRQ867gh%+|>En4nentHp#s0UG>W9y%H1I6;wr^r*lt!4+6OeXvX7cXBTgVE4#$ zlaip00o%2sc5S!!!ws3V-XI6bcMRmQ&_nFZs9Qd9zwcgiR}K85VEP&qbh$o+ASu2Q z;S?x${c&JM)N4um1(s@ow=pf2{z|ds#6$+Hj$fv5ZTS9Sb6eYhioETQ7o`WrBCPg< z%eRfoqWAUk2GK2nr9pNU8u9OErcJ{T2}GCbu}|Piw_T*T44td^6GuYG{Dzy-Codiq zkY0dm=6+*zV^>>qIbnc#@JHdzrzTHQGxM1Trjd^GEOdWF4NN3vtoQJ;L}`r1n&%j; zSQ7{HE9ox~KMEvrVMoI<)o^HH%*-~^4}o;mt}z`}|4b!2je%sTwP4cR8_uCf@f1B5 z)9_#k!sxaSQN*08iUfp zSe7a;i9Wytm}udqRdP7>TWuHc=Id|uH(EbF*6bFj&EX4d4ujf%EzAi>+{xlf z%7B&p%3@D52UA`eb0}Soi(YTm?C=GfQ9u!1NG6!xy>3i|=L z%$av67pdNxz{U6^&`W)OYv2hrPB{XRe&0PSGS$2ry2aY3M7$&5M(=dfS1j0oWUwfiUyGYwQQmzlKr zY=LS?t84Vwi}2T_vlY1q?q))n{iTIbm#p4#ti1OdiYr`8)8Hz;K6#8SKDuvbiER4u zw-?V&cR3_oX%Ke5(Q`!ah6)?N~0PV^`725(S4Z-eOFlMcQ#Z|Q zI$ti87?c^;Q(jemvefun+l%65f?3*J&|KuUHe`zkIH+Drl)Q4BK%MuyhB}_E5`3c7 z(KFT`F1KRt0kmCPr)IsTxe{UbSt2~vss6*%(6*!aSXzm1Ls0zc*}?0l-#^eeO0wyi z$BcX2;gt$d0QcrV(JeIzAq;;qie~Bo2NW?v@HBsw!xHArp?rR`LF1^5?=C@sOnffE zP}pxdvamiVpC_~1IZ(wqyGYJmsIY6)hqUa&U$N8ENH5N(rP*;vbz<8xxBXnivg@AY z1K@%;Z1o{f9z2u%!GHK8G~|dOX7wSC*2D-{S$ZrKJia{UHYa%|PXc^G>vyV}*8<&# zu~%nA7w{PY0>HX@CWz#0g3{>10leshvep{okXlRNfn&mM(^hzoOWUBI6L|E+QX z(bnQpo#mGQ2w%3>8fAqe4wj<=fSHo+Y^VyebJ465WFa3GE0cC$>cnF=q^UG+EI*=I z{XoRmSZAA3-mYJEKmU&JQ8N#`=M@(rAJ-GO3q7@gJC$#mw5;%5w>~z?k7h8I_+-Yi z=P5#l8MH$eBITik+r<8bDo=cX8r-whO$UJrbkC@=*po}pdh?G^#5E zutB+12>73#eK2?OP|yC=uI0w2OUSN{NmnOW2+Zfkr?4YXXM7K?eRTRu5)&VXz@Y0@ z${#APuS{~HcebW^Ov~9&Y`$7Z%&i*k9TB4tGlPnh3fENBb-)&)qpDFOz{Gqu8rwKi zM>CZ=P`ZD;B=FcTe$8U5Ur6S3U6cnvnK_TwqTew0Gdf=tMmGlsnEF(uezC5-jX8y1 zrB9aqdc;qxav;Eh7i_2@1J%ff^FO3c7O>Ih&mM<`_dp48B;A?XnRzrix6-)o0-p0N z^6SJz#-c_kBD9ijU(@^5N^W<`*}-X;}!z3%p!o9KDnS>U$94a&vpJ7kpLCP%Zy{dCBv_^+wQ%et_~0_oG-(6@5;8z#Jl$NeA=_N zUNRc!C4&5vwmdo%({&43`f{&pOE~lDozLh~92XZW$UDFUu{y+?AW4uup%SpLG+E3p z(9WD=IV{8+DIry$=2w)p?ei^@6EQ<;%VN$8Hq`;sQG@*Q2;+QHb1)V4!mi3zDV-b4 z?{WDtj=xz@GBs;2HU-i0XS?gnGNNhBGoOf%Nard4n_c-XH&e$itni zS#exSFSh)Nsnb)bSFvMfruzrZVm^kytkjUi4dL2nBjuxRpjB6ilO2eRsDZsHOkngt z??9y2?p#lgOiVmnmT^AOy-~yUueZi<(B!WV-z@ra<_x7g#9!~v;wFqA8OYkTz6?&v zwLb$8Wd)UC%M!sHU-pZr*9~0bcW6F!x7o~N_4Y55gJe>K7~%;ngahc0-Fm5eVuCP5 zDPlQ$jPM^=(Y;jwq<)uykHx|p(w-W3&7h&iH|FF*wgKH$bPh+)j~dkSWdll2IK}27 z=vM6#^Xa;oXsN5&PCHOC3q9>!i}^2N9K+ctCxU4=YL3qKOrN!rRpas4u3>rOdhK`B zt1_nRV~vN{zoS;N`s( zBUjr}**y!%Z4JG!H2T`ty?gRqvY}Q}rg7+zwAN_TyavN}?g?5WKXADA_R;M|ge4mQ zbZ2zx&>|dq(e@&1*@i)nmxTM;C=ckfZ&!C5Dts{Wqh!zh7-k_oR-e@8#r{OHWGVUubJCd)cB?uIkDDyjuHddHT`pKz>J`>3(uq9e3g@O$YP*{nB}r zmVzZ#o!BDpb?f$g5>^hQNQSGglSG&1)69W}L2Tt`BrS&* zrWB!2ckX*!5&m=mt+W)5W)2M)+N3PP(f-Tx0c0M6@IXu=_iLp*0{}j|ulh@8&3BFK zXw}n(f}tM!eAR>`C&z*hHH8raLQevn@LI2TVU^a_6CU3M#|klEiumHjezo-zb6S!a zZ{sZN-@z+2a~sHq5+onPCP?sVGAEPWvRb8;(9)}La;>=aIwkk> zxqQ51rsIVR8Q1ZrKBd;(qBz@pDjp)ahl!p2Vs56wVp#Cnpz~(09?JiW^(MYv_=eU! zihIU0`F-hI+fd2G=*tYix|;II*|XH_$UHICn!`KCS1DweJ)WzDy#~B4?uPBMvQ>$^ z8G)5*4*?Rb(g%qt;xa&*sJ&eHG86agdlOwHVCQPeifVyFl6*$gd^s=ym;31FngCMFwxIAQBV|mWT$G2$$d5Oa3 z@7#5KBKKb8PXw*EB%u?;ylhM73=E-Xz_BP1Px>NtSk}ELY*C%%W%D#l`h{<-;Rk|% zT`jn4GGi*Gs^nVOLMm^TC)|!Lhr_F>)E`gQPv#A;=233Jl5-e!_a4eLX{1)T*tN5a zYOZvvpO9SQGu1lG()WsR@;=IX{Dn^C(NC7eh-eZ3DX)}}&AQJs>wh(~6=}sz*ht)c zuzcankn(qMsDaqNHj$L$ijf>jJoj4&PzSVkzLfV;nAoE>aD%~kq`Q~e5IF8eL55{l zoPI!;t)CJ5Yw9Z8Y_(W@YsR?u0CqxK#;=i=EWy%Ev+vmQ^xJENlE39F8(5CC zf9Fsnub#Xqiw^0@bu5oe52}x#`bFFtSZPaJ*g?zL>cQ~YTjmOtwDSE_|Xp9V>S^W3knZEG_TvWPv)LfNs?{U zE~erE^?<$OFo0$On6BNQJLEKrw&%-2G4tgw?=gFS1tpJtDQns7LxtRvx+tLfGQ|{n z#4iH<;zuPPPCnvYXMkW0cs|VJA2L_6I z2zK%J;A#iUpNu50q;#KS_(lWSsw1Bf(L)wtC;t04`cLk~OjP9S2n@Fv7_6ekqm71k zgY!b~5sNO?6R+^`&0HZRkiDbvu zK&Wsa+12FpP*t>QcOTCNydnt1)=P8A0iaHDA-3x$PQ`c%;>{Zj##6pZdanO`-zue; zDGn8{-ITZkA8X6Xm^%TCIz;F|xt3C&ZR2+;TTBP^{_@29{Wy}AbfbeumPX`-yvjSQ zssP5Sz(y}SQE;9?wXKu($l(^>7ZJ2|yx$WkmVi+P5OXkb+X4~s`v^4gN3AR_LS0Ts z#?WqB=zra}8bcC|p!f+@%?~;zs1hhg6+I*P!5_bsmucJux;f%X({A@01tnGPx8>!8 z2($7DXy)9oK4RFts&kpb)#diL6L%em>xAa{59zqnJ#|wZ#8eeeN3K*U`IU{{g^Dtq zq82c}tpS2`vo|k>C1s*4+q_87bv2AhX|YoUH>2x^XLxqQUZ5(v4FYsbfiL7!lLKj8 zD#33>5~r8i++x}$YBc`sN}T#fq8gU%qt3nWKyCTK-pS zRazc!DThElCIdgU@~*b6qh-*YjjJ6;OVE*r=3yJZNh?SIt#&h(+1e%RM|~bQF6Z8A z0l)46lL`V!W;uKo8-i63^595K2*EUXKleB{kYWd>o~&+z0`TM&Fwu@V>NjcR0O#XY zvGLYaaFzkz-qx4r)zP`O^$6D^>afC{s6nvHg+N9w0mGeR5lK%_H~5z+!(Y*H*0p1+S?D@!EzfF>CMNE`zeqetpVPZ^wpYi`-CdwAo z9~^z58i-s0r1gz=B8^l4uol=N8SZfjVV-JOH~{wj z{jm9jpg&!8@IS+%3_8|0Vw%i?ga7SrRYmZPV5r1_BgWsMvgWwNg|YzM9Icj-K4NMC zxj5OJs+eD?yJJ5B)K3Y#-};X^o4HRh>$A=Bx~7T%>&OJc+UuiDmW}ixHaYjK>I3cD z`ctYe3+@f z2mfJ@gQzjKgwECC!?AgH&jQ^W(AZMqBSDbQhcA2yF1^>y>e#E`yVQK*{`oHFWiCbp zC}v|<@Moa>?7^I>C71;t-h4767051^B~w|Ei)(V1I1y2oluCHEt09(dwJl7v+-fDwVd;rFV`Gh_w+HK!FW z#z*jqU7M~C;Kw+SNtX)aoN%j1B&V>R(~}A11arab32|G$1&^KLFDaR=@itvkM_G&R zv-Q6w^)IoTBm4VZYVMRNX!53(bmiq6@$=AMh=fZX1jdf^SLCRYl0-&LIqD*e&_*_-s1R^lPv zpOXrlsGiQV)}g@Y9fkL}CRW;)9H*?s3zly`A@u(G)nDrB=I*{7T{CzjE$lOL>!tg-LOSs?*_;pVdbWC?taoOYWw~Rw)hw`UFH%G1S4G_L=-wTd?9ohVI zefGVQFIM*0K+tJ)qd+66G`@K}IR&U%`d|K2DY2k|KBKNQ@q71cC)UjGuM_+ly*NsJ zx!wX-@b3E-`NnHc&=cgY;@lM0I`TqcHGE2v=kx6o_vClus}f110ev3QSwB*gVZGUa z=->Id-F(NPA+xC#GJS=9e4*wp8qfC)8l-~xH~a}-y?q?jh{3M3JhZK&NQta+&P33n zAJqAIz4^C)wGWzvVF{laNJ93268CuJ0;;&_E$~D88!w-#UwTAsw5(DUYoyjFMI(Bq zyc10_3W)y+pIna)4w=ntp%o}E)FjWB&D^1Rnhp!Ge0vYZvBtdnCIjiz{S&+Ad-Au? zqP#n7R?3R+>>K7)C~>&M0nAeh0puABLwnODhtZ?1+eGykkEr`xs)LmpkWg2Ps9l_~tcTB#E+eZhI}97OupDCBG;d1yfR)w5)aNT04x$b*k&GwO0x!3F zO4h7gqLVFuEu1@M@RX+r{!|tJ zkQ1wi8wKuGd>)nsErmqcs>d>=Vw(nJ-*X0zipj(fr~H5g2fxbw_uKvcBOJJvRRycTVej~bY7bBaKS^LTuMem z!J(D&n@<-PVfckahPH{cAI{xRxYgvVc9Zq+sjuy&OfI)EUi)GHYqW8XMHrJgJJ9Ee zZ>ki$Ez+kq`%3()(ffN1r&}`5_AMCx7=9~KF|tc|i?_|OEe22X$8&sc8y))zDWPH= zkppysUnH7I8NmAGZD+&`z?dmfZmu@`_}+Si|1f%T4V!z>Yn*3@Gfs7BoP(R;)qd|z z4=*VMZHPI*45qX)dxMSU+_ilr1{ip>0izF3Uxc~-d0q}B#=nh(yZMNkGNK1Sr9RRfq;=1zKTMoZdr+`N7{ZyXxgii@?i={XR;ORRLmuIDvFi*u~OE zCdOb2-`KZ^9Bf9f5twU*%=N2fR49{yV0utJX;9`gfzgBRV=iJD4Osd*wzv0BNi-|D zor90x?8m|!mlO2MzPeJ<2QP^+zM^;6i!2+^JN~|}3@b$zTq-SKE5O{Bq*2}9Q-zjD8H?!lsiRej10(R{+w-5v(J~Qpz@5U&e_GeCw zyC{{4Z`%TS>DcA`sF!H*4re$cK2KOnr9vP-@B5?}&_?-_t~ih;^Sde`kl%%6;fnJ? zS`zS`-%DYY926y3zu^))1R``<+TT}6iFPhEwSOt7r;qWws;CqKxoX!Fjt-+1XXaES zx~`T?JEF<5PER&|k#0H37@7Eh50Gvtowm&gaFS6!41uUV)i^S*MbGS-{r>V-!~2K9 zWAi1l)9;}I5Jt-84tKbIp4Z}3RK7!s zPIrl=Pw*(HufEQ1GSd)dqVlR`NS|kNrqR18Ya0Y&vXg$r?yeQ)RkAl1{A}P32*gL! zqqZ>VjeSBjqhR`m5H;bvV>jda7Rc{yH|p52)|b<4-#4{dX0Ls7ShU*;xfs>QjN(QG zTuytlmzneYBU)8OCG9{<;gI%mRS2Z>FwYvfk$dWT0+DGTNAEJinT3I#kmWEYK91P< zXR*b;TW@{GDSXDWq}}sX7*7aaha!)?HEMJdm#H5xxznslRf!r91 zDS}$YlROWjQIdX3=pYp1&`gdfaU8!rg(RZp)?f)&hCuwiLc6xWUR-s!CiQbA!0gqc z$Pt(I_4(!T#0GfPrE(`WdbTYBnt>ig0FUmDxjI8ECv+yHY=1_a5E^Az8i3SafeXRg zn`PiGJ%k;Qdz`M_h1`1YWM&hC`h?c$q^hkc)yQ#5Be5W+)d|O(KaD5Yq?0>%;ps8L zw2a3+OyT8=>&;)awtQdDvV^OE3b}}uu)`*f7bfY9<55{nLSJs+g`ia&v_iDiTFm1R zEPvEGeR6VAq+rDG!Kw|jF#|rSrwmJf7MRkIojne8R2U??o=5_7b!`k*WkqYayiJeQ z>qX7}H-+Xq*nI-&)f1x2i&yV6PYb!MKkr_kwJgw#k2GR~VZV0IJXjqc@g?GI0{yO{ zE&yn)jPBCLGt8qKzo^x?qrSuSq zd+8@TMQsgk6Xd@<%)YRs!Lo6Lw2p^^ILI#NP#_S*E857QDm zArOS+t240Vs}8+TN&k3ZYWBlV#*Ca)GK^P{{gXD;@FtFVD~$|fCLs_<(KC(k>moF$ zhbKB*!UY$SK_Oz-&VuvuMXiq?X#omE^x5udF&j6uiRt9QDN3t06>#|>kn&Kqn~ayw z$#M5TwI;W&)`Hvs@|6XX7D9kxjags2=sFfT%9IeM3DLbno6_LxMWwBmwxavS7lsb5 zaDjPOy`@f-mi@IhF(;8;2!G8}`0N&ARs=mvB4H!;^y;u8+9PWm`m|p9YI$KiS}*%O zlkRziS|yzpEY4gRJ-5Z)2NxqY{G1G?edz8*B2#>&LddjOA4dfv49=`xf(dvAw1*Rz zi?rF*N!j1%HB$p>)u=OUc5IN=b&SZ2CP}cq^;{>%xgx7b#ICw;{zvM zvV$>kME5~PcT)^m9P}?;AnScc{?tTba=G8ybX~EO*p1q9F3TbpH&KFxa_``yAitz z4|N7qq53L!VMqBMaXaPc*<={Tqz4)1-YIhkvjNm@KuX~v5ApU5qUHKE`gY2aiMo^C znVq8l{!f^?A`R7P#~==9%Q87i%dZot|LWklfn70M;BDJk#*2kG89kqEIulm^YqWvL z3WyqMs8~A9p<=ne^MaX8w#O_I8}>|k^{@p5`ri2AQOd#M)?Cb`E*yQ4~z_yqC9Q0gnPNarVg~Esey4GVi0kywe z=@Yu7>}*g)jQI%RZY)3L(-&RC#gL#-(-RDt^vEGUN)o8Obf6$ zUZ3n0vq&&)Dw5>rknm{ z<-gXMgFHD1WzN}mNgPG>9I_?MV@tfV%0?OoLJ8pE2V^z;ku!%@0 z3iCI>G42VsM3pR$rQw6*k>74?HGrPK&3p6ccbJL}B`o1y90~&hp!_FBS3=f>eubIj z0h<7a(_8hm-mr;gsG1X9Tm=9l-cW6Vjd?7{pR{#zq*$E z-%_aI5Ypj?f5se#5s__CeH3&>1b*OIYOyCkkRSGq)UVcHg*7wkfP(*~Ry;ZGDL1nv8wNZ{qoxM{+Or za@8v~KM{EyDLwi(<1nGlbJIsfDm=+_u{jRcT@-=n$7Ri|R0;lOQqcG5u9MxT;DD&= zD_DsWjc}8XS=w5MQvvNXc`soO=2v%fhSnL+&TrVOh=m64v=e^g;p5@*KQON+XKlgg zwL6>ELxmnSW~R2pl-5blis*@Zu1?)+Y$->p=yx1ai$##GzHhYCBR5IlrgE%T64Bia+&awKrbcQ^7fczR6m#zTs;VjoFM z@zQ!f)ZJ8#TwOU`sMR8vAlE=n#i(Cgb9QBeX%w}g0X zS~|DJxE3wtai)PnH$~zC!qae45k=P=&Xd>`V7gL28P*#Xgt5bf&HDf179=r~TGd#e zT!Q_Kq036DmRMbOMcq0=JUvAjl%`pau2Exz+D+~^f9zL#V7?Yz=5ATeEKW2OC^c>5_av58c*#jcUr;CRbMwg`0fyb!NCgumMHEHIl#2kyk+| zHC*o0&Wb@9NkL5NAa|tiFv7;?+x+Zqsrwd3eh_zAdW=OP*-0TrasldDU6>+?F`on( zD5*gafv5-VjJ=&|26W-~)@!D$pHD`XcIvhfvEt2+&6Sz&Yi@8~^o4S1`t@8Ri3Z>l z@j|hI2cYpaGtG1C!Pzxz`;gag(P42iyMgaJJBdLiMGp z2`>LjCr{Rv@*G@$HS_e%8s|^RrOt>P{Iy5gI;>HFtiul$VLOR~OSXw-3mh?mKRuGO z)|Q<7ITL#d68W#^XcT=QZ)1~oU+fK7Erf+1D#zItecCt2)?3x!*xcuZW|DeD zWIEEcwu}qr<)G zrpOm6_fzb7!8O$mqqzbpmZ=#^~ml>BauJyRtAlz%`+4$@S+a|r5 z-Rr9+TDxo5du1)l=?rIk?x$uK?pzOS4-0ey2QFGBW(sQPLEt2ZaoOgQ~ zzfkDy!I!OM_f1Zt82nCG0e-o6h9 z40()@VkP8NeHVme#JXJ)G~|}BVK8#)!;Jd(J%uqdu-(gm*3X9@FRgcZ1h-h^1DE`l zRpR(A)U$=>y=pswRYSO&CNS2C^C>&}mInf}Sk3uUNsBGT!YVP(BA=uRbvlGHsDj(g zC5c_n3pZsRr9|x@e!G#(>Xa+E`iJ}u*}!G$gSDG*yhG6i#4hvua;iP&+H-CT@Cq?T z=%>MLKf@}AmVQY;d21Jbj}M`hQ;re=N+JZOFy_Gm$w%Jl3OBHkJ-kkBm%`g~BYPl_ ztcM49j7Df5*rpU4h1DFrA}>;RMIcZC=wuhIzXw^0`7K0*|mh9`> z3qBQJ7Eo61(Copz*lwy=0BF@L_szoP_pdt+Jd;--dp?6#6tmScYk796v%rriZHC>E zt}+2Hz+);CAzlV8IUnjpu@Fnl` z8a$uQpm$H2ix4qkXrP3Y#8Z^O0~^t!>vIxkILq?`y)OzD%Cj_-Z%p?Ct<&`TZ8Mx_ z^RK~vv5QxUQI)Y9sp%8bi_SI<$1_jfP;F%J>P3-eMbw-eXo;x-QeDHg^_#%;Y zW@^Qd9dy-^)Z;J)DEoo7oin$2Hu?v!<%{G92+T4eIgctqes)8pep3HrzifLfn4I#TI#l6jvl>5Cg!SQ>d+&i!?#rzg@RCt2* zAgKDER<|{6PDJM4F?mwM%khoHs8eA9O4($h*npnXv?yVJE+5s0xV*@%BJ~3jv79c2 zo2aYojf5`VZ;9)d)}<5`m8IdnehO`gBNglbE^FH}c}X)1Ou9k)^`w2WnV8hyaF^ES zKt(0uV(4VED-y1Z+7R*W+1h;hL@|cloMx)qxbA;qF-kI~d|RcgxMX}CP9?J<<2bZP z#E)koqCX&3nJ8-6$9V^3^RrQ{b62IxhIn2>M)b`%*<%rC(}V9$CMqD3j;HixdmsHK zx}`Zgt*zSERC(Z~a%cNY=0gfGz|%zgjX#=~o67lmkew(8gS9}Zt%=5v+u5U^QJ1u{ zbSa}gcepOl#a%}v z^G=sK*hf4hvsxonrv2U6LkR>Gv+dd}1qJei+9`8JPypUjgaOm}pssgpbJ=ptd$>z>4dy?yq9#dq7nubGYd@*jRT{Tn$i|g^oM$ zwQkH|)%#^ytWT+FigfPoW^*_64iFgP+x1yDi?lsea~Hkmp=Dm5 z(<5v`IWFvH6eq z>0RD()A<8~Ht=v17ZCLlFJ0dRkgw`PFO;^i=A>V3o@ywSlAnN*GT+4MPgm3^6 zZ`;(w;k&f?WnLJAd^SUv79C)Hcw-p$_xAdlB;HRpt-N$~N6*zh%Yc%^xpz@22UxAw zP4jCrTz=Y>*M-YL$1CV1;X4OoK~?nFl9 ztjn#X_hrK$&2bkdii!wEZ{6PVuWY(vu2IoTh~xxR!V!MWyZxGnS2m^wiZN?q=q@0W zi4elw#%hU{vK)Sgi`EHBy=G_@(D&2L_HS(8oiSDBZJ&z0JsbSnp;C9-dnG_Bt;Tf< zzb95V?(kFJHl@ljvGWEGCG2PF?rBIU>4imKqPb+R5hEa>2P#*UW$??srGJm-t^VZ{ zYrUe~e>YBWHM_!x$9JL)RZ_QWyjE6Q_E5g;&92+Up-0Xo0|Tn!aks&s~F8W0zeA9kb8}zUxusP!&SarvRA8cY^XA zneZh;^11C*P6VpR;maouO*1%`{czEVDWKwkM!fx4bJmHukgAE$JCMsRy!x^>xNtj3 z>kqRpfwFQ6PZuRAwKkAomugWDnJ`h@!p;^X#d%ZcU{|v4Hud_?N(3fn=Q9vT`~KCf z<=aYq=i6nX4p}#O>UEphR(M#xHPG#@=3^Gzd;iR*FcY;$rfFfPqO>p2Mcw>uZ{oxa z1@1bI9in#ap&~Sz#|^fDK(Br|=gUhq%Yp>)?O_y)yq$NEWWi8^V# zj^D|o(6>bWkn@SGquupT#9OWjb*tCro0k{;7CV%zj($C`HC3_%BA37H%IGrY9d75k z>WG7)Piw{W{E&7o!J_)))Pk{<7w?}s1nVdIX?*K@DRX9N_z~ZeGqc~M!Q3L#nTy!e zv)V-QlDf-7mb#SY-ockLf(EYygOg&rh~BUAt?K7Y$DOd&YgI;mUrmvKn-d|J2@g>~ zQlo!iUZ`F1WL-a_vD8M8>t9mkUAtZMDvO;vF)G?GvLp4KHo@Z5MA3)33NeDE&w0?t ztYZ6op<>@Occ{Bu@k9H_2uQK&V{5EoXsY;W0liQnnLqLis85w`RN~T8b_t{w|*Q)O{KY zR^I(m#1|1KKh$fy0s_@4l=azkw}?v_Uh+%7gmf2kG`V$?7B%rj&D=lrtOW63uL}HzntY#_)J_Uw+z5?e| z3=l+VPZR{cNG5knSoP`E>|d0m$h)nG(Hi{J*U)Q(yDEfG@?KQbYJ?4)Gvj_7&~g0vsU`yCmWq-C+l-$K%Oj}`x-TRO=%>5?jbtR`jc!d?vwt$*~F2? z!!Xqn0jx?lNwThEJGAW|$I+vL&QrZo5{Ze7tF*2$I=BnvfloN86=FT zN@co@p8V`;JFA1WGL|Gx@hxUNI%B!>dPS>Sa)MZt9wJM0yPMsHNCe(qe%o6gT|N6M zxN)VyD@IYHNkom3Kc@f!O^%;sDYHLcJnxgTrf9(?neod$acyDu@h+3UVyZ~g%GYsc zPIU7#r7LWXDWqGd8&&T7R)Iw;@TY82O=HxWY;5-KGauhX!)l$~(|u6uY8)hcIA>H? z`DasSG7#bW|3CjD4&2ep81+)hE{|$GC?pn64?R=LgwFu+^MDIm5wz_)aOP-c^*+oU0Joh23hVT^?j-c3Nu zm@$~myFy2i{zfnD@zrZgATNESgGIXBm7Ro~ z@_Z*bgOiS~9QMobmrZ%(iD_zy;@R)Y3ArfquObc!cq>N8yk=MLui_!uGaod}W}TF{ ze-}`ruTfVpE5)SX;F>bOe5Ovy3UDqZTAd^CrOBmU83aoCx#i)oF=Y?GS;Ic*ms-7z zQjIMPX{tS^0l3-J1@Md?L6A$m;ciP@X`%tc`F@HHH(+@6*`R+{m2)!ePjrns7;V}3 z*Aq?Q3hsV>K^B>sjn6`06S~Vo(EjuVt02kj@ICFs+#H zXpVjHvqgcXmw;c2FH$Q;3Q95jYKUAGA~;khNC1;a7%bJ6ryOR>ecZ`a9;reRTizyd z7tSQ>_|KRO%|!T&+hmjTP=_pG+|j-u(8kRw-V*-3w0sd5LL)1dXvP}^q@ga`oCT5pSqSa=%9*)vg2#XLhtv`kAkWYi zpVGS~>z3l{RIgH&r`QJnCJChw?o6?O5d;Sd{CX1;NF(>7FdCyBI3wH*E6*fxvmLf) z+?K4GEGDAIZj3{br5WVCIqTbJKWrWO1#D(nNKM-ue;y-=TL#p7Nn3CbWYm0?3H?=w6e_)e|xFtZTn! zS_EG-=xdbvWO=$~HB#02FeIF*t9%nXf3LjXToDoJ{UztuLD4lwSc`cl)h)i4MM^f#}6 zg+aQ<_@w%FX!=hM^N>()vYVyNY&DT8Uf;jJdFCtIMr?~Vw|}bUDIggmLxDY0^DNfo zDt)!`Km)eEN;Z;DIWjLAt;VRKt~PX@-rI;L%`>&KZBV#Uterq0-ZNCwxP9A`S#@S> z5fW{KQ%h90uVp(Ozsbv2zB!EQcUO|ef(mxSJrhWl{X!S(Ry9};{sM&<&$l!Aj|X%w zZDf;%HFnlS2TRSCA3+5%Sj{wOcjvYx$_(R)_AuM|J=ZQM1ME7mvz2_c3%3Jb15{Z@ z+;V+YC|!E{ZQx{{Yz|QVdi~I&Ad{2=&hWwla|Q$lY}Dq1K=RdYS01;D2giP@gDp^f zw=#t+qb9cBZu8dbp(GkHQw>fSPj%#D%I~?QKSa4{ZmAe@2?*1Gf}U$^jX(FDvpM?Z z)1`f;P;3%q9u@}K_-RM){t$fKs&J66ciHjwc^Gl9cfWXp(U1c`;g6 zSFma5>;Cwd&y6L$xnAm?8Kilh2wvlv`+58uTRP03kf*jCw32ZFx1d40@~lOwymNcJ zd}+R?<#i3u{n@FrO6cG})Qx|)lw4p1egAfv@hWXvwP!zawDL*fXBmk+Z$RRb6PLk5 znwU5S7cg{$;6YM~9y3Tt(d9h4GM)^EEm2#QaCTopjqeW0`b$mSoJoe^*?Lev_uZY& zMGL^JoCE+J=Mo{;nW;;$RfI?-r8H)c(nxw`u!3Z#lLMkCMWsXlMTAYbjWsAPM6h3I z0Uz{0NDfIxTmfpTm@c(Zc9 zq-b88WBTDnf=AQ=M*8Kag0fzrzd?5js5fYuB~?`V0mkKP*~n7QS(V>8RlRwy5)Nt` z8daC5E&PV6?nT#6fIb#9-k|BoEWzVR!|^Ri%vO0^ia868(~zl~%m(1L-Eb1{RAg`x zF!=GrT^k8xJsHm#t&#^o+5Qrfix@sUB0_y-xKqbg8gpYMS&-jX)-I5=N1mgZS z{BUaPZk>NW1(|oWZFt7rLX#6y0<_W{M80C}#|+1J69n%fnObd)s=mGlyb}0^qNU?9 zPZ<6X#Y?pwLA~Z*i{auXU9FtNs;&5?Z00$gXJa`V)vsMya}2(_(J*IH&lBd8OH|{P zpYm!+kw*Ew_igN=5Nh7A#Hr?%9{HH+GJ`(G`f$?C2b;iR`hWSYR-f1Izs4Kld*qh_cuU&%j)e;KWub5Gaa`#g+o9+>{k)0~v( zQRO@A+xk{eBj$zlvw-P86qPJ}LF1}psKw2pa`bAQ{=gAVM9?YcZl)qa>QaorKgNwV z?Hp1@z=Ih6Ly?|7?{c3a@+Dt`Q#%ARY2tGE>yo_&`=2EfmcTq-K}ByNFW~WWrAPmv zDb34Zcixh{l7Dm~WfK>xs~co!X)yESzGaR9YH$gxi}LTJ5b|PJ+AOyJOb`>vkL##E zTQix&B`H=lQHyCycvxiGsH;_>JUTCE{jQGLz;pj|ZoqIY`cU8Km;rg2T8%)0)AzQP z?1T9g)B*Yq>*8C;H$*$+EATKaLU)a|gU87%%m%H!p31*=#yB42{@E*@Q!qg0CAoy_ z<|kBs7US05qC?wB?im{XZ-zGiy@GKIA?Rk{6<1~z=cD2zdCy*c=aKHQ8NveGA`l7^ zkV2h$H4k6DKOr8y{mlkEpJTl)b}4D-3h75&t}D{#EZ9?;`Lxd!AbX3YQ0Km;ajzB& zv1PZ(uAPI_fwK6?4FaP4KmD3Kl^ZTK>^&UZO4rBrP`a1g-@Pss2z_$?0geUCVK{_7 z3LoA=#=APu$Y&Iu*53}v_DcMtaMHk!O3^}Pu(15!Y;uT1Koc6CgIJhUd!+cb_DWev zmZ$MK(0&hUA^G?IEVELmSWwx*jQ?yWy7S>+h6BwxCSW3F(n~x#YD(d<7q179Veof) zgHAh#=RdqOo^lIofH##_Q|aWV2M^z`d&obj1&j49BVym;0jp-584VWMoBY*Y+;ni1 zu;FOcLcMWzQuQ}i#>DbNe}W~ISiyI{wbIHG%> z$vd({QD9uxVB_u9{fM$B?*Tau&U5^U0jN?f-Hx~xRE3|N1 zLYL~!1IuHo^t97Wn?c5poeuM(m0p>l6%vJ*L62_|UsRsjG|$%PkpHxjO|_dDF9U|V2;=u=5Cuo5Tix%VA+dx^R zy%!@{DPobc6DE(`g(J6>EZ$&m_1cY?|HBRX9+liy?O>`m)cv5$1OHuIy5i#Xm4jF3 zAX1RaGuKlQb+I5fxM4vU=Bp1>d>WZ+P0&hsm8dDB5{VLC;o&9#Su_uL6tgwG(yMP~D)E*~ zK*r@`>C0?U#LfUEt6Lc?|BZ}<@BdQC1Fql1)X(oo&kE1>J_dZ3*-YXi^NC&aCVpJn zDqaF$?{WgUN)O0A`)GNA4%Y$F(tPz=u#!NeH{3&qg1ZT9sR4=84AgNxCF&-@CIvV+ zxKsbyZ18xDj54eKKwJ^i|0ovo{}R#{1_wLI;OfK3=qZ5go4#64eeG?19aNsbbO8Q< zWTj=LC8QOAUt<{s6$J$qd4=23(kjx@|31I=?EgS;_q2C*4E(<%P&Cq~j~Sz*WpKap I?z30_3xBdADgXcg literal 0 HcmV?d00001 diff --git a/Simulation_param/images/dualoperator.png b/Simulation_param/images/dualoperator.png new file mode 100644 index 0000000000000000000000000000000000000000..69f707dbdea672a34b488e09de82dfeb18ea271b GIT binary patch literal 649615 zcmeFZ2UL^U)<4XQqd1~Cb1m3_8I2+$pj7FOjwK@CfPmCkfY3ogZ((#8#)<~%B`N{~ z2th*c>Ifpei2*`XO6V;>Xi5J2B+NVa&RyTP*8SG{*80C|UDvvEN%B1BIcJ|;e*3rg zd2U_MKeK7Wt_?y$LYuH>e>4;l60s8!5>8&f4!%hWY^A{e-S)qD$XBx!Znc>+1kl`gR%L|4HG}sNZsK?b_vu)Z`_dP>!-szqMVxt zUjC?>nwtC(1$hMpS-3)$;OFXj#aGsqun!F(7~@Ak%F+N+>;^ca7%zkW9Rr=O3iDJ%1TMq{aCU9RA5O&x4J?f>bwve1#r*3{ z1|AN!AP2N!_-U^^lBWEsIAM3>|7UxUjQ;=s_uq&7M>77exc)1y|40J=(Z&DOuK$Yb zKa#+Ibn$<+>wlNHHv9$fY+V7>`2c(i&29M=px;-76WELE;a}i-o8N?lz7xX!_`^lt zt}(jXZyoGJ)s@0e{pMZRC-LQ{^(PND&U$>N*zTfTc zN(fC6E|c_anoR1e-_iF|=HT3opC>2ToM0kRn=tsZ;$&d%(C0UI#MbZ;D*r!K%B8wr z|MgKweP7I`zdkm9|I+!dPa&dT+x^q6o@bBj{_DrbCvVXH`XnU&k9vgOSN{z?xUBN$ z-$Fvi!@i<^@z+On%zq#Gf45){Nu%wmlIp~BCw|#Gb!%$WExR#Shx6!!U>8;I-v5`q zZ#{|>BV^Cw2(OWIXY!}@6UT^i9HZNUt9!NzG^L;WhHXP52cP?1@cqYK^pvjzfAasE z`0f896?#JY2b%QMPf5oD51eUi-*%(>JuZmXZk!e1*M_rY-ENZJ!C%$Xi{XD&cX7Tg z6gg^eC!6q7L>_L#OL6?DPI)9Tm>CqxzegxLR$xD-<3#%M@Zse)1L?1P5_q&Zovi{x z8hUGWPH-vzzs)=UH`%Q~y@WdJKB;o|8AvSVpK$N?pLt86j3}0+QxZ&7*sHR;(9Bn? z)rCGjsm^yt?)0EfEcRekw8RBav}?R2o(-GlcSfL9A!-6&Q#8TFckah~NKWt^5D(o>yhATKDrBVFh3UCVMiBGd(8D*{KwYJaJl#_|UMHk}Z&QQP9HZ zcJ!xeLw~=GV}4f|A(||?W5?SGdTCo*8{uS9N{f9z4Nul1X|n1ShbJd_KL*L$h4t4| zR|g&wD5$z;G~YnnWimP(hsVboUR61(|$xJcH99UUok$>+hFwb)CF39pF z3LdSVc8wo6h)VnR?K7(g^dt3i*o>x^H-#0Il{*UTI7@RockZmcFRo#D$f^>D7uWQi z+G4?OOEXxW5HCGQ^tjW>4=Z`gl}!~v%ePstU%&QS9xqf> zQBj%nN=-{sR8xy(Gl)8siw$nM9s}=Y=jKu<6pD*gX2-jL$?|9hcfQc&izzC;$9-HR3MCng;iZn z@$~V*Pxh8$Teml6cQ~r~PF=QeFQPfybz~S5N}QX1zj#Q^f7bq6k6_r)*6wZ%Jbh}) z{nxOt2#lD#_2EW?^XF~aQuWe1M_JZHd;5a{^JB%S`n@&x#p@yrw2MFHXLdM>N@yOF zddwN4Hl>ideO*p4;r_t>Q)j}kFPMn;SAm5cEOqHU(|M608Z z5-m5}cVkp=uHgdQ-H(iRQYt^^*VNRsb$7=r;u}|f8qtBBG0!pyw9?%q*j{bys!aAr zo=XW_ti!o#utzc}+tE%J-0#9FC@7E!%*GV+tnJK^Ie%-vfk;d(X}_+=L{IVEyLanL zCwqzsZ;Hpe3!A>yC#!oMN={Cej;?!C9JD-d>+ipm!Em~I^{Rg7$hj1S$@~bL@veM_ zeDltf)ByH`OF+#|#mS26eWxWg`6~`_55e;aE?xqL!8x z+Ntg?Py?UaI-?uAm6<5r33k#( zr;ndp&mYn~a&=p6IWy6f&KlPFj>bn_m3Hmiv&VV#aFCX`hWBBl9@(7<2?@>`+|Oc_ z$0kdbCrT;f3#ZHX@y8JA4F7Xp#KmZ$g9dknse`*K6L}64;ku<Hil1y6bfRWGTm->%n2Ww^>rVr(kfpMpC}o>HTwu_}vl`joDVEt)MZ3^|8;*^GB}fbpG+j9|?q; zH*cEd+5a@%;UMP0mv)FoqF^tHO0ew)Zf zY%}Ts-DtUnC|L^<1{_HY1-z>J$13B{X!*@Qhlhu!6&4nbFHxP2C@DRHz4}~KT3R~Z zTbtrO-Jyz^2Ob{@}yw_aDT|={ruTiDGRcpk5R^1CWKF~Lcy|| zVgr_j)4K1crKaB2f4^qU8nx@6f3)x!0lzZrjB zr2Lm{Y5Ixp78ZQFR|;IZA#yK1oNVvth%`#mx0+s3T(@prE@-t{r!NS7Fd?3%apcH@ zzM62{^iB!C{)cJ-PWfHNS~>y^X36kzy-?xpb19_CmAcCMUpMW}1$*>cLsKkpVky_Vt?(v z%Er_R4{KVFPg`#?&G|s_){Kg80RbRb^E#=r!*QUT-Kz_+_}gzP%@w~N3oi|KV%03& z6{Nw1+Np6N+$52=JUlvT zq$Jov*JG;=RTr#*mUHFg^%aQZgAJ+-@KYB_Hed~r=k@~*q!km=ZV1A^`^i5C?SdQD z2@Bupi@m-YaBfPjdS%%PJJu3;oUtP3(6F}`&P_Q>z_fGGt zTzDft)2K0taIO5jtXXdVzDb(13JZPJUmNkJSEhV)cGi>h49v^Q%F00{9xNdif}Th_ zjw`oWd*QN#|IiZ`8+ZLoBI%bndxz zx%$1+*BUEiEef7NI514Nv9ZAb(1X-LdOjOh8QfU0lTtQw?%RtJFt@jF&mL6;Es*3b z)QD8HnSz_!`$+4^kqbTYScrMi2rJT9L&@RWpNz$__W%}aZocqtzynZ)e?Y(;xlXFq z@)$KXF78~hWn)#<@#!Q*$9!|-$JUbBkRGtKjTBTLS!J2rae~N#2fbrWIH|;&mHT^5 zTS9=}2_tej%SLd4`5q1L`pv7V-nL$l?w+wgU?><8mOIx$-O&6n(dwrwVQXn6UQPwz zI#qjp_fg8{&0oyVJf7W5TzGwz0hyckL{BV4J%mM(>%N^cJJ#4ty$5pu7cCjQaHYDs zIv2q5%BRi5gD2hyZ1&e z9%fk-+99yYo{)XjfXxM;UJ#I|MmPWg42$&Q?!9~4CKtnWR=x-8#>$0K#Wp-?`s$TI zqI#r=m|Q>5lBYQM6SM&jH8gQFB0$x_*PC_fVMA`v-x?%on%xCmBBR6yd9L?a7KG1# z-1=Oc6gX2`V9r-|p`NpXY_F#UP>I#F$VJyBctcc_+vzc!n?vsu@=dx_) z`9Yy=Iy zcI_IRZDzqt;91~$p;s}6Z~1bGEhn{u2zwyW`& z=g@`5M2%=NZ-vQf6oj6h^?xq(T#8}KxBdXzk1+rRd74d3PF8-ds2itI(~5eN!?oi~ zGCNe@r$~e`zngLHaP;b}a>wCtN4XF{k52Z+PR$QYlulM$T>+o7wJ+9{21-bH#Z;6C z7<+M5Q{yt7!N7UGPjZ_aV`>q(D>oQ7DS-nrgvKC98s03RB-V#2*+ryOud$*rTFz#-(w~5>han}cVQpo zDII}!KI_N{2}n7*zw86YYdPg-$6y1uK)5jiE)N`MJ^1JD6U{oyv?lG`c_fXHrA$hN z`CYLMIr6jhkd?u7&SshDmRmQ0Rw{z>LwK`kh*K7^-ptpskEd7RT&lg&E^xJVWdv|0 zs)u9XUaPy45GM$*C&#*_}nTCe! zky35eSvdlvKs}TNnBzHG$w2=|=_kAmlMIe&X=%Bb*>N=+QpLHE4wolWI=_aG^l0?~ zyP?C>;-$z3rLWfpcY9t>Zve9BQ$a8u`%FOL#KgoHy;K!>6zhQT{DR32z^f({>%`Y# zo0kR7OvrWDYOuczYPq*LV6pS#$B&ze@!-%l2T$Gnya3tMp=uq@u)&>ai2e}SVfWg$ z+i__Sf*-PnMn>L!{CF9;2_0}($dM0vkA1jKXAH9|d7LulZj_`9ZwywZXGG{GzF=n3 zVGbnSCu0!RpHV22C0;6Ijx&`URDj4FQ)3>201)AjC_pkt3xk%ubp)ASm7bs`QYD@a zc(CP+r0lCVU?DD7K1N&nOJfbwFAi=xq8i@-Y8vj<1e*=X=~g-wkoJuyeNJ98{k48g zO`@jqxQenJkV;}|MdZtJJ}TpVw&B2$lMrL{rkI%&;MyA$CMsSs$i7tUVSCj2_eSb# zmZ_7wd(Qfr&e6H^=g%)(5jZ*54FcIs9D}IZUFar%f`-in$6KI$M@(LyWLe~XrI8C( z|9;%xn>hwy6vb%rau0KGlNBUo&OJphj&Wzxbb_oH;~!t%1U`e%*d&T&&&_S?OCtxX z*QR8D#5X3yvf~u3-qa0vfGZ_oiXpYTy$JS+Z%hKq-ne>u6tu3 zm3H_QE1KvgEG$g5Z+W`*WM{b6{H3Ew90|e1RY|J}d5VBKD;XcH`gsjX*0#%ACxE4I zb3*YTJ3G68!&vTRlPpIvG*wih08jvdwnkXg2Kj(OHyornx0OL3uyS7h74Dx-K^*`o}Qj9-10`zz`y{gl$`Zg(?gL3%`6Dxcdn-x)`AMPSe14- z+Cr*(DkP{WNef~FmINw!@lYgiG#?eepN(Cfo1afLOy4SA94?`?^r9C`gz}*jO!)bw z7kgn60Lf_iPNoyEhkhCkK*ETLH>$dHJpxK0Z*50>gWdaVt9az&&KekmOY(_Sp^vHG z@QWKC3zQ&@?d|O?pty7w*n$_o1abe*6p_Z8dc9e!4`2&gIMR_^xC->FY`)7$4Wh!g z5)(kBGPT*okItp+eXFUg90_9`HqSc<33lz%Q+I&;v#|8>KDgu$5&`EdpHvKpE8jdT zhSw4v++I+TnJEJa<)Qmd`Q~T=Xh}YdAfIoC5E26a+dUsVYQZ?vOMnRZX1T*L|54ol za>gJkENOar8a)eQ;;C_+cMtcSxjlVeb`pm996LYB(3z~z3YdRpm@dFv{Sag1Mszfq zgZ!dB`T7vD8_TaChG?9Iy#SiqG{i-$mVwcvyxx>NmF zgHN^Lv5RAP9gFs%WC-NU_H?6DoABT&6W|dRg|3M{jPu8W;pwM@0#mtwXkZ0uUL%iO z1x2zdy?lNZHWInQj}gO)M4!Fbnbne7`;F1n3KDB3wesEIHnN2~eYGy)r7{=EdN)|n zov|I%u5(YnOTM`uVtDEFpp&mYNP01Vl&k;R7>7-6IZLIjT$=25R*C5UwVaV(Q8zY; zGd1lrUi(Vpx(2bD?}bBlXFlVzO%Lvu$be(eIp;IzRPN^E!>$oM!WgRZOH*za7nFDx zuC11dUFDI+EA85_>c2$cnegnDm2DpXd^pyt{}%(Tl(o^=!KfT+GUR zuOs>e0%Qu!`OrqeWh>tbz-`YL5Fx3-oTVN@lh&!TV4BjaSM*>6fX62$_Q5=&J@Moq zl`UJg{Lh1K3Npc-mk6T+@lzO@CzxZ%CTVOCG0~i4Ok)Ck5Tpq9gQ^}1R zL<9aPLOdTip(4(oGqQX2L1yUTsbBu=1u)G%pWbi!!>WXm7o7IMpHY)Ab#ClIOgkXI)H6}(#Lc-zs`md;^B_+8)uLAM3 zA3K95&f_7$XWr-paAj5*95fwkUhI(~DaV&qh?Bb@_v^7nBcjaVo@(z~a0xmsPsT9F zCw5Omq~CR~T9#8UWsr291P*I-~dBzyo1br1sZjWXGZ*Jp=X!pE`&4G&c- ztE)mpJ$d2C{9ThwW6wI^+GQInfypYICGh&Cbg(3#3>SZ;_mR27WJ9^=2n_I~dYK(@ z)Im`Doj}oz`0P9JS+KX{)lzp)!F@>`>$|G1Ju%>*Fwr+?thEpEKtG;0Fc3@3x5zSS zOi+tJ0S*FDY)s6hoY8p*Wr&CZ3&sEg2$~Lr;&IVE#~wgj*-8*mLwQU8!!r`aSMosx z4vhe=WC0o1M1`uoGdqVY`o)*T9P!30)8A-vWWHU&}@* zD=N!To3!JB`+#&n12z}zwGJvr2)hA3#6u;d5#mel?EE|`1;Iq$YO#AFz}WC`C9S~4 z0uu5ld0gnOKq(IZy#$6K`rW??U^;Ks2sGx=G+C z+|#zK#$?Z-<|kLdv>^7n1&vzp1D#TQgN*exN5?~R{#tfWWi>l)M2N=uHo>v3I7=uU|TcAofO3?Td%@V}X(b zqNI24WvEnc-{>o;6I|xv2G|G1w8hC_cB#uK=o+}#2n=z#kQmT5(m|&uqDYFpt&ehV zs5MQmZb^~;Y6)h1kCuPl4&t~I&MAHrH0?x3v~V(0v9x>M8H%JtRF)wO0!&<5S{kIo z@DPgQw7M%f-Id$=B4tc_+vBpVN(;t)S%VFy9wSc&ts#wzbt32w)l*cOv&hA!0&sH3 zO6T&eeLsa_u#iKl?%~ucHa&wJ$C?6~x0l0#x`mT>;W&-2VfY28`4oNZS+iO5f@d|% zK~NXb^iu#5dcHyQln#`8U21^Gs@oT?NdkDk=q}JTOX1bjc`N7vVzhi*Jw0bLZqfkr zqA*YDe-$bM3_}9jTG2Xi`i;yws+fYtlooL9FK+ZvORs=W+Zz)!_3!2LE(_cjb_~VsAyFz6Z!6jlb!Hqpvn;0gUD9^ zb)ZAIrPgSV&wqR^d6@siKl`=ZjX<=BVG*|ij@u4+IpAOJlA*e{wzC3AU1YeV{zy~n zTI5IHmp783Og0HFAUxm4!y|Wxyjd;=J44|uQC#widd31)pd?ohOnkO)IE|iLITb2j zUz*zC2sMBMSg=c^Y|E2C!6EMfz8F3aj%)s12*~$dT>-;R1LFAh=w=Dc7$8{!*`*At zBQbP)B>**A%oWJhDZb+%BR+e3s3D+Xry?tCv!p(-`=?Jk_Ax)80+0-i$NF|8e-!FKR z0w)6)x`;M}jH|xX&b!L*G$f@c=as@90?Ge80LgrlTBoxLqKcns{i3y{J{TPF_Q2ks zfByMu8SHtUd6r+N9u(PqeT$A+Q|%hcoa{>OY=#*RS6Lm3?7A_rTh-NaDp)X&K&4gh zECNpc6q`92$kZ^+N4(&h1=IlG(|}y?^GiQ{RTvI+z!cr+?Q9?u)3yVdJ2$F$>{tx= zOn4-~k^%6V(u1l1N%{?i#}T#SH}oWIds#2=twwUucbNXba1(%1fVh(eF}glh(QlrH zr-CEB+B7sYlyIK`HW9Dl0)@;!DqtmklbukR2Hs2x3q&9!nXZxow*G%g-7Z(WbCzUq zi|>rbA$K~}IRcwyN2RIg0B-{F0AG&C160j}IwJ0u-x0sdouf1bjKiof7x_K7eQ6+9CzXUqz7LZ~g_42JBJuc(xvo*ivZtKw%1$8LDo#BB)O?yP}|`FzT@KJd)8 zjVn)1hM|@LAk`9Nz>)9T^=_0>S#kMyKMxND0A%n5u)1QpQopre($NbF2819%;4Au3 z(8$TvfylyImr1FPJkbdtNLkUM(<-Uz zKmPa;yi}{R$~FOg7BZS4$czFFQK=DJE65+pfYCPuPjROY3998%CqR|TtxW}$2_e_@ zs|7(>sH3ewfO@MjSr)-q8B{d`P6r`Y$k3i$bmZlCLd0lH(z4hisqT3Y)r5dXY-KPQ z1qFhdqs)CNDJhg~s&xt)0zzmj%BWE{r28DWBdEqJYHDgu1_BxqWTtlr;NToA6sbPY z6(Ab}Z5T69qOc1LEOX&NvO@r(847oct4+B_D5U~j>#pq!*RlR86XG|d>|~()pk|N3 z0-*v>4)Et4Eh;l&wOj&O0RA=s90VAv>d!NEJH9=p}{}NjiZnc zfIr|xmj{IB=9W!{aei1AblqNNEn~5j!Fuc_Ua3pmCo(ob^7Rm?ZSCGWbc0)|L|6r(%p)eKlJMO z(roK!J1^T6W#?ZSRhz^!ntBO@NhY;YW0CRh0}y`Tg!D#6MshueTOUP7r=_P$1BO04 zW@=;<0c~j82b*+wEA8#=TQh76^YXT?&54$?ic3rKKLoed8yRRtLKKq19?*+>R3l03 zS#8O@EF(}m&s`S3W`UU-nwXg61%Jr7QvCV03<(1Sm%grUot!wkpxad!k}#4D)cr%N z=Iww~(94zH$o+grzC@tyLe42aZb6FGYz3F;S z(e>rI(I+ydYuyYEtrpF@_wr3AN3wKzWecHEoc9ooOJ11R5}=e|Wo}+V|466|=6IJ7 z&CJZMlw@Qainj8m>9cpLdk)DZS{NG}@7lF%2C6IpKM9O+DoNms#%j)$NItO0lu@*q zxMo)B%8}TFkB*E?$KB7aB-u z*d9T|5RQe}@Xux{)9tgvUYAMzTNpum!^;;=hiP_ZWMp8lfcIgvuJNL@1dnr9{Gl?? z-DCIek#zA$My4SSH+f3nM5;^#!W&ZhG*%~9`uqq7G72|BJb?6#&|C+}1Krhk8R+Vu zmKA88w2GjeNp&Mg%q(kOf^<6CK?k?p+igxt} zyV$>M(LZ?Jt=Fw8101=2z;RgqRqa+LvVS4b}p+koZ&CN5)k^afm z;zfm;7bE%FC{&R0Z25~~FqXm%c%LHHVQB~U1@GMSSKepVe=)fkZT0jUF+9}$yDcjR zX5e3a%+Y8(0nAJs$8p_ei3DhLa3zpoBUYdlmcVZx1pXL3%wsgGa1ipk_Q!lJs?tuo%5U(^ zG0iV1u!Foi^uj#ML=pCG<4y&eQXqAt<>i~6VIw^1WDB1`atj@trV4iTG0^qoaFIXA zWwIc%5}MD5cP)_yHNuicvrFYr*OB**x50(CZ{MzuSCyAa^fV;dAe(S?eV?=X{QZJ% z{4r&4U9n0IZ~+u-;K^?T)b)V}V>P%1D}s3RNf03HEmxnndbnl&HW+6@&^!&RVqDIp z>MT=L#3@jS;TM}Ri0K65RN}WJ3FR~iyi`tI(j}J0y{dqDFqCKDhOizD%AL>PE*EXP zQ>RX8&!rpe$5w|+QXUHA9dufNS`&B8Q~>+blQ))PS=e8xw0^QyK6v^LrWV9yWNqE+ zTEjv8jWMpUxaQTxeJ?;M`kamj?17nw+pr`jNpsnRhJYC=nR6KH0a--B=ygc?V`2BC zu+Z@N^(FxuHnv6JV#Y`g`|f|+n5u`kT}=A#zuU8~q0AA>Ej%R1qpEsWI|t>qG!B+K z0-cGM2><6CgH_>l|3al% zfi>`hh_?>6PQEe$v-9ZHU#bPBIe+UPdgzX-fTJ#d9L1`vrBZ_Iy-3e^-)kvv?7nDj z9tZlbq^z9s;>FQ{fq`-V73dwo)B^FO%vUp^9E0BlG6|TUct=x=R&m@~;6zX!1va^W z9?t2HFgSocBqO6N$a4OiSMvdjU#UET%bj&sN>xm$DBbItE6Oyb$elO6c+uXTzlh6Z z0ql9)kb3Xffx-lhvnO*-Lf#6|{%pDL^k;9iLBPUjw=r1oLde>mtZwlM!4`Y}q*dg` zo%igxO{;(o5Ikri>{xd30k^X0)A8YpC zTMnE*%Xio~@KnkI@-@dmKxhjE7{eB&8jzE0jE*fQ5E^SC9rJNu07D@Ijk8{s-%yK!a_qUj|8?ff9u`5cc?2dR^7|dt|=)Im`i4yQ#Nfl80K0$5M|*35ZCcX z{$wA&K6YGy%6hqk@sd1O-!mt3j6hzo%1$N#K@@_PW+9?E#&<_XN8@33v8ry?Nkp#S z6G6K9`1No>iyKZTr_%dI@H%+8MHjtIud?aEX!L%pKINE_51DxNTuJ7p%Yk{L5Oz_( z&|DfyUaVHFc-Us3qXq3zYBO*5wN(;{<4Am-X4(V@4b5Z`yET_DWXgOc6f!^i;f@<0 zp4@UTm~Lszg6bXA^W9x576&1Gj%1o=z$jZtV1GZFzzLBQ` z+qP}nsp0LcuQk_>!TR|vnk-k$y|-9|PMPSz!NC;)SMeKbv2o)d=a6(7< zlUCpV_eobJ?MK{z-=!d(L32W%?&wU0nze4*}P_$_3wV2_)W5O<#Ba z`LV^M`=zj+6{z0Tu`Af+uX4c>d)!}d+Nt6kGmU{oHK#Ase<4(IoG2HwDddN&Y=G7C zm``K(nNm$E_*dcN+Agor2%GSA)cE*#BV*%8gf_6yk)a6caM8r1p!-@GtjR3r@(({9 z4*+Vt7`l6m3=OYpqU6nU!@upJmP?(xH`!X)j`oL=1A*mBlYNE6) zitaJ-IB@9~9s0h$WMEh~N@|xKAwrzC`Qx{5hkMJHCH#URyD45AjAu2U+`J!q`rfX{ zQ+KxK2OR76MZoF9mcT(FA*;taV)g5)9-E*{HQ=WEe8t?vAsW*p3O_+69!U}QX29@3 zRM@pX!$L5tMf*Z{`+eA0B-0<5Zaf^|z><(_RZ;@vRL>uIsQKSVt}A^_+Z^<1-*9JX z+OM>my;l264Jc~}ui+tN&1~oJd*KBeZONXk*u_EB%Ho;~8@Hz0+hi2{X8JMXl8q|- zou2}tF zDShszhhiS%Co?0QOV7Yh&lFQpS8NplMI8Waud$a2lGL;sx7$_TRQS z=!q@o*Fd}8nHA4DCoHM%jEPOxZ`YL0?^Z5+-o)Jg{9xYb@V2nQ_apBfMM@N%sX3FC zm8Aym0L<_a#AZD7kqtwybeMevlpbxn@*J=vHNv0`G{Es4-SMzKGCwcxnJL8@OOnYh+M9g(-iW(P9#jHX z25?+kYa(ave3GUbI7S752iS@>i`fhO@B5^|13$9^R8rL?D8dvfay(} zs3LI|@9_)w!o^M?{btfC7l-7+a=TyO-Kj{zAfWr(xBJv>G`uEzwQ!sf(+Ga5e(hSa zn4r0F*MK&U@h zXl$DLY`J&&0|k&rettfd1UVE!b>ao(zi!+~0yl)Ig=*8pT0RyR%99b$U+Q;*%L7tB zwSH17|J;nJW%RI}8%xHc9n30!=yQJJ^;%=`T~MaSL}Fb8CdgkrCX%S7*>Q7uVvd0N z#Ue1^QN;_)=c6iC2IQr%gH2@e;GmuS0VE)y$8-UxYJT!a;)50nH*%82>ABMerj=0{ zvAQgX9rg*B2H8=?mFgNoTW&N7vnnuq#2gqjG6&<`^htNcH409e*7ZKm%~jw7VbqOp zeS!aoEg&#elzQBIGh-&*o1kyBu`U2`t};tJ=r-%_L( zmSoW={-`@c#;7%j5m?{Z)02RJ+VIwnTvZJyMMhwNp_yGhZQgZHfE~r(r*lNHuTx$V z{NFsmlH#MvAN5ttQ8nqa%bW~xTVW_+2g7mRI=+* zP==jcgOyAi34`0?;TdJ^aSn;9scF17U{a5i;N9hrn4t%hhiQy;MPRY2ppm{=ZdIkW zLcZ8AQpqv=W*l6z;JpAJOggB<8D~OtU`5vM-dbctC$n);`J?aCkmv05lj@hO-gq9% zzCZn<7y1|@Fer^lbL<8R5a0jyA(kYD3v7w!SJQ;-#rDUcjR|Rd`h2#khw!P^Y^vQ& zVVn^h2?HXFXD;mX9|-F+82ZNeSvNmW8#GxYrQyt?F-QY@%&lT`Ti0j|dP&QS=DBd7 zJ`-^5Px%P)KJ~p}eL{q_t_bm5q;ymgehi z84$qGOvL3L(Sd|W$DIUf&5>jSXBB(@)S?T51LOMXAo|6yqiYne+gG0O8b&*e{)fEf zOb%CCD<>e$PuoD1qb)|y&;91@#E@|ngkh03AhYTro6zVOWkOY(b>K_Bc6J#T-UGbZ zzENl_I`ML$EA}4#9}$+ACm zc=>%ypGQkr_&F@QoORPDzUIuBgaG$w6^Cv5*N|#;YV=p1ndC@{O;;r+GyuF;XkwZQn-Zj;eU-g~-zG9%tL6N!K6}U!xl1CE+tIGQ5SSEfYjwpB zxy($--46_mqbBF3SW(RRiQ@<`4F0Oay9_=m_D<)|)oz`#ixkV{<`GPM2E}0a_4CNs zEIm8lC0LjxftgvMy6aS7#kaQu2lBoETMxO@@kNc>q$pmJF!Yk2DOO2*l2G{@7~Bl5n0ZDf&ZAr2 zS}x;hqI1TjpstXUgzD>I%tvf-(mvk8WACre6#|57QYq{Ys0>t7l?_O@r^B8o_+8?G z-=e=6{@7P2`u;?n_Vu~!3`A$_8(oG`ia;h7g=BqA?C&CHy|+gS!k)TXxIN-% zi^n3fOc;Ad`v^2&g%miMRele^t@E4ZmkZ-1`+1Q#ERg!>T67t-^1g=4X zCg`BOY%p4I9n#ylFG4uETUK~PQ45sYG{2Y~?^cD3NTVmUtV|P~;8#L7G}|KImq@%F?)q(0r$UbJKB%f1YOnj}Nyb*N7IP zHw8dK_w)ta93uA`nbFEcL9?LxBNB-OnANXz6k5*?KN3)Bp2z+i9+GEH(tANT9h3R{ zBQC8zLZ!2uGv9rP@93=V2Ydi)Oy}FRkmoT(KWO^RnAH9A_^W4Lj)z^evMSfD6D&&o zhU;$5{92)9C#fO)WB5)z56DVrx=6OC!Ev}OKJD7PA4Rgiq;k>FkOXJ7#RmU*_)C9I z-x!8(aNrLgazC~EbY;*NRot$xmv$ZmNr+PN^Od#yXU~$#{+fLhfA+<9_)GS@B$&O& zm0kQX9w&Q9@hc@m%^8`Q%7U2P{7Jwu9T#iv>WYKoE9$V9yOOsc5?EKh{MoK!{ChpW z5R_^__Sw)9{A5i3cc8jDtpl=t70gfWaX0kls5-6_ny=H(u_(mcLYe%~7|`Xdz}sPJ z>mBmdSb5=2kMuus&v3P(tyQ(K=%5=^MI5)n7$3s_Ey#Pinp$}oJ32WL{Th)Pg2Lf(X1;CyST`j; zw&|{#MY88!og%j@axvZx|1d^xfw@d%q8J+d=i15;i-A%5ob#G6Ays4lK!32u;C}75 zVdB=FvV4(-G-3gi%`^0y3!yVLL_fQ@7)~nAVxO9O;|pv%#-OT^`uzF%WLQsC@Y}z6 z{2|AY(NO~MW{?HWrpVhuv8S6}0V5cto|mrQEUvBu_0O??xcp>fM6GMegzaU*Nhgy! z=mGOy*fHr^=>jD=dr_^~=GoCsx6;n5K9ufk*vUFLzhV(XR(6VN-e+|hwhyHxKh%iU z%ku`fa?6@Tcg8DBt=YcQX|o@1w#^L27vpPhVq0xr4N39d#F{PkWZVVRmPYhJGR*!v zMuJ(7j3_|O@zn|(t-Af?JB{uNnb6NFJTkPX03|6yDf1}pe&5-NUzqx2A&V>V92Q;E z3grIIBbTe>$UxZ`Ls9A1toy~Ko#W*d61{Mc?$M)1zRAtQE{nYu9?Lg2YE7REn45Ns zAqGfTaBW(0`_}D=U`x{Fu|U9U<$;OY=Io$q zu@eqKzpJZbwd%@`&ppVypknm~GDbKa{R(r=QsX zDwq`6l=bd6kqqjLX=c~l(K=DB!wg>a^FZEiYDv2nJy4bjyIx&=THcdykV7_)euI@? zuJl2yQmZ%cg6QQJT)<>na1!htbjPr!!-<+w3GOG(>FWBFOhOYL3(^lfu`Jlp$?c4fsPS^gE<=Ye6ID zDHb#z)-6o;iLf?nP91NA*VI@!ra|XJa6D7RYor}9grP?qNT|jhd+hpWS1St02fZ+6 za#;Pi=?hAxt=ll?3|kjA{E)fIm7cY+M<#A0OouiNKCzuEo;#ycufug2S7Eya`stDM zjB`L7&XpC}8G;PB!XsJ?n>%ZOi{pI!7PK5JUQW1+x&%$as4lpAgm8 zcue+8BKOmti^dOk4>Bs+`cx{)4hS0?_k)FGy;rWBckEUDyf1VvKD>BwT8!h2MRzWr z4zww)(OHyltpCAyo7pUNe?WPI3JzYI!^FS2z0G=xuQ1KG`0PcMetT!9n6aOJf#?FX zL>&VcKW?&Y?bTtdvFRs+I3Hqa+=zt&T||tref-Ldhu+@FqX7WR6`RNKQ*xD`iD7HFVGjD9&wBNHAe9nb?Q}+a!q4TD}viE^>(h(B7p2z1J`x>I3QS8HD4wS6Wuo zmMPT2p@>ZZ*#fe~{&9|A-CCvgaar9WtxppJ|8F(ZNG5lAQof!I1@7i` zUS3|-&7O{EM(0?j2HbODI*ig_4;;y+|G^b$t%Z-6_*ZQr+vyRQVoph{8Ruj2VyV1- z6i>BTr=Z!6230pZE#ezp>fWuPzu|)Yq}Em zWAU^w!ys4sIVbigKJD4FXH(YP`WUK6H=Wx5lI~y6v=00pt1$H8=TkL$Bw{Qlu_u^b ze^J0}E3Y@a9JMieGbYP#Mv9Y{mDTg}^SiQ; z$kzBZwK}*LfrX9N7BkXRIa!=3X^X5;V*gKzAR$8anKKwHvfy>%8t$1j4&awjSUj`G z+ZVq5sO@6PM_iDqvG^2bh`6s$$B>QDL0{-e8HPS+M@L8C^9zmNbYNn2h`}v^;EY@0 z)b~@O#kxpx@Y3*jQVlT4w=*gWqM=o~)Se5$NvcXZ5C?l)5}T* zB02bz?sA#9aRcA0gfyN(sa1&FWPYdjo{0dca(Wj9gOjufy`dTp%Y%LcvV@ku4ZIc0 zMZHN@#zQP3|4J%Vn=wQvNMibqkbcfIFMa5t#XOzL;qQjw5*a`R|= z6Z4v+nlg5VwXLqOxPn_NMZ(l3pKPSA1n7-;9Mk_wae&knF*?`@#>$xq(~=1eUjq z5{}TIe2RtM(@|JV2WwVv{*Y52rz`_&Mla4#aOui>dae^*7jZ4S%)=H>J?P64eI z(#(>MK2?5~-F1rT4=xT4wS16J4i)ciPN8k&6m08cL`IfIiRfhZZSDkfU1CRRrmfGT zbB!)9)GWE6p@E!K8VX~2#LYPC2nr)_xI6&miL>dF^sK(%XEVPb$beA5AT?SK%W|T) zE_F{2#xIt-@lKNZ$=OS%TeNR#A31_T9s<`s!M^zW$Ht}t;Z|5WD8O?^K@*GTKLnbN z1^z=Oj*^wt0H@LuGqXz$f%8tMP?`YQDL^If={TweC*N1kIHCin5;fwXMm{O+>03&w zs$wp@8sbXLDHfcDlRj?{uaad?hoh{}|A&i#BhILOPvLS^2v7$5kSLwTS?EMm1H6bs z4O&SU6P19kp4l&>_sUVMo4~8T^7RZ@3WsXskD!6Zz;-zc8<8xK05fhGc!7d*i|@ zJYnd;4=6E2*-hiZ&~I7u%kP-nL)aMr3Jqe~LA|az6TLZ$U2fTNtDMXERSEg@TtD+u zB-6&|aTcH^w0Z#Dg=WU+aPh%MY&euvNCn$x z_T7iybSk(}nlqfzg5stc0}i9|4bfPu;$%T*lra^0fq3Q}f?kuM$LEv~Az7_q~cu?1WTC!O#3J@a+@rK?}lsPT2U~ytx*kR9b$Y<3}g)^ktS}?GLkj# z$6kbx?zU|`BLX^msZbz$TB9@Y$jH0M0N@bhrXrC6@P>p0K-0jJOyrN!nwuYJ2Q6)l zlC>@?8uD|7)39ab-qtx%R&Xi}T6f-|OtF%)@{6cX@So{nFN=H9VCBO0Am%bwCA8UR zR&@%3!kxioNxycJx&p7BC{;#}!($FZ(jpGCQ_bemJ5jCYuPY?D^Q#;mU=_UX zdu~;#!hd-Zab+5st{;DMK?08CRNohmU+t2%7zdvb2XQR{-g!_AuVbRZ=?T4DYePKPt0kM+Z$vpp1CY@=KexTF7tUtCGz|qo0Y>U?pWygzha2{#gT6oAAE;a;IhFKhBSib12 zD0)E|OJ^2RFL)!Qn8_$PfK^zel1HapW*aJt_llh_Rf5Vhgq#fdCjzf1+~xutUgDk2 zrj%;&mD44ITV9w~Q1E{kd+V^M+pcSP5CtU#r36F}0YOSBNeM+%I;Dn2x=UK5Bt#HF zLO?-~mhKSg6r^KF>F%6&&lUG`Kks)O@A1t)I?T+k&f0sewb%L8V5g^QYsm)mE{=bN zP{|>7|2JK-An+fUZFR7-!?Yud8YR1#!9&`*NlPP1d*h$ zi2HE-{0mO~N3hyshf%W1*uyM355U*28}4S%%a9z1VlHMOr8@pv-6EnK>w7};MI z%*lSSFjOOrdcI@(7YyeDLMH@MvBpjuW@Ld1NCdt%OLk4&=cb-CgiLVYtbWAs30MC|iUQpuccHxxd(|e?Vd%qDiPqlP~zDS)#xvbZ_S; zFHZj?T8lX|y*XF}j6n}vT4+f|I!jJxjh3iDWYC89xjAR|I z7%OiLw|`xUIu*M4Z$xXT$W85YT6$&2$`I}mTLX065Uxcs)>bW_5kR^Lo*ZGEd99Ga zmo!+_s5ppsozBK$RvEy-R*Id6w#ER;dYQM5dY*IApPAsX_E9Dh5Cc#*y;O#0@ql^m z|7QB~*D;EAjD8!CC=3L&w_v#Xgv-4U)1&s$eYEa8EH!BWsbssQ-InQvEM)KKEOFSB zGd>dVEPy9e!5-_j4J$l^h19VIoc|?rL+pk9EqnrH&&p@%J=bJcQ`Iy`SGFOHy0^Hj zZZhYPwf96LVXrzD6WqZt)qg5O-6Z`4Xe{M!IL%L=ZKU(FE?)2S8qW9Ym58uokKAyV- zaGo8N#^%{)LrXWgq*Q;^jDNKNR1VJiwSm{Yd6?;tAAhBLIcBY*PCfXk?SHho7u%Qq zh3EAg{(o@k6;Jm{P3MB;dMJR;$Yl6WkHl-oKrUxXZS9zKa@;)WW1smwSa@V20j&9i z0Vw`OWphfbyjJ^ZoQ}XD*uv{bN^|0+MV5nwl~pIodp`iPLYKOQW4e#Tg1dWn&gLBN zVMr^orEOl#su_o6KTIw({1{!q|cVxfAyewN2Xxg#mT;@ z8%4)W{ijCj7}m((pub*A%x83bBqWNbgRwdfr2cuS?7#B!!$Qmigl6=$wGFh?DzTi6 z=M=`IdhT?5Q;7bcm!C&xe?>VWKK9i|@uTFeu??>8(>o#Egt!Q!xw!{AYUTx@I=G~W zg@#`N^)DnBKbkfwI4h~p;1MT2ur|Q^fCFXa1fIrs9R(AIS9=y6DY-T;aPw62xP}`Y z`8D@$yj_ekN+*+;QJkWi{JnM>Y4ux0C1}Q9+FD9Ymk8(hXbS$=BKxfV+xRi}&>(SU zFKN|x6XV2{d;2BUl>A1oXNMU6=k>XwQ4j9$@0TKNNN}+DqenQ1$y5J!OY`yH#%UTA z`n(9w7n)`^oJ995QPi7MW1|)I)xbz2uf7q9FFA)$^FHE6)HVLPl7M;(P>tYf5 z;D0Nxi!_~6=);8vbTnf2e^OhECa!-vI6S@?%Vl}BO2}>c^kIsvlRXaNBsQKsy!1BH zliKjS&Hxu?`La?cKlo=wcb~h7kjgjwZG{%W+d-x&jkcDS2hW}n$n*TyJqtGd_dWM6 zI$peV2`ibHCO(VYvs6}7V04z-sEM(RaK*puXZ6vpyH$zNwG_|YlhR}b7RCk~;bB}K z(S$Qtcw&tag<@aMQpr1bQO)R+Q&cLwQ@Kn+BhY9h z>Jk$2B}#)(n2|BH>)h18T@e0FP1mEi{BOhcCzh27TqRq~67EhEUY*EkM$%i{f9f}{ zw>E1Q$yHd9t#aaC9~W(FJ*TmHm!M%J?hT%um&AqDkK!LB+YOVb1NaBBUqdtaeGP3W zqrb^zS*Iu5KZweF;NIGQ7x4hKCf`D|zqH_+T}89<^nTE#hDWWrl_~nzI5#=$IDdP0 zQXteiG=1P<3Ao-Nr2VuQ_`RF3;hq;Z*JP_Glm12pm&+DUc92Hk=g$m38yo3aSb~^o z|Gjn?UbOm+mj5=-XF&sP_G8`iE*Hv!Z$~zNlGSR|zam|wS7057@}@wG!U^nx-DR)8 zLWbMnBd4_AyN|rIfy7&U!a%$H^~PTQxt9(kE$DxEx;wk7PxYZ;q3j0po)rc z5^bK|!F`*Cg}Clu!71c1Ldw+5XO(Vs^%+MZbeEF2UZ%-YHk}< zN**#YrwU~B-d=W`?Ef@@<6ExS|GZU^woKFHOD4WbEgG;x_u5YK5dzWF5vR}HQ)$|# z7Nu7@^+n5+({2nN3^u|t=@!0`D{p;;E?Bh=L^{=_v0sa^Xy zww9OvGk;+wu?*|~zD!(8h#&69OEyd`&4xmAO0A7>Q2m)0kUgn9IdZ~WX9Mh^aO{Yi zoTr=fEu*fa8i|E42~E=Y;-t)Sbz$%eGiLbS9^Ki7nQrpKvkjkXZ68TB6m~h8O_QosL4LK66%9E@+kTg!{M6)LE_?JQkSy zZ6~!hhJ$c59(zhY_)uBVH)x2ZLyOFW^p3O5GLzcA=&thDVYiFE%dY+=||bkea*A>&@#`eQ6`t(@a`TnNlY090y7W`w<(XuxI6{Qi_T+)>dyulcpgLF*Qp&{ztSN* zhpLcoKe_x?=g6V?eq1LC&%Ytu69vmwCJIGHrm-t?9-%iDLDFx%JPy<0&j?Srex7TD z@>2hfU})URP1u0rgEsy`SRaL%^nnM$Ai_l*_2{ z5c9a;4Gs7av~+foHIt2msq)w46b%mC|J5_He9Y@J7*J8k_j}O!)3T!&loXIavT@{> zkqZVPYPRMNEBFmp6yois9`e_`2iuy9oIDgF`81%r6o7Jg!9WTusuU zzYU=`DGUVMF^j$EuS?40-DKF)DC^*w884-gQA2by5`p-7=M#RZZ?)cFF*Zyg-x&;O z5qgc;7xpd1@ai2K3?u%IE`oy0IhdFNP&uP@hKE~o!j!=+e{K(5kWxvyYQ}0OnSx%_ zAEy&kQ5%2tc@dkX|F-Q+#hi24S5kz+b0>U%en*8D@xQb7>~lmFT$Nq$FYr6Q_?=?-l( z;2W(M+5OKg=ZmM-w5cr*uhm)jnF*1Qyvr#}GarVI(5P2@Yt3pr;wo9-D`Z|QK|CzS z9+hIjhNklRnDwnLAIooQ^%vDATEV#Sno~M&-)!O2Fk|dbD~A0Qx3A(QjJjN`y-I!q z#wm@6yQcPpvghfo=!{OQc$oSyAG$}?NWc8^JR|Qz%C;doFnslT_SsUiRkI+S1wXtzIN>mNLCua$0ku+iZAOIVDzyjHyGm6 z!4UBKf#7>~Eg96wS;|9I)mztJnAoURem!Abxn2}FjaB(_*h_VnjYhMS1Urzh`1GY2 zx28Zb-+j5+5u5SMAH~xQMfRRQQ%|{ZJ<)$+&}RJyCBJizCGl6+$qF#f-RAKiLYI2! z&xk_ODD^aNvZ^6FxB(xUEPA0QkJO!J!284*=hW(^boj}#W?PFf-DOY^Z5`GE;i=vgC&G1zp9?ZhF+x~@}($eBG zoijro-A#VvD{ky-Ir+ULYCN zV!{pAzxzrpt8u+{Tu&Opq<4?^1IY*Tkf!kFU1wW&w=|R+A|@MdwGY!f%3o^MgST7T z+r#w#o~FO&1R$A}xAx>Si&CJYJE;AI!cohHLSKcKggjOkk z>v@kf4#Wgxj@~cq&Wuo4|*XXYSw5x;Gb3^+*d$D5G(2_2s)W?DB^Oy zI3A~r?frm{*lM%6+mL0aeymTz7`?zHO*=an3WlQEuh zZTryDXt4~FFlJR%(STV@Be=FiL`E9i9UC8~1!cyaPhLl6JQf3?w2!2US?}Fb&i+74 zb|xzH+VY9Y!Lh6Tio(yPCIg@wHa0i))BlZvsklyftAdE({Ny?4I+E`~Y!UC?`9ffP z{=$Xt%FrwF4gSe=#?=c73%SjD83D{w<9koIP^%Ia8u}9oJtC5ly5+JAK?+q5TRP+$ zx04G92|W$Sd0vPEqw)2VGy`eHYF^lI0Z|8W^5l4H6s-hbV`UUGBpvkk)&5BvgBJLv zVwx(Bc>I&-LMn$CC}Nl{Y7LMgE|Ze}$Q+h3Qoc40E=c5+zCo6W&`CMd$XxReC07VC zdDqzE&mp$j(MG11N%|!##ENX)l1agTP|tL1olcv2kxlVubF;dTwX-uHIlJb0gsrV@ z9hBMk;x@}EM%E@r&g^DY>*BM`MjDV4X_ z*$KgX5aBcS^D3lHhUpQVt+h%)U6O!M0qY7qp;-=kF6LE$^<#hP$#|Hr>qUYerTp0zQw5&vLDD>0OL4!fWK-S?z zm@$xSSK$0J_0L>RhBv{%XunECK!DPxMze%B#Zva+g%RQipq)Bw*ezGqepec0_iL?~s{4gwjw#ok*0g#Gv)Mt%Lo-VGst^TrBQ03IF4 zISnz5eNQzyn&q?@0hNI-P&FdgJtEeL*G%>G^$|Yc0vEDQMR7;t2F|O&?B{;aGc^-z z!0KWH+`hhmg2{EOmHF3qLur<)c&);qt#}J=q}f`fL`d&bUIRlzaLiKFuJND(UvlZ0 zrrzVk!oorlGBSVY(aGRp-vYCtwl)p8EWL%XM=(4*{GvDY5)4JG2X|q=rfVPp@rjS8 zj^nrC_-Nzib{~`=LGaT_*pEe8QIVwPbWf`apy~rCsI`SN0T1v6(6kq0W!w-vlai8d z0Od~)#{o}mUq3%=ZEfw2E_Lg&v4VJB3#L)nhU&X%_jRd9j|{*XGbk+VAy~Fy)(q+E zZa*!>E^TWUnh=87nER#}F+Lui?a_`IFcMQhyBvUPWuq6bbefVrWETSVvlqePn?wL? ztwOI*Q{y8h2kG}IrUE9wnDa+t<3kUfjOD$)boraY!Ze7D{=lTV`Zq|Y*a{=j-g{jJ zW*ao2G$+rBXS`1vN)Hx)xCx_o#9(~)S!&5%>_fXxx2xsc8y8tBP+Ac=5P|IREp8lN zbyoY!AMLo*rQSHvPyB%$#DN-m0k0DQD0oC5y1KfK_H|TME%W@G5fIisgn2kuxB3nE z48KwB9qQT(053|l08npz$$fxWE2JI~Iy*bVZlZeWmw$<1 z;DUEKS0)5>?$i(&x2wS##=!7u8cWD=Y4NRESh206qfy{xdk2TcC+*_m;{5>ySjo_} zfgXCN(f2NI2Jk;w^HOxxo&MbQrB|oR-fcU>azE&9Amx5gg|2^WEG422xZ7LXcLA1W>@o#uf-v{BjJ5*mj1y%v9c#4rS+JJ3>T+ht z-r(2eZY_%}W7EWLaftfM1n(REDw-6U__N?Lc=Kp{ckFQA7oa*WeqjPYBNRqPQT@h{ zUC)s2PZuxVvt63hA3KsnvM+u3!^En3gk;aEa0*#<>fsQ^^-*))%eYe$p!K6$eNgc@ zN6ZnLt+QBtq6`b+nrwF^c?X9zUS&w?I46@;C9_@ea8Q=VGVjY??S#8XPtonTv#$^5 zlGLp}pX%1)!i+OFLWpt@&hT4te^)u)weR7Pce|Q0&N&BT_4QcbV)QUc z)YJClzz${12ehZhB#8ykc59UBe0}cKGr}rIbrQn#RLUR9c6^SQL$HONrE@K-`1m_^uJgh)4Z$OpQH8H z6v0xX7BD~*?lj?*mP$!1RGz$vT(2DJa@I2EthA$TGa>%bwGeZDXo73B7dEFoeRk9yHe&kzHdGjU)t+C@224_s@ zamAZc`$71&OXoLCIO~^1R&UvGqga3AK#me8yz_zwA@YS{j-S@FYqJu8*l~ zs<)bP>g?)j0zYv?EU~ycf8u6QQy+D%jn#$1xesP#NE-MyI2E?+`SI3UKDbtch6?^$ zr{-h0)O?mc(0x|UjJb}_Of(3yITjrSg-05wS)I56Ag_;9H&qqt9F6DKd-zi@l=`kj z$w)E49BbIe8%=T1u47;BJtBB{jZ>7LW_v=%nzSQ4DD20t!t~9N*D`=%r3<`0Ve=ol zTuru=Wz15ZiSDkt{iVs^XR;|{e=K1`T`f6<{=Tp0kf$DHRDMSY$vZqIVBa@@*#po(>T}~t6X;Zi#$r~*`4Wz0zGfz-h%sNL%i2!ZwL~X zH(c;ZH^OcU4ve}Sm5YqkEg#hwoD`Xgb^9Dm^ z)S!bi7D+!Y06n#6HDBC#v7cQxU|m7@tP!*4BJ&=AQ_>I>gJh<*NN+} z9cadHo+ZY`vEn2W9v&aZzYf&V*8W)wF`-F8uAH1) zqn6xt)D-MqQJD)a`;TR0>Y+vfBDXWOTic*nP$MvbU3_pv+@D}afdFy3Vgp}2)1q>E z|3MlD4x%GbxHHqN=Il%hQDq~HHZ6B{2XaR(-XYCp*U=96dMRpL zAdmSTTUT{JI}OF}VDCNhV6u*%D%gk40F=*9GdTRl?mlX|o$wuo4*FhOxMhDirfiUr zCl5f{q5FA{|LB*kd=yvSm^dl@X^emR`|vxu;mzBDnaS@wa0`-vX_rsw$5LMpNX-z~ zfef@a{l^)O4_P63UE_;*ox}vd4l#Hzjqry6=qHg@x!=m8()D3j$e)|9|x2vd-OuC-SA^qr2k}F7C8<9JV3>6gD3h{$l24I5-MrP)l>nf}~ zbLxNP*5}9RG!w)=zJUzkee`$p^ZmI{DiY*fYB{XroB&29Dd2*S@PWNX+QTv0hS(x1 zoD9N-@pBfh+WTea*Vk?Cj&a@4)zHvb_QdQiIP7d=v#zNXpg(y8JHNam$jZ*XDme;P zHdEqbK4L<;c|E^REh6Ot4^yDq0w1EGTCSm^_6EQy*&EfK74aQ5|BJFyhPZlN3r__=<9ccfwKq@=piT0f2)L=oZ{GO**>RKd_r8G> z+;EeB;E8u90H(c@_W_q@n?PouWq$Q1c@ZEmtHMZVQlpa&VEY(K?pldP!dc75D1!(0 zZ?h7?M=6~LRO!y^fu(`zq8+C)uUqXgVFrw2yEwRzhJG1TQeq%M-OTmGck!|3Iv2O$ z+*i_nEn1^r4&ov`7;wH4##95>fC*xhpIz;}*By7q9op||%m)TI!v&c|7GcM8z*>UY zifBGDf=hph<;6WO^7K~OXTE$hrWgk8>t~5ElPOn$-8rxKwC$vlEAJ{xP@AHPfNMg4 zjHo;5xfN-}gvkowRe_@Ns--B&zV-geXmDRz+PGAY6t77)yPq60nk_>7O8-#VqM!?- zPZ04g**u85-a&3nME}`60I=b|UYYx2V`D#SLHYBXZ96-6so?Sm2MbFC?F3}AA$=&b z7v&XjfHm#;)Ai+Lw$ZamKjMKU``10YnDlnIyS%)78f9PaRDr(4zw^~3QG7V8;#59J z=-UU+t#ks!QCm-wYIv>KON|pD?z`94tab-Wy+mGOhLBokt%54!+3J!f*`s=ak037)I1BIJREYa>C;!;INFE=yZ zdIhHcHx15t$CLo8VpzrP&cnlV2+v|m`jr}J#8v?eg8~FdWOmYbPJXF3eL$WDNB8>c zmE02hV-j-Q+*uqplnW#YMb^O7@29*X5R?7w3$S+Tx>-KuZBcu%Iah)AU*ISs8k-S_9`{^XvoBe$y<$cUQV*T znASO$(5YB1AY~ag{1HD9;^ienK&cf11N<=Y5Q8ZP7N57VW{ps$XQ^W$26CN? zzL^gF*5fxVdC3VQukCos99SgmJj+N^*9 zv}9PW=Nq!bO9l8Yq^2@vrNbo1b9i5fJ_7uf4Elwkz{eK3zY1IKSl?Uj&3=B5fG#%= z53>OOdjnWi|V;645zCh2z4DqmgulI=J)9 zLyt0}`v}jCQlL>@h-L8q$-#>{pA<$&%{7$TIl@&|OyDu?xu5snG-xL5l|VxQPaCb+D&|JJRQh?mdO z`|7<992SNuD-SX<{y04I634pRZG3YtYkUaZ;6m_BDJ+*ZKzuY#IK%oU-Q)M##CYHp z^C{;k;KWY{8sVp7;!;w4e@;8&5eO@7YQwRRJ-*6Mbh&-=#xSuJZf#qU@mW`d2aa>h z=$E!@)J(@Q{-)(o42xk}7Q+?!V|O7ePB-!yH3Uix)-k^_7H>JaPpkj@`2@w*{L{P# z-bXoWP0nm1&NVOZ8^fk|#P$po%vV>={WBk~CnP3LO-}j%T1U^sgaaj3C7JeHkfFVc zhyYP7&LnIDEDd7m$v@7OnP$eux1d^wK`5uVe)VV#RQG(vq8RWLAQyl!i2;!S?I1P+ zV(iJexyGmzEP#EowiQZX!i&o<<-YBTqb8NzFxJ|aof((-$&I{j^-ZU}py(3E=-PBf zUV?TajH%BXJ(n;cB`7)=*f??H4L)PYNX)_)JYm&e!FtsNy(|g35{!7GS_Wmfn@)EV zz6T6FhHeB7`|FoVsEFpOAYOEb?`VHf=eM%M%KrYo z99~$HKzKk$*K8#{+hqk5^W(kw&BRS_3#1t3+`_Aeu{+b}%d`$HSdB&vYDdDl4NGTg1EY)sj~zFE6a_19w7rj^J}FkX z_^v|WzW6tlk)4XQHz-V(n%-UrdR!(DKhg1(<97X@4EgVe+w#WUE(q65Z^Q?7jUZ9^ zo!Mo5k+J}M-_Z(Tx%oTKLlfO=stTPrSZBg5^t2NazkAJ9#-0vHATHZnyyT&OM<_6; z1t;U_6UP1mGQ8284ndDtk#L%R%*4x7vm+Eh#EoYAU}nZYC8lrzagoM`xVuZ1q@s!@ z1<;mLeADw6Sh=^012>fSl3H3$u0SOI*|7QR(O_nWSkG=SIt2)WY@HnR8oQA=6(+YY zD0osOTIhAP(RF@REol6?Z)hk%YFb)-cXyuJJQ`}ZH_tOvv;&T(n>Uz525Fsck9qOI zX({!}Md*N}i)TI472=QITq^;fMGxGrrnjNs>vKWxmi*BzX6BIS4_HCsYvHsu>ffLW zAUbg%zpX^Sc`*!vgi4Z_m7q#Yhy**7D)(7&|)YIRHLYnzJu3Y^$&iyaY0Wr~4 z*UhDP9i|y%nMZ4?td5%Imou(xbM|KK3)Ub3VIrXRS4OT$4}ZV2GF(LFQ}bpo;KeD5 z14n$Ne;XwMVwz6Tqum9wUBPy%Qf>&v-+0>)5tf#%#HlpoUV@X|adRTai|kbdVo_9s zhIOqQ*!9yKH~i+@tfv-L0`@%emgbj#-?~Lfe!#$Vp}Ve21Q|zY7LcRsA6{K)*f_F3 zWVWjTlg&$lt>)B8Dig_JA5kv;;~f8m-Hrz`J*6qF!ZGY>E@5I3FZz}z^!e zPk$+~iOc?`{yNZHE3UkV$(X8=py5BSfRx)9Eq2DxX-S^B#8;0Gc^hVQ zkGS?`WjaZ&X4JN>E{hx?U$qNtUwm~g`XZjnw0#XV1O<(48}@ePUml4DA-6^hez)LS z737VLlSO6@2h_GnOQ}#$b^x^pWa|HmAZs$0Or4*byM^Nn&Inu(>j8Qk9~zUC1REAO z>p^uQ!Uqb#^Z~+~-ncIEvJLQY97Mi18VY1*-XeU!FLRr5(o|YI zFXI?JMh>Fcx;H^iJt`_EIfs|}fC#_85(UJ}uohEyC#PyN3l;mj6UrkT`4zG`tv zLtDv!5Jmr`$gHn<^~cI*7QH5vO(kEqQvcS$kTwj%w3+-ZBjP-(k{oSbv1jaYd*ih* zwBcGc@zSLfcYW{Nvz-~CPZU|k%94!ddFIYl1k~S_gusA1K}UX$;%c(t`kIN~fc>%X zwl*JhF`N9U6_MjBOPv+haP8G=iaTbD@4zP J|hM)5-PXm8n}IyNlCK-FasFqx0vd)VUZ$i&o8t z&!s6L8!H~G`bS*Y8m0>SiuW*+6+%Y>7Z-n{5pnGJsX#yelwT?zb(*Bq z!Sxo;Z-%-}T!-&oC0Bd1?ck#R;9Jr7!qgG*4$9cX$mj+KM>wtsN&jsCmHr|$7izv6 zG~xjYN$4Z$BLa+ED9wFRKorGcpIr=Z1qd`|B}7cZst9GiUu2?2k$3sbdd~xlNH+id z#V-aZO2P-z2`SiS0rq%B2kB1&-1oiL*>i4vofuK(ym}2|tqJr313f(!XYI*dsC8xA zOTT4aT%k75*w7$(;tu6X7-$->%V$l?ed%w@x_m^nQ3b|NKOqQXZ6$5Y2dLhUXB;Dy zGtBx|_TCmo1jVjrD% znI4>G*j#tZ`hgLjFc^G!)^z37i7u@O<1sz@NlL%CmsT(Npk) zHcs6~CndB@GqOaV6le6-68Cn;*N};Frn`6fywA+41s(zW|0j@xB&o8ZsHqSe_i2;N zQ?Y>SY6;t>kxH^%ZqXH#bkd$`%Y(^6gzhLa^neixwY>bgxNq4}(DH<_mnr-gEXfOR z+Ol5`y+otOmt!A&`4$yVW%+HSNG`q5+%ptqO08QNl%Y?}zvPzHoFfwypSeFE#D-YN zGCn@+Pg+0lI~VQx()OO^kSq4#;n%!M^I}m)kr&B}e1vpg(bnrL!(y|jrx|RDshK~B zacw>;_C1Z1UaT#`kWm+^=X-91H917^PQ^(jN9@*QspDZcKmE+Q-}tTGJ` z+O`ilLm1J(`9^H#h2MR2IoB+v78Y8F=oNv@!t`xMM#dX=xAwey!Sf?FR0#4Lu=>#9 z>!F5F8~BmA_89CQ+#>(l3!q8?t|nvOa{#vMfDs`}5YNmwmK#0@JP5er(?v1KW)_|@ zXSW0H_0v-Tc0_A+1qb;C2n>IoUW3gH{gT#JmwS<9J(v{=rZ9{c&eqQHu8XD{>mZpD>Ee0t@xcP!yub z!ISd2Te+)Y=MzL-;L{KB&*njN1#~e+3U=|D=(W5%S}YvPtM~DLZUSWba~G2xkaxxg z18{{o48(sAKJ9w$KSP~?oI?t@77Q|)ErXVbA-XQ$y!T$?!VyT|f~VI0L7hM;UH5B{ z8lz#gP4W_m-;UC_a6(m!MOdltq5ThScTY$|&OUN#3`GZ7F#Vnq4aRowW1XeGghP?ESsfM!PM1ybb8lwk)gp zWz`Tlarfkjk#~N=PvX#JS~f2eIeod?)bXwF9a6z(K}RSbLe|E^P&yHucNT*(UaLPN zAV}WqWB%^3TNznHE%uT?_u4T-faq!V&<8gT>Z}28y#np~O{cWQn_tZHw2r+Gx>D~R z`R^1))|}g^9lN`;Xu4UOy&XB}^{3ntF7KmJ;_O~!KCMKfNJ<{zerYRjS?YPV!5ndW z&CJxh`v<=aG54~uysEXjS>(A*zJi_-vP4zm-%7i6U^@BqqKAIAfVM!>>s`_V2*;aT z1|NT*r!j?3BOPX|i3jPYDzTZGIg^Q{YiixDD7~eP-YJx);B<9bdlhZN!MkWtz8W-g zK+-jr*gUX`e4wLbzUOh*`D90?wW8)e^Uv8>O8(uX$oV|^cwb($+vse<{^InlPon|8 zr~{k*r+c-VZk1b|X+Yx{I{Z#=X>GsKt<@lUBk39JHY&FtOl5HT zUWN=U?cC6eN_3aArxEKHL!8xkvRfzhh}rn(aos2OsBopP>!!2m{Kz@{sA1-J#FU-6 z>k5DajC8UME`dY_gZ%D{gWtWXUm89T6B}OE*8zR{!CH@aHu~UZtJ}^|5tXam?2BOw zai>8Nhf~u<&Ch?QE1RkkRRVeGN4R>U(tp_GU=Ce*gSvVD5#d|q8H<{7L#tmaR*tc&^Q2zXw(gq7hfy5;ctYe1 zT(thk&)bwR%@&R(LeIG^-OD&1(=-34i_>4ix93902t6KY8De5x+bLekcO6-+2!w`#J-!6Nl$a!@}<*4CNl2wQL83$XRIyl>TwRgDR z^K@5F`l?a(pyqO$ByoS7d*GwSJEM z42sW%i{2-&o5VEuY?Rqfor8n_%2MZaT%XV($Wbqq`}4uf zx*F8M_V)H2*4-dGyhWBidu~I>c?DCPfT6*FG?U5vr1h^vryTvFSW~-J`+Ret=2)TA z0(T4D$N2(o>z0dBwUraoWs)Y(e$*S9VNhm(rx>Ze0tFRi7!Z3t|H}`tx|;WXK~Kj* zGB$`YC@-Qe)xS`7q@ZhFZ-Fh!SaR&1-`7c~q?mR9fChm8(7E{)FWar?{AQ?}z%T-! zk}c`}%gL7~m#2TpR59Hid5p$J=3ZOEOvtbM2_);kBUhUsDT{Ra zNFyvs+6K`JeQh#=*4>3-^!0B<~^-d7FC|^{WD_g<9p-mwHDSlW*?~ z{v7-o|2l;*j85bcfhr6t9tR6{PvYkqmZSyk076~&JGr&&qBl6$zveJ=My!*6@u}oQ zzCh>K94$sqi>jQaV-X0dAfw|Ql{bx2lKtTclPu9qX1V;b>-Nj6F2YpTsRNGt%ep&O z@#%k>dnB}S3wQPQzSST5?H%_zY_7y`bHy#v)4Yln?sW659p__-!h!RJ>e-(11ozt# zyUiAxpY6#)P)6?e1Ej4}%c$nbGwh!E;7?4=pEnQ5Xi3aSpYT?Z3-3>FlXv6JcojQV z7wjDrm>`c}1`b{)mMM{6i!&-i5|qj=FgKj>mxkMEiNz37XgTDZ^VwxXku_`%SjOw4 z@z=ZAWx`Q5+$Y-OP7l{!nzNT9?ehQ7WXhmhbCNds-Xp6*PbcoBhAL%H)GDXtp zSfRt|M4A{WtvcO|JQCvyjow*CJF3SF2zal&H#!ZS=X43DLN4csIM3y>HO*QdMaBZ1+!*QXUM)t`>Q1`4|Fm@YzUUMd+&`Jtdh6g;9{bq1O>K$gm?JIvlLOgk zt!)$Vl8mFhtHDS`ZS7z**%OpJj;zW}XH$Ox&YAgtg=%9*+rN%Yyg89}gn+R8YU(GW z;Lt5Pa7z~afmR3aIUC`3L2Ct|4_MBV-rYfOLjwExrC+^erWF9LB>mn5Cj100*E+r) z4}u7j+j>j@@jyZ0GSjnIz1<=L6BLS7RegPNixB-~oXe6;`eOG>ch~9PF~`Qu7-=0y zrRzt(+!GdZd<`)KgaSZ4gL0WgZA2|5S^_x2NIqZqD}ei7CI{Iz_7(_0oL&G$3jBk7 z3M^L@Vxp&K<*62W>l>!|F1CvvD&xEqolwmt<>=_P)hy>Tgp!^UB@Kx3v|IV&qoB3~ zu(p(wQtHS#YFI#6RLH~+C;gZj{A=D*n|zb^H%>afPs|=K_S!nJ+Nk+EkM~nghC9?g zty?gvTPk<(@w}?fL1fsrmkt+|7r>4Y#fQ{e(iai^7LJfoK~muspIMisl=uzH?-Fxe zvTXxKpLOZdb~OGBp1AeQo9d?dn$0~G_400k^A;R>0$w|mQTd7b8v_E`Y%a0|CNvg% zicTro4@56pP?Gb1N(Y<;h{lb@Y5(a+(x_E_(Jp{nn0#Fvj#<1$iDZhO&&;$Q#FCtg zg-%}miHc>|8-k&!)#1ij$}3+8*WO` zno+2=YiW(sJ4@7-4(+}&rFny*j!x`lXli72xy8FpZZxc_meTGj;Mbh{wur9W|%c6DPrKknOf+Og6I zHPH{j3Ot$Q%Q^LfQ|u`#V?2IYys}pPN?d|;Q*&;)ZT^^ORHd%E3p=-o2YX~?)5T-) zHNh7ia#{}8sWfZ1bV7U|&g^D!#9DcHU0S|D6K|iF$174hD>2xV$2l-zBqg;kR=yu- zKPWNLp?Hi!Q3WPiy(`x%k#oUc9m9t-<{UzXOY0&7HLwmUDTecG2%q*tYXz2T!SySl zeZ&pT^H_)@1s5P|AB)W5iHUiNN1u4mPH5YceM*d1s(@SSc=Ms zGnrLG4XkDju+7|>t1f{_Uv&ZCFW)bdCUd^rS<1?r7#!6`!Tw!tL!^qH$^GV=$2R;! zBp97=gxAD;o za=G5=khiA#fGM#9*`85+r=87m06^GrcTf>9;@q|Pho>ZvZG?rt(|;5MLX8&YGur0f z6ZYNUe9Q8=N+8&d`?S4TS6AO9cwL1xQe#DIiW0z)Mg=}z4T+#`H4Hch-QuPo11Uvs z_q4>(^Wn|c4>TZboOZQ-D|`+SYkBp3D5?Z|l;5TvqH?CTvjob8(Qtq9W%|D`s}6RHSKY-+GZmi z$fv)}x+O8cR6~DMG}T;ah--UcKXdi$C~J6Ab;%$bdB`E>;e9ct%SivU%|-S|QAdek zky#SX7<{~N@?F_A6TONIakH4)GJpGV^Gow2r2QPJNsTS@0YRQGXxc>M-@n1Gta)T# zwG)v4dYxziX$WXG1n^ax>-Qt4Y);&XN^B-x!9@nu_p3{oJZ++aTmo|hUmfHZxbD{+ z8jMt;VvfPH6n3-WypWwd4oAJkUo`!`wrZQTmp8>H+Amf&Tix*P%3|a^3@L@>c`L{% zhPTze{L(ubdtPvS)cf&H>*0HNP=^;TOk;KnycG6GTFPL2H0$!g4~=Yh_vqP?4OByG z(5ZRpfiU}NY$~!Q>=+N$+Xs{QhIX(92Zfi>E=?TBq&9M`07UzvKdl(EuyqQ&r>)Q< z0lcCKE_Vi+4Kk#r*(1HO_0T-kep<*Qi>k%K6%&bG$KHmL{m!#i@Dw6GxEmTco13PKP(RV(&BD2p@dv2ohsYeAoZ5PDSNlC} zdgWaBb&)sVF8O>*A*+8S_OF_Pp<;`e11+7aZH2*fn$ z{u{D)orebff{42JjSeXsY;$s{nsyLY0@T5^SFZmj@0&Uv&{XR79i+Tc4N0C|e+F(_ zpLRO1=`Hdo-?X;atVL zfXV83r+kdc^z&tPlnj*8cC)%mgT-|L;o;S{32DH5e)!@VqORK0UFNd!3^PQV`q2Mn zCWRd9KbzZ3U_ER2-S4kMKov-uclFf#dyzQ9`xe4pWt$Sqt^_=KMsB2*Y4*RH&iry{7W2ZKmeky-uxX;q(o9c~5jg zXVT?0Jrgp4X=~>q!eN7gGubB(|3)gGtEP-608jT5Qhgp$Vb2j&kKDC#)`UOvkI@+KnjE>OPGM$L_{WGD>;>F0hn!9tx+KD?Q#XzKRsPCLL zyt+xlKa8rcTcJ{QcV@~cR)00A(nV=QjgmYLDDd$Zu_kpYol`!4enl&(B6%`y^EZ19 z^`3<$GFhD$E?l6$al?mJ5@C(%flZsIM$_16=*;c92Oeg`VX%Xz{MnB%lw9~StlyXv z)p%3;nJy15=&Z&*?vz4#)D@6Jv4=O94@;FSemlb=Zx{;rQ!Ut+x*G84NV%=?mbuI= z9Yoni$j*^MDhD6+7G+Pj{MMLK@gjp?L~{8iHnhs6S}M)MfxDpzu9fzC(7FbCJaa)j zse&&THiVW?16>?0RW@zxCz{GGbaYXC^2Efg+XY!iuWmNgw+wW3^{;)&uFaHbe|}}J z#PacY<1iJ6kE<}CKMxFi zmb-Yy)TovllnaB%0wf+DK7?2!Gxg6s`1TT(7URx0nj9IiW_RF;la`s#;7R1Ke7 zE%{c!Y!jiw;1>$%un#&-0Nyd4y6hNL4102x5{IQz>?LU41fm1z_Va?G6#=KVl=7cULT$vur0_AbzJX?1{ki|yn6g1#CcPx-t^ z&FsCZA(YryoA&3po|r9K8x)l3zHZf`^ddexy>F3A%<&T9hUN42m&)v;pgB4@iTg-f zWBJX`vQpyLMae*6mP-a&Le=npFR#vxQ(qI8D&3Mt8F8n*v!t&B0t{fkJ6ji*`CxG= zm-UJUjvEYGrlzKWP*J4)|0;IiMS#E*!w^BO3%5xJ<-zfBp>m6fCkaU~r1cm91Acl9 zj?Kq6wy%KqqZiq}^IN?gQ??I5>X5Iax^ZGRNtSWD>P^OqB&xul;Yp%qd@LTE2giHG zFSW~izSs?MZ)=yxs4AD6b@+P;6?y+o?G(s>?bFS#7V*pjYp4(?;J_e<&ll91W=~~_Db%7y^9AB@~PNF_=xj>?87+I`V z53M|Mzx{5+C>1sjl~1wrE$bzA+&-r>Qm*$kwln6(0aSN)^&c>|eiPg{_Q?v)n6gJ1ApfDA>8ifx#u671%+h zD!qb=aAO~$Csg>~vQ$i|s~r93N{sd}lVW9Mg|ZDJV_XdUh`Ta5B+(jv!~90g!8E?} zx#uSs6_n3%Ovsv9v869uId{-q<4xg&Bm3IMO%(EKTjFCUleTF$#E$-Li-s_%ef*h- zAs_?dHEYA)I^`cZedW-&qH>ir<7~Ct1@D3c#T`<~sCY5-RR~mlDpI9LKWE7lKPcZN zeKq@G!BH^kLFnksx4&Q9U+oxs;dJ;!KkS$ZU~t|VU%kEo_Q)G+fL%OC!HL=|Uim*{y#-VhY}YnA5&}vI2nZ5_ zsB}w8Nhu{I-2&1j-6<)eG)Rgd9nvMOG}2wt-6invdEf6l|2gZpT&_o+ahPH5*!!v- z;oWyO$#WJj5P8*mX7n%d(@9rb?SA6lEqbb#HcNB*N2PxmoXB(6dW5*$3d-=~{0ko#_ zpjwi$4=3P$*zOwy_qU{%sBfDY@RCTSMlxO4$5<~}j&A4^{#Hw7vL{?wtF&>cC6pWA zUfY=47&H-4Q!&|7)VkXe!MIGOHdNmJmE>`-civDNQh!Ehsvy&Twi1v=)^h;2)Tfm_ z41&Bb%eBuj$sSZtWFt8B;uZ zNddln53@oq9HHaO`yz#Gfy#1e?^>H9Z5fqy>_Dj63Mwu`zr__|s!T4*i6Vo~F8uzhgJguJ_MdI--dRt^(H6pb$T z((<*(t6ICLQPVZ*81maa+IgPEB1t~lo*z5?^X!cKIY9mhA5aQ?rcip%qEiz9 zS>+25VINdf#0q+)4|ixK^^qPwx5FIO176!XL~~0^+Zs3`eNZuQgHtX3x3%y9chLA| z9T!E8B&xe8Fp(*gZ&4dtPwmecbzu<=emO#UgW$aua&9&O#M; z(I=HSQ4cptS;D5jwi#M=)m%<(nLH2Zp&OMWC@5!nph4ahBoREtnnmN3{g*>d$>MQ@ z{LzI`vQck$f>{mwo|h0M`$}@(ii1$<3H;&En=tB1!KY>d&Pvd=2UgB{k%Pq#>5<~# z;J^-5aB<;Pi-ROzBk;0mkBj&C2aKbM4q-;Wq)WLv2|y9WM}yxO2eKjFskO{^;4c9s z^KWhXu!OH{1_WzxA$f(Rq>}k9F&>GZ4kCI# zj@Fy4HkP-WWEj0$ogJ8E4y~S?PbCfy5apVO(&T+!mP_1^4GeJm(=Cfl#dA~9{e;?l zhmtwHHnaYj!c@i1+>I3Jb0fSydw~hu)32;Ht|oK$>%~-p4DgG2gDY8VV;g7K-yLUE zr0xHl=bho$5X@Wa*3?ildB7!6Q$av3p0C~$(xp6Tqni6qzR<&NGbBLSZ;i|7RV=Nw z@xWASfBdK4Wp^lQce3simU!>a#+Pz4`KgigY}Me0h})XYpb%cRQ?s1&5SbWTL^RP^ zyk6_xm}$asF!gxP*r7ms-K)cV!%PD0cVhFL%xK{)N|{8XD8~`6z9!$wt9Kd2n9m*R zO&a!7lJG7)*ec%J5D~RsSGl#x+#RT}87%Bxd_vDHVcR?Ou5^TMedHhRlOoP~mZrLX zzOVf!UzVqG`i}Td_7>xaFIcRc8NdJp7G>w=F>Ns$83pvp=fn4sLf1V-Iwb@lc0KsHrt ze+Ul76qk~6@LuWtLde9*!h*}f!lLa7998cyGQxiM_*gQIMF&k{0IKmiPk3l%S{mZs zy?e#w<$>^w;GHPqAC;AteD{t^6TH_|ywfYbmL4X($-jr`z^d!z<>j(de}YZmMA(ku zIf;*EaQGzVC0NgCFaMZ5*{4z#!SsW-jDY2-MWR3}Bt!{fd?I}K8VYng*Thf4bLIag z%8?TOjg`Y^c+GlinfbkS=+9j{qaR-Xpq~z&sFmt+g?MXL@$kfj*5Nw_+I-k8(e&p} zi9D@))}_g~=9nL6eR~`7o1pixq0V1PdCS+TV&bm_b9A0ASp8Uwg)FEruqGUH!n z?Rcvf@_)<9-kAEvH+yaOP<})GPqF}4Bd6=icVph54L8JBns+Cwxz4x>ys5$HU2*zN z`*fu6{$ekGkQtVcVz=nl)8^ZcMn|6?D}b^&izlM8vT_d9dwzc2 zxV;0C_0uZuw4-B{VIi03|NIUn!?_UIS^LZQ%hOQMMwxolvN@i*($eqMgOZ97`m&k!{ZDcJ|bT(PD13-5yB*V zyc^(-!BfED=D5-88T-5J!RN-)^dCk7qxPdO9ugQh|7ERn^^)>qQp~l)&)h8Qm zM+4nI`EqQ`Gzyd5yv6)AhC=-_}WJk6F&n|o@dGADuC`sKZHlQM$!;V}dMFM8245QMiO)^O30%$Io!U}LLHrE0%56adYq-$vPw>;i)zrH* z?tqvr(Dj^>$uD4EBft804nG<=n8SI3h7t~Y)TQ$as*UB+ul<%}K1L@tM+~~-?HIKN zlweL1`S#1*!PG7Lo3K=;?0l zK67w62tGeck~tvOG@5_~0n0rqZ1z3H>B8AhjjOs-Rbr>^5?QQM%6d}LS0W>cI2-J+P+&v)Kk(Aq`%vUB zg?G@PW<~cj{+V&j$QAcWZtfgsG4+i_r+IO>B3|1K~)BB`W6SYV?AnFA{{1s@_Ja10F%@j-JY zLf32Z<%eVXt0!|SE7_{@khWkwRpkq=`LVG&7atCYeMx$1#ZdMIBCqEHW#nA0CJ?!7abdIxfQ3GAZ|QMA3w$fW+uQ`afwHLKWsrpa>WV*l7XkMVhB6k*Nmzn$^oC_I zV{_|!gLP*jo>YjRfRtXKS`Mmt+tF~)8A(3wys3iwHs5{C`9YZ8 zZ@%z$gD<$TGCU~S~;dJ6#{z!|AHSt0V9aqxxGkw@H zZ6QlXdnNB5Q$Cy}ATqvfr`pGRD|xAiuA4AK{FIhKvx{Bb;a{uuq{ckY{Zoa6Z)Ng( zB^d072Ti9AC%RwGj4HRd-X^bEpr#RU3rRPqTG^PB?qbcxoUKPZ{IX(XH_&Kc5pRHJ zRJ=D!*-+AK_~e0_(GmNxlnPe^1-Ir({M1F))0DiTLQkeEgTmLd+T8lq7h^4ivmeNG z=ErKeY)>)wZRb*##~ zpebWBcNrdevj;tKD^6W&QFOn6W0GersiZ2#<-6uYoO(WTFzQ#TUGG9!9r=TGifZXsl!yN-qvS{n28#zHF45ctQopbaWg_xL_a-N&> z{*AwMQ)Y6vj6PCwmUO>cIR3|7>5yxk$0#ghTWbo1PT1d${Yd$p`JGt7Hl3?TJ>R9hx z;-mF+C=`ruO?*vA;C0^<#J&H)U-|PR(xFP>$FJX1+O5#kU)Xk}FIUJHQoOsRo(bo> z(B$NJQ@y{|_`&tTzRmRk59PC7i6ZOi`SIU6D}reacnCkS8o0B6b$1e2M)Jd1cK?|x zO6Bz#x!Ky<>Qn=2{`%->f^ON&x_qvfb#2VKZg+QU{ri)sgqT3o_lpR`rTbA({TB){ zZjVaYJ0;&_7&kb+K*jdil;Go4AI0JN2*uXq4@TvGEPcP50`ubR)+SWHW@Q_l>QmL9 zVMhqdK+SVZAqdyCwav^|dK*C*?(O-U$}d~bSC*MyspZ>$FLgiBDOmKCi@P{w@73nT z%YG!cJMX@;LD6^qA#6Ww&CMdXtOkS+{|0E2>s?avI1$$2$Ey=^HjNO-*xF9Paq0qn zPq1*3&z5@z`bAs;Uf5SrR9z-G7O#4{fBxpg()OrzeKfhezq>_Y)JnZvXyH&+B|f^OrBOzuFU{Ze>otpFNFF?Ry`I@ll|guIFO( zmz8l>O~dJ*b4EiS7mEc~L+K}Rdq`tf1abuTINz|aziTk)aJg!{w%^-=Pqep3YxTZG z(0wUm&z-fr)N}{z7B=KJIPv^BGW~I9e4kR!=a~FK;eBD9NWi>zNL> z2EzOlv4*Bgi*&r=P?T=wyT3Dw@}IMJ%zPC+cQTeu`t)#Vrt+3%{QIA29$c1V_|7{s z%m-6p_sejkerfQ7*97t>G|jlD3u$R-=QlQP&jng=gni4bXt*@1d1(=Q7qDT2mLRj3 zyAU6Fw4o=MCJd1l5YMQ+;sr$*(pFSp4}eb_qm;vDIOQ`!X=FCylu^TQv`3gR)qVZ zix?V($?MeGbxpgUpdyCKeu#fI>A8W};VN}EE)*!bbn*Naprdoge6&!m$)(42ym=E+ zB=0|SBLaMhQ0T$j`Fw+u+laq5jjqD~?nVwC!YCKNe>7AJhU+ya*`{k?@s*h}1 z!ozgkCZsoaPByW}Gw*9pINLvjB1Y0QQWlVwP7&cocV9lYA1Gui*mE%9`>tdLC<`nUaw~GnA{k zQEsN7(bcx^k@od#XM5N=szs26If-ucztP=Y!uR}w_A z=Y^AKR3ZPv?x)ER>j&CgwH(~@fbny*-{*gBVddgv<=aEFA)EWLrN7}>pYXK^O%&#c zTHH_aeqy`NY?G(y0upEtQv^T%y}i9BEc6n}qb!n)y*GW_PqtOfTqDT1b7SqX7K~r% zEXFa%<&Zjaent4mtn{L|Jg6#UC@GI=C7`MnI2hsMGDE99A-na>W@%zGrgi?jEy-`A z?8-Gb{M}W2ee}n0ZPyfiH`fa65_c!NuJu%IMH0I*lf6kzS-H2L&`!J9taClfd_;ieVj?@I}wahL@I;f?dV%rT(q|Wc!UNvr&bVB&E_}} za<5F3q>1>tIfg3-b9zpRGpRSAl}hoA5uS9&IQNW*E51UUEow_M7zO-5{7){xx|XPR zb}wUOq~OUNB85~k6)HGS>D*5{H+tLg5%Ruyr$o(sn9o^=hc85XY^T zH((i9V-vtnjuDPQ!D!RPzX@n5tK+W?QB!aDhu3Utob1G{G03V=&0fx`AR9rg4-o=y zRK&cX`$nkWYxq!E$E#0?9!QN@-|z1oWAyjnpe4P*F;_dfhb@cOSw7?gg~juS9KK?T zDAjdnPEIEHA*U!uU%#44zhn_xkuNW==vr!f_2lLJYR5uG&Wi?yI*sC$-WcEAkYyY?4hRr?^M?5Li0WHCyZ5Q~cKBg( z)KT$fZTCfDPO{Z4L(vbI@JXX1?+s=f&HeN}Of$V36&I&AUkB4_0swsmu=YoVC*NUQ40vvc22@PzFg;vi=9T+s+k_S3uYz&+4#Fk3V)J&V$xo*Wa9%~wh4IIlbGDk zOiP0(nZ$4ni;|*7+W-C7MM<+I$-!~e5FxO}!}zf7HHk)ESRVPr3;n_VP??ht^>Ptm zipJ~zs1MrOw2xb~1-n0?&V|(kwoa|nSUhFHyPA6RY z+ktAHc1I{#odjV?uD+<${XjaO%yz@PQfXSY!FBa(?5g_U-Z||~gS5Ot%M_L}yXn-M zCeH~+3p@mjC0Mo+fJUt$UdUH1b=!J-jH*I|QOH11tN8j<@xF}g+z20!o!_j!Uii^H z7Sg`r9Oii9I-k*z&y&ZuZhb#$ds%N~TBzN6&7AoD?;)3NHN2*l(u5mzZttu&Zmm3$ zM}E(!vh4njmW`|{ncyN6gczo{X!Xtc`4KAMB%u zz%y69yQ28wXI4@7hXw;y_hS8{nx3(tNy>(KEMkn6#q`ZURJX|O<*`b&3}x)z?c0bM z3wylho*VidPqBzX3G&s?SVwGJnqx-$M~D_13&QRVZp6^D@I+IYXbH}~$A%N?k=ag5S{qshgU*Q#|niz`H$_i>zKp*j~A(08ZP@qeuTEyo(C-3UmILH z)doGaC{C=W2fk|D{$aO;$d2tTcJ`ohoUt|N(XttB!?2p_e`R@-k&%%sUOWp62WLqL zkNhdNkdP1?C+A`oI}gwM%uHICtr+?IJu;ftudCK}Ud;bkSv%i8rk|-683N4b>*A;{ zeFndlSSlfzae4VLQQA*G;h8aiv-jCOz~*8tZxIr)tMTObyFmRKb-+u~K|o0D9_=4l zccC&i;5sm*LCQ6Ncc-=jtAd_?8>Sb-!(122PY+B>F8aN!wK})nJ6=pH8u9RKmWmP88CTioWDMU<60CUcdv-iFg3n2SsEi|(Q}HZ{Oj zLI~h)x_@upq)Tds7mNzHvWY^1JO;HWKKBQ}w78qk)Wtr$E+UGO4v5GbG5i?^Y36VC zEzycJLIBOkoP(o{2n~((FD2y-A9%o@7Fzh2hkt$DF-3V*ZCqwOq$+wE^!T*#d*nc7 zEnjbnHQcSF9()W^GP@qz$pkG@%V|>14sT{FB`(jujZx^NX^v_IS;WmQW$kS4;m`J! z{`7W@4Ho_`-gsj?o+>($)^7POgH3zB_P-xBLK78dRA2>8&#p>Q3HbeaeW61l7U6T3 z@mfOvl~C^&WwO5_R;H#w-ha+)%C8(ZyfLvmrC>)CmnmP)lnB)Lgbi#Z5eyYt`BC{F z+<`+Mx$$}!=4TI_EI%VYI*8fEvd;>M4Hcqb9~HEOYwy+#<|Z zw+@`Ab-*Vj4Zg=|^07(uF7;pHX-F$N+@7vgT3WX+V%d<}7PB#_tf(L+a#gzv(W(8l z(=h!E@Hp18qE1%zdOa`Nm)=R+%(Mk6ztBz$AnZ`dxWHlE zFTtIJ;?N!P2n@r{i*u#oxWt#DUS=f|{(v=)R5#SG^>lalH+p+RD#SdDvP513FdG>Y zW^J;_NlRlQ(rjiM-j3uWA$U806G8KZgXphuw0O5Ub_YiHjaH|^4WV6S>${=^IlUH0 z#N-uk3b^$lC;|lm*9jcQ+sJHI;Ixp;6}YIXe{dvVldx#dP5cBOeh65f4knr_q;%pb z$jCrfew&w%Z*St2wstsd$azQy{rEC#$_-MeA$Pf@uTLRwhMu0D*JYO)p%3#St6cVI zLYvAmO1Mu^$nggVsJn4y5-~FlE7*;9JG()xtgqr=h|z# z93bwoFt{ihA?2N8?lo}x8(fLpc#a#Xqz}7^Lu6epK6Ztbc(o8BS)zt|fj*!X6w3XS(xj&WAmu`H{c zbDUMq8y|>StY%!)to+!bA^X}kwIhPu)V2Wx4z?M~kcGF~+P!YL0%WoL#~%Bw32x*T zghc020!9)N5+fLCU&q09Kq2UYFMN4O*tb+uT>P>cjm~e9?b(OMpL2oTmE=+uhqO zuNPP9Ym5H~f1HfoW>##aAJJ>2Q@)=Y_DzE3PQxk>{%jyq(552p6~8-~-XS?A zB3L7jfOBm8>E9)rh20c$;WabC2hPn)w-G+SX&aV1O($#VT<#)7_73SEqHLYLYkms_ zqKGq(^CsS8ckLY(@8sKvG4Fp*+Rw39DqiH1Q6HSTHl60|=((|mRchR`M@$)5Z9$@GbsCl zd12{bv-4W6(l|^LE-AEXZMtq28`o5v+)P!ekX9mlSF8mEhNw6-rQf`98LE>P$g1(! zQ$YT00pJs>C1OA9zh|kAk~p%ktH(3P<*oA#scB7Z4ENkuti8p%=cbyrmiP=(+E2s z<++mh>5)Y%>cavPP5&E zgXcgO?`;${F8uUGMId!SX^=u*cPR-ni8IYg>j;=>Z>P{BB`Jw~z^|^ZmZ@ro5~nTA zrpuuB?;Xw{f*z*wkfOOX)tZEdp|=7pw(gd?U!P zD4|@Q>jXK)(v|~E%1nOZzByL1I*^Ic-O~de#BfHnLh2_^a=P8hct&fSwr)Ls{8+ah zYr%0|wbrDz{7l+Hr?GGviovUwF&9hOsYY(mqq#w>Om^pgL_e%Y7P16VH~gnc|6ioI%V6+_X^aGII>Z;waHWa<%8Z4~s&l6t067+cUL0==Wd9}vT@pf2VMjf=&*vByrOPE++x}K+cjl&vl zS|hCZDBV4@p389UrWDm%^E#mS%MWkV%~^%J2aVSza|`>843ne9>4r=?DUlm5Bu*h7 zu-K>rm%lhA^GZNf11gLtPEpPOid?F#ko@J~H@Ol(eBP}OVL=}TnP_d0`CrWi2YZ#{ z#z>ggy{ED=@%3JpZa~z`!6fw-SinD8durl^y&GO@!f}a)f#Glz9uk678K@p~9{fOd zGUctqlaoo4apyIAiycN+|IU8>{_P8mKFsSd!yge@Eff^RmyA^UF7DwW7%KB}V5t0d z2uKNBte_lFV@+xCt#{w;x;dYH-yL@y8dS;>*ZU#fOuVqp;5 z(ku^eC@lKJt)(>k(w!wQ`@F>bB>i%%=AB$%r=#T?jQ`t+^R8?K>r5gLv$*#PV>&8) z%jfuBl${765L5qFdc)4`W=iQf^`$G!I0&(Xp1&3n}{ zRAhAo%h?vi7M@t0%aPd4X&=Aabn+(|G(D#ZdwS(3?A8C_-Jlsk{@#0(z80&a%F@Y{ zPkR&*O;cc%|3r)Fsp#c-?&VXcH2m}1V`gkrqdP)NA1maB0WWico~0C&=j@6J$Z%%I ztrGnd^r`8<*%`s1N?hm;RBE;eLUOlEdl}fxXuKzVg;g9!ADb6FF%Z^Bm*KgWk&&^x z7%BY8;@AN+Sh|IW`D{S(%-A|PEn|g&ICY@RRH6Ptsj+c=ZVti9%38qx#?}Bs3GD?%yu!-5B;pPU{fgMeFC-EV~6gRtG6 z;@d7uO-)VfuZ0AssTCNzaC>|3&!10mAF?FEh+)b@8+1$qSu!LATR7wm_-wjWwoP-O zjX&Dm#g`p~Q5M?{hK3pXWY7ozp?bH$Iy^G6ZkzYLS`x%b^qx1RN zk8OUg4`1hwU1{|+Te@!3g1Ybjkr?R;yp)k~^-kRA)chvc{w2E}HRbsk127bgK=GO*`AMy|oa6F`*Nfx_@# zCj@F^rrur6!ULJJKQ^{H>IZp#Xh2$X#hXL9{s^;q^}AXTCAcN_M9F!OS`QJBcSNya z`+L@A?!H)Y+I>45;J|hhk!o{JBj|MJ!}NGi`GD`k)D~r-{lG>)G?wgpHJYiz`8-o-O zs6D|oGh@AP>4=p#ya?k3=;BTO{)*zt3BJ`N)PIqmgBjYK&7INvT$l#JU`=;&9823ivZjZp`(vEZ?Yluw@>N)){Gm|2-}u~+#Xuy@2D&qAn|Oyzb?mud*sCcnrysO`5W}G#uY|_j?cYxU0C$c7A7rx$iF zMoYAzR5S{w$x=po0sRL`M)CgUI*tu!0#|vc$)Q)9AJq#8EP}-tbUre_p8G0VB>hPf z=sC1?jvhqic=bt3yXp&tat(YorZ8834jp zhrSc`{R_^y_tE$kKwu~U917lHCxT6F{*Z)_kj*QA_3t<*!F#N3u_R zWS|v0Zmx9|q#x)`Y4}4HOCs0O4r6$-#ggS^rNt_?xKpZPk$FRjC{C-Ffv7 zz6%xJ&_>KB$RkT>P#bAao1NDMK6u$qok{9ic1E)e4$YEW2i6a z^8kxXbcv?z*u7C7W3pAg}R82uMiB$drmmFW~#8<(hqr7#Y zeRXhitZ@?a%VZ5GRX0N}{0R?mx2GdzPQI(*!5aPdZiQbjSm z5y;mZa--;k&KwuJg?i)4bKPj2WC2G!{gueoYTMbjucH1Ofe+iSo~bHNh~T$w1b$T4 zNX6ISgwfk|OF7C)&HPkJh$r0Y-OSPLt*zp(WD6SP^nfrdvR~v_k53326 zj1e6yYZ|s6x*@^!Ss|Mn2FHay?S4qV@q0nIVeqHbO)(7v=pkN8Zr){bb8po%((!MUdWC z+^}tiF85O0` zt<}-~55yV8Ke!}{QkI7&`j~`SawB0gRC!(UL!R~A_O?8s@!f^FxmSf7x$Y+_cyut@ z2L*9{vQy;PkVD_ef=3YYRkA&Z&00EM4qrS11|0dhwu>A#P7q-uB^MpIRL!G8s8vfT z{x$l?p>{4Zmhw#x!h@VQt>$=IFk0F@L+9?z^Oo*#{jq*HpNTiq);CbHI+GWvIGXDE zEkH>le4>2qpHI&H{5(fpT}tSfKst!isiv;}i%&OhiHNz?9|NzdFWJ0i)R8RQ-c=&s|9E&d;YkP#o@7R z+xrL#HuGaHB)#jMEEoj%bDF;ldGC=sQiurKPS-uI2fLqD+ zZJ<@2;qJE|??#*#Ri@m2scfB35Ac6_wLlUhcujY1Shg-&alDLNN-S(VSE~-IF zf?NUR7W=NUK2^vfX%g6zm|?0z^S0+7;#KYhrZOR6d~{;k&{v{ISwF+xOk@lyMdup7 zUZM}g@-d8VCVI5=Hm`bP zHbWetF{dnj;p4jibT{M8R@WxAOiyd~J#86P`ynVoXPd$mbsZ}j^$QKksxN25aj=a7 zq~GidO4`IQw$~if5+@ms^~YWG$7W^*uOxcHpun0(UJ^jF+<4}`AHn9~;em`io;kY! zgIs3JXir2pW3U=V4=FT)|6eW3!(L>Ku1I36^@6EnEt2Z@gCsU{z@}-T)oZ_I!=637 zxKX_?=&{B5GpB9*|BpYMA8&PG<-_6)P2e;oiv}{tb86*yYZ6elz+Yl-jE(J5HEuXT z0KM&;&&!{2DJg{~+!p8kOH7WtbD{`_Y|96VPB5`B@VMhvXO~-6stQBa4Jnn4aw9uM z5GLiSX0Bgy=#*KJs~dTbnIM-O@GCw52nQXWsl38xDKYm+dM|G{c~y^W?%>An_$ZXR z;NG}b#ps@<9FK!2Yq%l?J-0uU8uela#8gk4I(I4!&;L-T6uVCRvH|etaphK9#ije5 z5({!9odRS|yx@Yx;U3%p$qF^MKoi4KFa5Cjs<=nJlped0;_S1-?-VGwZ#wR@In<5> zIw(KRPoxM20*CEw29-VG=Yi@1#^Zvp)~JBbAg;k6c@IxX%5BTm=a_7Ky_fkPq`I)8 zfeySR)VY434B&NIe|St8ETLo`I^qNsJAMrp8pUMwAG|-@_>SpoT|^(&3H3@(arY%x zjw#sQ%$fduBBw(CXJz#7lB50z(Qw>*khL}s%rv~5Y!aG#r8w&7sJ4|`NG{MQ-m%>R z>V%KK%gP%Bgm#1xgB@}YN#Of31bz&2(2(y7`fD(H_wL=Mp&=sZ3X*rp5IbdVZVw(f zxjvz1`gute*Ccy}{V0p!y`{)|Gy4ojH8?A>B{d#3SZFAMnr181);TPQdN# zPrK!Ph~%1-5AC=gB-KVUO#6NkJwrtuj+B9RmEk!|pPE};#r&=k3Ra;E7%gOcD+3@g zsHJa+RQ^hkgPd{JRS!?_QLqSyop1bM(QC*rqXfdy<@)l3FWU-PTIZJ+R#nA2bb-2@ zxI3HWDJveNk}skyDSeL~eRQN=yh>0?C~jOxzPPxksHud4x8lStpL}VdjyB=uh}5(0 z)z7;4i?=K_LD3OCdc7R0c8+0~ALGD`X@Pvr7dU_9G9B0wzK zv_?BxZX-|SKf?F`jpXR{iJ6Z7uKa_fFDr2J2g*K6m4~PP)iO&iz8o#aOvK0Z!*2y6 z#7VWo1+L~KNuhdsJ&HC7lwP~{`$@nQp#97%5$%U$K$ZL#j*HXX5F^svB@#rg6tCtz zr>(H2LQnR1g576GI`Y8*Nz`d-4i^+P^4dCs6!DWTj=r)f%&RrlHl`f{S6f>@sKT)^ zb%Xomau39p4Xk525(-iacRqX_B1)DQ3=_`Cs5a8_OzCuu_HUGL8%(3a6k`>$9y-6D z=g6nN@v`MsDV&>2iX^rhlaVHgN{FmSSt5#9FOS=s^XJwaPAp;+jvby`ru~Titd+N) z(}p7Q;syQ7_ny8=Qtt85>(;3-6YTYLXKtPw|B)jd9i88$;*9!6r?M`Jmo}!zQfxt& zL=8ifbhqtgXYJeJW1*l(mHMaxXm_uI%YD@?Ut+95-)9)~zhW^?6a8Nw9}q>WwF2hc z4{%k=DL)^dM)ts`$Vfa;e@gh$>e3(fAeklQBHd?IwY7`>Pp$E_hO&J?Krtj*Lpf3jV^zb!HEmC`1~MGGN%bgRM6!@489n`kd>~TG z*4QWy`U*fPLFK>xkhyS50M?eeIntK)HR+GfB zvAM2BOPw*AM_@3Ogi!X%DR{SJ@5E!8|1Wq_cm_z~qdybN+I$&oK&l zS#ohQs~hG7Lf}<619EwGbEvKpZ4?Yhg9we)xUpL>LrcL3pgBwB{Ux*myj@jGV92TB zw^1(%y2&JpUvxKd!TL(_C($DxtP6~25xNEzc11${r1-SMvr;TX8NqO>8NI&Jt@sR; zp2xNOj@)lNjVTKA&My?FnJ==wILmbJQs=S147WXb3H(tPS=1j^LD^0hrnhO+Om@t_WaxM{RFrby6qTDg$O%N_cXUsF0)}USIa!0^k^&hDTo71NH7x`HdMfrvjgrUh`G+k}3_O+G?G+Za+48m^<|Nk)OHg4g7~w7GDv@o| zWzCE3Gtc<@gW(igs1WEnUE-xXvV};_(5~77FJ6Hm-R2G;A|By6W z%y3(Go!~#LZFp=`@ki4TT5_3}tBh~5fWHw?1+fZe%j9nM8pLXdicB`Q>Q+&1? z?RxmyAU$=_57t&BZ@j<1k8}_=H9`}4dVa1{jG5^}iSr+P0Edg>5jlWNq7OP1UeLGs zw_%2MM!o(()gV9wU>-x5>%sB^R#rSf3)D*t(OKmH?&W*%&J`&|Lh@U{ z{n>f18}~vAJ^~-O5xCI701r6WT^Nn-6Bvjd$HU4RNtjbs6nb!Y7@*Fy9I%)#qV)wt zT0aK|Ki?!*WQJXpUiIs1`^fCT3}u6V9nz?YOj6JeLqvGm+{yXWv*0}a(9G`~YHdtn}+2eG)I zG$R4Eg7c!VsbEf$UWcy979R69EzX{GiKdV0S{ns=?>2@05tM%+RGoZjS!_3~iS$#b zRR})DK-zg@1uA!ZkcZ|GU*xISn2o8duOsSk!()%Fj!7PJcRA9arkodxt{VXp8kFKR zcg~Mj13_{0;J>y++ewfSdOS5J1=B`B4A|(Xsa+l{5X#fia|iOYb8Qse(|Y<;O!mtn zo@*~{laLbCJ%)9TeVF?kr&9m}`^=1EJf#we1D`NekI%eK|tJ8Uio6ZJogl4i*17r zMZi{dsY=*EjTNfpOfye3+JL2Z0cN745h1S8>?zr$;gFtL@WCMF+B8PhKbx4)%yk56 zb|`M9{fgb6jF)XBP#b%Ba&Z=Y_Yip_Me{^G3b# zoii$usA?+3%YST>C>uP2P0!1DG6{-sqojcl$G8Pq4)M`sgS2u$l=36P!`zyYIEkc& zuvC~P;=fji>i=3HAim6CcdiL_rsgINSz0fnld92T?|x1DwQ*ZX&4=4&UQvpD7_;5? zQ5qATzoo|Kj$QrrT>W0!x#G&u(Ys6{6VATq;ygw%D44&u=$_mjUE%S7Igol2LI(#2 zd#8Iw;B}h=*zy!unt=vScksHU{a2{opX7~n2CJZKLnBH9s;0HIwJMJ@j`iWZ_eh5* z@H(T6n^2OpLlX0YxGuZ-X7sV~@wFZRWP$;C2^;y5K-pS;WzL`)!R z>{&QD@xVylYO3u1x71Y3E$*1#U*dB=cBe;x?3haipQD?M2vo>I;>ot@(*$lFz z-UblhI9#L`>170}D>}R7`FrBZPK?hsNP#X#$h?lkaLc1j7oh0Tc#0-%q79D^(FIH~ z*KaAfogYo8`o2jiI7sB@&C_4t+5g$tq;&cET4VqBm%$TwFnt2(84fm!MeR&$c77$k zk8z35aW}A$HYHcip*6XOE?y$_j|d+yPrXE|HeI#gv<);2u4Q6ouW4 z%2m!!dpzHnZC767fBR*k{2>{7|2bZS{QWjb8De`O3%D0r$(L8U^A*hkpx$=7JpLh5 zGP;>%ZipQ2V~q{E*t^T%ydJ8DiOFZOG6U{QB_(Iv#y1Nv|E7lh_(D$C^wA-zSaQ!-$N%fCq#AKdew(V4qpk6%N7_z){15a=%eX#&*ptIRAVfRJ!8r;J7E;{uDZ#Qx>H z@2&bPFpzgg?$o&W2#;fQKSp)JpfN@jV;v83tTtyltU9LUE?S6olH#vvxi~Wu z6EqYAS4>R%b9*JoqXveC3!B!p-6MT{_}qH=zc_-%+JHyv-}>Z~lx$G`dDP(D{SGk1 zJ+`v$2y1YE>By=6A5e(3EvSHB2dV+4Rg(Hp6i}15oTpyaB^79VVFOj!>Xm57jd%J$J(zrqe!$kY zoK`DzcX`d~tbsu@Rx`r>GY+T+`3lMOR@ZY}*pBg~o}l{)(oWD;`8uYG?b9zu#HRdc zJd`}$U#6=B^35JPQcWd6T zo-*o`{*`M$a+8PcRj#>U{O)M8nmRGMV>V zvH%I0dF4)v!^snSgC3_3J+sF3=U0WiC!r1FQ7-`Ox7$6o-6jm=LaX5-QCEXTj^oc2 zf@?ez!+PF4?+nM#TIW=6(W6gcFz}wa&rk2buOfF0OgPII;6QYTn9L&h_K@Gc&P;sV zz2yGlhPhO6F0TO?igTIYE$KCkyo*$0S5X235gfgFpV~#0w1kI$t%^(WUDVy(*|@pK z+2wrS$nDI^+D+So(m1rJ$W-w`E?`j^Z#D;?kF|xr$pxT=%t$7jpG^M)r`!V+J3vQb zOQ(1xZNwsEHwH@-aoHrp#Vx2wFEyyUBP=XjTUU3Vhey>03D9`%zM$lP?$+O$l%2p1 zruU0|!@X1sg6->DfZ3n4`A7Q4vgjEgpb^{ex|ji6mg+;}po;wb=QV-enBHJj2)j8D zcj39;Js{Qd_ZhcwSXT@oGk;R=1Y(q5VQDgH@ag$@OD@(hSalSI7HdXD8H^A`J#Pttr|5Y$zNs{e`-9W-o&*u;3MvBLu7W>y4#NX{hv*&kQ zE@~Z4YrWR4ec5x3lLea$x_aNtud1d7{V}fG@6Al#W{80!Zr*ipG^U?NF5c)oYJQM@ zv{^8hCUW6~CFFI(SR<9RHc&T9v>_tyx%)Np04P>&7dW5s$@L-^HWx`-Ju=%_IkkVw z*dY$0BmJLew@s}*7xlWSPK6V|22;iQH{=DaOCR274A1@fG3q9BpJW_2lEYH@2zpy> zIC0wbKIPRsYu1CzoeDD+DJdx`e5|TnV$5QxQja1|073`Qgw6eCK$6hjfY(3~tA{sW1kgdG?k+&M zj}Cc&?@4dpujj9y>qUq=ZdIdl;bt>IgZf)Y#;9<~@O4w62@C4^{M#U@s$J-ca?Zgq zJnP(STmkGYFkik>BK%l%;K20;C#>Tqx(Y5u7$)jLD~%nyT5U*3x4PTVC`U_VpVzfu z$1%7DCfzY=y$ere6WDAobg6M%wB2>SRzQOd4s_{NG5qchw)o}XQOFjKo5Fr_!en0R zkmsTOJ#J$pp}F^I=nHYtOT7&TWYozff%jV`$y=+`MM>ATy`C?pCubozc){Q@gQLN> z;BGD=veF8s*zuXlvCOT=w)!aYvs;JdGSkZolR@oipLy58rqB%y%Yp8i@i>1=)<$ME z8v&ZWq)Q?ov+26d1j%rX3MPjZ6y7GQJd!70N*gXe+?#|pz&PT)Ef;7*=bK1O7DD|F zx0Fer&ZsTLf$DTY=MhhwY~hHbPH_78bvgNW`vM#W+Il&Y-;J1|=BIh|ACR@+H7Zys zhRm8#lo=H>ytJ$zH&nB*+C9leRAmCeWE3m24p;tS-!eK>Rm?cwt1VTT#Nh2hc*{onB|uIRn<4Q(GC-j1$HX!kzKdV(_Jw#EcU;uVZO zn-E~-611V`%Q0#NwhiD602{?0>Soa~G3}&TgnB3Qfo>1xF15a=NKJhV)+cJ;{MCmBLAV7lU=TCB(Mqn-eqMzs)eLUbNRZV~ZDc zy^(;};7kckr9m5urleemwSig3#7&hf3{f2iZQLFXba^yh^Bij+UCf}$mh?VeKL>{XJJ7H=2lkI6*&ml$jC?;6d@!(B?hGa0AEDL)^>xD4}>Wc zbKan-z^mvf z+S3yOAqm`A$8%A%!<(w@Gx7Uae*6n^z z8rh?teS>Q`zI1mV5`V989RYcYKOCB2e2xw!J1gYmZn$T&UXmDJK&DI=_--6gGtMtI zVTaF=HGk{bXO|}SR)0E;R)Q?XB3_$sF18VKNg)aiVyik=Fg00lb$!&k*TSAVo~iX& zvu!G_a8jv|jc}c^G~d~-!FR8*wCKu~_HzDaoTtN^w#H}m$sc^(_TQUMN-quH)CIR4 zSU#p_W+of$CWE64{4gc zzObM3)aZhiTlr^&5@tJg^lH@ga=-Tg zdb~d9Wb1ew#y}GR47m@r!f!oUsPHAHYIqr!9vO9LTzem!l}BVudUD1KCxu2g?oiCR z@l&duoOOgO5RlLmu)BH=OxdmRE}RS%+n|SEw>%%R!qDYnelB6z#OAo8@NvjWsmuGu zX3}wU?O9`U8Bp(Tj9l6Xto5n`YT?u?l65x5O^kKIa@&`i6j+iwVb~1$c~dR);`Sz& zeKu75_4l7kP7>=CC-hqyF*jd|F*Y>U2kvPc4zo;Pqo<#C%->8%53eB>PUP!qV-3SC zWMpb%Q~O!pF(2a0qmif=zZFU`VK0-`XhFlyChYF+{(}A+!e=$a1Xv8}<$YkJ@z}lM zsI&sb^=hBJV22E{FdRVJg!Ayg0hm*C%{2aO_wZQ zuc;(H$&wEv>wO7)LYte+dnr^B`P$l2L|DMjqr8*@0x%Mgs@2Niei*Ja7WS%yw$KgD zf!J+(^A=k#xcb?jGNX0!NrIPmu0?elYLMk zh%{s8Yq#Zj=8xs&EiD*ziI52i>9Ga@KJjeTw9fkUZ`YCt+bttZ#so+`Td)n!%b z6)%1}e>>Yn1w3O$_*FSRB{}8ZWGfB!HenO7<>m}+1}gi;))imB4_@9snHQ61R-D(I zOMn{hwt|Z8?UN+3`y-$zanQf>9lF~xzi>s-9~-yYGM}(n6%o(4Nqr&K0}a|SB0roTvf4TXN|wuSc^*+OfDeMOyiKE z!^?I2@a3bJ#WN*2T@ee`#-GNua+=vMw2Gb@PK;kwU?eEVe=U65J}L0wf(HL>lTF-Fay=DqfJARbS*{e7E!NuAc#vJB;(ZmU7DiYE$Hc0?<$nrIWxM+B?F z@`GCfCfjdSDNNftC5rT}S$!nN=x8GROa=vhEnV}-mbL`B&cS_1cOp}3_*{K>jJ^%w z=o#};MRcs#8P5X=Y<#$jQK$YUfCVUy?GD3L5U;$bdk^9EJk#9mnqhJ_0WFZl_U4QG^^Tk(NRSWm$-x68`->JDACwc`!h#DTOe z9tD@5k+H`^dmvQ^QkPrS*nOG^;Y$hXh~?}(vko}sIvupw`N*d8O{1WbAcKuKO*?~9 z>*~0;&R(^q#;-?i^I;0~@3S5SBh{;i_qr6hPN!>wo2c|?2i zU?J6K(JaZt%)I5P;ACQwI?edQS_slu@$Nnsg^%D?YUFsu=llwnt)e1nqvVfumdg=R%4u*lIj3$mSVSc_S!(VmBmpKF%D9xU8z=?2Xo{XRjbO zs990*+4FQygKLRr%!mZEGSgbp@dG3$btC*@6!FSBhBs4K?*(ZHIwf^3FOGzNu=6FU zD2itMX+gVQBp=;uJ#LB7uAePor6f2bYn}|*Kv@)y|`PkfY z!h*Rv~)+%mHz1y6W!RpLq>s zOM|`lmois%TU2>VeI=TRQ-t)5WuKm|8&W;#rUbu2&LS7{k;dcaQFWgzWQ-KOD(@b9 z*cW-sU%uodI@xc#bnyUbg`tMG#rRKRFfUwCexaBcpFT@#+xT$p<;r!6aF<>g7fbu) zo04JO2f-69bL0W8a})PD`Kfl8Hy4ce<^wuDAbD^Vy?Q;`OaQQn&*87MzvEvCZUo{Tr)ryO^RhrAfu^31dEAAl)F^q%Uz7>n!leBLEy=!?{8FgUH_qNLR9JowOM=xY-O$|xH-sURXMuK58W zqt0eoZ1S%D80!nr$rj@v3K`Yp`%oBJ(Is=bNvrpE9Ok zx-XO~?0wBMGb~Zr9^>^J;<{iXtaD6|F+Rc2e9_-ncVuE7a3B|S@B!f1JG(=4=EdB&RE=M?L;MzClgKQ9$Ub> zTy>txSFkED^UQdd=TK&Sk1#(@Mz6q&LYXAoclq!6LVEdLA>+YPGij}Lqg{=`R+)AP z?F3%aVtwX|4BynLvj!TWXIq5oR=FoZs(DMlrT-nE0FmMwZh?HAQq}DQFt+&Wj>qTq z2hWZBJ-ZRZL1TNVV_yAWY(ntl*Z4b-_&)tsDGU$NR>NcD}5rJqt zt72N}d#{qjuTg#zux9)vK|_ap4ixORN8!NE&lJR-e$EbrLDiYmKE z!$n08t0bBH<`19A#XYAdgcH2>e6nLp?Sd@fP!ccT;;vqJZ(NjVOY#X4!uI0}w=VjO z!*I|nJS^v8LK`RoiD7N}8ak4F;~CTiZBWrO*=NgV{HPuyDmb|TpIRq3*yEfnmsYT1 zLSB%j7;VwmryMI%KalMP-n)Pbi@Li5y)D3Of z&zu}J>>WXk(%lydQ)R3sH<-b_y*Qiml9)t&e#Iv~$6En;pPIiu)3jb54>{SBltj^Z zJwQMeAR*pnmA#NJ^H_UAWPl2dHxtb6mcP8Iy9!%n#8o(Ve;VpB5?av1z=#NM zt>VC@Q}k-Do0@L=OiHx7bOIzIhE3YQ?sXiA{e&SgPdlsY6zR3D8UfIwd&t-ikEaX? z9u{gKg))pKa{E#PZI{d&n@-XDfCD|zIsN)hH6x@<`;cykHw_(p_7)qT7L`jWw*-1g( zZdc~C*&@s+NGNunsOQGNSRO8Xxa11wwUB-d5eQr=9H(} zK4qz}@b%!y^H@#i1Ru*Z$@6T(27V)@*6&HTU!r0>=Ew03vxfM^w0A8%I$t>Ze8-M& zDaW9{x%UxdvgK3A7A77@Iy*2r0UCmv)T(>!T}@1bVLNA3pvejZqgRu&v_0~(7hSD} zh%=WBKUa$8kBN3z9d3#R%m#bm&L2(WBX!(=@LF6w62wFj(#wTexU!t@HuQQ$BhHYo z55U}!fg4fmL>Wve8Ji&X_hvY6>)@Ql8w|Ei*t$!IG%0-FTn!*}MaK5Ll(D+`KrSdi~19#<;5=VOOm9!Ph>Ty1&5A z+^^VnG7reM=|Lue)_bZ-lt?ystO)ND9p)EQ-g^ymOq!YYZ4D=&jT`?lS&FWDy?vE} z9*ke$<``T7p9hV7aPOvb30@>97##+$C%n4CNNFz3p zU*8LRK&+m0@WvnbhP^a0N~5dCD$>e!`tX4)bH#H{%SUh-Sg9ClH%x4ud^oQY`_;+O zvgrueNFVr+dFei{!7c*Z55OfkcYC|L%L=cGVF2m`Zi|eDDoIp*HRJl8MQ3#2d_(6Q z9g@6@FilR+S`6}cGQ9F!aEVK(aKiUNv$)>u{GGNl0aMiu)XFfE;CF!>8(!}6l^Uf z!v6)9HhkdyC?yO(el=d>5w*9%N10&J!p`nqpmya|YlVqp;s>Mz(T~3c0 zT%djgv`4^}EXYoFgCZ4${C`E72mSs@vd?UKN2 zam4=j%S4Y8IDI=Pz|hLHdxfa*y(%7LJz2^-m(%1-?6=Ux9;mrd8jo7Ho}o<2 zt_m333>WLLI&Y2tSbpjB-xBAbg~jsAg;PA;1lC`HRs@K?yWV9vbTf7oMGB)9VqlYG zma}7xiq%`9!VVWBS_WeFvF(#B*WXsE?!b$|nZ)rfdw4Ul;ZqgnMSR(So-yn;A8q#j z|BQfKbN~(YgOd{)T?pG9#V*-B&Esc`wd#udIloY&0; zC#O&HpzG-9JI{{&s$ZA!gKDDIZBf93D8$vH?b+bEZV_^_;EADh&af3~6~%MbHR^~~ zgm&m_e=}yHk9yXQp#E{6UGH)e{@g~f-VOP?yOBEbwtCmmqh0TyPfn-R&%KaBd24Cn zs6uGp6wh+)JDFXKrgpU#b5?R+3~>c?#Rh?tSLfpPCy0IY9m@F*uSaQ`_~YVNXne`0 zm=V-?w%*xW218D!j$Yo_cCyUyIq`Av*QlE4L6A@p=6I#(^vAOlYu-CO zs$`aznUi0a#6p-Rtasc;e%YYf?q~(9NH$pcN121C)GWxfdtefAX+|0OAkt_u0Q-9N z2uq=q=&xTtWtox?$-yi|8Yn6WcszTA&ha6@;{kT2Qv;w^>>R#~KxUjv?yiZt4)|NT$AYKPTEuAkr z&kHlTA+1BmQV3IU4H{qT4jQ`yfwUwAq->9KYqIR7b`Jy0{XPE}t*zsLQyUDb`W3Tb ziSO*#^#M7p;iJK4i#oh$<>lr0mKt&81k#AZgM*JPzT-N1w?H)JOJX8hOZ?YoQ}83O zN!8AT8q|Hj1WSx^1eQ9~Yfo2GHw5csbG&WRucu)8R(PL!-33iz-4(JlPKVl=S!V)^ z^53CaAo~f~CExt|93FGN&}~9hx|{*_K|_M?Kb1rq{t03Qt0~9R^}FxBi56RB+wV!@ z+$DS-+#)AZ9E#j~FqygHnEf2}*N0X0yoM|dY%}XL)AG&5L^uu}>DfEM7}yQ7&B>X{ zWISmi5wo7nU8kk6%>L^$7SPXr$WWh^YU*G6R&u#(%V>*S-<14~@>(42_amidrHAh+ z4X#gp(BX#(+d~r=Vf=w3^XaIwSQki zZtR9zoy}y7xh-Q1>IEtyh#|ya&1cv3`l*n)i8w&Vz-PHxQawS7Ag}1arzcQ(YJ5pS z@45xnyW2C3nBp*BObCu|Mue%iYtL)$`Izg6%pAN5aRuW?e_o2~cM3T}8^WPD`f`uu z+GyD-TJ_29;~IVV`G(N2&}p3T(;%~-sZ79I_B%|m7}Xt5_M+Hu{W|WDk;{^WDGT%H zalXfUh`48hltN>cOKF6=u&ZNW*z>we#UdOfjKB`fbu0F)DI7Y!UF+j2Q+QI}pT2T; z{iKWtHN(ACz4<7Qm-2Q}rv^2_g0%L=TydC-WBC)!$d9$}+8+%!k1{HH=mekLxM&cP zpGDQ&G|!ih*6&cV3Othw5VURb&|+fPbEUqkQM!;?q^3}BIYl}-T8z{KPY9)g%^>6omL3f}8tpVaHS|htVUt(hXLC5iX z^xp-XQ|&eo0S0mh_tkifo9Td(V?v&|^ExDZm`x362@!Ma!(;OR?w`-Rhs=5R4>kB5 z@MdKo{B<3Bg)9F z9TDFg7{3#q&9aa3Aa**VQUS?*J$9}uCdmRsxAv{`B3r2i)i$rlH(l&B{1!XW3YzLHbbpuU_SC) z55>iik+>FTTa!f6E8hERg8t4jrMd>;>+sagcOtY9RMP=wvXA$NS@-vZ=N3M;pyS_m zJ+Pg*Fa|yT(z>gsD3jcBxn*ahx@HU9puR^Y^GVC_l%#fQ4rwOGUz)7BsmSrTW3%($*~A^$%{AoK(A31J zoW=*LKx^X_@+4VIf1@^>n6{^}ab6eIQGFsS3u5zKWy6j1pSxGeOtRP!M*PdvO@{60 zhD;WcjFmB!YZak;uQfh_RC%%*_6j#cw%IrU$BD%^zz%^?dMO#Y6H?H6ezG+=T=ia~ z!JEBTS3HI1$ts`{tw>67QQ+yh*oJ}5tS@CLO0<$zr+=?V1#h?R_D&G~VFwtm)*PMf z^mY{>M%yMZ&M+Ce-(W8!kXGHc7c+ zy6a^VP4~X&QTUlGQq}jbo5y|B>)66e7O^dTvV%y7+I?DqrrWY00X*ezE+DPxzBj*F zEwVT!%78lMUgk{DLv4V=0q|n~wzsVhHPj>U&0{RbK4zi}B!NjVVS-k0?Y!sSQ+c<` z&#Y;$G>hgM-7B+-fz%a~s3`UC-@hS63pSQMfc{r;dpKr=I^m-D)fW9U-$b3BH%oDG zsgU$w`2p{~XQh*zcUHhkJ#+q&&!6x+?s99`3zOe7nX3kRCgU9J zglz*R=(C1Yw)$TQjpG1dau*=t0vlWZh4x?__u314U!;CrbHuOc)>i4dVrinnF_Lis zi%M$nALMOMi1=N<_};hoIuCv)U>g9pucp*sTa7jtloZK{oG z-I{aSU0UXHuEd|q$$2;I)Z4U3AT!fShj9}58y;JzoOM;(bcB|R!Q?KWtZ9+T?hz?g zP5JJCpa;veWzKqXZMR5FtPTay!a>7qL3+$I-RtnPsRsa}}f}AdZCt6c{@IM{4;m4E(aJc{we4T+mtv zVu$;T*@?2Z60mV9rr%!Q8%Sd>4mFy<9nqryQi8vUyHLDq|M9P9GJrG?545_Rj9dzT z9Eh@ipMRNO_+o8!6@`okM^G17vp?bIFSi_IK-owF>A`>~wQ;SMvx9>lRi{l&Oxr!=*&j>EcQ>nguM8^eFq*lE5Q-#&C8>nVvq{MbAdq{*D=?1?_1 zRS`+EyPnvcH1Wa5T^)2W_G*=*-?@Xj zzHZXN*?E$SN|I-mBtJEElMM(u+}l~E4wIMr zscBQa4d_>>;iT5p**$QTwXVm4+TC6DsYh5nAD#a2) zRZYrTT(Nn|iBNR86^sAVe+tU(%{7$+%|}Qp&>!9YG%YVLKUL?%iqbLz@`fsDjKFjS z4n>%P)`S5&4fqy(rWc1nAh{|@iw;RUh?*rJ)NptVIJtaIt11nfQ$Pq+x7r%e)cX=2 z!%PmYuDps28z@*+ze!tIOscy4Q3)V@PWPHqBzyKa+*V2N={iEgPv6vO&d zIScSybzdZoBPq0)r`F|80mo4T6t!Sd_b~Xu8UU*T*dL3)g8+Y7%`O*ko9KKf`I|CE zhOv=i+Npfk&2E2)gTS1WBrdrAPIWeMW#N0B-l-drnRq6ghr>4P5!|iHUueq*C_!~P z7U_|835WijjtND;kxOh`J67VMZ)=Zz+v@FK({5(eLK`AG^SR7+tW$gVK#PqU%`k)e z_dj48ul+9yLePQsoNZIc#J9U7>Vd`$A#vV!?~$lKTB)u<12zV1*n!bIbyE-0K6LH<818aA%+c{fE z^W1f8h$t%JqLcKZ0`=r!Bfz@If?W_O6hqCCXM1~P5si%!+cVY5kAZc@NOl1N#3vE& zOMysw@gP9s%S2t(p-kCS+;=+T7o628N&31hXZjwJ=U1;@Cvhs1jtdy3JSBiAKJ~%k z)(@P>Z+?T@C*tkK+t`HhtF!aTH^a&K+ITPN1}Fk1ir{ zi|}@Dz=r+>k~~?Pb# z+G#k$s7b7)6x5Bw2bsGNKgQcibSR@$J81@?sN*Hs&E>Hf#19~y&2wG@vw84UzvPZB zsIH=8!Pfv@2e1vXJ6+G?!M>Sj& zB;2xtsC6Oukb*^>Rz(c8#q3cUsDyOtO2ZxA;3N6!KLRA(S_#->1T6%`vPcnm^-m1JB45x7GE z`xO2sAu*8(;GEDv`GO)8gQa71Vq!>Dl|Wt`{2>Sfp|4KCu{l`Jj`|6>!{AfXt#!DM zN_s&5RRD+*k(}P_Hta2*0I%e5Y(_8Qxw*OS{{A>5Dw+TV*%ywPbn5bR!nxnSOLGB1 zHH4~*WBtQ4xI#e2L9)~W4 z7yO6;MRwPE3a40HuI(+Kbl#|=bpCUoZJ*&K&cUJ7oSK>%0VKh}Qsgs(gd0ls1p)zY zBP2XLmXq(Dg#}9PZDqF|oamKTrv+MtsBZ22{Ja%h4*)!PZe_&=c?;~Ly9Wndrze1r zBYEa_n?H6t_%?(XFmJ*2z7GN(q|D>Qx}#nkw*6%ikBBIt@V)Xim6$Udum^Pj$}?#q zn(UxZz{ABe>1lCM*gpD6U5N%^9r*V11{g2j8zVtRF?4?B&m-$f{PzNdSbwSrPUL*O zG76h5D4^hI#UsYVaoO(0oP1OaNd8la!QRM2_sy>w0LHO8Fo+3x(0oEsrN@mO7{Y6tYcS;Fn-2_aVV%}+rV-i}Wab$XVg#7B0fwosJp+QJf<*gx@*YNB5s;43s#B+)1;Jr zCga;;ri*vB0>%6n)1O%>;$R2-dkJtN{eN$|@8W<)75S$hn?yABe1ZTX{T~DhAr6Ta zO)k}cF0cfjMIRLe(F{@549A!NQc#%EiS!jRP(tYFY3(&zWc7 zP);3O)&g9yR6_Z{pY+v(c$R&goyFp{y=(EJ^(g*iOQCN6(WkTLF|)eB1iXm=!0V!2Q1O{AOAW128f39&wU zmTeOLHH3pGT|FdUn=hrmj7&G<$Go4vjGUYt1fu+r+QNwhc!zJH7Z}0g${%KCX0FdR z2&2k%c{W-I@VQ-3Z+LBmJU>_>-(B)2lGM#S2@4HfMu4jpBfF7?OGKmqZX*y@9Km(z zOP4Z!tO^X;Rb@BjmceaaqW@0;fcjYSACYR^#v8sVuu90=IoyuOo-N-o(>kr=nD(&~ zvRl-;a?2MLNS;w2TPQW;Sp;n?N9i zSe2jiJO7_t&HwEscxPo~iH-nlceVMDNk}Mu!M1?HX|=DsP;Lik&N#N#dLvI6xLpCZ z4$)i+e4ohe%%&^MMcfY`obJwsfuaZh1xQUg8sTTs5wOv9n0|z(A{4 zrE~Pv^I)|1wa~)%QvL~+6hl``CdK7(*tu&AH)J`M))wm5o>W%Un}B@F9PZY1T!mzb(ESGbset;~*el zLll*iOsj2~3!J^Q@Bf3cY6n0o`}rOeeVtRLWmDRuT>|^r-cG{65DB({C?YR55d$if zpy_f(Nu5ra;Sdq6{g#hAY<~RkA*QM0<17TMKKti1n3wjYiV+;m8HDS^bNw3iW>{mq zXH5;JUEm=G1ob`eBZRpB9({EJmS+&Adez6uz4bW!4R|V^^(sk|B+B(rgf9sjg&dBM zd8NH;M&lE36yo_#IIsx!iw|Vhz^oqvxs)_IXiiq?fc&jmgm*A6&QzO%mY1R0T!4Z_ zWC{Uo0X=ZkOk*mj>9AV$xDjvp_U}f9aHLYA%5t&)LoD(o1u=qzWT7M|VyIr03?B;} z>=&^EtgD2eGu<`dOn>8X1tQE4AiJSh2RGBNLjq4*!UT2>j%RjuB?>!&c7Lb<4r#Yw zJ`L=7P`Lw(h#|ZqjI#Gg*mkOwG=L+}S;k(*Y7*iYjr8G>Tnhqd8vFIODL=W(4~BAk$dX2#P{#81%;TZ z2Yegj`JIf|Ev=__`P-0%T(YV!P)x5j=;7(i?ROWvlwcI=3xTB;$?K$1J7PX-s_gEo zdb`fY65wG;&torcoDA2ME1G}%tiAJ%)szTc)ba1=Tln5f^=h&?Q zs}H{yyvFk2$7yypsv?gq~O_xk9Us*J-&^O;*o)b9a3<|AE2B$ z0khzr%&&-oLS@<(kS7b;Jet3`SWBnpiAhNb0~rG%?cm^0S2GSgHvn99EOL9cfwDcA zNTJ2&+Tn2dMFP}iZ_cneH7;(&AqhAgg1pV~2{FuL5h>*_$5ZH(GV^9 z1Y!MiAJ@4(xnc?cD?tAb%oI;8RPUJ~w|?RHhgbhe0h$;xul{>=#i(pO(?6tzj3ma5 z1)V5d61^JaO#S+qt*PZ3lH~-g?6k#M|5HI?O$LMFg#y_}({g8em-88|lbyrJ>aFV^ zH1PD4hbm1RI?*Mc=iK#!-JOasbyxcjy7nyfm_%x~f{lzJ$=(h{ZN{yOmP$D4y`}+T+@TL#cw(Aw}aC77dZCxK`r2hD0AI20$Zs}*@c~*{upq+Rr4BHWT)?eu%7zA zu)cnJBtW;l@=$uf4Bd|@{t7~jk@BaKX^```Ndi`M6J~2+m7Yu8B`0PXru6>d*BY%E zqReGu_1!|Y*egZyN=%YZZwc6eM{lTK{f?WWR&k-2v|(JXT5>p(w+1-l&lmNDt!<@F zJna9t8iNkZ`)phm48dq#PIr0ttp~ZSLFw_a82gf-*N9&LjlF`rJ!w9HXdbg|kHm{K9!wn=P>WrD0G)2aF3IIu4W@46R*zNrn!i|D4{X9=bQtyBq zE0Sh}197`PnY>t5kkfkJexE68rqx!c{q@_AxjyKGSRjs|LAWqM10ZiTb z+6i=lP!%{h@hT}o1R#@A0e^w;=PanP1}GlT%CO?Ry}Wvwiid_?{ipC~PkZWF28K}h z^kQTXlpYYOu7dD+ojcS(L9c_VK0Qyj+se(lP!$czwV}L=q20daI*8HdTxRzS)FaD& zE7`-^d36!B+J)t4IlN%DUk zhB{IId=2lcu(@#!lFEmCqNE|D$BV-9$n6#{cQb4VWIHQk6!#Lw+6WO zmD3*S*xu2xaz8TNO$0UrgSy-7LmqB@&N7_SAMgvy5^N=?YtJ{Hr+oI?vSH*#q=303 zO((@lfQBon1_H1p2nK- z{?#N>7(8T9c|`I^V?+2@-qqf3c7CF@&BhRI50Ic%beVL3{5`aB+c=I7XzjUXqvU%^g+kVVdQu9zwcJ>|I*M$7?{990A;jnE3fe7sN(9$nR#7ihBHaxjI{J z#^*iquISu~pduo{{n;2Z0Oq22McAMIy_dW1DrCMrk#HRyh>!N6rr| zM&7RX5Me=Wv;OABcte8y9+WhM;(iw2*(1A0&3FWUrs`EZIR#2PAAIG|X1b8Ad1kCO ze1GJv^r{#!ek`$JF-dc6WaUpq7Ba!yyJlv^wBAd%xTz$G;{l$NqSscC!HasH(2)GS zW6A7cnw?wa+H1@Ff3|C1Ii{bRk)Uv}pdAM5jZf|HQ${|{JG1@C&|IMZ zg?<08AZeiJ`Tbi4AdVzv8{M6(1O|LDS5{W;v$86r5#r$Z0n!fk*N~8R|8F0xl?$#X z$h;5;uw~N8F9xB?cBbksm^-!RC?_~0WRZzr)2_}xOuWtf!3gjHXAX)-;Cg&>&#tt`E?x<}Ybf(IY24wNm z&IaH=#S{Y3O``k(t5-cdV&5x?nTI@Z#a^uYT2J6%^1-FmSBn z9?$0?fGOXy6+6^HdiZ_iv+E-3Ic*mXlulwdr zNuv42^|(F3w&ow`$*pIwthAgUFtlO>r4LV1XvT^CPqZI_7QpEUm>juZ{%!L|aUDlj zTz6&y?~*?19tDOz3b!}cqF?0X9yI*Rrw+8xvj-WU5JxL1BZDcbP}%cmR~I%IYe9-W zt{vLV$M^&W1u=t76O`PJk&&^c7krvPuT;05~0?On21TD_4RHa;e&Z3 ziQfpGNA}MdnaS=bfWG|Cm-%A89z2<@26j&q25+AALi2ltKm1aE0LhYJT5c;%HdgL9 ziMG92;$WzSLNr1^!eMyA&t080I9spRB6ymYjtkK(lwxgm$^NrLK$n3D0kztv4(6Zl zI6A}MOzyH1 z!(LuGjDIF)9Hgjs@}KxlLZX#?7?@iKLp*eiw||;qE-?)=%>P^^CHu+B?S93rY)CT?+(z%GkoDH3dPrN+wqN4gAdQe^eFr z$_H;j+Y}VB{DZWOR3k;#;rKP3o;0ZA?8oMrq*}ige%gYzlt@xF7 zI0Q8NCusksEY$zi4OiHhiclQk=_hcsca~crS!~$lsZa%Cj1KQj7o|PY;+%s2kFd7@ zt8(4Ch8G}$G>V9{7@(3$NK0FkN_UAgNH>CnAfN)G(jeWr=#&ryq#Fd3?ry&Mp!+*# zzu)^`|GLh(_BngwIjsA6?ipi_F{Xr3W#N{sN^LjLAWEb=va**3<+t;hCzD6pn+1e= z4E`-itJ7Xd<(PI#C$S*7_$xs1(&(B1$OFQUaT^+>uSM?Gd#c<%i0g9>A6B9aLY(SS zr=`TZrJ&+KpyVyKwUwvtT5l*uNrtML>W;9U)!TuB=2Sv1?y;)XxnwuiuOB-INvS4* zmAPk*Ry+6cQT<04@1frA^r|8Ew8y6gy1dmtdNH}D%o8u0mIw^TFqTTDY0)j2<(VQeNj0Wp{dG4amDrK51gz zJ*j45?a_~bb|OEtH2BW*ThVbEdeWFKbQ_N(Bh|EhOA7d0BNu+(D$=pEr7CJk*`Ix0 zWhypQ)Dmu(F_QTt3WT;C02rDM?_F$=F87DcHCY_fr8Pe%*_pEXob_rQextEvD3*QC zOh(C;eTJbW1)q38oLGT*U*CKMhoPNbva4N@rZgPcfAAlnPiN%|PsIHKFp7ctL?L=t zk=ASA6(H~85)uQgJd}aT`OgSprG*zvRa|y|hyQpUS~Ukb1F5Vi0wv2fL;i?G0l(E= z8ZPm-h3z|UBO{q**;MjQfvMw~4H$+dB4;J=U#u_ zY%Xj{iUv6#2-ZOkh>UCnEFga>gA%<($Oh~JJNKo;#iRcQ_P<6M7?&7I>kurDjJ!6~ zJ>Wlaj&}8m!-DxmTM47&mVx233f2OP>1CUy`x7ZzS$js#S{j7<4?#)54$l=;UHn=} zC)dw~y_*B1n|P?_eOWZ=2Iu4pPs~0}%on(U5t=09cmODNihRNf5JGif2h9$IxAQf#FjA}4&Aqee+wojn8Jw@dej5>z74~VS zTOI?{WLj_}P0@UffdQ3xVMEfp&@1a5-9ONyUkcGX%!VM*#*fb+wYI? zxlIdbyTF{}ge%vm4FR|3Mp2w$^Md}k)^Dz8(=zdM3AS zpnjF9HuP|t^;vaaFdVWP^)cf|#TqC75_Wv~o{rRmsgQ-|a_BHi@dCd#9k+c?Umk66 z^Bo~{fDk*$N$-5+kwMQwseVI-2`Zx}kMJ}W98nt0NmqYD&;3q~TbmFpl=cxGlmzq` zLI*2i;6FzXrUpQNDkz)ikl&m~0O$TZgMfp4=WX-)Ls;KyIT#EcmNk8S=*~TO!wd|O zaplxJ)<3rb{(3`rD6KWivo`34nDZd3-23DY&t4aCEWTF}{U-ZOw?5uaH}!E*ot;GT zP~Kwp;-SHS@6g51S*$QJ$3a0;_zYlW2EmHE@-SSSvD3cs1|(Ve18?9E$<7Bj(C6_Z zDMfBc8;sR)L3;?ZaDn#coVxH@A$OQsGKe}gMbdS3LZYnb+M|y@U#MxhA9BHBgyogW zw{PD*SfnE*4Ga7iukxhJ^Yhyo?RXPkD+&Ur;1d89iU6IgAK(7r0*H&#%KL^0o>Avl z>s5KHQlfsJUKLL}-K#6{X329g52g>yYC#^wWd`E%ujp|NC<6u`fMX0|FaX-|D~~Gt zPxy5PQC)+k{rO5Ll$Z~J4q$$zW;+qDPQIZkVb^12)H;i1obm;5DjxiOC>2C)<#-&f z<@OpIpZrdRFfei;Qc>`jtA{PtVG#?+CBP+r+IOCuOj(QSV=KsEsYw_ZDlNpJrhP0+ z{jwzI?SJlgSZ&u_zk!M(Nv5MQfF6s%`+>@RXvHyd8gnh0ysd)v&Z?p~(;@eHW9-G* zkZYHL!~o6OI|#$k8-@KRZL|5I%MR?loc18;Fsp;B(Bl9L+Sn-wo{wC@gF1@(t?CRU zBl$BX|yeUr7`_^j^D`-R-UXOV~0szFE<2dq9Y4?3wzNjqp{N@LNnIV4F3YRES|`NZ>m z<+e1XBHOY7Cy}5JwngTSMS9x_{T#dQ{;sw>r#+q@w%;ci>N>P86rS6>dFyoaqcItT zyg8+UpWPZ2gCCOmk+@XVc=&5Na#6&@#DLglGsON;TD;IxCRvZEj2xecNbyl}QW78G z6+^fomoJNPWE*uQ$&At4Lc0MDt_|QHZ3Rn5%TOE8Nn#)bV*g#qgxqGa4ug}g64hIE zMhr^0Q?VPKqbWIdAOxB`8Gj*HzUR_EHy*O?2zR2pSzX=lfuOEMJe28&+{3;ein}?d z^D*{+6nvGB>G^V_zimmWJ-ta;>6h|TU(h6wenC&2Rpu(QQ~leu=^?+oxWW>cmJ~*y zpLZ~nq3mR2h`{bT{$q0A{BOC!dR-A!RmvjM0Z&+K4Yh)FZU%I2F#7)TaeK(3>KnQz zZsz!K+1(D_hfH)1crKU@>9+@NgY*32Ar)~BxSa{O& zraVw6=*&l%1e%gQrdK(2s(LUIRb%J&je0&5mlRXH20xzRJ2TVXRNC0m*1QaKKT)5I z#=mI>fT_jVB-M0-_6VL}03v6$jy1;-w$gt)OpxQ@;#Nc6$N?Uj<0wFq$bWd{?HvaL zbr4yKym*l}QVJ8-$K@CIpeFkL8;l}yA%GPa_u#=$yb-|gRbWov=#3F_Ep>73h?fB4 z=kR2h9=v<|)&t-e21YP=O_r%YHe4Q^jK8sR^wQmf<9uk#Pl{`P-WRS(NM9tc`^F{T zsdzV#tCjPsllqG;Z{1@7TAtw$pNSxb4l&##{BO*4q|sk-VLg z>(lKm#z+|h2umf zEXm5FQ<`cH7mv#n>Umy!?Nk*!2vtvmN#(U`d2lz{VX`f5Ckvt<8@}%D-Z-rlT%UZJ zryxoaIzF(5+dAM-p=r^ zoJrq6j~ZYAUXQM+PwcG^K0soOPdb-=Dv~eKOVp4NY`otib(beSZc1vFWFrxcGQmH$ zpZiP6`1BO(6E!t_*l-#!3s$A%7-niO%}l;ehhuiw+FDvIzFCTKIh8!9`b5w4BW?GH zlb=uSDqpge*Pw0T%#ZA`?D?Wf+1At$BjJcat9^8LX|BOSO=(qy*SmLqx| z;#j{P1riLXT@gswVFWiy#FmpN)Yd=ZdV0*w83&kg z5eP)c=5xhl9)`C+!AY(p{zUlc*#Vb>h8m7C^ZLAtj7&-liJO!_+O7%T$ZY0 zM)F=anIoabt{vR@AssVu^j5dl1z=lg!vjW2R^X3V{;bA8yv$+!=V`gI*1@i>bD*V> zOYaHHY8)D(g62lTz~Cw@2@P6UFomB#?Yg&70}e|+0NY_A>vgZcPKF1V9Rs+gBR?xI zPYSbKu(zQQfcX`7nSNtKgD#Mn@?4+K9zvXMD7Bquhx)5h+0V~B!8$w(m*OlQ9nS@( zum|L?{8FNBSH<-?te-~O=|7+DE8v=IX=Np1W|r9+)ISwWb%c*!`b1+sWh8V?(Ul9b-}3pNj(U`?QX|cy8YgsgE6FhQsqXbW^xCQsVEA*Zox8 zH!qz(0GSaZpKhPxVK$4Oy`41qRC+8KuE{N7bSSJw{~FQB0Rgt)0XQp z14%LyNe0Ho#)A@F0X$l2r%*dWRh0W%Bflc*i7pawp-T-I8PQHm5q>GWfO0bU(&J)& zz46jJmRp)kLI7AnC=bJEM;~nHnMS6cg`q@#{&%>QS9^ws7vV-3R5rpMo+}s}5^@ge zKGC?hwFAg6z^+Cnk!n(86uIl9syntIzpPooe%0v~ivFnmJc)!GRzk(6?QlF)HK_hq z8ikME!T(EHt(t^i)6yAFur&1jJjl0!Pm59SN~1z%9Kxzu?guRh3e3Jv;fr?546~1Z z4MP~1a~Kv(WUS2J&HNNFWoX(&;_}Zy`TIJE#?kGr_*WAt46dG@nf^Ge|9aLR?LVBJ z6RVh-H0Swlz})x=Cm|{_^5=p}I@(ZLIG_$E^yk#`;uf) zx4qkgB!Wi~a}7KRQ9HAYq%mIQaQ^Gu4L=l2UXV*%ZvILpSxm!>r2xzK z)(JV_&pUl8NzM+gCgc_fXE(jGLES;`okDdqM4M7-E7s|G?0fa*vHw@>^E-NPZj#|K zRz6>-Ho<4ZN?HB@HarcUB=1HLykQ}_tc)LuRXN>^ml3`f@I}QJN9*Gs|5`XA8qlH< zHMgs*w@GY1$HwyMbt40(qF8H)=!8KX&I6%*uy1l+vs@WUXd1Go_TIB5?`jkeuKuMW zt8IDjCk;&iQ!o8ZYvJB&W+L9>{;j*u*gkq1SzjyIeap?IG0mz$%6^4R$eb1I$eD3T z<@pWW#IjeX2>To)Qm%29`&D{%!E(PK>pyTk2oD9vQ_xEy1j^s{{$#pwE>5 zU5wV%c|e}@gHPV^*rzwFG%n?lh<7j1@Y|fVX1Ku3Ckwwo_e)3DsWpB)=>T2AqKttc z!kbU1qAcv4i0qQ5?66*l+j*+`RK`3Lqehs1n55kgr zR^j)bcoQbm7s!E~l#;&y1DupY(%a4gXGh-Grap$VQT z;s7%DW#s+-vt`YwaF2b35&0LXRtX)67l-W6jZG_Ip+=qNS>U@bki#4L3#@lN zl&|K%k()0LMw^i~2YnKx9U@NrdH0*)4udScg)8A0 znR)$%T`J4iU$h5FOLh!jwEbRI?~%{yl%Pg5rDKKS8In`cbjZQ|^BKARb8(gLHsj zganvsa!=HJ-D)n!7H3}$fZNebI4R8>q;;8!$GL{=>(z#)21ncV>V$EzTw9A<4aDW= zKeKkn)a8mXa@@JHQZ&@uJj{k~a8n_=zm(^q=7@m)`lkGTLVGq%rcyN?2ilSFPgn+TNEExfIreh|j!<4yQg>qDbzcjpIW*BURm-^t z8FC*~r`GW@+1S;B`FKa}<#u8}KZix8*rZZQxMA8He{X=F-{)$wB5vDSsEi~bFo7F( zT6#Kc{(J?PQ460Mzi9aU2l8_l1H(heC*H@AX$S=D)|ND$gjNK!(ceBbuE_If9H}(n z@*X%VWtl3cu6_OP7-HJC+|!CRe>+@nC@GtS+m7Ni_O=w%1`!3B!K2dQgtAVo@g4M5 zkB0A%#Z=%DXJ_H|o{k&y7?mCjN=BEN7Q=;5>orAFGRY_lwM;oZXrt1PLf17A<>RuA zWsp%uCF@L^-=*conX6lbIJPtEtDCW>AIBW&ns|`L{9VYg_Z<01>rDcs9DYHZvBjG? zls4#wMy0DmJniO7ie3Y}WmO@q;pLl!cB_>sS!tfi8rY;B9nbXlnbY>8bMjXu-LicW@rUCOQ{~g z`!&F!NRjoko#P?A+iPaq2A20?GbD|u>{J)~qjGJ7O?Tdn6QcvRCH@u84`S&VjHka_ z%y5mC*C24>$w!{*v67PgkQJJ0>Xvj&a!I??!^Mb-2)^0t1jIxoH;0;et;l+MdWykp z2$5jj;pboX`l$r#aG5bl2LvH4G+ly7rmp12{3?o6f)w^!6;O;p!y&mGotcp#?&w%z z8kwGc6S(_}OB4Wc7}Q;0RsVTTc3ZtF7H4^|2+6jEw!%E_c@l-Ua7ytF#fu9hZByzzO z1{q3DOs}^KTiBF|jcfWvL`%CS zJ2r>aWUO5A-8f4TxKeLk(_V_0{!vwB(OG#gJ}aL$p7H%KZ(Q)=+IYvi;59p2(&E2j|GV_GB!R7L+{p@xiVXbxWj)(90tbg`FyHv*=C|aH zDm)e($Vx^_rCaEksh&mBMs0+ZT$+GcTX>NUV>C^eAJ0_AQR`5--EO#Ka=Py+YFREe?@ui&bg*5&3+LtXt_lN^pSD%A034kTS4ss$4I`?m1L>ib_ClI8#WaEO zp4MA$m&VYBA$?=>akS)x?TwJ8*&*8nIObLH>03L}X@%7nPn{aT!aU3f+IIbs{B1smd|_#{Yd^^3)}1SI zTjlx&OE{>RVDjdv2u^F$GAFI4N(wzORJfQ>)Cw~}{y1s&7d!?2D<(F@(ePTI<;9k= z1kxwDmtPac2@3PK^G3Q{sKCg-2BkhlW4`Of?2l*C?MjmF%u&s(T;$ty5=7RDfp{7w z_6PwUcz4PL&qPp@G4{!BQYl;I zzufUQ^z6Iw45+&vrQxPK3HDtUW#6HU7P!bsMHSLzS+Zapg63j2jWz8j!!-Y%<{h!} z`1{#~u@HMHk)?($Hdc-XhR7(0z}83a*H5<`7x%lzf7^c#e`Awk%k@wrq|YihrCWE{ zg0Kq-VHSX+M2`l#&#-3%9x~IQfDa!Z*1^B~s5CWx}90_TmbrO|RdRn?pxuX}f zU;li372GP0mXm?gl9HKe0RFGk1SeHo=!2_b14P=jug-Mpt)q&*0jusyqiQBO(2Vm- zSmnub0cL&W>w6hwlc(!4a}qVP8-etKc;Koy@bd8V>1v{2VtW^+6`U4uZ8%xs2dCR( z8o}8X#*n7D<-0ByFJ4sKUWZv2?6)td=Ku@_Y#c6r6msRe0glWS$etN1@g;7ofpPqPFtl~y&NTS?nL|Bzqr4dG;~BpRZD15`_o=)(NQg=BROs_#U0#N_iH z7x13@tbWr3W3GYER84QEWLS4NSeUHEhsx)7tE>ACPJmV8x(tu%^w4fyR|0b{8qy|Z zko(~$yWLUC^%Y$t_MwJL<9MD5;x=b3K|}M;hd1Nx5!Sf7JMk+YpW1;>t3nJ6QgyQC zfPZm-R3^-}m7ACfYxAXE2t*^vzD=N=ws^MP2*U$eK;DcG4H)ZrM+0RiK0cng7Z$yG zr=&0eNSZ$MKw7$xvb2&$o{W^5nwg(9R>)>_r5K)#!K8mcfI(w&k8!Tc?h9tEO7-6R zF5ncv#L7AqkRCO^(0c}Yx$9KncMe$=pjzix{+*YuT;_m}*Xr4ZVeI}WlDFvokpIUo z63|OfX0fZ+SnC}P#itiC_5Oqc^y7A;LEb84!MJ?2WJz?KT=CBby9xtBZTpkAB3>>j zMej$L_PZR5(o$WC*cz$CRB4>My=NV0*IzUhvVC-ws#5vsjUlC2A!dsfspX`W+6Bn7 z@6gM|rnGcg3i(=Cdht^C>TYT|YH=SzZLuB*M3u$p|2?}@|4ov9WKgT~!YWC6#n*Df zeeddXtYIVJ-4`!zp+u4EQcHv`c81A4vK!yYl z=Rp@R5=g12ZXR+Hs3d>+!dco5k|Vj)r!dtO1^#bH@FpbRaN9n`^d98C9~>Oe`!i@d z&0aOq+Hewt>z`=3i>3KYf!|dPv{mO7(9@cCD8|f#ID_yJ#tw}=)c4kIw zRPH)J&kt>c7e~kCpJQmoBKI8p^FBApTPh>APLttKsUv)oBMVZzO$p_Q0*S41CWUAU_5zFiZ4+ohzD#ns(|r9->psNpqIMO!uve5e z3r*|)Jt;LFBQP*vKN{@Lu+P>+?nQ@SE!2bqun7G>trbOEk@aLlV2I}c2*Jc*c;>OE zop=3fhGIG}cg?J6_@ZRU9b_PSiw>ZEPEY&7CAhv(4igc8O^=ceWnk_Oe)ACmRZRYf zjh^Xn*>dI0#bnXA>h$c&8;c35nGL(^(}~(ejt=TDghQUAnegq~=U~|Tyg;V=s2tAx zh&sPJ-q~7jd~)+s3nb_Sm7&>$t;UH^M`h|NN$yHH_cq<3YtS=|DsN9;v(U4=M~@&H zP)Qn0TIa7*Em~%FoK~?pcH3(2Am2BpO_FiA-NvA9_RwRHF1%%~%rU~ZtF`rG-;SZT zB-N|o1(%2xh~zKwJ=dnVo}>w|)NUtSrZWp)#`#yfb+HYwL4dtK&l%e+{CHXa4~>N( z!tKTlkj!~*nOgLz8p7b^V$m_(s+zj(?Pc$Fy{i7Vx%k5nzeE|9arC9h9VHxZIK zy0H{}_Mx`a9^;g!H;}30rW0hoI)JG`HxWAJIQ7YpvZ}h+PMX^VhJ6eDxph+qr@b)3 z!onJ>4nh>DrCoir6oJu z61T2ZxuIXsztJtYQSleKxDLfy!I|J6Z3&$AJvG`<1Vt$6T0i}jLnGS+5u?~juMKEP zx%o}0!zsM9%}5k0*D719(Iu~VCfTi~lmiw8$m8DC{^`yK`X}4M!XHG`&6fW(ETjY7jQaQT!+EV|n9Ah3G^~GpzptLbREKq*Si3(* z2j1m(UjG|_Hi3efJiT`iR9g^E0)mB)lt0r_QV!0nfdg3HIIvq(e2q+?E?K_QM1B7J zW<;<`;$tq8eW+zZu=A;ClVMN-%UTgRvt8@8-ER@KNIgzMyUAp(h_?f^?j84{Q`0h9 z9_}FIaQ%TJRGB7OR~qnSipxk1@P!<1mNQ5LsQUONR1ypOd;F-o{r!8#C~O*)mh8%4m(7t54M=HLPtt@FW>u3^X=(BT!1dRLr+@qDvSy<^W=OrMrepH z5xF`O?CE(IJMHp`x(lBQCU93)Z8-So>Y~8CJzeICy)rlT^3CPrudC%LtVJ$cD9w+@nXAirg8UY~P)9@FSHM`0Qu>Jubzq zSXsY(ochZb>wm=sn{>jos#K3H9C-oS8DCiV9#2BbOY*M{(F;*fiZ;UbKT+U)KzR1p ztIk!;G(TWSC@&uvIshu|(kutgY3^*jOb8Aj6GS3^PeWvlHj+1xVJc|mhI-!&(mkn0 z0~XV&$*udoNM(I{rU$%oZ5w~St$xNf6glb0>B2-yNatk8Scn%c8E!G>7E!8xlZ=&u z`mBT0ND3QySUmjcnS`w>Gkdf3z0o!Rk20hO8K`)Sruyv;g`jxw?2HNr|4f^CpV80$ z^Ky2!hES6I`OFkann+E=d^7pXnZ1lf+<&-wYHP8Du`m#KR+yyT=j;a20z!~{ho$TP z($7zI_;RoSgCKzO4Ifz0p06MY7B8+*21@o`a)y;0AMaSjYtZP`vGzhyQR8?(vijUz1I12C z1>m+Rsdl>1Zv6SA+%I*s7lSFlg02=6`2cf%M&dDGgGG;GaOjMC*HE!??0f)#YK*W~ z3!_+cd+9CWdaQ>YV_@~b#!*t+nDJ9hS)`fsUFfp%YOTr*w)2k*U5ckC}y*^NED0`7Pw`6>ciD47VJ!_ z^(XSA(Vx}@oK9oMhgjId4+O!Va(LFZ-qaV9Q~Jip9ej6j#Z)dHRj#@U+@5x1atU?e z0DxeidMNsT9hTs*JFe-g^qGWIO7HA_0qOO?%1bO9djI$Z^AVp*(@<;lmq(zBiz%SE zVR3tN?%Jcbw#9AVzl)nLWXAqNRMub$)uRJ%1Zoaz2(Cyic$Xv8j`H<3eu(m6AG)4% z{xB}gV;zPTp;G`Fr@X`G#R8;-t`=r4B_sAN! z{(e-wbMwxo&JLka7L`S~Y0tjv2_1b()?GQ!(yYBImTEfi(C6`+H`KwGovlf}xG8g+ zsjLkt=dESuS?%tfgY&uDR)gi|qFdg2c%;8?=)ir19k3cska$me%mjBqxDF$fdZx7!VY$ z+4!3FcG+Glwd}sjckWPtEIkE)Bt=E?skW$_hrfRR{??n`V{9<52K$Mjre@(&Jyry! zLO3CtdNB#o1X@{f4AH{!b%UM$UU^q<$-u!KmiAuBTQvlGldpKK@Y*r=aU}mHzti)2CPP z4cem)Jqw0IXTCKx_v(z!XDg5N%1TJ&$=OZy%32lXQ0U&rzJ+%42be$6buTrgX^yYg zJ?9KOGs~(p{;4)M47$YfM#kLp|7y)syg7eIVEd`!S){^LZ+dAd2%64N3X`8x5?*zsgAmVhzT zzH|$lhA3)lA`H}0_cK^Djd-Gt8>OS8) z7Ge8|pOpN?yhYb!UE{>?JIo#7TO{xnD<5j&DY6}>*YmMne82&tQz6Y`p_t;b*n_>E zJ@=Lt`4f`DmS$p+ESZFQv84#55cmdc>@?E3e+8=){q=bpzR(XJiUyBBR@LNFW;^c# z!NAA?Y%G9GozB_X+8QX!aQ{C;u^RqxY9LL$Vx~WAx*Xh;6d`K@#sS2@NfFd^S(S)b zH!4&;07evgrj~}3REHGLf(0BIS2i}jg1M1dTL?(QfL7GfV8lrYG#OPws|X0juq3Kx zXefdW%G8^~0_Cwb(^nD1vNR5zG{G0DF#^++ctvf9oYC&?0mr{+e9X0o);1X_qmJDa z?7xaj=q)VM`95osJ8h4|jD?R({yTd^7Au?RvAf50#PHIN*j-#-ukhW+esD>iLF%!h z=Cgb;8!?tcO1exMqfI^|@fk~fgZa1F!Wd#IpE!e4)wT}PmK3)W$HZJs&2MtKQlYdT zZ0M^n4T%Fs<=PF(dG2ywTdL8zh-}t8O7=G~=Nm7yYMkwKr}rnkIz!VR9A|2Ldzuok z<7(hhA@h3mN|%eryY23%0=MctnZ(4zk&YKhcej__w)q_#9q(f-fdo$VS47I<#BDfT z`|nUo135Xwr*)YCYmQ&Z*~tkL1iodX%Y#o&Zy~J1#ryu!8;P@88&& ziUAl{r>g<~o^vZHEk!m;NGK{Q9!fl~a_e+3**618&{oHX*XI}~5d9oH26=GT0N4un zw>ZQ?J4jn#x?~8Q)7i6U<!ASf>&Z^cXwbo8KiXFlyfIc17iz-dW_Se zlyMp2$)9mjuI~98D5K*XwVt?sle=*!PnSYWT%NDbtILqEE5(GsMu4I+bl&P(ebFhZ zeoOgu{F0Jgb+s?w<@uGuq3C7oRJsNr6X|hn+}F>}%d?$1ck7GMa`=0H@)5gV=X%T3 zwjEdE)cW+o!sNI<9__Pd_WU*-Auyp8AYK^idqz^R?1j;(C+1ip!M+bK#ew;Ab}df( z*MA`7>iQ^Yrlwrr2!)1)jRO(+aritxp{7Zp>TE;^_*`+=%*YMcXlZGIEk;4J6(S!2 z9sC#5;lD}E=+5QKb#r-1chQ;J_KzOD>2`I73*xX+gEL@OMmTZocJ`eZ$teuoFkFO* zK)^pSH|Gz>Ji5BkkaWK)g$xf)57I>T{q+cw{>0MM{hnc0&ZtwLi!M-64P_jfF0D#~ zmjdD>AtV0UZ}4XB0}uM{SUst~iI+m|B7QqZR^@MK_C|Q1!^EaH-ss_s1Gi_hEAt~5x z>#U&%Z{pXdJ6ifK2)fduP$}gV5!4I2kRr)nE|kdb{@!&f(JdFRhZ&waczZfHIW=SU7Ew}+;u{y1cFe*$k6P`}fbZ#RwCl`YW7yP%S8Xy_bt)hfDSp;Bo@M>DQbhuSttX40+C;^k9k-msCV_ z=qbe>DSe6_oRU#12kY(m6yn`NY#aYwYW%+pIb-4J`gq*K*(dkLcG)5YTq(zvT8ai| ze;^4DcVXy4unAq=TMQA!<0d@_L2u{JzJF-tOtRM13&NPp5*!0NI0+(rUv&sPfwp&kG{jyNX3w-&%rt zgT#NGn_TTr(7}ByY|7yZ1x%jhv&WHaXQP*NZu^bAZBEB(Al|Os8P`-6tOBgdIA^Xa zKsj%<+(vA)*zPZeN`66F*wh7MnBtkoBQKm6<&XBC)al)aOQ@c z0e$p>&vm~;zy}fh6{NM?(_G%!jc+bq#?E$zqW76rd(zz!sOdQ=2|d&T>7_B2;5nq8 zvxlW)uwyI`Ql}A(k&#i}k1c@y!4a3ksPoF{LK>3)2@XUIR)FMW_Lu3-$~g46g%AHW z%kf9VWPh4vd3a!1MdX7o#Q>d%N4P`>jLYmFvJTYpYk99FEg2=zx54>4tQSf=mNJtk z<2aOUpM-%gU?-ZYx6T2~Q8;+9EEPC1^sF4GyQUsh`+wc+kBatkIXpvfk;_wu1_?Pg zr=6}xaB~lClB1Alv+P?sIaF>^{1iCzAHp(2+Rl4*6Sq|6>W{^Fb(Z`bPIg(Da^L0R zeQOo~uRODVCb4}4PJv^k)S|*e-#CTQ(auT8J`LUXWw{(xo=CZ(l-H-mR&=SU+<84O z8_G=RN?fE(aX{7i5bBA{M01?1GN}Qk9ikymUx&q@z@>;)%GR9e%Z|~ottetlDoyDz zzFt6xf+Beb%<1IixcboFaf*%v=77vPfj#g4G z_~6*SRAao5Qf{iXPRXj2@Fkw|Sm*`eC*Jc-d@j;^4ez1eTpc_R|L%Nv9#uV~ZJ!Z6 zRwfZ#NA|hf%R-*l%$y=V-odW392q_FM2++07g!_~P0 zNTT1zFBOcNWf4Q>>Hiv8pn^Qu+y*@TpkaDM({ z&5N~qXrR7@+D(K^BK?vOG`DZU!W6xxY_`2O==^lW&N$(0=`lqtrFnW{evcNUf@qev z3ImT?kVqq>*wZhUF~Rr*GOrFqHn6dK38N-NBSI{EKyunk1kcERd6Wj2$JL?NpD1(k zpUhK0Wkmj>WZ?!Yd6=q=I3xVm-sBT*WjuG|b4~_^XAIGS?jm?|2=Hxzhi1^(W!{kA zAL9-k`3M~Ya%{jaxqNq#EwJyo7qE@86oOmRBXD{RSwXUMD^%28n=Zx@IZY+FO@Cp4 z&Js-s^;t{3+M5TXtwaWDdUM*Yw&>IMttvZr64XwM#912mOy2g+m!5VOK7W4oeloX6 zoE%b*qCB7u7MBmL$UcU?KcH=!MQ3Z{Q|BZQOo_pwnQ)okhD1*<-i&p>?fvi0$?ywo zp)4k)Thst7?7bqW0aRi-#1!W*l(MvRa4b{mJbe|>$vuCbLe>m@rl^w>9}sVR!2?Vr zQ}K4FYcRyCD_5={g9yY8>sjk(Y!obemjFQ#(!6@rRErLfo}g&p;FSA7`;uQuE5$iM z(XB~bz7o68MQb1!#WW!}IT=s@S@`1B(qn?N{jv8mk45CJ-X(DWLMD97LgF$A4n=+M zkNnVm7Tn0=twwr|M`q4#tpMgh4)d_T;Vey}kxwg|w^)}beyLi4H z`~>gp2DlC$?=%WSpv)tt6+pyqFq8AiU3>#rBDAK6h3xg%3dkG+J3qbdNlP2NTsSqx zg)p2%Jb=q7ZAP<)9qcht83a6g-txrxY5rj$XWMnlro&1#pp!@dt7P6j{QsZvO4Kf= z=yR#cPUdNvz-n(pI55s~deHoLu8^2?y<9v)!RKEhu` zS^Im8etGS={KWO@Wv#SnIqu95$gC7nZrl#CeExP0_`VtDuV4#P; z!tx~^7k2bz`GCIWrbvCn&OH%iB4Iz(^eLoRS>6Zd25ohYPMtD|F&Bu8GLOsUQ*+#p z-HJ;~^O%SvGZiPn*VSR-HDhewe6GW)uIXs`C-0KR$T|2ZpJvFjhw1bmbwms6b~ak- zknRw0vLEsDi_nRsXN1p~KhNyTHmVTT$Sj&~_geIQ{3AihK4KjN(S@e{ZFJE&9z>d9swkdLWLL#zJx47zIi*)Vg_C^Q_TuOpl-JCSpv0=gVPkH zJ1tv8*_@*o0i2#(M!l*9-rnb4Ilt)EBghsgme$Eo^!xi=E9=W<_RBnzJuUwXK+M&u zENx$4qQFurk76T2LQ)bFwKI0ftOW!|v0XjK^89}Z2M|ZD$dkogTz7_;2Bro@-yU*2 zd>awPR>r!qktMtYfVX0}jxy3gQg=Z1N+c>=ycBBId3%ljz%7Lz^N>G5wq1sTwi_E| zS&>JM?H#t${#q-R{{`W$cbLHRWd_Wg=_YqM1&u&(b!89`poS>}vp)^{VZ|IIW~1AU z8$ZN|;|dDMU;};46IsD}#(|f=!L1s^+bGMe1r&YJ~HK0vsUIn3JzBNpf$kZUZcFws*8_uyQ~4_%kPoDZL{ z)O(|QlrVg`Azh|&U3mfR$i5Fxe_$h(?EvF-*VucXn8>~24P`Qu9J^KWFJ}Eljx}$i zf?@LNlH(L1fg7h|mI3p&w)Nz`B(8Ms_TzEe09Brh);7<;PB*S$&ARD3rVH!@L}v<8 zVvNd5d}>yG+U+4ScXBTjP%>E*(^+Kf-%bjC5b9koy-6d?P6T}BFzoL%?|?-gx>WuJ z2shP#sGBLN#ceRA;Vp1CA7Hj69bTzdTbvqtuc^96jjC4rZDjR5DI$!GOhfcPH8|i| zFF~7iu@|B3_`b^)zT}NjqPb}PYt{&}mV1HS<9v-#s z`f-gG0?WEL&?ZFh9lvDa4vn?f7WT=tOOb`3qn0-1hzq*6&zzNFqxMfsxEv#h-fte;WWSK63>#&bg_Ss5Q)2r~l zn*Joh#&3A%jtp9X-LArI_WS1Y@zmkbbBkM`Y^u>Cr9^Fx8?I-k03UF*V^lvw`k^TN zJOdQ|MyhbKFl_xk#SOilNiN?Q`)EN*>jL(Z9GgQIed^t0=3<1L0kH(5+nx~JTjC78 zhH|M}rG%2HT6>F$)pAqAr|9)Uqxfnx#}47*dGTbSEa`lRi4*e(VM4j ztg6m9OOGoci~xx7MdJwtvLNj}Apw2BHWCMlH4Ek-aVZAE#Kq<692t@t~uhh?0VL{RowuyZHG~# zf%W*Ojt|;-<;G~*3fQgzFC1o}=GIXN?*@7Y8@u@{-sF_57I@+OzYLwiJmC8Pp@jnB zYs?PHr(`|5OAzyJV?kLc^ylTcn++KA{*4WcMs5Le=_Vq)dvD{L4kB z?U`4@fg%(%>SJ7XP@6J8bc^u56wke^n)t2{ZPN$$0{9xB1H^)X9E_Eo$uFpbtPljv zufS^x{t@}tw!akCf5u%aCbwtWTsJzTa0v+|z+4P?8%>^X>nN!Aa_WoYbg=a660e?@ zR#k$qi`Lj4EVx3=v`YXZl{z^0MBh=&(SNuAcWt4^*H4o8c$dsX9|H*IIWgI$#n5eb zZdEmnX_MYFXGub>g9L(<<9>jYkMJANGIYv{U7c22nn)Ti1(iVopH^K~-x%Fd%@iLH z?_sRVbCZVWhq{J>g1b3AE)X#g*7$_&W$?7j!(T&=(KobY{vm3U$H?cvjUB&pcz){b zU6ngS$M0UUhlb^{!<(kh(`)8Hj9O`67ABu0Vj`2-nV=~oYtsbmatFXrW&+Ye6{)sJ zahV!Yu#$gMA6v!%q#tNBA)$iEos*LcjuPB@eiLHaNoM!yfl7L22+an5nx{}O0Npv- zUsj>!|3g=@x3>rR^(F0lOwhS2la%VwxgT%@+$Fl+pW#*b%_Gj$pw6E1tRgYd^TI<~ zvf(k^$U>ramXXapG)X-rLb|SVjjo-<=;FA3MRRW;=T>1)k+Z;ZfoZ>L3MI;ubM3Qc z*}=p7xiL$}e+t-9U5zA`8}q64(i3;g=DZI${= z_5B~8lY2wxTd0NkUgzW`R}Gc7{Q7u?vS+qWqX3gNpWL9~K4 zSjQp_VYe}t$DW6sjSVL_T_Idg;0E~=ER%w#vO>C|4(!$dFV%3&0Vu&?zEKCPSUfNw zCT|Wx-Z~_i-wKshd>!uxBaI=g;?Quh?7n>MUvEqI3p8g6oModUBY<$?j}XeBB^li` z)4E=EjcRFb>6xvNJGZBQ`*A9}UIPJ) z^s3u~wQfrVwNzQi4p>5E0O*gs*?w=S9%KV?$bj|*m5=~{sV2s~1mqk0f-J#{`|>)) z3{>btIsbxopdG7bn%LD%|E?{0s5ot6Y-k2Ce(PT9)A*#p*WUCDzIvk~xzNfmH(78( z%ZNZ$Acs4m*rslyx$YraBkYZwZN>JASCq;t@}Io}*vsEH8}lEwYmfMBvmbjqY%KKz zAR(%Lq=yje0PE*O+ch#93uuMmUkI7tj^$6(C@9|b4GpnSdHMN?jdxw|-C4-4V1xJnoMC(pabV6hr)uL0tm;5;@)Lv+!tvUV+dZ{o2$Xd z8=rJch8T5|3T@)d9W)))02dbn<>k4rM)-7WRU(obw`5?qa|M*AdDF3r z%+mo%Ynhv1fCA>JxYK`W5^$M)_$!RUerZZadqGuRtj{E&`iw70#>rm-YQ1>psqX`H z(C4-jF-ziq;wz#WJ=!t+bwP2W>g=?R(jXCX$5YNjQ>F{h81mHsje_ zgW0Nr?+T;|)LR)Q3~iV{!sQ6Jox1jdZ0^#UwjFXPSzRy%$-U!7h@vO-fPM}LW2POh zNKRt@c=*lvSQO?kohv~sT6%x9nJ5(0FAUQ7Anj=&`OnXiGH*5Vk0+an8ptEQlO!lEc(|l6C z`m=kSnv9QM2OOCQ48a=jl*nCa(16?hq$`CXUK!Bj5V?b?@+V~Yc31!Fo#K*`layoA zht#Eu$IYiu2TS9u%=hpISNq&%&RLT|m2~j*>DMgKu1);~F2*n=?8M^a?q({AWh!32 zbV&ryI7YznEcgU``2FJ1OFfg37->hEKuIiFS=sBwgw;A_W*|YwLOpo!05N(*RfFe> zS#R~{Kb&s@>N{^m7K&Efbk6uSje>~!A3A3lO+a8^7-58cRy5drGhDu$h_VF|o6zCL zli7I%P(>Ip^236l(5N3EyHS0W*O#g03oN0#Fb@Yc1MuxTIlJ~=QwPE<3?R8+(9B?T z`@TyKe(?44F=)z__Zx8XcC}z~gXjG)V5ttM@}MV5Nv)sg34NsmZ$wo7k;_%jAD;^j%7|~kA;eY7 zopJsbP3%^<*;s)KV_y)O@Hv2CZ!3+5eyw`Ueyq^OyVgn_u&7p9)b9)BYXtQHcgbVB z%+~S`>FH_oib^7$^AYesmG_ zbH5sk==?pdG5atyj|EYM7*xW!KB%Bb-q!)=4IE-8FbJr)->?znJ)9C*gb^}kO8Y2q zYZ2H4G0y^{6TOamxw$|74_EI2&t)6Fjo(K0E_;t6gd{7QsDwoJ9+92BH<6W)B#MS4 zd+(JIGP1HsB3t%;&%2)A@BRN@pXZ6{`<45?uKT=>^Ei+5ILpK~!=qrx159A}U{~e! zy82y;xPIyt#<-grSi{6H_u^*TSsEJD{xiH_?8jlqc@{RG|3_j|q5&s(QQn|lt`>nM z*0%AhKR=@Q&A{{RTciQh{hKiXlo|W{d_cvS4th}callsgi;6PA-wcTj%(ZlzxO69QT_zr>h)}lk9VgH~1N+IPF zb-#1UzS`@g*jzoAr|I=WEnn4kIDfX=u!;>(mG8I#Zyg4x7)O~m>Ahn_9065qosLxR z?mZ(pA)RKnke9#LFZ5|tFjshx?!94l9z7$y{-8ZyaZ0BhkH3U?4^8;YNSL=>^Q?OE z*To%I`9l-ZQTu!E$}ipu5v;Aa_rgf$)>V~&01GiX`)nJYZNq2LxFkOtlF+kKj$rwT0>A`joa7a6VMrp;d9(sxU z9A>k#p@#>%MXgz98E1xbuM%qZT&OpVqs=KQVEy5a?D zQM>Y1EW%PGM$V*f84kXhRbS6>pjd2_I8#Mw2ha{V&B18`S;$;5rGcy#O9joqlo$eG71#l3gOG0E%0 zO=lkEJfV1Hv?7`|*R6AM+_pV=N#Ai=AfTj-iZEz#v4eAHxbnSZJoS9UWe?blel zTDA>726|Vgg-P_oT4EFz3QJxYbdHudQhj4=^m`@gD@1P97UpZwJ{Po7*kl zz!{T(reKBlum6xxBV6YQGOoF+@IjN0eM6P7gruadtIeILq3#bGg)?W3!=?g#lHV4^ zYZ6ntEzR8*h;yhNXZpQAHd@-)v9cMTsBWCHEDjE2`_IBc}u2`44bnz|icaAtMLSz}qz!8zHTHLVfb{%XcL`bd}$K9vY&Wvs3|{ zlb{X$mqC5Cx^>4=&WpEuHlZKjw@Zlvjf$rW~(i+h@XqI;dM~DyikD z6BkxIZ?YP#dw69!y-E9y8X0|b~mfjs!WEYlEyvcE~5-R@X=w%_s4fB#U ze^(hYzbanVQHd#&EXG!_Ah@NhoKcw*wD9{EFV0mMl+r^#?f@o~QF6pK(*mb-%y7qR zM@?KUSJIYkiTH+38s5_y{OpEnl6Lai(tE5gvE!^Q(jygAReVcH)jM~nzqHggB&hi) z$1ojt@V&5GKYxOM;?PSBkFI&l|Ng>SrER{t6*#Bby< zbnNWxHYHE_b;-E1FYtP_UcW9J`|iS(577CmKrDwA7mq_D^o7mIyFMRgRJ962pdun* zxHIedV(HAiwSH?Sh;dL+L+IJ+l;COj{g`Nvm??0%r2hhWQ?+!WB)6yNGruC_ZX~u@ zAq{v+ady9*P2OwP*`2rmf!Ji@5C3a!-iD9wjGs^J^!9zhe-r!&eKgnmn)YdE&vgl$ zCzllVkG*65qm(3~eF1n*Ha$fz8#`xoP0$8tck1`}$KK z1o@LF^2GIMrhfn9ppCWA3nhP}QawZd{L_;=JEXS5=1Wyh@D7T+19qyYnfckMGZ_JG z0mA;Ax2wIIy)EW`O6&*@l;RLS@cYhfDtU5v_?2pZvO?F)cL|aKn@6yP1-(I+SQR^B z>7njj9SYaH>ro)(y=7h7U2mnnt8Zuy%ziYYU;)n>S($(U)?uy`Yjbe$JTN=#&d0d0H9&#Owr+lo$^K}ZFOim6SqLT}lnfb^0lRNwB0|N5?`Jb|z+1hqO z`HVKLW1{E~ciU7Jc6&rud*OfuQspq>KcQF5qSmk-?9*tMoyJIL7F>2hbCF1Uwa7pl z!U1}SO!#Q5s#{h+-`P+?Tv=z%)-weqkIV0=ctLona6hOKaM%iZMf@vgZCMhc0$^-n zf2lgMs1_Zv1CMjYU6hz#-3HsnvL+W_oJ3n9Zf5Y2?rJcZstob`3I~3 z?}gBLeUWtfG0c81_5nsS+40ABuL%1gN}%UKW4j~`r33?$gY!8mN(_PJh?6f}cS5|C zSC$1lT6u4$N}PdJBYc&e1h3!PB}EX^T0H_=p37C@9^s`|>(@Bg1h1p=!J8o33H#-6 zkhn8(j_ZSkFRD0it~=2ielpdpWli3zK(KgF7_cbQksBVuD? ze_g5n_}kt8j`#T0d>f(VXZG0sYNEu5)8fA#(@gIqR|!gltT!a1l5@^!R0SamPPM2~ zJVTm4=m~cf=M)0z=N&_7v%@^*zS+4tr;XoyuBGV`4!%hbwkNW+d5!e!pBvj)ak}~s z;XcQJ25TjpGxS1uSgsQ}#(y>geh&L7A7=^Jjg|T5v-qDb;RbeU=M!w}3a|BZ=gS*o z9s7KArd}6L!ffi)%KhM81?aiZ&9LIm7@T2*LE8bJ2tovO0h3Th%&>b(1;$u~mJD?c;oNW6&7%0P**rY1S; zGiOj^)dKGZ%MQ>*g`qP!kY1R#XwwD=9d;Ycj=j*GE*S;0p0N<`o#jXpM)8KRvFgzW zTKPto##bAd4*(XtgjMOzVrp!8uR=yf7WnIHWdL~8nYZ0dOis$!*H9~@QLs42XI#ro zRII;qR@|XC@r_LO(!j6YRocHkVv9*XV18EvAyckSG^a&#fSc^sy1H6jqO;rja!2ej zYd`vrGiE)%NERG)QldFV#c9WO4o-Qov-8Ka$!3*U*X!Z3WEHOq?$G4@{{92-W}!=u znxe*-hf-XwvvKQw@ve~-^)6i&vA5fk-rssXaIT^`C68bMzzn3}ZTV!-c&TzJhNH~x z*vaD-5~4K?*6f?TSTbV;-m`pxUp#xX4$@F-Qg zq4mqsw4(V6DoKWSetSeEc}>5NMlG55+^AX z@MYDo-d;Pu+c1^YqtM$hY{U4i&Uf1;W?Mw$0d@BeJz1&ri=H^(LLec{3$W|9#!=R!qCt&=>IBmIymdS_AE)(Z(bO*zKXJ^ zA-kLY>AbCHDawth(-+p58%WIIotpVVbTIfx;cozx1An+{_r$^QstIz6^T@m;HNLZ*7O&OJp z+3PlaV%>N2NcAk7n2?5$9%~zV+y~H|pI-|{Au?Sax~D{tWChq-3-9>PU`{FB+DQ&+ zWQ!RZ)gRO|HJ0|zlQR~|dlGwf(0gXRaQMj`ah%(fv%i&UKZ?NXj3pAN%Y55X_O_0n+coAZcA;b>MgXEpS*IpzeM4uA ze~?OlJ2GY#xI?4$QFAah;o*s0+Oy+{%Z?bmVJ}XPkALZ@BqSwZQNLPsTAhhJzKm;o zY>=L`2qD+%Ynw*$30XL^E8F9NZjum8T$HBBIDr-8;NTn*jgfj=%d)k$XS(7&bHdE# zA>q28L)ekJ;(@Pa=IXXeWNYgWzEl>E(XO(DJ9>HqkS_i;A;Nx9{f_I>+{r(`=6j`c zOB0BzY+Oe&E=Y0NKJp)s{g^39N6ilzc>_jM8Pd zL>?3-B?;8nI=aSe-qf~`NqObyWSn|y=KBlG@5ZNx#%_A6z_0v;E`W57db|7J^aa$4 z^oCV3&nXPJ2S}14%OmyWts6srZ#} zDnRi2=$C%ES?g#`xQYW}P|+NPePKO^9P9=U}k8=qv9~;FF>)X~v5-Dof2wdRReTKOh|?yL;)dw|XaPhZ@@2Gj`sEP6ghG$$M7~Z<$*85)%WJr= zPpWcKhvp4wOZ1GAf+E__p@Ny#`eNOWOX1lUtE1pJKn+01GnQ8kC+cJ$T!g|CJmnTM zpv-^z^yw4lRU#0OSO^)2OA;cY=}zG-))v)u!-gGW%BvXC%*Ow2p7xp4R43ifFU(2G|Y5~VGPs#7)2w;22s*Hxi zUd8eI>r@+6NSaT!k(Cy=G{nnahLs><5IYBPj?H@9Iz!c%|FB54?OLalE=vuGA92~* z0r{B6aYV}IJW67GWKaWWr*Oo>Aeb!)x!1b?+<9L7Ljp*T(FKAfY*Hee$3g&QDJgMs zf+^_DHGFOAb$ST|a^*(&p>Nz!ML}2Q+7cE9BA8vRsy%$6OH0Hp-E%+KN4s#Uig_q%^XFkLi2VYm`F z>I62IcfE}^Zt!9GF zOo-5k`}5u5b{X$IR+Yop>Bt@<>}XcQ_#l8!WIyt1><*^OC-c_WdRunA zQ2Gf{R5XK4vLra27rD1c43n|n5;g<8DF3hnO+>saq{rUFO!1&ujYlOWteRBz)AIxB-rrK*&zl$4emUN>L>Z9qW8CV&r1U{8%!% z&Fw(7WbXY^L1X~We6(YR;QP31Q#7|-2Er!N5SV<>SnZ>BV`bUqWxjt^v(i~7APD?w z{MOBwrP~dwWjH8IAz#2iYJK+c4BsrVK~U4qGj568a%E7t89tyI46sCw-qx1LGut?Z zbwVjS2^{p{TmLkui>}2bZI~FO1iHg-p$J+J4eGop+wLY5?oMNXh>~4Vs>B^g+_x`9 zW2e;88%DZrXSkCR%+_x=`g{kV(*Aa*;;H{o<|MU<^1z*+269%rd{4eu9K9BxIGD;g zIoeb!_ELd@2qroKpsBB~aHtxIyxTHe>wZUrysR&2l?y$Li-ns zYhGwd_QgaXwOz<#4^BlvL!$c$eGC>)Sy=t=7YoJz+bI@-tNTEbP3a`REkl=UxY*C!-rn5O@>){@P%B? ze@8iOK545OHgb+Dij3Yb5j24=%~A*g&jlXiI+};mp?Pi9acr<4QK}CK9kCjYBQMYU z-Nc26(iBS53MM8jK#dvOgSil> zuR?(_2n`KgFMi1j6R;F4w*DOuPQNv||0)czWvDyqT)8Q4-n@xc@8g}8KUi|Qf`9(q zYuC^_gsgvUT2p^++y(LI*$*ljF)uP?x_Hj`FPt8Dedr4)6$2^E7P-8~ekL)@lJ_<{ z-kC;Cg_+d7-up_a&ZLM-z*4T6qSM zV0(ZBf?UYV%<}>Y?=xL~^maWMqEzKN2 zmF<+n^6Iab!#H>E3jNRddHHNj^arF;4Ulu}sJsGK7T=e$-KYt-3ZSCtL3_{ZzQkg# z7>L$sLC@1q>hqL0Rv)HFk zt^onp*~sBb=oAVBTQk!tpge(Zqd8vE$ktSI^%gWnpM$=HFBS{m-Vs`K^A$Y%UW{fh z*tU_9@Y^as?3C#LNnP%VL_IO?Vy=s9uZUCcJE zRQ%}8aU==R%e}A8+gm|8C7=EW=im?*t;$g8;|^Y$pe)ZbswId~Y$gs#N1Jz86Vd9x z?dJkBL5$1iDez%v45rMmZgmkbZY6+2py~6A~Q~0i}P9>0iI#C>bB&K*d28 zjD|CIU*+l8*s46_9K#MsmhJ7}_!bmrOnZrPgBY?QP>79Xm7G-ioNsDvI~?Bfz=Xek zH7e?{-Lj-7Vjdo2@;BX({g0;t7{uqkx{nVjGZ~pPw2s&-T&tPxBT!v=(JXtA=pbF_ zM@Y4DdE{i9@nNf2_|vY&;NE)Zke$-SBXnnR7KuU{+PEsrKF|3$lEV6<=Y%H zh*xO-zg}M{5+WiZ72=|WWC|7~+@Ri)(G8VNPbj#|OHn@Pq4N@FpmT~4DS$Y@iw;k| zN&r-2Ssr0q*w3>N-V7=Nw&R93cC4t;o5;tm)?oP)-~C%2Zf&g|1_DqI-jqTNT%M8B z?$3MXzazilK8LC=10$oYfXsv--wPU4uktltTdTnW(HG2ShHeqI%a_SPVAwPZ zdM%vUrRM3RYjKTAjy#z5N6kArnT?n#J9TxginWsYw5{HdAvQ4%G{S z*#@s1y6@(_ZRnIn*%|Xi2tdH#J)HkT498Vl$rlX)ZqJGWemo>O=^gJmxS_O+Nw>}u zdHnv?!u9MXNT&FbXTi}=r`r7zTCQ6Wg~7xMw{H_Y6`xc#j0 zHv~+Zu!(2|u><+Y^6qe%fTTL~vxxnu=8A_dw97ZGgSAv;A>Bo^F>(P6Qo!$I=3BNV zn*BxK1@a~O!J!1n%U|91%y)JDMpbhKi=(&h?(M4AVwi{WMDVNw$b^_r7!@--s>%1Z zLhhmeSG;b&-^irllXa^xD@Pjz;A}Ro{|E-1(k((eL+V(b-&VSb-ih&U^av5=nu5Zw z*Cn5#>x25vqL)tumN@iZomJArw=-rnskNk>rUM0PeE0v@RNscuo<5CHy}w`S=FaZ! zBL%i>=lZxfQpE5>wetr<<{cc@w6?W!xMQD;YU%XL?1GAmU6SVFqM~vHW9kyh;7M{% zw_rfm{|%ZHyn=r3D9ws{PkR2^Ry$BG>=47;iwsTfe|dv+hREDFE!>ZGjtD4+0edp? zAPbn2=4pyu#L2pc90fR_GvK9ySL~x)evliX))$K~WJWN>=j= zI1@1MRcLbO3V-tb{q20n7{tPRC)t|ZP`$GCd^+15e%jYO$7-lsR)hnn?4gzydXBzce6PEl}H6sh(OB{)HQNuh$8(rI`lZO z^fQy774?Kv@NJlffq}Z$f~OOqEY-~bx%|cZ;oh>GfDuT}M15SNmgG?Dtd{hH+#w=5!c zFxdppz}{}J`;w*t|8AAiP#^*{$0~bEp_2sL zjNiw;1FEoi3Z(*ZaWM=;V*KX~?E)TjG2$!fcD%_TI(_#kAv4GMUdR$RW4B|EG%R7! zsIv9%9P)(N`Y!LwAL_6W&d&bAzutY`)qM>!KB7LXF9CWi;~+YnJ9kcJ+*bN;sX5V-6MvVPSDA50-< z0I1LvUYbP1U*YrTW8s!U<;nK3CKx?yejHsZ{`u<{ovT+~ZYx2c)&2WFI+A!uk34>S zj%@Q!?=Wm5Wfb4K(XXegYYKma1cE&e${$XaJUENs$=VAVq0r{${{m!-t?_Dan4!sV zkk-PI@O~sGf#)h@SiUv#uY>@so&ix;xN;`}*Cptke}))_Iln9? z2d|d=p9z?9P*Um{h$lUUfj!~HU(7(hjqQRZi|; zycnfG<+1$XA3w&swK|7|;=KE9^KGubkAUNZrzkl9Z9sd&3I%ykfdEQZspP%EXe~sE zk_bp3P`S>=aS>gr4|Hh*u-i8|@#uQZ_^o8M{T5 zx5m7tvP|kf`MG~mCSoALICbbeAKjbPPE>^tZbBS0xx5gmSLa(P06;Vvz=9S&O)_i{ zz^jmroR#YVaDNrgTzj=H?Zpcl0Y8u?zz86^EjMgzY#Ht(OavhCUHf)lI7{$INWyb+ zmgMCZO0W7Kd765TS3JBY_uFND(LXA=b8ca(J|O8gfGlp_;<~aV+ncRXSws~7n+ZHt zE`>~he!ECqRP_0PZ{+QLKhu(H+HB-?BQ!zUKD&W`6q)4Oj6D zk-%bY5kLL|KA{F7ewM?`N)I1`P<5wc73zR1X}qrb1UC+1Q0q+z?k-1%s%p`1-mt^1 z4F-?~G7_|*h?kehxssvQXIJt5{rgEI0|0bBhvJ_lT1~jY@uYJO{4k#j+tZ;~5Io<0 z^k&HarygPA=i>UXJIqQENyfw!3kfrPKWtoFw5SF;;0mwJ_XP|H86BMs8Fv5!MI<)N zVnq=+VCtErr6|CSnf7C4=-k`hz-915&UZfm6UoI`;}g0bFwdum45fdMZ_);F03U+! z6E{}?f$bbOmfwoLZ!s#ibX;g(wTC0}fnsZ@ zKTcm8lqHaSkc(S^k_2sd!RbVgMevp!v^}od|3wc)c!F{OlcE1S`7`ccJ<|wqRRA#d zjQiaFlZUo<)f<+ z^kyq4=k(5f8VRqq;>SQ>MCFJn(=OjeYrcG!hL;g*l#IfC`8RziIgWC<&VN|C^u*(@ zdtry|x6u5|CM<9JABssq0ViYGz39E@UNKRweyTrzG0}Be9Ngc*zm{Lxd!ux>fHgCrMaGLSqeXa%3a37UuL4dU z2K6n2omH>o9!&{CQEAU(xGy zppc*W{W~(xu(}C~&!Zcp45En4aAQ@~LvH@V=2kKPBhk?^`zTZg;9Pl>an-oe`8)(j zkhR3WcyZ7`x0G)k0FJ3Jq$ahc?7_$Sd6e9_Ae%GDHvbGqbQ; zu63qewlHA9e6%GCdRN|aS1X#1%swkHUe{EJb`o=(Hexy4Hf2{?#7%unaOtI9RBy?} zUD7U?i6jm*j9Rrv@XA1;^|$55vHG$tzC=Q8c^?g8dU|@_!bW3x#UZk?6{6(2)Gs$)^swA-d*x4?w`$CL%+tw)N1$y-V64k8 zfD9i=LPlD{8trWC;J!M!4H}Ax2nlUvOw`bJ2{YXmAdBxqyW_x{{hdZO$}Iv6bp{w3 zJjD=V{+Rd3b6RAtc7POdQjd>G+7vc>GS3n1BX%yHKA^SqB|R_AV2-Vr2wCNZ75b+k z5}c-UH8FBrV{7mH_cj_F(Kxi8YJU5FGqBf#&ZmK0#t$EEusQ2A%T#2|PpFjY z&4&+o{aI>C&=^5@>%I?gh12N~U0u&j*{9F%BFJr~BYc9*DBZ+I9~e4t0x#JP7jprR zzms8ytZ&)|vDg33OQfV{e$;5LDEDS&&|2mG@%|ngpPq+X^Y?+&_4LHpP>u4%ZLu9@ zp3u#L*#*Hx?16InwL{kJ6=zpkH%t=Qdh=f&c{yHI-CLU1rg~=jHEwuDVp&ukh|Pz$ zIy?60Y2w2U!SF6@1_o{vv0MmcL{m*@@L+{u*hp{Rrk9TLcUn*gyy7;Fj38cGciD1y zDVbn2x1k+;*yPx-x$ad+U;Ut;{bCot;(rosl9lXH%I?}6Y9m6r#}5;v10fC<QTdv0i85Dh(K=#5gzZ7E3Im3mQ1CH+l8=p!2!wJ#y! zxmr1201cr+wnJTPOJ8C~enEcZ*kVXrGf|cK;H=S~l!z`RD6<;)R$-yC#E8AC(QT1e zS2o9~J7S|INzvL}IOrI4<+!Q^-MfW1wzacegb`1-vL?{UtuGB#t!_%V5%xFnu^yX6 zIvLBm&k2u9=QKbVk5H-Aox7aht+l=|K;b8$-#j$xL_Y!f3T?6jJ?|C7w{}^%M%o{< z{DGh{WEe^Bpx$JAW`AKI`z)%4Cu47n9T}j3QDpun`&P?S^{ChnDe&I5Ap*>w(O+a< zM($^XmU`b$182p>Hz+sMm(;?-R{W+z+iXqkv~g!mM2r4gS<>jVm$cd*u_x1ncctt> zG&V}$#{wZM?{zOsBYXad)4In|x)a@*j!f>^N{{WP=Nk#@2kRm#;?aKfHJ@&mJeWKO z2kAIX*UR&`#hsm<8|C%K#4uIHjl^&!A}lXQOWe1=H{AARK<^ZA$x z%Ku`PPnskP0xu0~A#m^>IZ?vqQLt$ECO6Vl*X%d53H_>P9bX!OU2g=nIsUE} z+})od%Nu5-wi1W8T_W^{Y8Z1IlV=s~9LD@a9xzRb4HPV|`rKCcXVGGZo>${lr6xoM(EP{?tT0S3d&;$Kt@ zh7dq>;8bb^eYK#T+P={*_}m`*6*ZbRWy8VNnM)qO&!e6bAMcNeUw?epT*Mv$8M&fb zecr-oKV{mSs*}^x3_yN_)~(PYFnvpviI3aa>6hn)Sk9M?*RQ*m&MsD)9YU;NGMX^8 zY&F)proS1*rEHSjxD1IFuU-ircvE5{-@m2?XE8A4Upq?cPvJ7C2KPPpWu0gy$OvNq9(-)HDKx z9MvOKD{xlBP)1*E%KpHA&@BZgP(6r(*Jp~Hajd-I1#`Z6>qlOs>h;d!2i@C~V)}2g z8T+h)s|ZU5@j2=Xf6e z@#Ov%m&LaKot)!nrxU9!;Cux?^lbEIXk2rBc1@P8)Rg+_S&iq$L`g+>K-^UL{uVE~ zl0V&>&QAKWb?xjg8Ng&L$V~-V&3FFmzbB}TBzXU%bKf%D;!Vx?aHnd`!n{$c~ub=}TZM6}d+xK^~{Zod)w$WpSQJm0Po z$3uR(M|LvQ;)gx0Yu_(IlFciXcxm~Xz)O27kmDAt^UrWj0d3P$9r|ii?i*Z&)-=MRg}rYBT_WC>J6*c{<@5(KBX{mV*Cf+ z)%C~CL4{p&fz*%vw}+lx7hr>OU!l3cScDWmdIDg|`h@6+^9(Da zrxIdk6l??qdn_e{J`peY5BLv#RmZb0Ut$UKyQUw)T%P@KTx&`;ei0_R@HcFC-eUDV zZmS%pyJn*OYxk~n1+)qJ@H0!C$~l&JESMA~^XGi%ZOSgiQ%Q9`Z5Y=z6YxPz@XPG! zk%s$n0(#y)gG)y|kBaN}eh_+kdg|P^ha=hX?*?dx7y;Ve_`G(q)l>-8U;kMi)CpvwRtJP;nB>P=k5ZMbvUQ%enri zTS4LTogF`#ZsDHeM)T|{zJ4W*r|bD&>1UQk2s9p*Vj){QHesHi}Z?--^O2~eM5r$zkw%Sf&oVfK2-*NBN z6=?<8OX_D6r|)jUaAb(yNa(sSf>U8D%UprO5}Jp>GBdq~1Wuh*C7hVIX$EZZ}n$+e@%l^SxRw<$qv{^xeldi} zPlAPt-e~fqbsO_-Yu4;=ZREYC@A=rfE#n2G1s-krI%1COh)LflEsbbbz3emNHy8hd zbPi+`%Gwsw>wVY|A{1N2t|tv=4MSS$=jX%j*}DW?Cr%;Is(}z$4p&UUk32G3x1@xM z^4?&c|6bL;9iOE=#n+a|f7;MZlQdJO#czwfU3#7K(XaJ|4`W%0qYG6IJW;M`1y_n3 zX1^ufRbaj-fM*VZiHRj?{~?y?udpy70D5HH4lUh0>UJ`CQO`+!9R zftJBH8p$L$v#EE1uddKr`?lX%;ihp3`nGa02C6#URDu#W4lGM04u()glDUvj$aTN#Y48Xb1U$cDMS?Ueo_8$q+8o63$vbQwfq_t1 zqa_c_cdp(S7?Xhhirk8vpmKd}l*Z1qo7!ftJ8-`jgYoMTE!2)%Z+lI=9^1)c{?wEq zsf3IZ+6~V?oPeNozot?_)axprw=}f8*fL1-a4OMI>FZv;p{SrRXvTHe2v5e8Ut=5o z{iS!typ64=lQRDpo52T6P~8_OdWD@ZS@1~PDu+An3bebL5Z%|X{7)My?zV^xZQ)d( zZ~Xta{q08d6f^i3_UR1|>?zGS=i*{S2G4<-nreFYr#TX6{wN^ikD^hC)G1G+->dee zAzUK5$3US>^4DP_o|9Q3qa~%3!NbV+{i^hzmX?_+o9~@mT+AyL+)n@5Q5r~aM_y~VjDwQEN$`h6qRh^3jGlcbipz9c649z{9=zmf1e(52Om2Rk-8m zfxp@7hSO%zM}AF!%L&nDAt#rl3NNyKG-J1^VcfXf@s0o4G)T}HB>e~h^|2qD-7K92 zbQ7$U^=x5wgpPlwAWt~jkQS5zq^%~x_oxz{g;rZyT2I!9L1lI1>e&B#2e0p_5JS$p z6}o^m-cU;>f>@kB#Gt;?gCCa$PthcY!ft}?GJt!oUi!fDV zI<8v5Vg#fF2WYi zh53yI$lf}too#{sj6$2=^F$#~L@_t#Iwaqvgzd#cOx~4ubExzh5*WL(oXXP7 zDw+T!x^bXtbebcdfa1r;<@=Fz|BAF>+A&xE=gjgHXpuoFdD44gPDdYR%{;7GyA|0l|+yNns99jJJoE~`T7XEVNhmwHV z)az61D90!BGyJ%zpuC>ij>F!>+$ttda_vkI1<45svNvnM$H!fi(>2^$MU28;O@5jV ze^(f7;`CF5_Mk5Dk;EJ^v~Kb@k7)9^5nG%k?|V~RMlpNFLro~56nN9Iq zbAMorKO0o|=<`B?IW40$yHge6V3Gmj@Qb zLYivs%fAn7lg(w#n_vdliVit-GPC_;| z?~-~y=+$EiFIIV_MD2md9JEkC3eq0^_P=yha{wR496^;O2~fN_oJ=^o`-g|k(7p@{ zjkwmI;^5%?RR$EAT~8tzJ@7(nx4?8+s()EnPo#rt&HolR!!rH~l@T4~WmXsWz7=+0 zYc5y=JcMx*1r9#`oA;pn&}aQDcYB)Jbo;3YVghL#R1BsG*xzJHXK1?>;|*)xf>H-> z>(hdKI>|&sW`)fAI?w{Es5*4%5E`FNfN+H(ib1x5!j=r+3u!-5`arU7t&>3kD2hj< z6Ak8?Aq|5$+Tb#;OD0GUM+3|+rgCWe{25h8p%n0FsqMqL4oXyOH)TAGjjE(TmUi!# z3(VV~N{FU|SZ+Z9L4##!p+gR}RF#2xC*;q(*eNf8D>nmv9|_b7!D2b#!M4Bs=@Dte zUkVvmPgBv<=u^igW6rHAanZ)cSk5hqcuQyj{VTo;d;p;uuI72EE8B%0rZY%HOkBt= z5C3H#A{DNhaaGU22!gBXRL^AJWP_$Vf-WU4m6Kyg7$rb}l$-UlkoxiC$7{{S7dhwx zI9JwmP!52M0E(#?*_s3hu=QXkc9mwn9;jk=NynS``FwIQQLoUhB=jSO1E|@h;e1@A zWMPmp7q{Lzv2*0DuEuv&MxM~WXdS%pT+TdIcX4qE$q6|NHiJ}+1M(wDDg=y?Zhgua z2@=?VMxoYW_tBYPV3VV zd{R>C@F{4_qiZ`GsQ?{eEikj>3CwfZSsBAZU=(ijlP6@X-scDIoNqphikQi^TR3Te}RDAiq0lnzVOg5;Rru_|F z?03WxB_R(<0DeSrem2(di>)b7sVqpj(B5H?OdCLq#170@ZhcE?Ri1FwQgkf%B4MY1 z(|w%DlVwbV<=710KrtOnw~KvHnU5qDj3xS8y&`4M2015G5@Tay<+N8o00#bC__JW9 z0H0~cv-+&bpiA0g(yMLSA1xR{#RXi=Cv1prLMidJez`-F@0-lb*LS!C0#1B^UO33e zSnWX7fG}f{9dcO|sAyTMQ z4-`}ynaVWUGH+g)mF939(j%(&S|glUK0`?Lx~AqOPh#{AsxD!Uh-|Ncmh|*<;@^JC zk9dOt!0D^nYjIH@drzfL%xK7HckDG4Sac1LT#l6&4=hK%`lu{brCN#S$9d&us_O~~m{--GW84o6BEP?Xe7QTG{Env3v!2b3g}$zo zV*l<&F{@vGQq4vA{R`j4C<5z3R?QtoPrs;A%SBMB%8d*guT2^;9A&447VC3aB`>cW zDkC(^L+Ld9j>!AkXFL4Rqt!rj#=1Fn=lv3XlTo^cALs)H@!Y3 z0LIjU1^;8H=w57wZS@Je=y2;dNUd>`9zs}F1bzt#!6kiPQ!{RP0u@ZlbrU7?cTh`{ zg88no%+lTA#Pkc}l~=%E=~rI$>W`ma5|RyuSH{W{o;|~nxpj*`O>#St0l5@`4L?sz zIyiCX4{O}#`h3Spk$^3fOb+i>6vI4@cWpXkE*B%L2f%b%qM;S;+hJGm3Om?kf?l;U=pCwShbZ^XTP^KD5C z=3AdKGC2c&X-j6)L$yORa-WkI;t`qjWcNGRQcur%_pYzj$0OZuN4Lyz%3pWlgROa? zj^|7mHKN4j17obA63CP9u{xdt3PzqD5ToQu@bU8gOtDJGnC??zwuGA3xZAKHIKqRG zU5a!--E7Uxtl2klQdJAyZ?m$l0Bg1`iXIJf3)(p1}?o>!&;lLsgixvov7fnLx^{RS$J zSa6M9!)uLWHeM2ipy9eYP8$e?B%WsJy=knujSuQ?z(a)XjqQ!Rv_Oj+sb7qx~SxY@WEfw`iA{c?QnogE(;z?fJkf6MfyEkjpg!pYrUu30w zKZe3w3RH<f0zynVGEU7B~$iFIsc6KBg)5@*S+CTyRFqgp6TAv-L1v+ zC~WXVviS+CJOI=PW$M*M0zyJsF=vixJWGE4vQLT)`Xxkv_{;y^6ZqvJF|SdL4!$LB zmPD{sTf~KWmE4508?@i41HnLX{R`)-_E@SIMG*27&M>|ulZ&`N+jPf$QNLeLfvdU- zgLG?VMTH-e%d|jpYAq>59*_0KWqeB!DT;1~bg9F<=c}a5pNf^;4Q-avk9%L*;oO$? zy^cmBxqW3p@+JW zkx~9WEfLP#Lj{G2sm=-4ew7aMsFu64+f~8C)SED8+6i8Ek+Is?f8P?{vfSj~1`tjq zt~T^fzYgn9Hb1f=yuUBpXAOM@x9~3=5?7b&h8Csy;!ehT)LS6nnHfpsyi@AMQk()mT}(ECj8uPhh?IVZE8(6Y#vz zh`Vgvs{SYHBj3pRYQFB(k=f=^tOCD)FP3gSROlwGcmgv|{tsDi9TsKVbq^0FD1rit zv>2pPf^-7O{c?YZygdEfW=eSdhUhr>8?p8MLd z*4lf+1btB0hN65!lN|>M>J!&4?T%X@)efyggmt`gJ>=!1a5`>)KvXp^#iEbt4TB1L z-^!@zE65i_dK%7gdQfk64Q_Oqc%rw??euB<3&I2_c8dY`MY!HL6tbcFIT3%%?TDS2 zkc#$|-6qqgL@2G&{>SL13_7`Bc-FwWiBEC$WdApz;in8glk_yQK2K2I^L(u%%)q*N zxuAIuE?SU(G$hHVglN_M+faAkd#&1)iX=A$@rj)zrP{o^o-SwJ>x1wujagYq2ZRf` zUVQ{N`UrKospJWH-@k0v3kKc4cdsFczAl^V5;pX#v#1?Nj^M8stJRj2m2lc0(2Xh( zW^WB-VZ%7dYs9ZN@zot)+w0$c)?i95n3grL`fL3lg5VY-Ui{||sQdfS|G2dhR*_KB z(@WiYOc>JSkBtf}o(f_4$5=JBO6FN{)q%-x)86^}qwVyI(X%LuppobM?E6jqNsB=p z8M6^bZQ_>01Vze*@-@HX{k0B*3ZNVQ2@eo9YHUey;A?~9mGFnJO%}4`nyqY*&5fz1 z61}1Dgp;vcU_#HXJzp$1+OIpoTwl?Wh_A}vHo2g{G4(0>xW^c!gtTCZjG|&2T$9tm zpaMN%tUV#DyWBel$9ACXmz0#$xwrNuF;QJd@!;JNP=4zZepNg{Yj6ax&k|K&aQ$6L zLp)b1_JOF`*<<1L^y>>BLsb6-bU_+E(Lw)R7XHs!TtUt-{P@fW6Lb1tDhdQkJXnAp z!)`-?fD6ZPbhIp)QfGCz|5~;cVy7m>$wfj%Y8WGzkt7Fr*@27EbC4$bI7#hxxA zp@0_gG(wH2bS#10LTb5)Ae4RyCMk77huyQg;L;@E!`feR);^7xy!M8z+UQ%J*kRQ% z(ds7tNa3=Pxq14Jp!`yo!we25cyhA875?5;a#2@LwC#S--2&be<>o<3DQbD54Lv3W zT%^42uC-C9__??XkGnBRt9DVL)x0ob3wi0T=NLxH9npGvv|V6VRlQXe1XD37B;yt5 z50aA~E$)I+Mhd2EqQQG^2no!kI(^ZEu>Uq7EKG#xJ}tNvuoHfw`(m!HHF*5Yw}jI^ zFDJV6Sfy-cksJ0?O-#gHJ}a*-@cT518)11!TTt_1kVd2IBkv6N?8Kc~aB%3@7^w4& zCC1RxNJM5~J~JETMH{Je$-34ELGWW0L&W(>mew$H1h;W;sINto>H(WwUDA4PFkzZb zFR4x1_x)@}4&e}^5hBHB@sr0&&+RjjQ7R_U8$;hsjvVAwjy5W0dG|*hnu}$9?#?ky z;3V-CY9L@0tU$&W$0S2iKTLwuYbmf@ryCZhD;pfG!YVM(T&HqvkCzwhjew@msRnw9 zqE}&5N2DIAM$Xkh*0nG_c&?btMapU(zX#)8`7vaXJB_#DU#9e`z{#Wyu=nH`bjRBD znaSl0LgA$B#N&Ewc`{i3K=@+uAGd@$xcm=&hPp790Y+KBcMnar7W+@OMa+xmdG#jN zr`TAUS<_vAIBUvRHQspq=zRQ5;rv21>XDPYz@VWPH!P0k6FjLE;!5z|ML{7 zPg1~Gvz>f;ysZ-S@T7ivVFrAh@J1NA-qn$u$7+f6ZpdKjfglr13-kQNL-wZ8x2#K6 z6w~*5E>6}h(C=V;zFLb0sq=#z*4(^<(w{wQjx+S$6_qLudS9E@R=#Xv>fZdu?MP8G zZ+BZ)gQ`WW2|UBe@HVozS+Q-ZiwWV*V|zEe-3Ok;gy-;8e=vY%3$?lgYPAx0=Heh0<+*qalhCTR+9a%@a)eX|5pmfY%Mt|II>7cusvYP(&et{iR&7^oIa)$V z)|t*BU+w^pprKO-p-&%H$6=CkJ+!>`J;BS=(x(#qgv$0N37~XPGU|cs(sZKYbM8gs_RI%Y znkK*DY9RIZ-3{mFb(hata*d=aZDn!bc{-lD%x8{Bh%lWkQx4WqA(k`kt6;SK^mZ$E?RB*feNM_uT8mFi3&=1@F z6LR7u!c(fu^<&+;-or`G_BM_UrYSQi-Beb#LxBMZ7DEU1oiv?lkCTx_;w^Q4yJ2i)*NMrpBoMQc?!}JTzI$x`j z@lAVb@4KmtoxQ!wr`t$}8Y}xX;pDOeJXC6EI4gSVb{qG?N~!}4Pa1Mcp^a_#U9bF< zvF{zzq7C(2u42&@OP^wHPT{tmE26xULZexnXsx}S2N0&E^QMzudm}!D3B=+r->E$m zz1_a6_ADM1x8e2?9QL6Le#c|I&(_wk)S|0zPPfFDXR)qrB1=Qk(hk(z{^H=MzWi~J zwV;B2E4R8N4VgryHpii6ORza!8V=EopP7H{)$95}yN)e;S<;&?zpHY*rgtszfrpmB zTz}2}zghtHiMacn{JltetTuyj1^w?d95a1?efFy2{MTJf4rZVDyX+U>U#-0Kx`L(u z9&M-5=7Q_U)RW0wSooO^=}>hIk8UCBTh;{q6Mynx!f#s5qPS_TYf2Yd=ac(mJ-es%nxkDPpC;i>%i};gvzY*Yfg1 z>NXP%lZuJTydG!v^4$ZEn~a-eLhwWCIwuPJStW_L4aR@@`B~A-2N3Tl82!PWharw; zc}R3^rkIgGi_2WhMN9Ni-5&$A`1lOd#uIPFMczZ6b;W!aMf^z7%2hh!skK;r#;Jln z<6nJq=wz&0g*Wm_DFamPv$mfTS5^$csL~&W`0Ss4FD@?DFOh&r+=z|I>Z8=xhJDOF z{{B~?hwCk@A}C>d6}NWewD&FjZYoMN2WgcSmr3|LIDK?-#LjIj0U`o#586nd;%2f` zXR2`nO$`h^g?Y{$`{yUlU8gVKiitg8W{#j!t9qmLlO+R{xss&#L6X%d(3nmI{&pRv zjn)?^wbIkNPO8>~A96^;==|5qE9BFOWR>g=5xqV>`S$e^DV&(3quZuw zfrHD<7-RZ$(w5MZRsFW^F~glpr|S0v_9=Zj2Y-+QK~`bMcL~2Y>J~FP=O(5LV!z72 z{e<~_bN^8%>c7v}j%IZFLZ%~pT4-&@&U>l)7LX-`Yh`m$2$&v2jH#&SU*7GAFA*!! zCREjQ8ruv59(+9e%h#FKjXb7QWLiG>W^7E@MV($u{0%%5GtA~x;Tis7J7BbDcisAv zh7MtfpHGh(IwpGZh$f=GSFJm?VvA0#IOv7kbL!)S_>%kS(F7lN_m=$R^PJe8$3LVW zHXrOwJihLkH6|o$_)XWpD4;+r5b-s8lTT_I@f&{v-K=Q5{W<-!+OD?V#f&p!x-6sz z!}+=Q>e^;but)v-##Ud0Y%cs<>FUbQ1+>W!3BR6=%-4MR`xvpW;Su?yHMGdNNg0RJ zA;n^Q{P=XG=&5~FZxmdNnAW#@o&ZEu*{(iTLlre2KmRw^Tz32@bPFzzAKmvAP1GCS z%Jh4~(~tqE@sHMBwTMnteKa%MfEO7l>-5w==A}WgX2TU2(4NjPH&#m-U!5{+&Ll&CGCcQlQ?sTVi^gqmlk!O+r!V^Y|UcS9~N|pGPrb$Q0NgQ zc$p>ibi}w4NlEV1<`O2hmlrMCy!iMrbn#3lmhAR}sJ+FgKw2#QtH*yu4L6(%6`$Aa zH^^jmyN~HPejGfg{(UtQhxGD=tP^Sa;iGX?$+F7$7cKlUW5SHj)ARQJKF}dYe4MIF zPw26W8J2A&A^COm^p7=$fd%WD)0S=-(!zbTSD zZZzu>q*&`t@+vN*aqh96qwtUxQ!!S_POT6ZuMS0T<{9tk3BaQBQODPcB^Q1b$;SH> z!}Vc&!ShBv&ZujXmh#6Y(}#)R2uJ(CsCV`x6BBaRBnW*kG8~HHX=W;y6Cn&t)lW}r z1U|`+fi|n$lV()ioc4ear*W@*I`W_QQD`8bm^wOF5)S!YXfdsXNIc2ng_EK2+Ju`x zh_+SMeZk?5c=swEo5zN6>PWbxY4>Ht%U8;H`l}-GBW^;q3N~{q$&NHNa zpY6c$X9c4rUIWR(X2myStEv}-c)});Cgle|1}Z1!$-2VLIDYjE1eun6q-IybQ~KWa zoIWG21>5shoE(N8l5q6nlzV909qg~7$H*Gu;_k%-xmcs+)n-r6cQ>y2^uL_vL;xiC zhEt0EFamG?_wJLGTO`O2i<4C>B1ac|Dj<}S&p-X@Pr=i3n;!Xd=Jeum0z6|c{F2K3 z5)*JNhi`~7LcxXcMa3BE&kx=DP3Glq|GB!9!f~?^Q)~A}`AN_i1b2wR#y|QxT==at zU1PVJ(68T&*=Nj9!k|{o!m_?b)P+kZ`nCr*TOWAkg(f^fV>|1-NBtd;ELtY(3RV*y zCbZD}ezPAm`~s5%5JaVT?0nK#&A&gQ?(_cj?x-`?VVI5--))j0J>SA% zPs99Na6lVyVw>ISpA-FR7<#=B+O%x(Ib4#qZ)xb;*mh4T7$>*Qtq>x)%HnV`&EY^H z$9j6oW}c{#-LfxbNM7BK;jOHD+7XOBmjtm!vxNkL3Nn`l!^JdB*<%p7NQa_NMpHh#r?Rg=0&oEn;t>|knEZFa&9tePh9{q#5 z7?g~Tlv|Lo-#ijyQ$d}b=aYy88%ti8Qyy+vRzU}lJgoSzRDE-5gdWR$i`Ahry$;Vo z;|`$CRI?ij>Q2{le}^?>k%h?R}>k_`w`HSN)KgPrd>C=5SD(mj(G`8u(zy1WI5AnTMB(LhoR zj4#vLaq~cfnKh->4Cv&_5hZeRdn8{WiId)YQG7Rb*JC7kAZ2)+`X!z=72A{R_uzo8 zWeA1ZT&-1?0?Y(YP*qmHB!*fx6EK^1C+r_ups?nJ^YxndzhXI4j|Sr=A+;oo|6fom z;D&yYqSMyL;Wq^P^oT&)8>CfFe8V1iO#K7Jft7!rXu|azG!ZB6%GR#u4*m4)CG+_q zXGZ;rrH#OvOLbb1WlIW8^lXphWc1v|pIR%muQ=Ion%@tn)+;it>>H*kJG-DJpWtmP z3Yo0tEOT2u)r)U0ryi$^B{OLHo|Sl-)&H6!!wiq?=Tqv*T(sx*)%_&ZA^!6gkJ2V~ zS!Xs>-N+4o{Vg|cSgp6wGB)6=<_UZum%g~Tvz&YWr|USBT*O1WtuM*3eCEixcV0X) z?Y3J?_rZiU`1u`UvX&44>~2Ep-hA>e%7$9@lkpJBrEBf1?T}kZGr3Tzs ztVt;^{8_)spMWQb-uL+Al%1ayNy0shp6FjVU!AS z{j6Op9Y_y_c-8GYc9h^Woc2k!1$vV0-$y)AQp|w!^#%* znJF!xm#3f}k}yb=BXidAyX@_cNO@CWDjSTs)NkR+%?cUX9XwCE`9QO1L^@~kA^U{N z=mUdCs%g@drY_UtD(z@}#0547&UI(b)q4}8&s>0n`E8z0(to?>dK?Q?BJXco z4m;NwQ|1El9{8AW>;J*ql+)>~5)j8M>&J4v zo!UiveRI7|E1`ISwxLA7uTX|Q+UdKA@-|4Vqbr~4IK5ACE_%SJM36i}9lMKV04oH_ zAAR4^@7O8$g%NM9eBrh$F6jSU^{SHx9qkdvAzoU`@5>ufA;Qgj*dzm3#P2<&>fb`X zyx_aMHmr9{HbBfOYj)ZZEV7O}F+`u_?pAxe6<5}=!$QX1Sga$Qgqyxv6nEFZDE*q}=@ous+je^b4G(1};%s|jO0?yR?TvUh^0a0v zfyT&d*$F&UY#Chc-vo%kgEKyQ6oH18qQH!NEOy_fw|luZ^rLHErGJ0zX{-0mw!e#1 zm6VcgXu#3k`+vwG04E7cBl!N!V*qYl1rS7rf7Amgj13nuB?J&5`eS!T3(KPuMj%F3Kyf5ci|mR%LH zc-|_n{aCLHi9*M_L|r}%5zE{rkBSY(IKujaxJetsFe)YicJ0KJLDYT94mq zJO~Jsk<|~-T+T1)_|c>3)Kg@sr)+84qz;uQ8X8UXr;`zXS9tX!#)kPXcGiAv>(1&5 zZa)uz!64XQa0KcN!!xWSfhjIhy$+3~N|%#_A(DzDXIbzkRTFNFo1!fGsl>BVNd*PX zQ)^Sk2UkAzzX~)bL@I0Kgb7+`ELy2&C}AYu{Lbz8;`__>TfLv`Iiewfg7BO$ynIfN zOG@ew*gHPC;Qr!rUW!51wTV(M8B9P7J}ijKq4zx&^`ncD(y$- zLEZOO{7)`pO_|m9sm;1rXj)&kF-g9BwVLhUs!W?Y``I5e=w`zPqteoAg!4m-jjQX* zSyg^P>pEb?PJl&q>}xfcQ5C;0$_w?hDar`UyTNUgWrG#~)fnC7e#+_i`3Hmu{u(6q z(KEKFW0SmmQ6UlHwEUHJZKFp`EjXHWbji9gC&Z*^T*-ls3d`4C<)!)O^NaK|#%DCmZtF?)S%CzAH zZ8^+oK)O4tw1&7rjkGiTgm)+7byn_n^>t*LwT+HdtDs&TP>&XL?h06s$puUFij)^Q z8Ng;!|6!BP$lk2j!fwG1Oy7sMdfvQ79rbIY&+`*}1;gRM)?dGOX9-69pk`ViAkH06 zxWwTt5?b0Q++#Mvqu~`{%_n%N4;!B{80G@mEmkCWW2t9NA&(OuRcbv^DQGvH+_{68 zI{yNeOJZlqSGznLc~`7$1EV8EVY{{_R%GkK18<%F;zAu{0-XOivKK=gc4Pyu$U`@) z9j=7ZjmB|KiU&uV9POFfu&V_7c6fkY)!%DN#J$%9CwuKXw{h3yNr2)r^aL}yQ07;Mow zYU}#83`~3p=Id)jXWHYE8!>4f@PzBBcp$_LD{HCv zM@vy#2v>)td9hH7BE^%L1G}1|J>&YmXX74S8oQzuRlU>Voc+{F`@VZz2YE)Aj>%!2 zY``E$to2i!Kj{tm5K{S~P2eaj$Zg z10DUl&DSQ8E+I~MD&LLO?0vgC!t|aAx|C)nWGUqBAIN-*aFUO&etF!e-?4+W^(Td*|AF6NUMELypEfpCS{3A{9st_pn**^mV^w6rF##uw)2uhv6n z2?!}aB~1ME{r_Qv)}^!n>%+CNt80G-&kavcN=V?deknR5!6sOv3LM6DOP?=SC^2&s zsK$RhN$8lCr0G5P!>XTDuo+yJJz0M%&N)EjS{D-XFA+)Q_*V|{Qjo1bVPUxsYfjmz znip#+4gUclS!13>K+bjWE|--_Z-v;s+uC+&Zv#)FzJmOYbzRD8w0O=>#akNcAM$<* z!ljLtEZ)@5;C^iq5{;*U`fM-8K&QZPK_=Tid>;W%*1(u>3J?CD?{skTk4P12yM|~S zv}>4IK1@fK)WDyWU8;splr50;K|SSloq(A^shKn6dE`5P2Oa}6cdxVaVF5q`93fuR zAg$RuFZStD$jOJ@rpNN+#g#;;rz+z<+=*Mz#OGIyR8I(R>*}V+l&t~Wl;!?|2g0vk zqXDxEzz1%0qWgu55bQ6dZX*+y!Tk3iQ3Vr}kj;yglja66p6$Jy-0V=*{W|Qaki1-C zIoe*ao}9h%@UKS(G`()y$dcDXeagBO6#Hhu6K*V!%JXZDouVj#-@o5u7zEMc!0<8_ zq$0|FN6&1?Z$dYwI`jD#B3pvB8ARifM3(O6gARxE61yhWv%=-O1qDt~Uwb|m=tCUnL&zBHY#4KKs68ZLFQ7m}oFo_6hA#g6X8y2sD_^^pee z-=|YP)vw+KlIMThoo{^!^#)4xeFO91Bd;ln4(%calcDDb7^fv_Xqb(+h)sbixWhF| zMgh^NsBBO0L>+?VKk&w@RlG-ZvhDlv#e)P zA_G;xMblP>Ty*HeXtT^W1~Vy~GLEJ#JA~^%^}`pBR~vbDN_wezFPQ& zr~P!Xr{0ZUzl7VVRT(64hfB>4ZLYlX@XJs%$H9l6vV~Dtkxu(dDFds=14$Qx%F2We zlXlT~na~v5p$%&ufwV(F@tQ#uGD|Ec`pCy{!}JvqpbAZdh_j?Rt6`$v6++$Z#;waKR|(X-m38%x+-;AVwwi9PmCc%vFQ6miFx8)E-S zcs+rw)6?J_+pvFMdUjR<#mhBgyGgPm0|OF+vBFBcRZN8AkyxEMYm(EmpL2{ZSNt;8 zzj1wOa-lB}CL(>zDGnbZyE!nD;xT8%Ky`UEUK&9*s2yI;lB{l0PD&N{KBSk(n=D~{ zq0;PjzFoO?qCgOgw>{!}Q9_^H)*kucHhDgK&|qL3GZoJ8SC~HqMvO_w9Pr`86<{no zf#2%QRVo2y_|p{@ZRjxXO5#m|j$^8(2lVRVy6I=iYC4ZDt#3ohlOXA@UXa!GE+Azl z7>ZFa;fM$9J$L>%b2~XX$=tOXWIlJf$6(IDbM-WJ&*qNixTrWD*EvljGBKAip}OFP zou%hqlI>6(2jrZsKvy8-a}^r^qRya7RsUBo`BT4K>@`#a#6is+Ila$k!3-epAyzAv zC2jB+sU1G3X`WON*!j(PEtm+C?}C~e(JGbrDd8!qqCR%+m2K0J+m9<(b=o6a4q~>ORNyoeHn_=j|;RfksNfs{p zZ?n0dRp1Gz+F)Q{ob7eebDb=NBT)3NdaW~R4{-m$K#}5enRMZ&w6sA6Np4XvW(fYX zRuYF#;o(h?++^^D_{2@pP0M4D6C%?@!nCyAanV;&y$z`hB3 z)m}R!P|~vAT^1mmrR#OOaoFrIv)N%&Jt!=)H)l9)&5_gq z`!bN@`NQ53tn6_gb*AIRc#A;`%A%OAulAWb-SpRHGNRQ}L9Bbno{Rkm=}O$+HHEvk ze*(L;(N^pQh-b;QWbnuZgVN1$uhmy=PhZh&X}atzPzt5D;^q{>Wz$j&Ioe+DmN85| z-W*hvypOO{NUF#rP|zp z*;?vGlo#mDTMCqR?a=Dc2BVD%(iI_$b)?^1{EKitSJ6ltj06fut>0}`)6+bsH6OgZ zZxt#eY#S~wS=IEMyt>}=_ljZIyy+b;x;d?)j5dv5@XxVweK zS1ooaD{T}XZNS_cHc$SOm6Y)*Rl34yJxj*t!BWXK5-k~qoWLRsjVgUsoSyBRj*gDl z%~zxxwgIiAF2T^xQHhCisRS&>ctu4;_~(PKtjs`Jx(lPJ_GkUcQU_KeW?@4SJhn)s z8^vy}uAZ5vZi#1+P?Y-sOAs2}Mxu!FV{B5OK}t_j?GMON;EuR6vy|UhqH_)E?Bt{) ztgEo;}=Q+6^CcGBAtVg;_j-o^6DXtKKY)U?^;?bv=TB$vI`n1qtTfOddixVa26d`lFRu5X^h^;PAZfhOy%);7c zZ;+jdzB?sE%>+ZOV}{i;D18V^fx%XVx5veP(o;%Gv2!BoljwgSaJW&yAS?J$=dksy z9CF8&G`gneS+@$KhAs`HB*qVi2-t2EMt-FdcR{vry|~^?*Gqdyn#&S#=N<5WsjLdB z166WM@r@O0CCVBlDrOLN^It}6sUq(m*MGGDC}iMX zc)MR*tJPQ;FQC#61XE?_?SxJAc!X;`3vbS>HXQBmyfyDTk&U8vQ zG{wIck#=IX`)oZxICjhf%b!2o`GAvFKGtyj;%QpT%1BA8>iXZV7?XFINXvL&tISDT zm5Ta(+I3}H5)Q*)3^dJRvXLh3uv-^Ex0ycw$i>b5*+3S2Ws=!FHwgI|z(xcJik^Wn zfxw)`+M4}jiSx{H`%&nHjvtDx3laWQK<0*Hfm$FYgSqQpaWJH!1anhQPEK;ws-rl! zDg>O&U^tq1B3BIf{Cflh?E&|mpeCzAOWHChuw-gF-zzGXz7|L?JUi-tZUwlDAn1 zX$ufB0j8inCA5ECEfdZ3nO?=IF&%qe>F))c%tKI2OI)gFD?7>9(U3Kr5=AiB^nK9t z=^`$$tu0$vS6f<)4+9v~QLwDJ!n8z;a=YURyW*`orTG>Dkl^HV9RjS3V3lf(R$8p~ zuvCivG#WO4FTdHo>`RAEE48~xWN~OF$*SSsXGznPoxD~`p{O^Tc7JJ}NJ^K`^5Vg5 zm|Uj2JJ;;!19y>D|>#h8tKkGn)>gFy7xJ=pzzpZWfO_XGQ=Fa(8yM`D%k1GCy@nXG_>7n^Gb z0sRbg$U|~MUJQLy8uu@9#h|hwNO|xHI#l48A;Dh&(Y8@35x2`Bbgfi8P3vompq9-y zR4yP@W8Ch2pQy5TYX^N;-MXr{SB+QPXp$BK!astmvGf`bV|;&z#%$!nb++vn1=%lm z^7d?Ox9x8fsC36kwvWA_^I8q8y}3)`cv^ajAm<96xg^Lkz3RCM6QWG&ED1y=TXtoC zeV0#keD)Iuvd2jFtes#ihZv2;0!lRwJs0~xd!@^nZ#uuaT|_VnqNAcvqzPp0Ru0kT zvZ;svDBDEqb{>F???I671!Q%Bj)3A^y&1|#kK;BfY5!e?K(jnmf+&_J5PcC4eK$ByFt z%+B|eYFpBM>Jw5ndU@~2URmzhjjGdF!g(+aLK-FkADkg9EScRi;wJDyB;=qQ#dVs%Utqav3(U$N&aNrue`;5WeVPYVNJ#BSpUI1dSGLh6u`_ZZAjihxGK{yY^{3~g3_BtEs*-PEE1P)HtxVrOAqH$ch7 zQ_=gr(DU`4rx%?)4Z8b6#prV)lK{CMAFz#Q5pfk%IfJ12m1TH{3A{PoWWu`LZ0?=P z;@ew=n#22J2Gfr$=g@0#h+mu9St7i`c-|E_IkgB?+BVtSDD-_76N%P5^i?Y(Qm%jE z4eFN}bQ!sVZ;S8Ige>ywJ^pA!9GE4Iv)(9{KFUmLd-KgNaUyl_@MMw4-k0qb>CTS^7_hq-bE9d@~T z0bH`>^T89vCw4 z6&9|puj_Uefm^(bRJKCjPOD6uZ9_JD31)0t;6OXaF?s z{b72782iOgr&tmSQd?t^>F!CABpNx|*vFg_uNEfq}MN99R?K;V#&yhw6mX+>iHYh3?V9M{d4 zqApU|E_ksjd*(iO4Z*v8nV8zR&x>EaIzOmT8vNRWD4z@K7FLE!m>(j-cqTkMhqH10|3ms;ocQ2Xz)9)5sGFByM49SJa7F-@AGiC znrhYCt9Z!LTb4eVHDBg-t1873)QZ)X?DBKUI+3S4tpOm=fbo=_m@FnT! zDtLIhw-88o*WQ`0M`PDV^_J4jF8&<>oe%;Cx96s+LASkXlfHpMk@n&VQQf$q9Oxl? zs<%fVtyj=lu(XI?PD#l}5|+9Pup>ZH`J2OSX_h8>*@Iw(14);_y}(yFw9IU52PlL? z%^jwFEjVM55_{7vEZLi`Si51KsbdlmukIQ&mTx8a0nS0QOCr@K=X8o#Was6VS^c^f#wm!1KEa4MalAFVv%+o8 z(95Xqg4WPIu_3KcU47N)#bI=Nr0l6=XHVk^@5O3I2;yt9;90Up`b)!H#nmRhLdJybn%>_pCek#j5GxXbVx4MK^ zT=lI>6v=lg95|&Y2}wM3U8&k93xgBuEM1znUfk_bTk71pRjZSg#%Uk-DwNOGJm1%w zAhd9Q-zKXR=tZ>@EN@*YR}n+6~Rx_Tu)*GXL8i5dY? z$jib_4psFQ(A<@uT<_1jH(1@Muh+7hcChtDjcib0Ozy^$W={K*%Z(sfEF+QL*w?=j z&KJT2(5>Fqa!`JbiIWh|a)cGs`mdp0)Y|m%xrRt|oWqE=ik~&hf?)tOVF{DvIXSey zCf~)QnNS);!>^gKlUUo@2Xw79|5DWoY3~Z2P@dv5VV`wjPkT5hP39*gyA~go z*QjbUiTUh69lQF(wA(4R>)>){=CPJ7K%x-Z`1GcAY24d>p3Q5SK4V#zKU|gMdOSWC zc~@oKwdVBMJOPP&-+^HyURcL?5I7f9s~s#JfORWD#2Z&ECw`f9(?`M6A6wd6W~Oz< zoB5@{CSF$6abDJD4mxrF__jZc_W0oBL2-Lp<);V{YvJ<13qiY;M<8wC4^Rf+tXNZv zT9)!ObwDWwgt$n|KNK|I-8F)GV@zf=h3}tl|B>O4^EjSnLPU8yY)mpYlhcV^8Ie8P z?rd3q&{bEBOcS%tatvE96SrDKbz1_B^$LGIKij43rR_u~Sbg@VX3P^4XKd z+pm)3r0pf5)J&}=5LVAfnvX!IH}_40nu9gW#7Z_v#FJOc`%-jd25EgL&f}|6o;H3) z5T$+c9Khb453c7c;f}alV|>uNDZMN)$Z4iAVs~n+^!!2PtcEIbUg@6)8xUUm>N~8g zmALN$c)v7jlb;$s5MjdJ9gI#=XY$$Hc;mM0>2-Yl+Fhb)0*jEPSpRrVJMPPYZg2mP z_oVcSHJFw@?VS=7p(Nd@KQ(7^=y~({`dkKDb4*O9laY6pd(f_~{$}y|dfa2(Pxq6o z%e-8xWHepYGkXv^GE!~jpd^bPYX2DR5v*kPFe=}HAaid()qbaaQo(z>ejJiy&a#q7 zMfcvUIe&5B0g^nzxaB-Ee!VjoHqDuOw@*C!Zf$QOM`XBax@rHGvF&YEGOn>?mLrg} z7__3F`A-IA{Ne+sje2}9PwZi>?Yx30!#FMDP)28&fvschVR&zCx%A0822I!kgUyn- zy7THY4CodFNyqT~W%yrAu!HpY@M{tTZbHZ#{Si<(;vBDBegCvYTd~RuG-ZtCw#x@j zm!0Xzu;{DMSnG2;yuF3nqbDmwUTCb-E1uhAd7VUm%Oly7tj;1xc~gG*2S-9A2)#r_ zHXNogS5JI_Thrn#5}uLu=GL4Vh$G+ycgUI(VQWl8MD!Oa>0;#7VPJ<*6hEak_ZqM-y@l;BDIjYLN2KDAK{{YP{K+&DKvY|ad3W#X{fWXFIp^- z*cjcFOPFUD=-lMA$LkDFH4tVP(3KGGoHT|e{TA$tl0XQVm=lY9|Gt+{i=$Fe3w`jB} z)S0_v=h1}QpSxrB72X6sc;00F-P5QfNq+!8sc3_D8;20*@y(A=ts+{as20TQLcDo7 z_(wojX+(b$)iw}8&|Gt|{YY=3z~L(aWb|S|G5$GhUuV&M%KE;K>{ZII7S=+LLX;Q` zx^K z4H~Pv>^{5TaejV;8j{*HZf@W zobFL=*Bj@U&-5HekAUP%9`gp7n`?IGlX2A^?u&+rCHyz3<@5OOUf6RE*px)%Pl0B3 z-^OWGNMI!{$PSXINIfv|^ydyvrZ|l1b`HMCLb1dD;E&9)>*H_h>}>J!($Wk$joJPe ziL|Z<6Nz2CEOFSjlD>a@*{XrrBqU5{O%#du<~m*xvqXr@u=oqLm)qqMIV{LHc!5tfgPF6v_y`wS9f(zMq$t=3Om1B(HF2sH)&~y_tPi zF4wkr_TgUQuQvKq%Qnv+sHVUEe3zeXxd;hSR(g2VmID%b1cR>?&U#Y3a;;F+4Q^?R!+AlYwQH`9O~=Bm3{nRs&H`6q&5MUHnW&QflyM~lk?wi zWkS!^?!KE&DjX-z<?E%9pBYjO1 zTdy~s9T#zwZRzTFSUbzCe?I70GWhOYew-aaZ%0;k$<dIBgtt&8Sr2zHysb%Okg361?Sb!KZabS~p$pe|ovYkn@0k@gt9$o&ogB!``VT zOumUP6j*9Gt-(W*kkQjzo5AL}uYvfa z?)t4`aY?Cb(NC>d`K!$q9wJCtm`d%t$hBAVwfn24{TjMK7mq!L%91~KM7q1bKGW=) ze{XdU`;^&Aar%f}_mkpRspyuvGvp^1qb+j_V#}Yp3nwsUYVppu@WQQ%VCDg;Z7&~2txvZhO@)YtgagS1U;J8L87b1k zB^t`5V0l(Ku|I6@XHGI&)-XNSZ2HP(tsGa*9w#g?RO`?2@R12;>FSjVD8W4AP=Yfeg&6*4|r1wKF7Z@ulqPCw}&H7$vt;GVPInyBa z&ncgee(gkNZilXL^TpTiw%&CSUxR1U%sOngq-VjnKZ*_nG$x!z)H6n4n``h+GtrRU zSzBsYtWwKyWxhrqzf@TJH^YRMczZ0lg#D$8)7DsWw2}oMD`$TH0j*AnVr0*t-o8T^ zdeh6yJI_{Q7O!lfy`*6C880Z19(8t_nvR;&kYdZ7K1i`Zh; zc1`&Jztj81o#KLOS7I6D6mD_x@oH8QqGEdro&Sn=1{FVgR%U0r)`SMd-gzCj9BB|+ ze2#kMNbZIt39DPai{9VBEmP^?2z~v}MCFp~`7wLT%T5kc(+g2QK&N!=x5TDb|DPXs zGiXb*d6}5He9GH@kg2G4MSgfMu=jCZ6q*R@>d?-RF3NHv_o|;$xw%oU=C|K8H;!?0 zyQ=t$squni)KoWG{l>cwzx57@_8m{eX)cUe>&(ZM2zX96-r6s&cV2HNzu3!=|DdU zGgMgr3`+4LW@cw!Ltl2fi9Lz*p_`nRRtla#fbvj}Yu%JNdV9YN}2E7|&UHJ6?=9vD8H*i3%(3W%Ke% zamgErxB6Q-17AHWQ=d*{2(3tn-F z8fkQlShEXXe*dw4y~;Etb(n9hE}{NVXlkz)?l9tEXKz~j&)LNxsex*f%Ed_EXz*jZ zB%HsxPg=q$rEwsuqOts zfGfz{p7@5h7l<$zEv9OS{7QtlU8Q~*gOaIUp9WQrHX3bSu0AsGxJ=LpBheeoO45AJ zFcwBl>V!y2ag(l8aNAHhtaIP=)n-jI{j1+;07{@rUqcLMn_DOA_V3~&8gE{ff9XX| zv|Jpk`IMScbB3ev?D&=gfFc&x-!c(6JxRY`#3Mo6GMSD<=lklf;Jd%pKN3xmA4&F- zA|_ZgxiWaHSqMWniJn?mLAkM+_VuPsbP!sHgzRTA`5-2B&#~Hx{YbkjWcPmkm?*UD z6-LC<(8>74n7x`peoFbBoNwEnk2Nfucx=D%iT2iEun#-v%9aQ`nJQoKL*ylEEgJDUiqb`CO9xc$QO^4GRWS@Hdo0|loFTs9M&XWuR}*x0+Z&foJ8a&eY6rK!+{U zm<$6qo+~*)x0}y^GDN|+y0g@Y9kEj^8>4A0|0AnNe;40Y1_a%f`JGgC8f=GHE>0gY zMl%N2A0f}xUgeS1Bpu<`b*Jz4zBvLi8M2c*rOMr3kT0~4lN*8^&95j`nX2=Iul?da zb^XZwbTXreevNjLqu}V0f9u8Y!C&QJ`)_qa2Wr_CLQ9bcR}EA1FLn)G3R+l+m){qC z{I*IN|6L4dlnFWy3o_D=t3EkpAMv0zivJWOu{BBSV|hhBC$i+azN+eiC?C1GP=CX@ zYw=o=>2yt>)^Wntg6adz>C;KNjFLa4A3l@@yO`tPX4R=`89I$;-Vu*GW=5QbX37yP zNJ_k2`i1Q>dN62zNV!3G{tVLU@%V7BKyE84fd{kJfzgym7F1If~PH z{JH$|8}kx&jX&^4IQ6C_+s^bAZ;6kHiduYA$;znr3944{^(y(UDk?6|zoOF;tOctk z?}xG){z|6x5HP-+zgsfc*sFxx-yWb|p^s6#7_mI@&EIsB`T%k&%1GBaw#ido(Oo?k z2mbP%yEV?XEkcVQ*g3->no!|84*v8tykEKV;k=Q;VCAb?->&y;8hu1i4XIl?rO9Pw zU~)a*XeD&vg-Wv?+9S?3?eFR0!j%=OQ)nr2}pOB zba#V=sFWxvB_%4|&7zU+Saf$v_czPE-}iUE^L^KK&i-R>7A)3gJ!_tsd+xbsCdjNFIvPg+aJ4OzZ7K~Z|hhbae1t2ZDc*t<2XBE zuFEizutVJ_us6!`vMR+@Gs^nqx|OigM`n13ipme8bxXp1^i?%9=o+slM{?O(BVKlC z&UQE!Grs+?1EVwo@X3;gtshj1nnB8@C@W5LD>3IRnqb1GjS@|l(6{x*rn0a}) z{2wiVOo5*AI}30cX1|T`XFUj(rmqWi`mR%4ZjV-&*5$DLoK~ZEoFK}8>P}Y+Dy~<>;vbWqX%V;fk`gz=Wa@h zRnirKcsWTqIefHtYk{0S+)>Hb6#e_dUqoKat~-wBZJN3*tim#6HJ>^R-3mssoV~|< zA*XQ-#lfrLd*p*TLrne!Id~?L;?21)2JXEsl#Q5j(WG6^#~(bo<=ThvlEjbu{bO&G z6rOPX4q3enhZ(;!+mMMF+rfZEyN}DgH}8Vy{G;?MQj$C<;}k_~@%^s|`q#j85@-VU zN~Oc=2KiVM2!heKyiD!0u6_|4UljayRZaPZIMxT4u#+{CXgEInRXtfx^fmH1k$s%7unJj*Wkxm~3XnoMbzB)b{3cxJP`vi{& z5TCN`o6m!(zwsS%BOy_W6vZfFYeL3G;dFzsKUwvamE_B7x!J9g=WW!ty~|>g---p; z^zHh*PsTtPG13`zmnsI43WRe}oE8jr9RUY(jncCBmd~-{pDDvMFW2m{+eF`fTmI~s zKecAR#G0ZRElNi+CET>)CTN%H*r>lQ0ngC2_#nzUYF)71++RQURYudpj`P66n;||F zX*zq6-}xB##Q8{Cg5WL(FEwK6b&&5=ngG71Oek>6;$$xDhv^%(Q z+j{fYueMI3=E1H_b6q~SK$GQ_B2rLp(xsKzDL=fWxeF?r?jy$SuyPr6Hi@s)zF| zJNbBF5M1&HNoy6UU`bUyHJDYXiH$#Ys*i1nIz}YvlB@w?I)q-Uns$bS*}ED4a*ZXY z;@2?Ej}vj+x;OMw})k>L!&B!kw^VXihWW0c=!=uml6f;PcztwB8k8P-%Y5ZbpmY`09o zGgJYFCa2lXo9DIBi>x^o9c#@699;=7F1WgE2J{~e=}242=P-yO!OS>jGJ38D0v-4}JbMrn~PhurOiBeqn)9Fr%aF09QW!lJMt7evtb}AlQGHQfL_ng0? zyUY3$$b^3Pn)GcG5bT`SmBetK-(60Co(K4#9AO7B8u{}6^%MN_-!y09)onw!h$f14 zqE=(MIKR>bwDpg8i^KcBIXHT_-}X9;uuO$uW%$&N>dPbfZie za}s&=Djx%S&{Az}_&(JZPJD7#PuSPbxWo0m16Ut31}xRGCO=jLG|T!Zmb=uaw|4oRNa_@Q4~E3#&_gsH zOTcY|P-f9KuabSy4mzml0fU4x^9NeoN>tOE{GhBK`4V_35q?;V2M*(M4I~GMZOHAD zNr}|&_;v}1ch=oOO+Ao{_tc(VOYXgiAJ=6t-$Q{sIPpuXaZ!O~u#uSp(5;)?DJ|p> zcmCkrr?i5rp9J|OXL)>cZ$?+&1tKFn^}F)t1kL4m(aflij6R9DhpQZbMI)Z<6lEhw zq#%>kkZmO9Sx;T6xiSBEHqs8={7)SnH3(c+vTDtijOQNdNP!2rci>k##_cJL95uWr zQ+#G*5g~uHw@o5Uyt?JvTCRot9GnT-^{v(d{Lv}GS{GKA`Yj2E9geg%9x7=h#@+7>^Yvx$+~0bV;^3WwL?B?h2$O0jV__O& zUS0xP=A;24us*s+)o;Jt_f3moc}4Au{6F*iG6N&UY_rbR!y00qTGtE>Z{pdjX}eip zHE1pmw!T=fI^V6^foOC$);0VFx~!emglxZUW+l(p%|Cmr!jFpSd?+E2P_*+3ub1h)GvK}mzDg)6@nQ( zc%tc9n*Oqyjq349df|(%LiJyQ<5||tBLj@#iFV(W-F0yvmt4b}O^Ydr;oUP4(m!FN zs5~JoUwcG|;7V+?>xcpqQXjTf%T&v7#x{QfOT;w`&BM-Ka6crzXfd{>|NZdZ6?HqW zs~!3F`;f(IR=PVBrSoVroyP6)UkJt5t<1eqQUD;xBNR2NwSCe~5nDuad?>E>b?+;C zW(!Wrmi6R9WK^2vnoGTdz)0~^phGMC5(P=k|^F85@4 zeWU}h10UM;4GcC;Pq7oV52U_{{_sQ!;|%BK{b)T3CSOjwoY^cCk1@s@Ex5l-8nFCp zH6w>*d-5WZ-6X%uW=JHxfML}u#m4JL#hIXHibGk8iH5s{C-dsim6j0otKNC0XAwh+ z^-GlXOMNLs|H3`PFXvRicFoj{_KsDpoH>fLT_aRsJrxQj0MO%}WFd3!rw&&P4P-;WB4XDW(+=;}oG2*lm(s4sg_6dtP|Q^quMeRh7moBHI;-;U#`?8ClsSzsB; zg8ur+zXMa_&5E>80>(yDl4&wNnBKwpECMs%jLAFTmFPSEMkaTPrI9MN#hkXzOKZBh zt2ivd@3z0taO{^!tqmVP#xbj+LbsvJ&P8UXQpnD{9`OfIJE6u~aU{I>Ok}kb=pYQ% zvp{*2PRyJ05Wx#m$7kN@RB;{3lgV_}MZgd(RutAc&~ z!>0#48Zi#|rH;*^W(mJ?mG?U6R*Bci$(5FQ|Du<(u*&&FMF=bKO09hE1WO;ZHJ>RZF2npS^;Y zNQVKfguo1J*&Jr~hC-2x&HxB`SAt0zf7gm?9!=cjbku|B;-V+N@VVzb&ZNnU&Eg87A~GHp(;VmBC2n#HnHr; z#mLB*XqCEm!Qz?vj3;`!*9Y^{>SrNou0A@&;kF*v$@bcp>8Mkv7#pe9)qH=frpk?g zOt#W-fhSGI_4%kPSd35E`t7Ih-*sB&O;O=}e0#l)UJ6G2DlYyl<*ccnljO7XijC^P z$b`<8NMw8Y03(WdG>PWG%y;vKyURQs^W^@37!CmyV_JIV4{qHSoj1jwYA1vd< z*ty&2K9rWy|DU90?~H3Q?8&tHiNeuv#r;X!XemxoTS_em@=q=%nn@o!rq(&gEfpN{ zo$*?QP$yTY(23uIZ2JKK1>-~W*gwN&Vt$-eg{~ zpH~o|K1wM|zTgH`1oB>`F^P)*_7l~odt2pS~4AFSnz1^r(8b@ejXd@@8rG-F!W&$#!`=T z4Zun@7=3_dXlPk|BGD$(=Tvqu@n`e#P>2^#^mDc9G2ah(B!NrUXPb`kXvkMKk}{)^ z*0bG7ZPp_?Vuj(yQ)drxkx2QoU{%m7nQYm`2v0gsA5*bHPYyx)Cppqq1L5 z3fV&f_!HJgr;ycn+<_6vJ^^gDBOe}f#6n@s-p)mr$66Hq^5J7&IR}x&t;3PrqOR^{ zdz>CMud@tn<%-f@+1aaywK_r$TFbw60V4*NH+-`t&kWk+cQx<_HPFn=uR5SQ+lid$ zq-1GjqGT^_h#u|<3tzuYOvj%COsOL9wv%299bJp7?gRl_jtZX`!H*8K?7^;~yay8# zcX;_n>p~8xo@$rhB>cYc#zca!I-;xb5hIz=n8vXPI+|VQwn?Wo;-2Ptz8_((q4AAn z3rcfNhIUhutOpzsCYM?rWmt;DvRtR5^koj^pR%Fx&jh;vs0g@Ru$r5{fn521jv|+5 zeop!tN))iZyUbZNzk%dp>e6XlbFz3yxG)+z>+Q{ZIJ?8E{_h06Z6qMJ5Z zr#dg#2UhZ-wt&X#G2>n}DcO2y(Ty8Om zR?Pc&weyU+H&uo1>AX2hyFU|IdVC^v1Kj=?8(i6mkxFu#Pl94P;h&yO1Zd~!F_&c> zMaBt90t~B}cvbOBA-}_@F_VWE*U3ROX?XxMhmq2uFQLJ)FCw8r!&fhAZTisxomW)0 z6-zjy6uB-ATIw790&Y2@$fm@oZ&6&QJwJcr%af4PvA74q zJhZ+QXYM9LCHn^_^j~}qMOjWx_K%B1p2w^`;Qw~ZgYG*U+NSPrgVUcWaV+%JtE;=g zB9a%kq@>}V*yTw6?W9&+8Z5?`2(EmKwdaU zBy&xXg)@eiRMnUTLKLLOyq8_y{=k=cg>~jd!H^OEy?_%3;&gE!Nj+>$yMc(>9}?R-^~1HF@Qp*u{s`I zips9?#2?N4BljK3nc_VBA$9S>;a;6_StTqdVV(O&mk;UDx9jZoqi_sKO4g|0SE6sW z26VDe(|kD_5oR?r#n^%@?Py_#=t(nXT>7v4iWJ) zx$MK_ICva!esbp4raKx*L7;PGs>ceSVQAWl*L1F9do1>XS{ocf@Q2pG7GfsY-gjg8`Rz2axa+_9Sb8`?nZ zR8%1NX!6>X8J0ghdHp@G2 zFjS+Z2%o`%0UI{7vL1zGBLVB7duB7cL@m80UkdE0gRkzUI$Q)W3M9~v?LBC0v3M!? zM0XHb7KCC1oAE2B^FCb!&i)3*7nNo8yn5j7`d%z;85Df)0X=>487r1fEIwFWi2pI8wbVT4wvj&i@C~a#B8f{o}QPJwN@62)UJh2 zQtRFWMBeh&|EDH``@OtSu>+Lke2ZJc^9bav7HEjl!Ji46HD9X0ZZh`4P! z`75VOqrbP^3kNOiHtBHp4MEuRx#frT@ zRB+@VGCTIuVWx(FAKUk`00{je>!WCtxZ|&!+^4tj`O3p6$UxB(bZw30+ z`|_yt37;=4dI_R{y?|4`wKc;_AN1qc&c9K5qqhiP@agI4`@q0idB0=jh`vI+?)<4~ z+UOGnVc*Wyabs$_G3Vmwm4jc*?}L+l1*k_r z`Dp55hF7PGOjI4%p|ljIyCD4Om&LHyeZsksrKMu!1DOF77@mlnl7o?vU77&q*Xez80p0We%%QRY!Y% zw6jymziH=)4kG|~*@{N|hc)Dlj0I!ZkpTpecVqaNLN5*^$XAE>xTi`LOOI@O7Du{n zR8^5p26EjynGK&!#Pc5@F>=6>g&^T4Dxv-!5mgCV42Li6ggDH- z-<|=hu~Uf}h45q5nUC!8<9)_+JS34tvJJEN4LSM5l-b6`raWQ85_apBU-HDfFWjq6 zjO=@0^H^`Kuhm=(i=5HGahAIU!v(7V7j+C67{>kkbni_m2Py=W1G`yK)&xmEE&Pm& zF_O)6|^x_t;z?g5wvGDoi#SK{S3R1RA>js|}jDr|VBww9IT9(T)5)>0F!h)1$-VV>K_&qSlD3vHpJy3KaA< zM*=VwIW#1UVMbo14j^je|Z(b@^bpIno5@%G6kAvShqLqlnl*SQ~!N5NK>H@Ed8qXF!U zo3`0)61Y1?%U3Z;g%wx2k$j*ItLaX+B{jmsR#F|gQ^9_rqlot8bl)Jsz48Xy$$<=A zMYU1}<3>VN$^B4Frjc&3b+weXQM>lpd5)j0v-!+O%c8gx9Lk0c>Hii*a=ayB2Th&F zZ)&cm@A*)Z5O3Ug#a&qRHeb9d*QW0Zx%mK0CMCGX{TT`&xa4f*dahQMH|{mPl~P6< zPRxx3@g0NVlGU=4b0#<`VZ35D7m&o{JMWFe{%UFX$-*ey1vN6jHu#X9u!bP5X_lva z^}KCKA=X_+fgb?4&Q-rEw6aXM-uFN)!~nvn^cjWuK%7l1_ivVDd(Z#YK@_c^KbvTh z-}@`?X~EoraZ3j+2sB|zKa7*YMMK4r_mhlZI6zWMFG|T|*V32N=92M$}#n#ZSpXsJVvo{lBXueKf*6Vamd1(vW2DA7q9WC+U|H zuFiiR5tPT>5+$2bx9C3dWX}E-dkT0KU;br_}F7B_b)t@ z(yg{mIjJXF>Rx_*Q>S_`Ni?b~+9XXhNE<4*tIq11sm>Q?`!79|dQAcx*g4im5BjIR zZZcc5Yoea^6V$BD0uj@b`pc2=j+M6ykZQK~rcYbT%@D#&xG#Z#K2Cf#Ln7J{C#(;m zJfHp4o2`S#729oJ@gKzysxgO;=l{HlhIMk#f&&v?RR5ENvrRRRcmBtJSPsie_kSVw(08wA`<)#b&RYiS$XAXJ=G*p?i4t5cV`SY7dE|#zL zPTx+~y8usdn-*DO*c5cP5E}3oCbY-L?%wQqMR|j)`=1b zvaJ*nrDj!WwYR+90_gV0ASNv2pyC#!Edj(lC~&e@qC|7i7`y34#Np;Egl02ZJ|Ioj zHaNSDj%<&eZNpJ^YUwQQrfdpMX-WH=56!;0%Ucr&oJ2IQR96kUUWBcB+0OPQtdId! zD2I7D?nW-|15 z)6L25e2}L0Q3r!Smclr~*l>|+)3`9{Ee`qhPFwWJr5f#l|7ZbLIOn(F>brwM{EQ;Y z&p<&K0e)|Vh*_`{NJPJ4W2}yH+Zc>Aq@xeJac1=@fB&@9+rd3t^#kQ_-?3vpy6F64}(ZAK1z%vy-yS{5{mQTUQ2a;K)U-r$f zaovLNF*k1l4T4n@&1M{a-!Dew%~~@R*O|j_EFVJsbPBVMJTd1e>^4E+QWxAd3KC{S zcTxN22wHK#81ZMqWG@<=V6D(cU|J4w*S&@&Wa14^uncC>g5A=G z0Gy-*0^+6Mk5d-wYhFu5Ue{%xO1E-5JD5xtCC?fxLPg1k>n5& zk7!#^HAh?}ulyFI zj&#+PNiXP5n)P5d)$F-~`6VWff&WzZaGY=N=f{TG_aw4aB|65Prlh_Y%hf(!Y znoO$0P%s$u{lg@fgr_($kk_J86Qx{AHvlSI+n}jYy!zA4PSB*Ipb))oeoC^jMv5OkNm|3Efj`}mKSEX6*xi0HQM>Jy#(7JF}ZPGOz z4a=0j_Jb8>tu-A*C%*5ANr3k7(8@{7#ME`YeJ@j1Q25R@Wz}0cuYH~W2ZPjR@_h4K z6b)DezQ+5V&^xpACC6#T*hcA|>U!zlhn^tFcvV0XF}eVyQHJqk^sh{bvLdH?P@NBt z4L})A$Wo3#^;X?$h7x}BS{3RgUB_e6qeLJ7#|1O^lK+U2-J12jfp$_?~r%$fK1Ib`~S-w0f4;;$z;tR#ANy9WM?{O>Qp#L3LW6 z=GGs_pLrv?6s_m~A@okkoH=UO*jv&A0Rp4x-aApt@Y>(g&6nKAGMKkINVb^sob}N~ zeXak+m|E|$Wcd&6Y%XOn6KN)*?q@>V~1>>+?GSqpU9rg29Ze0l_ zW@@}4S8H1E*_RVb{;!~_D$Bn3azXr5L(yjg?kE2hbF17_$&Nsz3}F`dNbIKDFIGDy zS(o1X)~Q=w+8G|VaLG(C$GJ1xmUYxL@3Wwl zl>ev~6J$51w4r4W$b>;^Gzp_~z?TuI5B<@e;|W5~bZw?qp<-AwGE_ z3=*{4nI?;&!W_Q6FQCJdPc%yn^(6`lh}7=0P85ES=h$!Y1r@Z?eZ|E)b0eX6&|$*s zcV2lr6@3SM76=rCg@u9VDw7#9D$v+G^n~(ogC*xQO4hn)9j+fPqMv5_NwtBdC z;jL8ZP&Jl?{Qn|CtOlXsV8KzurKx{tPLcx6klFaKxB06fH7~U@Dzw(?K3f=`=6}Zk zS_*^(mEJTFNHclI7E8q@e$X}kwnNY*t%dnq;w{@gkHvd+==n=7#tMz(9@S5C>ZOckuYp-L<+FDX_`MMCI#L;%l#h|ic1SxnU@Ag z@N~LYQ}07;ARNr6{xC_yI^VV5iKPCyytLr^q-EJjDUK1!Qz@}z>0`ljee;Ych7y*f zE0Ka{yLq!Sn_$rpM(N8NX?Zx9TG4*TwZg8+_7)WNJ@G$l5k#`pV zY_P-X&G#_xbHG_e)J!{%&_KUcZ&@TQ0v}EbYH`@~ZD@b*c~=w$x3A>Y_v#5h$r(!s;m45k5g9u3vh zL{fxmc(QB$6ebxoo3}lmf>15jOE@S|jnpo-c6pXt&rA4bdqL=Vsi_YTB`>)0pckN;rNL>pBsE)4hU?;h=uYgRvQa#ntvwxn!ugP??a*PUvzO< zeVVDPa$$%h zY8_&CAM-U4kkyQ-r=wpV&EVlDIDHB#870zb6_fyP@sI(0t--VRmJZV*yu>v8cglqx+H|%r)ZyTeo-dm= zt9p$KB-gd&*kRUg$4=iFZJEv+Fn30;Xs4i z8m{1qL3H=7RP3in)P9(%nED9_oHCw*a<&4FUx6vxIKEg zPOEj&7tC`1pxmk+Nye7|YpBU+lh%$mKWxZ?SMZhC$5MFb!>7A z{-qj_E~B0WOd@^A4<~ExjInCj@IL5dh4c#p)zS7G>x0{ivJIQ38A3<oV-w@%mC!E&T@80~WR$Qy+JqlKg<#HZMAHi0W;Rk+n$-%D zbvS-GUvywk`(gCi!n-Od8^B9cQd zq9Pm%mN+`t@SYe&s@5T0qG7deH=Fqbb-0f83G+QVhX)uz8;m(X>VaupAD~Xu!Up*; zOt4834WQ#5y|&qXmx!qByI4P-mD(fa^8Y0berEV~hvNRP0mxNivI!2ROwkdZo)@Jt&({t5$`UDt+RIrPbmX>m4IsRmYf zJ-6ai_0j>QN;9I3vX*n>L?NONGMDk5bq5F4o;f6C`0iR=T0Q;k3-8K0n@7^m8UzL2 zO6Xed6aT#L%Ob8`XWk`z0aJ1P9XHI2kP5(Vf!E*b{Z~5T6F@+7)ZhU6YbEbpp3?*m zY;`-?sxi}oiI?Z`1QD}AVQ&KR|5Q=K3=Sk5LvjK=j@bd}?%SK4LdP;ruV1I~+v%c2 zr^gk@TJ4WeE_Yjv8#bzKw2auSK?N67#Y-$6_Ury`X-Vq-*8Isw5u0k`9P1OZJ+LcS z`6)85%Clgnh6M`CdvYj>5bhi_K%k-I(*ICFj~Z{d>562Z4d17w4FKj(Mnvo}G=h@C zNv$5d578WB5{zmn@Lc7-KK#ggOtcPMfISLCfHI%J` zyi`i-d7GFf2bb8P(4Irh%-%-SF#*SXYh8wl9b^;q47j=ggs@ZS7 z1nr_DVfME}4XvtCHRY#NPz{r&I|1jfd61(De?3g(e$Hn$q>K9U8s$dj|5cP7Q#~dn z!|)P7F(ByCkn;{&f1th3`t0L_l{C0m@W>2!FEo_YAD;DINRk!~BSQWO>qz$?Olq=6 zHN?VkWM^li65iZgRy05&A!#*pq^o)&&26hg7sw9sR-M%Cj^klW{r$Zt!?f3o_1(T+OZ{~pxo3*<+ zf7<+fpOD-R8Zf7_J2Hbi`Juze<#@f|c62w3ZXlR18X%n6y1Xwz(O%A-fTpmY?5-6xp{U1VJ1q0B4$8MX?ET!4eD158qp==?Mr6%JbR`p#i z!^2|1TIkf9AMIb)1QqQx-kI!PP`pC#B{n6){K`t}YfPN2ot=89g%#NQ_q{CuJ+Xtk z&f%U=z6bsn*S##E)Qk0OvI}n^6Z4 ztV`gNTM7$3d-l+4@MZu`dYtTb9w*A2K#>OV|^;dTOyz84^Qa=m&dw8d^=ilS; z$sX2{&$#0B3=Ze(o_V+8wdocop!BtnAA$}5)%?5&4pjm~0A=CP&*3+8;>tfkSM|I{ zVp8bzjHefcFmx6{x{6T)*b15ir&m@O_)F~pef%eSy-Dsd*MOVj4Xl{~0%QxWq~G6) zrH|l4{t7QR$8>?4(esv@E?WP52cy8Ol7XlJDn%I7(`yy-Pa%#|HjLl8N! zT`==#qpE7Qu^WVE5Ef}Tu9NYe(S|x`l)y;B=D-h&JD9yIwI(|)iR#YdZs2rP@6wxxuNhyqWflBo8FFINc|M*$foPk*-G zAAf)vn)){&mAask?tYJdDurRboKkhjnGklU@A>3YfS#A2=9}RI&A;*a+ZA0RpAeK_ z06Lj}={Ca`DE$G|7b(|F&-?dT-*ait+~u@>h=yuK8m2ul_mZ6VZLw4UWIMm=Mtk^YAI*L|LD;5kxAld ziy>;UvM^EIJooh_45?G@S8`+<${`;4`X^VR)qZ7xt*Y@OJ!Kf+orr^DXw)(uN2n$B zn9pHCDIWb9?}_a&0-^B~DQ9jl>5H~@$R__04sY)*(kSe2Y?3M)w*C_waXs0#t+jO~ zJ<<2lH}QU-zgQy(Cv}-e(yI}6de%@iogD~r@j4|rMr>Lpx^9^!x}3ZT;Iwp?J};5#W?9i{)?z1 zrL}VVnU$GKHL%3p&Pxv#jT_9jMxb$$ci#d?9`_x8u#H*+Cs5()A*hwWxdQz-ID8Bk z+A%6io$oD+R^fZsbz6iJYCXf+PE@GqN(7{vHq@r&ViGCkf80P5b}u>af&(RM>mF_n zd}@5d0Ab#0cRHn2_H9)ylmvyvE4zgI(-^gdj#ZxOgHbXRU8KL+CEdM@CR@Z1a^4&F z?S5ITQt*(69~;3z>!nW$#b1!QE*yTI(;k2w4aO_ET|9LM2q-R3^~)n}qI8K)G+(gd z_4L<0$b@60t9vwT4*_hvNC&4?1W_^7Bq0qZt-cKikP%sVpTC)bje`R#w)*p7C?-ZH zj5yZPdrB#$n?8W*Ccb}>uL|PN5U|{($*KqC)+Yg>s2DKeLlIS{lm4iX`Cc)^1DN}7 zmOv)-{@-*IKt%5pe_P$6`-X4(6mWuE z-Ui%p$a!2`&vdG+_UqzMX}vq0cEA2VR0bOJlFQr6S7e|lh&PdV!S^{lvG34zlmL|F zpM2OcE`Az2;Pgxk>@f&MN`P{d^qtS)IXf0;tKa@m(p+3ic$1*OXC}j2VG5Jy#w?&~ z6`{7EJ!k?u6XG+8@~PV6r6m)QS9Y+d#nDS+&>@Z&)=({Fu!pRxSb+tlEHTh6pzzx@Yn&QJca4o zu!okYUUJla@1P#Ud-TuAl&&M9piF`mbeBT{&bMh3OPzVCDCQ$dw`9I`Wq-XHdMuwE zJq|v)_$qN>C>YJQ;g@$$782$UUC`$%_@{G3GRC|Y1;NPB@=vmdR8&J^(`)(Z z3i}<#yMOAkB!ZGXvfXrx%9+nFf)JBYa2Yk2aso{zy==aM|j1Cm?S1px&WZrIAa z+O4X-)ps%me#xOb>gwp|pavzt=y)m~o~SqviWx4~DOns^scmLb!P*#q3iR$wO%DHj zaWS#hXR<6jrrF+sE^XW#PHRTYsiY5fI%4`s`vWZx4x=Wc&pt=&@b8BmY)hQ@a712w zIU%?G84tYHkSv^H3Y_A>VSQ-6;DS>^uzMJ;G7TDmfB#ftvrP4|a>W$Cbd~pzWypow zl$&}HiLfg{Tw49N7i1Oi`&2WZ!VRw92mswXvdW968UG<1r>aP5yUqBizhF4oy}_{c z6XiRt)l!3gm7l+9ZTMg6M*H558!6G1?v>73YJ8B_l88jR`QcY$uA39V1HZOk=}-_65iNAY22@n=4+?N-DyNh=4`$Yl zQAMulggC9Lm%{RaK3+Nr0Z@0$+|MsWp#HqhcU4{w-7W>Q}$ zAwz$%#B+TqFo5?r{>z6okwPa^q4@p#@DH!;xeW-+VxLE;L|c7R*v}I5J+K@75ZXi7 zH1Rn)U^Je2*S9}om;zDpE8;l4aQu7x@vthLwip9eTbj%<{&TSgDU?m(cfDW_i->3} z8?$!g@KY2?ectim>+=ip>6c95Rcl`~epUQZHq|Uw5=;;A!FUOFhjf^_W`WRq2sXCH zYu`Y==Hs-5)){+2^qJp|d-TmN1mWhb`emJ7->TnDcGZnb>lig}73-yO6)1#uF$%uR z)-A1zx*sI8>+M#bjex$u4IW#mnA zv$M>vLsC(x_vGfWkW>eLZ*B|4*z$r!f5D+|Mk8k9dL6?! znfyH}*7YSEZ%p@~&C$`6p?A;(wwe9||9m^alqjN;lJ&WyeKNFbeh(sAHse(cvt8Hp z2wU-ONmGs0#TYUlq=yuE=wDi1US@dr{{1Z_R&6oTgwRj|baeE?L+;e?@=SNcTHE7( zw6uTa#yZre8#Q44!D^D3x-m=NBDHTjq-@%mlAV)ymRDZw`{?9hYy9ZQHS2Xtd%tcZXhK z=5KB$t-Qf%+2%gq-p;B^Z)z3jV20etL;r%b=L1{2P0b~g@R#-fRF=dHBbixPkWf*% zjYgyt5(eg0hvW&{3&nXM8{G8OtZ95a9uf$}EG@1(64_FP?Bj$E z{~OB39L7h&+pL5-f^&$t;Ird*O(KKB%=V@&T8@+21TO=6;)}cpdmqfO;l4|z)#Wl@ z!>J(%P%cy!6Pqi){Z{)6LvxqD|0j0vFjQQN!upEyIPW>#6=`DbX3|^ZM!xOLEts}aTJ>2bBK`NSF*GB zZ7lmAYVdC}-0qD0voO0TZ(#5Zo6>}ej_!v7@5xwGJVUGOC%=}~n5EFX1!T4uo6oWH z*jT@ma`voWT_Wx7@ldv;4U63!F|pL}4X;w_wvvu-s$QdBV@|NZ{G(PwTEUQS#E-yq zc2?QwuFVg{xz9tRV85zc&zNe?+|Yal#_FXlE4>6)FeM!x{{k8LB5{jS3z-T~ z*bb)>*tKd()tbM=x=1iVkWrLGKnzGtT3i=6P@zS|iD&nZ7nNz(OQIljpdx_ZJ3RMV zA>F2~^pCo3F6u)@n|{Wp;Z`FwWqfaHYXV5P*}U7`pG?DuoTDQ(-D=rZogBR?Z2tm3 zVRtccdRjAML~%fVb0~$pg2Jbd5XqFTj9K=hO{MqW8sgLk&#zHoMhWj44K7Pp47F9> zxkFNe2gu$WzA;kce&t#NU;+2sYt(muDS{n+(>*m#8-V;qx7wt9{pr_~_tOAZ|2nYx}^ z4AOV`!B7Ni2Eb~bK7Fck`^Jqh_M5l6uf0qO=*{t%s95nRn65DQtUTpKL(tL~e`QUC z8}jk_$>_vG_Q|*p^C~oG557yVf)#-=S-EG zYAW%wTr&M3Md74v|6BqUWN26TgpP^9a2g2Goiq#RL%=hyhZ2x%z4j4|ax3$7n7R%D z&wU^-AR;7Gs0jjKQ9vQfTveH;GbTdL%a0(ApmbS91-?D+nP8up%;km%Pb|#L|;reF%Q9^0VTeMLYGl z;_?heN*mFb3irn>_@qXNi-MvIbnSrkOL?nm`Ug&>0xx{HFe%sDN?O8W3@2&IT;J$Z z7;k>cwlCJnxtA~jLG$7L`!D%iR({-9TKET|HjIyxyy|oHPixn}KOYi9tHoTLE5O zr3+`GiWoW&Cc82r=wt)-IrFd@boYKgws?ZriXR6SZ0{V zsLnAruZ|WCfm>HkSjDg&>4#_16$4WAeDTy?O9)12Oj?Bs)gu2ULsWOv;O{MW!^XJX z$}9smvi@oW&g59IFKyU{HB!@HzIXsUjQu;D7p_0y-g&hz;)W1^!+0XbkTs$= zAuw_5YdN5F3;V_mvs8oP_o!ADY2WHgtV*8Xo^r|pqektTn{Cqm4Odi>cxL8e`dUXr z^tW5_Hz&S;=TS4ii#eVy8*|s$cIfqE#V=B0cjV!?BgI*!jrP3Ckbi)T(euT3iCcE(As@7BN zWvT@eq=Kyb@cNxQm^J?4Fb6;*DOsm&a)ml0Yt%jAE-bZ#1W2;TasX_MNHs%6@dg}Q zi|$^f=JEV!yRP7?QQfu$KaZu9gG*Z-6M_u6fVpE^Z+9{?hi7g6KU{rvT-9Ck?Lkx& zDNzLJ5Ri~i5F`~)kd{VDKtQ@X6{IAkTS5?!mQLvg>F)0CxO4P|TDJcrod zz4xqHYt76ndQWpI;XGtmgLsx^UyX`K6Kf0!wp;w^td#Pu;n2;bcn@<4V_Vq~fdbLNb+d&Um z^v<-Wgie`+#W~}>Tj%l10#0KJ2peKf0W}SNIC~HICtLGSedM0VCBkS|j=kShsG%#{=zS*Z~*D+$`vPO47;#^xH8pkd%#+!Hnh3?=7G*JBeqTiQq0M{8&AG8 z%mle&!@J?I^p>jK5{HxEc;xbw#%ZyyFnq`MDeV`_(&1QC$pk(aV`(jSm(CVB0Asn= z3)=ddG1+jt)eb8{BZEp{74Yz^+XRPY^1i30emxhX$+{Br!xAtleB6E0{jB`h{cu<8 z6^(>SY&OfZ(dT@Iz^TR;2eX`Yp|8DOv^cR;QB;!cTa+zY*gqU?TIy&F9K;>t6ya7D zy2=S*7DC8EyyHfq%lQdC903z2oyWryrvzbzCH;M@DnhXW1_t!i7n%)_*)#;<#&N_f zck|%L>RyN4dyV^h&%+xc-&DMOcjn&hz;X$tm0_WvC&i#+x~1zF}`12 zosWm>hT$zmn^ND)GBa&*LmyJD-!QpU46CWBA$l9Y1+GUTMYQEewJ8`buhrm-hp-E9 z3ck#Fp|+l)1?k)f={vG#77s|ctjxUEWt!G}=|BdC`FDsBkBdL17Ere!Fvu(WxJ zuE!9nR$5Y4hFfmIe(qV(nz5h20=bGzkE`~u3MMN7@hQE`Hd<#7pfNWAU@NFUK%|_! zw2FjOZOOIVTQ#J;U3}!1zMzZ@ZnlAkZQD|qijYuje1lfvuNZF6 zKFU$9cxU7D!YH{Id!6(~fo)Z`Yz`@(ZGY8_MaN?2*RM`EZdox}&zzRfWWI(VL|#i$ zQa|(g{%03OMY`O!`bNCn!m!2p>CWEcd|g@MaqiEzAu)34vUBqLX6EoB)!1Qy@6}R1J)E=}Q)bHLjc=v>3+WP98H>^zE-*H>OcCnU@FC~GxI9t3W8ETNxLdVl4%a5yEZpgH$II2c+G-POISD7*z8J^%r~{Ya(d@* z$bA@y7~uZ=ZYF#FfmgVa9b6Bzxyc+MIRX&n*5?BJGd;o_f6_E}0pI4XVy(ir>2Kv{ zQA>{jO%ZV0Fy>V3pqG}GB3To|wHi^f&MLFLtAOpVAjwlm`>b-CCFBc5@$dkZ!iQ)> zf4@A*T#5hzhsE8)r-qVtlj;BvsJ<<_955UD<}Daw6~;w)<&zmqew^QAlmY&3j((3M z(pxphc(iDHuUCp8);UwXTK>vyb1M)bA?dPQdrk=}f+vKoe7P;ED-mFw=VvQE&L_4Y}bX>>x$6?!!w9kJF*F=rcq90h)a*5El-#9XnDv4@jT2 z7$!HtGvAWnkI91^_xw7R?kvY-{%p-{&%pbEe@4-AKc|jz>@Sw4aRq;kl}lZ9hKyI8 znDeTeCaOBQxnc#@-8}9XZ6YFMMtQQQk0)eupM!$~!hGBV-Hs=~;lBKip{K!Rcq>(9 zx4opieD`EEhavP4hZ@}R<+4~>9bJm7aJK8?*o|ljFM}LJ8gL*}Eq#%gHM+C=yY7gf zvZc9H1cD0I?auhKiP!N7dsJK1(nV!YeZ5tO(|?NdO%{XzT1_XQv`|YGkGfK`(w`ai z)HoX5BIF;}`~RhIZjb6m09GRsHA(Ct@sPi3F1pyEi-dr19V!v>lI2=A#UC9Qxp2mb z&5afiXWVfDoTE;}8{i?R&!|kIy_xhM>g4?gp~=VV-_8fBQ|}NC+;-cDt8MOly!`Dp z!obd9c6KxfGRKv^^yE*?kLDK_h5ySlmK!;Lcepr?_&L|EW&#c6!D9_8MnYgAJ3lvP zcC@9LziaU<{#dXqkRH?un~e~%!5IEH}k-}0QNG_pX9#0mhghs&Pc15re7 zxM=eTq2gx!$G7kVM>sYB;)-P7d*o&@jLzyc0M7O2@Ll2BM79%5VsUFlMXzxe_utQ( zgvqp#TV*@O^ycQo9k)pK%ny@&2>_|v9tasje)dZ%t5VPwzBi}o(^Uj6!s+bnCI*Ha zMLh-ZXT$tsN4%_21$i2ZzKe0LEux*D@RTHVuCO@lefXR|AHKDb+U{ zpX1?kzp}#n|D{UD#u&tr4A;&M1Csbrb=S2;Lv$y-yj5xA+iXq5s&)1J^bpNxdJX3J z;LX#de@)0)E%)`d6zS?!cGJ35aNwAFYuj7}%7FIR;?-Z_y^0lultJCOiWVf48k01&(+vzbW$Nwv7;$%O8V)o9oRDSG;gHCIAyme9>p-7nM$gNtcT zTsxQ%;=l_5tJu?tbGsBv-p@oXE2AnCtAPLFZ0#5Z)zN!$rtIxmMYHK&sY#bjyC9BH zUK%ZC29p3{s*Sli1^T;UU8-)B%wi!sj`uPYdwX++UAv6Z#n#CgzMCdp#2L26ct?=x zq^D9gk~fss@y{vH_Q`PB#_@e1?s*#O4>RSXCCm@72J5a@)ZD@T#dLR|iWDBefRQgM zIiCr`t&8NgHE(ZiIL!D`Jlj_h_GG4W5O(nnO5>5ptknhPn#NLwKEg{tB8aEF<$S0$ ze*~N4G2r$H7BvD^rycTeMA3tV>Ctr+aXqH+(G$kMqz{q|3x1pgSLxV8pfPvm+w>=^ zcoBg-J2#LThPZvT%ikyq10j!>PkDjbllK!fT3uj{WbYU#wVD|%xT#N+k>o8)QXMy1 zNDe6yqPF~S&a1Z+k22_75dy<&&d|pCVm;KLudzalr*HE?v%L3Z-ZNY!w_UlHCeL~o zpDUNX)bAJ7g9i`Z6&g5^2T)T|e$wrTMgdkw|1*Z(Wf6xDk^qHqn}NK3O#ik&C1rq) zSv}%^hli1_>WE_pbb(U?LfTf6+n&5-4hSd|my~9WFz3n0N_iczKeF_#fhiC!)PEGcRXr z{phi?O}Nk6&#!1TZAthnY)Lt?7;C4P#O+ndX*V%fZy+TvyP1yzu_99C8}kQ5oRL5n zqAX2Poq2{+cXphu-hbTV3Zu%!^!9w~An<`ru7|XfuiyiFL}xTZ`))bFhSJR}w5gA1 zq~Cx-9a)~ifrl_0XMvL$qCOyrya7R0sPHH zYa9Pxyl_3XwRLWnm;0H`TBI)prB0H={)*9X{uI`=;-pklpV4na$F!WJ7o?i4(j!zU6hzkV}N-|t>jg5Z0 zclh+jOZZ<5|0OX|3zq~ z!OnYL(q;mt|Cj0eyDS&AIqJLzrlYUTX2}s;7^1qrqcu$IN`Z0#@}RiMsdE;aKjRZ5 z5N?~UTo^UK-O)^!eCsJGBX;-p-nWH6LcG`2?WuNkt!xavgTxec0BC2{N1uQGk#c=+ zS$C7|OtYN^^n)Zxl z`;{AyK8<%d(f?e~_VLp&SE_(On)MFr1eUa9)6GLY|jgYx_wE zBP3+bKbwC6qz3KW^UtUkb*8omTnI>@wLd(8qz52M4NP4aLOV_xL=vRrNGYHANwJj|zwPC(x(cqkH6p&TZq0?((dd6ziS@ycH!=iZX z^TB{)b_EqxUpg}zq^cPqze1k%;@$u<#lI_Q0_y4Wwbp(N`(r!=4HMt%h(T;MOU`og z(70gB+tL8cQyBXXb{4h=4rMdLqout?h7Dn8U83268w#piXg;YWT%?pUKOpalWHBIk zw@L|jzue2)UXV5~9g5?hwp^VacYOTBLElG@)%2wAY4q zHIS`~M8GP|XRyT%jPsNjdA6UgQhr>k&Q9*0>V@`*GxKAkWh8fAVNyZ7ft&oDcCGE8 z)67fw;edU+e(L}IrHwaSYbJtKfM)~LavKk?Vd+nDX^@3qh1Ap810%h(;fpgd1rV^j z*t;-lK&CgdwCoMQ^OF0Q@6`JcU~v7(Oe*hl{NYPZDTDquQd@*HX>V1RkoA^Tr}gfH!|Ef2 z9CeB3&k@io|BYtr%DxIU&TYM*=;&6d$xRCW$qX$yTwu=QHw|uOczRmD-&#FcWDZ!b z7*>6FgBLVA(1cx}mB;$)p_|XsXv@PnB|st8k`i6&<_TJ$$U@p3>YDs$A+#wlYZ$nm zfq>xyy9;7k!RC_wQK0`oJ1qsHf3nUvTWZzrtab%WGxQ+WyV5{GQ@^iCXOMoInb; zpHyb^oij45Iw>STQK4i)x@qq8;>C-K9p9{5e~wEkk@O5*5%=ZSu-I!1B|#P#Nci+G z0wQk!dhh>osQ>`}fJ6uYK;1n42vrYmL$Hjb|4pR4?>PJ~Y^(!}11NQGkh-BdG-`*z zXA7z(PlwZ_evpUNcY9YwK7PXDaH`5aMsJacr2e{jx=CBr3+S@z1O8lNy!XZVWOaGx ztP?GB>BPu%<>X{oN>!=U$UISBm)RjVp3{^Uy_TQ;pT3RUbDz$@Xw!&J-xm1IOga`1m%3PhcczQX5%s% zGq*MBWHQ?clE}AjGNP? zV_&&)Woz5mThUkpF9lcWUS$ob()qh{{C~Hp66{*8V#AMgPf#I0{<3Ozu84nego;Qm z?y}C}cvw<;UiACjU&fjwt(mIqEdE<-K&7N($6XP;uZq< zGk|R$vD!sz{{JBD4~)-t4JtMw=ybw?iP(DV4t7_gO9u#S2;fqM6OGJ2T%+C7U7WYz z+0_Fd1bwCF{$`OsNB#~lI>_8M10>twYGYcySEhd>_58w5f!@0w`6$T!+dBMTflZ0= z9=yA?A8gS71*qP&!#dA@gM5PyETG-#Q)vqNkC2Yg_~l!Vk?`rBSzF`YD^+H~)*-5N zhK$B49ok0rtEr(td<}}zDO<3{Z`UCIWO7KPY|B=&_kyTJ8vT4*(?%dI?VA z0C&YyyYk4eBe=FO-$6i{tQ!Cn@i(v#Bfv1XJVE!f{X*Rf(=M@@3)IKjstrSuC1!9a z0Xs+mF$1{5u(DITk8opY{-a!XoCceQs`v{<+|=mfGvwL%a2BE1Pyo7818}2#^vM68 z#gLrImaEZl07P%jf-NdUG`nFcq)h%bHP4wYz9tKJi+q3oG=^12Z`5_tb<3@n*Xxj9 z-RE-r(y)C>A^G|X6#upA!E|{sjaNvg146$kaMU#6WS*@_D*o5y#cW=J2(&hB=E)pz zwNP7)25s^VegdP_WH`yFxuJCN&@#jpkIzNS7MIRhZ)e{Wq@Eu-5~7)>t&$*06mqhI zioKgP`VMwdiy}B6GXx2K?C!PcwV)sz7=iL1HoEZxTL$N#tW?-@AtB<1r9{+qia`(^ zR@6#jlZjmCg)VJ7CarhD+7nuNTQC>{fWQ#M7Hj8o(ZaC=sbQ#11oEx> zCKh0-wx8FLmam*-@=(mJeZ?5l58qs=ri~y&8*6A=Kh@pq{s_0DD%wwP&IbUKX{6%Y z`7gGyEi5eoC$Hm78;RL4AxXy~X`A=&Q*6RH!!qPEe%zpx(NrZZk`x(3y^A$c->^wu z7pkloznOA*R^Hcpodb*VVJ@pQ=UgvS3i~%4$YZ@Z(>~SggG=j(own}(yO!Y8 zcT7(W(lsW6MKzb&c#TR2E@^NKym64ClsMhCwh@m!kGJ~#v>17ohu9FZh}Ua zlA3D4^(5v*La^^y`KJ+38o{V~Woq))JvGH<`8nNOB}N@+R(eC9NEG5`{XcaRiJz;O zFG)BKqt~RyIsk?MWvvDK@;jCeDyT{DiR+9>wAZg`h|0=UoPlF#1yu-t z$=Ip&bU@|8WG$X}*9&{l!I99WX^KzIyp+9Z_j`eEei}1M4LIY#%n9`GuVe_et*>8f zm66*OoQ?{KD-Y}7mThOxzg$>mOv?}+MN=_L8@-g28O3)EB9=AD>!l$%`IsWek5I%q zzI(NV==iiZ_hP&+Q`T$5HS_xvlHTO3KiVwlh-q%^)M^V@AFLE73mm;+sGQvGEH$QB z&}_ATap2nbbV6aHYddtAvdQ&0x%oW7*)p|zGqb9d$>yTXeO!@naewUu;}x^i$S;gM zv|{!~7*HV`6ckkBdU>jWCt%|9^C!_IPj_!`0oX*K%kF#V&qS!FMkO!yKe7KhIpoL{ z2B#Sh@x&qR1yc|Tl1}~nut5{%|AJ(H4VnLt{k)v+72RipqebAYBo7=d!~j0V3rhER@b;4-qJeCJzvo1 z3JSiULI8!)m!qNa@^;$XKW`%#L>9oC1{Spv>S?1@GW_OfLVxxyKM?tM7dm7gs>DhH z6+2x0zK1^7hfD8^w;(G}xkqVa&s=sMlvhj4NgJ%Ndzrp1#BLn##k9>KWYb^9u8Ct; zO(&B^b2I3_42)L4EU(y3E#&qlW^1Bb*%cW)J+?TPf&C zx7&`WH=RJMkxHlKba+_V%@cuE^2O5r+hTmzi5b$dU_Db}{$D;!_t}d8%K_aW6ME&p%AF4tND$ zToN%SlzJZ@iXqN|4v4Db3&)vmST;Gw2)~k?-Xug{d6sZ_kGqk9lQl<8#PC`Xq`PrI z7@Q_xAqRafakJ1`o*kJ3#?BJ(mPIDWQ0;5AJ`(1RhP?y&LxIUSmw$TpM|x_o693~5 zT+ZtnxPjtNDSTv)&4Cz!wTG>PA+~I5sN?>Dy zy57T+A`$#?9XuM}wbPhhhVKrZMmXcPUDS^|71?0!6S1XeFEaJ*?;qaxHr3R^#f^7^Z^N3V{eMnXRG+rJ#hz$2iOT3k{Ud}Oce?6H_aTl%I|*+<*fYn?VG^#nkA8~gL;ZpXF6)i%^Yq`~OTrIr07rfTT+UQS-GhBGC3ad4wl+5TmjS;XBXdvLgJn2rWG z#<0^q{C3-Af6o=%_CmgTc}kpCb1Z1s=QVmU9NU5`i45@s*Dr6WPuh0H+4ZrQNx83# zDOb{4`(1kdmOhqbdpb~oNmbNcI;qybc6iC&ZhWzhn>zO8AbX5I{vE9P94;mnx^zp7cy`UY{i$lXEO)(iSLl@*qgmR!Kc3bc81Y#936|$77 zU3h`;)B(|j=X|f%>0~*LUYzcK{1^8@%Ku0&pOJxs*AD47=x7*jKyRwhyig3@VWBn1 zuZ-D;gYEGPQ~r&~r!~e9-dLnC2d3}v6L&8_Z(NguxNaacrA|Jt+|Ke|nRo+{%hbq8 zdNppFn$PB>|22I+RfYL^!LG5mxcFz6crxd`+YAan5mNz7Bqnb;xg9qwpc(;{oSxnn z9v-^d;+ENH*xNmGk%r`eVM>bv7@BfGOPj|}=M(9lpuz5O4hM95KSv_MWFtV2oJ zgu2P^)lUJ#fmW3XuQ##E6LpjsBUs`(t7h1us^_-aUiadq(JdLBD_+xFZvLF3mZxo_ zd~$3@qq}QL%xe`pXBrq3?(nIS`)f9*R9AMFnMURS8#Y#|eaJgiHMM==E!v1MOEIT4 zBsm@A?X51xuui~I^1_`e@EdkV;wK zH{&2014!DS!Iep?!)8gH%{+nLIiD1j*lqJ9lmLNYybj>>93MIYnF}hRS0PZc2hsYFPfg12;`A9?N37u<0YURij$~k~WlX?F12^mY)qou3Q)O|V zI2C8kCae8m7Jd^N0_vV4g=sht$S_#*nAgh3J{#fl(Tl<6D1Hg;7*1O;dOf^h& zZEvA!5>!^mN#8F04sK)F(Y6@+S8C%jLMB;Iz8DPx98|Jnz+4t|v)S z%u^!hE+=|-ONtMlRT_vND@tDf3tpo*c0q6zjVzginfxBe0l*g`^-56R5>7A)!^=+h zEpMYLmm0AGU4XGP?%!24k<8rovOaMiwD7sP_f?k{j-8BWH@bqEcP`m~s4%U95u1Hc z%UFYNAM7lERo4;b;2ZlQqWmPL!$`_oPjZi&+S815*?~VXaKf=oV5q^|x^mp5oNaoI zX#U@YmCY$(migSEuOhj=DaP~a#7XX`=Nzxgzr(mc^1p> z8oy>VinqE^w#wwy#^y)BdZmW6(_}cG8eBX*0p*|QkIQUwyg5Ji^~p)<>B?5?dvob2 z;s8fKRIanhX(ps*)WC{Xt^0%|8chqB7T_R0JDBDHYq=iR#^JJSoL;_`AR?9QEUVHq z3>OiT^$!(djaMVLnW8N9ds90womu4n?_Kl@c^5tTaR1I7S-SYm?_v?i3M#OPpw)05 zlM(QYw^@Jw6qyeyYJyODp}G4g4W(9?W`ZrU>rZcJvm5OzGQmpr-oB+ zLWuievtsQ-=lk>4pT!e(ZnidHnGU> zLwP`k4Cc}DnF^4)|CW{FZK(ZxE5}g{I>plR^2Tv*65D{8?2b#c5A{mlU6`t-*By-A#ti@XSz9x_w@`9ce2p`Te zS9}EYKEj46iq#uBbdl>j07%*!vTzjs%!5Gu|1vthScEeYY znldplg{2mu>nf@O4fOu<>+8%Knw8i`l!F|NY%x*C8=olEZu9zWSUKk1p;&j<@980P z|NXMzYuiMoI_2>wm66Y}XaD8qu0Y^1LFMrxv>6}Dl={4pl*N+x_pWc{G@IG`A#jMs z@uRa%%3*g+FrL70B2_>hX$L*F6MK5O*(;88@LOqf-!{ic%YS?f0yf7PNn~i&4u&om z6RS=)KzSVcy_n$I2^~;;#d|@gsI9Bh@6QOc@pOM?K6BN0RQ>ekNt$Hbl~}4sHM3ZC z($0xOLwr~dsnVZq!|uZd+zkJN)d20#hpM3fzjA$VsW(Xw`>atZ|n5+G?k6K@3L$L*vfK5C>%S5uo@EIKF``il&{Xq?BtH z>`bimPC$snHMH)+j7Ci5fggrhzp zr6>P!4oK&4guNH9aKi;d=D6w^Vo7hoCM!O47^O?%o+iIKD2c~ zJ+=1ZD7i?jhsb(Q3KkX|)5+`fLf5vYXFkY$HIA@T`(=^ER7i*}rIr z*dq-oT_|094u(>2=|0>i@_5NGIC8k@^(9%p9lZuvC0AEhJOO&77L+QLfaUf-X64F_ zc{MPV*r9@@EHk0xo8e~3h(l`W|8&>gR95_6dK9E+TsRYr;C1FJW;U2qdXuvL7BXFxCN_=vb9~} zkKM>IcUbb&&oMoqcIe7bS!$qTI##vIurK^WeN&x{Di8k>-dkQ=PdWy%m$<M2CiRn)V87(u3}{-V5$o;h2+G$hy4hM#{|J>A9J- z+?U0B-94LzLZ|JWS)y$5!Ovm#1mUs??4dF}shB6S4RFLuugx5;QC65TBf#GAyDMQL z^LdeK-B33Ata?Trd}_EEKTdIG-UBk8Ik@tFym-@a@EeV6NN^Z7*xYhjLeiPx5V#r$HNV3Ztj?^hD`B2Ypk5DwPw_@*8@BiMekCv>Ya#z>w9KyO3jZP8c6tvT!K9c$ zAZY;fHK1?%Lpag?^2#2Z7p^G;MQsSx4>-aVR(?{fnILIwGu^vtG;IX!R%?;W#`}=eOCk_Av@d%Jv^z%S z?w0B{Mi&QH6;c1jG#VFgx-iT~*2)d8)nW7hn!Grjyj0JyS9e&Z4j_J33-%$oAG13! zsCPJ56BQoNBl8KMmhrheJTZxe;7hbp@$X?#+ap=sF^QfIk?}(lOXujwNP>9S-Ma0O zn%H6Z&7Ga8NUuF#k!Ia>q?ici2>AyUjyrR&Pj{qZIe)`XZvRRx#u9a5d(9}MMF=wA zFPMZ7iQ$C}DyEe>8lCXtIAIDK+)R(|s%9$}&=5T}LfTFgF;wyUreaL1e)sn7hLh65 zulODI#7hGi=|KuXPZronj%u4=9CE}2ZR!gnGYw7S#Zl}tOJB7`=#>P2LY;hq4;^~qM(J(S>T$v0QmM&krmqbXjpl+nOQ$UgX_e#>^?`* z@Q53jt0GY6uzF-^27GfQ@FWNtKf+g_tfwy+f@BPDLV33`#KD=vTpRcGc<{;lluHo> z1%*7*hcD@qK;yxK8fZ?3{k(0cH9O{Iy`O8XaswS*hT?mz=>INIQ+@N|L(&Uv4K8cL zoKMXX{hNg*b_C-nk;fZXkVUZh&*EN%{pzFSSCkpslkbuFZSiKm;uUO`0-YusMABr1 zidz1>Cjo|hB!5010yz7mkPV>}aU>n}U;oOR7jc~CpI|Bn%2uDO)SF6&eVH!DN4@Gy zwmKmlx+z{H`v+`U~w*?k(?=;7IuqKl=*MujN9iE1q|~OMk98cx|Nc z3)le7r)p5*9aiWNNLW?xb4P5{9lh3|UDwc}zmE@{4N+$Tzp2KAVNRuuSYQbBOY1E( zR7Ci_qC$Q*;3W^r?(sCiuH1qv=t_5qx%TN~R-4gIO;5i7=^KnQ+W?h6aVGu|M5Z-0OY3zim(l9! z@s6SvxKK)uyuqO)$|qsem~F2j&NIGvcF~3izS06RX}eFf>WXxFXdt-OJpX&IA6epp zIa&ggBZMdBlHyADF?_=SFu?-To9u{fV(2Z`EA3mTM7O=I$t}7Tqz)XBUwR z%?}?uY-8EA=Og7Io#kwMmT=r@+Zkn_&^3I@-WUADMXv8m3LkZ9a_o8z%~Khi?QY6X zL{qETWMUTGaX3kj&-dD1BU~FLOI=^)s-xPaq7WJhnRwgDDrZLZ3IY`smDt!=dCHRp1ws~T%Hv65p4F!Z z>nh1PaPx?TwjuW!)b{_7qyL_*-RPGnOY1!A0|gs8RV*IEVxGA#CY!r(xH!fZzy$ZI z_?g4r4~tUx;qz}hH^$2uayHweo>0g7BijrYdQ?~QGsREHc)wk$|6}!)sL&92`3exVZtakQF@iYn-qy|?|KuCi0PWL^s0MUj4}7ChLlqlvGH?h&OQQ z;EQI*bUSY2t7}nyG@ElTs`6cWK3`18K*TB^eVA`G^V{pvy3QWUmis#mgM*6b6pX%w zh3s%j+0peTPu3?`x;FJJN={rauT8Pw}nuFOFoN&Uha*BG2^03TY#g~HK|Df>^qH3a07CKV>U^6D| zw|$C*f$_`R?=v-k{b-Bf-@kvq4`<-wI;kqAd-PK^|8x&ze9=mc7L$HkG*3*Bg^p#K zDiUW8A~ammJp#Y@`X24HF{3Q?rH8z68+!--A0!@wBmD-3&AcbR~MI;LtVx6{okh2Se zbm$^T$BcYOvTQE1X%kkGNEwa%my(N0ln=vP-s;SU5!;GwjR{_9_}gTiXz#4X-l6ZX z&zETwlXme)7aMD8akK59hUPvW7#I+bWO;F%#N@gllWcYX5Ak8-DKi3D*J5P!^R9%_ zRY-0G&Q)ZaL?vH7@^~0ye16h8|7?>v#)uSeDS>@w?gAptV7K0P%4lZ)2vWD+Xe^iE5Ql~2%Svi+(qR*b@f-SZ{EDYAYgG@A1$_A zA7O_FC}3vB@@;cwG$S1~GlJ=B%?G@ZJ=dG9oND1g4`y@11FApf)x9Y%xq@?f!98D< zplQNo&K76Q5Z+1z?F|iwhK9C40Gyhds#(u`yQ9bS{b<10fU(?Clc$1~z8Y`5zkbf8c7DlB!)9yNc5$(deJ19fL!*mf| zm*@CaWmwLaIYyY|rZG6e5vFK_z=GOV) zBtyg{qn}Ywc(}sKY)NTpn1gdm_RM$Z1wN|d5=jE;=p;@}|0ZW`9bNzPACPq!Mg5&G|_zI^#ol%;ZRRsJ?CD72iF;@uBz z@GQ_dfIfcc_wV07+v!E|{W9ODRroSkp)K_A6)Mi4=l!Kd%peq!NnRNw?{*+bq@vbGm#Rm)md7BJ8Y>M0j{A z-=FpOY^TYjD;2zUWi#CI6vEmNdo*|+8{02hybf;)XWB0mH(8)N*cfkHAI*0rXOvBT zep7-CR39rhl6!%ijo zG>-QjR-xP`%iBGRh2~`;VPVwQ zZr^KbYx^=>pohA3>Z1`ReE_&n0G>t4^V%dBew=$*-!;Y*9-t@Sy{&w$!-Ox{cS7-xLLn>ZOo-ZaC z;&$xxslk(q-@r-o(5eR75?m^(>8lws>5)A4k0+heF8?rDA2PweQ%nUv(^I_SArN2w3=tNMnPxA84_4I3NgzSy|y=ZXRf(?oS zo>Uh6eXVqZ2)?5!R5%e|v^l>OPp#;5HltJucw0mly=Rlf5A5lpif$8kp4C=&Ug52h z6rC}CygfM(Pic&hDux`I76@PW-~zh7~_3^p(pTu;ab=5gG%6T6p?w=(X! z$lv#~wz6V#$X=0-&z|Lq%Wj{7_A9d}&Ss@Qet3iM^PEh9Df5=KHGS0OQGq)f@R6yi zHnz5kOhjc`MCx}0m&)|I;#>E#REn=lH%>wTLh%j=$POLUgW&ZFEJD#;$Y!lS@XpT9 z&A0c$1^TW)qs2ewCsa*Ir+eSk>^zjSXGingyXWSiGgKpFIo{qs%J%(0VT8m7uH(d( zw)yp;7x}yLHy6ZXZY-5E@(*&qYD|do~Eo{+B_&C^{u$z_gosnkSYW$9~YK8x*ZsAl9#O6(}sf zb6T*wCp&o*X)@s+30GWNVB4^=(945i)9v1mcf?6qHTXSgetv_;)@|EzvC}OR@9iXx zPVIs7Nh<;EmM(s|gIh-S-CW$O_M>0J_6W!V53Z0GZ_(t4bNfp~oQrE%-|P4uBlF+| z+<(Ypmz>sPr!%7eUF;ybg)b%RhQPSeM4*6o#-D{Z{0K0JcjVuW?{>U6UVM|;kAS># zr|RQEQWE9&ki1vPiBOf$!1o3hm8jzc zzPcUC!*Ze{MGfbd5VWCtNqJfoJbwiy*Yo|spDM*zZY3q0A@`{~0|pYD50s;dkGoti zl2u*y{s@P)L6^$(E_Ag0MNas-?_0u%AmjVr(gBy7e_-31AIj``%=b}rk@s*n=i_YZ`~P6Os5(}6Cl`I z9fZ!nwMoaPr*~E+qq!6mWH2a%KKB(DP}msx;da}|aU*hFjuq6Gxx)3_J@d3S99+1} zuEcGG-xVid^~hV4P<>5%Smoy(-+Ul(QXus#gM{G8lW;Y?0bK5<*TY)hqSHX@-LA%P zEiYf&>GJW%LI#RHa`X%nYqO1E>xtq%mAz^#Z~~)wE>S5219Csqy}YTfLI6*gal|Y* zh(h?reG8%Gp!F4{h(KXSa~;Qr=Z>7oGA)PL@Q8cchd=)~AlcpvEohB7Eb{i%X$z;j z#KOkbn{D(z9Lt7-2agDsge1$Va^jbM$QwmHK{xy}Ub?d-;6UF+`a z11p}+XxUO@Bk_bWLGyegTjj-zkGLZ))1UD-miNwk#F$ZnA|rqNoCF~lL(^3dZCf&q zOViL$MSm4a&}%@CLpfTAF%4a0wf(9EEsEdh`~G^XE7^_qbP^6EoXY~0CbiLvy6W&1 z4g$Cn6dxrjxr6h0{zj$iBemvi6m9Rj&TAX$HF-o?B91-`u=)NP zu^8XnFd3b%gx=RTD8#*x1M{%!aJrGFF8o0k`L7U{giLA6sCi4=`?q<6B{!U-0EKAK zemA4wmh#n2WO~1t=hEP6$4#StQ#(haO8)q=Tk-|t>-gW{d-L`6e1gv0M0C-BK^*To zqA8q7GIgYw$=768v4?n;S!&x77}A{L%w=IGr6ka4^__`Rr|>%WEBAEWP3*-J`_t|% zsVKe@JQ-QF!q}1I`mJS`pT)q1W?64&i>?R@B^wBs&+Yt$rw6YQ@=%Xk-CJ3rzat=q)2ld>Jd%vMdmJ~u8$hLrJ6~NQ zPwo$_Lh0ZGPR>YZs)sZfjuaZET^(*iM{TMnNKkWL8_J{UAKKj5zXe-wqQXAq`}aJ9 zesE!IUZkylSjve1`t{0^;Gk`eMg)@@B6PdIK(9+w&Fj;rE7athGc&c0o0WREH;tbS ze#A*qXl`zva#BZm^l9|6u(w$6n*nmc$J?ALW_YisAe(EaU{{YGDo-f-lXY0Ia5*^=za--(q?M~6K*B4U3w z#Y`sm;(Bi1pGsFJ@mbpDoIvT&9~hGtDA8RgJGj1>Z~1KRoVBO-v7h?sS1r$%e|S%B zp1pN!AwX_!riKpZX)oUS>dH*CA1k8M8CKlgz8Ac)%ae8YktcpQwC$^Z>D;}E2j}9q zm-T!@H(H#j;_Nnj8m~Hx;!Y`Rl+g}Sj;t0R&7WN!9dyfot!8+?_&f7(jHY=sT(hfu z%fgnn&wt*T7CL_$V3Kf!!gKY+BFXU3mX(nSWy$&oLoh)(s5qMW^4+NE2Uu*b-=USP zSiCSOjQ-o;C0cHN^-qPp<#lXQj3xIf&$jE}4tZpKOx6fb{65=hip&~xzBgN2TIZ6Ldl8W= zmRLnLHoCYMJ{Hh6a0lty9qoH`|0<~bVaoxGYp=$$U`DG01dYIUpZrt@LNEVMyPmv9q zYio7hzn3;+4V1nd=y|3Bx6;b!@Rrb=HqY&20?1ebF6?~W>6V=e?8)>3^iU437gnP3 z*fS=vXOZoO<=Q;5q`O4F7TpHfro>7S*%8IQ9y)u3SY?*28!a=2?}IrX1-s+2WSQ5C zLa^KL-fN5Hx!+NUxYcUCJNig4MYmsMyo3pEkSF>-xTEk*a;f+8-*|JF3#0gOZ&cWf zkFuv|$9VEg^aLoV?{6DWj=H8kPh(j4x!}4cQQdf8$k1D>FlHdFwxyD4eEc`e2EIs$DvKO78dmT=3)~ICV<(&-#ban z?-C1JG8c#gATxaY{1_GWOaL|mStPRuc@{-=R-jplEHA~y#u~9E8X+=g zX0)Dl1>n@qy>2qTn)jWJTC6n}3CWcTz?8UTWLZQZ2(p-y%epz%dgORiR{6xmqO@ECW+ulw=JP_5ac4Y@8HkcF zjzFJQxNEXRmm3Q)?#+*n|yWNb~U=V zz-@A=RM)*hwD)3dDIkF7e$Q57Sv;*#+hUl0+Vbcs^}r)#8t4a}BxA&Dwuso$i?@HZ zgGkL^KWN&N2aTO!_om2M_`2?r!PM zA?`Ep`+oPXd+#5vg^R^7%(8 zwS;K>S3q~lGG4MX%r$d3-vk$&oRhAkOS2iCkBdT-et{YX`?f@e%*qAZ74w>P?x)_%j8a~G17jTU*6i&777R;IWho_S`RNBF&gB6C>%R`2ghP#kLna{y zsEGNQH19y>alUkVeo~jK6new=avGsKfR>_Wzszg>TSt3>koz4@N*`zZ(fPJLCs(v% z`huV~1>|Tma}i?r5h@zhg0$|BNm)LS<0aW`2?|>UM|l3xJeaA@$Nm}fUbR99)yVs} z6ZiECqg2G?2Ef(__*KbF{jDcO_~5WD-gJagt=Vm*aZbcTC7tA>#r-{9X<%?L0u_t$ zXi~$b(#oO=sk)DpiY^vQ;#@E&5|rFsnf_s|V0tc-{Vy&!#)lbdH#8YTo<+XRmf}=& zKGb)Z$GnH#MV?TyDEzZ!M-Tq|2gJ>HRC^+)MS@bm73t$AU6i_3`E$SV7 zprORCZYuG(J}dqE*RSS3{UDEW5Fp|EWNc2>hLg4Iex)n2%lK~{=P(d%W1>5f*VJCS z_2;`eelg!68YZNw^_`hg0Q_%oWo7PkJ8E&?6K}U_cx+dul+3Mq2eS2B8;#s&5LuOe zwSkA}R4*A+461|rQ+$HQa}?!tJ(%;#yyFxl@zBq@_7Dlvyve}Ri5HHQ#Wq$P?Bkk^ z!EhlU!bp3o*XE`#wY3#VzHHg?6Mzb)+iE14#vBePRf%m)085!~?uoFP;FgS6MbdsS z0u&D+k3&#g9JT;#j}_Ek2&o)aza}S@(Y~MpeZLz_k9g$S)v1Vh2q(5sj^zQ>r}V3= z8uvYWpX2*c^G^#c&wRjuwbXt)yaWnBhQI-~A4a=B%(oLfH!k1fPdaw@ z_NsU3$XM?s{7q?b>Qr3xaQ0}3q|I#6rAhzp$qiUsUzp;+MH?14pTE*RQfr{-h2ZmY zW>?yi0oe5k49}0-Ew`}w+OTZi(8!bc+^(Fl+ujY?<)onX7!T>48=u$EzGOgCabL7A zUaqzciYh@Iq{-2BXL)<>`6Z5ZeM7OWt^J3Eaa2%&Jq0@?P-5lxh=L~W8jYLSVnrt2 z(Z;{lmaz^RfZXm?QHe~5j0?0MjOA6=|e}23dl~tzfA$WC8FmWnSn6SmCSpVE7uWp5F z4r!zyBR{Ma|3vff4FEjiv59?~KhMwH8oV10wpO;q95SKgHXjWEi8y_`|A<>DDY)nV zN4~qD^v!~%hmYzt8JZFtAVF4Sldkv5aeH_iUtFCopMax&=@7}`u)%>$;kzZAb2?7&JUKd>g5i787G&K{Z9O? z3zg_TkR`9V^@RO>$dYmU_a`1r2B}EZ4<8hN;R`L%H#Ig9XEM%qUuS!cmm0`n&0TN_ zj-oX+TC?02+54*GuBIQyUW0L=c(S%@% zsMd#tJx62Me7Uov&SUb7wEsJ4Jv#NuepTFaTSQ4*Yu}h}2Qgk?I1*Kx)`SS}la*zM z!@?w~rzIwaB%1f3VgI)NJ2HaOdD5R1+iJ9GUt!d;;Oi^G;+ecx) z0&-bd*)(2fSu};7(b3U3*>!l61YiJgbg)p3pOH#u z0jWtmK9BdU1L0vbp6|zH|23gUDtlr!P-`T6FgfQ1|J+qLG-|wx!NJM5cfkG!y);;w zfJHPqmCkRKjT{G@%qX9{5|?}mX-S#Jd^x`iy;S3@U0urBap)}gVz&%7^o{#vdX0Eb zU7rpKuC1()w#uQAN-GNsKLT>5k3d|D?V5OUH3Ih%1O(Ef%gcPRue^Ycnq_(YUk!5h zO~StJa&7^^#my~cz6vj)ry^`sd#;Wg@rRS`Mvt{z@^2P1$A+|PD^}R4@v*@@74|)& zuLi^$)TI8F`+GqLW4J=7JBf*U5o7BcRorG^1BY}FSc{>jr#Jo&JB6aR{eNl2q(xxg zpnqMY(b z5PbCmQ`evVP)_U{k+QfFu)*KX3|x~b4WnpTkc(g=B~Gb$<4-)aL2(HYp~p#<3Arg#7L*a5u6>pJUBMUe3ev@{2x z8ctSdx_O#u)V|f&STWf?)XUzKIyrrtU%;#hz8g(zSjdtJ4 z63UqDpHPI|=qffG5&&{x@}Bv!RHHJEv|}lbGZEwrz3*V}96Sm!7Wap-JRCaVE$CP@ zY041$YDXGK{c_uWOyO7XrE~F{>RmZ{YXA<75&ctAMV#NiT86J_(u0 z1Yq!sR-0a!(l~v6OrTM%-tG4joy8fr6J&S3c`71-pD^yg?3MlW>5(q*V2m!bV%t%- zf*J_yI=2H(GK7<=!R4I|I0x+w(~WCk^!nw zVuh7dm16473nLZ3^xpW%aGe#@#2zH>7r6@jaye6#bz!ZuBDspkJ4ew7y&lTZF#JYi zAg`u443uqO%I0*{yWK4B?S++>6V?D>Ab|m_xB<+F-Hs;5*2yU-AHXJ8^!k;DH=MU5 ztg!R2knR4YznV}_JVP^I)Ji}45&Oj_+iC>!|?EBQmi?;aR}^2}oz^NRWZcNyCNS>4p$M{0!V(*>JwKs%|2~Yz(GUi5)cbVx(yo~qJfNqr*(yp2 zg9jdDo?v|#G8Lugf{xb}iJp>lchmJ-prgXp^O5Ht@y7w#bpX#A8k@vM)qERAg#GCs zsDqcjz$muvB5weg2f_ zI@43bA=2f0yiv0?w_0)ssm9WKpoAN}LG6^}J8jDDk(@n+SMaFOjDpq03(w^P?7pw*y zEvDf!ikhgESY%myc2U^A;Cb1p zwO;7>Y&iBkbz!MOMtFwvp6NeyaA<75|2CYlzk7eYxc*`Ob>ipp(Z9Fdi`v~~#u4`6jtpGHO#M|}q;N(%p#R4sMZ`uCZP+Yi&N^4G3g`1fFp+=Pj z0AXS|6O3I5%AqD6?nsee%6~(mm<7GmH^r)O_!{r{&RWy{~Ud1{O1T z`~ZLNBVcF{OoYi=T|LuiK!Ey*;9$G1q-Q9RGbFghL^N|pH2{1{xU*ufcgq5QGRBa&)_KHwq2BtHIW z#|=7@fWQ%}S_Y>0EF(htu^7%e-emg}?SO9( z9p+?8AaN`RbDCFX=Lns$+z-h`2z$d{)|Egy%^U$Daple0In(8_${gS2XrHvJ4I5yk zK1Y=o%KNk$PVM0uCo*O2~Zw=d>wp%J=W3p-JE*!m~?|dG^@0i}TJ05K6ES zAWtt!{^H7fp%X-STKkOhVyP!>sE^{Og@pJE_i%6NbiD-FAZyocwbilf_v zM4j7+fdh5LUwf?kx>;GKldHC%m$phxn5QC)ZlLU^YfTunZTMcJPM`AqyW)e~{<@zQ z_uzU$a{9ngWlorOd9>#|iiMF};9K|kiO3&{3+_HS|FTZ{Qy3~AXSLv7kkLqz9DoFc zAC+EN9_J%HsfocYL|f-(6Sgw2nB2WOHf8*eE;kkgsW8m!H1sI|nfh{ur1_L89&?^k66<|>h=r5)qP>@xm07TNXD!1zi zIfAR2$=CCf`0Ov$1D|%m6@RR%39&@b;N^YS=s*UlWS|%uu(VI}yPxU&lyKM%04NDk ze<|gX9?q%0mH0z7@LUG{Jj5$cdxV*Igm@IWX2f}d0|{bNNZ7DB9r`dMICxlB+E#R7 zMGIm~S=bcukoeTJ9b3_snZjCm9f0FwfUgA4v-&#p!QjskC!NCsoDbo#W=d(+1k!2# zRNvi3M|O%?x#m00T{Z;JYV~VrNe8|*5Ql+`%vXOO-6ORp@)~}fls*Z1h2`rU$dplH z0Cie>k`up4VuuD2Y`)RGjcPMyvC%qXdx8rNLfpBI^=j)wqG1B5tSA@EKWYWroB`|D z5~KRr%wGqdNh+Jw1sbgQDJVHGCoIzQf0X*vy7gek?h3zIuhucpOgr6e!YL^m6K|6= zB-4j71cw%Vk*AyYEu8Z6;?xggp0{6CbkB}tX~EpTmjbx!F$+<;U*H@KPVV48GS|0X z+5mir%!jXt!0F2LFH_E>XZ9kP7wseX8=}gHl35NA;hA2$Su%UVJQ-s6^4Q)O3wt;u zyjYNPuA<67^!2Ce+v8pLr1@W|#@z5jkxM+?{pWIt;_iwWewvflsN#1K$n00g`U5(O zea(2+Q5sVCW}Wu`^mq!YY7!m5PiSQhb>tER0?i`YS3b zqF`Vo0=g+xVldsk00ufuh5Gue=lo z{;9nFHoa(N^{VRh`g0L9itJ%Bm=>&DTzb4QVqV*y#yw^_a~~HUqH&(`bzz03jEzVv z0vbe1x8#iE-Dymgqq&9FB5yeHx$Yf+_$7aeIJ8>k>%={#tmJk_zs)(`oxvcol zr4$I&N6%5$<2kiIYr~TC6r{EILVhBK&Nv#=Ym6pV>)v5sXwU1OLC&{c_iMpafc&;n z;Dm6ta<8)Jf<6=_^eTqqk2CGxR*O`DOHn@2$H!(%3E*4dzh!jhIpeHcZ0I%bY08_A z@dfthUX9k06(V2I9L^Cl-wYa;ML2TT@FY2Y_UwDz%Mh-DMKCFIzHxR_cNXsO_^sEV zW!})8JY|n$R8-BQ)}wBKwKQDILAK~?dudB~oc>j*qS$6&Wum>FXOcY_WLE`tmg;Ie zu6GfGBMLuB1fRD3+Q=OJGv^E7TTQ*yBgeHyLT#cFkBCbz$EePUx8OkHl&W@t7b}=2 zgum^-!gq1|$uZs>2MlLnuF+z23DI7+Nn#T_`8u*EbLa2i%{#!*X2b$qrNzMR0kqf% z@tpR~PJhrFkfU6j%k)}T2^_xnMga7Lq}S248W>S@$9{pxJS4XLt#3ylEp>% zCVU$XhQsHIx+w3|{cjq9W@ofS{hv)nZnPB z(W1h8iB90QjxC#E|J?z7;kd&$e<3{Pop6`I^KipPQ$@2^uf8o;2>fI3J25fndDOk- zqdkc9wXK(+0|24X+-pe`cw4|R6HxJTd;15Kc>)hw>V?tXnM)%>1Q5~$zD}<7MWK zB!~a#aB;g@!?;ef>%;J1Hj#1{y#KFKQ9GHs=y$(eEp8 zmTBCW%=!}$_B9XI-KhXUj~2+mVcHrdR3@)DJ+m?`CLx~7LQZOM1JG?qHNq%2j1(fH zO~@jIO4rCJ$g>!sAz&E~ z7S^N>g0rXT>=JT|Lt@KuL~z0{xE|oiE41{f>Dd38jh{IDwER%l-jNYIb@62n$ewUj z`7Ph-Cp_<3)7uFoDid~k4dh1^Ag2}|-C6DLg*6(7;?Mr;8bTpG%R~k&%|ChqDXoH; zR@D^x&cMYKaw2aW`j0vYU9Ec^x6?<sK=8wZ~;+Zr8PuY6!#oF+WE+x7nRgvf# zi|EXcLtUbYEap?-A~JQXP@vicZz^th44B5^iF=q$9H>Wjrk5#k!K@y^gGjcFh^$-iGyV5QyI_IIr|( z>NWjc8_{;KnUZ(qlj4Sj*i>(xxipK0`;q!%CfsSs_sCy>71>6_ZbJW>i}HZz5FceR zuVL^WN(@*D;r-R3atTe%aQeWNh6#o;zA4^3^Nin;o#6pQe{7ClZXw1rj2p5+zTA`v zaZJ5fO*<$4FL@T`^Xs#a?%yqW7C*4$NO4y4Mzv*k>9FqzlH>UJP0$gS5PSEB1N;Rf zlz5C607Yj%odA0)|5@Pvfug5>u#1&E%D+$W$(dHwX~?U&d=7m{}K}Un|yp5s{9^~ znGt}><>I~*6^LfIG=MqGG2RpNYX-P0Gng4!Ktb4+F60E9NN0yDVUp*|bJajOQRSRS z9NV3HwQluHXz61k@%;!q}plh z@=Vs)TJ`a+to_}5U1*8n5E1bX)EXN;ukCSP&I@t>F9!7?asx z0IW!VUjFF^2`#4txNBsjW{BI}kqcOHliLnwAfvKS0+|{dSN1?<c#HwQ3H`1FibhuSK;6NdpcN2Uq>fw25=ExzMU0sN z-U>P(*4WcFvc3-~@oXl>ksf@*#-Ud=@0A|up zV8S1c)ZitiWiUY-h^K2C)Ai#pP*f++S3h$d>mCs#$MgYkZJ2y`Xm4{6=-86W44^ir zd?^nIp2(Fp=8juqouLeY(wh_OK#U`YBid81^OD_>S}|uzemuD-DFUNZDsX_nsbFnF zyppuP#G?ktN||hq8lX#4obgwg7goW<4cK4OPfTz+5$vsp zSB+B)xWMKlj;1IBBE$yhQ$x^SBBXe7EebR~YSMntVGsk5u+>m{M#f;_CjPsUFhN#AZ>9DgwNi(758K_o7-w$+xKF@K zZ>MO5|I4tZ+}?TsLk{Q_5J3?Z7k>)!GSHZ209kJg>&VXgAtbB7=!Xh$6XjVUgCsSC zrO`04bC{pEKG-YMW8Cj@pv>I~uFY21-=@uA5Hf+jAL&dODZuiy-}dy@ZmK|z>gvCG zW;F}(_-n-OP{DvV{8SY-Fi-o;h+v**5CqX=P|ATi8l)X*{2lGWZ+lH*V8qL4H>c^Y zMX_cExXI#jw?4pRg0emPGCq}z-$2{&W*!4DHK}4qd%bRVAaH<~701%GmU$pD80Q>h zzM)dqEk8GRe7!8-aXG2;)k3$tKRtu=o8>~~fTj7lF$rgmPqtrmab(e&K#m}3FFXT_ zG&-^Id@V^;AwP7w^5H16sx12q-4Ak`Ja=hu6zuYA%}1)i;`IC`2dfLqxO${sI$5&I z1*%LSvd1;>p9`HgBTHq3=dN44S-0x@BVY~BP}}ELBc8b0J4^oM#3nm4rph2}%Bf2MfU?PVf-xZDm6%umGr=?B_HL_Z{2 zBY?5tIqJVELDw$$3K8B^mvjZ;X4gQXd)+$sB=yV3Im{xZruvlgr1)c%>!+PBkaa(= zHX=8+g1$JQJ>w6gXYb7XtHKQq4qn~dNCE=#*RPGuO}IE9o8Gsn>6IZiB?1yra=Hwt z&nRvcPvpK=)UL6!-7>j3=hN8hmkFk!DQIjFi6&Z#>K?@|4t-Hi+^Z_s-@nq^v+x+z z@IHcYI}Jq;5g1?(mYKSY4(rWenxgJw|DMcL!Q|x#xN+i$hc;6n&RRf|-IoUE;&WwS z2`az|3% zV4g{Ts5o+(Uz1?_PpY-;*=+X)#2IG`%~obc$U%2S)JpyA_SQELTXF&X8{6_SorFb# zNJzc13F<&4fy;QDKN+uf2Z1vjG;Q?X3Vt8gmg!yG{K8o#1(*&1=C*dPOT&27w#-lB ztfmk4@lQ5MPTh<`0D!_C^a2!JH9pq=L+)ow0xFW(HrwlkCvfWH33@eS=f3&~VvzzJ zuse>ut0z)cX0cKVOe>Lw_sTMH9XQhb(fUIB8aUR(Koe7EC@$)Y7nJO^J6=p+y(bBv(@W z9h%9_q|xAaBvTg$|34Zh=+prRjf>skM{w+H_M}$vL=52cK?s0{V*+Pf@ccI5HUBS0 ziU-SiEf5%@L77YrZgD8e?{S=5$0FJpvtB~P*;j)&*_#WXxT_DQYn8?C{3EM3ampW9 z%TC7Yf4uus!FZ0}{ZGN7pA*{Sw{G&Sc7c}9vn)lEocsG#K@L--*V_i??&|hsTp0uK zX(H)f&rXN~OPe=52A%!J`1o;Fe)k23JNTF>j%rM7EdcYBw4lkd=ZXt_AR~a90tgxe z0?`vf?-!*njN!GGIM2$Cs!D?=h?i_97ff@A!$M19ldR-Yci=p2Rml zaN}#)0sPyX-D@2cB$uBlJ26|DwEQ0W@Mc@B^pTiCEwGKRVA;RPOzI%d*Npi-t{=dP z07vJRIY!SE19S2KUeZD=1G;(deNgfZ}O{flmZY5e-yQ z4-4)eQ5`^|c{G?Op|peh2w+R_)d*-dL1+}5@_jhq_lvDYMV2|h8nupt#8BcfuG#G< zS(Y7?)-cTSq|0(AwH>AWxhkGN#vRE`-HvQU9NfgrGB>xm>em9W3i1>K1l4|8*BalVR*7w`#Y?{U45rSkKp&60S_6u*E+Y-P- zpb$$1cMv=z-Q^&zQ2x?p8tUEg_Msbrp=#(5Vv?57+~A~g!}}FWQgiDAno_9?3hm2HN_?qDsroW^IGM?lH^1t1yqy7z4zB9<#M0~0SF583K&cpRIPoEq$~FX zEI5TABb-A8XlLNBF6(Cui#!s+JU>5xESUS`IoeV^=ivw&uuaLJE&~qn;GN+lU>Uo) z{A#@LMQ4yg5FR4HQOg0-nC3V)u^Z`U#3n1WAlC9WAcBeh&KaO{PTh%i^AM=VkmzbD zBb--csaI{<8gxetsTxx3oO`Dp1Jf8 zn1C4Hn=;Cl+eqzXr$sHv%$(2Q*6>qqud z&L+r#7k5>k#uqc2<4+^4;IL94P{x&I&IK3CH8Z6FEc&Q$P>smDo@)a4p&BIDE|TI3<(Yo-vB0N9|7zpE?WwdGKv-JOLFs6p^}mk3%RTi$LZSy@s9aiAenUi zZ7r+6_0R5-voF?;MfSSFk{ENn3GPPV()zlf&w*2He_ML5AF4LxxcrPC{H{>vE;-|I z)uQU+*9wgSF``7$0Las#!-#?$aOY1gMS}j7jD7H-syfoykki!GIRIxJfU1nXBnaX zvNS*!6SSEgCu`8Ubdx^5hwWr^AaA`^hkyWYu^zsd9Y- z6x6jbXz6{6i>>eT4+;i6_1hSRf}YD?YloTuRD0S&obTu5n_7ReQQ^h@>JP)Yr@Bip zZo)$<8LnOYwcfs9VwRH=N3bj1cH1h8pv8m7VrwVpDy13M>{8nQwPFLMvrh*AJI`T8 zD~8V(7+%$X!&Ya0=t>dHHc$7K-;ES~ z{dTSA@GMnU4Y-ZgNyKA^BLEL*td_W_f4t75zmNNYFm@kS`gcC3!6CLzG=kcG38)CV zmrq5k&f1?bgNA3xC2hu$(WykNeA#H7sG-3)ejsUO+kcSwMQkAv z=(MlE%gyh=UmRO&Vc@sTbgS(MI_hZxm_Dhgsnu97;QPR5thzP<(dz#&zd%roO(odh zKW|MRp9GBBKkbyjjKYJm91C9%;63QmYR-uy>MMi@?2<*16Xw@J+EuST50jU6PPY*Es1`6 zw>}(y(+Pd?NE;Z%g29W62DH*(8NTiVmPPu1nstba?CX%KE!rcBk*dWgVsz_VS>tu< zCXM#O|T<~YBsBiqx304qXy(^E&@C6))``_b+wk| z;x?{XKRiryBJ4YZka$wgRIocOh;EWkA}Ib*Z^n5z zgQM$PW8}jaKK!8?saBA^z^oRp(8V>@Y2a0b%GR=_rAO7Yo6a!+)MJ5sPFYZBaXxkC z-FiAj&#M+yrPE-&UNM!#?G^J0iJqAJji~v(o%VXNMrmNO@+UO4)y$ zSI})HA=v&+(6SJ=$qhP^!tS|Zfhjirl1nHGLSL#r&UnggPG*m8yu=RyOwE>ArU~j7 zWIe6?%{n6Q)^pxeS@P(N%h-|2H+ddEu6_IYDVC<n$2i@2h z+O(la)iU6pe<7V56YN0#0`T_=#WIKe+i>%75Un!MU%_y51fV(9yIo5v6b1RAk;sA( z2go)URIZ}gBj=!(?Ku$-Hkd1*UdwW?usmI9pb7Oz2A$QF2Hh`m9zqYs5@((z;5#m~ zIKrGqPqu7NFVfLHYh{>ZEIUlUlqaNj6@)R&LcT<3+VA;K7UDvbHs(gy9C+*2Z8eD2 zhSD|+jYeryAFfZB7Rol36LxYyzddWq2ap^;-QNg$T=m?-GB_r9+hQf|_z$*KJt0lrs)YQo*4Ji?BJo~ZvouI+O ztk70#RG#jA;(Mv;vSf?U1&b7?7A?A#ZMiXNvUB6mRmFlrQ!wA`@#Ac!=c#Q7t3IuQ zUEC~>8JOChLx;B3x>vx=9Fs-+LEc06P1n}L!xD|M{l51pFlU^8*Zj#vm7tl&2EtUv zQ@96Cb+^~XNh3cERmA!oDMTl&V@7qtzoi7t{9rUeuCb6Chl;v6LS$36aR}RbOAiV5 znxI)R2{G;70*l#GWh^)im%gtb40}%GP)v;mw!^=z>MG5MHx3*@3@B`?>*gK@SgY`H zx_%$OcZO6Ob^aj@+aJ$bL~fqvg(0-%F+z(jFZ3Nd|DM=6$=uM2^h4!f%|n$ir~qYF z)L?ARVN>`?m5CAT%gT-5e2#FOw$6NI_V9aGNjyjX>_NhGz1I?yw? zbsKfIiw(0A({U*JugA?Gm(CiDO{2s4W8oIMV}+`;2x)9W*BCVSHCmuJQtec)$9-u@ zLyB$eXWR)wfz*6Xd89CnouR>@H4jBTsMQ@9kH`IZO$h#BZ3*kwiRX~AvBCT95Xv+g z^y3scP?$B|VxsIIMJH)-rtvxXjflb?v14J8IG0gUy@WbqrA~PV(~4eyELW;;e2LEy zA9ajnwz8qM&4VXq65LeT^2?5(fndNY%G;LA*SdYdDM(P4VWJonWk;s>oUjrShw3I@b7Gnb8VeM zfihSgBN`4NbK&}+f3fC^S^Xs7L(mNR8Lx2RIv6X4;BaOp%8EP1<8D){KG0kHFqv9K zSYtMcC~=W3(JEVGIYx-QMX5TYsyvcMFXqS}8g^zWE8c|(UE!=!Y8X9jG*fjvth@?U zdybA;7C%(&)#>yp$|`7#X$m>uRn=kV_>=t;{kp*X;>8A)RFMSm>$|?o_Ghp-6AoxJ zPVKmhNobMZrZ%yLwY((!9TF`X#z4{3>sC_}$K7Afe)t=j_@ zISZY_jW+IpD(ARZw*-IYtr5vbUrI;E-R=%#{jup^1sCUlP(XoML)hAKp|Kkl@5Bj2 zAR`p?g)#d)21Q-+- zeo_73aVuhV$@%bcrndicOUCl*^&9Opp4iTZTWRc|NA)fO0ZaFgSie47&5)M1&QoT$ zA;>{(! z3-E({6T7GgtJNVNvUSjh1bH_&r;V&Tn@fU9aGufFy}6x^nzFiCix&l5y%b*`at8zb&z@yfF3a+I&!$oAeZwmAj7Dx*N2z zvr=`C`wzznz|8F_?}3u*LrHI58bTCTTk4Lkv(n0sjyB(GBbYx2FvB_$Eza%ZaSc_x z&oH!~xr?P4PW-6z+jD1D5{79r!xrt!>((tvjh}@*Nl(&BJ+YGAM8}cQ5&QDZgR6mhG8^?}(}=nVhx`m7G08_T_1Ja~CAJGtBC>r~0SuuUAD}*AEvJ zjUylAdA4?0UDa|%bZ0c(t-5Uv{UCw4TtXP{tDEecjLc5DW}(l{z8Xx$ZH2o%eJo=} zLn85^>hF~3Xq9cweU}QI@`P)Vr3?se-}N2IRY{GP@;$vsm^G+~rS8!4#nWcq1pTU1 z@ZUOkEqLe&&5HND9x^S`ucKv+eV*eG^3u;LLr?SCSN{S;+v4J2s$CD(G;ahY%IAM>t3x| zw$Sqrb1xpfHr(B0o;Bn(DlTs@(rPixoRkrN8LxI8$x8DC`6CUN&o35CjNP|;^v%-Q z&DNCCx7~Trt%Y;hRPq&=6!O1+sl@y zKJ-|D*-Cc}4ie4w87y42Ru2M&Xl93JFP6hQV=eAZ{Ri+6+Zs3Ku3RS2NR0*GIZ_zz zRz#@{w{8fzxj&WqUZ)t}{u{6SAFq@T*YnED|a2RCP%w zBP2G*wViCp&$GRPKW{`}Lwffntbf`6qQ=7bh?*cq$GFw1d8&|TldB-Y=*wRK?! z>F0KPMeist9>*FtOM=iR#5-+tcS`nV5*mJ-SSsE1E9)+4yp-(lt|qfIf2h)G3&V2m z8nIaL2Kh5pt0Bwfq&xC#rCAmuR$^B*_-2jOf_e>ZvF`3-KXMuCyXlt%#mEr!y?sMV z^}lp?`~|7}Xx-wY9KENoZ9au7N)aPgpN5%w*2X)oc`F&4JY>PGy5@z`!?e$xM;5ol zEndf$yPR*%rJrNyw@VE?Qmqn*r|1)G?`c2II+!qJ!{5I0;u(|rI1}%YpSJks&ye>f zlfE?}_*hJ?fJckW1Y*7UN$S#=t&z1t3*=ezU%l~k6f`g}>5AQrrb+nBR_rAT(&KLk zZ#{M?h3M?if-9UFvRqKzCphcLTSVRFtR`Z#={F)=W?#I`U2gN7`utiVhc=>1{6O43 zl}bVNMg`M0{B^hyoi$s!SO%;ZoYsUVRF&_!XmU+6VY?^@q5b^!*X9{`t3q#GT>1wF8nloVofIX}S^_bm{pMy!{Ez3?NuOd>9p)Nb)_FiZ zUz*Y2sj739)m}CvqK;)4Eu2_UE8&sn{#@SQrje}*T>cYm5QgqvDGLIiYt#=bTEP#` zxHaAu;EC<%Ck&|dLDOf2yYn()JQ?kh!zM`OSaZ9vX3s2@80<-$q4A#uavNz^ zA5EIf^l+38a5Enc=uFFPu1M*WDj8rO7nE~`u5WFKf8DcUno;#ShX3kB~c z_cLfchh4d2EZh;f_9K`mFfZmu!0tj{oTb|?{$00hkfwYbg7jE8T&=;5f==1gmjtXB z7^*QF`;av*M#K;T0#DLo&{Z^FuNIK%Y@zU`Rwzq-z@#tX@zLOF$~nbgx`cHyiUv($bgj^ytuN^L!QBq8m_X2HNO+mxW5 zBTRev{yr$NJ8ZeyNXm8Nd`5K&h?J4fdVls|b8>VK4as2#fH#e@<3~mnG2;B2Nhmd@ z@rwfo=B(VZsQkZtps~T9u8*!ngi<0Z^d~s4!cm)CCQkkY?=~pkgjMu+r z3~+zej4=@LGFuK~DxjhwVJw^e*6}!-#5F9o`xX!#qh&;7N5$_x3K6V2KjXgG=j$&d z+mdGCZ@TrtM!3WQ$U2FDz^);T6GzVYp)3d7i+-JpN5ulSKV>gTDU|4rFWj?(x!y+p z+1uiWN1WAE&KW37B4-vNY~^v~HeU_SWQqgc<;C$j2+^wUXXNF94+S1DfBFezQ!71MUA8*E z>az^mkugRty%0}2+nT+CGA1`broCArp=1Hau!GFQxz-0KFjN@FpB)#mllW}mjj4+8 z;JpPV?2q)HDLMOPG+0^j_6fVN((leiTl1nD=wF0;%GB*0$c$Lq?c3wW zZ=Brf;_A}pRxZWnCw<5ot1zdC=5$DlT@uaf@hWf(O+EWL?1eeW`R;4;1*+sO`cq!# z@H)NsiBg}Y@*^J9$e3Y0k9-yC8?$=ltDJ|d#lwjhWrYx96XUtZaDm<^EfMfSf8+LiuUuqwSjJmB1CEg- z4(VMi$*l}P)sV{~%u9LkeFSB8|8DjrmixC`K1T{Gd#l;)yev^%nu7

r2bJy@djDO;XIDDp*J^984K&O8LXzU7r#=S0{m zvzepGq0v$^dEZx6bi25b`$v4fo&i;i$DH6~Ne-cJTMs2Y8dOyu*TT1z*%fG*5980Q zGq{?o+!IXhp02>Vn{HlzFHOB~?7u?Mc^#O|e}lNa$;?CNpL29*~g z777w*kERV#$Ps@u3})5!CYxePGPY>6%2a3wMAWticN*48+(lilIwXw{36tKX=xWS^>T7t$OTFFsF%d^o6R-!vvf1ruIF~7n-4VN{_lrowKO5-Pi<7Q_gd2uy( z@4;`4#1T$UoXP^=75ee%(sI02lMD}klSewI)o++3Pkr{F@uq13D2k28TAgArQ~T{> zslMJUuc&(p{#$1o1DfQ+%2d?L_F4BR&hgx{=M|lEIo40r$#Y+`KJ*p41-Ct*xu%%4 zG;;izK}Nu?yQ$2v{cRgDt2h<)Z@+Mn9CvZ5*_sg5p&oWG6vRg zSxbG8j}0z?F^+!trqdG|_xZOb0x7fKH$%GSo0S6YmZ=q%eG(-Mx-e{+i##PI>5O*- zU(I;4$f+B@_YK~CB|#_A<>Zp_!SJbhY?4Y(({C;dzYHoH8B11YI9gcHF$@R(bpAoK_LRFCB-Z3Zs0?6^&Nt-HIUQaG$azz$0;p~v5rqp2B<9``>D$w+RfEBpot zu`IZJAX%ln?pIR?5l%6<321@1Y7KIAuKgCoJuydm~ zmORe*i`JIuO;~hX=iq35?WU~D)!*N5hBqA#nssbhB|)-88uiiMqI}`PMfV(f$H?hL zhFZUS;c=__aRvdp-#iV1oYWMwXE;ii$H@j*Ht2{m${h9<6S7F#-)q4r-SsD5CO3xH zHVOWmAo^xGH%M}{zZi_0*YaJx)SAi2Zv8hioVx&6<){6-wpy}k_vVi27efT+7;}w3 zD`xl?N!x03>g2vk3?Iz5Vo1mmvO=N#MBGgpUl9;IC7!eP-eIHc_`Y*wewJUVFZ;I} zq*7bJwhhr?O|zJt8BiGQR+w3~Cw$78IqgN7-?!|6#sca1?jd_5F6Fn$@PupQ;i#H{ z;9IKG0InH}KPTabl1r`|$X_PJ3EBZ^@u?R;zu$TOP)m;`6+*uq%`s(`$LeZ`M<&w3 zrLCC&O=CbmbvpOsed;A%n#l~q*koblDrlFS*+4bj=_=$dKd~}JLFnDn2umW6*ys45jMk+>5n~1>RjNL5J$cH!xV}Qab>7wYH9q z8%>8$EJY{&x8~L$3FF7dH#9_5Sp*+)+~dM)*X6xz%qRNaRg>nHO$0aZIq@x#4Qxh^ zUOCC$7Rof>F*$I-4_MP}c#TujpQCF|{|jG)pV<4xTY<}QRY=bq&kP*BlHy-y)w4AH zvTJByhxDS!zs_tr-0fSBc)h+CpcznlH~Z*Eue_qF=(j&JV#0@Bh-W+M-@Xmmu-gB3 z7!@;_!Bw&LB4XlXwfq$gCVx$Oln%4Pa+m;o6Z@v}U6UaPR1%f~_1WKlEaXYx#wL;x zlN<7?Cl9_=)ly6wZo zD>{C!_;$MsZ#5^p3e3MQ#;t}a<`rJCi;)?#3R>v?$hdZVnm zOfbjp?!JNgxxco*-w$-F^73+IUm3(V!F-@F;OW9onE*io#uMmZXwW+SxB}uH zW}6lY-05m%;XY02buv+|D?WO18@<0?LsT8Dmew|Pl17+~2;NAH)$}jjC}$gSlC}DO zi&odJ&y(PRK)LX6T4lE`O*u;Xi{;R7x$4l-*f!BVpz53w3$6ybwzEI*qnnvjzWngg zvw5vN0H1tEtN*%4?cNe11?@c$+XKjV{dviZN@pMNJVghP---6NV923V`KHhy8I2i< zeZPJ3NSyTu6X|O~jLk8WI^^lm8?VGwKb&*5@=Z%Ir_5jJ?(da0_v~mG!Zyt*&WNsn zbuj{-Z5}!k{h{S>2-RZzu=RtkX z+M42w!4|<4%$>b2>`4hOFeD#|mhs{qo_rODm+@~Ki4DQAq>64=zSnr&shH$Y;oX2A zRPFdsdN(_|hnK|P6EY^gAx8lKX&a0TlcRmgsBA&1uH_}5hXc_CX;SqM(Arwp$8+yI z+owV$)x80+du^caw>O!b*heWbWHH{0U7zT1xp394D`4m`WIbiW7&M&Jl%cMXbai>1 zZ?N*wXC%T%gLJG`%9}CqsO0$RlS@M_RkhyiEJ1A#fJQVv{-Jg1aZjp z6f8cjHV7J2$)X*_KTv$b+Fs`ziv(l%AkoK_(%MdWrLt+ITVcaA^%Yn5H4Y$ zx07$CdBX(ZJ^y!-oJ3V2gOq|ZZ``BcryoPv59NCnfmWteKJ%)Z&~Fr63u9erQ!8{3 zpb`uKbPmtn2y=)Y)`83emT<<&(nAC=MxQV#cCgk<9#QbuU#6>5JE8B z!8>MpA!pe6y}miAP=uF02&e>R=LqEc?(|2uQ15 ze|BXkW7Qh$;Ph?2u=gJT1-17-I66p;76V$=e-|YMUC98Ox_T}*l2fACW${tfgVF3d}P`u!qZYrw%42DW@q zO%vOzo+&K4UFa|HuZQ3?u$r+aoCI^eU(-=6pym!7s)DY4lRpO4*? zs|6J$2QG&b#MVK^9oCMW_*Mxoxh&wtu(OQaKGbn33xvoT9e76SSEOVAIC-aRv2 zg9`CdYCdz0zj||NwbB3cd(nF*mBBAo_@s7l{}BCic^-4@@|3dQw2URrdm4P!Kx15o z!1DB^s~trx9k{s1z1VEHsz;8~5vX zg|xabY_CP4T-2je(}nd0HP>0`y?9T1Uyfb`VT+)jzYTqS$p93_^X2yn4o2uoT41Yd z2!>=p0%|-kc3?b5DJDSKVd$U6Hp1eBOeDqrM^Ey@EIu^n6cFRNc67#MVmgw*07MNa z@u%f3SPEzCpr1rS9o1nkoK@j^ChHqgZ{-qUW-s3&>v!&2hhH`I2vEb* zjS_EQQzJ;~$fS5)Oyxjqa)t{XUB1N{P$YG7Py7e8+_zm7=Cs<;ri{$_v@=EkAApdl zbtD|gz~+2OV?Ea#BSr3m$leA?fo0#hicr3tQ3GfEW7GYGTig(Bq1B_ziXlq3}}vBxkfC187uK zjxWN0ox#FwmiU(ykTDpSa9%`Kj=BRfa@-K9PwTRukmFIlgN60s{gL6hK07F9-j6B_ z+7pNZYGQi#4e4{O2jqpVnx2-NbXiL$K#Qo*xo{bTdrSbf087bxGPAIVxA^E(*aIrY zoV)YyfV5APZAL@}yl+wQjhq-mM^0765S(@&TCb^6r6)^Rh{CUF?pn1F=6(+Zh718Bc~pA0E@6#Ek2jaclhPiO8ja$GXVUSS79{Z1GZj zuup*E@qj5uz%}!2EC5i<%%24?pqGDp6wZvfL!<}Bd^4AKdBoH+LG;Op2kajpaA@gj ztCrqp(o$%RY^6hdTv)pm-baP~e9-nxd&HkFX*l%$s1@kSiLB*`V{Rw-fx|n==~Ybc z8UY`eNYoHgpi8DSS6MXwTENJ3@X*pxK5GOana(XSkt@N#iZNFR)<@e9C#SWoEfVPz2=lW% z{?&u%2p2)DKZXYN>QwB3D_=@xl!t}`+ye*}8`h>Hzg43(D$%9xejrjnjOMs}7QRdD zqbP?XuG}(AFtsV`n-4U9{mW-f2lZp5TZ*2fImjV`D8d<9{3mQiDe~zG4p;iSL*@OmcJSHeN^8j?u0D_jV@q zSHBYz*=b%kt{anKux7oKc!GDk&FYzL9dlNX$yqY1`7C5T(a+3@zEwhY*rGa=<+`|GFYVoNo$eGRP7@c;Fz;QWrQO5d6a|kOnRH zED%6z*f`RrfY1KWOGjOJ#zLz`L2RW{wOm0Wb)_rWsv*l?b7ufofrDgvBa9s2Vj<8<01z{F9!xY#m+3Unm zFLE60K!k3jM}M2G-?Y@(C80snLtpA$Xd)(~I)3mVhR;qTkL3hQGpmj<*{=2EEolX}$Zu#jKF&PiwCsoG-=D=Mu}F4oS;l%7 zKj1g!Sy%5HRc$%$Nq!1#&XNnQRUmaVqoN#xP`Zgu`^CO%PhbXuFbgq71~uRAtL+wyt*Wo z<-6LOZKm-SzS3S9?f@oP!PGE$KN zp9ppK8`LV;@coX<8`9OaJ(Zh#l1($d*CaF~-u2PXeEepN(wr1?i2StCXJ@Bgu6Rx< zmk*G#mYZuw*~Qr5#JQ&@9b~&x70^uH-jq!>74phU6@cDWZpkyBCC;&ZS7l&g3-}z_ z!|uFAS$ef6nP+h9YP-(dINTK(S-QRC)r`5fq8LT?t_!3SsCG&XXSUzOS-RG0>{t5p zk?9<49&Xbt;TzYy^3tYAk9!=O{E*3O5@_ol}?mH{m@Y09ps!uQY4#l<%Jh7Ra;zK+}DOjo3T{woM>{xK`BfU_c_(vBalW zj#e7x>ayhXlx~v}LMmlf%*A%{f3W`u{#iuoK5XvPxU<5Z7qm9>my5hI)Q~p_=r~f% zIn9nF*@yFOL;1+yjnwMwkS(P~INVOaiZ$L_4iP$*T<3iuHE^Fg&0ZYSx9qm(b(epE z3nAz=iTZ!gk9|758Nj~z<@l1JkL1&v8PwboVr{Sfh0vV&`#eS`NI^M^e=R;8jEC6o zb^B37_=}GX+a`;ZtFzKGmE^|!3!$f+i{*4%#U?88g+}SBPYJTFV2W&R)*@ue3tyg+Z7p{7Nnxm@=5 z!xCi`$bmn@QL!W_cq|qN`fm?%^s8f|9_fht$t4^>rNd^UE6an^kI7 zuTC`~J_4~Wv5gO>*(MgG1IDI@eE&6RdFQ7=4Sv=8SF5D0%TC?-I;nT#Wmy0_(8n%a zdvb41+qT>4dKNnKlkQ89;dlrgh@FaRU#>hYR%iZ{NC@1S(%3xwtl^es`;w&PK+KU| zexk{r=!O7sAQVd8WFJhX>ZCv^?%}cBbotl6vYZ-czO$Buo`)Y zqJbw(4-M#eopt3~){|+F%JihAx$nwnGNq|jIMwR!?;AGI_q}T2iL()IGJ_pmY(Nx+ zcB$9+@fO&>^4su9DmQ-?9D3a*q7R~qzQtb7B8{6V^yC$wnaArL#rOm2mpgh!k%bgK z)E^|RmZ+X(E+3cnNdD6uR8NqU`6YU%G^>B~CzI_}cwISw?W7}*3f?*GGtkZV?^c2G zr1r%ltOgg-WO+Akz{z_5+e?IIB#vflLA`a#$c4Sj}-IfVk!{xgdEpB;Yz?!);9^6HIWIg5 zfx!g%Jc_w3(f(oW?*haSmQb*S@t8ug?pzNT-Hz8giSNxn9_H~7&1GsLBJZws|6>^T zL?;}G@w57)rsnD`?AgYOt@>#hSRswr8Flp9uOO%9GT&Vu#;UFuUjIc53<}Yn54ic> zc>k5qkOvAxEB4Am?T2#m)2~fV4leg*1<)*LP?EEo4e=(Q)(lEzwiegHN&zc0D(;bL z)3^!e2($c&lRNy&@P0%dRg)x{0gzNjrYCl!(SK7-wzjH&`z=jo!H)j!kH~Y)?@5y| zjr#sye~BTU==P~wXeDEFpG?KX+0$G@ALCImXXpJ1N)2v`4MDRJIdCvhbZS&^tMpOd zpdE^cof&%d0oe77x9-MK&%$$Ah0T+3o zBtQWX<@_2P78ns&>`Nnc`@TmL*>mur&76r2)-uhUDat;tm6&vcI&0ofi*Q1tmR*oN zdy`~iboQ65_I=U$TL|1G4$%XZews7elBS_ZjfgPWRE@psNfPMn?K~T<6D-N;VW8Y9 z&B4;qPzfsh{zSow3}FeI4toufAJ8!|%b!lR-vx;WpV^x|N^fPkn7f84I^Wn|c6GNa z&WHa^89+0wI)W9iC!xW01+gtH!paPf0k6yJw+6tYH)nL>Crl+1X0nK2!j~|YG4!s9 z8V|}jX*%ICBg#Hh`NVV+M-KH;u;okXKE0$mK5~lXM2W}KzS7dx_s&w4lOg|{Azi%v zBIABRWmG{E;gX|t&qt)pbB%}|IoG%{F9MyOAgF^y59`_c^rL2~NX z05Ju)WyM`l8W+Ym<{46@Tc}aRh>yj^W^1QjP=SOT^dAtBn>BoxA(yS9xp+@Bp@*%f z+HiTe|K<+(33X$3AE0SBE{0E+c~KBAq0~ zZ!1B+$QBd)3h$vT?_d`D-jta{z-njBblIM1&x-w(zo^u(TF zi6cyyYj17xqP`bKW$SNn-dA#L8UrEVw`H8jKy-!erNCD9A-5sF)k$ytroCLcM7h?4di5;JET5XHuKQcpcNvoYUZ&M)9u z944KAS(XfAjvL4x87tIBXs)>9A{2E#K0TnDSlF?^)=v(wN{*-qdJk{{~^qtIc}wSThG8z zGdU`LFbrYgjn$E|aqEvBU-NnQI8`!>xaF89jnhpO(PP???#crSatbW~0i6fzPi*O4 zH^Gj9>}0dPVXPsgI);|ry|ta)fxPx@`DE5%{R2<4K6hA4h&hjBR8e7ORZ+|dof#1W z86Li{<^%e?XIfoR@L|*6*U%);=o(B-SCyAWCFavE*j*;rN@R-0Y2_W(yV0b&6MNx4A zjwQV3h^-37fr&O*!4GanP+npSP@fLNGB2g%(^PPM|1Zb-`=_GcsQFdlq8nRwF(3FW zxBIeU@+(nW)q~`+-6uVszdGic!6BFN8*gidO1PY}tn9zW{?a>1TMEJAd}`}akZU*A zXIxSLA|!u@E@K?mG292O3JVlK17>qd7<16w+jLh-XjwC68p=tA)bP|{B*a92-JB9S z^Iyl*Z+v9QEtMfPNMclEiK{Z%5d#b)tAL=8wc68O{{~6sq;X*sk>JTL<++cF z5zeFB0*4%TMs76h|T!SOH$$mBG0#joEBs_9uvp z1=Pj#j!`LH?SEhT6Jy9x6}g|XLQA?EI9C8!O)Pt3uHeLJlkK5eLY*KufLK+jedweQ zd9;MiTstGBfd6#$0od)p*YJTrWSz#n4}Ot6od41}d)r)hlh8jL(2N_-<6!ZBONs)s z4`KsU8?FsO0E@3#7!J%z;%1N75i6@l1%_v8EX! z@g)vW=&dWQh4UrJST6XX`8b*h)T0uTS&e_)q)1lbt#ZA=?@^TXIOCOt;tng$ZgCPd zhHLFUiJU&#e1c*Xx3r<83DV6MzWwYTt|9vayml+;!yqUJ?J=b|As1q^7jK!q3@!>+!vKQIKwuD@>)a{g_;S=e%K+Q4(iNIhSrUHJIao971~vevXV;02 zz*EeF22M=TFidj9xwlNh;`RAMrM*1qZqL%JWWgQcJf{!0bU&TV$8Xlr+{~iS@Qp>d zKrvZGW{q>*8QZLHH9?~|iyiB1d*#XV%%(Sb8DW_PSn%tt0i^Ti~D~ceuzMXe> zPr>0&z3W*#EKU8FgLLZ%f-j!6t=(&9%Xp(xEB8y5^+?p7T~3{Z%Nwxe6X=h=dk=X2 zYz%pe+X-l7U|^8$x7i7pg%S$5x&0`}Yqcjh&vM+f(wj$7z@z?F>;9N`5u?xw|H<%X zzMIxCFGsJ;;&utG4$N$vb+7k1|18T2=4zDm$d500yv+p8QB|@$*_B;uG8>NjI>P%C zPQlGmGEf>`9rrKeHY%lMZ?Y+dprBuXV2$u{+JcM&CHZHob`-TQ}fvWS6 zSaM`*!km-BW*4XHKV0T9BLn7=UUK}m`6J^ca#W&dk2GJR0FyX43bwcpZcWG`OMCu+ z*OyiddwE?B>QkGPeQAV-nmf;nwPPbRQm_0|Z;~3L-*O)YJAx zbNhER_HKP-)bap^%WJ)h3lI+!5bUNO~>DV{YZ5`I+Fb%I{4$oiNoL4wcpr+$2g3iV^_yLZ}VdGBMVbBG=vUrG}z z*|3N`-k%cNd1)ARjw%2r(uMI1?R%H5_gduL9jZgs-nsdw* z_b7eul=SsX6yOcOFeD00cOI+oM}vkN++HF(p!DoktQS(k7QNsRjjW9oe<_GEolT@Y zuBKER?QQ-fY^SKupBk_-s^uJ^(N)G`E zg!9_Czg|JD-dmGC(xnugOvek>!ryY;5&&cX_`<|Up-1R7!)zfPC#@L~eNz)2E{VrA#WCOpWWDy$cq=hbN7j$7Xt zfI*;01OBNzqFNRfwAp5_BVzN{*PV{SrGClf20}8Rh;2#sGS7k7x6qukcUqA-bwXla zS?y{2GPoIQ;T4*xO>YaPu(J%BNobU+K6Ey)DSTf;{C}#^J4o}kg(pw)0nSJ+^x*Mt ztoT?9YjHzUwz}Cu?59TV#i}Ep+;XMj!1?VYoJHE!-?h}mLyCGyhgc-WjVkt?_12tG z@YgoYrys!^{2oMSu0HmvJ&L%;+X0T@q7g?hWPCXr*+>VF99|043L9@p&$l2P80;nX zmHAR!h=R8rxi-F%iQOOyZ*%7Q_In~_a~rfFlkDt2-UOLI7diMpfaLpp7Xt2ijWO8N zvA8zkv5SqbNJV@9$+{xUXgepC17)KGOV8y7wIZ3h#&E0LL-CG772!dK6z0EK0M!Te z*JnylqfMg0CV2r0{!!zqoq8$IAzufFn-i&yr0hG*aIa{Luq#t=-DEw4()KP$3nL_zE0W+mn&DX5a65j6Gn& z_leAJt{B9xqWT9cE4lZdTuQw_J@|HaE&O!iyR$DiJpHSzn$L@++S$H$f^9*$91M{? z+@HdE2h81c^v$!uSQJ{uo%Yu(0bem@9_E54Sv#iE5U3$c&y|=jej*s{5I1}h#|j~+ z6OU|AZg>)Y=aSpKz*Lj?5$n@_rmU!RlhU9fMr_4-BQvlpV&g)A5;3zOw8*;j41|&& zKr{J7OOi=JBS;(li-Lv(SesxlI7)!4Mh+GT7?QFMVO8Ja3%JHtO1smGEBMGCU7G_X z<<1`yFJ#pVQA>Lq_A@-5`t-){6s%87A!@#14S}>F6*V1Qc;0ev$3kDEMcNQVaX>L@ zlYRc$go`7z)>x^(^a^!k|HD0#3PWXufVCx=@Nf%LDotKyVx=kF-W>EdHLMYy*5={x z^r|+Hl7;PHsX=P}3?GtL(pbxFTWP)H>nVyzqj$g-fhMEx;Rx8ptn%!%k>)~u6)bPQ zq_DbdMr||dO!%wOzGj`rX}-16_-h)bc+vcM228^o_p)?b)#W3u*6|yQyNxilE|8vG{^pK2n!wgh_KU4D(cPZfaGtr&RI8FE_WwkFa zbA0PKoUiluvpZrxr~UGRY1FNA8e)et);8-Z)r#G9J&~1tY&X97yX5#aD!`;U&mgp0GZZL+4pZnyX`8i4FR_tJmfy`;z{`s zgJwm2MSdXZ(U<4p&TsrZpN$QMpUg;V?+ZFB_7U3ny#pR8_;(*9RTT&sW+PtWxai3% zuYrwm4wrY;b=yiS9uC^S?TY*pw|C?2V``d;Q|pUsZ!ODK27LOcfTE3O#g$Z=9WZ_D z40#nabb<^pOYR^p8I23w;RNN)&V?X$PEYZ1@A6rBpYy^Yn2?`e!WSEPox+xVLTUQ5C` z4KEW~KIwmdrjHaGUJGlFAAmttUm-c38IN>Al|FMYd{Cu)j>#|+D`bnygE1;O&w4c! z1zYk=fAEn>7)9>%ao4scjhif$jx((I7w}F)Y&<}TYWcgX%1af|3S`vvfjpF_zcgYC z+|qR@AUIBrgsQdWIDhYRlj~`*lq{NTZAcu*FxnBiTR$-e0>o}PX1rn@FaZiC6LsNa zny)Vf4b;~wCA+6%;>7IRA7!8M6=oKAF&997R+SWF zqI$p}eOP(Fx6({*W)1>6L|m=B^YOpY%)h@gJL>o|4Nh;akE1nb1x_n3V(mSiKb$&b zVEQu*5Ot03b>MvehOu{mNLCgtin&$WhBrtY7rQW(YhCU%?k*hx(nfj^z;j3 z{gDteVV;T(&)b8}VL5mt%><8;{o;V9WT}!Z?=!@|TK0yJHdxW=Tx8>r3fmU3a}OQK z%G#+~*xjNVuP}{1f~|VpWgzKPy?o6_8y#5n;&su>be6rOj!`tQ>|ZM7;a@&vgfQH5td7k_DL{D?aZFc!Q{>Sh%6 zg#Myol1u&}vY-Z%NT0386#4MuxwjGs(|W%*z~o^M5j<(?OOlEob2&7UfrEbuEl5iN zCn618qiCex4m5g?U3n$GN847P!~4Ej{7cQ;8%IDk0kWIJX^#9E1-WiZyRoyVh*tJ0 zzZB|7!#ho@f6=-~wIvh?la*#yVlVL*je$?BOj6E8(SC*N%Z%(5|73xvie|v<8}{`h zYQ36JDWBBpR6`;$*^43PM3t+puiJNL(|(>n(Lp@MY&QHcica%|lYmXk?y|0vlRr0C zpw=$s>Xn&aDX)~q?aUXI3%2$tAVa-dj0S@qUO@kRecC0wGHyDG3PN@3YkU3cn1wm! z@3AM8?oxowKtYI8HU7^SQ@N|jW%M}94H$w`#cz?{d zhf9Kqj`jRv5=b=PEqA&O5jD5#MZf;tEv6Gu+Cr&&;A#5zl!g7zT-d87$M5#6H#mEi z+Qc|Bv_L6AA6K%EO6#kJ6BB=FyMR2z4`6lCAq z_cW$!F)KTI|Mqy`sdwd;DK}$y!X5jGp^+vq=%i^B%`>}7C++^8LFjsz9}c4SedHR?nfa7JaKmK!gIT}$P3_H3m;sO+Y-%RO z)URRjotbWr%X9VLD1GyL>`)?gG5xoEi2HaUJ~#mkCWj++b`ar3zC60wT^|btA_lwl zV?qouZsBdatA+Z2!XXR)KH{fhk)krpy2%vsy%0@gqAK&Cw<)Qx?i@UrpPr=k@Los~ z6Ep`z0JxC!y{ZK&B?7v01=Bo9g$lwc*tJCYT66$2{F){Y>{sKHJHY#~@V@?pp;;8O z{F<-I3NzUD{0nsuYT3ZN*H!52P3OVvUTv#pd=B42?1Hx>{Z*!5nwn+SAsu}756u^( z;Lnl{FnypeNvOdoHUCfwzHEbk2CSteUR>B>+Fbie|LB97ljT6!9Eron9zRFl81qkP z`N4A)*B;LKb%;cIO1{2>kYHr}(r7stJkGiJ)8w>-)Rbg_;~}*#$v+hS{%Xvw@&Qks zjoIPPK-+!G!9H8zm)D-9S(d&#HbFKbed45z^ay08hOW47g()@-;BQww91w34f3aFR zUx4i;m)BXDedVZn<4>D+`O|Js`23tl;NZIcppD#|Ct zGlz!;H-NS(R_jQyEtaF>P`m00U-37gEDsa)y2{SHpu|w&$5Kb``i{ZY-s6&^vSV}W zg8lf(Mt7R%Z~3HmPS!@gk2q`<7=Qv%ry{W0oMWVu{w+r2^0| zPMtQbTX<~KnkPs>-oIGmT2vv!U|H(^l`=>{ilWe^Ul&kHXO&G2v*l3GY_0f9l=5KP zs`o`yCyR{GMU-$ZdBW%llIb6m9DrDFXKiY{5wU#x(~@wX;ua*m%e*Pff<-zW*Bt)s z^I@u!GOE%-w`CNPmrrWh8_0?P0s<9efnszS)mjx+lc|EP=~~)YDbwoeAXALumT}oa z1(jkI!HAi86LqBOp!Fc6IgD2_Z&a00{zUw_5l-?V)RuD?K51yut6?%sOJq-EvgNs{ z59`>uU~v423}=V^iMkYft$n--QBsYv^JlT~>X{=x2;=f#ib zamQDs)A;(w*Yw=5s@Qne>4E(ix)I5m~#B5xD-hOglA|A?y{r$rP$BIZ7s%x zkCvRsJ?mksLep0t0)q}XO~v(4$`a4-mt#!fQNt*p*1v29p8uIxUpu}qg5dSw!j9FC zZ6-G#f2CG_cv596?_nDkO;?)#em$zKNOj%)2@ z(G8%wv8P2$iAbwFLfyuelmCutEusM_%ct$KZ(0R=@4dO-OK{Ng4E1L}u`r$ZrAnjo zn>z?XGK-hCRM9uKd}V>C7k7Yd(<{?1WP;vSA&Qi?d8?BTF+!CoBYpLeW!|z)S#EAD zLyWRBYyI`_66Cf)J%sZk#IKc`jF&dve_}p#obD-#z=vh^?wj_`zUzdqmZdL5knR{a zbu>IeE^YOy)F$lh8}6nbi8NO%`Gt%~v~nsmSuOJNtze$+`3=j;Nno&5*Q0--B55Xg zPf*-gu~VfnhrIwGf-28DxMmeMW-W`!s{0ao%C5XunvfBV6%P7m=zNl@2o>0wT~R#Z ztZ1w&P9NU6yHgvm-%`4{qKkLF5r5+qe5R$m_nqi#LRjzMo7vq3?egSv5e1#VH`;LL zcb2Yh2*ed8CW$&CTYl7-74mz3CA-q0cz6_z)oGK1!~JOG3i67C{8rZA%Smd&gGYaw zdz5Y93(+n{cy;!p<$%9n5MgfzIn`Eti=~i@$MjOSn$qj~mpUO^6;-x6)cm`yIg%Wb zR0rGzw#zJ^{s))7nBVmbcmh*!Ickfz@+C~21A)sct9$uI7kX93z62WRp;HG-IdTed z_pLLH7xaCJ@JiYik4ep)~z+>fD&CA@?9xsrp?arlkhoR@YPqK`w4Hsl)A9=7~RFaf0dU7nT8plUTupwAZRCC4?TMDg-=~Gbj zPq?pr`}N=5?y@OnD-N*L>NR1kbKc@eM6J#!o?cF^9q0x`1biC2 zWrY5|b`FK*+hL|r|3<^B?XPZMW3fZoby*Zb*@g{tFZG8{v`P@5_K?UbW>^KcL|?sy zwFEN|81{~6SK)==!mFwW$>~bP*gT~8*Sxct>{T1)X4$WWQJvb`s;j=~eL%>sn+%r$ zm4jK^(G(>xn-Q}msE#kN;?1IN4lR2#F+ zc`|eN<;`y`*e!Hc`7tIiSAmt--%^@WLh|>vyq9*!FV8n#)=8gkQ#AeE#@$&N`Z-6y zMI_<34(lhGSU1Q0TQxcSv=16qCkI|979Ou71$+iDF&GS`52D=kKQn%zUEScHuWz`) zgxP2NTmOzUbd-!$1Y;{X>wHCZWshm$lD*=y09k+Qub$4%49k@kE&7j}oj_LLcXWm! zCIodv9T&#?6(S;{UcC6PTp>Ib%{bjQSO^IBfk#pL271Q0R|(@fr)fogf1c2*1kR)L9&%wT8bD|4FO?D6s-O*;`m=f6+g8ye!$%F$Z8Ps*&LVN z40!g6UUn5T)1>U1}f7_RqC$3O1KBbsKVxH}f{a&WVDSRJ|NJZf;XcFcepyIQJLAdKxNk5_^i9owlX zvdqo@5@UZAY%*VUZ-lXnxzC~^tZ<2+k@8V}rM%X?oXzo$uThoe@H_D?aUv^PY=iE}(u4YB0hT)_RPR%=ZK`3F-blD8b!M!;PonRV(4`W0;ap z4t}>Gtb2A!C^lRL>z23P5y68T8RZqb<{@`+QCsYLFq}?)vlmA{n!T~)huxsp81B#( zm;Mlo0@3iPt?_IAN+*e_TVu$9i&FNT;OD6@tljD(PDSDSSM+O`U!^0$xyWqGtr@K8 z&BWa`481`uc@tEKjP>289yNsCyo#Fz=SNUR*_X~O_)!m40&dJBuTs)*({dM<;J$1W zaqhRbsGcTdX1Rc~QwW^=?lJ>=TRn#pmiO>)lffh5fu_RFiBKx!T#k$=`CDR3?eERX-*U`?5vQkn0{+9Rn<9mpT`37QHx?q_qdjv{(54y^ynP182 z_`!Rx4M*=PpY_zg>KQ<(g}_qbCTDtZ^z>oy-9Unh^wn;drXZ~Rr?3d^H(3shZ!oA} zjdqsT5%ppqsGvWC#hntu^FC5QU}efFqjo|zEu@^v+vrI_at2i|v88fPm65wXMLAvmcynm=8uX&N<=;{8G7q0H zonmhY;^3v#iTG>CQRV`mAWoUpw2Rn3HtatV_PR~m(m{NVtN3ci+M#Sq|Ms5klbjtK zz%hhz@K&W(tam0(nTTHzr35gH4loqYehtKVu$3yv`S%*V&pvD!MSg%Z2z{frmc9!A zEI%(LT=%n;#T9DU&zInQo&8%nQ?0~+VpSLPEhKT*1;xyvpHao^DPygFd_5Os4$4F9 z(;JU$E&*rJC-Ec4${Egt*_9mOB^E`FZ1Jz4Ci^t_Xnc2v`)D%cG238&LJOgF^`2)v zZb@|WOJt+{9NVQ_y;>|m^1$}GL}MQfmU}&e4s^KDL>IbXj9hh|FUH~Jk!FM0`(y-c zH%`4b6Msg+ScmuQ6Em8#@# za1&RbugYhK5LX0_c)>FdsZA7dOW5A&;UgH9v+1cB-Sa0S*%RBE5vE2a+|?iuKtXOQ zcB8L(W;2=FfUMu0UYPeUfQ9{|cb^|~|6?w=;sbjt1=KuPICT*Y?>`0p259H1YcAEd zULm!Nl8XVM+%X!7~7-fn5(Iq!bqetKx8y+|HSaJfcgT5k7f@~aMXaaawhJ)MfNri?#hOCj|Qn})fo zdpNr%M+&rNXU7FVNJginZiL%U`IDD#$@}W3=+MGVbE#%0`01uK-k*?#0^?3Cj z+tJGP>FuC3_GD(w*>m@gPoGGSVUjnmK0xsLrl`MaRsl6H2CV zw*8*bywJpV69RZ@b#;e@D^~(psb5<96Auf52L5`$`#zrH; zMOg7nv;}s*75^AitQoKQf@%j|rrk$ZjH-|jvz-}g>0RgKE6Wa%fj2v{&zb!p3kyrgY1X2lE>l6=__S0_CS-^?mb zN|032#UD|pomuF&lK8!IUIE^a7L%>Jrp0qw^#jmKBt>{@(miGft$oj0RXfRZ0VlvF zezC{G{{3Dx$K)NE_9gQ3(RXwwDfLjUG^lDp)juS=7jDQJMd z?D`?0zXmks5|Z}G2?m1x{GFwd{kSxzPn=B0cwS)TyL1a*YS!O9^@gkh-Z|kd)KZsQ zKll}i_>8YmHXk$S&VO{Jip!3y+=(nS)7 z{-J?fY_qh3K2|p7j-ZkgN$=WFy~VlbsRyn8chW=hgDjQgcJk!MOAwf5nO3HrE(p~x*77|Jr5E8L~NBRU}pET zDV<~O^ZY|D)ZFlwcv9R1)t~Kw4TLOr4j(O<&SD3^L-7aj>E#*2RbB`<#h6x8=AFz8 zE*jq(FwN0#gR!jPuV%|cVr*Q7qm7jQ5+x_w3Ytc#>Phc-X*)|axue@U;cpZodJEdL zsanY*rh2U?2?cVZwNP2vF4TS#rY(HUII1;ZNi#&S;@(ur zQ@iO{`S|vA8s66Go$rccLb*}qczM^dMElJv;oo~_6Cjt^f5q#Md3aGJ1*SUK^*&sU91+lR;C4dS}#E1CTc=wSyxwuGqA zk#JYa{BkuM8|8A*|GUEWcwf8?(n`|&onz!f8>LsRPC;XRw8%1{M zwVYd18j-&_lmsQnK^p+Ff@6UgQRwj1|7HP}7?;1Zz4E_F6SC%mduV;Y>AAr-tE@1T zN)D5H-Qtr$fX~D&)!o%BNxW*_>yewRC2kd_R+gZ_S5KjuY`nUzL6*`=)9J5i$SbWD z>eSPIb`(pFlgyJf7YU8_QwRF0tNUt!#J7@#0K>L6rZhLCBQOEnbG~t5NM0RH!{J`4 z{ddEf5m3k96=*o=Jg+apd~55dCGlBEKBl{#I^LZe^&@JP=db2k4Qe@b=zDw1rY*D!syz); zqE?%)Zm%Lm%pQDQp^(T{?0dV=oG(M*A%XZKFSW<2m1VMih`v46=J%yvJ##22Xgp}QeC?TWaHQ52**^skX+FFDdAlg> z7K6leh}zs{B?O@qcp^!$LJuQfz!%uXS9?v(>fH34n8^o?T{kpLS~Oc?zP`)lof`(B zKn|q|k^d{^L++Ckox`{Sn@@cB-jL$o4z|;^x5T6hKhkM&S3jye?|glDCGe@1k`qtU zhtSc{k&>4b+BDurYwKQlSt*fP2!!0KG}Xo?Pc>iSnlgg7rTBg{iw*hyUfcGL&j0rK zu2OsF9PZ0Vh};W_@APrbn2JpCm^h-n);|Xi(72Myq!slPlkClaP-E4}^(Rp{H#DwP zHK}@(U9qAiH#TYVBPowo?#tJ@%)JgyVF1Sl0miM6Rl_;n&kevwZ~ch4bex@r=FJY>Qw_PX`Oe|R4J76^FX zZ?%wkdvkc9imW`atK8ocNMNStC&y%nL`Ej9yf-LX9GBeADlUtWuj-?>t9shM#7EY| z3v_r^yk*;^)seA&&Pw2TGpsycnbG=~?wnJ~sdAZ938%*Jx)oZht94QV0h3Q&f(p}QbFU51_ zS9sjb*zJDvVYp`NRZ0zJyc#M$m?3=;Z7u0}yG!^VEKhYk=DmMWm&csJB|-6SP4eVo z!eaJ$8nuV-@&(QohLa3{Q|%i?Dne^c{CpyQGD~M_)Dcu(%iob6+agF~B4Y72r#$ZK zc*gr0FjpkybMHS47yGrz%xJDow^787Wxz1{v^4HT4Ro(ijC2*sp40<{=h+MPJTziR z+2cd|#(12#x_#G&i<^gsch`#+T#tRKQlB%i&cYfxmnPF9e~lzjP%3IqTK?RfQ5FaK zPyh2|G1b?SW~8|sL@L6O`4Rnkwl&9X4hUFI_QJTOKT&?OvK^`S)jj#aI)6?z`ccdS zlw?Y-N~8<~GjY)A%7d|V4Kr-qyXiF_blzuZ^cATGoX$ROuuVF1k#8-_x?AxuxiPO9 z@1tO(Dkc>(M9e5Pv0hxMRT(M&wkeMwAw?tmq?;JNKWWQHi2i1-t!}caw|AzFvVsj} zAVj`=s^*98PZ-1RLwEfwL)jO0{I)EQV=m0kQE>`dPYhr4p3hWe@yEK%rpaua=N-IM zpwwr<4(I~Ve?k7Zk}zbylIbM@t-8n{7Pj*gCEC#cRw4shRK zkE6k`uZO&jZ0E|ipEIiie|U;4pMS%;B-EhV{LXAbbWZH#Zt_MxT&^jKvJiX2>4X(aG1d2GUTX-aR^WB!JLiU;(m8$>UV-X| zVWtxMvs1=yW4?y%+vQPI z>VQ3XdugHWZ#M=V{`q0$JDKhTrl^b|vp6j{kaD~I8HO2bMX76AYeb0QLqB?A{q>uB zd7#?7(qhrvY$U|YYtT0Eaef8{2v`1Jha7jYm)H}7_NDrO-auhrQdx=?1rUV6!#@*| zbkt{VH_I;Xf4=K0?;U(}?f#gwEw25l8;CU3m}CBnpAMLt29$lP?O#wBkfHL7E8LPjfyl|N?r;{kPa`CRE zE6%xabYwKYK|X9{DgR~Y@_9y!!V6n57E-c@Eyw*iETs_=Q6Jpe!z=(|!}w@bn&<7_<*rScd5%MxGTg)W&>DO^>TVZIk|( zt(&rLZ9YkRI47KRc=#E;KLK?sPA_OZ@cFF3`?cfEbi;~%!Lr{Re*45f=*+2r;A^XU z_AWKK#qLVQcJ2Zl(g4}(|Ke^~F(o&?;D1&Zl2Xe3&($dvvkL@UP485sNs7jVY2ya4pOGuJzA7B$oa`2FK>6}j6Ga!(%6Uj9@!3^5T z^XlVHAUT?pN9d$BnAYvg#f^jj{|&NwSS83jPunJOQFZ9(f(a1=;*u#h2e8^GKZhIs z3Qn#5Dbui`@lH=XHM##K*V_5*ClY8KYV$h7nG1}*op0r*a)0gl-m@dv1O>?7;0`zp zGZQmYeL!EB6*3o0Mtg?>P@ChNE|5Ba|5mR&8r3O&_X~Ru5JTw^(P~Ec<=QiBFWy4U z%}w*|*V+4{rt8rYd{2CYRbP}e8Wuqp0K(#l>@WtHeuTuYs5Q{3kT#cP-DZCI;oRjvg$E25%slfbdhWBNE39 zUH{F&!Y7+D#;ywN01wo-s$gaFy)BT5YsrzGV~qmxDTcwae7bCim-~2(VEkbJ9p*EQ zuV~`DhnY{cVhXtRAHygv)2=HQA}i57KVDP0;$WM#y+nPhf(TI%TS^9nMdY171`h${ z&|%#xdHjnJ)D+|@;B=c-+=&|{I3|@=8$kAJb1&T$UL;xs=e}{Ev*xTMKfPd}PKB?8 zdxaHovg}~wxO9Ot{fKb=j*`*a@(Y%k2Y0C`Lyq#%wW{c}6W-e{KL^@Srf4{uH(cOD zSFM3d{8vT~^Nc$Fq}wYK?eBve-ANqRM0Mfz?1B5(I|$eVm1!qbZVkox-M@i*7}eeQ~R!B3Nba^h_V)U`HV9Pm|Q9{0jv zG9f;-eC6}gnKfPdNX(Q>oIJ)M{nyL`{(3+f+)JDsqldJ;EH04h=YI21P-JU~g#Ufx zG)c?tW72d#7Nch{@JS?ly1T{5EIjxrx590jqW+^rK>UIJTO>?bO(vK;xM1pQ44Zu@ zY(W>R)&DU@kV;UyRb#jSvk%NJuDNk0srA0)!Bc5jG{nXt1qPZ;w#LKK33pT~?ziih3)Gbn|&%AJAx`wsl&_s|?Bg(#m->~^eYVnH&nm^g64{HV+fyrwp-j0E&8Q40Z+`cH z(ge1}oY^~t%_y1|a;DRUoYPijbHGHce0Vb`od)zB#GHT_jI0q;Hlth%bVgwtzEgy? zKCb{Qd8vMe0b3j`Uf`1hQAZXe5w50H6dD_z_TkwKclpTiUNd&VN4^Zyz=66->c8^V1xLPLtoqS-ZM3O1q zxe3n9uv|o!m8m?WYw0SdzU`6IvNH|A%w04;8?Sf$CX$sQupHx2r0sgt zxvJo}cd-8cFW7q#_9ylSoA5lOpOCcog?q?BJHl8RL2X7Z)RjOi~#4K^aed7u=5lPH#uzY4nbXFYQLF4 z!41|Q(1FBV`qIP>+g-R^H@rSV++@W67#0^rmx(z8-Mu~d+Q)g=+%JG*8be%RRr!!8 zli<4m*CVHa0=)Lx0VMgQr2iNNDlxmJ#+k84Z?%nT>x{x;zp+~di|E?cw5yi2Pdacq z9tz5GSj&)hM&>92w6v^uNS$5gl0 z1A_g)#eDfCbX}!`1?Xwd5f3ncrx21Q! zek;%$=JWc^K_w;-$@I4_uYDI`mG+M&yAFL2J`h3I$>58|cGlKlJi^2c3%DP!6;ius zVD_YZZ+AT)&RJ<-6byrt>DDF+MRg4+XJ;lAbRX$JxL}`6maRf67%fZp=jw2=m-)KY zK*%G%nX1*^khLi=`KB#DpkQC7TTIm72@wOw5MRI*Q7E8(^c713y?WujcSWaW{DPy4{$4;pflLzMSis z-VmzXnm^#R;)wqk#n{!K#4OZ3QbBr zyHQ`1(Wa6$9eYYJ@G_<5V0`iAke#}KF_8Wu^3g8A`%f7t z$YU!kc1lYd9v@1-I2`9K*Cro2TNE!BMI}!=_@6)f3;dw&HW?KI0#sn`SZuh#gcz<; z5?DI%y`%*9mrfROM*J?L-lp90J~RDu%J`qt&=+=yOLJ-#j;{hPmBk^GLyr=LFQdY% z7l?R*;4B`lj0P_3-J$C7)D1naK7?o}bHdGxsRg6ZPn6MS_h`|AAJhUf1|l3{!}z={ zG?s&f#EKZyVfi)@9U{~vpq^J=o(NwGHvkw*TE&d-9hKeJ^c=icy`>lcx$26=bhKan zc-)LQg^qIYhgnT6AcG`IkHt2NL;U-0oWk*h0<~XAIIBPRZKQy=$H6ee7kFqlbLkk1 z0}4^+aqD+O4q}3U?}`rz0;59evnC=3jg8rweldqS z^D1T2oKyJ}yU5)a&$-QcudbXI3EMxG>QW%hn-2`D;B@#<4t1dH^ z9yJcg#lO~V1MA;@scFIfZk32=&3Na@(RF2Psu`-(7}^l$l_-ZU?aP*@K7^-5WB7xX zd@^zw&cCh@K?KL5D+!Kz&rLAy^GqHP!wbLiMeQn}@Dqv767nEqAwsFPNv$*=2P< zf#XcWM(=4M?DGI{-FRLf`mc_LBhpWJBDjpZ{4S`G#V7Qd-^HL|!XLcCNrNh=Zb9dH zbfDf4DLsZtS#L!e2QZ+<&>=jv?&4lB;B(cr=iRxT`d)4CQmp`vV=O%)k*cu*%zO4y z6*A3ht6CfLK)feo-<~FZr18+T9Go3@yU`+6lyL~MM3X~@v-Pvtua_2q+T(a`;N-5R zO-_4D*Zk%)yf`jE+8SQ`e*JJd3mxDho$|oKK$ye+or)onp?+lL^JQJ5zicgUndU3&JvT zO#A`6#OgVF$^XHF1r=(h4d}f@Lz<;@6VAKp?BANkF<~-pHo892j5b#ea<~ z5<%nRMPPbXm z5(>iA-r)lW1{7TQa5Mx`4;JNI+gN&oI)1HFac~Cm2vsBZ;Z~)2cbHegKx}DAK#B=E zP=K5koK-3U&|}C~cLS)z8#!Y=HkMgd7)K+SyskD31NGug^eOFDz&EGH%%#>Q9P^0+ z;~1&$Mi%NzbCOwX$jb}Vu;$wB)AGKO(h33d2&AH{Hs=K18y(b97#|-8u=o z!&tChs(AL_2asS?a`*sO$V&V&`&GXMV3qA%e7Q>y3L{;soO6_0I z{HR`Wbw{sz@Pj08PTHg9RyusS|`{`xyz0PCHiCtjz;Olbca(;C!C{c>5x0 z;8?R89fVzFM$RtSyO%Y8E5wfJMU=&fbS2%H>DBsP^!TA%hHOvd!2x6V-hiDest1a( zKUjKeOX27u}(MJFt^$ zfK@#nmsZo(BcsR-*P$6~dkps#!N?d3i)&(WBWsworUG_J5hD!HJCtjz{(s76SE_r0 zS4o1K7u6?uNB)f$cGXM<6q5Ve^JR*92`+SmR0m%dmmUWnIM9xLf`c*^3@4FJNv?{@ zwXOdZjMs*5+E&+hqynM2)!^i(*mx}Pu{2hUQcNLI2<}tKKtQX!!Sh6XwKv*g$lCeC zX_By$zbvIP?Gi7D7+ifQtFO^&(3GFkN!RZpR}U4rsA>1)2hX8=suc)|0_d#69LwY8 z5-=zzRQsgsi~?MZq&?iXC!3wNkms?C;74R?5>ITHaGGtA!h3JU0Uog zm7Z}hjFJ%@w*Q$sK0f|Sdg#0yl2=iYDXB*RKy#$D$@Ed;=X^PaA88b2=RQXFkOjRh zSxNl&ln@|`^;8r$k?7SiKbt4z$(M(zL{Nl#xUi*%ag}_FW&n-;#+{O9OT32>g!39~ z`3UmE=eGsq6S-xv{E&wB_nLalZa)hSm|br>WLEHrI$d$!;I?-yCTuO17y{zt`7XLM zr#XzifW93F!P=HO{%2)gSD&dA)laj71?(Z^KuHFr6R(#X@~88q<18t#ISsRZ#nFB* zHORPSBU1Y5Xb{4c<&ET8Aq5Y>-P4(F)cT;YX|gG06PJ$fGVxSCP4yQ_5(rcf&C+v* z@oJyHNcqDF^L1`+=~16pw1p)=OtKi$N*4+82bQ^wyNca>((&iFD)gRbG$|fTq;1PS z!7BvA@No-O%O1Gl-JVA~R#HFu(}jR&fh1H@q0^*@c!ZHV&jh)4+Ec%;zo3Uuay$@n z@k=FMGSp)v(7BzZ62+7;J2|;#!wVT#5H{96{Fx~$Z&XCp_R_yA2>pL$x8U+IQ{juA zrK!pVtPE5oO4de|;QKC^%JN^kYt}w|ljP?V#B}Z6_|dIW_RFrdV0xjMNA0F=ap+x> zx{i78KEjG)fPv6n~9FiG|^7KvXl)#Otmh=>DoR7 zFU_uI)iPHeeondCs;ULuX*C*Bd}%K65}OJ{KY1%lO@RNec}auJEc=$aOZ44Lfs~E3 z7eRHN-xpGB2!w~F*8j?;G3Cq*1-@q*Dt-QIV5aZxEa7N#4G@Bu6lfteT~~U#`k~ju zT(g>jKvMh%zGW=@Gn%x*`ZhZH`;jy!-|rBme)g}9Z&S&Dg`koCk&yBg{_6K^9vY3z zsKR-li#^T|BSvu|`Cnxs=6><@n#O-KQnuAA*%8&nHd3D2*KpVtb=0;9h@-bh)H>c| zbJ=pan?R>9%6Y)w)YYH7O3v# ztZR$GZpggSXplSP)y#QrXqCOHI1l6pjk(dteHjF@Arsfp%bjtNa%Z{c>o=K#Mcf1I zb-!-X_N&x5%JcCX^1t7g#%a7RKg$CtpwoWuGdeT?t(LvNCTSq)r)cx7%UNEX2;1Dl zg)gn~DrTL5$P<)(vg1LPE|ay@?QVn|2U6El;2!-{g#oO3Wu-pob=-Qz-2rmS z1`iSwEp}Pq3jna{Fw><#jOLpMfd3=H4aLqtjHVgH&~74^FD%rPNLl)}XAqE3Q%R)i zch-9p(`Jus^{Ys?0mg93u#v4PEAy^9S7Kl2k@WsNveu4(`|I%q`w!%yXFb!}<=ipf zF2TsCB+Ao!i?;9;G+VGffEz`722Cv2!fylQ+Le_8$F`PY44kDhuK70(Qq;&X+5gP~ zfFrsAE5h<4JxK0_>UTDFwIiOxU(|XvpPsLW#SFs?k0F6p^k% zTDk#I)ckuQWDUWdrN}*Wtsu;-Q8iy|-M4zY%|7Ug6w(houS%$2^Zs>mQm>wltW6#N zY!eaiSlYF^wkEDG^Us4Y6?V9%CW5{iokbK1QBz;5WFSLkPyFsElRjIt#dZ!)LiJ!+ z$o_&;bI$?@tlf>-haI%p7XTxAKVmro5MHXExb9y~68m4)U)^JXbrGOB&;DIVz%jrC zjUKFp7=v`CLLyWP0!(HDC_r{E2J!Keji=M>!0yYw3!Q}gDsl@7epCdIvDyJ?Hfm33 zS{)O_k3A86KsZ5_uM;kX{Y1FocN_EEjO6&-@qE|*=klX?9llu~h^1_q1wbGm)a|r) zZ$`S}hc$LB5AF&fd3qKJ1ECe#P$?U#3bb~XcpsjrP0r||zkobfGQx%B(v2s}JJ$i^ z&<~q00K$o#aeqR4bb&$sDBR8ZQXB7)_tpXRhtwQsN7?6p(I7u`svW9H*sx3#xWA+TJQk4M$WoqVr!uG$V@jvdS3TgN|& zg7CLGyp2LHvyn`ad!QPZvm_7ff8wlw_97TiG%z-brOnXX4eEUbOw8NkjwF~S7&vLr zs{|KI1;pq&EVG$5a)kF234GAxTT#nbXwP)7qUf-{q?XIA`SYU=Ddlqd*`I(WFaOZfY+PL=>oweBWQDF1Kb^fQcIqI2#ZfApZ5b zFuEQO!GI_3{g!94>p8+)H>}(6^7h-nfVB6#MYYPZpWSmnk2Rn1YmJFy>`O5_S<3Ti z86kKzLc*&Q#*=<>A2KNrmx`sti|fo=TPhJ=BDVI^hfZ9|WfH+(%+Kb};|(!jgHApx znOY+DA$u-B<%b#;;I})fQ&Ij0&PH-YD;okCa3l2q$})S@CbU{_|De3&m@F;y7Qy-- zg+#X!pyc@H>%WVRsM0}nj92>+VBH9;R*W`5@U)o1)SOOXFjM}Eq&{pZNM zL4!6fxQN)>uv;%M=$^+fhZ3VEecZ5uwS$b0JUufXa4}44L?Sk;1FAjTEE_x*t?bnn)CDsuB@UG@S-}W`>>Y zP=*E;k8nwO>Si(=B9sDwK2hC7NfIAbsWr9~3r-kBY^p&Kr~;o-W5-DR8-RNRi{PKPQBUft;)}d)o^$3HAJ$ zjv=4=`GR)(AYDogn>fz+g{)9?i!%7e5dI<#ZU%zQz+pPdZ(9tu2Ofusw zBV+R6*&w5}Kpl9j(|?&iRxuWM|C!|g>i-)>oT8nu=BLvsiv0xwiApY|?ARH(XB;n` zB14Ti^%}<}g)}jc?H9Qcnhk{Q7q4ST=3de_uQrO$_o1lmEyW>NTPqRTU?8Y=5k1q4 z`=tKJTl62C1wa=pc+uLr`=GSM#J=Yu6lAO-Xy~8;br7g>opYO8(LmQpBpD5KSJw`k zaq!Q<0m?Ex<14ExALjRsuwj_+YZ>8+$KQ|f8~EP)|8JtI1FAB2Dzba@GW`%9XiwH# zSsgFMN<u zZE2e%W91EAQ!MoQDytl}0liDgYz6Aua*zFq4Fwlji$DvbU)gU{=EB> zH1w<{!DppCTa&ZHlpVM&D^?fl7u?>P7Qno*iduY-{Se!pL^6Zz_7{eBlu+3|Ma$n$ zmF3Mh4kP3I={2{qPY|dlp+@;LuR8{Q+IIE{7eX()ci9ax#spUaRR80D5QD6t$q2<4 ztXfM9nfdd33ly+=DuTuz1tQIbA3(Rc_73<^=N!$9^|s5-h!o=bcjC27Jy%Bi-_4&f z@!|lw6hHx`qYjwV>Ql_qs>p(KK^|BmoU4cm15uESP%=&M&-wOkp?Gyk% zA2HzRO1#x!D3QLd`Azdxh_N6q;*Qg$*fEt=V!n!D_N$HIA;|eF#M0sjCST@|Jzb=5 zyl;7cDXW@X3;c5mhKH85aR5+ajd2Mw=@z5ev+4EVmf7U zWaRjdVht7+iBB>AP;ke7x9Q%0=jG>Ms{XR@9ONpP%;9rt%Osh=SInVG=`++OY-YVo zq#{_sU5J6@AGZAlq$kioq6f<~R~*u?Q5X{P3>gI)J8=G-kf6?38rbq-PYMSVZRn4w zH^FKAF`!p|`g)I>ar8(Cn&r!agZ_AIm4Buya5&qXo0~q1HP!th3bchFp+Ay@xraa? zupZt~z%?2e*pcX7R+i9Lfq}HUrNCL4>{XaQYNgjYgm_&pQjPNM2%@Kn=;frpp}~On zccGebWC01`8P@y5R;|WR#vV;B^~;=MUJ|#fEAj_{+WlLEFJp_{d6`KsKkVZf`+^J~ z#J@CFC4agLv>93<6C{*Vr(FeXY-}DVLAdt|QA1tcub*HAy^WgDn;s(#+i-eW39MYQ z?S>h!d4zMqS~Nc+uiI`RNFFrhyPzirC-(Ij@C-Tv+<2B$en4F}a54dP9H}kSixEVA z@r{iLvK7tQ4UkdwododB;em_)s`xYQd;9&5SIvuvKEbUuF`mU4yZg*mpFia|tTD zr^b0DCC3@Ks9Xf!kIzQ$B?)|=Y6nUWb+rZ(V>7A?2LS;|5$r$$ytvR^`Cm%RH^c7M zz5qmuLp<=PoBm_f-`wv-rvYvdx4AX>QS4qPQVVOuy?oy$wfiooP#sp6G#x6X0j{ot zI^l)dvuPGSrWB-C19yWU13KK&$-C(Pc=Db?`CL_hLej|-P6*H+S5<5@TP@;ZJ~nS)w0ZzRWm(NBdhH}b#DiR z7lP`N`7G+xz1&X5IOSB8WfY8ILEklGn`S#)qN?}yMnJ%D?tsYB&CUxNu220PXET85 z%GdF-?G$_95d;fL0YSR`(v$G>2r{d?L|{W8^nc?syL9K)7Zd&s>U-T9!1@jTa_0zT z#aH&n>?YS7(O{kBsO%%6d+ghn?Fas}vT$HOS59?UV)5Y*4~`Wu#<0RzkGhkp>W+Qd zu>l6e3UEivQi!)}|J6mOgKxaZRpyR|(+jA>>u0UG8`JV-WhgD> zn`$jNFuhc^j1?WBRFO229|G<%u+`9v>7)EW{$U>k&BzIkov02-r9L07{N|QoSMYy9 zwW+c5l~xv+kkc9WIs%y?K^!SYNOt)-ECgZRw^O(&bC*4u8!=&ThsN_;Qp7QiEHsaT za{5eR$i}p$-us>k(!lrblkMqBSzVxoZQ!10TWI!ArSq!FL#K*~bw}v>ij-bdcY5j* zmXUka6)oI@URZ}ls`US`@scDtBlBzL92=&qJFGIVnC`nF5m=CvfOghRPF^E$%A=)m zj3!oaK{|ZZkt-`}8WF6lzdSArkC7Aw8N-?n4IrS6V-ek3Z>10T8jNcm5Ho{Aa<9j# zSz-FaY#;5E{lK$PiDnD$0#hhsa^%z8ZUp!1??J5~6K z6a$el**iE>Qk2?L3#kR#98IH@f_r z!A*aIeA8$8#lc#=sUISELag04EGN6{qWHH zO9(6lI}0A_UwvSv_4_7=?5#7|>i!JChC&-X5OW5tc=K(EAt)L&w|5Gozaw3KuQX#S zr!1*u+5+}ft;Wmrz!MayYT|bDAszkT-i7OH3`!d?$DORor~!Dt-b+@?^{NZQ`Qjcu z_`t(Widvp8l^bIOs+3GI)gDzSt^UV}Eeyc-KniUS-$c+BRhFC z*v#@u6ca3di9@#$_X~dR-!)SEx!;A>ceK}ZwbqIL$PS*=JL6-}(kL?VKFDf5sNQq< zwRTs>TPL+!Wy>chm~ixuXo^nN3Eby#X0Y)tmAE9KLi$NiN;!oq20m!q`3+Ld93JvG zQ;Py})n1d8N3vWKr)XL^5$UXDTL{=bH%)v(ZxL}fHbX{6rhoOSqpa;QGCUj!_YW%D{t{|IL1ka{yVmQiJ2+t$7_-hF zR?uB49NEAM$G^_bYg{v~h3x%9^iVpe<|6}k@B2>`+ts{o;%r!ARl*xS;;4IoB+F9% zDjjWReP-};0R}=4-^He_g?W3q1@Q+h-LiA4c25*c1Fy+B0Coy+wTvETxgmdEj2?IO z3FtW@_V=taS~zGb2tmJ-TuL}E4fJ-f5>$`jV)-e^)x_8VxLVts5cA1+jGn0!=?hBbp4U<;xuAQT7Oxr zZ!dXu{5A4eIzphZig;(r75CP8bDz1$NB8{DD_x%g zBP{5s*0wLui~>ZBFhD?;LLfmwT9+kok#Z)@t-&nnOK4TDj?I4_Dg6~@<=G6YoCd_`b6bdvz31wN;CSSBRw z=E>(|waIM?iUGvv!}j6^9q)~)n$v1dZn4O|d0mX{*|PN%ABr41%{+ z(e}wU*h-4;txEbgvI(p;%zu?-pgjVA)=Ns1Uo|ldIHyS6Zt~Ayd{6HR@}u8m$;qkf zKII2u)>$S(Ja|7msj2Cr`+k&8P&tQ(vUUb1)A{Z?0q-YZW9>LtV_aw{VbK6CAh9hL zJO^b2K?PV*uRPuz@zN#uW9gG~h6+SPKBq|%nqGzxM1f-osps|40Q7Z)?OKHl0y6LIDZ#QpsJ z`!~e@YS{}Dcsny?27TKZezEoSd}-*Y9dqSawsQ>xXZOkO$S2Y|s}EbI|9W#kQR6s; z`6oD1;@@GI`L@K4G)@NNN@{pIm7bodyG0h$Nr(v-g5@l8Sex?cJ`uhdeSBh%P>b`$ zxV_GM#{OglGkQ<`Da#MWPBh({NrXb)hKzT_96xo=51y(#wv3c@?I<3xVPVC8!((Bq zEoKHb71V1^ytjQ-rck0&({teVsy6YrHS?;5T}g?y&C+#I*?R@2tT%-(G6N|i{%b;jUC)(r<4dzGmt!_KIxKCk0wYCZwzIr|K)WR~zP-aOXfAzILqxi# zuv_^=x2O~ll*8OO|DHil*4^B`#Vj$3A^syP8U9;y*2ERFvq*)(Rlaud92uEaM?Su0 z8&-4GtI+MVtN62OToxT)`-}ZK;|O?PKPi*D9vjFTPDOV`>`Lym0auFEwxV~FnN>MB z=AO!u+TH5ctxc`+2hXTz9&df}lu?fjaycs7>hcLL!^nH*qPE%H{|cwA+z=1UsU=p* z3XrVlt2R*!H%XWc@^;Q)AtR<&e4H^!3uly2+NE|ipoor>X9DK3g1Kq3sMy=>Kk0&Hpa?aCAIPh$)t3e1X~3?IoN(he^4R+ zUWnnDC!lPPYPNUp8dgpHqePP~X*NIGIYOaEM|tgfYq{R74cFjcL_)#*nM;OH?#u$A z^#O`q@~y55ZZg68aL%vQ?Ox7b%g&q~Gm4EJVyYya*$hZgMe{Y$LOAL8pSt#9!TrE$ z4TZ>=ek6@_nq7?4MiO-|wg@4`$Qy2N%HRJDK|C6R~*wBLpv9d*@d^=CdG5 zq(DnNPhA$FMLPDt+1_cJ371*_kMA5Kz6AMEKZC3aRojhjzO-y39t^f!QW4l$DieI} zko&^XsyuLfft2=RjCE~Fi~UVp^pC}iYRf}HC)vermgiACIG62=EbzCy-Q1?;mM5Zzd#p}*FL&_f z!C?*wWuQoS>{xN)s>QRWz^1a+c~3Bb&89qRFp0G#6AQKLQ3{k%$lq6A@lq--jhd2d zLYw$85L@R3+cIMRuw87KEzDd7=aj`jC`imnuC2_%6+H*5pZ%S~+xhGBS9QNl;P%*OV&t%YX3-8uU}L3dxlGNwBg3f)MMeG zLsCvD98eG@tivxzkEc%IOa&hU()91tZBM9P+Wy5-XvDK(8(Bu!GgZ|VO2JfFR=3nL z_b51+F>_)IZ-NzIl9U-uexs$)Qy}U4T}^xt0|ljXqc6@tVX!m`kSB6c-)QjEOdy9h zXb-3IJiGbOiN6xdNH7WmiB?jYXL7IP(fyr=Gx%y?EQE4{O5^qGPf1DAFjU~Gp+$?R z%JB-zI{cH>LaWplDDQ<)6a`9S&MeO<6zC!Nl3`57`8x^Z9)ifd0om5h5{ZzRcE=dP^S7T z63D2`Zv_N%AsnS+(mBJ2WiMlD<6js?UY=rAAy;|OlX$=7UGioS!T;DtJw^0{GrT9p zVi`AzMtiMAr4VE>&**&fD9wgqH6gQg(hT~%-E^G1^m22M_~bO0HhzN~-8Wfkq0=HO z>>9O1WAKu)f^ZO&VCmU98npa4y{Q6|?|qx=uGdbaiw%g7l>NEZzQ;iA)7`l@J&xaum4t3`?xs0H^-SMgjuiY|d+`=IY;Yb`sI}D70AL-v@qi^D*Hs z(_MwRB95X!V=v~UDo|Fa5W=Q&a*3QX!j2nFtR%(q$1hBTs?7n)h#A!bm$m}e@E})# z|IVRtT3lUrFtRuh8MxK>R7{pW&>BU~G-4ehFD{O^pSRo#PAuD0n1Slx_ci-c^|>no zKkAa1p?sYhc|=_0AJvt(vY$JT&qm1l=@qmZPUVYehFgj_UNuoyf@=)Hc*U8o;&919 z8$*Jr_}!H&E2-n}n~5Y!rk|aE;u2uw1mouy=4%!C6$Yj1-9@os1N_}l#Ib^jC5Wn! z!KnxGR=q9@LpL{DMR~SASLeXS%(avV$H;KX~txafugO>b$%IXf=?PH2WX5T*# zL7O+(?=74jA7PI8@jeihXdBnm)`XgR_}doxjJRZGi5|%p-&mEMVJq!&haDR8oeJud zCRg>UK|H^QR*9{-FCVa%zV%zw_&${MhMa6wQ%QfI8Q$)&e;^)7EFPP%nKqH5{R%s2 zyZxjmj0#}XwcAX_aI3uHX!~6M&_(4(&M}&CGKg&`iSM|b zy-43Nwh7oD)@4emBnDV7Euua+j@LVrE0&k#^lN3vA%7O7=SsupZqpGFk`G_8yIR0d zNz`hpe89u&cM;Qa4r9W!JSnj!28u>oO@xq@35QL47jOY(V7vOh0MBb7iuB zr~^kPt|x#@v~BWqF%-S;rk_6g;@t4h{_nvwW_(4pi=RcB3ph}Gr*D;RTmf%E&B{s5 z*Z;#-v&4jh-)pDaX_b!7=&&*D+Eo_e(su%moLb4i_|684JT*?$!<6lvX^=!En{T;O z@!&TnWK|;h{r!>Wv{Ct0K`?2JdnTrBqimc-J~R)<^3M(}5~-PJGrpP+RJD7EldK;6 z&2`UNkC1xd-L^*uZ#NemYzqTQtamuzq1+>sjxT-Q;$^ad15Nu;oMm1M*hT6*forQx z)xIp6@f+M-oXx#@|I^1#b-!un75F20Rl%!kp?u|`5LJugA2=*Z$IJHgrM(S9LRLR#xE)E z{N`dfoM%ZVAFd2}reLY|)fQ%tlIxy(iK)ol^#|&Wj)ZyJEm0XRdUFaSkzTodFi&O@ z6jjL@+Pxo5b1)lc6+%*3YVlLroQbK!C~n=rOMQm=0xU>sUlAmQk>HToCB=d zHnJVq+xYML%)HB;iIp09m1JBX#7oGs$-+9c6PrTJ(pMK9*G{{s+8oYEv-8R}1YjPu z#x{iezur!atNb48Fr&;c#g_`d1@*kDkRru7j#*nC`!xQr zB}CtVqiVtws&<&O$z2(!Mgkx^10rJ(gS(*FFD9~P2JhbkkSXo-?|dufya>Kq3jDaP+x zpHP67j4Co%NA-o`#swpgS`xy$T=LeJV9K}~TD&#E=sOv0U5SrpRttBKwRYJ1-H>c; zu#mvI<=#`e0V@NmTmKhZqYJ@5rwl!|m8Z6(x^Ix^?e$pEn=QgG?4ZWHM2=u$Tg_Wi z9o^a5*V^@6S(gy(7CwKVFy8!PK*_XD51&oy?RTNWr*q!dP3}+~m6@)d7`t*v_O`)m z`Zq1h+AE=l*D19}s4J@aH{YCZ0;Ojw95AW964IEHD)YU+4ZCs(QV>0}kj-~zjQe0= zVoLC*V}AbIau7DWcmdT*a~$|A{Bmuk&y@!4B{o_R2#8yUiX)O_)(CNo;K{~R=rkY$^qS4XO@YvYUs3_F+(H`S2YrmRNF1z-%%p;r8 zdcU|hote`3lqID1@0mUlN@Kx`vt31(mX^lbSYTF1QySrT7ZD@LF-UfRz zbHthP#j`~7tFtnpFur-7x##^$R1X{+wOb_t*Rxkk31s@?Z_TJk;uSnvk4nER!|@5M znOfHOl8c_sRV@%d#^7$9jZa)0T`kh0o5Syf3dq}H^0kL2K(Nlw20s${IrPwQWIXZV z=9DkXzKZ)ghVC}yn95b(;XJ_k;g-<+V?a3)`GYsxgbgnE0ii?jBGFi-f2T&ix2(?^ z%zAC|JZc{=qgMTYY`q0g)?L>*;dP&d)rm?8?o^D*)oou#OCIH z%{H+H5z&FZ)>zEHOsK?h-%sQzLt}7&IhHB1wbTw_1-IL@$=$I=B35Jxa6R-W1#B6M zkCCkfHL4oNJq{Hf%kb8emX&k1OlMjjZ;pmL)8Fn@nyio!@H|helX$^kQ7H9pV*?k-b+$r$=35B z1*(GOUQvAf2A_?l&La=q4-IGpK>!Un?*DG?`si|5SI0-}N2JU?u6cbT15$|nZj9aM z0}q;D;k!Vc*y%wHW-pD1P@_167FF*@-B!bwJbslpnP}&&vYMKqP-mFhWxjT8Jg<@8 zQNZ)+w>9mojX>cx(UH#+k)%X+HD4NU{H;~ke&uH`blrG@=Wv9^yD&cX+y245fWLsB zFCGgnkgjm~CT6l@CGu=?K)XOifS$#Az|EELPeO!f64W3VVI9OZQGlP80tY*;dtP3&g0EzMN zz0-D<4vu$M_N$!OWs$h$(q!?h^qy^aM7mSZAT?VdCOW`qIHNpwshPZX(@7S-EBxGY ztarwbSp^$yK8hnxHS2mqqd{~RnKnIMZ3_Lm@%xJp`d23NCDQ}5`#iRMB>HWU+y*~n zfJz1{cK3z<5RY#HQO}Njj?q{J|Hk~YOrX3O0ZC* zJXOO2cL6#?4tBq3=AFY^FX$|XpG6f9g?^%8fj?qjh?b!Uw;WM;6bR#ZYw@H8He1ce za?cWzD`E6*C`yB;dMr=lT-K?)^h_HSkG5tNUZf@8P^932^^eVA&WQWW-2R>P37r%E zQsQ`uw}aER@s>VW_V{ke`N6A=STt>~?^PtcBRpFs96 zy|z!A+5Sj=&X|A)V`Pv7)3+@5DA~+tG|I3rvHnVvDeM@He$TgkFxOPpg*+EfBQXG| zQrg{lG7)vau=$3mCEvH9^Z#m!FxRuI30F-uA7zONzJvoH+uo@L&nup3usfee59$k> zqy7udzkOJ|3Ak>uuOe+QeDe@&+=Mmo;$CCt+v0z5aiJ4?2^d$pxG|3yhP9ZS9MY$3 z^{$DmumbCkeUwHJNWIerJ)WJXgl-(fNJ>0mtE`x%yLRy{BtPCQcErItvrngMLMC(^ zK@BhZJFOM8lKh*D!Wne>?zQj5EK+Hj2r)59(j>@0e9LA{Xf;ja|3G6toc?>uES1{^ zM=_HxaBNJ;r`49coT{+It_KUe+ez0q*N;M&VF%>l-z)7PVz(-tB_%HldY-UW1o$;|3%~z12G9= zI%%I#YwV^gM~J#;7Hwp!zYqLXSnRhJ_@u9UrR+o zxQRdf)>+y|`D^37csTzAAX>{?*sqmc={uZ^P@?%Zvrp7i+5YC&67Tl4{pv#s=+TgD z>e}5`wh!YvsOE*qW)*(elGL@VbDNv0JUWB`1^%i*r)5l1os8#Py*u>E{BxAobH_jE zgJV4Ki}yI&6USk%h;uOnKdEWQtTUqTNEyE-9g|#)2BIvpw+^M%xNHDPKkk=|a zVl|ZZU11v|D=8RW`v{W}H-CafokTW{a9U*kS6I{9b^Sy`Mo9g-RYFd_?W~y50zTB# zXvPVuRmUFw=wyqPT6Jbvh?(wtXQ3cRgg{&Du_Ydc_lQN^_ zwO2i`)W*7sKA%3+%cp*bq?u-a4zr{qWO^8YzXZVgr=p@F2t>~pO@X(lD4cYzQ_0;t~C9XT>V}*Ck8}c=Hjj&Br zj$6LbDZGa|k9;!!wI4=h2V(uDI}1*Ixts!{knf&86YI$>g8Icj5c9%9c z`*R$JOMXg)!=?VZOvl+!q@oT!wWfrWm3O0eaCf6VgF~#W_8E@R`i-xKCNY)so{mII zS#QzzkimZh1mAJJz74;z7D&n0dspNBng-VG*(MG)k%Sf_MpuCbf6YeWaz0ZFdTj7& z3LQb$9`G%lTOdp*QXP!z_ao2Kj%N030w*PoQ=(Nk!2lntM6#9Vug^wEX8K#zpZj%* zTUn7To*JUKMVZv+zqO#GnAn?a^a`fAIRfC0l$JDSTPJOymmC{>hWux5i=-NGagW}WXzBJ@&&oO2uhQf6~{aJ~$rM@c)-`#fg!nI6XA zk8X#;U#CW5_da&^aN;_dJ~lh7P z16NFUo7wvlhdFgfKtwt8kRX4j<_rm(ZC206d2S|OHD_I=ekU=f6tgjAc@+jL`C0R0 zXU^A){J$BV03_5MTnYg+NKHMGOK}J%vU|3nhZKT=g*8=90UzEa1|IVK;>C*!r)bgT z^uG@itW;ImrtH}Z+EF~Kj$>Ec7XM(qqJ-3X4}9)U*B#rQ(A)_A^I7eRx^Id)AnDR$ ze8TmE6}@%_YAt_X_*R+XyB$1%{icb%1CSu$HY`uKFrA5vJv0b%p|&>9w; zN1R-qwv=!CG!WA)_&)x4;ZQWq1F9Y9=saOHz_w8U1lnx)#VKX;V8f5 z|M9tZ!qacQ3XmtqAr;39laWc4sN0jL)#YaR%Mp(Ze5V}tUzmt)daXrc(<8^}VRnQ( zu9nI-lf?K)Ds?mwX)w8H+sRFN3W$>Yv+fqWO#B+D2lpZh7a26`49x}yeUwmK^UI<~ zpD70U9=!V=H5|6h?j}GcW(2jR91aFCz=WET(@EZz56yKz6qhdc9yHRfnX)~-F5^QH zBKeTsJz+`O?@oSouG7@bbIiIHHWhsqG&!|QlB2ULB84t)d?VhZlnK$$cq#>=+CWFdV5!C^HXt8xou=dKoot`1q<5A<|K_ePq@!aTE!4An$OT^qy)2A=ra`LS z?wR{6u)EHxD4Y|(HtXx9ZRqsCGZu0;G5N-jyl}texZ`)UVhf9Q3IsVV~n<=&3Gm$Sn-|qa2FouHE?d4mrzha%U@nh@ybkxI^=kY27$@%dVb_Lg}AS zf6donxmY9Z`=%X3jv|fg^wjgkZfqxiocpXdI@b0%Py>0E0(@_f5#}+m?pqCcC10qU zu99O+&5Z3~z9H|llvc`vLtM?Q!N?u2Ue|FCn}lE`S(F&i7S+>X;W^Cko|36gz|SDDr2JyO>cFIWZs;tgZ_*z`y44mz zV75k2-}*o*n-`N1t+(NjEN|#uD72toPh&$Q0QzgY*+KY+TeD}Lv2dJ@yx4x)_%!}Z z!wlv7LLD2<;A4$P!ArO#Ce@us+D(k4w5)7b7!R--fn{hF1kgT(2ORv(94b(dp8*$S zRlphrR#FP@mtHQ}9)pCuJYi3h8{2fP1RykD6__NQ%mhxesX3k9%&nL>hbw@*S*; zvAK)yxEO5eNKP5oNi|41)8e>YZKsTSP2e%4OfOy4u3_f zXgHcB?6Fr?Utu{;frOB&{J#QQ!Ec(qOnz5^|F}x@V{mgDTexWiy=pM_alJ6rx^ejEj@VT6fOv$&P=Z?bEzgk;uNV_y#O zJb!^^y$$s_zt^mnB{!u%4npMdL;B|wZ5b1vS`%230wHMt6FaY@*qzIS9#@!5tKwgw z{*Ihi_zB@+h_v_UGeFv|Hxoe?{Nv`#M?|z-iwiD7X%MG03(i22XfZjH(mZ8aeTc#J zF>iYp?;yCbzw>K97^qG!Ad(a>LvC(X(=rm+R^WOk@8od@xxQDAKC5K`rL>I3Knp$ znEY%JT(p&uc;9@vq$RB^@Tl+r{X#iLd+A4=+X8Ju75d@gq&=|;(4Nf|zr+9(*5*is zqeDmtbhn9B&xm1j%8S3u-&9pJ6+}jsSUUb*HLourZmp*MNp(qe^3za1L4uPRW>BB#8!~4=HKj1rr#T?my&TK{s#3~Un zqoYfy;V^zoIsqaQBPqp$6_=zj6!rZGbaFqUHLxSo%5W)v?c`Azp{D;ZQ- zw6uT*{8fP}s6$@p*DF&|D9AAr(}Ee{pM~>%TCHav4l0uvMs$2)Vu-N!CFC>GytK5m z$5G1_9a~6GyK$w`q_j$1R6_1rD#v8=+dumNEw~8m)-)2);mCtV-R4&$+tY>aj~T>L z1IaSKVeDLSs?1!?NA~>aFmO8JEdqg`q^Q7Ss(bnc;02L;+v`pji+Wg_No>7=OkL-t z)DAO)iFRgPU7$aL$}*E^6Xn{hVLTt6;B-boijST}$21dS6OtCWERL%anZj@tInBCI zCwjQwa{@iSx+2?A)*y+65J|AavYqRTHBBBoJT1LC5_{aXx>0*2n%4N-+60+^k%Sjy z0{``;KQ|%}rr2F-IKK@Mp{J1h{|dY7Hpg4aDx~z?Fk1 zFpr-{i{AA;BG^D6IsGFI;#>e%b(?~meygE!xL_N-1kLF{6|+GDQTQO(Kuk}KfB%Q7 zpe@c!mxSL%vjyc-h_(LA=g&)Sy_3L=<%k;5HZA4q z6u-IO+W|Jxl;gy>s^2ZXUx=??i;?)?i9jy(&UYY|@XMNMzYu=ZuxdZ09|Nnx|E~%a z*762jw~r6r&;F-$ofE2Zy~HPmh@Kw;n31Kb6Z^Z%{}GVanwg1#0_ljA+3 z=vb9PvtG64D!!)5E{TmP#9Sh6tc?!>ogn%==nXBJmdj0YE!tXI0TnL29wweZUem-e#tQ_-e{Kmw(S##=xoniKXn`1B0Z9b>F_{*{uBrr?j_xltspD> zmM&;7?GT>>8Prs>3_G3si#yHr8*0#dI36K#MhVe6q;CdKqE|+ z${5BDKddS2AMcS4n&px&O+$%>xSN+bjTc%%&mXywmmjD}Aw{(**6y;9Y=hqYO9 z#gz1B@04TE7W(P;ej~)(HPp@w4#MZ=OY8grsp6OFEs^E3JrAEiky5X}wi@zX|CJ=? z4^oFG%%~RS!V{o%V!VG34e=m?-UrVwP<-_*XQA(e*jPs*mbhcFAo9609S*(Mb`~k` z@u^b&s8;(J|WSamhW-G?axO@_@i zxBvbqgqf*SJf+@&edP-=isSa{!Jo89(IZ`puITJtHUyk6pmIGH{r}a)y`D1GxKRn; z|2R0FL1ne}{0$F;r-n>G8tI`}__E2btr-w1t zM?#u8!5n6mfSV21&!$I~N@L~`$VPE>Fp$ra+q|Go>(nR!OBVRvU-KDMO@8eovyVdp zVnuFcHwP}qWk`+gE)Rg|>p{i1j^X&*w!h;O329~FyZBVS@c4UO1P&5$h*cddAt50W zQttT7AaLM>TfO^v#6em(@zs%gkHhcb;(bFyLwkQj)x=BU?8HQ@sgDd}B{mDKL(fJCcmPt?JUAnUkTLTI_ah)d zK=Zom*CL*M0vzK#&0aQ1dJ>utpq_-*In+YMJ2Iu$pJ~F0`x!eu?mnELYVF z52&jw_w9KWQ^$m9fgR4rR4shOO9~_8Hr|mllwULi@^X_Zk((=n0*XHLHZ|mR;@}QpczO9$Nfoo0Ac}8l{6`Dkspwh9l3``+d-9=m$y~`eu60! zFBM6Qkb$m^llDz#W%BaCh)`_Ue6%>3{5c?%MHd>@P}YG^$z5qvpUEvKKt+CdeC{z> ziZvhEJft?Y3ID+ucuVtj@%jQ6d7j(Y@#!YDzrrs4f*HvcTD!&;-0S`O=x^gTkx#)m zC!l&sj2Wd0RUAAiQ8MUI5c92{ZVPb#5zrNUX{~qvuObn$rJ}2g;_vSdnXoOb{<1Be zQ4rmaM$(79xvsn>QL0^wl)>vj!=JG;*5|&%y^|kat{ch2`ph2K{Lb;rQ}xqwg#Y*I zYp>>k&saLa5{^;BDrN;-X2-5a-K-bM&uzb#SU~(H-GcQ31&%x$Xsv?l z)(`~8-z2|}LfD}|Rf2|4j$}nNOzk)WnF)EN`>8wMX@gruQ*0;Vi;|UH#2feu1 z|2z?Y+@LExq481PoQ4k$j$lRW&P$Ghp`=)efE3-`-5oUL1uUNre)l$9{53{M@&EO{ zd=rZ0v?e9t<44a4sCo5#@)omh#y`Iy&l7cx$OU!U>yFiFBPkkTxiC(oX5(S?=9HRZ zGDJz&EJDMy_<CMZ$0)?Jas9LUchx10JJB>1$=>mng2Nl|J8DU20vSAoEOi z&!yo>es;8P&im@HV2D66TxvSE{+mh^%fVcc^{nIK%^l`?xq%tX0U_>9lr7Sfc}BUs zMEu#m@(V1aZ*a5=_}VLfoypq@*AP%H!Pj2%faW6QYTE)Hz0jd47idL1=MVtuBxdGh z?EHx6Po5!n=p<8j4>}3U0cFvsa6h+7af}@^7Q6Zo=WTe(dSiUOL7!cN#+22d0)eni zv!u=`g_suTU~Ir1R?G*^n=4redGX;6^UEIiy=y~^jIiN`9 z&2cp`o!0V{2+2>bZRBEtHo+5SX(DqWL|tspmEAVma?vS{(f4?<*54Xsf=PUuHU9fIcKjj*5LoA1gieFp_Pde!+$iGlW7PF0G@b>qc<0_>$Uc!Lv^XNRE(+ zlQ|IBr}@Ru$>_eTWL&BPI{|Qi_AwS451`6cvt~DdU23yiHt1mHz)v7PcrfB!ny2X` z6dCZ#xRDGhUz0-a{dh=IUS(7K_>NRqPrvMaGC5Fjv-*naK^4tUJMEmn>*Gu53*JuJ zBUdY>I*{*cJr63928=y1loPH3f_R31`8ZJy2Rmk=q{}F*BL}E8tMAz3CkOH7=7Ga| zd1H9(tPU19lM;K>v$|J=Ud%`mR5#7_N^N3hw&?_|R@jDavfji}Zz*ndwnpl=a14JL zGW!Jv>SKp#*_%=O6-Ii7RU=Z_EMPR})9-8zw8F9Ct0J0E{_9rwc83NUNv73+&i6O)}2 zxk7cTRG=M1eJABL6HbY`R>qwY7!W)! zprK!qlA=RAj%w#FK#R9&zDZML3Rln`Chz-q1W*jfK#8varEBVYKq7POLdBXRArBGI ziGaQA|^3rW+(*jlehp(mRQ3>`gxU0u?p%j>$AykGO*R6P2oB4>zb5G-8w z3*-Z@X;U2)!PkTsG-^8FFH}i1(8PYvfv zqX5UV<0q5jWyv$Nwnn0^%i&~ln+-EN5#>nmHh@miVTAOMvzoEuHC%_zsq>F=S`+>y z_zDi+W~Mw;k|OstrX*pPdG#7-3jy_l@!!w;MNB6!FFAJ{#4FOXb?DOVu zt=d(nz~e3nxJVxuwsJFPffNNW-}&9nN`=^>_F`?r9`9@iAI*fYski~BljFt^e|*&f zBrWIR_*QS|IGv`Y)sw~Yr~zy#`08ScRbbM4VYuI1oe@`M0W7Osd+wkUwv0w;rgO@K zK};g{92E?sp!_tT5-J9QE^N1vSw7Eo8$kvMv2(_@oyT`FGaIkF`Om<#-%JSu4EQ=%9XDVzB-W5`(&@##{?T(lwK`(5|Y%-)_okH1}^%nATD8} zk1xR&bxo9N5TPUWi%%tWnzLqu!w(#-Mjh;x6oKZ2002p+*LvmAeMJBqS5pYJP)XS8 zvhRFeKxA9fzs0fB(Y<7Jk-Y)h{hK+E-Z0~0xwK2*eiHhpT|5D=(sWCds;#Z61WAmL z#MlBmrXJu?a|3EPPQ|N%MB}TltUiY_mHt_50q{&o62z_t?}(kd^y&%E8pdj)6HBdx zWQ$wVSI#J1;EC{s1NuKsBXjkrL+rIETn6LE-nhUwVNbxDW7gpt+hdjVN;z=C#@-8& zpJ|E6dwY}FY=kzx0Pj0c{mX`o`lb=XR44?ZA~xL96BZ&q&fp|o)Kl^gUH3|n}D!5rpyGJ~I)M~hZsm6t%uZz3*VqdxzlYS3-J zpw+)QO^f?o=39I875=1P4dEYJSIcqsFEvbQ`?gt_)B!5=3UhrIf`x?8OSu9QaH|8& z0n~!gC}P(FjI76rKiEM*43aB!##NGq7VqhPX^RA(553V1T?y;{W3sEp*wFaX>uWrB zGby9b`@SeWmX0Y_6+Cv=;qu;NJfnF-UD7c00AF0;t!8jZJ!d_W|BVZyt?nW!Ko8RM z<^!ibH>aT6se!Td<5(VhTC4`G5x>^;WUEM0A(it5lilzDHN8KRYB<)qRAOSp=gb>) zqA|kc8V}6IzPQQ&7^wN+xp-wADrIK8F3C32O=T3 zfiY)L#g|>>6^A7*E)HE=`%BzT3cEK6DS6B+Ay(7%YU9}!oztuW&>Q~2Mkj_MwwMMo zDT(ezj~>JV+oW*`Rd306YDu-5CWbKIWeF)a4#y=$Sd8C?V*?rQtg%JP@`gvh^W0RU>dDq1E}u1Z_>sUY76@ZOk5yS;fV>H zeg(TL0AY&)`3?N}*i{BU=F}Ob4AxQ@9(kB_$n)xY5mbdxNCWmo;U#>mJR-r64pzPe ziQ z#3aeoaQwqjmu_@)H$b(r12p=57m1R8Qn1KHL`Z)B{{4SW5?q)KO-&SMMR?lUQ`wR| zEgnUg+x)(8uz9G;xb!+%F{xtS_k^k#o>VCH&2g*s$v6R7kNmEcFdOu z;ctS&?Q!{Rzj}K&>R0@_ypLLBplGH@w8EFu<=C52ZOnVsc`{Ie$1)AqJKX&M76LjE zrVn?lfa*}`mmqS8c|R0$8&+x(tMnv?=i7p?1|P$wzy_hYcZClt?xweIn4=cucP**R z;P+WQ5D@H8tHw~{t?HkD_C=;NjasXD$#&L;y;b6!U(!Od$NrzV!rO5;yY#bIjCtjOSwYmE-$jutq zpLQt@xjqi91lnt1MmhTj>hBKIFpr-1)BM2;%MH8uJBMkV(=^w|?Fw6WXRF56otrge8B8ViB6 zs7qqv3)#X@#D~Rg#;Sj_0)`0^r?wtDn?#;^@keKadAUHyGo4rbaKzIp`>- zOnvx$99E?a>>m18q&ez(F^UE5MpUy)mKv7-1Et&LXK?M`Te*b=Wjc&EJBTKgvYMHb zuwg#_nA7TpDoWJrcQR^?1%}>-W_Lp%xFMjSX%u-?`QEvGivl7a6eO)+qE1!w*$Elc zdC#G>0L&)tN4iPV+}OMK6gGQicA~)cA)%szsZpj4`vR$7m}qEOh%ul*?9i znJ+q$Eb^~2%^fi!q&ZZh@|O#j$`zU=|Bsk2!4@BcGoRkm+I>GB?lT7Vhfo% zf&|Y)sB6s}po99IjUW&y@12K?c@r0kUgMp!Tj8rJ;V4Q=i0#?eg!^(J$4dxp_OkH4AawCZx|wP2J%9m*}Y zSs!yOe7GH=upOsmwabDTkc)47@pr9fmTPc=&f&lB{1VR=@ukC)49^GR36R9#Aezpl z+6n{7Ctg>GvaE`|d7a^!_4dR(4$COCw6sVo# zt?gO*_W5um?cX(Sb9+`E_aN{*cy{wRnqV=^V&dfntDeu3udNcDQHYuJ$a*2&B>i!Y zG90aI-IG*l0nkBU{Db*&fhgUFhM+WrW^MH?nEI*m*L6qF&eGc-Z+MMdy{nLrOFrK= zyl_{Q`uJ0=y>EV@-oc_u6Al)(V{{aq2rb+VE*C5Cb->h=8d&Ql0{<;}nt(I`p1vOf z$qJ=L*_rjU8jz$Yy|rWqrHftxh+@6)q&|>WuM)hR0Tsdg^y$;_AZr^L4GmnUE|lMF z4VtK}HvH%=XNBjTeeDA6UpmXdUQN0_&)ihzcianD&(*eJvb|h3*zW`u4@Z*DG?vG= z3Xwm|2t3BuefCzxi0cJ*m_*Kduj)5vxH>)`of9JDu0j_YPCg3aMxJetmPDocKHhsm z0>Dd1?0#{X%&~~07_ZrZr{AVx=70B>7K#LaNEl`t4-^ z0bN*qvd?Y|SDu7(zs3UtCbHOpmORvE6jTY9+>=iHlh`Q8S>jHhxmh>zro)uo`ZC9Aydi6oQ|UYyaVNGUOyHJ z3W|-3>sOQO-sh|=MZvJ|2C@GK;Jyg(*I`hJ!Q+exI*C7630xBG=${XXv(?kpbv*s^ zCNVjAeJG9d+4&8gBxmU0@Z)%UZ7mR7k!#>(I%ekX{sh{!b&6p!A^@Wlr)l^q?q~rh zsf~+=dD|jyTyn$V~yTUYRW!d3hE!u?dbGwIb z6!z;>J==vq{;mB7#}@?^Hj^CY&mmKoj5^qtAS46@0asFpES2?D6FFu?h0}&~XjQ+7 z1s@5JXIN`(7q*Sv0hc;6+lIU?tWGefDZCZjlldhhO1PikB};{&xH|hs8!0k z4fR1oNMS1Rb-)d1u+8V6I-l1XS!o!IB+F=Ob|>-zu|skbwar@q|9$>(i#xAW$L-<) zCIWIv>JiwfK;xeo)woB(;qPj8()5#iB9Xz7G2W+k&0Aa9iQk#?j9wNdH)M}KqK}nc z+{Z_#xTJ)h>{-Eri={-A!bY(%O9mq4Vn70m+l_LIy%Q@O+B2?AkcWXu%u#5_4UIX*tN)VTCR3x@{#p`NkqpZX%3vP^e;b`eo_ri8hxAy(L;&t}Ehe^&y5Rgg{aPejLJv~6)E@C5^_zuWL zwJ%OExQH?{iENjeYM1tUzy%nWkN^#8n)w}*hQK?~$*T-zix0EOz!qdve-K}LQ}rR> zTV6r8xO)n@qpK@yq|^+&WUm-S92pxMhLqGqisISrT}^r-vjhkRbhztwr5W(DlxC$d zZ2w%yJo(<3jlF3Q%a#x@^h~R1sF4ewAf7$g+j78${s*4{B#j1#v;r=5Fy$x#iuDj!1+EB&@rCJ{DF;7T3p0~AvVqZtb;bS`H&n)R;$1$1wun% z?s=(2OTqQM#nrZO>S!AOC4X2QUCIHy!E2cZ;zmYDZ*VWx*(+>FvtiAsIBF0fu{t-PvZNgy##0lOiWI`#KsOa z@PANW8=aY{U*;0YUSYt`_Xq7sm!oB3M8t_9LHM@65rXi#Y=9Tq)@fvP16xKXp!TLj zgdt~w1}64&^$sgB_DfBHquZ(l zq>_)dBFp#u4KCEK0q>P~cht<5^veZ&py;Kg>RfdS8*?s(*QMy65f+Xb)I4e~r#cYh}_F5ZThr z_L>gMo95HY>=66PYwdVB-NE?d%$@b-=+J4r)j+XTdJY*~*jA_!3>5zB)W8+e$*9lY z7x7a^&rViP@C;eDeMa0z%(i?*dRH2?zPa0GzAKx7O-=Mc+RlYXAieV~Lz_2foh#9p zYzP##;iVhHR>Kszywi4lnA~`rS?W~*PlYUZHMl%;GoA19n|ZrZ2VD!j8=SXj`nvuz za-qGidUe-AtbA_BcZsLtER-Ws2~*R2EC~eidGa^xH5e`Wqsh!VvWkl4V4njW7SiJ4 zBA_8=fBNDSGWjZ}N7uU}f86PSk@DQ!T=41J%Y#9%_n|cKphpgT&HAs1fJXVtqKgMS z(jQin+C^$e#(7KpRYK|5qQq)jTU(gK#BZIQt59gj{kD2J`KK2i^`HyLE)xCUj6MY4 z=|D$=78^A=`C3@+a8KE&8bH|&7H^*`(mVI9liuE#O(l$7Q&r~f`w5vX`_OvVeL7GQ`?>$(lx8mqV zTR=NfT-TCmH0dYN?De$uc@WBz^PlN)@8M|Ni*4 zK&8S?`A3Gx$m#5rwacJ=%si1UPInYLuLEBN1^Imwq<(tvBso^Kna}a0S`bep=M42| zWBZ`b|H)0~OZ4va(a?_z?+>sO-4`5}7AvPBVP82;N4DfE!O_vm$XF>+g?WjUW1U2V`k{)StI$UG09O&0VmI=y!b#BoV4yr7|F9 zpkZf^1Ln2kZd?N{8$87t(X_NQEWNT$R;tcJ8z+uQA4HR~AK5=y2`XY9Hxg;bws&_X z3Xm7->?j!+io5k$d3cfmJO-j!|M2i;tZJ6wO>cJn-KH6$rOlVS99GeuT}A^<==s7Q zK4R`y@M8j3V!4i%NxO(hjhEy`kJQ2<1Z7bvw@kgo95tf%h-~3MP}60g8rC`CuI|B( zAGKvH7y0k*bc91`-_yPY;B$U0)|QACq|NuF zNR0OPP;0-7#Xm8Otgc}#x(OaKU~3zQo_h)?nwyU?^Zh!UIcmyGNOV`3$df^zn~iXD zIGC?3)o&pPX!!iHjAWqh*!g6g_o48lBd&l**efwVpDI2+-qF$Vb0|2WvYf9!<1J*ed*8X1pH(LB-t`tE*9z#)q{tN*j_+fb$L@8u)?lLL zr{u7fnojBIqr^BjTj6M=M`ZsirMFq0^x!Nny zvFZ^f$&qen7uXqR{CcFo$et1ob*G&{lZz&Y=?)^FV4r-;=M>ptqZ*%)wxo=$35KLhmH-sw>DH3Tdr~_qC$V6fhW}ZAOwEWTEEeO#v%2t36JPAvjE$ z?V0=^luCZPioBDP`&6rXc?|U>?WyL#ZSJ=hf0e5;mH)#r5pwbulinC&q2qRF%#k`1 zfiE$orA&}a-6@Y7*jZQM2{cj;e=_G$C48cb^ZK@-S~n5<-OpuGYHC=|;VB@Ho~S2y zvtY0le;&&#C@E}5opYdVl5y2lRBDcF?tXr<{$Y!i4-c8G=x0B=U;pjZI!jx3ttG8e zG|M_=F~K;o0Lvp3&AW^a8Tk}8r*+A%U%zS>_(80!tfqax^iP^&;6A+$?s4($oD0RC zvm+R)E4|~j)0CNClR!=Hjrq^=(P8)VBKO<}|;PJaN81`0#LH~!K(YOwd4#aifT_w}Au zXR>46xMgC8MR<)iGeI;Q?>kZ<-_6oZhpPivvO`=-Gsmf}5j%t9@d;`Ou;~>47XNC9 zwoncXI{~rDEJoXPtO9Cw%uok-2fAJ!QQgYB=BSpWV{LN!bIQdfZspvVf}%XRhoWFw8uNWA1-7eE(yqJBaU|16POi7Z3s>VQjqJ&L*R4Ekce zNec1%SSPJmbB80#`wS>~nF%5dWxQ#HDfe=iO43|5ZuM zc+o|4ZS4=G^F>Lk>v5H01$Cm^Q_Wx!N?J-}<&4;7cnDAyPK8r3#A_s~w#o|uFFR~L z5&@|qZg0;5o@93IXzIxYkjUAp;SU}}p%OKuo?aWiwp}#0r;_>$h2Nm8PL}ELf}0*d z02|2l(Tcsz`&`?|SxfijbmAB7Kwi)(IQv%7k(8uDpKD9@6u;~xNSEJ?5~VYH-|q#k zMaZ)M(*sWi+MvzenTzeCDc}I^dQf%&$OU(Am_6F0#OGV?E};!4!(2J^?d#CE^`-B+ zvLSTtgaKk_mI+xun&v}tIZ}|r9`dn$`mz>rZ65LoSJtD26FfaPj+6xG@Hk8n`uqEb z3AlI(qN!+Ub$%dW3UbA;UJ-Z5OxBQ1$N7fe3`#t06?gb-d4ALpLX)EnS{%}Ak7OLJ z+r2B@YHHi!>CmUglDlD(tI+|>vQ~WVo%FjNv0cLtll)9Be9Eo9P|wDD*>~?!LTPO; zQ`u=~!UBc8^3>?^$-e3dWH_CCdrCnw{?GYL$2)zC>Qln)i9R-(cu02>73Ier{IQoT zETT_|+!U(I_xrdctshj!scF%lv|V?-82I?~-QZx|WK~e=!76EhrfImirsm1L7ZFH5 z)uEfJtAxDOtD@zZ|3W#Krxk~R_8OcWm}aRV(X81XJXY|YjRiFn8Wffla={TKWm3`1 zfvROU^^yWIUL!67t?N$R=W8*b33abPqeQF15DJ29kh-uoW5f+TKfbJr=tyk(VDJHK zCC$6la^R)TpO5Q}obbSJOGt2H!!cCxOd!2i$;&EinwM1W#;=Oxt$v@!r&_1f5&VyVg1WH6ceZTUDL20PPbgb@)DTfRBDPE1eNXEfneP$Ew* z!tYs9a)N~lag_XX9AXILtytLD>>suiAd8uc9!$=eZ^NpX zNe;M^5B0Y;hCI)<-tg(nG8H_B+;}0j700%D(T0$Nj?4j z!ZG%vd)qd91+|LXo6IYpoa(VHc1ytf6@Ii+UtgkHtJ`OBNH25f%X_hTgIW|micW; z&>xMB;6PfTgiy>r_Lef~5@P^sKN%VIipo~dMax0;^~tSdtorddQ7a=7q-D!}M}4R= zsHRYiw;j0EV?n78rtPKc;ey^ppGW)~98X4UG;u{f&hh-Z8pCc|ui6=o=_WYkXyhGq!VkpLy>UCQ8 z2I{>{mfo22w!<1henIwGDv94rDe53?v4#L6E&3oW6A>}b;dsSXrY?2G<3P|f;R68< zEKr+sTJ!+eKb}Fe3M^4m+%^XPJNWMb`oZMj-~j5WxY^Izpe69ud}x;Yr8t(&AxTZR zWHDG7ia-BZ$n17V+{IEW5}&DZ>!QR0k$(1}n{r}G0QirVm6dTi?Il`V2-oYqjdR|u zoT8?ue`tc6W`T;7h4?Jv_43)+$zT#sOnUlD_1v~>aB_Cw9)g-zGdbn>xZ92b{}(S< zZP9FNvC1-{IKSh6DbrHX5K++7}Nx3NMu?aoV*|&m&`J{mu&>Y{2ptl zb@c+?leL&AorT46*ylmtEoMqWnb553xB>@5eNHuA zJK8Get2bCs+CRJNqB2)0Im%&Nt095yB@qkxI^Pb*Xw$vvN5($IX%5DR;7kZ?CP zBTYTq*3$~^J~u91UDAAxg98?HOD%X_TLL2f6G9NXF;^OHOJxL$Hd~Xz^N}K=xgQ$) z*G9zstsK9^0{@e-u-evHv$iYOK7Ha^fAOGcfLBz+kdjg??Cr;nCy^3cjkKV1|Msxl z{0%_}ykVKN83s{6@5M|MB|+XX>$r=wE~vIN<&(G9ILmPt(z-!}HWz?=iM^Pl47_s%$2s8u0c@e+$>l)|{bR5zan{21Oucvzdi+D<*f*l@X?0P1pUGWo6@ z|M)*?C#X4xKC`4Gd`ibH1oY5EL`0v+gV+tZ(yHs)zBY%cpuC)k0z3WeLX(QmZ!xU} z2E)bn!`qPmHq(A3T++L)44??;udnR2c7B$8`0(Mcb3O3dV~D@0|3a1GK1$H*X%2ld z*6r{;eLA%V^Xh0K?IYN$L*7|JA(1s&Bm{%t4yBYYob3}(`~H621S>`N7PvbMW9P8+ zx>+GrZ*XQ_+?jsex~e3%{25igiqPe9H|t;T3$^`v4S{|)t|Rkx%8_%T;U21+VX z6>4PljC^il+PGB<5!WvvAf?+BZB%d|WsI2YCX%qMCUftP!I+aU z&w2-K3{`$OKR7Gjlj{wTPuEtfhcYa>8}MVBeCiO|WskH>gW9e9FWrD_jGDk{6#VU5 zYozK|1#+tCpfk#SsdmO=dg2a0llx%Ni0AL&`8eH|nwnh#o4&i+_?Y=QTVd_MH*48G zfLtKA?QT!i)xX($iw1)4+YNtM?)4)vu^)~Qkqu|LF`bTMZo9)0hALR`&^Aw9@6Ma= zC+Zf#MEdad>B$Z(;^4sMv#;;gOeLL*W~}%oezHFD|nF6 zre#tYxrIjWu7Bpm{_ZW;%DefV9!UBI&vDWUPW#By@$$O%bFzch7$g#O3?rw=!_i1N zs7RF0m}(Owwf-9MqVB}<*rnNw)@(xWEH7oU6tc`wL+c~4^^uV0;J>JwX~#F3U(fXZ zi>pCHX~-AqR|ObyH9I5I-HNRs~I#f_NpM_jn>fi_{wS9pht24#+_Z{8zik zR|_!3z?T~HstH9N(S@hq&&xo6J)%)Ta11>s&1ZbWuk+a|-NpStodm*1@p7jLM;*yN z{)XtP{81!M%<>FO8lG8FBqT# zc6HE=5Z(|0OtB1}E+1H-M)mr&s9@3VJJ9QksOBG_mM$XBka}^Vw=B7R>GiJh_gLI{ zK*q^Ay`DYrRyx}BxuYUAk&TMWa=}sA7r*>`>B>4&W1K=N5c|n8`n(q>WEeSnt9=86 zactI29w9Mi6pSLeD=xO;8A7lCrbf%%=t9RmgJ;KknGV(yQ?nr2;hpTfO>>KyvJs1c z!2zETtU^D@aaOO`fs2Y}KQmJ-jHK-MbM`IZRROWwE*RjHdx?66rZ2V1$(~uf0v<8> zn>XRzq+VJ$4OoJ#@1pVog>*^G4^}X&1sI7t2*mS8-s~-lsaGEw=-eJ(7u;Mq(gd0) zi)MW5{MLu?A(02OQiDMR8{lw_o}I-zA4<{&F%2jUfZxc6PSNRKUyF-33W7g?cwNmq z)E9Syt}0>8W%S&TWeL~glQ&2Wo8dsN>h6uAi(@u;3?6CB+(#tCb4f=~wZXsmI0Yk8 zUVmkLaEdWZn0V7;xxyl_PCQ_^Vk96usbvH@6nv9mM1_5yrKFc?0;;WFUxfi zOQ_C8whbO=A*I=drk5L#q4*1R<1q=Kew-Q~maEG9nXW>84IStwoXk6oaoSG4z3t4F zMZn{+Jwo4C)N;Y`9t?eNsgnXAQGYi2_Ql?;2QS+IzrYT|;E<5h`g87gg(}bRsIL#( zsxotOA`%nP-Z>T9>>-oPkZ+V1>k6Pq9K+(u+X)0?0J}{GSX?E--fx=(uR5`IyZjYh zLR=Hma)TSnFGtzxzvJ8)@^7A_L|V-ubGMI$h0YXXj5IW*f6;G744F_RN`bZG7a~;xa6laqS_PTqrd_0GtYc{A}Y1F?O*KQ!h&0tb4I=cN&oD1Ub(g@um?A*bo!@*}JTT;>HxuIf;B^#-{~ZhU zG2Y|AtFXL?PC|44vZTnf%QXGG))r7iA#>RF+Y!1-y;aTb$%dMGL-XhJjche8S4#y7 zSXfxzSXH3^4FKH{!n)j9#7Km#9Jj;tWu?P|YQOUK_ICU?dfsRcM}C?m4{y)(#1#?f zg7CowVgbihDab>wV&^}Qzkfej1QYji4q6G2J?hTPk;@~>(?Y)Go5^>*EpKqRd6byiF8ZgyWu+v%$)8)aFF4 z^uhai`dE*Q?kD>D|6hcY^<3mD#-Ajog=O&3IyDuOr zII`t%;lgv&(`R>idhC8K@D2L)7w6`* zUdtqYsJ5C{YjkB3&5#eYME!rcqzYH0iMpESR$|BPES$LezJDeODWXGbvH4tK8=P-+ zx&&5Y9%j#5-f^*`rI1DxqZ*=Kr^#`qLU#ncU9mtDP<||pIMmT7)QgmbHr`J@<3@{6 zLj`JG3-9x%hgjVZo>l|#Sm9(Kv*{!rNxq@xolRBy#-(}c)1&4;9UK3 zPFKK*?kxd3i>a=#K;5amZW2s;#p(*Lfk*n0B{YDO0Lm6*X?=BaSqO%6{tz<@P)HC! zdVpZ<)59w4wG%9sHI}{cs8GNfVN{Cy$$7F?Dk{)a%ZP1R9L?ksV2de$(sG4abkTVA9vN4lV8w6T@FPy6-d;!rB| zw8~5M`p;f5t4`Pc>MA$lbTnh@iz2qc=lSf+mQq8|GK?QqumRK6;;w_`dP(Q=iE0<< zf`AS5sI8qQc5e^UW%4$In-(8T9A<63~%-1=L(i)3OstLbnubx8+ z?O7L+cCH^*T0Ocw{B_kB_KAACf68=Y}Jnhl6z`RQyVB0sU!bAz5Yb5h_*IC zKxM=-+eB;ol_3yCV({Yg#ocFmc5L<$LU9(#l$PrLedJl&(l zhPGHdjN^IKcPDn;IwOwdSoewgeHPj~T&b&eYnox)A149TYKLc{uLs;?-8`AGa4XB7 zOR#Fhr6mrSH?L=ikSeA!J#3NP?z^^TTyMob{6|hoN9W^wnM|R(zjoJ6@;+zC0I>SW z+IC;2j2^PE4#CwdEAsX@{zqpbD8ut;jE#R)E$KJLS?m$F{34Z7^ z)9G_5i=0d7Zne_k$0+MoL#L+`(d*-m+U{mEMo z(-m?$Y&flI^mAb#E<=1Pswo5mX|ooaRC|hYdUe%nH%E~yOF21K$_AL#5)zpDSWP`{ zR|m%WU&6_)l-~Z51(knr&&1_Q`eZ+`N9aFZ9k2F8>s$D0I`7h4& z<94V3lwYInp|^ZkaP6{(l=2I9wgGU)Y}MF;U#kq>#>EPFc^1l5&GZZundu=LU*`>| zzLNOxAvHJm!{Y#xMuR6=3WBh7?VjnylOaqv_fDQ*azkN2-Fx@FqxKl`YmifDlyu=G z;|}tI^WkD*FDHe_(^DhXcus&NpL$mR;{BqdW`u4?HJH>LN74N%k^#i$^w(US?}=P? z!PPiT54?*~e~9>A@O&1EE8WaDq$eOsGrMr1=& zat)>bh`~$Kr3O-QZy$lxQY5aMHG~;C05t(A#LgFj(e;4$=uSE&BI0o9g7S|fX$Gr~RrChG z(-}Pkh$Q7fYs9forzD@9ITCYb?f`Y6X%3Vej3#4hi1Fa`LQKv-K;MMF$c(L2XaxdV z$1YcaL6UCC!58)cn`G6TM3FM=EX@-WgxQ6Bid>U0sD7C@s=JaeJ%wp3xCI*DXE=VF;*_PrxPpbPz}I zEBAl$( zfToOl#k?DPp(4ME-C!WU-p_?g-sdQ6-7C=oS+d@0(F(jGpB81{Jy_x1c5(AMSX0nB zHWpE9zfoqr$d7C~`=|6v<3P!X$tozA2znxdaG?zUQMwGE0*KT}2I4JafCVHF)IT6B zPB(isYlYTFZ8>lQ(gC%>|Wt9LxMqetJe{re@5K+@Z|g6U?yMLLlPR*q)L51rqp zStA^rjX*Ep$5wq>CB7EIe}XP0gMj`sDN6^cs)CQ^QUj1^|@FUA)pbed(AZjZ@?kjH1-&J6{)*_oYXj)tD?wXyyZv2n9`3A`p%uE?lQqTBNMtT4bHNZrV|LT)+`c*Y1G9 zob$RJQ=p^ueQ2{tUvGbZ=8T+-@Dv%%ml79TnKib)W4yrLUpxt6*5P5#E4ixl1s+wT zq?}S=5b+Bi;^aCATT!wuPUbAD2K=!C_WigfqBNr98c;n0G_t=g+Q znW=egDY;_%PT*$G4UT(0?i0Q0db zRJ&?6m%dw5TPuzo5BS@@_%)XWmknb0hr5SI9JeDaCf^B`$JNRA2eVJ=XU%W+z3$C- zqxslnno6*$+5g%wPTXi;B*};Yp$+bnVP{tf9FzD*3H@Scz?R&!%e4AiDLG^)tOpWV zkDl7G!Q4BKv`{i@uZ?mvFh6sRUQ;f_v>l&j0rA)*#7k-?xZyny{<@KoC8-9;4eQ3! zXz76!;P5FNqmEykx21sCt!UNlIY=T;2n3P+?Q$DrB6k z*UGXWQgQs(+2<@uIuBdMdZ0yBqt-1+B_}iNZ3{JS<~GMCt?F51WMmNXncl0@?ZUJj zs`QkX(=5V)pScomK{($W=h#4j2^vH=h+&58b>zmPq{OYC-%~S7EJb39uv}Et%6U~q z;vDwPt!SeH;ef{RHV25r(0$3}!mNGx(L(^5otnYMFM3qj?)qqi?H4Azc9tU2uteJ5 z6@*gUOH%FX85J7pjs-8?M3-ieX6x=#k8^Mxs=@=as*#lQ?mKg^*C(_q$rxv+%VwAJ z46lr_jqlOg5*pCFO1C3G(goM`1@Y?_Jsr0)Ml*aZqg&IO{;VA0RPMAgI@YdfIzDM9t@pz-PV(y06M?P^T7h&7C(lY~Mnrt5+be7VQ0QH(4U~n)<0^)*shjbURQubUZH{DkX#^6o35%zJpMGsY5 z8;-?j7Eo>9&H)Pw{%AD|+z5mJTkvc1&ONM)-<@saL=_gJ(&lsW6iQ0-nxVd8&(Qh2 zQHn(1JN7wR)SD`zZIqGq&_r%HK?y_=2_!ATkC#n9Gc!A^*44RkTm~*X`ZLjNWAI;oeckkp7`(%CBmEAFa=FG?MkLP;XBaZya`$#P3L{`LsnaaTg@Z~RMnfCz zv5q%*16uW#u2)RmQ=(PqG9!{~zw89F6x_pB_Cc0!#nwhf+Z9wRCL1@yz46U#_tLC! zX2ntXMyD#!I7r-nrX>&HcMQVEzke|=wT@)&%=EPRqq+b$;OtG`Ti@0e@VmmX z*BXPlVx$y@wJ;FYqW_xdQW80CFuegF19CxvhSkJGwu;w4R9`UKLKMq^UcL7Vx7B$=aZMb3mUR}Uw3_T zvRN9f!&(~4#aR@P`_{ZE46iQq?+`5 z^(mOe`Va^-6@dND5ki0$lB%3D`upIzrKb2$e~FGdB`D(+I||V^J6!2)THnwdmy7uK zoSjtEg=T$bWOBjoV>gN~Z=YSYNtj<;jbGZyB+?j6Eq~lrF1CIJD*AaB2Ko9K0vd@; z&dwq-`HcU6ROS)ArluyTB<`p*p@6qGOYgWY3qq!qCl*0ThZuz%$51j6+-HNMU0oxY zW8ZUg;3mE$arZAM-dKrm77V0_?{8J}2JTg7Z7pGcdpy;OXEgP{l?`qj`zN3SR0xmZixM$qJ?9AnM8O@NqO+#~uD~oJowV z8pAFGz6m+IPR7Om@;j zgBa4rJsQ@n6Q0~sOyqM4MGV0F{yk2eu0%VPsp3o3)Z&s0(gLx6PFMh21Nu0M4NpC^ zO>$)<&D>E-yhEqE+wnak;y9i2?XgEgGB&nf0Mz)v zn+F-~N%*@Ta6=t;1w4j3p2=e2;!-7*TCQ=n>KG{%PemjoptiImTa~SfM1UWB;pxH( zs1z|^=LqY+i3E(X&}kUy2V3FtzN@W*s}XQ{z^}_|m+BoL{U2K_DbebvUC@^2@QVYV z1>9Cp&iD&Zn;jj(5b%Yc?iXVyT>@W!~B@S&;lGRv{2bwNlozuPy+#oK>n$X`b^%H$f z*deM&Rq)Ad`h>}_8EePFH?{%;uDh{~jfiB&&*{HE0x0fxr@&vYaF#l@G2t5O>o!_Y zJvFt$1|Zp3qgb_uS5QdvO5ODYnp1W3xKNzq-Tc#%s$6TQ?SyZCUWk7R)0xzhk<%m7 zu7CJ}Qw$Ew7$mY3w4K@(emX5STish9R~2gYHY;ss^3~wXJucd=y0!OQ2t{jbgqBCh zJGp2(HOIH^MSt2dy0woEuj~vF+&Wc0e#jFxnDnioFlT24nVdTksN(p>USz?u2gk<| zpP!JMeJ`5cU5ahdF*;dl^_@g~Rv42(?=td9gGmh7rZ~>;mO0^K^X@_pKJFfR)FTC= z5feaCbk0!G90zAe7~T!P;<+v+c1_ky*R1Ny73(TH@UI0L06aNNKE1^gml zsGdPMs5nT1h^W$bM4c<9)X<_H%joiVf=Ir&Uc6^qwiuxYDM?*j9a00e%g*mo4SeZW z;$l`wP^n>wzB7(y*{>YIcMZ)dy z#Jkj%zieEj{96drxGR>C9v0r$@$H!l^-4<3dT}_Qs+sc|XbwGN--fxp;SSI~zu$>i zXB4z;#)FY>G*i|YYI4}oz9_yq_VDC`vYJm8=#S^hOU1rPQ{J!!)^MCga|_;*zPWVxV`$%(Us-SH<+bU3dd6paKJQMf zt?bj9iwG{d-t|}_{A+6%tSc;`Lh=7E;rllL{_vY!{QdoFxN4aVmgvW2>?pHEcdu!P zo!`2?y%)dzMKGuXW}!$(NWg3MN}~`5I7A)&vAswy-zhv9VOIOhW3vsB7{KDtLOoU+ zM>`#lOpbd$Bdcm|&d|Q!gc}kDELT%#YKWB&ILY+Q;YriMJ=&wG?(7!rF=9fMXRA+p zz%MTQ$*c3xqqktIV_|a)o&mUr&b zyMF>zGQJ~_`C+kL)VSG{Ey=_p#a#u^g;e`J zWwZ3f=cw|`*Xf=`7r|-$26!)uzNgk4{^87zY9=zLn~<2oaapLjK#JwHd`!xq-3AWy zTVUWzFfgFJP6I3`-=0xDc;hmI_WL(!xX)r>vJ1Zt+^TJ|^)y-XhOkJ$BhE5xW$j}g z*Vh8aP+;==WZ&2Ol)$=hsXR;bY}J&-%H=@eV*>!XKo*4^S~1NAru=1cO>AFBeDg=e zRZvrV(qe6W@9S5V@az3ni^2C5H9$p3&`QLDgR*YEt@0}uiTLZlc(e8*9qtkod{VE- z(t$3${mO)u0H4c~zFX!~_|at*cS@fLYj4bZP%=R4_aP-^C{y5Oay{Gp!h6t!*Ic)h z_cq||XqhBF@0%~m`%O%!vH&Kgc{$6zq@%ON2!E#PS3))VqJE_$K~~0TXBy#M${SVn zKj|)u!nBV7!Jaf?&!S%M$uj0u{e4=WLY{gx=-WCpd)nmL*s?-R<472T6XCmWLk5xc zm<^_Q_1T~+gVazM*#u~2ORTJ^xFq4~x<*CBZ2^cV4h9y1^WFTg#1b?VV0sYJff2IO z8KV=$VN18oLDuE!=GDt_ioxwv0ai==do)O$h@->^6g?|Y=R7+zKLFdN(S*rdQ zPE%JL)lbHuf>~xWrKf)>G6|eW021W?Qli30RNAFHjP+_jFl=?LCr2U{9G?QtcRY@^ z07ssqxI3u_Vqtd*fusFzSy*W5H2ifx2-hc^p=`VBzAJ<6d0Efi@C-K?dyd=0mCa6INIH-lbpdq~5-tPWwNN2c_ z#{jicqJ_V;9J(^=q~c8DJhAg5U6OYbXb_?(D`(C}vvYQ%F{I@(x>Ny!40o>k&9`4F zC;8kKd2Mt-br;<7JVy8~shdE0d^TMw6J!75NJhf-WRskZZ{#I#WUA0b67S%@6fqTz zwmDl=>?iKQWz_lrs1ytg3pI#5A2r7j5zgsX zux@F<68{zu049Ey?FrV$8b$Ob^xc)$4x2x7!6ubochU9z*HyEJLo~V^UFcid(vXbd zks*I-`h+wj8kl;?p(aES@W{xyxN6ng_eC?ludaSF|HTgecw1p|X?KOedX@d?*M&G} z9&CiTQK~1LFYOkw-B}0fS3Cv}&>?q4PBU{yc}48DSG~9pxZBJ>-B92IJ3&Z+R@HNF zT%3hEIv3luO2?7_gIwv*!}!@R@v~@da{pz!8*EzFt_ZC(pDJ@XHiC$X^1e#j!Abw? zvq7){R3#Ybc@rn4fHy)7wDLq=FBKHdHLef``T3yLM~?Yz3f4&A>OU)LO)0jGrNUhQ!L#;vw%c!Zt5fk;h!;Q%j%m4E6dhP-5;xMp)14{#f z{VymO!CG0;=qc^HPfPD5vtDP1&pg#NOflY94}`_6V;BM+g6I zP%O&Yo(-7&uOCM;aP;$MJ|Q#z@T$7mfS2~HI zi@Q~k$snnxr4bZ0K`fm8Zr#Y|A+?R<{LFJcq!@$P82I5EPA4_(j3im)X`?ziI&97Y zvHjc52B~U)vwV3Qrms{Z`Z?W2HJ>V!6tU#7kO+&#g%T~?ZJQs>KneQl)%EqacB>!K zGcsH**J5hHEQfsl#HlMI=)m{p>s{_HH^Agw<()^X01mTlFRK#m3*gI1WPtT7OInZh z+4BOgWEqwQjAe)_9Ka5EEwumU)n1w0SIy8RXc57Bk6T@`lUy1`k-!U;}QNe}@;yoL)#|C0f(Q%euPO zu|@JxA25FL$B0R<_zVac@ZxuDPzn6EaR-Is&w!nv^*{K73kO&5>(wae@tXC8hPMW& zD%AvGQ=vh`v2Ts(llbPHSNsj({*Tt%>x0`VH*-hJ=kSw(ACK_yq3!w7$5u*Ux?FX8 z15!-D&db=OXrnzSrI0z!ePz?^JpQ`&!;;ag#Bxu;{O@_S$x?xN($Uf zDT>?Iz#%g^xDS%-R=+3mQ z_SZAfiY8B9W$VmZ#Gt>>b^@AS{ula}ollH@R$7SakveR+n$VOyJO z9N(#Ubi|_&cLh58~y=b}G<>sfdjFL0kr3l3JEcB=9 zE>l#3&>V1OSlkJt^s#^3m>hDsC_OyN#!dh3z^z^QACpWkvyyqa12r(oWMpI%^BjtQ zB?J+zBuNdj#h)zlG>f1nr?XFerG~uB78u+fB$MHC&BjriR@*Pc z!E^RJ9Bx0^A$IKBIJd8zC+L4nUGQuDAgg+7jf(^`M^7D6Nand}0s&8+-K(rge0d_8 zglS-{Vc84vu(lJXR8j+GI#fo$O7EnM!@cn%s^nGO(Q?yvZphtP*X(J07Z}n(80Hj% z-CR^{So$$;yjn|&1Ym;d&9`hCTH23$bF~oAmjIGCWd0d%WMVqe|F(=En$z(o&;)}{ZCCaMU%kB#T6#o6VsyRd``uJTxgkk> ze1>EdKav|Wicp94df1$1h;!q7%X{-%hqho_SHqtSm67uv?LS+^5evW4N!b52yHNXc zg7?_{fpt@2e;e*PyQb=LG#=9csK$DH`0vJgsym~_4%Lz8o6K12s3O*5JuPRNz4=?=9}Cu zxzb8#uJg*JYZj<&F^`Jxk{Yki4=>|SL+S*h{*4`SGXQiBGWcV#VrDnz)cNmlPcadne3dA_20 zTn46yAHj8WAfUrNFCei&s25+f|1xH|_#=1dSj=qYhnfGQXy4m{nuU4Qsk?CK+8&G< zS!j-Le|djebylx?S*i!)g3s}_?ii&`n2ngQMiS;9p6q^9J+|6vA{@zxL3>Cjr>#Aa z+s#EY!AUz0a8d1^7ktX|Z@OE~RFeFzIXoWc^?M*D0!$BaRtRM2Ak0^R(_Q|!g#a0+ z6&Me#DqkqbeQWbCc16lk3~Dw4_CPq_bD%Za=E}FOQ0p>JxWt{Soye*W6TN9La1-13 zU&;q9qNn5L@)+0)CuFP?@Cbo*rMYTNIn(J#8|p%f&vuNKJcM9Xo)j7(qJeO) z%0Km-we>G+^QyYUyQYSd3maZw@D0VluF`zfXE->(;1Wi-EHrZF0}Om7)ga#jAJWQ( zB?j5OnGTMqfn(u)bIFOAd5P<6x=yYVipnd$2+lQ)sTLr07JPVOEYen4RA>szI=QDA zw#c*Yl^|^o0xbF%%Mo{R){FAi3mZ1CyEK*@0F!+hAG@0C-oY% z72pOqgr&oUXOxka2EarHAHM=I3RX|RSt3B>Dd5S2aa!(?JVmNRBH|HeXK{c7ej6(^ z%?~wZkXnGbEosH|;I-2zF9b3MiX;FA!tKuro@>Dmsx1^f^sQG{mDNf&JeEyfkvbhS z*N26L`IY%&r4#?bLjD4JE#Rp9DwESbH2WQd5q!qZEGE?U(lkn&OHQK^C0e;7GEsmVrTWFksy8#T^dj!D=sH#FO{d zH`%F^xAu(Dnj190Chu6cE=8qgRFo0Xy#dQknpgJV-ILS=14wRND z(C#uu-mb(EZCl|?xWe05`p zG{Pf}=UR5}3#C};*!FP-3Qvvat4yjEOcSO(VvOQcpfPca6|58k^|KXaT1SkLqf+nW z=N?cP;(dyEPh_-o-pwi|`tH5@V`qUP!0NFWgFSj&_JeWDjtfE}{>t11K2jbIul4fj z8>nbXbv7&+Ik-BxapGB`{_OaW49Z(BYFI&^7@kiIm_$m9N97v|-1lx*UX7;b?%cS{ zb~m~ZxzVLi(5CQcAmZXi`IU7V28D%DadF{$BV9>R^fPI3cOskK{rqHwY21AAJ4mh2 zuJF~*qk{vz&EYhy*>WaYT-+@za=+XTlHSLE*di@CoP~AyVNKzXM$*Ry7~c_HBQ7L= zH~?e*UyN=WcO?v6iBI;}oXC%H_yT$_p#knru+$XJf&p;?LGP*t>+RIJ;W*hwL2!lM zsd#n=Y2Ji@foEKM#R&F-1m$*I5X&!4<-ksbR%uzHhkDKeDP}?=Y~oT}8A_RVt63ku zbX3?nYwzz5{^UxE+934oFSgYo<(>Vu`DCBK_u#Awc+@!i7j=5vZ!tq#cLYKV-H#Mr zjdlAUtaemk6vMyjmpt}%kbAAFsG-Q~?lOnSRG4o^k>MKS!_-@Ypv5nh=+4R13te|N zVM(u7XGa~Lpc?PgAiuj+9$=42_|O|SG{kibv1nas*>bMAV(sBhroDtgi%x@Em9wCM zo&pLdSwhsBg`=#!c66$JB=*-A8qyJ(@hI*5!KVJ^Gt5{AkD))(z8^JHgZ|$R>os3L`7QJ7bf}lSonifuS2NqQLVjD<@e^{!jjrCTf z5m`S|A_xIQGA=Ilwtu|q4B$zhH?zmTSY$E@m#a!@9*hB>rruXp4Jq2|rVOnx^|yU2 z{nho)yPk{GdPUZvvMKfVyo*tg=8@D(r4|anSlYR_)UE^<5WQkv5xk zqwWNXEP(d~@ndmS)i=G9d?FU}iVs`LU`fN*Q-v?bhfF(rSGpH_Yjzy#td)i-yYcxt zif5J)Gb-rwDy(pOIhA{h#y@(>&~>TV+_kS^x&_5gGyx7zo@-Q#9Iyk+?EwgKZl(vA zR#UW-*TX)y5DCY{=*@!tH#3PkVhLm0)E3v&H5EJce7=oW3VQr1+lPfOvg{xx5Fc(n z*?!M&BF8%GQ5z}x{ktpM4mq|W{!!^=^mdYpQCP+G5|S179?o@-Sxuw^t#e=C3na2czYWYV_AL4xJ!I_{u0^LZJqAtf-g7iiZ< z1NL5``-zB-4#^~o@e`93iX>2nP8rb*n`_q}&CL#eor51o#^cK=7yc;U zL1axCUAr4Uh8%U`#aj8Ro{xD;TaM`>Li&_ScuOmv)y zHUmmiEmk02^fbG0C_gbRTOi0ODG37(5OP~5jJ=9Wmh{rkr1GxT1_1;ICaV?o?BKva zRGw@|jz>4vZ&H__LV>+h$(@Ov*}G@1Niyu=|5qcBn=|*jwN&6&huYfOI?}R&f!Fjc zw)zYx_~|T0{Sdvu@w0)~k=nXa#)S=6hbg_s;|7%Q?8V)7UAA!v4&dPh=TMOxS0pj< z^1zQAZo8<3q=Twt@4_F@)eDaSqXc43n|GnCsvm&K7I-RT5=)nUr<<{DC%H7dP||cV z)g~nwr$yhREfmVFejB3sM%$x1!#0Kxiy*#QbVZKMZFRHMc}lJ}Kl>e&XJ5@BdE}y| z+9?pLIFFt%q7(8?bKggLCK^=;=HbXfa4PCMrCX)kw>L>qr;_G&4XsjrH|4^<7&un= zdrn`#zb1DRZ!Bz>-6~h9aO3KoR&qrJtIHZ9&rD`nDqvp(!L&F0?Z{z&L?NAH(^ zNO<`3Wqer@!jyAlhm3|630yPq^84qP<=eQLl~5iC-oj7-%t?3R5Bv0@E>9?Vaqtqv z$rXC^aXa~?mFsV^xb5rT>+1^Jmky}M3M649zjOSOx6R}#sure3NP0p34;To_h~KR$ zJC_D4lt5Fdq7jQn`$9AVYS@ zXyPaf&mN85ZA02<&=nhEUK{tZj|Qc`oBFLW$VS;xE8vCA8yMK+bK}+)S(~#rgOGcgDT^V@5-f^I+#LnZA=DZ>07ZX{q60(zls^WLg$wp2pheceIr_T)Cbe*Mj9dH17z%vgtOP8b*m26Y+yB8(2e z4n=y0Z~}(HxHM3!GK``=!be=RY(2C!AI zy#!{NWUn2Y+NN6-3b4Z5XMHN$39n+6%AA6Y~VCs|&jkTdFn?F}IQQd3hQ zg&KXgjX4s)r&mk0&d+@*_TY{AB>m{3+b5V{HLR;IN>-=r7TdL_&Z21{N_XYNi=dAvIjr&QX6UNuf;(r% z6l92#S`L3N&&V~bSgQ{NL&vkHn<-fnRe5$#8tZI@`y#=h2>Hr~e2tB)hND2`aYKKoq*{G7G!G*Y>$f_794ATGA~sk59@D z6K#3ksb5|uc%39OJDd{BF1BpR5dNyl*V={Y62o3un*0IdTV1E-Tn;Tbz<8SFHDTJ! zss7`k_aIB1`uUh-oXgwacW_i*a5_^5+E-Fg^vhm+n@b7yVG-mM`HpF*M z1OX6QiXhKCI?3Z?Na3x_#9hkP&ZW(Qw!Nj#ICv%bovR|=x{rP!Zoj^S94s}gV2mkY zaLMXk@YpoHtOSpnOVM(PaN}n#=hqdbKpo{PC7ZnU$ z-!oJ14gg3Jc|mcpP@)OLgiPLtQ|cHJUzkf@BH}zzSPux3THwJUYZT5~@T}3Cj)SlzwA5+;VK`)9jfS<_k6#n42)U5khQEVv#qg|HR zXR?st-u+lzg<-yTJ@s~H+R2=yRot?g~#I=epYAB5j^6thADVvIt;Bc1|5)y=lBjxW63H>d&SijM_+R zO6#a1o!gn=JNT*AcGI@)h#%ifo6ZEgjea_Kx8#d?aB>pKAxx+6|3^9_^f;&)R3XOO zVLTR7yfP%cMHYV)SGJriSusOAe8zoEPe`EXi=Iu%n|tzQe`#usCC7Yl&4>dC((w_d zt!w6(sPEe0Vp>{>M3V3vXo@4Yiz#q}<-L6C9x2gN=+E37T(8TI((+IGQ(}`#J$Kpw zFGB70S_bG9I>5^i6@Jtd#eCAlktH!r&@wRK4=S?Su{I;BO3JHKwQp~A04S~2C2axQ zUa=PbAGW>%D#|tNb`TX21(OaD3F$^!K|~s)ySr3|BPVwssfe^4EFmMGCQ zdFTv^s=iSew8ciOB^6_pVY@-!v3vmO1eR}aa>0`HBgQ^0CubFz;Brn-pgy}zosCK= zg)bK@W1jCj?OT^DmLE0*ftbbA!M1#}N!?My}@xgidOX?|<)%*9AZ9#WZ}+?{N@4c2IgetC7ra(LV@ z$Mx}@EhBFy+P~e}J$)d^qjg{6!>FL+RbJih*S#`O(oxEH6C{Y*{343m&e54Fw#P7( zv?q@>4!HDnJ6$YTz3Vk*fvIw0K%DaQ^i)Kp{bm!LTft@9K?3!Nh z=OLPEHev!m2;w)&|29P_?l#V%W(cJjHaU@@b05(N9R(f6a!|glsC`@Rn?2u6^*om` z_hcIzCHppKS6AcL@)Q67nTxijVtUF}j4(NzZ*SqqFMhcT9-EFj)2Un0_Sv;cMO4Pv z$olks2)L%-OZ-DzlM`eM1pV3eCO=2J>8smJdbPWhKKW=WMX{2fIKYfTTVKn6%EF;R zEsZyY+46>8`@!+2aA50E+63OSNRps0$Cw6_s94rO; zyT~v|Af|cJnC!utJUKP>WF%Woo*@Ok_W}YszvqqPwC)KF0F5e+=d~!QZ%`N0OzPu9 z9JvN3hlI#VOf)xHro!9W!Vqgc&U17(b_p0KN`UH4bt!@2P+r9?E0S*i{OcJiwppr) zcl|j0s8@Kxi2QVAU0k>U-RNGQgOrGf2&s@8lZGknKUmev5O-t1G1koH_Fe1kbh^~Ol~N?ObyrL(LtRUpEyW-})GU%pZdm(c=QojqQ7fIj8lCC> zV7%!*b0PgxSvJIBX=;sX00){G*me(_aVcB%*}0#d%cy>p{9W_Y=ayurV_a9MptbB{ zJ`9~NcaJe`{{*deJ8C=2C9OGg;;&i$&sWka7u^= z%A1Ecq&4>x{dypl5LC!{YWg;vmX4dkvX>s9J_+oPW574Z?eVrFZ==LLNi$k%tS|2y zT8_!Sf^hOuEtG_R_bK}BLwGlXZ=%YXF4gzssS$xW5&GF#>5{4)y9H?a_^BqCk|%Gy zKYq^=JqY5dc7so~n=H#bwmYe<1yL=dwT3h5{36JY5Ba~~lElpA2C>wqM4~Hush$4~ z>^=l70f@>5OU;rOJRg7!WJp1J;wPyE1adu}B&2q9yj~6T#@ZarRlB@v5tg$o=Vf<@ zvN@g8uEUF%hii$@CFOZZnKRnacu!GWSdNNJpAEp;j93+{-POw!%qJ*?Rrw$uRVyJj z?ZviI>yzHFW9Fi8t6;A7pN%Q7prdOcNu`ZDeOacg3OH#Y82d2dE_PnauU{)~m8gG- zIA|magAGk*)o;`~j+e0G_>ax#Yb;Y}Gcy+?vC3R|zDyQo<$H@vnrUBo0GNudhQ2EG z>&E%os9-)@brE>5=07R7@n8e+AQu9N#2}9l=d<9nWCnN-s4si&{+TGfcaSs{))ZBE zORiUDDM(RZ9<#_n(GZUhjyt>0RU|h8Ylq$n60@M$oG2QBfQE;MQh_eMD_Llc~Q^gWBkZX z!W z^2`xN5wS#*KKw>jV}RzW_qBP1p~m)f0s&3L@U5;L^gzj?p${0+MPS& z>6;W=pbk=hquomH|7|uQxTgoE_%u#Ty9HQOz1&HPp5cPi;{N8yH5!`Z2362}QsfX? zSeltJMF>~yelDa>xNUlI{8Q@n>kn=n{}Xen2)_{d>U+oEK~zV&2pdeP`Xaysow^G8 z@!1J!nma1Ky`EIy1NWPM-1$y73gdq^X|9Sdj##F(o zCQoUf+A?B;Fpzn8DJ9iOQTd*knfWmn*Ij>K{frwskrZd|@32YQ0v)Ys&(n&)^0D2i zVF6B3S1V*0!G9$P&%d}tpcS953@W0!0BhDZKR@r}>KchHMl4<~_Jkp;hYs3jR&F@* z8WfdQyexA*ir5vW$r?jvNfzxr{|7GS?#8uf-a}fXV+CG!voJS1~TU*R{ForxY1ns>u$I{Y7JE?~RGPTF0@FQ^@jP+@0Wd zc=scfXMOo|Okb;%RC}E7Ey`ziqVwGKXr9$hUmizCM-$>i2bEDKfWodx9iVhT;Y<9VdGPi2gzr2I9UH3uo$~zVV@3a72vP( zd}H&!s`7C;;@_&W0#1wLEe;6^r)sV3j_oA;ufNY2xnZ|pdn(SU{Fl~zOVIt@+;Xbl zbt5a9W0~s%b#|u}cl>1{8DuPn$C>~h$CtjY(b*dI#$FsE^65}eq3lzaA|%b3z+u>? zreTef*P#hw_P`HiB2b&lnrLdtKk9uJaLu+PCXph`eun&Zs?YIl$VYLzg=v8$K5Ikm z?q1N`+C*o+h}BjxHut+|mt_)GqmWj*geBCK?xo}A_8hk_Kt#As=}%e-t9uSTVs^&c z>+30l6VaiHC+-Dks=WILaOcY&1Hm=W!z4$3{>JE=A0m*UMcC_Ttp{q@%Y9Ne_iZBK9zP8)vt& z?LPIkUbU6Lwt5)>-s)tQh6e`0%ZcI7Qar%3QEIyg0Jn^t6vGniR8cY2C4CwLsvBtB z!CSE*?B~4WTh3Rf=@;+vHC@Xp#_ee>kT=-mY{dSTavvCgQ~>>MB*t!YWn1!6>g>1Q zw$)|4?C<(d}#(RH_9*j3Yr=Xfc8v2S3 z0tP^(Sue{rNZJ}gf_VJP}+1~Xw#K6+mC4oQrY1#WMpAjkw_{3c?Q~Tv+VjVuD zjspXqpHy--sOgvXssqAC+rZ={zSf8f60%g^lk)8s1G<<_%8=iN3H(zF>{I32Rko)z zo~&XZGEeQ}b2%&&z~%gN@{AhpePG_tQaMaaZnsQ@{DY={DQD3ou-*7j{3-1QxPK2- zUvx%OWfo}6crM(&d67rxXB>C<24QYD*Zb`n;icG_eXb;vu+VoB@F+4zjWLttP9x8Q zmr1V2DJ+?Q$G7NZciKc!cm?}I9>VK+0;Y1pF!?`4aWE=_%SE%VJL3kTNNNiNUix|c z*(ylyvL&@EdS4`kSt?ny?l%twSlnGAQH(Qu=GS;)9Bl2^Gv)koSAHbz5Opf{#$4Dy zYg%|v{2p+D2WLp4oOTLn%RKO+o|J^|ZG(Mr(GMF$epfUI6T)h&By5oYbf@0j9K?o7 zOtbPq-Ufj+1^MvWNt4_{XQHiv(HU;${|A99d>2vqDi4ULyyRINmd0!#D{=3T&(rG4 z@=|1%X}pP;Xl4k&BZ?u+Wd!2v4^mhdpVgJQy&`Z|L{dON*`;iZ6PqnA^)SH?FD(of z{K^nfZ-eMGneG4j^0AN3Xc+ZBy;;#n6=;ejDxAS6!f_9>Q9nezSX(Uc`KX1zZQ4^5 z*i^`*DWbmHcL>LZ|KPpmj~$D8G9mRG-sHLB?rk+Dg87_6L%$X)F?FIh$v-{8j6uU% zY2ydbQ@fP@BGwr8dex0nMaE-BnLaEj1@z*xcoJINT^c_2Vto3SJQ^6kN2Z8n!tV1G z2$PFrboyItD((TdyEFPY}C^kX@{nWxNP^5v} zcja>wPz8Sc>ggPMIO##Kb+H5TGGn))B*SCuc{_7L>ypV%|Iz|xF`_Y6+~XilYoV@Y ztwvBSM@%K^V`FUNhK|VL=a#DT$$gI-q51kFQx9D^vSQvKEj?2?3l>LhBo{5aWsjbj zznA=d3hsB5x%%ipV`Ph`9JI0Z7qu$rE%6?`q;MH<&y(NCv+%x*XT{<^H-JDm5Tf#O z1#EmL=3Km?s?|OumBhq_5K03{tNE z|9re#Hhjp5`Mc1IKW^;zLo8oLB62dCKXsZwezuF2%S_&xzFwNwoRX2>2ATGHzjI1o!$6 zWBn^+=!4zP9LJ7pflfAp?P0R7YfVv3*Td0DR>g$h>)CyK8aboviB?9XKsobB!6|y~ zK-uL-b)159gUQgBVj$n9j-GW?khh3z*{#}|ljWqaYqCG}UKgy^B`Z?5#UBXLbDJ4a z-y<9id=?m=kI0G3JeKZc5e)nB%hNY8?iQb8F@b??exbLhuQ5|yTfba9l8V_J&sM@_ zDqM7b;EDN$S_(;G$njQXmVaTM*LO!IIPxIh-Q2a;P`!C$Zv8IZt1Y0EBis6g_z4FG z5jvjdYWemT&?NE7eQbQf*NjRKB5EDncrOh zd%)$-{y!D>F*@_k{(51cDg>(mI7qhtvUn_WXqBl#ZIlwc;$NWO??uOoKc%6Vfl2E#ywn47^+O|@DdavsnqzguZ;{vJ5 zFW)1K3(84sbWPG-zKpz$z6a5&TQ{xQuPS98`>)>KV_tXZyOWXkUyDWmZ93OaTCFIL zd0|p=Vj+V;PXiQBlO^f0*U(*?D`F`H8RAE4TYk|-t~QF?0&X=wCT;p4zSO?%2EMRV zLaPxS`lLEkoGggO7Wosj%A&k><5J7_sfP0>=UyZj1s^Asr3j<^g5aPK|L&T|am)ME zQ_uH#feRB-3}e>PU{fgr-X?U@hafTBM}4tkILYjd>(^+=`AVOujk>6Q<|y}%_6H!P zJO#g|e0F=mZvg-S;e7h^={1l;O*4#TdUy7xjw#T};7JtRy8gPG={d*c(%XT4V=yqa z9Otvs+9%6=6&ls|cSFhPjir3+Ail&6XR`lQFaHq+(-kWVwZ2Ktkk-e#(!9dNa@TYZ z$C)j_R(^6=%{thvW>5m=lbw-?bu^)`G6#uIY1)cc{%7^v3LW~bzU7@Hg&? z`mOh8OzCWLD(V4UdC5A>F7-w1!yF5`?M~Xj0dou+dXU8Ootri1ms95=fadZ=l)5HA zg0c#8t(~eZgz!^!9Xgl0{pK`v5jEsns+bym6cy5!6PzSYb{mPX7mg+B6-7#u1XqSp z)YE|zHbsbH6VNMlj{Dsq5zFXugXRi$o_(&aAMGaEC0GU_9D)_57eM)x)g9|Vuv147 z5#`$2%-#K1FsS8axz|-xk4S$}Fxl|=Vr){ZKdj#N@ugnXbD>w*c--764@gKqF9NIw z$*|A(3Ua)GdM_k888bQ5SScn;``U^k+LsZ<|=#fY3nMc3R|6~EezDloW8_NL;|qedQ`n^LqL~` zRYyU)x{zDqU%o+JOG2;rUIo4xUrtXd0qx*R%6ye+o* z6(2a_+6g>%Zmnvt9ZnPT6tI#8X z!UNbjhTFHN%Gpc_z<|6MI#u^|NIi(ESJubi#*V!*oy)&w?DA{q4?6KGkw&jMB17J7EowBbayoD=1q*EwT%H==|d-a{amO@=5 zb0|2feQG%yoh}5|izx~Vwu-BccPwmQK+BYbUX;JyW$5&H#HM2L;yTTR1rl*y9JbWU z$1%IK#7yOS_d>`J%L`IcJRzy|lQ-W)?`k*hP=H`&P>sL_frLbowl4Rys&X^Q-P5{L z6uoYz7EFgf1&nM|Qac=8M#WhT(Y_Rt98T1)g>EGn?i3PIS# zxi}&k^MWRMG*n)hA=B@C}`wHPKA2G-hJkPR!&JJP$!+dN33y~-ffR^xB^D@ zR&{&|y4oH}ZywWdz#?GOK5@Q3B>yNly)RfpXiZ;ns`xXfQWx%S0BtZg;fU5Av3);G7lADQNY2GxEEGE(=ze!p@w1{l!MR7jG})s-wJ|o(s_=gycq25P%%InH?z*{&5v^#NbTWRw z-ZheOE^tm5@? z@&KlZ%tszDzNC0#J_BIDt?jKQ^~F!1PPH`>sJRZMYd3Sc5lYjeknhg74?598E+;S) zkl>9OCG8TkWzL#)yUQ@74Sd2>7CfbnTfc28Hm=k`FXPsn*i4yuoGpg~F z`SrMqmj_&yv-TJe|75}V9kN-yoWhbY_Dv>|l*d9oIh%~z>~+0bc2SSXkF5iwBd&XX zbKw{oU2o$7_?GXNyYLAyJsyURCHq75s);_ej(UyZpbWs$bgq`6Wj;Dm+A9{fWFEyb z5Ll#^5kHNnpH8?Sd{J+yG)Q1i;@>uSe${K=CC~mq+TuET%%?eTQ4Rn(c~r}OXw_ri z3e(^A19hRvm-_-wTAm-IfYSI{Uj#TLP_>D91#h}7e`CXyJET;86ulSAugWwU?4JitS1FHagcSf<1)$9g=T5JQkM$Q zKYkR=W-{jWcelnDnQ{~Yji&sPNpQ*GN?+w2q;E-!i1!Li=xQ0=Ii2m{#Qa`*h=v3S zh&<#i2dGNsF{(al?3rqvZmBnzJZ$W({pk0n@VfOf_*OxCLhOe*eI0Fh_!ri9N2r5fI|7L$t>|5(G#q~o}S_~ZoU<#v)omd6ccobKa?7JuYu))Ab?VV zvj$RIoQRi8WU(q>NT}`={x><85`BHvq%rM2%Qwd7h5YI}Iq+zA8ap*{5cNjX91aR@ zK>jc1RG>^|Qd!L+fBc&>0rXQ^UPuTFC~H90qU+uh&%w8djgtpMs)W+U$uLr`cc+*} z8X!HIkwF=t2Qae-4<2j*mCGOI-Nd1S*RxLc#+~oST^RaJ~O6R zaHvahPxPx=cY=Zn7~ok^UjTZ=LqdN<4PysJC>lHdIjp_ zH2s3XF;GRfer&!UcoO7-ShtJjgn_b7N4>p=wZllgOV;Z?Xn3vOM1$S>u^C?fLJFu* zsH+j??oAh4!YN9n%K$Jf&A(*`rriJpQFFAPuDg)N(mDb2-w}TC_{%gJGq#-(zjfwq=C8szo}&;v&*R>|LR9<+cdy^?0Iy>sDmXx_Be~0WiFeMka-tblk)*fe-0X} z<+k}ewF07~Lhkopzi8U*n(J$37Z&KK9>1hZ5b@$RHZ~r-JOAmKJ112=J1J4LY2b0+=nc z&LU?F4aCKxbeKDyIbSd;($zwXOV{s3e#G$GKiWM~38#`_e59;|@x`^GA=k0D8Wa=z z*)d?6e>+e^pbxMWOBIu5f8!vPvK^3hGGv#d!i*zG=!lgr>Ndr4`Ldty%!toT!1>Lr zoRgoR0ZCd|NTIQOpSlA~OX66sgEH?ZFLCqnZ<8M--p6m2&K8`_wdCb*0joGuu$n=L zK@m(u;6*YjwV84MFl{Ha=uZKp%$pRW^d+Ee2b?F1u3_ta;x_xw1WW<~8oob1!Z4)p ziMe%96fnvQKU1-*o%jVh&sx;C>(dB;6o8q&io~qw8HV9!X8zEgEnr=(2p zxTx3-cTZTG-S716dlr}2W-mvh76e02rn#tBRP7gjXIegt5(V@dPQbNQ%ZsTD@3Xp$ z!Sy*_(~PZ*II*o-Dr#~kG}Yt>mX?c?ZXl9gsl&x$c`ru!0ESof9bdh@# zvWpsEa~>XsH8;QIca6|`+IhGmFDh&d0ZjNO&gEH(UwM%7!Hwp#KEq0ny?k#=zs1#y znZvt~8F`(wTe`6^Kf&7_!H$PiX%xJF(*|2JPR+Dt@;ZHlxRr+{lA<)#cW zKn%LM2v9;LwZla}_@++=HSrK|Q!={&Uick_xn{uUOYGi-_lmnDvKBPdMwbAz+SSHt7 zx!Z=cHUoa@GpAVy%J-BF7`%ORL^S}w$~?uWJ8Xi75ok#OI|+3%Ut<_B|A^iOo|>d$ zK2<}D3V^YsTj{WPi1J&;P7G$V6CED&@e(BFK@pKh!>(m!AhB>h;^sxS=%6*;}E}DR*bwY?kM?-uAnVc7?;G&MuY( zUlDER-}4bziZy1gcz?`6{HeHZy$kIlICHlCz$kx5%;ir9!-O<+bE-4ysj7colU?S( zYh~r$Xcq|yiSY{C*n4r{es|TaulH*f8^Ak_po^<45#Z)y8ZY}?`$gNqhT{h32C%ES zfsa22)Iz)P)&H4?0si>bh;1>16FL>h%s7ChB$Y*oec)=J9Zzd4B>`mG+1@M`%4}hf zUbgWtIJ50hbR*Zx@+p=V%rSy$_y|1Nbl-r9LY4Pj1Z9?2*9J{Ji8p?ItIZrhDqA7c zN9-47nygQx3J22;Lz}b`nsdLVCbGua|Imu!EImK^;dAT)H1gD!y{vi3!3VA1RWgrG z(8XA}Uw}7a2QWT|``5u8&z*Q*mKt|{kH@m!v(x%tVosjMX)fK$ng^qedW$*%!0V{) zZy7~iKjUx%6+fVnxCXp01>-jCTFq~-SCuOZR@z=ONw=T+)6K+~ zy*=i%k2?9ik-&b{JukH@44lP3Ki}d4cZo7~HXLyx@nFc#;$U8d+g`|XOkqx>-^;Mw zTLVE`&r_{^phgw-fHl`_-WA z+Fa-QQdHw`7FV4qtG)%u-<591y2+LAUlp3WE$fcE{qdQ-+%3Nf8jgn`T?1x#yRRv; zwv=CqIAd$NEYwYz1HjF9S82RDIjg|L&k|3gJMj&mc}C_@b^(O)&NuubXTAE$6bR-g zx#6MP?vswwv%P4?qMA3tmFtVqj28+iKOp`Hff>2ZRB5KE#>fg9-`>&7&4R=M6A-?nfnIYq_r7AF{u-uMjG zn;WS1-F@)j*Y-kteh&w5I*dOE6PTGz52nr=L>+AGwNW^}=B)jQ&CN$!bHMF0_}|r+ z5r=Ppik+oqiXb3#D&Cg-yjl?5*a%Gmf1QsR^A!WzPt~%@LM~@w5HYW(UtbL9EFQmy zp4H+>n&fG0*Kg&7Lt@mt&;RaEC7E_S>h@IB?i;A6k3X1nMr`Ju+)vJFs38Z;Mb*KP z*H`}I0?bD|D;Vo(MeKW-zIrxr7m)|U_*pBTbc^Y`Hz4(Yj$01m9NC+Pa>MntSs!-o z5VPy8MA0^bUCS#7$Rd#K=mC5fVA%MlV$6UJC^W3E+g$*Q(+%f zBG3vbyaI)LZZ+Xy%@b*9X+X< zKM1zxYB@W2Lcep_7IE!4&4ZrZ;yT4jYEi*sOX5r94i#X|7=slCLK^u6WHPL{>ikgT zi1Ti8Ef&H9q&>KC;;%)XW7NBoVUxPPv*DE{JKJiq$X4RbLuVrQJYQ?H=p9q*n_vzv z6dmF4`;Mc#;xf4xKp$n9U_gsO1gxd)yG&8=**x$&+r}$yIAI287VUPh{S>U-3e14= z3|gx9eQDiaJVW}*S7|*HUbf=~1m4W6-y|!X18su%t*$M1rQ3N#$IRdiZMnIoaJ&Kd zBKKw+I@;6|&^>Sft9S871Pmtl8*zu7o%xu%OJ=`u!v+-3>W;?iYYk2x{_dQ{1L9s6 zc2GomV-sZmnS7hzaOwUqb{oS+B~TPG zF*T){oXFSYfB-WMth#UX0r7(eAaS>0Rc(NuEm$Q72Fe=vaY)b@B=Xzm-Rlu^Tk*lk z1`DOy&>4pL;imPO`u6=6IHgyTO?QN;GQkx&RMd#7&nI?bkuKuZ3@#Dq{(D zeP`mRv(LOdjvC9aq86>H2jyaBtPSg)cv5GUVABx4OTfQ$2E5K(|2x8T*XCgPi-Za)up zbI01koIE$)Gg?B_apBY6FYgQNSe)Tr(c;CJV?j9p?wy+i>#3Zcwi41-ZK%uM;Mr^& zc=NQDI(cX^{4%8#mezcQJ&qZdF=o{* z_D{PT^=VK1eD6MxN6Q^E2j&6WgK`{PK1WVP)l1~}{Knf90#0~ezpiXR*6)NUhzM?o z0b-XCKz9V8PwHjgU%ZhM10(3D*+#Hj@e(wOGYB8jDP7 zIF3&}LJA-1ksIYJ&U~izq}3_AsMN>y&w3;ERLo$E&{JDeBNSLBE?klTC>Eo+I__{~ z!^bz^Tv$x6!p^_J{!|~TyH>L~^1c+EC${9Q4c}Bh6%)|y1r%408L!}4OatUyI6evWxG+{BG5w3G%r&)%PU?98F@ z?ND*Q&@8E0_EsAX9Ya=iQSD`8@{xbnlg10ZYTIJ}Bt2c{25nm}j{9X+6sT~g_|crX z?Xr+|=82JQ3{Pl72*TBF!u8MQ$=atp%S-zcCx&S;MJ!sZcb&%Zc9Da_;N6T)ZC2uJ z`S>ef!4HcB-y`0f0KT#_o^(LH3`;U!M>VFNpB@gCSt|V`mPZ7awnxw?fyEPJV?^jL z;BDT!w>m`iuC3zB=g+|1kH+`Ncz$6a+GdhSWD5d}{b+%im+)qlB)+gfG*}m3bbj;Z z>mUaNYpVpxTGDAuU1| zAb@m%Wxfh4A4Pow#moUtlR!3~Q1mP=bz}O_BS2TxmODf&yV_TV$FqY)lUwp zVMR5i=fmC60@+AH6Kt-dqie}M$Yj^ADFLqPSl4oJOSKpGeb4)X#o3n$zp-!u&kSZp z@zZH_Fj|b0XE65!AgXY~F^3U>p(f$RhK#J*6=ZRJZNcPoRHjnu<-%~=KKjoJW}U>H zdYR)EScM5gOo5BSC}-!f>2Bj%rWz!Gv@OD&eYwqFu(1;a7SL!G?6#VOn#-tKmmCq>Qf{pQeZQ7}ZE^T! zzt8JfvJk+dfPxZt&vWy>ka*1ve}E}f!++8h=wI9>4pA3U`#Y!msKxrQu9iKqWBU}i zbhg8me=k%k+1xTmR(pF7nYWqLi0{&FHVA=Z6$)oae!49U*3!PYf{gt^!wks#{&n*K z6_|SN?5(YF(}<@LnnilKBG}^{-45U_qwXMf?b2_38`|YoUv`dw?zyG}c+sIJQ6K^c za&!5DQP$aRKLc7IbKrYmANIlpDkQy~tX4$WC(kf=xP2B!i>A>a>&;_(OJKFX) zeQ#HyK5!jd3Yst5ODJB}qClH14ng}_r8KQu7gJfvo_*0d&+jq7C%3~vgOe?*Zs))4 z{Prqd6|U10w9oHqmn`hd>XSTAvcv9u^}Q4iB1hK$$qm2t(RzV%eH48qs=bydnMmYG zc9M!%2V3GaetlzYi`!ob0oMlE14h)6Mr{uuavIb%*0*@K>2DlK?*bVHVYOrG2Ze8UAFm-@mQr$HrQ?5)t7V%n~lj$2SUv(04VFEonYc-+nw_o&!Fae~jgKcx!$Kf?0Q zy0|a*r+A)Rl-%~mG@OR7tgKu&v~Y9dMZqoe4N?F#6?Cy4zY z%YhH3rw^!5m|$B!`=qmO+O}53uObvL&FhjdKF#?c`ebQQxG6qR99o^u#k+u7P8&a}%SdUoMVy zXgoh4ZwE>E6cV)sTQnBGILd6P%GW4-gJ@9@n7*1+{P{NGir2x-#W6#_`t>@6j@5vP zgEt!>huRdBulHPt!#t=-+}~b0pIzf=c|;f7>>q-dlbx8G?BEquk*yKa zZec#DG(2irrlC;C%GPVEU*TTCs~;tQmyhR~h_Z^ZoY804Gs`#>&Csn-|1LN@B_f!} zcnRj)U}({Ria$Kuo%VYiz?Lq6Su=FDg+4q_Kd#`Ih<}+|zEGL$*X&d!AeZBfnUHR9k=ady=12s)IrxRu`>)7(mbMhf2Tkk&%@)XyZ598v#ryy zkB?$*i^z1b*T;4t1eDc#fKqEGPahK#p2a?tX5f%DI%qNxLosSiOysTE_Nj6brv!L! z3XSnmJQ5K}0v~eO3^OGJxaz^)uYf@WN5^N+fvnur+{ zCekJ4NHpX;>{TiktM;y?$-L^lx*F-Cs9Q^RS`(IA=KiBh_4mO3(_OT$!;`08Bgm%* zKN~~~^vxS2oEO@{`0jNfR)C)}s8O#PZR9B!0Ogfvs1 z@cpr@kDm1Jp#=rX=-xay*_sQ}sg4h2(=@!m__CUYeKC@cB5(iTg|*kxA%56ke&6s5 zwG>xZqJ*02g}J#V(ZeaaYq_+(xV2g>%PV-+aQ*V)6w%A<*XIZ z)FF<#{G=J&=%=Y)+6|WUbCBAq#Jy^D6tYy~~( ztAfdTTaup`@>(fw<~HWi>ryH7^eS)e{P{wznbp4q9RN@L2e*tEKR zDC?n?pTmHjyXL}*YlztT=FE?Ek|ut(;mYJbIvn<_py&{fQufX9i44V&N&>-Cgsp^{ z9lx%GV@wT|<3{-HaW@q8hN8-e9WpTUGX0^eNlho5=&=ZXw1OTRukG?d3 zGCff6_NCrLFYx-~zE*Wx|H{(SFYE#d-SIG{-xhQ4?rZ0I`RpFTDUq(>=}P+ZsrjQC zr#ln`yJ$Nm*mPcWU>(oM88v3L)e>EK=eKalph4^JNwT3r2qKD#898OKYyR> z`o>1qqp+mdSdtK8HWM)4(NnDdCGf=-Z8lzA7R=#?J}1=VnJ;V&u1lmp2~=-Z8IoV^4YNckKTlxq9e}bgFSVO=FtgTf4*s zm-k;|0t~-t_v0j8T3wkKGdWr=;5+k>WC|Ipm+R(FdE*9V3lbm5GvwHedZt1~G0n+3 zr@yUFNFEZJp}Gb|PtU{|zf!{kA0qFKd(Se6v##3N4_a)eIjU+vqM$=RmOWQ>uU z_9qW=j^cU!UvzYIz>hP6&uzNV&o4?gtAfH)ON;b+08ZAMP5=_x1>LR4F;Ke%WG8wi zrVk*B#*6=`P>B6gv-w^ersnMx5*+EcY^SHfxCW~*k5E0UE^`*7kLhnwP%m0!p?+K( ziez(@vK99TJ04AL@3XkOg1Pl`65|f>B8JBT7FC`u77{MrQBX9t$Bzu zKGf`i9;2YZCsbL44vpr7z@pf4yVcUnN6~NrCf*cta4%k-?a`q<*3(sE*U%!qT&B{= z1m-CDQ7*43Qrp;dMg5vm=Vb$Q@~yncPO~R$;-fyHnK4ENlBSlH95k=+S%8CEqSL{F ztM0K}>@s?oTL}1(TFpN%W9T&tP>;l($U7uA<0K~lE>!m*>x**!$W=T%)8VX4ja;mi zfHMJzl#H&UKiu~n(5A^K1BEi`^L(?D@JS6f-IB<_-wJx#0%Mb+u)Z8s(z89uf5pS{ zCYIoxb)3a3>@6E@LBCCAnbseuQ{byS6B;mI@^+gOuC8)PsDK?%^dm~FW3WO!F5Xk9 zj|UUpNxGGvO+M&o>de;gw$_^Jf{y8HRMfAg0K9I>Vo&K!VP_ZS8dBDZgv}mo#c&X!Vfsb{AS5b}PVBni1?ne#A{};eoeN`^VmYD}2DkxDMz_t0D4%^+NaR<4#%h3Mb)<~A?U(np9ga4+xZ z6HjfN_4-<9N39fFCzKD*Vnn+=-(9S6wU_E4l9x)EEjcGYpn2wPc+pZLo<26?a;aaO zaQTfQAw9{$hlt9|TnDhZ2pl=DaDo>-_C0)s86v-YOBy;$I#VjLp!#XX9RoYtJM%Q* zX;^SFx$)(xp^oGP^J(@`Rru_S4WuXkYLIN!63DhkHfY826oZwo_l{jrDLr16I$2|x zyxxrUr^fuoHtnRcr#}KB>d|gOjQPMU$cjSJkvPV6_V5V z3PeRF2fwz|@YCRjUpcMXk`t1_gwe`Sx^Ei!f7jBpun~>XTfRJ~RR8>B5WTygPTYkk zaqHi#UVo%m2#3V&o^Ufn#L3yX)YxHrHi-{5pn5Xe8ZH}EMs$q?q;wMwx@?80Q+Kf| zQanpCNTq2X>Gug<27%1#bWbM3q|7`M#I1+U&V#SpbyXN2V65N*f_O^(8N%PM;o;$a zj*3!S+L8{ZtUfipV?W?=0g`Y2kbAAF^v2*6@OKzZ1%`b$9+)oynkEbaj0Fl>v?L}$ zE&Hl?>^>FM?VtWQxMuBz=KI<8Q#q-=H-E z-We1ZkDRZZ>}POJf{3BF#_3M`+?Nr^{QOpS{b{mQ!YD@_T2rmd{(o?jv7ox-(H z)HXu$B#ON4dR2R_z(sGnF75;rdNa`(@0NEc&0}BslGNi_4^aE}t&uVK04jDD(aJXz1L~qhX-jlmVWU61?8m1HSk*Tt4L3^9y;9 zd_0;<#lV){-LwB)Zz|uuA!c);Fg5 zzTUsfNKvLZAjB+{>6ci0F2_`dep%c}?~1O|QkmP!#{4ar4C zW>suS*69hBzvy?BQjb^S>A!gl!M#p0J(%vU>xizxJMc9$soS;8C|HgZ?Cs z?CsBfczvl{mv9A`Bmdpy`IX@;+c1v)-YK4?g+Lv`ypX)u$Y`1M+)Mz>N5;i5UAxPl z;&0fr2A2FYT@uY0atjz|7q1?*~)WLfuN2t=Sh~Cs5tieF$_E$HzD& zU{drZU{xr&kGu+DX7Y*VRJ$#e$C3~NFy%^oM_q|YaL#>BH!2~aG~x!(Nui$&Vr&JA zYyRhq+()x$^lk4J&q}xQAXuaD*H2AGFsWRz_6~wwb}n=4BtEM`waM+N=dM=!yO&Qg z`k#{Z@Q}*;T+p~WW!b_Qc@>y1&G)y06SVyd%2;xLmA(@!NsfC1`T4t{*QOx+Z!^-P zdDX9K+d~7xjUqPga%IbRPbn7LmwxTp`Bg_;kVequ2_zMMKsGlw2kvKcOUvqLAqBAW zz%uPeL#PpssBp!cvT#TIG6--Viv+^ZiOaTKSZ&LdnR>il5#6XauJmO~9M>P6wc{Sm zEVR|Avv85#0`En*j%+cMj%#!q^!Dc3TfNJ_5J4tz*FPDFD6t#B1Ltc2G_;ZJVRQX( zm`(t)(#FeiU}Q;-xUVeSL!ffwjz_y0D$u9>0P?*|QN3HFXwC0xnpC90e(9^5Fg)tv zhOh|q4cq6su@w5b))wgfz)P!!M;QeyWVQk3+Rc6<%4^q1vpV^{xo~?4f~=k)5Jf%J z!&I{I+nk$BrZa?=dC@kUp6v<$uCQ$!vNv5+KcU`f%y@lJ zsyGn``S({Q86pQ5qNYJZ{@{R+uK`}V?;XQ-0ztv1v}$dxLEfHUcVgOktZH#)SU6?T zZN{xrSsRiUR`;EslNk>$iWv{IpL*LYvV0Cx&uZM!*MF`VYRWvTeLJ{px!o$WONE%4 zngV;tF@dENxj=>uJO@E<_BTKW^~0-PD^@dff~d&(Pc+{oeJyJOzZi(TIUoT0SHu32 zOas5y(fRRul(}_|mgi0{J*kBDH^f8{{cP=y{XcBI1ymJUyEVKOMUf5#Nm07HLqU*` z?nb)1TaYfvO(QK*(%sVCY`T%|u7B-w-uwRdj`59g97B(&z*_5x`OIg|wR(mBSEC&_ zTVaX~ren2xf|B2XZp`r@?*U{3@*DJH;QzMjGX0p^fz>-R4)L9!K)k%XKylc`lfKgW z7xXFc87ABr>Ep*IU}5-ky1+dCb(01dtd&Kaz^!d9rkPOWECl|`1z24LtUV9llQJni zgN(~i7?&bs8^5ayP(?62`2y^c0e1>`n2n5#@LewXO@5)2Nz>H3g=)JYF>T&Mh`n!Z zlQ-ie$l^~C1og){e>re9vlpTH3YTJcO@=AuR!Ph z_&50}g=M-x&wh|%3!z<_Y@zw(VjAO%*F)*k_)Low-De{p6YuN*2l-arm7}fA!be*# ztt$(n9mm<^RNIGWtH_7VHDd>=g6pID((_UgS_*1IFcHkok$rIQcfS-R=VUn_NzY6y z_XH+`1yg+W_0-%x^U-W^2pJg}1`f_Q;AsikH6Wy-USZOj#_xW4s$l<}l!XOLMn;Ci za^^`(R-}Mg>L6vhhY-M?5?Bl+!b{q{A8vFY+8$@9ySozJF#PM&=jPp*Z`M-t=MEOW z-OMLXe=GA2x~%+@yub8CB-Ic~m(m69s7rS<0&le?>F-6z|19L@{48bj1u|Fy1Gn-gNNi zH6}rQ=-FtjW*~YNTNU=tGZNTa1U0j5;#Ujgn0yS+509I7BC+C**#ohKxnk+T(D8yE;*?}M)X{Y&L**^Q>`=Rt>k#tAtRcWJC$`8RPUz5k%=J`>sMc1aOM3^>#rCJR0CP9=4xi| zdEF}hMy!-H9KR@OJWo2i00r4HV6Ol~T8hdYEc0@l0Q(ZSA$<9L8tBtlhxppTg^&R6 z;+<%iE_fH~>P|WG;;O0%>?uUAUWq~(v`nUoi2#}9SqpHusne{?mq{1!I34-K;dpU; z4F9qh8r@@JW54C)Q9gi_7W+H{+Wk$=r2xrL?+@5!cHRVpuST`~T-xK6zw=0A?E6cXr_U1>U z3>6v^%h=GEo=wvemC=8-=yUmcKd4ld=I!1@9w=iBFWTiwVNaU90*d!i3qP1J1(tcM zj=s(rEf%f*>MZ#w*%0aV)UO$62FPFyNd;n`sh5C1C(3Jfj-Pn=tr~Z{MB($Df|z3}M%mV9NgGm6rE_T4k{pV42vgT(AykLxq~P zqdbjGo;S)aTKh&sq3D1WFuZg2QB*W(k?UH(W0rHCn}h*KCizX58ot96ybEIJX*hUx zPSAqj>6^fI*C=1|ZF@Y2cJ}aS8tnaI{#mRSyS8OAATOkQ93u((@9Vex=#t>Grt7CDbTUEN0NEyjBWmXJw zn}c=_2=i(j4r=50r&UH5}E0J61Rc z9-aj%I-YSqe!LO5zg)#~+!@cuK4>_RPIL}BKRGFf8U5SL=tuH*0^WFGA8D7mqhD%| z0n0?S|K!fuocF^W$S1>qN{gsaMz?V)UWHik)y`Qyjn4`NWQH$bL=uM2{!6-OF;^-XkKc{0 zJ>4@xX42v}EN!YB-JX5teQjR8a;*cz#jb8|x#VD#t6nMm$!l zw|;^ArhCPx8?xs;YwMF%Fm$uU;&a2M#KP73y$7R{I(G8-Qii8x^l;4QVmE6JJg9R9 zVS-!p^~y^w;$u#d^o|@{wxo-oDh4|}7?rfLi{hGv1) zN+0e^jVWGZm8X8Ke;l>6YlS;(IqgQcXv``E;teP2@+H2Nn){KH&4YW{Tzpaz<*MGc zbbo)JBH*d6O;1Y=I95*@F~iMQx&FrLRuyfiY_7x-OVn-Z^qjiYnw{r2;0(|@7_^h^$wg8>FVwEH0y;TTi;z&4PVA^YhJvl`y zjPZU(83WDYBwJbKfmb~Ex8{cWC`LPD3Z@xy!ws(X+^S|vGz9&Kvo=-G+@~c^8@{$_ z*KJLG(n(iWSeE4g1lx=l-71XCQYJi40RMjC1YO7_{-fklckls zG4Tkd#g$3P9qM_&85Uww$LfDoT~{et_3vZ?;-96^sDT?ZqPv%7S$aRlh<9~bUY6mH zu_E2|9IL-rfh%^2k<~dbF4&1@cML1K`#MtBQRgR>NGED>;!=<$K>(PhgOT5 zYjqbe7y_!fVW4;qrhe)`LLly9VC1&|ikwT&`LuKd^(OPT=;{awM+zoVxgGkey*C5^x$)4KpC&&R_`1-^jLEDz~c5` zfrp@%BQb2!awju-kN{OqTA89WF9M60SXxgn6X)YxR6zkPT+sfFTzU(bHZi}#&tW?I zJRNs8DGPj#%ln9WU!iIM4iI(XYdF!|FHcf><0$G~VTMKCq`;}B(|0gUD&)+tfB--u z!kQuHWVS%A*6sUGNxjR2&DVF^E?0a?@Dvsv4@k~Ld~NQwq{EKqNAR;mwx zZ)F#-fpP_vUT{#*Z|;4#5hW5bGQtwzm&W@BBW7tYUhpz8eFp;Sw|95qVq$MD&scXg zciX=U*j0XKa^4eg;t1swXnLH$TM&u2q^*C#NSrC?xUHDF!=tgdkUe3>-YJAVIKU4- z^d<#L2u=XbE^0mw4ebR_y17^-B1a>kJKNtG?rC!u*_$dUl`U}M;5g~+Q=FTjz7c^M}(w6g53y!HMY+OJnwHXhS&;Gc|anne~H-K+9@vUaHTaFy@gbWq80NKVo== zQv)LM@K;&1-8*7jl9Oj~?#aV{1mN6UkJD|Ph^gi-$BvLO@e(`ocq@;xL z|Be`4M;^$xQnX~gX~BlR*2qG@28YP|_dYlxs%i{>pZ=YPrEd%#-!pzQN#O9V569I` z*S%|Oa_nJ%&u_MB$-<@?jiU)mL+N>|PV_HHx6O9wgPe*k#R}T!2$0F7JwH(h&@l`Aizky70hzPC0Ix<8o=Bp$7$?UW>Xm}yN~Cqc)xTYb{Sgm4tD>HMUI6XeHwEu}1;yqMJuX)Qw>FJ9;n zPs>Chf=R6Q>8VTk$oQ}U%gmFCJ}gf%_$5f5mV_Ri7i-+;XlfDy2nk_nbbv5cVqL4~ zB2{R%k#C_*4pz8e(bXPI3dAVPx|)iz<_`ptF>tf$GATf8E=<-(Y)3}e7d!P9KGmb_?Tqi z>P9Q|0lu7emZ*0^X((V!2+z_juTcV4UgC~WP99~Xg2*X|hj>XEkSEEB30d>zD*nGO(lJSoA9mkA6D1cL<@YZoK zFySqWiw<#>M?)96gF6v7yngZVDpH{*bYrM{Aj-ZT~?#vriV`lrsIqoe8 zH8r&(t$D1{_^A8Ds97gA7M;$wX`ZowvoN+`Xp(g~YZcaN;RA{=-vvBHM<#+Lori1a z86J@DbiCzzLmx5GTnr=_s;xW#>n|=T?MXR7F}TZNbq+{i83aE?qu!vJknhz2GwY5c zba$3{!$_mv7{SGq|7v-0akR3$WETZqV$mTPacZMBN}lf}gdwhQ&@FW?I8JtDyE{dJ z(f3yb!YjKtcR$sVBW!Cdw>P-oZK^PwqoaztY8{c03MNTG!sct#ma(%dJG%gZTIJkU z?$8&zD+>M?xh=Tpgipr|7C=Rdd59Sg`lkZ=C}J)-&9z)SITD_=fHwD5=cvz?*dx#<@&o1*8;kbT?j z@V12yFEl~~&@T|)2nYbXj%33`y1wZj7gs|3f|TC<%YQI3<(nu3b|70CdX=fx zB2?kmGjKlR#$;=11i#mc+lB5CZ5x3HReg;S|Ml1%Nxkja4suJ#gwAkPAPMM)d(i+J zMkvUQ9weig^TYE0PLB-(${rOL-uT2Q_*&kJG%U48$?b8o{Nl%rmmz<*@q|MEt{$N@ zHyj=O^`_uof!v@IW$PaZmhw92WX%cU+kvtzzd|1z01DyK^Y@2`q~AycX&B+p=bMS_ zF2Qz4I6ixb`Bd={*m_|FOUDo_g%^dSmQ$a+MPEC_x(7bAfwc3QfAcMEHF-BN>96rd zb^E;HZ%<&=G=Ti#2PE0_WQfRDjiPa~qgY^^q}8Sn$abN^%cOu(CK52$hY&|-<@_`> z*)M*&G+nCiXa%F|Gf?Xc_*`UDdY=+c(g(8A$6OC2pV7f!TD2RoUT&#k(w8yf3|zDf zvp;AnBQn4A^z@RQkIMmMUHtRsSl^%*$*jf^>?w`cQ%azXdv|)JR(R?9TJ1^=EMx%o zIfx;lyb|K#q~xr^U@!mY;=xxp{wy7$p+n}4dUtq1S7pKpK*Qpbd5i+T-i}lT)~T^C zqgW6ybjm*%0d1qxDU@ANRYEN{1`$Hx}@Ungyyp{x2dbkmZ>E8?sWF%u`TjSR- zx4}PM(NU!7&cL3=(_rztigdmrP(H%Azi57liic6ueD`J3;~xC5(OfjH^%7r@d6NtRhJH0X6>+}t zaJ&q1xfUa{Jy)g{-%}QbnwY8uTW0m6PF|a%(i^Q-uQ#JyPl->xK;OEu1!lt)&6Y$W zce!>p@AK{67b#~=nB~05Y{PjW5^Pf?ASn4lA@n%>iX&qe4%BXM)A(an8`l1~_**Lm zzBJP9B5>#bPT$B_z)FcsQotxL6O~Z9WGGVdUxwkhhOJ7;=+21O`gXKdl6zpYL>DJ? z=GOhNfJ$AE^{Ef2xhDFGVXweSDJOP%q)ZyV{wLBI)uE0U^IzERa0~ zn6S_|>v_1L2s?f_dp59U5|fZv>5ZcWd*2D+1f1%DW1A9P;&P4vB%MrmaHg-);@gQpA7Booh84K#)*)gJGrEtTpW9g z9*5Uy!1e=qu_w;)q~^B=4TujSxJ@y>VaenH6aEJuahtI9tvEX8EZ{^W@cUC$-oE!{ zpA-AOBzF0)E7X==5P;||$IZ!jaXn2P3r`S$`801*XUqw7b^X7U`%@*?mtWc2{!5et zcwL6*O>fbJ+0pqq1?XVpvP65*-ux1o3)kEkDpIeE_Eq!+Y`?7^@j`5Nh+XHC=}N#R zl)bp=&7($AOh_b!R!&0oa`p(uv^50s44t@;wa-v39!x$!w%c|Le|g0zyV0o(JKeYU zLh*0(+ima`>*Ji7oM_bu8EK&=>L=wR{pAaKLeOV-0sOr1mQMM$AbKX(90kgX!Zmg!% znWzV|UMym|1N@5XY#)O~PkI`~+jgCep*TgfvsOPP1rR4_^P)g#0Z+o#trJ7KkvIDf zpW`xb(Fy#|#W~u;GqI;f$AQgg;U{l51|;*t`Emkts#zhBUt^2A?oyv0?|f;T1x9>9 z*CGu0n3xw#)2igmD_D^;l6J9P~n3`{sTX;t<%QLBFvgqcca{ElfU#>n)bTek24 zrvNT`mnxOB(l6?NNy#_Y*Aj9cYky9d!AraC@XfAiacdXe&#@uqIQCd^a(uHwc2ZV@?rKC!Nut@9C^Ia;%o(+-%=BWjbvGJdj zrIlV&oNUU~5o5eY0YPbi0UUwL0|LL2**tiNIpAVk--jXEPQ`W-{~NDz>;XkCg zUn2$YYbK$atC4~fq@<6E@^G`dqzaq;*Tqaf%X__9mbcrv3$pj!Q z!AwQ6Jcfqz@_?Q3TLK+LYB+(MUj0eS`nV)`7s_og_BXq|UJ=@Yk6XSW0pC>ceark1 z%Hv!GSR0__DT%)_)Cr|Ndv(@9PJF47AIS@vVrK<9Pfn%%Vj0t@KrV1t4YA*7w5s70 z-OVyTu1XG_X-(WZV~w_H1h3EfqdlLibcSM5wc%C9M^Jpu+rvJnqj_QSimbOgHt*f0 zAou0X-0~iYzL~0GY|k2E;*ol2Gr9~*z&6lf4g86q{4EQWFd|hbI8+7#_~;eHpK@-o z)b+G!RM6`l^f?&>9#Ijd4kMyfJC#UZxt2KAfLC&7Yrzo@pdFF*m58jWm*9q(5jB-r z?WHy9o#9sOEgPdYO??8Xg#2H}FE%o){(HaX<|`)wOgS~+$Gn~J@Ay8L-!V2USv*`X zHBivJ$?f(w(FFF$D(YYy2?D;|?(OsbXXU6oJ3|A6`_Q)wPr-1a@GA5X5W2{pD24&_ z?>mP5vqH5K+^NL^UnxYsm4!~y>c4#!U4_^t(bZ7ykeIfUs+e)A#zTv@)g@Td4aTYq z!uWM5g`eSt6aY?vBqr?9$GGFOvq~gmYr$%z5c%-7;@!>nDOY{XAj~p5{FS8+`3ZP_ zIPxs4+2DEe^!>L`QKZ)@lgzR^gS_EhxhWf}FX{a5N#Dt1;n-bAsAM_jG+vbnIRBM1 z{Jb1}-7~b@e6Ff()1Vmqs9$w8YnkKJ13uzcnX7?LC@J@}(`w!SZ~^q71I^%-KvH`uT(-0utS9fJ+rKct*9p_R9 z2ihBlN*OK}7Cs-fu=uZ^P4w-@_sPmB9Sv z^ABr0OObnNZcg~cX!lE+`uBYS!?0mDw?|A~x0mV~ zXnhTpY1$~BZXX+q^6W?52qj_0$@8iqEY+uj`se3p)u~4A(B-nM5K+nXB_H{9_&)=D z%RYRJJ2^WuZ2N`;`AD8h0Uipq1UsnmK}im5M|)3(1Q|szU+Vp@nkW0Gy|L+Rd*sW4 z0U{JY`cyWDT7)XgNIzb>j)*fv)8BHM)?50EHT2S8uEI&LqG_WuWvT5re{T8)l_Kkr z)}=H9U3%|O34eFxUi!4dW>r`^MjfWlG~?nb_$Y%vDL+TgDio+B_tNezyD`CtyCA2^ z^vZvd>AbIt^>SN+f%=L927@OaQ88#r{}QImQQOYOQ1q`lNhe#t5EKHT%JTlo-=cM* zgi&R3V0~JreumK8P@BtC;Qn+^Yx|V0b<4Lu+F8~1fInNaZ)2|1IJk?h%Sb6-E%N^K z`j)HMYomT`vKoG5P5hwD`{MM!3NfJ`VkA(+z5@o)s%?Z_gA!d9a*mn$O2FQOImLGEl|8EtRY6}j| z2Q4Ok*l^?8Y$w{%er|3&Jl?NM{(D*&sFi{@r9}PCCQk<3Q5lXJm>Iiff=AvmUO7j< zbBc0ZCNq9GV!>6BE_X6(sPcR**nADiZw`QkS#PZ*fIWn@Agwj>2W|QtchF|s1)`0P zmb^=Do>wLxlj&nLxH;3*=811TY~RA_dqgv3v??W(>>aj zxv)SoTwHez0}rlc9yW2?Twm{j4w!XkM=qigy63>J?Xe95gGLDHuQ2kz2Vfhu<0o0A zdN_*=4-s;CL$0@Pc8QGyI(Y{hGI$WYtchXS>&f+)^*k<;N4=&15Oy(LAt=&4$O>AN<~o9(2~-&QpEBb z4-(?M;9kIu<26P>L+ku0`Kd@={KGd4_7%~HsLi($2cr)`(2%^nlH<*0K1)=C`s=ft zRRT%5+M21qc5dh15d`j2Q8-opPWr~Pe9%{}&wapY$Mdqq5SAkUTO_n*U0|SGJHR_| zaDul@o3u%1eD6;^$Z_Rn#50%4EqVdP0!NylN^4z_B&>pKF0 z8?2&FSNq*ieKuQ~iI!i}gbX|3Wvg)P(Xqe%nY_8>!mnW^!rN`(lc8eb%ccudKoYC0 z;-e=f8mQds6N?lO0vJs4>fm_Hvth*e2IM?aT2x4+KsycF& z5<+7RSEk%wTW`u4;~iV8d7%(EDte>}E`n9fbhS>7zi<>leMZ--_Wx8!ByGdwmE3}8iF0DO2A6>-2W{o^-)+q9tb zyT%KrAm!`s3SqhQ5Ad27R$nJ~rAic|&Vt*$&XKJ&0q zX7p|W&(*@UQTE*4@iZZ?bc_flzT3I(bM>}bBeL8~*h}3mxGU+5@V(t1hO!bJD#w(5 zWJ*cCT)VU13rE>};I70z&)uZZDmXu@au}NQKUf2G=Hx!CZ{xu)SYM|Y+gTs17j%em zX|OplNaN#31fRphE!hRnWxMCayzw3PzGyMdM@1yb;bx#_CLbmNppOsf3zq^e5;9Uz z;X3%d*DCd_%WO0hNa z2^{VZ(^Untz;@n|ipo79)dm8m4@P?=1+&z#6$HG=R-sN=cI@do&4<@d5F=e)Xq8z` zcgvc*r5R``Lx!OUBy`qCsevU6c(na^XPh3>14Hk!we4Vgabouu(Ba_#(V1*jkI7Q? zgO?FMVx>c$)BZFzQ(&&W9e#f{9MpW@x?z-Q=R9+8*-*G6E?8u zh=73^2O8A4S1*&b9I$@IF*L?SMMZr8#{veT(YCDla)l>8t&s?aeMiq>k9xna5*m2j zNzXgZF0&x_tE|-XRK#Q|`PK)<|7T^vuNI8rL1GPTm37pS#YaH|KmR2A-E|fbP^Zu_ zn^*SbICX^gQ1d}~I(9sVT~Tw11y(B_=_+z;8tuRgT$+MBzg#tsPin(6Z^YRJ#fw=D zO~7T+s51$y9AW0i8jjzIIiU zwH*a>3n5r>aj`s}oFPC{#d>0SGmuElWJLRsq@|H4=g0r+D)zRR)P8h;2 zw$w55q~l(3|3Oue>PergIp%P-qftOq+9y2L8R+wJdD5mT$NfC#(#0Ily(QB0Gf!gA z`HpKDD?G?%?&`n6#SK8cFF(7eK|K+_V=wI7NOwDi)E%aBJQQ0#d<(+$C?wqh9Q9JP zgP)fEVA2msNx|v|FiQ7?*5=H)4A;5J$-ErcE?gRM7xRbq+(p{PymPW$34br|jan|< z+|ZQ}m(h$bJieP*A1!b!%XCw<|8wF_L)+1OhkG=(HHpqP&6y*U(^J^ZvUxv-$J?_nVmDierP39=>pAvz<>D) z3A>BoGOL@5NgF3IvFCu?ZgjCfAD0H$z4fN^b?iV1!-qSz5qy9nL#(Arf}g(VlQdkN zl{EWyQzw1u7k*b~0syJ)u@qbr&D&e6;SX8Re=>E~250>w?hh@T@!O!;YX}RU@jW9TB#o)!0>g!++wO}lwq&z2CvB{u(z)dCp^3UG#T;=#?9(B3fT?oi;;tgT1BKm>f5QDHOq<56z|;puB=ByCPYJ& zUp_;VAm6F-9_nN-czwb<=iH-I`EI|uJ>{M?H)eJpjJLepdHv{{~08%z&gnJ-CyxABKPckdDf zy}HU_cUSTTO#p@XoD47;<1*P}r`|ndCqnQwSugyvpdEq!alqEm(eUbcz2Ryj8LlzA zvT6AFfEB^NF-0)mb?*EV)s5XYIRu~<-%3hKa6}caT(i`RIu%ueI!l9bK0cQ-_o_W$ zPP^N{#Zs19wYij;o34*o%UWFhXUKIqzFjtdGOZ&Hs;6GYj2cH&vK#fV0n2@YU*kIM z@S&Hv*k-s2#oETQFNTDW^S>AC&B^^JQ*><>F&NZi3i3yXcA@A4c8v5%K;Q(r4Z5lxQ zSQt~tI7!jEUM+A{p0{o-oRbT|;$8DolA#Il_FZWX2^CK&yZAXGtG$d^W&+czq!&Sx zmQ>XQ;0=(4#49ZW!Cx}y&DJ`TcoP-q3p<2CEAhJnexVy$&sa1G@BEAkuP06Uf7NyC zBI0aZgHmjBbYkr=m|D{_;NN@gGWV983JVWU3=k_o(%0S0P!vUr9&E_e1AB$ypQ#~B zKpH*9SMkw5wSOB!n{w_=IoIM`0MCv~e(NruzFZz(Wt+$gWu<5666E@n(t3Xqpb5;b zZvh1m@Z+PqNI0FR;p+X2&9^K-eurF01(24>>FL8un(vc_hh>vD0|ajfLj~0Q6^Ls4 zeBM4FO6Lm>vl#|f(pHJUNoKa5cz*gf_366Y!ZQO_bmS$b&f{j*5XEyT({&s&-ZwV% z0uk1nCC2SZN??solCSwP&RfBR?Mun;cURR^;3_`W?P+rbH4U6jC===Nb<(miC*kbw ztouW_I(;5n=0A7CGU28s$GRILLc1pw0rq^|%)+%oX_(t{$?@*lVu&v6S* zF97Uw<-1~s)hJhj1iTXj#s-0}AjU`!;R)53l2+hx{gR)5PTQVy;s?2{Ioc$0h$Iq5bIp;ou*!?(z6X^wbr%na1)@OQn3* zc`JNF{ybDd?e$8|*QjLQtX6vKYA3rUy|14FN7|~%i_m&h!@$7Jvg7jpS!wf8^T8*G zJS^8DCn5ptultGFMOC&}g-M)Of|sR+O+tJ#c~YaO$K(t9G?HG@vT|WXb>*U}udJZ- zdkDr!3(y!nq-*52A1uVQ2ZXDkc+T}0HIk>$ap{>gDfrUurUDB=4@apCU%#{kx$;J$P##eFf?-_R$t)_4KV|+Q^Ggxh443~o8ki&p_$1mRj-Y!uyzb6qwFFT4S}aOv*HubVDiwzTHg zB~7hAsc@2O&Bwyy6@Y+lQ}mX)2RzOxUv*2vT@}XP38I=PZ<(&)NoB9&#$Tr-`*A1m z0D3k9;hjH{wUl9B#NNaLe|>2|fmT_DM{3z>2|lcWoZz9DrtWg#{v?bR_n@fEFy-O{ z{-*wm>5AoZ?tlS}GSg*4nFlYC4?Dj}?7@f6)_q=B*f{7rb;C}sHefxqrF@JanZ6Je z#K&RXV>E_Xxa!|8N%`je!1peT1FzgEz=UeJQoZj}B0o5Mw`?(jH$4j*nS(v`SEug) zpp~1LFRa?-r~?<|GEy220^ z5k6N-TDV1*-m3a~40hTK%s$2JV0{BA^Q`}YgVfTW^d&&x=f)ZY!A^i^edKGDhoObW zKoPag2NLhLex?>1tk*3p9iOGly04vvnZ(Iwe^+uSAV|%!myhxl!ajJ1wkXe3SrM~V zJ4#}AE9{jO6dBWtOPxT7Po9L>;;r%d^rM{I=qJhHyu`5$a1|^L-O(FNzu~tZ@=Tbz zYmy>kRPU~+rkE}X4GPi)Y*S!)s&y84_WL(e3qB$n9*V_$T^x`GfdXuMRGHzOy*SdRZ3vyDf&?1O^$o#%&M zFD(yZXAtvYZnusXzbd0OztYxekAM7*5_LmVa524&9sCX{Yd#$H#>uxYZtw^tqI_EC z-+*J~;;MD?-XmO8_&6_}`Sj`o)NyG4^jgOnrlz1CeO+fTF*eubEq5YJHJl?hjgFg1 z&Y6ryOSSRC_IEdPvf}SC--{tt0#L@Xr9Uq0aWy zcc(4O)t*{s)~C*cd7={$hbM^8y=yC$L_Fr-&HS-Mz*q(B(!!d(1%aI|>b8>+Sjq_s z4*v3Re^;p8m^3WAli!@%$o>@*;YOb&(SX9~tq&c z6!nzuduoKAlbdY7PQ8vVsCRKjoar!wGI`I@udeIIF?yS-dUxp+c8^ANMUPI_?q93( z&%2iBhUl(NZv+o6w*rKK0TQFO&yFnRi~W9F2{ddeM0yG`9k0!1O&t+cgq8ski1=!zqd4|2_?#&m5p|0olc1p!*ZQ9K- z@l)p`?z=DHt^{m7>h5K+T|{V}wvHsoHD0)7`AmVVrbaQR2s1Fi2Nx$enI<__Q8=qJ zV}eGtwjY0dp{(*cAXmIV>3aiN5V&c%x6RSWm7lAf)+6>;T?bm~=u?R1yJjYM&EBJI z3GRP?En4w>Gh8$xm0!xxFb78%_>+7mj8}`SUi3-^KzDQvRUoc6_D59$8R`&|@1gaE zLn+)RbsUfBJN4-N34W(sJq{C*S1ioSQZATCFsHvnL=^wOIhqbg-rIHJ7(FcWF624zDXA!IIMCGfOQVzwkLp4$DVvA)+K46LklsiYsc-8dv^x%*liO1n1K&pG^*+(IY zvOAO_B56vL9rt>rP=sukn`)>>x;~5gf|9jx_FNF=#~YM$_Gw zI+Ft35lS+$?!b?84pj(lkLsMm-waR5guMM`)3CSVv^QPpg^Y~rJ$RXKy*R!P`}%-8 zfKXnYDXZi4!?qfIN>@O~Kd)+!og@nlW&JBmgWz_~=k9*HWf*yO^#wV)N5gCVT1W5A zIAV8xIwNc~Nx?TDa{Vx^GvHM83FPJXo!i39*7Gp7mR3xFspzc<8k-jvB>%I;s~&J& zXMEsI8NeYE@y22rXDe-9tkxXLWdXIQxysn3<#y>7+b$D&>p(-im(giZHk>i0CL}y3 zu8sBa#_2_TN#R;JQU~Pro}45a`h?k`=8PG{rp*!JaNZW#63&xb4D;t6<6`LqX#q8= zsOjEvttqbS4Y$uo>YS8d>4Ju)?RJkwxiu;j7fGgt!$-ul)tJFfZ`-_u$HPl2JNDX9giA)*Ye@Us}Ol*}sg>JovrlffPrX{T&MQa6lG` zQm_JxiR{W8jf~q64O6D^TDt9D#|Qr2t%66zb24s&PlU`uO!a>WX(+tcctd}PIjBUE zTWPGavnjs3S(X~872omA_=>?}kiM&2&p9>OjE`6T6-&~Iz!Hk3}Q z0>iU)qW+$kJHZs)+?$Ud$}_|l_ddy!ldfo z7AnH+Qo;7u77&Ep(%?8sCcZdn-g8f7NYMhHYCVeS2muSR8IRy}OjVNv>@_(dNLmf= zrKQn8$RR3-ybI(Is2&k`)4#s0`!m0WF1ARvyAEoSwkHaTxSXn2;dxNdWiHq3l!7it zG$Qi>TjsbP)7F4k;7@)>@S62?ht$LQ(lKvb{Z{OoN z6?dzpvK!7*+o{TZ+iR-8T=Xtg_2;Vf1`nPag`%li`P7c5a>FB^T3f2p6cgzQ89B@I ze*_FXWyhINH9&+*BWQm9>>zk+^EN#JA@9CsOqc@;}U(;!{^Q zU9qY74-s_tqVEP)aN1_LrG;}fUIO8oZno$KvhD>X9@cV1pDEFsnUc`3)3qKi?bz7y z%#j*w+=4HE4~6!TRJ6(o*j3vXPd1=O?dK=weXduPf6$ILE*P)adK|LpP~Tow5nl7h z4K01ZKRz}GSN5Co?4f4};62kvl|TdRJF$Q;&bl)baC{ZAdKD^ijyPHUI5kZg?BP9{ zuIGBJ^~st#q~_X~A}i(R6#C=uDJd3$saJ8TbQDzgQ8PMCzN1=GoCweOzq&)op!v2= zi9I<23SaIg)4Q97xF%N~Lpl5PguaZg%DF;H$}E4tC~$v-^nRa(nqR6n7dQ9K>!+{4o#$vIv-P>7QKnK$K^kH9#M#(deRB0fq3 zs}-9mEp(z52+$=hKHOhCdGZ9P=4o$MfsH^pdHFWLI3EOFjd|uRC&CHL#$Q68uP1$m z2QHcGcqx$0%dF;k9O{y1iTHqrq1WAY6i};NTlG|JFsp2Lm^BGvg{kqq`of>UR51Qm zUWaw>ZcSAII&E|3sFoHVzcIYZmOKCucDQ2zM7znmLejq+mHlP^EPHZD(hHzD2JGw@ z00@u9IrsrqR7hDvy~Y zE1d9+^?s!jr{*X*!BU^hz4WgA5bth+eL?@N&7hbu33(j^76I(~6GdK;+;yKjLhovZSZ+t#3VU^6<=&>w3+T$#t7&CZ~^`vwiPUFj+f3N zAuFup_Er@?BPeRNo?%dlo%<@fdcSk-@6X$2*WFiQ=%~&l*EoJY%dnB#OW_p6NiA8j z@T2n_|LisABs6&S?m2RK6A8$ZJPte>lvG~%HDBE1p-MA(%Mz7A`>Q?Im84U(;fAGw z<&VJBIZxTVR90RtVv#5VfREHce!uUumE`0|J1|x#PL4{6pKKI1Z}yO~t6;o-EpA~! z2WgLq&}ZpEuUerY20$vtQMJKFV7dC~v@i@5 zi16|$B;>_piH;0dx&YM`pfFEdg$4(cGB8A(?Mx}i$+d#g3+xR+-hisT%^F$vsO>7@ z^PuOOK6eF*m?lH)_vPQp9y#z30p(tVHz2PrB(ta)>5_h2g^Ij*3fieTQ20Y`^$&zl z*o#Z;i#s(}aWX7M%JTo^Vx@!>xt|}ATx9H+@iSe311G#)5(zWh%zm$;%jFphN})Yq zh#Dyp<-TMbh-QdTaa86s8ZQgac*{w8>F#NB2!dl5rBo2RDF&m9X)%<%NC{g8Jv!d5 zR&?!(z%t>AR(K%?!l#*B#%`#{UqujDiZ5icYOn3J2^*AY=2cJCFfvH@Pf28bWLjRs zOQ}f@4aa#`=rrkqYS`Y+t>r9M+wn_8a6Q~%C$C;6mRxE+L)WU!|EyUU@I2KqeQ@#K z?XGzd#$){H;^@hn|EZNExyYS4IUjr8{X=b%mf$hc5m8otMa1I((cL}C=ug6+5W$2p zC(`k;vBdOa$AR~32c(Gmq~lDP3A^m9XyY47T2;p#SZ#)}RbNc?B@g>jyYGLGfI;iB z5l$uu&+1b71)L{p_c;#s9ZucVx2HcJC?&r`kV|0jI7p29y5@NGBD7v5hOhb4I_daJ z!DWTh5}p!$_o9#%WA1|!?{SwvzuBV2FV41SM6`ioofP8zGmjwtkhAsVTK}!x17mIXN(DU^>q@GU4-3-@VZtAOTWm2s;R1fp;IE#cc(&th2}%GlI|gl=GsV#O7Uih+&Y4t@&vRxTt; z{{#x)TA{`mdKIY#ej^-6X=&*IaW8y+JFeUCXSCHJPrQVsLUg#>yPk^hTo^G_2| zc3z%>BH4~=TPcA1S)KPaL7w>eGhcV17)D=Zf1Z=E`SDc%m1YFnOfpxP0)Z)EiRgi*?50k z4C{+0C``X2T^LYC*h-;KnRm^K(l?e-P*bA@SkH4xF#9sc<8>$f0`t zJD}{Q*)_qCpinT3jFNKfJ_5t+%$)gvNOUifSylR83J}!hp1hpF#dl~Hit|qGqj4s= z<)4v!lpL&c-$uJIx$$?YGq9ZTg+aAIi~+j7%JnCO>3hbMMq{Fjybv zQVNP7pdz4jcc=&`-5{-Wcc%iPq=1BUh$!9l(B0kL-6{Reqv!p-aeaTB>wwp$_P+Pb znl)?Iz=d#qc7!;ctoKZL)G&ObuOz?0(yF;*!U>_K*f`oax0JBvu-j@bs}mAxGrilJ z8p>T=ef@>NijW7JS;_gBsID$%9BnRJ!tXQDyB)V8aLmrs*i4lkE-w!(vJ)77W3Ti( zObNflV649zBQI4mTr=$AritCy5xdYx>h`^`5Qa42fC+sV#?01kz6IWIh)?%ja9nbv zeP(8i6W08Z8T&&d@5 zxwm^^i@7+8j*Hr>-qZUb`h|vWFWYX;4Yw-2^DBy(`=|? zm9{Z3n$9uoT|R;k9t=%#ZS6U6r*atBVq#(fn-oEKcu=yAij9T=@ve|mvTnfhpXOmo12|}_m~kJZ=9pa?`h=!G(P~| zqM2q0yNWui>`{WTg(##@5TTHOfM1dxx&t*OgEpZey5;Oi6C1+|hJ(vrbykC240CKw z#7edQw4up;Ts9m6E{Z!zUfPDjH7g>nvE1)#Ny~3?*oGUM2S^NO1sssG)Wu-MblhSW zlkABTwNG_JyZ22<*A-8n)a+duKOl3SZEe2Y1&y<*gFc4&%5&}@@k9^W>o6(kv*TuNNhFb)Jn&uS|3@@S1H2Ew(W2=Yti=3lHE!4I@mgf&Ap~a_7vig+So;u^vX*ttv&%UrNsk|rQXUf zhHIw1yuAmn>1A=1B?^iS!m}IxT7c#b257Oa#|930^|Z+fX`g+3W^$ZJpZyh#(Y|mQ z&pQ-b6W^X_r*$k{T@B_vIm3PvQ~KiH=O=jGXfQx+wTJ=!`F+?VFVcQf7pNxj>4OVI zz&OBU^(ROd?#np>Wd@TH7VReuSla-25Ao?eSUsIjm)0NC=VUU|D=Bqo@%9@7s+oFz zcY}Lg&F!7HeNulZ`x2{(+ib%z)NG$16Uu!Zs~%!>4KF`G=Pi=n5>)|Op!>u^@?@6j zAph+_qhhBx&xnBd8jcxD3z^L|1HMqAL-~5z=$LGeW4JA z@!1^7BQj@V$2N)(uiXY^7ImLH`|1&5VY>X6`n7Wz&RX*x)0LWA?|_XDVc&k=JC1<) zF$Ee24Ue3k%eqtXl-YQh;otHu%N~qXyDxg9*v6+qyq6>?XVgj)CPo7s$2&;kkZa+r zEjT1s9R+*_ZsM_)z`I>MG3qla7C*AtePdFqAXH!S4A*OUXR~2vpi_2!k|y9}^R>gZw*$)uJQQYTX6&cE?nWD)qGKq9x94(y*I`<`D~juB{;-@) z%^~(8Q!?!iYsNQk?Cq%P&Y&!M#DkxWX3HEa=y-~ETNj=9Y(aeeMZu0-5|9obA1kMmW;CU>cMXCJ-vQGxBb$-#<-G6=rhz~L!wB;)*%U&&77X*=F)t@%P%;0W*_ch-%z*BfHmO8) z&eF|ww_U7Cy2~XWd%6@e?MFFv#?kd&l#>L1V7+}&R;jVgW;2i0Mq;w&M$s7n@YrXJ zu66Zvehm4oXS6{!>GMx3H@)jRQDPJmB+S>{hlYl9v2{FHY3>pkVJ=qyLZS%KvK{!z zLa?S*4?|h^byW*;-*e+*I=naeKw%kP{Ua5uc4&40&f;reu4J}V$Y>3Fu9j2!DOBzrA1s# zvB~#!<9fKB5%RqzHmLj34MSHfNF?@c=C$gB67oF-2>#iDIOmDH)Se-q}DL z9XoYVBqinj)Y~l>1pL%DTyl1=aPQX(IX&U#;u@JKcb?r~!Vu#ViJCmGJ0oNIy}QVn zKCCXLU}}>T%gvh<-Dl%9#{bBJt@7-1ogn9dlr0bs`1ttZ1KWM=;-6KflAdhDcsL!3 z7u!f6HUpSE`UODS1*4llcsrGJTu*6eRGc`)cv7++xUa6UoLM0ys`JS+H|n$9_C=-x zsi3&2Zx&1-qo4~K)DC4jU|<3rE?BCD0QfSdt(Mnbz^biiY#6+FY+B2OI4KP!%kgh! z6MAFIffefQZ8QEXqat}X0>__Kzv}@sQuz>Jx-=BX$E{BrOrUnyJ{Lp)^~GTVRfFn( zuquY&ybfwC(f7{n@hm_zI>L6`*H{PvAn_NUID2PaV3LKwTkw62Z9fq1-nV4h%!TK=TBt}5Q zyqwxd1hy`>gCVpSZ0l`mZPlupOIqS`WHytzLUQfUU?6liea!F&9Zzj8=Hl8Q40i@V zSIHf@QR)k}0TgW=k2n)TWCvYp)@Tqf1O$%2U;!NZP{7+_R_G3m(ld2+l5dn$%{&%I zExTWqjsx%0(JoleaQ$`6J4H7ptKU|feV1yl$|$^k z@xe`f*EMy82Ev}QHEr-++Lsz%B=z;5giwf=&d+{hF$i`6mtXydWI}-@8;iM0ZA)p` z=DDXTeg*jXy)UO1Y_+P(60IB&Bo1@9-cIx;TDkt+(&4ytC43tRKXyHM4OY`$X4tmx zqfbZU{h@pQB@|Je5-k!!$)ACu<9VVm8OQHgqjs8Aj@nzPkS+ic%Pd&G@?M^~Q-nYbfz?Oc*Xy&RI({r*{^h zrvOXZUc$gK6o`KJxuPd;x&}DApfxT?e%D;R?hW2Zj8RR>$7m%+chRSQ9cUjV(nr&M zp;g{-CV%cU{oA>mC7L-5>^pst$UQau7gzPjCdb%crSw`XwB3WHifBzd(y#kguNYj6 zk;n|~MCRxpYqhdFleD7}66 z?qIqa!MI$8xf%1-`r0&$%>!~%yRw_9&%)yd!3DO}D|b_$RQH1a&=_l`rR9atV2Nsa zMMj5?oBWlhGR#|4zjL1-%E}WPY!@gMHH>7uTj~3S)!nQJ>)>ow`na@^B$wq+hJRgr zN=l|?7*Lk%w4QLDC4O4uR&?3@V11N(%*lW##KbRPX-226z7T{l=*JcR8=_MG66xCK^Wbb|l}xCUf&7o^;kb|6ytrDPb1TCRLb2 zVz8TwVqMDQT!@Btz6L2^2b4`J6lOYsuSG<11F4~-SGT7>FIS+JR~~^DlEF{$n1TY@ zIg{~?-^3^^EiE~m4rpK-v*N^;{^erW9Yy?zN0HRG{-60PIe4aZ!N{4KoA>wr*-#5s z)g@`AvnmgWhkn7c>ce}Ds&vMK#oy{){^8=%)fNH`ujG2aKwRSCO1yDe-nT@-9F?Z; z_VX=wKdKwmwd{LG#aG1R{nqFuL{n4Kvy@)Wx?(0~W)$Z-)kRNk&;IV4qH;+4=UkSX zKTcciuKy!mBkQ2GieI>iT2?bG;1iJVI+))WRdJH0-hiyw<=Yp7RYGt zl^{mOWHSt7kM|V+NJ5NBDT-_x@ojaMvL6V*eHxxX&)D zcg8C@KoTXTq(lJ15wS>?&p>vKcytljg%2Z{R=FH+PgMJ+kebw&6PIuA+X~PAdN!JB z%1$W|de7xEtCH1|G@rNtf}z67wcL#k1Q-fKEbAj`D*PN6xOlQzsRvH-HzSA3&8|tpT)mE`0miYa9yOMHT4$05>y>;~YRy6&^Ug4GA z`@8zps)Qq}LrKT~D2YuCFewVyes|Nmm;{Yicz}-ZvEAPCVIM20tO?bERCA9b`Y>DQ z!Uv-3x^Yya&$`xK@nUJMejg5KGYxkRO}`2t<~7#PEhYrAR*(Y7T1#8p>1eS0`o?XS z$s5gUHfTJtwvBb&uAY{3^e>Z_|LG6a-W|+Ka-CPHo)vcg;m!KnuO+z3pT*NX@Kol_qB3GbU2x&6apYnSn%;=1;+_EWtDz;UtU76_=4h`FOd~ z@%$WZoo`+GV_k;$I}NBGQe*In;e?_~pQWy`ky)n&4{Yq(*e9K9!IT~HH`(q>a!9yu z3a7^~%Y^_X!-Dh2R8*=Sh_L_GLJMe2c@8hbj8$l zvbT9}xw`L~S|}48mA-T;9Z(!^ zjAg!o`RhP*so@uuG0*wAtkzE*bhaa#sXmq<;;Fv&fQbq0ziSLYZJ=%+)rAD8hFX&F2` znfzR$GoIJp9~%AJ_`28V1^TmiHuvGyi@MLXDX;Ba*n|U!L)bFE{cU{!iWaXnv zICS%6-A&6MR7Z|d!9D^ww}+m28AYPkOgDsrBvOF-!G-QVq!}2veFt+5_c<*+`}+DY zcv0}F-05%u$~+;!3yU#!Y#e?r%l33wdX#i6Z%5CWDq<%t`-f{0tLgt_+8sj*uM^jp zBp3^?$vidXgVsL49#x~~>+_M+(ZiI1tyiX%$G(2WxIoLw%_uHOySBCTsYu2*D(XJ3 z3v=jz_O8`3JK`UQaqle2$GTNYDzBGv!Vyi~E^gCkcWz%#idEKm=9}@lo0AuT+DK6A z-_AxcN_B zmuaK*@IF{Y6QH!EsExcdF)%p`Vx`qc(%(pc@`k5+i57ud<(g_C<5!=QNzINism>Qw42`CAQI z*qIT2>v=(Hb7L3u`V>+!&4&&byw?}+ag}9Hj6$bI$bawcS_JiGW%lJbw2`7451D#) zb5Ghdq$E~yMIe`yzxEgoJdg?jYD?JZ=lY<3oKoG?V)-huuN`G(P7Q!S1kqiyu7@?Pg6)t>?Q*C zP9R`q!QOEx+Eafa4~5Y^;nSy~BB-{ijLa<%9BDxX$AvxIsL@zhnMtN-_7O_9GEVxa z(??{8&!0a-_-eh<CDP&*%p+hb|=mRWfhNO=kusriRxIEUb1IuhL z$;E8TiWaQ_6k@a*$qwzsk3vY5oOCsB4&T@{spmtay3k#-EP1M8oMIfcK52p$?{ad0 z#m+VwVXT$UI5_Y{wxs>sl}#vgxO7%5>1Oq05_&}{_m*sd(bg>Q7;C<1jAzAzH~_Y{ z?%Y|BV&w)TgczB^@jh!C4#RbcUE5UtAF`G{!$Dd;1vk1G{0BrSSx_yg)7C z4s2*Z)0b_1DC4X#C`1i8hm9z+#HvG0=h@2qtu6ohj$Vh4LHgOTlhffE?`+Z%!#l!+ zZVPr;_~)XQo8o%P6)432z|0SIUQ`>PPJcp6on|%O!Hev^%XZos%+U5ALg7wzDuoe9q+6G_;mZYzD!vMri28a7WkB`b=go1ebGU zX>jKq`K<=ecLBugjJrt+`?j^`TS+o-rkI%gA3qMwb~lAP&WF@ zKY7INLP-V(bZ&r7_SQ$k-=kj%j*IIAn&wD!hrTVU?|swNNfjCIJwMBa4j#dU&msue z-ltSxh#w?gqDvng2HpS;6E@tWanyaS-c#2BKWMMJo!5WX5@8qG7T!R+ronfdSUn2>fcsYh6jRc1#d* zM+ep=$4fVM(2CCvMu|<03mKPh>=;=6z9;fRgHk19Ub~(Pio(IOvOup2JAv7i?o|tv zmY17*bUN$=kn#az3sVgmyDkq*Oy|BPQw{)EE?_ZVy?&kJofO3!9itXpzoIpOkk3*t z2bwF|G>Vam>Uv%U-d`u2;_unEcd>%|FDwJt)<3*&Me4;VN54A%kyU)sUdiroxF(9! z=HE7!oQOH1QYVyj@Ib|pX&I801H>5yujsI-?Bd>D*C@-?r^XRut$u@H$08Ev^ z?kJnQ(t%NOBF!qT433IKmD)kQQB{YS?asKxFU3!;6z?ajwY3rca8qjOJu6@J{D}Ec zS;(KyTOm#Jpz-~_q*g?5j@GHYO+Gz}_3S9KRK8Mr`y$1?Rh^8iw`uH6#uKVk9c7uP zj^+0<3N0$bAtN!nJ?Gr4SPzu2o3<<4zU|w!+U{JKT~OXz*sT5bx2P8o=j~_XJQ0=g z(TrJd^2n~ePIhOdIiKtg4Hu7tOOAX*Y|rgu!!M>}7Yi~MGLdpNm!|eV6a4@^-U?St z7BjQa(6JgTzcGL3xSHJF`fM{<;7@6)arilYaY`>C=7F*gF4t=_su1s4R{5l>7GPcC z9qeOyx^Xr19b~%O!FV1weEt09P?ndln8l#?M-Ws^ppHshU20bmFw=sY)nz|E_8>i> zMQr4-{*?UauG0e;ug|3vk9?exe3x!>!)c?yl*MfLaeZ;qw>6pyiL>Bj-#a4$+2LFo zI_srwKn?;vy0o>u_c*`$;Y}jW$i;UWa{&i$W!i+OGMX36U#IfcjdrA9ud_%Om#F2J zWk+nK51F`-I+t>uvf#(?w^Yy2N6nQeJB=CfKdI_|DkhlU;Se}bmCW0kIwrTazuaVC z!*GYaD2-3@b$c@riKwR0>YEp~8)L6kRig#^4Hi3MY#Nq68Mj^?WfHhLJ!bq?Uxi~- zbYAeVFmPgTu$``XhScfqC6oe~(PHMM1G8r@*qKHAS)sNMid^-aC6#kF8{AO605*d| zW8dMr9Lb5Vbbo8t${vi%IYwu9jvKMw%^s?N_lg{&&hPbqj#-VzS7EaJx1&ahsG-XG zyxy(!ET@C_br16$EdP01`$KimQ3C=TikRKYd$@1wSYb~i9>iYE@s-zPhr5jXJg_KV zwoqd6y}Cwg*Yp5R9<36O;T|Vwl7e#