{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Aragon Conviction Voting Model - Version 2\n", "\n", "New to this model are the following elements:\n", "\n", "* Influence - Participant social network where participants influence each others perception of a a proposal.\n", "* Conflict - A network with the notion of supporting one proposal may mean going against an alternative proposal. For proposals with conflicts, an edge is created between them with a function to calculate the degree of conflict.\n", "* Sentiment - Participant sentiment\n", "* Updated trigger function to better represent 1Hive's implementation\n", "* Updated plotting\n", "* Updated affinity distribution to between -1, 1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# An Introduction to Conviction Voting\n", "\n", "Conviction Voting is an approach to organizing a communities preferences into discrete decisions in the management of that communities resources. Strictly speaking conviction voting is less like voting and more like signal processing. Framing the approach and the initial algorithm design was done by Michael Zargham and published in a short research proposal [Social Sensor Fusion](https://github.com/BlockScience/conviction/blob/master/social-sensorfusion.pdf). This work is based on a dynamic resource allocation algorithm presented in Zargham's PhD Thesis.\n", "\n", "The work proceeded in collaboration with the Commons Stack, including expanding on the pythin implementation to makeup part of the Commons Simulator game. An implemention of Conviction Voting as a smart contract within the Aragon Framework was developed by 1hive.org and is currently being used for community decision making around allocations their community currency, Honey.\n", "\n", "\n", "## The Word Problem\n", "\n", "Suppose a group of people want to coordinate to make a collective decision. Social dynamics such as discussions, signaling, and even changing ones mind based on feedback from others input play an important role in these processes. While the actual decision making process involves a lot of informal processes, in order to be fair the ultimate decision making process still requires a set of formal rules that the community collecively agrees to, which serves to functionally channel a plurality of preferences into a discrete outcomes. In our case we are interested in a procedure which supports asynchronous interactions, an provides visibility into likely outcomes prior to their resolution to serve as a driver of good faith, debate and healthy forms of coalition building. Furthermore, participations should be able to show support for multiple initiatives, and to vary the level of support shown. Participants a quantity of signaling power which may be fixed or variable, homogenous or heterogenous. For the purpose of this document, we'll focus on the case where the discrete decisions to be made are decisions to allocate funds from a shared funding pool towards projects of interest to the community.\n", "\n", "## Converting to a Math Problem\n", "\n", "Let's start taking these words and constructing a mathematical representation that supports a design that meets the description above. To start we need to define participants.\n", "\n", "### Participants\n", "Let $\\mathcal{A}$ be the set of participants. Consider a participant $a\\in \\mathcal{A}$. Any participant $a$ has some capacity to participate in the voting process $h[a]$. In a fixed quantity, homogenous system $h[a] = h$ for all $a\\in \\mathcal{A}$ where $h$ is a constant. The access control process managing how one becomes a participant determines the total supply of \"votes\" $S = \\sum_{a\\in \\mathcal{A}} = n\\cdot h$ where the number of participants is $n = |\\mathcal{A}|$. In a smart contract setting, the set $\\mathcal{A}$ is a set of addresses, and $h[a]$ is a quantity of tokens held by each address $a\\in \\mathcal{A}$. \n", "\n", "### Proposals & Shares Resources\n", "Next, we introduce the idea of proposals. Consider a proposal $i\\in \\mathcal{C}$. Any proposal $i$ is associated with a request for resources $r[i]$. Those requested resources would be allocated from a constrained pool of communal resources currently totaling $R$. The pool of resources may become depleted because when a proposal $i$ passes $R^+= R-r[i]$. Therefore it makes sense for us to consider what fraction of the shared resources are being request $\\mu_i = \\frac{r[i]}{R}$, which means that thre resource depletion from passing proposals can be bounded by requiring $\\mu_i < \\mu$ where $\\mu$ is a constant representing the maximum fraction of the shared resources which can be dispersed by any one proposal. In order for the system to be sustainable a source of new resources is required. In the case where $R$ is funding, new funding can come from revenues, donations, or in some DAO use cases minting tokens.\n", "\n", "### Participants Preferences for Proposals\n", "\n", "Most of the interesting information in this system is distributed amongst the participants and it manifests as preferences over the proposals. This can be thought of as a matrix $W\\in \\mathbb{R}^{n \\times m}$.\n", "![Replace this later](https://i.imgur.com/vxKNtxi.png)\n", "\n", "These private hidden signals drive discussions and voting actions. Each participant individually decides how to allocate their votes across the available proposals. Participant $a$ supports proposal $i$ by setting $x[a,i]>0$ but they are limited by their capacity $\\sum_{k\\in \\mathcal{C}} x[a,k] \\le h[a]$. Assuming each participant chooses a subset of the proposals to support, a support graph is formed.\n", "![](https://i.imgur.com/KRh8tKn.png)\n", "\n", "## Aggregating Information\n", "\n", "In order to break out of the synchronous voting model, a dynamical systems model of this system is introduced.\n", "\n", "### Participants Allocate Voting Power\n", "![](https://i.imgur.com/DZRDwk6.png)\n", "\n", "### System Accounts Proposal Conviction\n", "![](https://i.imgur.com/euAei5R.png)\n", "\n", "### Understanding Alpha\n", "* https://www.desmos.com/calculator/x9uc6w72lm\n", "* https://www.desmos.com/calculator/0lmtia9jql\n", "\n", "\n", "## Converting Signals to Discrete Decisions\n", "\n", "Conviction as kinetic energy and Trigger function as required activation energy.\n", "\n", "### The Trigger Function\n", "\n", "https://www.desmos.com/calculator/yxklrjs5m3\n", "\n", "Below we show a sweep of the trigger function threshold:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "for reference: max conviction = 4.394571745651725in log10 units\n" } ], "source": [ "from model.model.conviction_helper_functions import *\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "\n", "beta = .2 #later we should set this to be param so we can sweep it\n", "# tuning param for the trigger function\n", "rho = .001\n", "#alpha = 1 - 0.9999599 #native timescale for app as in contract code\n", "alpha = .5**3 #timescale set in days with 3 day halflife (from comments in contract comments)\n", "supply= 21706 \n", "\n", "mcv = supply/(1-alpha)\n", "print('for reference: max conviction = '+str(np.log10(mcv))+'in log10 units')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "supply_sweep = trigger_sweep('effective_supply',trigger_threshold,beta,rho,alpha, supply)\n", "alpha_sweep = trigger_sweep('alpha',trigger_threshold,beta,rho,alpha, supply)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAABEEAAAR8CAYAAAByhYqnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XmYbFdZ7/Hf24d0pzsnYYpMMkYBESGR0StcBlEvqEzXy5XRyCVyo0yKIuBFRODiwBUFFSKzzEKYZRAnZgmEeYYwRGKYAglJp/t0n+S894+9+6ROnaruqtrDWu/a38/z9HNOd1XtWrVq16693v2ud5m7CwAAAAAAoHRLqRsAAAAAAADQB4IgAAAAAABgEAiCAAAAAACAQSAIAgAAAAAABoEgCAAAAAAAGASCIAAAAAAAYBAIggBAQGb2B2Z2Rup25MLMTjWzd6RuRy7M7Olm9tK274v2mdkrzOwpqdsBAMBQEAQBgMTMbH3k55CZbY78/qBJj3H3p7n76X23dZJ6ELc99jp+ucPn+1Ez89G/ufvfufs9OniunzUzN7PXjv39NvXf/7nt55xH3fcHzeyaKdtRAjO7r5l90swuNrMLzOyfzez6qdvVlJn9dP1avm9m3zWzvx/dX8zsbmb27vp1nzP22JPGPtfr9X7/mJH7PNjMzq1ve4OZXWVsGw8ysy+Y2aVm9hUz++nuXzUAANMRBAGAxNx9/86PpP+QdM+Rv71y/P5mdqX+W7nncz9j9HW4++t7bVi3vi3pzmODu1+V9KVE7ZEkmdnxku4r6WJJD0zZlujM7KaSXiLpMZKuLOlGks6QdChlu1pyVUnPk3QDSTeUdEDSi0Zuv1TSCyU9fvyB7v7VsePTKar65A2SZGa3lPRcSQ+SdC1JByX99c7jzezukv6vqs/L8ZLuLOnrrb46AADmRBAEADJXT1f4ezN7tZldIunB41MYzOyhZvYf9RXs3zez88zsLvVta3XGwEVm9jkze4KZfX3ksdc1szfWV4m/ZmaP2O2552j3leqrxjcc+dvh1P86y+LrZvZ79XOfb2a/OnLfNTP7i/p1/cDM3mtmK5LeW9++c2X6tmZ2mpm9e+SxdzSzs+vHfdjMbj9y2/vN7I/M7INmdomZvdPMrrbLSzkg6a2SfmXndUn6H5JeNfZ6/7ru94vN7COjV7xH+vF19XOebWa3mLUvp7ifpO9KeoakU6fdaSdzxsx+ve7j883st8futlK/N5eY2WfM7FYjj3+SmX21vu2zZnavXZ7rp8zsY3UffNvMnln//ZU72QNmdoO6PQ+vf/+x+v23+vd7WZWRcVH9Xv3EyPZn2Vcn9rGZ/a2ZPWdK039S0jnu/m6vXOLuZ7r7efVjj5iysrPvjvx+npk93sw+b2YXmtmL6n11dD9/spl9r273/af03xfM7B4jv6/U2/uJSfefhbu/zd1fX7+mSyX9jaQ7jNz+IXd/haSvzbC5UyX9q7t/o/79wZLe5O7vd/d1SU+WdD8zW6tvf6qkP3T3D7v7IXc/z93PX/S1AADQBoIgABDDfVUNuq8s6e9Hb6gHes+RdH9JPyzph1Rdld3xVEnXUXUV+L9pJJBhZvsk/YOkj9SP/TlJjzOzu83y3C24rqTVun2nS3qemZ1Q3/YXkm4p6faSribp91Vdhb6TdEQGzUdGN2hmJ0p6m6Q/l3R1VX3zdjO76sjdHqhqQHdNScdJeuwe7XyZqqvZkvQLkj6uKkNk1Fl1e68m6UxJr9sZCNf+u6p+3Ln9jdYsq+fUenuvlnQLMzt5j/vfSdKPSrqHpCdZHSSr3UfSyyVdRdI7VPXZji+pGjRfWdVV/VfZ9Ok3fyXpme5+Qv1cZ9Z/f4+knee7s6Sv1v/utOu97u5mdltJL5B0mqr37sWS3mxmyzPuq1P72N3/t7s/ekq7P6qqD//czO5qZsdNud9uHlS36caSbi7piSO3XVdVJsR1JD1M0ovN7EcnbONlOjLQ+EuSvu7unxm/o5ndqA4UTfv5n1PaeSdJn533xdVBqodI+ruRP99c0id3fnH3L6r6jN7YzI6RdCtJ1zKzc8zsG2b2bDM7dt7nBgCgTQRBACCG97v7W+urqZtjt91P1dXYD7r7lqQnjd3+PyX9X3e/qL6C+9cjt/2UpBPc/Rnuvu3u56hKlR+9Ur3bc+94wsjg61tzvK4Dkp7u7gfd/S2StiTdpB7w/pqkR7v7N9398vpq88EZtnlPSZ9191e7+2X1Ve6vSvrFkfu8yN2/7O4bkl6nKs1/N++TdG0z+xFVwZCXjd/B3V/u7t9398sk/ZmknUDAjrPc/Y31a3hmffttZ3g9RzGzG0n6r5JeVV9Zf7euCNJM80fuvuHun1Q1kH3AyG3vcfd/dPfLVQVDDveHu7+2fg8OufurVE1nuM2U5zioagB89Trz4Kyd7Uu6Uz2QvpOkP63bL1XBkPfU/3+4pOe6+0fq9/zF9d9vq9n21YX62N2/LOmukq6van/4npm9eCSjYRbPqTMdLlCVnTPav4dUZURsufu/Snqnqs/tuJdLuqeZ7a9/f0j9t0lt/pq7X2WXn9eOP8bMflLS/5H0e3O8rh13URVcesPI3/ZL+sHY/S5WFfC5tqR9qgJTd5R0a1UBzScKAICECIIAQAzf2OW264zeXqe8Xzhy+7XHHj/6/xtIuv7oFWRVA6RrTbn/NH8yMvi61t53P+yCeuC9Y0PVwOqakpYlfWWObe24jqRzx/52rqrsgR2jgZqd55zK3V3SK1TVjPivkt48fh+rpvV8wcx+oKr/j5N04shdRt+jyyX9Z93W8e38gV0x1eevx2+v/aqkT49kCLxS0oPq4NE0o+/juWPPPd4fhzMhzOzXRqanXCTpx8Ze16iHSvpxSV+0ahrSL0iHMwS2Jd1CVf+9RdIFdVBpNAhyA0mPH9sfr63qvZtrX92tjyepg4j3c/cTVQVqfkbzDdh369/v1QG3abfvtOEbkj4s6b5WTdH6eY1Nu1qUmd1EVYbUI9z9gwts4lRJrxt7HeuqAk2jTpB0iaSdgOlz3P1b7v4dVdldv7DAcwMA0JpkxfUAAHPxXW77pqoBoiSpTuUfnfrxLVXp+DuFPK83cts3JH3Z3W+24HNPf5D7ZWa2JWn0avq1JJ0z5SGjvq1q0PwjOjp1f6/2nK8jsz6k6gr/m2Z43t28TNIXJb3Y3Q/UJSwkSWZ2V1VTau4m6XP1n38gyUYef72R+y+pGtgfVR/B3Z8m6WnTGlFnU/yqpOuMZN1cSdX0kf8m6e1THno9XdH315/03BOe6yRVRTXvpirL4nIz+8zY6xpt+xcl3b9+ffeT9Hozu6q7H1BVy+X+1d38W2b2HlVTQ9YkfbrexDdUZaz86YS2/Fftva/O1Md7cfcPm9mbJO3U4rhUR+/HU59bR/fv1c1sdSST6vqSzp7y9H+nakrMflXThCZmVtXvzad2eRkPc/e/r+97I0n/rCobZe6gSn1M+WUd/bn6rKSTR+53E1UX2L7s7hv1/rnQ8QMAgK6QCQIA8b1O0n2sKkq5rKoGyKjXSvp9M7uKmV1X0iNGbvt3Sdtm9jtmdqyZ7TOzW5jZrVtq2ydVZyiY2S+qSovfU30V/6WS/tLMrlU//g51nYHvSPJ6EDjJP0i6uZn9ilXFWR+oalrKtODATOrpF3dRVfxx3PGSLpN0gaRjJD1FI9kUtduZ2b3r1/C7qq6Wf0Tzu6OqAfdtVE1bOUXVYP212qVAqqQ/MLPVuobMqZqtvst+VYPY76qKv5ymKhNkIjN7iJmd6O6HVAWBXFessPIeSY/UFVkf765/f199f0l6vqRHWFXs1sxsv5ndsx6Ez7KvTu1jq4qbvnBKu+9sVXHda9S/30zVtKoP1Xf5hKRfNLOrmtm1JU2qLfJIM/thM7u6qgyS0f5dkvQUq2qb3EVVXZYzJ2xDqqab3L7um6OmXe3wsZVbJvzsBECuJ+lfJT3L3V8w4bUv1XU6jql+tWPr/hv1y6o+d+8b+/srVB17frp+j56qI7NFXiLp0WZ2Yp3Z8mhVn08AAJIhCAIAwbn7pyT9tqpgyPmSvlf/bNV3+UNVmRVfl/QuVYPlrfqxl6lKT79dffsFkv5WR6e4L+rRqgqrXqQqM+Atczz2tyV9XlXRyu+rqrNg7n6JpD+WdFY9LeKI+hTu/l1J91K15Of36u38krt/v+Frkbu/z92/OeGmt6u60v5lVf14saoMnVFvVHWF//uqVpr573X/z+tUSW9098/W0wy+VWcLPFvSve3IpXxHvV9VbZR3SfrjujbFrup96zmqpmh8U1UA5KxdHvILkj5v1UpC/0/Sr7j7dn3be1QFi95b//4+1dkOI893lqTfUJV9cqGq7KUH17fNsq/u1sfXk/SBKe2+UNV++hkzW1f1fr5WVXFdqQrIfV7VNJZ3SnrNhG28WtU+8BVVGUPPGLntPFXZJN9UlelxWl2H5Cj1dLY3qZ3sJamqs3JDSU8fmWZ10cjtP6Nq6spbJJ1U//8dY9s4VdLL6mlho239lKpgzWtUBUlWJD1q5C5PURUIPUdV1shHJP1JC68JAICF2dj3GQAgOKtWV7lI0g38iqUsR29/lKT7uPvdjnowOmFmT5d0XXf/tQTP/aOqpidMnMJSit36uM50+LikWywYeNrruc+T9GB3f/eE235W0gvd/YZzbO+pkq6fYn8BAKB0ZIIAQAHM7F5mtmbVqhJ/LuljOwGQOkX/p+u095upyox4Y8r2An1y9wPufrMuAiBtq6fTPFTV1CAAANAygiAAUIb7qpoKc56q1PfR5TlXJL1AVX2Ef5L0elXTCABkxMx+Q9J/SHrzgiu4AACAPTAdBgAAAAAADAKZIAAAAAAAYBAIggAAAAAAgEG4UuoG5MLsKi5de8Z77+u0Lf2JHAOL1vYI+0zRC0d0I6cuy2EXS/mxTPXcfT9vX8/Xx/N0uc929dnsos1tt7XNNrbRtjba03R/XPTxfT5ukcfM27fzvJ/7Zpsub3Zopvst7dv7fmZ7P+eS9t7Obvcx7f4cizx2t8dMu23S3yf9bdJzzvLYvR43fvv440d/n/b/0W3s/H3S33a97ZDr8C40+u+k/7uky0f+dqj+2+jvl438e5nkl0tbl0sHJW2p+vd86QJ3/yEV6iZmfmmH2z9f+kd3v3uHT9ELgiCHXVvSS+e4/wkdtaNvq6kbsKBo/X986gbM6JjUDZgup4DDqGNTN2DEcakboLS7eor3ou8+7+uQvb+H5+i677rqqy76ps19t832tdWupm1q+vgmr2OR5170+eZ9rnnvP0+79m/NdLdjjp3tfqv7N2a638ry9u7b0d7bWdPm7s+h6W1e3eWxuz9ucrumtWXStiY99+T7Hf1c48+zPOFx4/cZ3fb4cx952xXPN7qNaY/f+fvO40Yfs9Outcurv61sbWtlZ8R+oP730vpn5287/98auW3n71tjv3+//vd71f8Pfk865wfStyWdo+rfJ0nnqmCXSvrNDrf/JOnEDjffm2iX0zNyceoGDFy0/r8kdQNmdDB1A6ajhjNy1OXllkl2P7dvz3oPz9F33w1FH+8ddndg77uUYvvASq/Pt6m1Xp8vqm31+740sZXDBRwMDkGQRqINxCfp64y6C9H6n0BIYzkGQnI62c1hUJlyN8/pvUC5hhRkyOUzNaQ+n0egftlcJ3ixiK0JwQwCQfOJmvOObhEEaSzaQHwSAiH9iRIIATAzskEW12XfRfpqyyXYUCr6F4iF7BB0jJogrbhY8WpUjNtU3FhpCf2fm4PKtj6IK7/6IAeUT22QS5X+5OESpasNktN7AaSyrn7quswqt/bMo8+2d/1c8xwf11dmrguCdmxqddeaJMAslhR3RNcnMkFaEy0jYRIOvP2Ikg3CtJi55HSlMYdpMSmleC/IBslTV/0UvV/mkcuxLVqf59JvmMvmLsPHSVNTSrHb625qI9WQvNy3Cy0gCIIxUQMh0YJQUQIhwILYxTGroQftdjBoBlqRbNANIAyCIK2KNhAvTbT+jzBKJBtkLjkNYnIYWA6tSGoOfd6FaFfgUcntfUvdnpyOz21K3a9qd4WYre3l1rY1JH0FfggwoRQEQVoXbSA+SdRsEKmM/s8NgZC5lHqijfxEPlSPi1ggNYPBJ3rCe92KtlaIabo6Sp/TWkoOGpQ8PQjlozBqJ0oo1Bm5UGokKStIongUSe2/SGoOfY64ci3sm0u7ohVYXaTfKI46CFta0Ypi9O2m1rSqjXQNOE7lZlp2YJ/ij0L7QCZIZ0rISIh6mTFa3zMtphGyQTBkFEidzVCzQXJvH1CIptkpAPpFEKRT0QbjkxAI6QeBkEZyDITkIoerJ9QGwSzot0rJQdTUQZmS+xYAMDOCIJ2LNhifhEAIMLecTrYZXJaNbBD0IadjGo7EZxMlyGHKHQaDIAiQDbJBGskxG4RBwxXIBsEsKJDavtzbN69Ur2fR513k+BPwPStphZjNzGripShA2sZzMkUIOaMwai8olJpOtL6PUCj1oKRjUjdiMpdkqRuRKQp2lq2vQ3S0wpRR5VKItAvsQ+kl3L8219e0ur/7IpsbWtVaB5HPXAqaLlKstKs+qdqzqtWwmeNl2af8RxI5IBOkNyVMzYh6cCuh7xEW2SBXIBsEqUX9GstFCcezEl5Dn9bzXAa11CyDNrNQtlnCFpiKIEivShiMRz2DjNT3TItpJMdpMblgUF62qIfncRH309ynL+TevnmV9nrQuxRTTHJDH2DICIL0LtJgfJqoZ9qR+p5ASFG48ngFskHiYwDaD44b+cl538+5bQCQGYIgSUQajCMdAiELyzEbJJcBTYmDcpQnYoHUoWjjWDa0AftAiqNiso2QNfWAslEYNZloBTvHUSgVmaNI6nSpi6SmrP+boiBgn/1NgdR0cu+T3NvXp5ILz86qgz7YPrCi5WPTFw1NZZFipVjQseKizhRLUqEVc9pFJggaiHo5LVImDtkgRcklGyQHEXZtIDWOGdORKdGfBMVRUy+T24e2a3IMLuOEFe/QAEGQpCINxqchENK9CKPFTAMhOU6LycWQr6CUXhukr8Ny14NQpsSULWoQI2q7M7K53s916sEFBRpqc2WaXBwzEmdi2ViMIgiSXKTB+DScTSJjuQVCuLJ7hQjxPWAeuQ+Q22ofx7H59dFnue9/LetymdwSAwIArkAQJAslBEIiitTvEUaLmWaD5CiXAQTZIOUqJTZNNkj5+2oqEfp1YEGNKFhatmNMc0EPKIyajegFOymU2r2U1SSDo0hqvoa0W6cuSNsFim0iJfY/NLClFa1ouIVcu5K0X1c07As8qjIchnJa1QSZIFmJlJkwSZTLapHlnhGScTYI02ImG/LJQi7vQVc4JKcxlKv3Q14qN2q7x3VwDNw+QJZEF8g+AdpFEAQti3jWHT34lJuMAyHIU+6xvTaVGHSiQGr32hysljKAR79YIaY3Jdcj2SaYg0wQBMkOA/I0IvX7kEaMLSMbZLISB+azyuU9QFkINMTQ9+ef4qiH9bVCTMm6LAy723O1serOxr4Zt3HsHrcTU8GCCIJkKdKAfJIol9bGRer33AMhZIOEkzoQkvsu3aYSl8vtWur9E91pOmgPMuhfWOmvrzDTAhO5LNebSzsaKa22FpKgMGq2IhXsnCRqoVS056CkY1I34mi5FUk9oL2vdKBbvAfNRS5QGeXrqs39tK33a8ifncj7fEE2taZVbUy9fUOrWismGjy/ba1oOePir1sry1rZ2k7djKIsKcZXWmpkgmQtUmbCJBG/dCL1+ZAunbeMaTGTpb7aPqRdmmyQ8nEFHxHk8v2ToZJrc7SFgq2IiiAIOhbx7JtASHuYFoMgGAg0F7lAKoaLz37rWCFmdgQROsKUGeyBIEj2Ig3IS0K/tyfTQAjZIJOlHmjmHtdrE9kg+Rhi/7QVtMphqdxIWTeRi6MmWCGma4sGIUoJXuz2Otp8jUXUIkFRCIKEEH1APsSzyz4NadQIdCiXQBSmSx2km1fbg1H20WGKFOSZwywrxAx1mdxFDTLYQNYHFkBh1DAolNq/SH1+iaTjUzdiFxRJnUkuRQYvVdqTitx35zal7uu2RS4WGfFrCmlF3t8BFGmf4oxeUiITJBQyQvoXvc9zwrQYBFDylfaIh2CgDyV/7gEARyEIEg6DckzDtJgi5HIynnraAbtzXBRIPVLOU2KoC5JGLsf5Hbm1ByE1WU1na9aMyJIyJ5EUQRD0LOKlyEiBp9xHjmSDzIQT0mGhQGo+6B9gdzMWR+1zhZhN7V5bpJQ6GRGLse713gCpEAQJKdKgfJKIZ5nR+zwnmQZCcLTUV9xTxfQIQjUX6ao80ERf+/q8z8NnMJlpA/95gjFNsioA7I3CqGFFKto5ScQKdFH6fEhVJVtEkVSk1GeB1IiH33HRCsq2XUCzzeNDW21ro00pC41yzMUEm1rVasiLd4sZ2ust0ZLif8X3gUyQ0MhOwDRMi1lIbtNickA2CIaG8/+4yH4IJ4dlciNOM9nBdJMaAcxsmNlNzewTIz8Xm9lvjd3nQWb2qfrng2Z2ct/tJBMECUW8HBklGwRFyOXKZLSr7lGV1s9dX9Uvrb8wLLkc33fk1h4AIbn7FyWdIklmtk/Sf0p649jdvibpzu5+oZndQ9LzJd2+z3aSCRJe9GyQiJfcovQ52SALIRskP2SDtC/ioTe6IawSAwxIWxkkkTNRolgd+xe9uZukr7j7uaN/dPcPuvuF9a8fknTdvhtGEKQIUQbl03A23h0CIeHlMhBPPS1mKOjnPPC1tJgclspNYWjFUTNcIQZAlu4v6dV73Odhkt7RQ1uOwHSYYjBNo1/0d9EokpqfVPV+S+77PmYkMiUGfWuyz5X8eS/cpta0qo3UzcjStla0rK3Dv29oVWtEeou1JOmELkf4l+lEMzt75C/Pd/fnj9/NzJYl3UvSE6dtyszuqioIcsfW27kHgiBFiTwwpz5Id3JfLeagpGNSN+JouQVCcsCAE2gm51VigIIx8A/oOB2ZHbkijcRykM4F7n6bGe53D0kfc/dvT7rRzG4p6YWS7uHu32uzgbNgOgwywpdTd5gWE14u02JSGkptkD6nxPRx2I04vUEa3ldSW+8Tx6rZ0VcAyvUATZkKY2bXl/QGSQ9x9y/12qoaQZDDDqVuQEuoD9Kv6P2NXVEk9WjUrEBu2CfLEzFwFrHN4xIFZWZZJhez2+gos5rleDErM1uT9HOqAh07fzvdzE6vf32ypKtLem69jO7ZEzbTKYIgR4g2AJ+GgXm/ovQ32SDhcdWQbBDEl/MqMaVo0se592cuxVF7trW9nOy5NxcIKkQKGCyyOk1XgRam95XB3Tfc/eru/oORv53h7mfU/z/N3a/q7qfUP7NMr2kVNUGOErE2xSRR6lVMEvE9iNLfudcHyRC1QY5GbZCylFAgtSsRv46aiPo+AQ1taUUrPRScGEptkr76E0fbt086vstztB/sfZcIyASZqJSDU5QMhUlKeQ8wH7JB9pT7Vco+kA2CcfRVXjhOlY9lcjs3KQNlkawNAEcjCAK0JkrQiWkxc6M2yNEYdJaFAqnTddE3UfuiT0PpIwJGoZUelAj1+shQxRwIgkxVSiZClIH5JBHfgyj9nXsgJEM5BUI4aR7OLkywaXZD7qs2jwmlBB9S1AUppe+CilSHoyShAiVAjSDIriIOwieJMjCfpJT3APPJMBsERxvioJMAFIDUugy2FHyM66yYZwsIJAD9ojDqnkqpihalcOck0d6DKH1NkdS55VQk9YCoos4u3C4KpE7XRd9E7YtZcYzKR4B9bXN9Tav7N1I3I6RNrWlVhffdcRrmhZcFmEnHEFPbE5kgMyEbAfOKnH2TC7JB9pTDFbshnpRQIDVfQ+6rHI4HbRvK9JIS37sOpFwmF0BZCIIMSuSBOYGobuReWCHDQEhOtUGQ/y4cDQVSIZXzHpXyOnLFCjEAgiIIMrNSBuEEQvoTpa8ZRYaWwxXEIV59JxtkeFglZn45HJ8WRXHUwdmtLsek5WpL1fVr3ab+CTJAEGQu0Qbh00QZnJeAvm6ObBDsgTgeRg05YBQ56ID5EGwBgIVRGHVu0Yp0lob+7wYVJudGkdQjXaqqcNmQ5NDvXaBAKqR83qNc2hHdPP1Y6rGtZ4MoWNrAxr5VrV3ewQXm4zTsgPCSuj1mfqfDbfeITJCFlJAREjlDIVr/R+nrnC+nZ5gNgrzkvPu2ZcgZDrmI9vWDOBkTQx60tWhTa6mbsKcUS/XmMAUl5yWKMTwEQQYtyuB8kmhnopH7OhcZBkJymhaTwwn0EAfpOfR7F6IdYsdF2hejDNIXFfkzQl2QXm2udx/A6GIgvlstkVx1FZAYUu0UxEYQZGHRzxB3MDjHqCFcTkexhrD7Rhrc74WBYjciBx0Qz4wrxLRlaMvkLhpUiJR1sbXS7Xt6AsUfMAFBkEZKCYREFa3/owScch5Jkg2yqxwGPyUN0hFbV/titK+eJnIJVOXSjtwE6heWyW1PxMwTIDfExhoroVDnxZJOSN2IBUXr/8h9DWCivosI9lWElgKp/aEfukX/ArEcJy6qLGpJIk62NzJBWlHCZaEoWQroB9kgcyEb5EgpT1xy3nWBvuRwHBiVW3ty1XU/zZM5wnvWOzI8gP4QBMGIqIGQaEGoqP2ckwwDIRi2UgcM0Q6v45gSg6YojooB6DIAE2HFHgwPQZDWcEaUVrT+jxAI4ZL6XMgGORLZIN0qKU2YwWIl137IpV25tANF2y0YwMonwfQxbRRhEQRpVbSB+CQRBufoT86jyQyzQXIKhKB/OQSfgB3sj+hLiyvEtLFM7hAzD4b4moEmKIzaumiFOieJWrwzWt9H7WeE0Hexzkn6KuA5ySWSjk/03H0pqUBql7rqp+j90rfUx6RSi6OW+roKsak1rWojdTNaU9rrKdKSyIKZAZkgmCJqRki0bJwI/Uw2yFzIBgHmx1SHSq79kGu7+kJWTSvaWiZ3a3u50eM3iF62gn5EZARBOhFtIF4a+r99OQdCMFUOJ+5Dqw2SQ593gcMqchAtGLNIe1khJqR5C4tGCiAkX7UmdVYrikQQpDMlnDFGyFIoAf3cDNkgGLC1uvRRAAAgAElEQVSSCqR2aairxDCIBQDgKARBOpX72dEsog7Qo/V9hH7OORskw0BILnIYBJENgllEu8qP+aX+bLCPAQBEYVQUjap1SMglWepG1FIXJES3KJBallwLXebaLvDeoAhbx0krZDc2R2HUmZAJ0rloGQmTRMhSKEGEfiYbBAsiGwSz6PJK/VBPrkvbF1Nlc5TWj23LbJnckmwmiD638ZzJa4kAuyAI0gsCIemU0Pe5yTkQkpmcaoNwAl+2oQ7wc8DXzHyGdizKsTjqAGxq8UBKqYP37Q5fV6l9hnIRBOlNCWdJBEK6F7WPc0E2SNYYqMcX6XAaGbUrukPfJl0hpq1lclNJkZUxCUEHoBmCIL3i7BGziBAIIRtkZmSD5IEpMXEwJSZfBBCQia3t5UaPz3WJ2jaDG3u9xlz7AOgDhVExp4slnZC6EQugot9wHJR0TOpGHCmnIqmp9VXEc4gokJpO7n1SWnHkVIVAS+tHAOVZEsepGZAJ0rsSskEiZCpMEqnvI/RxztkgTIuZasjZCWSDIJKSsy74XLSv5P0luCb1SQB0gyBIEpEG40iHQEhRcpoWkxpTErpTSt8yJSZfDLbnR3FUAMgKQZBkogdCIgzQJ4ne75gd2SBTDfnkmmyQdnAoPVrufVLifrgoAjnd9EGLy+RGRLHSHjGtFg0RBEEDBEK6F6GPyQaZGdkgAObBYH06+qY/CQJom+vlTyFpuzAp026A2VEYNancK6nNImqh1Ejo48VlWCQ1F6kL/KUskHqJpOMTPXcfSik+22Xxy1L6KLLUx6BFRW13RrYPrGj52K3UzUB0x2rv6Y37JX2/h7bkZEl8v82ATJDkImUllIR+bxfZIDMjG2SYSpyKwGH0aEPpE7Iw8sT7coQmmRFDnNpS+msmTwajCIJkIfpZU4QpG5NE6vcIfZxrIITaIFOlHphToBLoV+rPfE76DhhQHLV1W9vLqZuALpBphR4QBEFLIgzSMVyZBULIBkmv9AKpfQWYuo4ls0oMV/eBjixak2Mz/FT2btE/iIAgSDYiZSWUJFK/Rwg05ZoNgqlSX2mMMhAFZhXpayW1pscfAkTNsEIMSkMtDMyIwqhZiV4oNWoBz0j9HrWPc5BZkVSXZKkbMXApCqT2WVSxlOKfXRZIHaK29sEhvy8UR0XPNrWqVSKsmMWSVHh5l1aQCYKWRchWQLfIBgmHbBA0Efm8PMq+R8YDUmOZ3N6UXKC07WWBkSczu4qZnWlmXzCzz5vZfxm7/XFm9on65zNmdrmZXa3PNhIEyU7ks8nIIvU7gabFURsEY4jZoQuRvlKGLEJx1ByfowXbB8od6Pelz2DJ6HM1WXVnx/asbd8rm7GEbMcyPVvSO939xySdLOnzoze6+zPd/RR3P0XSEyW9x917XcyYIEiWop89RR2kR+r33PuYkSXmFOWKfBtKLJDatSADOyyAuiC7S52ph7lMC0y0EThAjcBH1szsBEl3kvQiSXL3bXe/aJeHPEDSq/to26iQQRAzu7uZfdHMzjGzJ+xyv/9hZm5mt+mzfe2INCCfJPdBOrqXayCEbJCJhnyineuuGknkr6xSAkXzaOvzXnoAAuENPfgwPv1k5gyMnmzsY3pMQCea2dkjPw8fu/0kSd+V9BIz+7iZvdDMJoauzGxN0t0lvb7jNh8lXGFUM9sn6W8k/Zyk8yR9xMze4u6fG7vf8ZIeLems/luJuCiSCiRTSiHPWVAgFfMaciHSHFEcNQtb28taWd5O3YzB2tCq1kJHwQu0pK6/8y9w990SDK4k6VaSHuXuZ5nZsyU9QdIfTLjvPSV9oO+pMFLMTJDbSTrH3b/q7tuSXiPp3hPu9zRJf6bQ1zejH1SiZoNE7/ec5HqJnWyQiQIfLTEA0bIO+CqJIdp+1TaWyZ2qj5obFApFgc6TdJ677yQinKkqKDLJ/ZVgKowUMwjyw5K+MfL7efXfDjOzn5R0PXf/hz4b1o3oZ1FRAyFR0L8oTKqpCbnG6yKJ/HU1xCkxJYkUyIjU1nEEyouzWxBms8UATe/TksjSSsbdvyXpG2Z20/pPd5P0ufH7mdmVJd1Z0pt7bN5hEYMgNuFvh6+jmtmSpL+Q9Dt7bsjs4TvzmaQftNjEtkU+s5RiDtQj9Xnu/Zvr6JJskIk4ye0PBVIxrzYH0DnVBeG4s7t5+ydyoKVni2ZitBkgAAr0KEmvNLNPSTpF0jPM7HQzO33kPveV9C53T3KGEq4miKrMj+uN/H5dSeeP/H68pJ+Q9G4zk6RrSXqLmd3L3c8e3ZC7P1/S8yXJ7Ka5DEEA9OagpGNSNwK5uETVNwgW13VZpWh1MSKVmQJ6tn1gRcvHbu16n831Na3u3+ipRfFtak2rGlh/rYhAf2bc/ROSxuuGnDF2n5dKemlPTTpKxCDIRyTd2MxuJOk/Vc0leuDOje7+A0kn7vxuZu+W9LvjAZB4op9JRSziGanPc+9fRpczcU3Odetb6oJ/QyrkSYHUfNA/mFfqYyUAjOu+MGoRwk2HcffLJD1S0j9K+ryk17r7Z83sqWZ2r7St61qkKRqT5D5tY5LofZ4TpsUggFx3UwDdYfoIAAxKxEwQufvbJb197G9PnnLfu/TRJiC93LNBMBOyQSpclY+LKTFHars/2nz9bX3O22hT07ZE2i9ya2tu7UFIW1rRinaf3jT1sSvLWtmaYanjFWnBpwCOEC4TBNEzE8gG6Vbu/ZvrZfbMskGoUDQsFEjNB/0DtKPHZXK3tpd3vb33lUk6QjFWoD0EQUKKNCifJPeB+iTR+xxYQOoVG1guFwAquawQk/p7YSC21F8QqUulvA6UJ+R0GEixinaiX7lPi8m1SGpmK8XkMi0G/Ug9/ahtTInpVo5TYoaK/sOYadNCIqzc0mRKCzKxJI5JMyATBImQDQKEkPqqH9kg7WPKR/+G8PXRRuZB0+NNkzZQHBUTkMkAlIkgSGjRz6oIhHQn977NdYRJbRBg8AgSAb3ZPrB3kGFzvduaHhuBM6sJ0tQopI45EQQJL8qgHP0jEIKWpM4GGYrSCqR2/fXElXtEltv+m1t7AqBQaRw5TxJHGgRBkFjuA/VJCDyVjWyQ7DAlBiVo+6ujzUErgc4YeJ+KFDkTJRqCIdhBYdQiRC+Smnshz8hy79tci6TiKBT/6wf9nIdLRXr1Itoo2JryM7Bo+3P93HZVQHjW17u+Iu2nyCbQqyXx/TUDMkGKQXZCv+jvsmWWDQKyQbrAlBiUiH1ikLa2l1M3IVvjmSbb1BEBCIIgF0yL6U7ufVvyKLMluUyJIRUbaCbnKTFAwTbVbXFV9IDsBrSIIEhRogzKp8l9sI5hIRskO0PJBikt2BT1q2loq8SUtt9FQBALmI6gBzpEEOSwQ6kb0JKoZ5tRRenv3ANMZIPsKZdsEJSlhIE+A8m8tPF+EJBJI9FnaZZlcgGgTQRBihRlYD5J7oP1SaL0d8S+TY1skKOkHpyUMGifRep+BiJrMphf9LF9fWYHemzYXGc6y6zmnfoz6+o0WyO1RLqaXrRF9kdzJmmlw59CEAQ5Alej88BgfZhy/fxlFAghGySdXHfPKKLEisd1EXSjLgj6xP4xk90CAVsLjPwWeUxJNkOvWokhIAhylFLOdKOecUYVpb9zDzCV8vkr3ECvRBarhOwaBnrt4LONWc26r6wPOxgwjgKtQB4IgkxUykAsysB8ktwH6xgWskGyQoFUIG8EpWZHX2GKSdkkZFgA7SAIArQmStAp9wBTKUHIwjFAL0sfgaUoh8hxEabElIhjDAIoPSgR6vUdm7oBiORKqRuQr0skHZ+6ES3YlCIdwI5wsaQTUjdiTlH6O2LfpnZQ0jGpG1FxVYWvhuxSsXwejrQuaX/qRiQy5Nc+TZM+WfSxB8RALKGt7WWtLG+nbgaQ1pI4P5oBmSC7KuWKdORLTrlnLaAbpXz2CjfEK7VMiUHp2Ofy1+V7VPD0nJzrccy6QkuOIrcdw0UQZE8MxjCvKEEnAkzzozZIVkoo6JkTpsSgTQUPpsMJ8F5sH6CA6qIGsRINGVZoGUGQwYh85slgfZgIQIYwxKvGZIPkq6vBXoS6IAEGunNj38eIzfV8MzkAxEIQZCalDMYIhPQnSl9H69cckA0CoHClBB+iBIaitHNcKfsJgMGhMOrMSimUiv5EKZKaMz532AMFUtvVR39yaEQEFEdtz/qKtH8rdSswoy2taEW8X2EtiWPQDMgEGZwoGQqTkLXQDfp1fmSDHGGIVwOZEjM8EabE5CZqhgMGabcCn4Oou9ETCqkiBwRB5sK0mPSiDdij9HXO/VrK5w6doUAqRg154D3k1z40BEYBYGEEQebGgAyARDbImCGekJeaDcIqMZDy+Uzn0o7o5gmQEUxrBdkju9vuqn/odsyAIMhCSgiERD4DzTlrYZIofZ1zv5bwmUOnyAZBH9jP4okyoI/SzsxtbS+nbsKeNtX/Kjc5TEFJ8bqBaSiMOmhUp+sPfd1cjkVSD0o6JnUjKi7JEreBgoDliF5wdtGilimU/vUQ6b0YR3HUXm0fWNHysd0W5NzUmla10fI2V7Ua5oJXZVsrWu6g+ClFVTOwpNjf3z0hE2RhXJlOK+eshcjoV2AupU6J6UOsMUMcZBSgTz0fkzbXySYozca+kqPAyBVBkEZKCIREPguNNmCP3Ne5yPEzR22QI6QcpDNVAWhXLkG3XNqBxa1TqGERi9YVYerJFY4nKwITEASBGJzjSNGCS0BiOcbm2hA9qNRVRgRL5SIXBIcGabPo+XNAPwiCNFbq2W8U0QbsnOk2l+NnjmyQI5AN0q2SBj4cEoch9RSd1M8fEX2GlKipg45RGLUVORZsnFfkymwXSzohdSPmEKGvo/UpAOCwyMVIc9NnX3b9XOwXWdvQqtaIDKOpfaIw6gzIBMEIDrwYlXOWDdkgyEyOu2QbomfWRJoSk6uSMo/6RL+FlMNSsil0+boXrWvSGIEA7IIgSGtKPQOOIucB+yQEnNAhpsSUr6QBFofDCv2wu5L2eYSUbDAPoHUEQVpVQiCEszCMyjm4lOPnjWyQQctxl8RwUdMBfWkxQLV9oHmgYWt7uYWWxEKABpgPQZDWlXAWHDUQkvOAfZKo/YwQyAYpX1/9G70vmRKTh9RBmdTP3xUyZNAjgi0oBUEQFCZaICSCnPs0x6Aj2SDA3IgJ523oA+1SAyh9W29nAL25vtbs8Wr2+HmUHDTosx8xB5O00uFPIQiCdCLHgdm8OCPtB/2MDpEN0r8SDv9Ih6+E3UULxizS3q4DLvNsn+APJG0OtFgsFmdmVzGzM83sC2b2eTP7L2O3P8jMPlX/fNDMTu67jQRBOlPCmXDUs7GcMxcmidDPOfdpjp81skHQE6bEYDcMYoFezBsoIItiDqzyEtGzJb3T3X9M0smSPj92+9ck3dndbynpaZKe33P7CIKgVDkP2oEe5ZANMjQ5xuUi6DIeTF2QPKQOyqR+fgAonJmdIOlOkl4kSe6+7e4Xjd7H3T/o7hfWv35I0nX7bSVBkI6VcCYcIUuhBBH6OefAUo6fNbJBDhvalBigiQhfBwDQsq2V4a3qE9SJZnb2yM/Dx24/SdJ3Jb3EzD5uZi80s93yeR4m6R2dtXaKK/X9hMNziaTjUzeioU0p5HzAiyWdkLoRQHquqlAWynRA0rE9PM+lIi15yPraz3K1Lml/6kZMMfT3BsAVltT1d/UF7n6bXW6/kqRbSXqUu59lZs+W9ARJfzB+RzO7q6ogyB07aekuyAQBshHh8h/ZIFjQ0LJB2B0Xw5SY9pU2BSRacdShaPF92T5Q0BIULUixwkwbz0lB1cE6T9J57n5W/fuZqoIiRzCzW0p6oaR7u/v3emyfJIIgPSnhbDjCAH2SnAftUdGns8toSgy1QcrGwBBRlBaU2UuOK8QMwNb24lMrNgodvHf5ukrtM8zP3b8l6RtmdtP6T3eT9LnR+5jZ9SW9QdJD3P1LPTdREkGQHpUQCIkq0qA9arApF3zOssZAPb7csx5KwVdBdwgwpF0mdz12lkeKrIxJyLJA5h4l6ZVm9ilJp0h6hpmdbman17c/WdLVJT3XzD5hZmf33UBqgmAOUWuDRBOhn6m3MruDko5J3QikqGdRQkmoFLo8BOZc1yECak8gE5vra1rdv5G6Ga3b0KrWWoqCbmpNq5reR9ta0bK2WnkuYJS7f0LSeN2QM0ZuP03Sab02agxBkF6VcEYcYYA+CYP24Sjhc9YRCqSWjQFqOrkXjS0t+MO+job2ChAAYS2J4+MMmA7TO9L1MYsIudCRphmlllFtkNQokBofU2IwVDlPpWG6IQDMjCAIFhBhgD4Jg/bhKHHk2RIKpGLoch7Ijor6VTuLKO9BWwhQDFoudUQAXIEgSBIlDNCinp1FCoRE6ONI/Zka2SCHMSDoTil9G+HwN24oGTIl7GMRgjAR2jiuhH2jAYqVAnEQBEmmhEAIkDM+Y1MNORuEKTHtGMqAvyQRB9XoTub7w/YBsifmNaiMk5xrMCEECqOiAYqkdi9CH0fqz9RYKeYwChsCe4vwFZAKx5D+lFZYNxMUZ0UnlkSQaAZkgiRVwuXBiDnL0dDHiyvhM9YRskHKVUpKepeHvsyvgg9C1Pcgartzst5PxsLW9nIvz4NEZhnoDyg5BvMhCJIcg7Q0qGXRLvpzdtQGGaQSD/WlB5MWMZQ+KSXQBkyxMcAUrNJf8/GpG4CsEARBC6JmKkQauEft4xyUOPosBAMpoF9kMVyh777o43g3sGPq5vpa6iYACIogSBYYpKEEkYJKqWWSDcKUmH71eagvZTDElBhi4EMWZR8dmEEVIE1gi3oW6AGFUbNxiWInakWt3hapqGfUPs5B9M9XwShuGNulogAb0uH4gQYoTNqNLa1oRVtpnvw4DWda4jQURp0JmSBoEZerQDbI7MgGSW7oJ0roxlD2qzayjaJmOkRt97guXkcpWWiZIfsEaBdBkKwwLSaNSAP3CIGmXPuTzxcywJSY+UU47EVSygAe/WK/AVAQgiDZiT5Q42wVCCd1Nkgpg/Whipz5EGVgx1crBmj7wDCzH0pepWVTFLNFHgiCoAMRz9ZyzV6YJEL/5tqfuQUZM5kSM2SRB/CzIMCURun7VSlYISad9WEGONq02WOwZPS52piaM3OgZ1Jti9GnpyYQFkRh1CxRxDENiqRiwFySJXz+IRU45BA/Pw555VqXtL/B40s/djTtH/RqU6tanXCxKmmxUAzLkso+JraETJBs5XbFel4RshXQLbJBZkM2CAoQOfMhypSYNrX1mqNkHWCwtraXUzchqfHpJ7lNtdmm4CsSIQgCHCHXgfskBJpQmFQDqhQDeAqkYl4c8vMyxOBZhjbXqTGREjU+EBVBkKzldsV6XpyxIdegUm6frUyyQVIXSAVKEjk7BsPBMrlT5ZY1AaA9BEGyl9tgbV4RAyG5Dtwnidi/QIYYsDbXdR92ebjjqv5wlVgcFWGkzqQodjrKpIKqwAgKowLoWK4FZ3OrTnlQ0jGpG0GB1D71uQsOqV8xm7YKbraxb1EctV1d9UeBRVo3taZVbcz9uCEUOm3zNQ6hv3LhS9IWQaA9kQkSAtkg/SMbBACQGQ73w0SmEmbUxvK1wBAQBAkjeiAkokiBkNzl2pe5fa6oDSJpWAVSSxN5SkwX2KfKRnCimfW9B+zbBxjUYw9kPWABBEHQk2hnrtHQv0BIrBKTDwa0AAAMAkGQUHK7aj2viAP1XDMYIsq1L3P7XGWSDTJUXLnHkBD4qdAPADAoFEYFirEpsZwb2kKBVCzqUnWbnhztUNd2f+T4+imOOp/c2lpgwVP0b0OrWlvwgufGvlWtXT7DY48TFyv2cGjJtLXSZaH97Q633R8yQcLJ7ar1vMgGGbZc+zL65wqhMSUmH2QEAO3o8Vizub77MrNb28s9taRbFD3F0JjZkpl9pottEwQJiQEbpokYZMLRMpkSQ4FUAMjDvAG6ro6fBAp7sZFdutdiNgt5HUjD3Q9J+qSZXb/tbTMdBgnkmMu7l4slnZC6ETPKvX9z7ctLJB2fuhFAGZgSg6FgKgnGbGpVqxMuSm1pRSvaStAiILRrS/qsmX1YI5ep3P1eTTZKECSs6AO2iGewuQ7eUaaDkrqc0zmj1LVBhqLPQ3pu9QiGIOe6IG0N4nOoCxL1uZGtJnUuIhra60UIf9TFRgmChBY9EILu5B5kIqCEGaUasHedyYB8MRiOiwBfPOsr0v602RGbWtOqNpK2YVHTsk4GZ0VMZa0d0pI29nU5Bui3MKq7v8fMbiDpxu7+z2a2Jmlf0+1SEwQJRTxo51rYE+3Ird5OJrVB0I/cdr+mOCEFpqNI8cy2D1AQFBgqM/t1SWdK+tv6Tz8s6U1Nt0sQJLzSzprRntyDTASUwqBAanlKGIDlfogDIqHg6dzaWq1lU7uvboPmdvIiyJ8P6RGS7qB64ODuX5Z0jaYbJQiCxCKexTJ4L1tugUWyQYAitB1Ua/Prs60BcAnBtZwRqAAwPFvufngOjpldSS1cniMIUoTcBm3zihgIiSL3viWgFEbqbJChiH44LwWDzXQi9n2ubU4dlEr9/ABK8B4z+31Jq2b2c5JeJ+mtTTdKYdRiUCS1XxT2LBufp+xQILV9ffQpS+Wib032a4rizoZ+CmW88CsrwJTNZdpuaapWJp4g6WGSPi3pf0t6u6QXNt0oQRBkIuKZbJRASO59G6UfU8pkuVwAADK0ub6m1f3TV3jZ2l7WynK/q1qgZceK7KIBcvdDkl5Q/7SGIEhRuHoNtIfP01FckiV8/qEsf8mul4curna3nRnTZoybq/v9G8oxDVgEQQ9IMrNP6+hJ2T+QdLakp7v79xbZLkGQ4kQ+e849Y2GSKFkMufdtlH5MiWyQZJgS00zJ/YejMbAHALTnHZIul/Sq+vf71/9eLOmlku65yEYJghx2KHUDAGQnclCxI6mzQYBxucd4Mb+IWSkR2zwu1WtYX5H2byV4YsxjU6tapZYI+ncHd7/DyO+fNrMPuPsdzOzBi26UIMgRNqQi1uqOPHCLeDYbJYsh976N0o8pkQ0ymAKpkQ/j2B2ZMd0ruThq7u3ryPaBFS0fmyZQEq2Q6JZWtKLZ+2pbK1qe4/6LPMfM211Z1soWtVuaOKQlbWR9vj+3/WZ2e3c/S5LM7Ha64ih42aIbJQiCDOU+WMewMBpF4ZgSM12EASd1QbAbpifNZHwFlebbm5w10VXwIDdDeZ2YzMy+ruoE+nJJl7n7bcZuf5ykB9W/XknSzST9kLt/f8LmTpP0YjPbryoX+WJJp5nZcZL+eNE2EgQ5CtkgWESULIbcA0xR+nHgmBKD3OR+aANKM2vAjCAMMFR3dfcLJt3g7s+U9ExJMrN7SvrtKQEQuftHJN3CzK4sydz9opGbX7to40IGQczs7pKeLWmfpBe6+5+M3X66pEeoij6tS3q4u39u9mcgEJIeZ7TISU6fJabEMCUGyBwD39nRV5hi0jQcMixQoAdIevW0G83ssWO/S9XqMB91908s+qRLiz4wFTPbJ+lvJN1D0o9LeoCZ/fjY3V7l7rdw91Mk/ZmkZ/XcTAzSxakbMKPc57VG6ceBG1+sDLH1sQzhpT08RxfWO9hm1L7oUxf9DrRsSyupm9CpUK8v4pTLmE40s7NHfh4+4T4u6V1m9tEpt0uSzGxN0t0lvX6X57uNpNMl/XD983BJd5H0AjP7vUVfRMRMkNtJOsfdvypJZvYaSfeWdDjTw91HR1HHaaHTdbJB0iMbBJiMbBCungIj+Lo8WoriqNRUSWpzfU2r+9ur6wFEdEhL2ux2DHvBeI2PCe7g7ueb2TUk/ZOZfcHd3zvhfveU9IFpU2FqV5d0K3dflyQz+0NJZ0q6k6SPqkp4mFu4TBBVEaBvjPx+Xv23I5jZI8zsK6o65tGLPRUH0vRyz1oYFyWLIfd+zbEfL0ndgPwMMRuk7yv47Hazy/2wFgUZGPnr8j0q+P3f2l5O3YQidTzgRkDufn7973ckvVFVEsMk99cuU2Fq15c0umTQQUk3cPdNafG5YRGDIJPK8R11Ku7uf+PuPyLp8ZKeNHFDZg/fSeXJc9DVFs6i+1XyvoR8HEzdAJSmjykxGA72p3xEeC/WA0276ACBhD0w1SUMMzvOzI7f+b+kn5f0mQn3u7KkO0t68x6bfJWkD5nZH9ZZIB+Q9Op623PU/DxSxCDIeZKuN/L7dSWdv8v9XyPpPpNucPfnu/ttqpSeaStSlJINEjkQwuW9btCv84v8OSpQhBN7HClqLQzqggDI1CZz4ZCXa0p6v5l9UtKHJb3N3d9pZqfXi5fsuK+kd7n7rt+G7v40Sb8u6SJVBVFPd/enuvul7v6g3R67m4g1QT4i6cZmdiNJ/6kqjeaBo3cwsxu7+5frX39R0pfVSCn1QdAflnptjj7cWwa1QYa4XC6rxORryLUxSnzt1NjAiO0DK1o+lpVRgJzVdTtPnvD3M8Z+f6mkl07bjpmd4O4Xm9nVJH2t/tm57Wp71BHZU7ggiLtfZmaPlPSPqpbIfbG7f9bMnirpbHd/i6RHmtnPqhohXCjp1HQtzknkM+kSz+5yQL/OL/LnqEAUSAXaV0rwIcrxIUo7x5WynwAFcVmsVX2me5WkX1JV/HS09IXVv5/UZOPhgiCS5O5vl/T2sb89eeT/j2n/WckGwbzIZGiOPgxhiNkgpepjMNZ3Jg2wCFaIaU/UIM9AbWhVax1Omd7UmlaLKTeArrj7L5mZSbqzu/9H29uPWBMEjUSuaUANi27Qr/PL6XNEgdQkWCVmeKgLMj/q9iCQ3YqTbpA1C/TO3V3V6jKtIwgyl1KilpHPpqMN2Fkppjn6EHtgoIVR0b4m2jTk1z40BS9lCwAjPmRmt217owRB5lZKIAQYxZnz/HIKJmaQDXLUQuUDUOpV/D6CSqX2HdrHYL8d83yu6cPoW8EAACAASURBVPNWsGrL7jrLrmG6ZWnuKunfzewrZvYpM/u0mX2q6UZD1gRBGyIXd4xWzJO6Fs3Rh0DowzbiKaW2BfUoBmVzfU2r+/O+YLmlFa2o31VuqMMxHIe0VFoA7h5dbJRMkIVwEEGJyAZBQymzQZgSg1FdHc6oC4KucAyT1otY0SKErrIwdttuISuWoH9Pd/dzR38kPb3pRgmCLKyEQEhO6fzzijZgp65Fczn2YU6foQymxAxRqQNYBmRx5fb1GHlfWjToxXSSbG1tL7e/TQb3jWzTf9jdzUd/MbN9km7ddKMEQQYvp0Ec0svt7BmYQ+TB1qxKOmSXGkAChqTngM/2gWENmBfN2CAwc4Vj6IqQzOyJZnaJpFua2cX1zyWSviPpzU23TxCkkRKyQSKLNmDPMZMhmhz7MKdRaQbZIEMskIphGdJV/lxeay7twOKGEKTuCQEODIG7/7G7Hy/pme5+Qv1zvLtf3d2f2HT7FEaFqLaHI0UrPAskdqnKrEYfvaBkpENZqfsQulVK8VoArXFZUYGyNgIek5AJ0hjZIGmRDTI8OfYh2SBHoEBqt3La3ZpiSswwpP5cpn7+iMi+QUJbBIXRMYIgrSghEBL5rDpaICQC+hQAwuIQ3p4+gwFdB2sIBmVtU2upmwAMBkEQjIgcCIkkx0yGaHLsQz4/g1ZqRkP0QVOkpXJRFvaRkIYaiOhyhZbNMPMSkSszO9nMHln/nNzGNgmCtKaEbJDIol32ynEQPy5an+IKTIkpXkkxt1IDSPPKtR9yGczn0g4M1qIrtSCRyDWtcJiZPUbSKyVdo/55hZk9qul2KYzaqg0pfASZIqmI4mJJJ6RuBAAAaMv6irR/q9EmNtfXtLp/WBcnN7WqVS5eQdIhLZUWsHuYpNu7+6WSZGZ/KunfJf1Vk42SCYKCRDv4kw1Snpwuz2eQDZJSimyQXK/kNzWEzJoS5Xb4Tr0fpX7+ruSQIZNDG9ALprYgAZN0+cjvl9d/a4RMkNaRDQIAkqopMY2/pjAVh+rZdLVULsuTAiFtbS9rZXm7l+cqOUNjSytaUbOsHWAGL5F0lpm9sf79PpJe3HSjZIJgipyuaM8j2hcN2SDN5Nh/UT87QEKlZtHMK9d+GPqV/qG//ra0lI2zfaC7Ip4A8uLuz5L0UEnfl3ShpIe6+1803S5BkE4Max4igFxlMCVmaAVScx3EAiWIFoxYpL05LZMbrb8D2epwNZa2JW/rcWmfHmmZ2cvd/WPu/hx3f7a7f9zMXt50u0yH6QzTYtLpKve5KxEKfObcpzn2X9TPDsLpa1c7oNiV9nM+hHVpqK8b6BlTQ5CLQ1oqbannm4/+Ymb7JN266UbJBEGhcp7CAfQpg2yQoSEbZDER+40r5fMptTgpAKBVZvZEM7tE0i3N7OL65xJJ35H05qbbJwjSqRKmxVDfoB851rYYl3NgKUL/DdjQpsQATUQMBkXB8QAAQnD3P3b34yU9091PqH+Od/eru/sTm26fIAgKlvOgHeUjgIie9LWrMYAcNrJe8sV7gwJs7GPuHo7WRsBjEoIgnSMbBLOKkM2Qc2ApQv+lksGUmJTZIClwNT8/OR++MLtUA34CDbujfzAmeUFVYBcURu0FRVLToSocUor6uSlM9KKeQ3Kp4q0EsC5pf+pG7IKvwbQW2T+GfsxaX5H2pysyuqk1rWZ0EXNDq1prIYo7z+tq6znRv0NaIgA1AzJBgKxEyGbI+UsxQv+lkkE2CLrDlJiylJxJxD6UXsr3oKfn3lzv5uLjBhHFiQpbjQSZMbN9ZnYdM7v+zk/TbRIE6U0+EeXFRZ0Wk/OgHeWL+rnpAFNigNhKmPJAEGY+JbzngcwaTJjlSj/ZACiBmT1K0rcl/ZOkt9U//9B0u0yH6VUJ02LQvYslnZC6EXsgvzqmg5KOSd2INIaeXh5Jl1NiOHQBRdg+sKLlYxefMrO1vayV5e0WWxQPU14QxGMk3dTdv9fmRskEwZyiXtXmID8cTInBQEU9PJcg96vlpX0F5t7fAIC2fEPSD9reKJkgvSMbBLMgG6QsFEg9zCVZoudOkQ0SsdDnXsiqwVDlXAQ357YB6M0hLWmzrPPzr0p6t5m9TdLh9C93f1aTjZIJggVEvdxY2qUwTEc2yHQUSAVCKLmmzNDqcpC5MmiFDUiBvv2Hqnogy6quKO78NEImSBIlZINwZbt7ZIOUhc/MYSmzQUpXym5GXZB8kXHQj4gZV+wbAFrm7n8kSWZ2fPWrtxJWJhMkmRJWi4mIbJDhIBtkugFng6S4Al3iFf2hXcmfRe5X+/n6uwL7LzrAaiw9oqsHw8x+wsw+Lukzkj5rZh81s5s33S5BEDQQdVpMJBEG8pxZz47PDAAgA7kHgtbLH+W2HTRh2g0K9XxJj3X3G7j7DST9jqQXNN0o02GSKmFaTETkQg9HhClFA8WUmO4wJWZvUb4GSiys2xamXvSn7b6OONUH+TlOZWZaNuSy0rKSjnP3f9v5xd3fbWaNvxmTZoKY2Y3N7Ewz+5yZfXXnJ2WbMK+oV7YjZS+QDYIuMCWmVyWeqOV+JRl5i7r/5D7tCYdtrnOhcR7bZQ2cKwSRS/BVM/sDM7th/fMkSV9rutHU02FeIul5ki6TdFdJL5P08qQt6h21QYBhiRo4BLCnoQyQh/I6oxnY+7J9oLtB+yaZ2sWJkPyHif6XpB+S9AZJb6z//9CmG009HWbV3f/FzMzdz5X0FDN7n6Q/TNwuzCVq7nWUfGiJaR1N0HfZYkoM0K9IX3td63tKxiJTSpg2ggHaWlnWytZ26mYgE+5+oaRHt73d1EGQA2a2JOnLZvZISf8p6RqJ25QAtUFQAs6uZ5dL4PCgpGNSNyKNFIOLPus75LKLNUVdEOqCAJnZ0KrWmAYMdMrM/tLdf8vM3qrqstkR3P1eTbafOgjyW6pG/4+W9DRJPyPp1KQtSiZ6ICTqGXeUs2CJjIYm6LtskQ0SG1eqkRLFUdHA1vayVpbJOGhb0iDRsSqzBtccDmlJG2HGNrvaKZHx/7rYeNIgiLt/pP7vulqY24PUogZC0J5IQSVUBpwNAnSBgfnsCKKl1UX/s/93guwTRGJmX1c1MLxc0mXufpux2x8k6fH1r+uSfsPdPzl6H3f/aP3fU9z92WOPf4yk9zRpY+rVYW5iZi8ws3eZ2b/u/KRsU1oUSU0j0pdKhJVicpVb31EgNbnSV4kpZRcb+FW91rX1lTewIpxHGPJrB4DZ3NXdTxkPgNS+JunO7n5LVbNBnr/LdibNEvm1po1LPR3mdZLOkPQCVZEihEc2CMgGwZyYEhNb5Kv5UQ5X1AVBaikyPNZXpP1bPT9pepta02qhF0a3tKIVDe89xZHc/YMjv35I0nXH72NmD5D0QEk3MrO3jNx0vKTvNW1D6iDIZe7+vMRtyEz02iBRRTkTlqhv0URufZdL0JApMQAGKMIKMaWKHDzNRJ8BhdHn2tSqVhumlM0c6DlWu2dtHrfH7ejCiWZ29sjvz3f38UwOl/QuM3NJfzvh9lEPk/SOCX//oKRvSjpR0p+P/P0SSZ+av9lHShIEMbOr1f99q5n9pqo1fw9/it39+ynalY/ogZBcBnZIJ1JQCYPGKjHoAoPd/pTe1/Meo0rvj6DaCBygdpyYJrkLl2lbK10+xQVTpriMuoO7n29m15D0T2b2BXd/7/idzOyuqoIgdxy/zd3PlXRuXT/kfHc/UD9mVVXmyNebvIhUmSAf1ZEJ0I8buc0lndR7i4BQA/fcMhqwuFxGqYmzQZgSE1vXwSSmg5SLjAAUJPfpHrlNtaHga5nc/fz63++Y2Rsl3U7SEUEQM7ulpBdKuoe77za95bWSfnrk98tVldS4bZM2JgmCuPuNUjxvLGSDILpcg0oEkDCGQdiw5Xqo6lJbr5msA2Ruc31Nq/vzGfT3LfegDMpjZsdJWnL3S+r//7ykp47d5/qS3iDpIe7+pT02eSV3P7yWtbtvm9ly03amXh3mWDN7rJm9wcxeb2a/ZWaciiKhSNHo3FY7ARry1A3oEavEYF6kf+eFFWKysH2g07R/7GGr22kXiOmakt5vZp+U9GFJb3P3d5rZ6WZ2en2fJ0u6uqTnmtknxmqMjPuumd1r5xczu7ekC5o2MnVh1JepOj37q/r3B0h6uaT7JWtRVsgGQXS5XmLNLRskl88KBVKB1pAlgQi6yIQrZN/PbeoIEIG7f1XSyRP+fsbI/0+TdNqMmzxd0ivN7K9VTZz+hqRfbdrO1EGQm7r7aCf9Wx01AhLKdeA+SW6DeSAopsQ0R10QRMRnHwkxXQVtO6QlbYQZx+zN3b8i6afMbL8kc/dW8ltTB0E+bmY/5e4fkiQzu72kDyRuU2bIBgG6kVsAKZfPCgVSMUCRYt+5aeOqf9NARKTMg0htHRe57VNsbS9rZXl77zsWarfCpG0WLe19dZwVMYUwODN7sLu/wsweO/Z3SZK7P6vJ9pPWBJF0e0kfNLOvm9nXJf27pDub2afNrPH6v+WInooXcUI6tUHaE6kvgR5RFwTzanOf4dAcx4E570+9ks6VdKUdyNRO7ufxU34aSZ0JcvfEzw8AQIW0+OaYEnOkAq+cA62Z5XixviLtZ7rIrHrPuAA64u5/W//3ue7+3ba3nyQTxMyuZmZXU3Vt6qgfdz/X3c9N0bZ8kQ3Sv0hfImSDLCa3fsvlc3Iw7dMPaZUYAHGRcQGkx8WL0n3QzN5lZg8zs6u2tdFUmSAf1ZEzv3dOea3+/0kpGgUAQK/6zGzIpexMrqgLAgAI7pCWtBm6nuSR3P3GZnY7SfeX9H/M7HOSXuPur2iy3SRBEHe/0c7/64yQG4s43gwokto/zorbk2tfUiAVI5gSg9y1GThr67Ccw7SfJm3gcw8A2XL3D0v6sJk9Q9KzJP2dpEZBkKSFUc3sNEnvkfROSU+p/31yyjYBceU2tQOxMSUGC5q3iOO8olX8Z8rEbLreb3KS2z4xpL5HZ5pkH2xrZbY7EqwcHDM7wcxONbN3SPqgpG9Kul3T7aZeHeYxkm4r6Vx3v6ukn5R0Qdom5Y7aIP3LtZ5FRLn2JQEkJMQqMQBK02OgZ/vA7gPozfXIWdRXYEUaDNQnJZ0i6anufhN3f7y7f7TpRlOvDnPA3Q+Ymcxsxd2/YGY3TdymAKJPi0F3cpvagcXkMiXmoKRjUjeif6TGD1eus/aAeY9LXU1RymHq0wBsak2r4S98Slta0YpY3QeNnOTurecHpw6CnGdmV5H0Jkn/ZGYXSjo/cZvQuVwGePPgzLg99CVmNFo+G7EQSMJQEBTAmGkDf5avRR9cpq1ZpxfFcGMz+11JN9RI7MLdf6bJRpMGQdz9vvV/n2Jm/ybpyqrqgmBPZINgGrJBFpNbv0UMFmJhfa4SU4Jo/dX2QJniqEAvSsnImNW2VrRM5gby8jpJZ0h6oaTL29po6kyQw9z9PanbgD5FHOCRwYAhSjwlJlU2SMmZDBEPvxiGpp87VogBgNJc5u7Pa3ujqQujopHhRKYxr9wLfeaaDpp7vwHoXK6HJ6BEs6xMs95tav/W9nKn2+9SYdMeFhcpMxDzequZ/aaZXdvMrrbz03Sj2WSCYIgiXo4kGwR9ivgZwcKiTfHYC1fWgemYPgQAszi1/vdxI39zSSc12ShBkPCoDYJpcqtxMS7XgFLu/ZYCU2KKU0J8rbSg0byG/vrRrpKPdx3Z0KrWWkgdYwWV7p1wJenbl6VuRT8OaUmbWZ5fL8bdb9TFdpkOU4TI02IuSd2ABZArjT5F/IwAOMp66gbsoq2vtZxfY5f6et2zTB0BMBWXjeMxs2PM7NFmdmb980gza3xljiAIMsAgrzu517ggoBTHwdQNGIZLUzcAkjg0pcRAvz2pg1Kpnx9ACZ4n6daSnlv/3Lr+WyNMhykG02L6letUDrSDKTHZYUpM+/qYEtN1/zElBONYIaZ71DMJZXy6zdCW/UV4t3X3k0d+/1cz+2TTjZIJgkyQDdIdskHi4/MBAMA02wd2XyVlc50LheER8B6qy83sR3Z+MbOTJF3edKNkghSFbJB+kQ1SNrJBjpa4QCoQXdtX0MmEAVCoreOkFaaIzu2QlkpbOvlxkv7NzL6qKif4BpIe2nSjBEGQkRKWK8gVA/r4+HwMZkpMaQPbqFMMhhbnbuv1MlVidvQVAOzK3f/FzG4s6aaqzgK/4O6Nl1NiOsxhjbNqMsEcv34xlaMd9COQRAkzrbhSCMRGMVwAU5jZIyStuvun3P2TktbM7DebbpcgCDJTwhk5ypF7PZUUWCUGQMeaDopTrEpSwjK5OQcj1otK7+/UZkcpbKNTLLp6jo19Q0q/w4x+3d0v2vnF3S+U9OtNN0oQ5AilDMDJBulXlCyG3Af0UfoxpVKOUQ14oufte3BAdkO52h4ss6+0K+dAwCJYpraxzQXq7UWqybAxqHl/CGjJzA5PhjazfZKWm26UmiDIELUPkBPqqRyNAqlFKWGp3K5QFwQYhK3tZa0sb3f+PJta1eoALvpsaFVrA3idOTqkpdICW/8o6bVmdoaqS2GnS3pn042SCXKUUq60kg3SrygHerJBABSIbAigX7NmmJCJAqCZx0v6F0m/IekR9f9/r+lGyQSZqJRMhMhL5pbyHgBt47PBKjFA5lj1ZHb0FabY1JpWxy5qkmGBoXH3Q5LOqH9aQyYI0JooX0q5Z4PkiD47GgVSMafSai2gW+wvCKCwaQdHCfX64pRhQQYIgkzFtJj0SnkPMJ8owaSU+GygZexS03VxSKI4avdKXiEGANAI02GAVkWpKkexz/nRZ1lhSgzG0VftiPI11qWohXwHbvvAipaP3UrdjMHZ0opWRL/n4pCWFlrRKDdm9nJ3f4iZPcbdn9329skE2VUpl8bIBkE0ZIPEwJQYAOhdl1OFCp6GtLme78Aw0pK6QE9ubWY3kPS/zOyqZna10Z+mGycTBGhdlMtoZDbML6c+o0BqsmyQUrFULtpEwc98RHgvODYsbBCZGMeJaX/Dc4aqpXBPkvRRHXnG5/XfF0YmyJ5KyUQgGwTRkA0CIBMR6oIApVsnWwIYCnd/jrvfTNKL3f0kd7/RyE+jAIhEEGRGDMIxrygDeFY9iS2HY9MAp8T0nS7O1a/ZDbmvSnztBU/NOAIBMQCYyN1/w8xONrNH1j+3bGO7TIcZlA0pbKEcUv+Ri5ymxIApMUAHoszq3EuEaSCR0b9AdlxWVI0ZM3u0pIdLekP9p1ea2fPd/a+abJcgyMwYhGNepZxFpkQfxnBQ0jGpG4E2UBcEqCy6nxIYOBp9Esq2VrRceo0RRHKapNu7+6WSZGZ/KunfJTUKgjAdZnCoDYJxTImZX059xuciCabEDA91QeZX+utDUba2l6feVsKSo7koKUsBvTBJl4/8frlayAEmE2QuZINgXmQyNEcfYg9MicGoS1WtJDBEQ37tQ0NGFYBheImks8zsjfXv95H0oqYbJRNkkMgGwbicMhsQ0wALpJaKwyxyMpTiqDmhz1tBxsPuOsuuIRBcFHd/lqSHSvq+pAslPdTd/7LpdskEmVsp2SCRi6RGQyZDczn2YU4FUks5LgXT95XYkq7ycxU7fzkedrE46nIAg3BIS9os7ODt7h+T9LE2t0kmyEK4TJYW/d8NskEQmKduAAYhyurnuEKUuiRR2pm57QP5Z1+kGKDmkJVS2sAcuzOzfWb2cTP7hwm3/YWZfaL++ZKZXdR3+0IGQczs7mb2RTM7x8yeMOH2x5rZ58zsU2b2L2Z2gxTtzF/kaTFADnIKHOUQHGRKDDIRqZBs6YPfyK+PaSH96qG/N9fJgpa6m4pCAVmMeIykz0+6wd1/291PcfdTVK3y8oZJ9+tSuCCIme2T9DeS7iHpxyU9wMx+fOxuH5d0G3e/paQzJf1Z+y3JYcAxZNH6P8rlw5wG9eOi9CEGpdRBUh+H2FL7LrVIAaBSRQ78YG4bZDg0Qv+Vx8yuK+kXJb1whrs/QNKrd9nWNc3sVmb2k2Z2zbbaGC4IIul2ks5x96+6+7ak10i69+gd3P3f3H0nzeFDkq7bcxsDIRsEQCGGMCWGAS6AnPQd8FlPP62jT4tmVjD1ZAS1cNp2ov1/9u49TLKqvPf47wWme7pnGAHRhIs6oHghioOOiDEKIjFgFI1ihEi8xDzEo0aNRuOFeCE5SdScaIweEY8RIvGGSkSFoFFATQBBuQiigoiKoIjKpad7uoeZ9/yxVzPVNVXdddmXtdb+fp6nnump2lW1au1L1Xr3u95tdlnH7cQey7xb0uskbVvuhcJsjf0kfaXHYxvM7GJJF6hIaHinpAvN7GIze9S4HyLFwqj7SPpJx/9vkvTYZZZ/saRzq2kKxQiblVr/U2VufDH2IQVSl9oiaVXDbQAqFONhqCqxfFYK6aaPwqxALVxWdQ2Y29x9Y78Hzexpkm5192+a2eErvNZxkj7l7lt7PHaapD9z90u6Xv9QFZfNfeRQre6SYiaI9biv5/k/MztB0kYVkaNej5+4GMVKb3pFmcgGQaeYp8QAEcp1WkfqX4spZc0wfQKjyPXYg2UxfQSRe7ykY8zsRhUzNo4wszP6LHuc+k+FWdMdAJEkd79YJVwrL8UgyE2S7tfx/30l3dy9kJkdKelNko5x9/leL+Tup7r7xiKaNerZ09R/JaYutf6nrsX4YuxDAkfRYEpMWhjEoQ4EmYCkzE9ONN0EjMjd3+Du+7r7ehVBjq+4+wndy5nZQyTtLumiPi91rpl9wcyea2a/HW7PNbMvSPrPcduZ4nSYSyUdYGb7Sfqpis79o84FzOxgSR+QdJS731p/E1M0K1HRGfeIaYoHhsOUGKD1NqmE82QlYipEHIZZD0xBqt28JjWpnudtgeSZ2cmSLnP3s8Ndx0v6uLv3PH3l7q8ws6NV1P7cR8VskJskvc/dzxm3PckFQdz9bjN7uaTzJO0s6V/d/Zqujn2nisP8mWYmST9292Oqa1UMg442S63/Y5lkDaA0DBiAPI26b48S+CFYhIbMakrTUWbaImXufoGKwqZy9zd3PfbWAZ5/riqq7ZlcEESSQvTnnK773tzx95G1Nyq5gXgvZIOgU8zZIDEGkmLqrxyOR2Nw9a4elZO6zvSnvilV1U8xHoKqEstnJdCIGswvTGhyYqHnY3Oa1hR19IbWWIbLGkm/rP9tm7ZNO2VfN8bMTnX3XlelGViSQRBgR6n9Uo/lVyVQFabEYEAMbgtkAQAAIEkysz36PSTpqeO+PkGQUqU2EO+FbBB0iim7oRuBJAAAslJCUHRh86QmVrertgb1RJChX0j6kZbm9i7m+t533BdP8eowQB9cKQZNi+kqMTHsD1uae+smrhKT65VOYtiUMLzYriLU9BVamn7/qsRw3Mm1b7GDeU023QS0xw2SDnf3/Tpu+7v7fpJ+Pu6LEwQpXQ6/FpnvCADRi22QG6uq+ok4NpCkuZn6Mp5zDhrMkY2Lar1bxSV0e3nHuC/OdBhkJrUpSSlM6WBKzHBi7i8gUtQFKcRaFyTGQ22d2D7LUdb2PTMprWXqB9DLNu2kuQxKG7j7+5Z57F/GfX2CIJVIbSDeC7VBgPTFcCxqWYFUBktAdVLbv2K8TO4wr59af6MSXD4XTTKzZ/W4+w5J33b3W0d9XYIgyFAMA7/cxJzd0PZTlOiLS+WWh8MqAPQ1bKBgTlOaIrAwmNWKo/YNmvJiSY+TdH74/+GSLpb0YDM72d0/MsqLUhOkMtQGwaD4EsxPTAVSAbS2Lgh1YwAAadsm6WHu/mx3f7akAyXNS3qspL8a9UUJglQqh0BIquj78jGwT1MM+0KDV4lpAmesRkO/5a/pq4g0/f4AgGGtd/fOq8HcKunB7v4rjfEDk+kwWAG1QerBlI7xxNh/MU8hapE2TIlBXmItjgoAFVrQpCZEwdtxuZvmFyaabkaZvmZmn5d0Zvj/sZK+amZrJN0+6ouSCVK5GM7CjivVaTE59D1QBvaFrNU15YHNqN1in/rTZmRRAcjXyyR9WNIGSQdLOl3Sy9x9k7s/adQXJRMEiEaM2QzdYs5uSKH/2oyrxKBhdRWRjU1un7upfYt9enllZjDR11ngqjIog7u7mX1d0oKK/N5vuLuP+7pkgtQih9NnZIMAw6OOShTG/qpEbVI8o81vfCxnlDok1C5pVGxTCeZKmpY+r8mBl10YYlmgSmb2h5K+oWIazB9KusTMjh33dckEAaKSQjZDzNkg6I9rnGaNS+UiFdQ8aV6T66Cm917YPKmJ1eXXl5jTtKaSPTFYnXlNapJ6HqjGmyQ9xt1vlSQzu4+k/5L0qXFelCBIbXL45ZhqkdQc+h6DSSGI1GYtmxIDjIpAQXXo2+EwNSVKTDVBP9u27qS5mRTHa33ttBgACX6pEmazMB0GiE4KX2pM8xgcfRWFJqbEpDi1I3d1FZHNVQpfT2iHmTynawwzZWUlc5wUQh7+08zOM7MXmtkLJX1B0jnjvihBkFrlUJ8i1RTAHPoeg+FXen/sB0hAisGj2A87BH+AJTI7Uz6SsmqNAFVy99dKOlXSQZIeKelUd/+rcV+X6TAAUDnqqGzHlJjKUBcEbcEVYgCgNdz905I+XeZrEgSpXQ6/HqkNUr0UalswsEdiXJLV/J4MmjAqaldgGBxrAGTEzO5S78nMpuLKuWMNQgiCAMhQCkGkpqQUDERrVTmgqytjBv21LcDTts+LJbhyCurkvpMWNqdfM8fdK/2xSk2QRuQwLz/V2iApiX2SuUTRz2HQV9ttaboB+aL2A6qWwldTDmaabsAIUmwzgFYiCIKWySEAhcHwS72/Fu8HXCWmHC3ehPqK/ZBDgGw7BuuowCwZqPUhmw9jIgjSmBx+QZINUr3Yf1VLZDgAAJCY2ANBOQaPK1bm5XWB3BEEaVQOgZAU0e9oCgGj7ZgSgxUwCIp/oNokto/6lN3XbNeSpDkyR8ZDzAdjQq8esgAAIABJREFUoDAqxpTqlWJSQpHP0dF3/bW4QGoTV4mpE4U/V0YfNS/VYqFchSUZC5snNbGagqSttkbSr5puRM22mjRDhGglZII0jqyEZtDv5SLDYXD0VSvleNaaw+iOUpjBWIa2fE601vzCRNNNqF3uNU3Gup4qskMQBCWgNghixq/1eDElBqgVxVGbU8cUkByDrcvhbDeAEREEiQKn05qRUr+nMJAnwyE9Ke0DJWviKjF1ymWw27ZBHeqTQl2KFNoIlGx257wzUhAHgiAoCdkgwOAIGLVSjgP6lONoqQSKGAgDlZibGa2m3Ry18IDkURg1Gi0uUtiolPqdIp+jo+/itUXSqqYbASBFFCkFojOnaU01dXJ0jfI84TAMF30wADJBUCKyQUCGQ3pSPpUPRCiF2YuxIMulWVX0P+u0EmSfAOUiCBIVBiPNSKnf+XU9utj6joBR45qoC1Ln2ZlUpnugXmVtF7EdUuvEWVYASBpBEJSMbBAwuMewuEpM0qqOI1c54CRQBAymicBPS4NN88r3qjdzTE1GJAiCRCelrIScpNTvbT79lptYAkYpbf9ACzHFoBp19yvrcTv6YmyzCQcUcg70IA0URgVQgTslrWu6ET1QIBVdXJI13Qhkh0MNmkKxWFRgVlOaDifh5jWpSc3X8r7za6TJ7oy91dqeJbRGZPR12yqCjAMgEyRKqZ+VZUoMgGG1aEoMdUGA8uQ+ZYLBTBbIfADiQhAEuEdKwSemxIwutr5jSgwyQF2QdirjcMogHxmJfYpKbMEYrnqDphAEiVbqAxKyQRDL4B5YQRNXiQGGVWawgMDP+HLPQEnFzPKD+oXNcQ3660YhUqA3giDAEikFn2LLaADGxZSYSjDgBQBUgCALUkVh1KjdJWnXphsxhlmJNLeWo0DqYGLpp9SPOUBEYjvMAL3MSFqbwGs2YH5hQpMTC003AxjONjHNcABkggA7IBsEaB2mxIwv5bogaC8GC2gQmRTIlZntbGaXm9nnezz2ajP7jpldZWZfNrMH1N0+giDRS2lA3gu1QRArAkhxatGUGMSDKUPNGjcQkVKALOWgS0r9PKC5mXZnLC9XmHShxCKqtRdkXVPv26GnV0q6ts9jl0va6O4HSfqUpHfU1qqAIAjQU+rBp5hQIHUwsfQT235tqAuCYcVYHJV4cvWGXe8ZBitiw1VNgP7MbF9Jvy/p//V63N3Pd/fFM+UXS9q3rrYtIgiShNQHJWSDVItfoAAQJQ7PwHgI6AwltkvgIkt7mtllHbcTeyzzbkmvU1GhZCUvlnRuqS0cAIVRgb4oElmeWAp/doutcmGs/VS3LZJW1f+2Lsnqf9usVH3Y3CxpdYWvDwyD7XE8mRRQRcPWiGBZp22quj9uc/eN/R40s6dJutXdv2lmhy/3QmZ2gqSNkg4rt4krIxMkGWSDYDmcbkSZUj/eJIQfbvFgyhAAAON6vKRjzOxGSR+XdISZndG9kJkdKelNko5x9/l6m0gQBACAdmCQD/SWcrFSAIiIu7/B3fd19/WSjpP0FXc/oXMZMztY0gdUBEBubaCZBEHSkvrZ2RSzQVLq89izQWIp/Nkttn6LpZ9S2vZLxKVyEbtci6O26QoxANAyZnaymR0T/vtOFZPhzjSzK8zs7LrbQ00QAECEGqoLgvFRF2Sp2EoPoXmx1cKIrT1I0rwmNanRZjXMakrTg0RT14isxoS4+wWSLgh/v7nj/iMbatI9CIIkJ/VinbNScpcVS73PYxJr4U9GKWhQnYP6TSp+RAJAleoMrMxMSmv7D74XNk9qYnXtJQeAZmwTU/wGwHQYICuxTe3AaJgS0yimxLQXZxgRq2EHNVVND2LaUWPmkjuJWGR4ADEiCJKk1Acm1AYBMIgtTTcAAJZHUABd+g385zU58GsMsyyA4REEAbITezZILFkO3WLvN2Qtt4FU1XHj3PprWDEWRwWQPDI30BYEQZKVemYC2SDA8mIJFrHdZ4dBb/3aEGNN/QoxzKFHD/MLE003AUAFKIwKZCn2Qp+xFkhFfBq6SoxLsvrfFhGgeCxQH65MM5aBr6qC9tgmsiUHQCZI0lI/Q0s2CGLDDwkAAKJS8YBubia9gqPoktJl0xEFgiAAEC2mxLRKbmduqAsC9Bfb9JvY2gMAFSIIkrzUBycpZoOkIvashlgG+N1i77c2augqMTlfKpe6IOlj0Ao0qqxL1s5FPX05D7syxRFdCIIAQ0s98IS0xBosAjCUmOOrZQXFYv6MOSDwBYxl16YbgGhQGDULd4ndGr1RIBVl4ThTi81ibnMMKI7anBQLZca63zbdrhTXJZC6bSJgOgAyQRCBFKfEkA2SN05nxocpMUniUIm6cZnc6lGPB0DiCIJkg1+aQL6YEoMK5FAXhMEYAEmamWy6BdHqrjkyL/oKIAiCSJANUp3YsxoY4KcjlW0eiFTZh2MyF4CBLGxm4J88piiiRNQEyQpz9oHyxF5PpY22SFrVdCOq1/Q8fhTaVhekbZ83BtTMAPqan5zQ5PxC081Iz1YRIB8AmSCISIrZIKkgGyR99FFjcq4LUseUGBKI2iX2rxsAQOsRBLnH1qYbUBJ+bdaL/s4bv+Z3xDaPyFAXJD+cxWxGU/3O+gZQM4IgiAzZINVhQA8AaIEmAmN1vWdbAwYEOwdWVeHT2Y4pwlW9xwJFW1ETgiBL5JJuzpnaetHf5chl/6sSfdSaS+Xygz9fFEeNW279ybFkbPMLE003oVJzmm66CUDtKIyKCM1KHJARDQqkInN1FMRMtW5324qFtu3zAsHczLSm1paXjTyrKU33iHjOa1KTmi/tfWI1p2lNkd3dDBfBzwGQCbKDXM60kp1Qr1T6mykxKEMq2ztagx98QL3Y5wAkjCAIIkX0uJ1yCUJWiT5qbEpM3RhkIFXE27Eot+lFNepVd4OpK0A5CIL0lMsgg7O19Uqlv/l1Ojz6DMr7UrlAbNoyeG7L50SSkipUylQ+DIEgCIDI5BKEzF0qQT8MZFMN75HqJlNF3xBXBbJAZgaQJgqj9nWnpHVNN6IEqVajkyiQCvSTy/FpHFskrWq6EUAcZiStbboRkdksafWIzx21P8d5T4xvZlJam3/RUWBZW0WG2QDIBAFKlcqpTk5DDo8+g7hUbszoq3LUkRUENGBhc0JTOxIyxxX0kCCCIMvKJS0/lYF5LxRIbadc9r3cpXxsAYBEVXmWlzPIjSCQANSLIAhQulQGhmQ2DC+mPiNQ1JqrxNSFuiAoU0yHy7ZLIUuK4MvIZtsQQGGaGUpGEGRFuQw0Uv7lSTZIO+Wy7wFIHsVRAQDIBoVRgUqkXJAWGEYLt3WXZDW+H8UWB9fmvsqxOGqOnwmja/P+DQzKlUb2V8PIBBlILmekyQZBN05FDi+mPsvl2AQgKrkUR01lIJDqVJBU+hcAuhAEARAxBvlYCXVBSkVdEKAwamCCwMCOUg3yAMgWQZCB5TIYS/nXZ2rZIKn0dUyZDUhTKtt6ibhULgAgQ1UXWuVKOIgBQZCh5BIIATCemAJHHJeAJaoKGFEcdXi5fz5kZW5muu9j8wsTNbYEQNUojNpKLSxk2Bj6enx3SlrXdCMQtS2SVjXdCKB5FBJtD9Y1gF62iiloAyATZGicdW1WalNiUsHpOoyrhVNickVdEMSEH/P1o89LUfW0ktTNa7KaF+YKQhgAQZDW4hdofejr8cUYfIwpcBRj/7QAdUGQs1yuEIMCxw8AuAdBkJEw4GgW2SDViGlQDwyLq8SgBgQG0sPgv11mKsouKFFlGRDLiKEYaROfG+iHIEirkaEAoEwcUxCJlAa+xJ8hMQVFog9qVFVAgkAHUkFh1JFRrLFZs5L6V/GODwVSxxfjPjcnRXB2pRBj/7SAS7KmG1GBTZLWNN0IjCS2gpkxHSaHNWpfbhZ1CSK1sHlSE6vnS33NOU1riizlkdF/JXMRXB8AmSAAOnDUBKKWUobDSkgcAtJX9zEpp2MggMYkGQQxs6PM7Htmdr2Zvb7H4080s2+Z2d1mdmx1LcmhNkjKv0JTixqn3Nfoj8DRUk1u59QFAbLENAm01KjTS5iW0oGuqJWZrTazb5jZlWZ2jZm9rccy7zKzK8Lt+2Z2e93tTC4IYmY7S3qfpKMlHSjpeDM7sGuxH0t6oaSP1ts6IAcxD+pzCDxWif4B7lHVGeM2FUdt02dNUUrBoZTaGrm5pKaDo4XmJR3h7o+UtEHSUWZ2aOcC7v4X7r7B3TdI+hdJn6m7kckFQSQdIul6d7/B3RckfVzSMzoXcPcb3f0qSduqb04Ogw4yFABgZHVfKrcuDIDrE3PsGQCAAXlhMey5KtyW+6V0vKSPVd6wLikWRt1H0k86/n+TpMc21BY0jgKp7RNjAdCUK//lZouK79uM5VR0kUMi6pDTPlOX2ArsolVmd57S9FaiwyPZqqpPYuxpZpd1/P9Udz+1c4Ewc+Obkh4k6X3ufkmvFzKzB0jaT9JXqmpsPykGQXrV4R/pPJyZnSjpxOJ/u4/eoizwSxSdGNSnK4YgEccToFGxDWD5ShlM1euNYFDU5jSlKdLCEL/b3H3jcgu4+1ZJG8xsN0lnmdnD3f3qHoseJ+lTYflapTgd5iZJ9+v4/76Sbh7lhdz9VHffWKzIca4FmMOUmJRRIBVAw3KdEgO03ai1LLiKCRJCnRFUwd1vl3SBpKP6LHKcGpgKI6UZBLlU0gFmtp+ZTajovLMbblMmGJyjU8xnI2IMPMbcX8hOXQOs1OuCUBx1fG36rGi9uRmCAWWbJQ2sVczsPiEDRGY2JelISd/tsdxDVEzFuKjeFhaSC4K4+92SXi7pPEnXSvqku19jZieb2TGSZGaPMbObJD1H0gfM7JrqWxbjoKxNyAYBtovheMSlcjEgDocF4qjL4+oiaNj8wkTTTcAwuDRuU/aSdL6ZXaUieeFL7v75zrF6cLykj7t7I7m0KdYEkbufI+mcrvve3PH3pSqmyWBozOUHAABAomYmpbXzTbcCaMY2NRo0DldoPbjH/W/u+v9b62pTL8llgsQthrOvbZZaNkgKYj41GeP+FnN/oXLUBUFMyJxAXcqcdsZ2OxKmnADDIQiCHshNrgf9jCrFECRiSkylqAsyGApUxqHpGHGu2wFBA9SIYAtyQRCkdDEMPIAyNf3LdTnsbwAaknpwCKhbJAGbhc31FYvIOWgwT9ENJIwgCPpINUshtSkxqfYz+os5aAREikNhIdbDR9sDPpEM3hHkmtUDoDZJFkaN352S1jXdCACtF8OxqMliy1skrar3LV2S1fuWQGvMSFrbdCOGsFnS6iGfU/VnHKZNqfU3KrGgSU2IQrPJ2KZ4A+oRIRMEGUotGyQFMR9NmRKDFqMuCAA0bk7TQy3PVJLBza9pugXIEUGQyuQwMCM/uR70c35iDhoBLdTW9HmmcQAAsAOCIMgU2SBAIYeAbGK4VO5oUowHkyEznKbjw20NhgEAliAIUqkcBh8p/ipNUQr93PSv1+XksK/ljEvlAgOL+VALAEAGKIwKAJWYkzK+NB4iMkrxxVFsksTc7PZi/ceLAqbIwKymNE0UeHzbRJbiAMgEqVwOZ6hTyFLohSkx5ePLKU05HIcAoEHUVwGGMmyxWKBOBEGAaKQabIoFA/24tWxKDHVBRlPlZlJVPYjYz7jlNnjP7fPkosz9i3W8RBNXkpklkxWZIwhSixwGZ6kO0MkGQZPInAGAVhslOEAQYHwzowcO5mbyzGCYI7AB3IMgCBCVFIJNMQ/scwg4VoW+yVpdV72IPeshFzEfZseV82dLRZNXyUk8wDO/MNF0E6JEgAWpoTBqbe6UtK7pRozpLkm7Nt2IEcxKzEsEIpDqMQRANuoqJJwLiq5GaU7TmiLbGb1sE5cDHwCZIABGwKm8wdFXcaAuCMQPw3GRCYRYZLovl5lR0UQtESAVBEFqRTo6BpHClJiYsZ/1R98gASkeAgkOAElZ2EyAgCAJ2owgCIaU4q9TiQKpQCxSPYYkgLog6CfxOgw7yO3zAABqRRCkdpyJxSBSGCgyzWNw9FUcmBIDYAwxB19ibhsARIbCqBhBqsUNKZDaHjkUIq4KfQMkYU7K9oILOX82oMuspjTNyRDUZZvSOJfaMDJBGkE2CAAAfVX5Ay7TgoqI2CjbHJkdAFAZgiAYUaohxpRqg6TQx5zZGBx9tV0K23aiGOA3py21UnL4nOwn1Wh5v86RbQwkgyBIY8gGAarFPtZfm/uGuiClyGEg3DZkFgDIxeqmG4DUEQTBGDibW70U+pgMBwAAkhJ71gZBu6HNUmgHGBiFUdFCFEhFU6gGuF2qBZaBGnHI6G9G0tqmG9ES9HUl5jWpSc033Yx0rZHovh62imzNAZAJ0qg2p6QDdWAfQwvFfoZ3UBRHzVuqSYRkKIyPPkRdmDaDPgiCYEwpTNfohQKp5Ur112ybtTlARF2QUnCmaUf0CRCPmcmmW5AUCruiTQiCNK7NAxGgjQgYAUgcwZ44tS3DosKMrrkZAgK5YWYhOhEEQQlSyFRIHX08OgKN8WK7BmrVtkHycuqeEsUULGAgCyKDB9WjMGoU7pS0rulGtBAFUstFBb/0tPnYs0XSqqYbUZ3NymMuNPVzObS2GQVJozS/MKHJiYWmmwH05iLoOgAyQVASzugiZrFlgzAlppWoCxIXfiQCrbawmYyDKsyTyYEEEASJRmyDtLagQCrQLLZrZCblwFBqmN4DoBPxFwyIIAhKxGAGZDikhwAsgIbwldGsKrKhyLCqBNkVQLkIgkSFwUgzyAZph9j2L379N6+BS+XWicEIqtTmjBcyUAAgaQRBAJSMwT2G1aLgHnVBhlfl5tHGQBEDeIyC7QZIh1d4ywRBkOjEdrZ6WC0azADZSP24A2SO2DLaqKWBl7mMLwfFtB7EgiAIIIkpMW0R22CfkU3zMp8SA6C/ujOB6ni/VAIHqbQzYnOaru29FjqCF7MlBGkGDfTMT04svwAxFYyIIEiUYhuoDYtBOhjcA33VmU7axukeMWhzvYy65T6Yzv3ztUQZgQMEa5puAHJAEAS4B9kgaLOmg69s01gGm0e+iJkjI3VmZwAYHUEQVIRfrIhV04P9bowAkIGUMx/amC1TVnZByusd7TDDfIlOsdUboUZIFVzFVN+qbnkgCBKt2AZqwLAY3CMV+XypI2McUuPCNJU4tDGIOQSCDKibma02s2+Y2ZVmdo2Zva3HMq82s++Y2VVm9mUze0Dd7SQIAizBlBigOS3apqkLAgBIHEEW9DAv6Qh3f6SkDZKOMrNDu5a5XNJGdz9I0qckvaPmNhIEiVvq2SAtGtCgj1hPXca2b8XST7H1C5AwpoogBQRJ+5qbob4HMCwvLObKrQo371rmfHdfPPN8saR9a2yiJIIgQA8pZYMAQCSqHvQTV0cVCAKUjz4dGJkUyJGZ7WxmV0i6VdKX3P2SZRZ/saRz62nZdrvU/YYY1p2S1jXdiDHcJWnXphuRMfoXKMcWFScr0EqbJa1uuhEY2YyktU03YkApb2sp9TMGMq9JTWq+52OzmtJ0NJmqQ1qjFmfjbVXFZw32NLPLOv5/qruf2rmAu2+VtMHMdpN0lpk93N2v7n4hMztB0kZJh1XZ4F4IggCo2JwUWTXyQmwBxlj6qel+aVFgzyVZTe+V8sAL1ShrQLtJxYBjHLEc/nJBsGJgC5snNbG6dxBgOfMLE5qcWKigRXlKOqCCbre5+8ZBFnT3283sAklHSVoSBDGzIyW9SdJh7j78TjgmpsMkIfV5+inmMKc0JSbF/gUADI0xRDtxJRoAiTCz+4QMEJnZlKQjJX23a5mDJX1A0jHufmv9rSQIAgBAwKVyo5dazLe16djAAAYJ7hAAGsosKVVo3l6SzjezqyRdqqImyOfN7GQzOyYs804V+WpnmtkVZnZ23Y1kOkwymk5Rb6NZSVQGL0esuc6x7Vex9FPT/dKiKTG5KWNqBJAKpp0AzWt1/Y/4uPtVkg7ucf+bO/4+stZG9UAQBDVhUFMt+hdIEnVB4kH/AACSt03pl1KoHtNhgGWlVBsEAAAMjUu6AkCrEARJSupRvdQmc6cm9v6NtaJfbPtVrP3UFtQFQeTKPESUVW+hjFT0cT8XtSMAAAMiCAIA6KHp4FDsQT30VfXc7NQ2Deaqo1tsmSextQdJmhujptncoDX4qDmFkhAESU7TA5NxpfbrVWJKDIBKedMNAICErRTEmZmspRkA0kFhVCArsRdIjeXqJ92avhpKt1j7Ccmj+Ofy6B+gHOxLpZvXpCY133QzEL1tYmr1ysgESVLq2SApIhsEbdT0saapzDHqggCIzLA1T6qqkULtlVqMM7UkJgNPcwFqRhAEDUhxSgzKQ3QayB51MNAWBAXQpd/AfzaTwAaQA4IgyWr6DC3iRZBpNLHtUwSLWoW6IMNp+2Eu1yvEAGgUmRtoC4IgaEiKv2CZEoM2ii04VJeMp8RwJYj6ESAYTJOXyWW/QA9zMwQFgBxRGDVpsRVzRDwokIpcxL4tIzsUdATqMyNpbdONSNecpjXFSTossVXtPYE1ODJB0CCyQRAbvjQAAIhKxXVXFjZzCd3krWm6AUgNQRAAiBZ1QVolt7ogTAEB+mP6DQA0hiBI8jhzjX5iz7RhgJ+Opo8zXCq3dDkMwGI/xAEpyeGYULP5hYlyXkdkogB1IwiChqX4K5YpMXlresAPIEtlZ8bEeIUYAIjQqhBnohodFlEYNQsUSAXyRRFZoHYURx3NJrVzbn5dxT2HfR+KjgIttE1kW6+MTBBEIMVskFTE3rccpNNBhkwtqAuCtuMyufEbtI/pTwCRIgiSDQYo9WJKTN7Yn+JDXZDS5TBAiT3OCwAN6645Mkd2KUAQBMgfo4T0kTEDAEBfKwV1Zyg+CmA7giBZSfnsdYoDdbJBysEAPx0pH2OACMRcHBUAYkadJpSIwqgA0BMFh+Nzl6Rdm25E9VySNd0ItK44KkU069e2bQwYwuzOU5reSqR3eNuU5snlepEJgoiww1aHvk0fPwSak3FdkDpQHLVdWN8AgMgRBLnHtqYbUBLS1evFlJhyMMAHGkFxVABNG+eKPgAwAoIgiAy/ZhETgoo7ok8AVCzFuHgOA/mYg6I59G9NZiu6+suCKC6LfBAEWSLFb91eGKTUK5VskNgDTLnsf1Wij+LfjkviTTcASNg4A+aYAwESwQCUrvsSuoOoKtBS1esC3SiMCgDAirZIWtV0I9K1SdKaphsxgioKV5bdF3MS4wb0RcHbsc3NTGtq7XAnvOY0ralkTpIhL9uUzgna5pAJsoNczrSmnA3SkjO9SETK+1JV6JOsxH7mG/UhywAttbC5nqkebcl0GCW7BKgTQRCgFKlEXGMPMOUShARQq9gPbUBuBg2YEWQFECGCIIgUv2iB3ggUteb4QF0QpIrL5AJjm+uRNUKGBVAOgiA95TLIIGW9XmSD5It9CVJRFwRALXL5KbYSMiUQsaSm75RdvwlZozAqgMhQ5S8Nd0pa13QjUJYqCoB2ozjqdqn2BYAl5hcmNDmx0HQzgA5bxQnPlZEJ0lcupyBSPoPNDgz0lsvxaRwcH4B7cEjYURNFXiksCwBJIAgClIopMflKOaCI8tQ8JYa6IIPjsFYOBvJMUUkV660R1ClBigiCLCuXUyspD974VdtOuex7uUv52AIAiaoyUJVzIGGGwTqAAkEQAEgSgSIAEeMKMRhGyzOQyKZY3jw1lFAyCqOuiCKNGNaspOmmGzGAuyTt2nQjEkMx0LiwDZeK4qhAnmYkrW26EajKnKY1lcx0bFRvq8jUXRmZIK2R8s7AlJh2ItMBsaIuSOtUMUWATImV8TWATi3PFgFQHoIgA+FbGMMiIo86xHBsSjnAiuy0OWYew+EAAIAEEARplZQHK23+ZVsl+nV4Ke9HADCAXM64p/I5Ui1Gmkr/AkAXgiAAIsapTayEQF6p6hiMMQ0EaJdUgzwAskVh1IHlUiCVwo71oUAq2qKNx5UtklY13QgAVRm1UDBFSJG4qgutzmtSk5qv7PWxTZxEXFmSmSBmdpSZfc/Mrjez1/d4fNLMPhEev8TM1tffSpSPM76IRUxTYviiawWKozaP4qjDy/3zISsLm/tfpnZuJoWTWkDzzOx+Zna+mV1rZteY2St7LPNaM7si3K42s61mtked7UwuCGJmO0t6n6SjJR0o6XgzO7BrsRdL+rW7P0jSuyS9vZx3Z7CBYVEgdXzsdwCGQLwcbUA9DgBxulvSa9z9YZIOlfSy7rG6u7/T3Te4+wZJb5B0obv/qs5GJhcEkXSIpOvd/QZ3X5D0cUnP6FrmGZJOD39/StKTzcxqbGPkYjqLPSx+3VaDfkXK2H5Lxfz9dOUYM87xMwFAptz9Fnf/Vvj7LknXStpnmaccL+ljdbStU4pBkH0k/aTj/zdpx469Zxl3v1vSHZLuXc7b820MQIormBjDcSmm/qjLlqYbkC6mSQD1GiZzhEBoKeaSqAvXnLmqai2uqeZlMbxQkuJgSZf0eXxa0lGSPl1fqwopFkbtldHRPVt6kGVkZidKOjH8d0Y66Xtjtg312VPSbU03AmNhHaaPdVin8uuC9F9/dcTVqnyP9myV7IPpYx1GZGG0x1iHaXlA0w2o1s3nSSftWeEbrDazyzr+f6q7n9q9kJmtVRHceJW79ztT9nRJ/133VBgpzSDITZLu1/H/fSXd3GeZm8xsF0n3krRD54YVtsNKQ/zM7DJ339h0OzA61mH6WIdpY/2lj3WYPtZh+liHiIm7H9V0G8xslYoAyL+7+2eWWfQ4NTAVRkpzOsylkg4ws/3MbEJF553dtczZkl4Q/j5W0lfcndr6AAAAAABUINTh/JCka939n5ZZ7l6SDpP02bra1im5TBB3v9vMXi7pPEk7S/pXd7/GzE6WdJm7n62i4z9iZteryAA5rrkWAwAAAACQvcdL+mNJ3zazK8Jo2pEWAAAgAElEQVR9b5R0f0ly91PCfX8g6Yvu3kiVsOSCIJLk7udIOqfrvjd3/L1Z0nPqbhdqxTSm9LEO08c6TBvrL32sw/SxDtPHOgQCd/+6etfn7F7uNEmnVd2efoxZIgAAAAAAoA1SrAkCAAAAAAAwNIIgiIKZHWVm3zOz683s9T0enzSzT4THLwnXnZaZ/a6ZfdPMvh3+PaLjOReE17wi3O5b3ydqlzHW33ozm+tYR6d0POfRYb1eb2bvCYWWUJEx1uHzOtbfFWa2zcw2hMfYB2s0wDp8opl9y8zuNrNjux57gZldF24v6Lif/bBGo65DM9tgZheZ2TVmdpWZPbfjsdPM7Icd++GGuj5P24y5D27tWEdnd9y/XzjmXheOwRN1fJa2GmMffFLXd+FmM3tmeIx9EIiNu3Pj1uhNRYHbH0jaX9KEpCslHdi1zEslnRL+Pk7SJ8LfB0vaO/z9cEk/7XjOBZI2Nv35cr+Nuf7WS7q6z+t+Q9LjVMwrPFfS0U1/1lxv46zDrmUeIemGjv+zD8a1DtdLOkjSv0k6tuP+PSTdEP7dPfy9e3iM/TCNdfhgSQeEv/eWdIuk3cL/T+tcllt86y88NtPndT8p6bjw9ymS/lfTnzXX27jrsGOZPVRcmGE6/J99kBu3yG5kgiAGh0i63t1vcPcFSR+X9IyuZZ4h6fTw96ckPdnMzN0vd/ebw/3XSFptZpO1tBqLRl5//V7QzPaStM7dL3J3V/Fj45nlNx1BWevweDV0vXesvA7d/UZ3v0rStq7n/p6kL7n7r9z915K+JOko9sPajbwO3f377n5d+PtmSbdKuk89zUYwzj7YUzjGHqHimCsVx2D2weqUtQ6PlXSuu89W11QA4yAIghjsI+knHf+/KdzXcxl3v1vSHZLu3bXMsyVd7u7zHfd9OKQe/jVp3JUZd/3tZ2aXm9mFZvaEjuVvWuE1UZ6y9sHnascgCPtgPQZZh8M+l/2wXuOsw3uY2SEqzmL/oOPu/x2mybyLEwWVGXf9rTazy8zs4sVpFCqOsbeHY+4or4nhlLIPqsiW7P4uZB8EIkIQBDHoNTDqvmzRssuY2W9JerukP+t4/Hnu/ghJTwi3Px6znehtnPV3i6T7u/vBkl4t6aNmtm7A10R5ytgHHytp1t2v7nicfbA+4+wz/Z7Lflivsfs7ZO98RNKL3H3xTPUbJD1U0mNUpOn/1TiNRF/jrr/7u/tGSX8k6d1m9sASXhPDKWsffISk8zruZh8EIkMQBDG4SdL9Ov6/r6Sb+y1jZrtIupeK+ZYys30lnSXp+e5+z5kvd/9p+PcuSR9VkeaI8o28/tx93t1/KUnu/k0VZy4fHJbfd4XXRHnG2geDHc58sQ/WapB1OOxz2Q/rNc46VAggf0HSSe5+8eL97n6LF+YlfVjsh1UZa/0tTu119xtU1FM6WNJtknYLx9yhXxNDG2sdBn8o6Sx337J4B/sgEB+CIIjBpZIOCBXQJ1QMps7uWuZsSYtXLDhW0lfc3c1sNxU/+t7g7v+9uLCZ7WJme4a/V0l6mqSrhSqMs/7uY2Y7S5KZ7S/pABWFNW+RdJeZHRqmUDxf0mfr+DAtNfI6lCQz20nSc1TMn1a4j32wXoOsw37Ok/QUM9vdzHaX9BRJ57Ef1m7kdRiWP0vSv7n7mV2P7RX+NRX1JNgPqzHO+tt9cYpEOG4+XtJ3wjH2fBXHXKk4BrMPVmec4+iiHWpjsQ8CEWq6Mis3bu4uSU+V9H0VmQBvCvedLOmY8PdqSWdKul7F1Qr2D/efJGmTpCs6bveVtEbSNyVdpaJg6j9L2rnpz5nrbYz19+ywfq6U9C1JT+94zY0qfij8QNJ7JVnTnzPn26jrMDx2uKSLu16PfTC+dfgYFWc6N0n6paRrOp77J2HdXq9iKsXi/eyHCaxDSSdI2tL1XbghPPYVSd8O6/EMSWub/py53sZYf78d1tGV4d8Xd7zm/uGYe304Bk82/Tlzvo15HF0v6aeSdup6TfZBbtwiu5k7UwsBAAAAAED+mA4DAAAAAABagSAIAAAAAABoBYIgAAAAAACgFQiCAAAAAACAViAIAgAAAAAAWoEgCACglczsTWZ2jZldZWZXmNljw/03mtmeDbbrOWZ2rZmd33X/ejObC21dvE2U8H7rzezqIZa/0cy+HfrtQjN7wLhtGJeZvcrMpod8zuFm9vmq2gQAAOJEEAQA0Dpm9jhJT5P0KHc/SNKRkn5SwuvuMu5rSHqxpJe6+5N6PPYDd9/QcVso4f1G8aTQbxdIOqmhNnR6laShgiAAAKCdCIIAANpoL0m3ufu8JLn7be5+c8fjf25m3woZDw+VJDM7xMz+x8wuD/8+JNz/QjM708w+J+mL4b7XmtmlIVvibb0aYGbHh9e/2szeHu57s6TfkXSKmb1zkA9iZm81s7/s+P/VIbtjfcgo+WDIePmimU2FZR5tZlea2UWSXtbx3N8ys2+ELJOrzOyAFd7+Ikn7dDz/hI7nf8DMdg73v8jMvh8yRz5oZu8N959mZsd2PH+m4+8d+tDM1pjZF0Lbrzaz55rZKyTtLen8xewZM3uKmV0U1uGZZrY23H+UmX3XzL4u6VmD9C8AAMgLQRAAQBt9UdL9wsD8/5rZYV2P3+buj5L0fkmLAYbvSnqiux8s6c2S/q5j+cdJeoG7H2FmT5F0gKRDJG2Q9Ggze2Lni5vZ3pLeLumIsMxjzOyZ7n6ypMskPc/dX9uj3Q/smArzvgE+5wGS3ufuvyXpdknPDvd/WNIr3P1xXcu/RNI/u/sGSRsl3bTC6x8l6T/CZ3qYpOdKenx4/lZJzzOzvSS9TdLjJf2upANXavQyfXiUpJvd/ZHu/nBJ/+nu75F0s4rslCeFqUwnSToyrMPLJL3azFZL+qCkp0t6gqTfXKkdAAAgP2Wk7QIAkBR3nzGzR6sYDD9J0ifM7PXuflpY5DPh329qe8bAvSSdHrIjXNKqjpf8krv/Kvz9lHC7PPx/rYoB/Vc7ln+MpAvc/ReSZGb/LumJCgGFZfwgBBgG9UN3v6Ljs6w3s3tJ2s3dLwz3f0TS0eHviyS9ycz2lfQZd7+uz+ueb2a/IelWbZ8O82RJj5Z0qZlJ0lR4/LFa+lk/IenBK7S7Xx9+TdI/hsyZz7v713o891AVgZb/Du2YCJ/roaE/rgvtOEPSiSu0AwAAZIYgCACgldx9q4qaFheY2bclvUDSaeHh+fDvVm3/rvwbSee7+x+Y2frw3EWbOv42SX/v7h9Y5u1tjKZ3u1tLMztXd/w93/H3VhWBCVMRxNmBu3/UzC6R9PuSzjOzP3X3r/RY9EkqPvNpkk6W9Orwuqe7+xs6FzSzZ/Z7v862WxGxWCz02rcPQ/DqqZL+3sy+GLJnliyiIih1fNfzNizTDgAA0BJMhwEAtI6ZPaSr3sUGST9a4Wn3kvTT8PcLl1nuPEl/0lGHYh8zu2/XMpdIOszM9gx1M46XdKFGc6OkR4X3epSk/ZZb2N1vl3SHmf1OuOt5i4+Z2f6SbghTTM6WdNAyrzOnoiDp881sD0lflnTs4mc1sz2suHLMJZION7N7m9kqSc/pavujw9/P0Pbsmp59GKYRzbr7GZL+cfFzS7pL0q7h74slPd7MHhSeO21mD1YxnWk/M3tgWG5JkAQAALQDmSAAgDZaK+lfzGw3FdkI12vlqRHvUDEd5tWSemVHSJLc/YuhPsZFYTrGjKQTVEwNWVzmFjN7g6TzVWQunOPunx3xs3xaRSDiCkmXSvr+AM95kaR/NbNZFQGHRc+VdIKZbZH0MxVZHn2Fz/ExSS9z978xs5MkfdHMdpK0Jdx/sZm9VcWUlFskfUvSzuElPijps2b2DRVBlE3hdfv14YMkvdPMtoXX/1/hdU6VdK6Z3RLqgrxQ0sfMbDI8fpK7f9/MTpT0BTO7TdLXJT18gL4CAAAZMXcyQwEAQD1CgGKju7+86bYAAID2YToMAAAAAABoBTJBAAAAAABAK5AJAgAAAAAAWoEgCAAAAAAAaAWCIAAAAAAAoBUIggAAAAAAgFYgCAIAAAAAAFqBIAgAAAAAAGgFgiAAAAAAAKAVCIIAAAAAAIBWIAgCAAAAAABagSAIAAAAAABoBYIgAAAAAACgFQiCAAAAAACAViAIAgAAAAAAWoEgCAAAAAAAaAWCIAAAAAAAoBUIggAAAAAAgFYgCAIAAAAAAFqBIAgAAAAAAGgFgiAAAAAAAKAVCIIAAAAAAIBWIAgCAAAAAABagSAIAAAAAABoBYIgAAAAAACgFQiCAAAAAACAViAIAgAAAAAAWoEgCAAAAAAAaAWCIAAAAAAAoBUIggAAAAAAgFYgCAIAAAAAAFqBIAgAAAAAAGgFgiAAAAAAAKAVCIIAAAAAAIBWIAgCAAAAAABagSAIAAAAAABoBYIgAAAAAACgFQiCAAAAAACAViAIAgAAAAAAWoEgCAAAAAAAaAWCIAAAAAAAoBUIggAAAAAAgFYgCAIAAAAAAFqBIAgAAAAAAGgFgiAAAAAAAKAVCIIAAAAAAIBWIAgCAAAAAABagSAIAAAAAABoBYIgAAAAAACgFQiCAAAAAACAViAIAgAAAAAAWoEgCAAAAAAAaAWCIAAAAAAAoBUIggBABszsr83slKbbEQsze4GZndt0O3JnZn9qZhc03Y5YmNkuZuZmtr7MZQEAQHkIggBAZMxspuO2zczmOv7/vF7Pcfe/cfeX1N3WXszsDDNb6Pocz67w/R5kZt55n7uf7u5HV/BeR4aB6ye77t8Y7v+vst9zwHY9wsy+ZGa/DrfLzOz3mmgL4mJm9zazz5rZJjO70cyeu8yyTzazC8zsTjO7vuux3zSzj5vZLWZ2h5l9zcwe0/H4keF41bnf9zxeAQDQpF2abgAAYCl3X7v4t5ndKOlP3b3v4NrMdnH3u+to2xDv/Xfu/ta621OTn0s6zMx2c/fbw33Pl/T9JhpjZibp85LeLempKk5wHCJpWxPtQXROkbRJ0n0lbZT0OTO70t2/22PZTZL+n6RdJb2m67G1ki6W9CpJv5B0oqQvmNl6d58Ny/zY3deX/xEAACgPmSAAkBgz+1sz+4SZfczM7pJ0QrjvtI5lXmRmPzaz28zsjWZ2k5kdHh6bDtkat5vZd8zs9SHYsvjcfc3sLDP7hZn90Mxettx7D9HuHdL/QzveGv4+Mpypfl1475vN7Pkdy06b2bvC57rDzL5qZpOSvhoeXzz7/JjuaRpm9jshO+IOM/uGmT2247Gvm9nbzOx/zOwuM/tPM9tjmY+yWdLnJD138XNJOlbSR7s+73tDv99pZpea2W/36Mczw3teZmaPGLQvu/yGpPtL+qC7b3H3eXf/mrv/d3iv7r5Ysh7COnifmX05tOV8M7tf17J/HraF28zsH8xsh98PZvYBM3t7133nmtnLeyy7k5m9x8xuDevkKjM70MwOMLNfhsCOzOw0M7u543kfX3w9M9vNzD5sRWbCTWZ2cme7wuf+rhWZMecO+pnMbL+wb+zdq7PN7HFmdnFY5pbwOVb1WbZv33b4PTO7PrTzPR3PPSAs/8vQxo+Y2b16vU8/ZrZO0jMlneTum9z9QklfUJ/91t0vdvczJP2wx2PXu/u73f1n7r7V3d8vaY2kA4ZpEwAATSMIAgBp+gMVg+57SfpE5wNhMP0eScdJ2kfSfST9ZsciJ0vaW9J6Sb+njgGRme2sIqvg0vDc35X0WjN78iDvXYJ9JU2F9r1E0vvDQE6S3iXpIEmPlbSHpDeqyHZ4olRk0ITbpZ0vaGZ7qhj4/R9J91bRN+eY2e4di/2RpBeoCCiskfTqFdr5byqyP6Qi++JyFRkinS4J7d1D0qcknRmCNouepaIfFx8/KwRUhnWrpBsk/buZPcPM7jvCa5wg6c2S9pT0HUkf6Xr8GZIepSKT4Fht/+ydTpf0Rx3BhN+QdJikj/dY9mhJh6oYQO+uYlv9lbtfpyLIdFBY7gmS5s1scaD9REkXhr/PkDQn6YGhXb8v6UXhvY+V9NrQ7vuoWBdLglT9PpO7/9Ddd3P3m9Xb3ZJeqaKvHi/pKEl/1mdZaeW+faqkR0s6WEVA88hwv0n6W0l7STpQ0v6S/nrxSSGwc3uf23+ExR4iabO739DxfldK+q1l2jsQM9sY2tj52nuZ2c/N7AYz+z9mNj3u+wAAUDaCIACQpq+7++fcfZu7z3U99hxJ/+Hu/+Pu85JO6nr8DyX9b3e/3d1/Ium9HY8dKmmdu/+duy+4+/WSPqRikDrIey96fceA7GdDfK7Nkv42ZDScLWle0oNDcOaFkl7h7reEM9Ffd/ctA7zm0yVd4+4fc/e7w5nuG1QMmhd9yN2vC2n9Z0rasMJrfk3FgO+BKgbP/9a9gLt/xN1/FaYLvUPSOkkP6ljkEnc/K3yGd4bHH9P9Oitx922SDpf0UxWBoltCBsEDh3iZz7n7f4ft5Y2Snmhme3U8/g/u/mt3v1FFEOn4Hu34HxVBicPCXcdL+i93v63H+21R8XkfGp77HXdf3E6+qmK60T4qtoezwv8PkDQp6erw2JMl/YW7z4bnvlvbt9M/UzEl63uh//9W0iHheQN/pl7c/VJ3vyRsSzdIOrXjM/eyUt/+vbvfEdpxgcK25+7fd/cvh/3wVhXr9p73cfejQ7Cm1+2ZYbG1ku7oas8dKqa7jCxkpJwu6S3ufle4+5rQ9r1UBE8PVbFdAwAQFYIgAJCmnyzz2N6dj7v7Jkm/7nh8r67nd/79AEn37zyrLOl1WppJstx7L/qHjgHZb668+D1uc/etHf+fVTGQ+w1JE5J+MMRrLdpb0o+67vuRikyXRZ2BmsX37MvdXUUmwitVZCt8tnsZK6b1fNfM7lDR/2tUZAMs6lxHW1UEMXaYgmHFlX8Wp/q8t/vx8PyfuPtL3X1/SfupCDKcttxn6NLZljtUDJT37vW4ir7rOVVERTBoMbPoBO2Y9bD4Hl9UUavi/ZJ+bmanmNniwPxCFUGdw1QERC4Ifx8m6auh7x+gIiDy847t9H0qthOFx9/X8dhtKrKG9h3hMy1hZg81sy+Y2c/M7E4VmVV7LvOUlfq257ZnRSHST5rZT8P7nLbC+/QyoyLY1GmdpLt6LDsQM1ujIrPqq+5+T5AjBCevDcHRH0j6KxUZNgAARIUgCACkyZd57BZ1DPbCoKVz6sfPtHQw2Fmj4CeSrus6q7yruz99wPfu3+DijPy8pM4U+UEDJD+XtKBi6sMOL73Cc29WMSjudH8VQYdx/Jukl0k62903dz5gZk9SMaXm2ZJ2U9H/MyqmDyy6X8fyO6kIyuwwBcOLK/8sTvXZob5Gj+V/LOn/Snp4uGuTVu7zzrbcS8VUp5t7Pa6i7/pNFfmIpGeZ2cEq1tXnlmnnu939UaGdB2r7FKQLVUx7OSz8/TUVgabF/0vFdjoraY+O7XSdux/U8fiLu7bjKXe/ZITP1O0Dkq6W9CB3X6diqosts/xKfdvP21XsL48I7/PCzvcxsy/a0iuxdN4W+/17kqbMbL+O132kiqyNoZnZahUBvxskvXSFxV3L9wsAAI0gCAIA+TlT0jPN7FAzm1BxprrTJyW90YrCkvuqGMgvukjSgpm9xsxWm9nOVlx+9dElte1KSc8Lr/v7kn5nkCeFTInTJL07nCHf2cweHwpS3irJzWz/Pk//vKTfMrPnWlEU849UTEs5Z5wPEqYKHa5iENxtVxW1I26TtErSW1VkgnQ6JNTwWCXpL1Wcnb9UQzKzPc3sLWa2vxXuo6I2xsVhkSslHRTW45Skt/R4madbUfBzUsXUka+7+y0dj78ubC/3l/QK9akF4+4/knSFiqkSZ3YHhzrafEi47aIiSLMgaWt4jWvD38epyDb4tYpMmmcoBEHCNK4LJf2jma2zotDqg8zsieEtTpH0JjN7WHi/3UKdkE49P1N4HQ/7Ri+7qsjm2BRef7l6INLKfdvPrqFv7rCimOpfdj7o7k/pCI51354elrlTRdDib6woLPwEFdPAzuj1hqEfV6vYZi0cA1aFxyYkfSZ89heFjJzO5z7Jthefvb+kv1ePDCkAAJpGEAQAMuPuV0n6CxXBkJsl/TLc5sMib1GRWXGjpC+qCIrMh+feraJQ4yHh8dtUnPnuTqkf1StUFFa9XUXtkrOHeO5fSLpW0jcl/UrS30myUJPg7yVdEqY/bOx8krv/QtIxKtLzfxle52nu/qsxP4u8uApLrwHtOZL+S9J1KvrxThUZOp3OUjFl5FcqrjTzLB/tUsfzKrIuzleRbfLt8O+fhDZ+R0VfXaAiM+CrPV7jDBUD9NtUFCX9467HP6ciuHF5aPdpy7TndEmPUJ+pMMFuKmrN3K6if25RUfNi0Vcl3erbi5NeqGI6y5Udy5ygIrD0HRVBkjMVslzc/UxJ/6SiGO2dkq5SUQR4kM90PxWZDv1q2bxGRRHdu1TsGysVB16pb/t5i4r98A4V+8mnB3xet5eo2H9/EdpyoofL45rZ4WG60KIjVNR1OVtFIdY5SeeGx56goqDt0SoCM4tZJ48Lj2+UdLGZzUr6uqRvqdjXAACIinUF8gEAmbHi6iq3S3pAOIPe/fifS3qmuz95hyejEmb2t5L2dfcXRtCWMyRd7+5v7fHYLirqi+wXCncO8npHqAhw7N+dLRCDlT6TFZds/om7f6iE9+rbtwAAoBmjXIoPABA5MztGRSbCTiouDfutxQCIFVfIeICK6RIPUXG29p8aaioyEqZMvFLSB2MMgAyCgAUAAHljOgwA5OkPVEyFuUnSei29/OekpA+qSOf/koo0+w/U3D5kxsweoWJayh4qLjkLAAAQHabDAAAAAACAViATBAAAAAAAtAJBEAAAAAAA0AoURg122XM3X7V+76abMbCdtK3pJiSDvlrK1N4pcG3YFnL7jClvrymti9jbGlv7mt4um+qPOt+3jveq8j2q2EbKam9ZrzPOZxynDaO877DvN+jyAy+3beU22yAvtXWZx5Z7i36vPcz9g9w3zP9X+rv738XP7h33b+v6e5u0dZu0zYv/blVxKbBtkhbCvzdLt7n7fXp8miw82Mw3Vfj6N0vnuftRFb5FLQiCBKvW7639Lvv3ppsxlGnNNt2EZEzRV0tMaqHpJjSiDftMbtt66ttqSutjWnNNN6GvSc033YQlpiLoq6aOZxM1ros6tsmq+nGigmNXmW0t47XG/YyjtmGU9x32vYY5dg/yPTU9u/K2PDnIyHVmmceW2zX7vXa/+zcPuGz3e3Yv0/3/zX0e6/X35q7/L/473+P+zeHfeenOTdJdm6VZFdXffy7pTkk/lTQn6STpRz0+STY2SXppha9/krRnhS9fG6bDJGxW0003IRlz9NUS85pougmNaMM+k9u23tZtFQCQj9npqRWXmV9TQ0MASCIIArRWWweXBEJQp5TWxaxW/pHelHlNNt2EJeYi7ivEYaGl37FALNL59kUTCIIkrg0DurKkNBgBsF1bA3bActrw/R9zYA4AkC6CIBloww+hshAIWaqtg8s27DNs6/FIaV3EPOiMLRukrRYyWw8pfR/E1layXRCrXVc33YLm7CRpqsJbLgiCZCK2L8aYpTQgqQOBEKSgrdsp4sWUGKQs5e/AUYIvKX/egY0Sn0ypDklKbUX0CIJkpBUHeAADyy3gl3IgJLd10RSyQZbiez9uZEosj+0XAyH4gQoQBMkMXyiDYUCyVMqDy3G0YX9hW8ewYp4SE5u2ZoPUOSWG7RFN4LszXesImmAABEEy1IaBXRn4gluKQAhSkPJ2yjEHiFNK3wMptRURKSMwMMhrEIBAInZpugGoxqymNa3ZppsRvTlNa4p+use8JjSphaabgZKxnWNYs5rStOaabkZP85rUpOabbkY0+L4HmsVvp4hMSm3/ethZ0rqmG5EAMkHQepydBWfW0kI2CGLClJjqpTwlJua6IGV898X8+bK0tqb3KevqKhFkhqR79ECVCIJkjIEdRpHyAHMcue8vDL4xrJgHnhRIBZCa2el4j6lZiCDggnQQBMlc7gO7sjBAXKqtgZDc5bSdp7yN5rQeEAe+68dHHzZj1H7PNQNlnoH8yoiBowQEQVqAL/bBMDBZKuVB5qjYV4ClYs4GiQlTYlAnvqtGQ78BWEQQpCU48A+GQAhy31dy2sZTDtTltB6awpSYpXI/dqUckMs1awHgMIxUcXWYFqGC/GC4ksZ2VDwHEPOVYmIypylN0U9Ja+PvpDI+84ImNJHhbwV+DyJFO0vatelGJIBMkJbJ/UwRypfy2fZR5b6f5JSFkPL2mdN6aArZIM1jSgwAIDUEQVoo9wFeGRicIPf9JKdtPOVACFCm3I9bKU+JKVvu6xojyikmWdZleoEeCIIAfeQ0SBwXg0ygGqkcZ2IefMaUDdLWAqlYGXVB+svhCjH8ThoBV8JBgwiCtBRnEAaTygClDm38gs99P8lp+27j9gnEIqcpMbkf94EdEIxAC1EYtcXaWABsFBTG2q6NhVLZT1C1VI4xFEgdTNMFUnM/ZrEdlq9NxVGb3j9mp6c0Pcv2u4M1kjY13Yg87CRpXdONSACZIC3HGQ+g3cgGQQ5imhIDAFEi4wO4B0EQEAgZQE4DxXG1caCZ+z7C9t28VNZBzLVBgNiVXcMi9++mtppfKVixtpZmVINip4gEQRBI4ot0EKkMUupAIASxauO2iUJM2SBNF0ht4nhFXRDkiN9+QJ4IguAefOmvjC/D7Rhs5oVtu3mprAOyQdA0tsH88BsUQJ0ojIolmi4YlYJUihiifLnvH7ls220s4IvCvCY1qfmmmwEkJ9Xvt1QKsgJ12UkiTDwAMkGwA6LxK0vljG3V2pgNwv6RhlS3zVSOLZyJXxlTYlCHmL6Tyq55kppUv3eGQnFVrMDMHmJmV3Tc7jSzV3Uts7uZnWVmV5nZN8zs4eH++5nZ+WZ2rZldY2avrKqdBKV5ukgAACAASURBVEEAjKUVX/otksogHEC7VR2Iqyq40PZAQQxiChxFLfYipgRkouTu33P3De6+QdKjJc1KOqtrsTdKusLdD5L0fEn/HO6/W9Jr3P1hkg6V9DIzO7CKdhIEQU98QayMweJ2bQuEsH+kIdXtMpVjS6zZIBRIBQAgCk+W9AN3/1HX/QdK+rIkuft3Ja03s99w91vc/Vvh/rskXStpnyoaRhAEfTHQW1kqgxWUL+f9g+0ayANTYjCMnL/XYjI7TXAUrXGcpI/1uP9KSc+SJDM7RNIDJO3buYCZrZd0sKRLqmgYhVGxrFQLZdUpl2KS46IYZV5y2a5T3S5T6f9ZTWlac003YwcUSEUZ+A1Ur1j7O5Xj8T0mpUYPf2skbWrw+S23s6R11b7FnmZ2Wcf/T3X3U7sXMrMJScdIekOP1/gHSf9sZldI+raky1VMhVl87lpJn5b0Kne/s8zGLyIIghXF+qUUk+S+ICuS6oBzVOwbAFYypylNNRgoyvk4FWsQbiVlX9EkpnXcxNVauEIMUKvb3H3jAMsdLelb7v7z7gdCYONFkmRmJumH4SYzW6UiAPLv7v6Z0lrdhekwGAgpkhhUqnUYRpXzvpHLtJhUt8lc+r8pMdUGaRumxADjmafoJ9J3vHpPhZGZ7RYyRSTpTyV91d3vDAGRD0m61t3/qcrGEQTBwHIe7JWBAQsQr1QDISmItUBqTCiQCqBUa5tuANCfmU1L+l1Jn+m47yVm9pLw34dJusbMvqsiY2TxUriPl/THko7ouMTuU6toY2VBkH7X+TWzPczsS2Z2Xfh393C/mdl7zOz6cM3gR3W81gvC8teZ2Qs67n+0mX07POc9IXrU9z0wPgIhyyMQUmjbgDPn/YJtuln0P8qQ8zEq1Uvlxqotn7eqz5ns759xMk9iSPyK/XK+LePus+5+b3e/o+O+U9z9lPD3Re5+gLs/1N2f5e6/Dvd/3d3N3Q9avMyuu59TRRurzATpd53f10v6srsfoOLSOK8Pyx8t6YBwO1HS+6UioCHpLZIeK+kQSW/pCGq8Pyy7+Lyjwv393gMlaMsX5KgYtBSS/SEwopz3i1y26bZtk3WKNRuEKTHNYUrM8hZKPh7l/B2EEjUxzYapPbXaWdKuFd5yUVkQZJnr/D5D0ulhsdOl/8/evYfZUpV34v9+G+w+vc/hhKuGES+QEBM1elA0jBrHaDToLyNGjZdJAhgig5JohlwUx9GJmUSTzKhxEjWoRFBjohi8RNQwqKAJoAdFQDFyycUTiAgot910B877+2PXpnd370tV7apa71rr+3me/Zw+1ftSXfXuWmu9tS54TvHzcQDOtoFLAOxP8lAAPwPgfDO7tcgSnQ/g2OJ3O4tMkgE4e9N7jfsMkU6k0miUalQJlTboepIGDYkRmU3lqIh0oZM5QTat8/sAM7sRGCRKANy/eNoDAXx75GV7im3Ttu8Zsx1TPmPzfp1McjfJ3fd893t1/7wsqZCSMnTnPR2pNMQVk+1RbxDfUi63vcZerpru5SIi0rTWkyAV1vnlmG1WY3tpZnaGmR1tZkfve4imDakq5QpVE1JpNM4rt0Znyt8LxXQ4OvZpyK03SCpDYlK+rqei7cSLrsFxSmn4hjSr1STIhHV+v1MMZUHx703F9j0AHjTy8sMA3DBj+2Fjtk/7DGmYKgbTqdAcUCJEPMktHrvk9Y68eoOIR157TKgMa1+/5/NambKdoXdAXGlzdZhJ6/x+HMBwhZcTAHxsZPvxxSoxxwC4rRjK8hkAzyB5QDEh6jMAfKb43R0kjyk+6/hN7zXuMybaq9WCa1NhOZ0SIZKSVOI5xkRIKsdewlF5nTadXxFZANBr8ZGKNlv+k9b5fROAp5O8BoP1g99UPP88ANcDuBbAuwC8HADM7FYAvwvgy8XjDcU2AHgZgHcXr7kOwKeK7ZM+Yyqvd7BioIJ3OjVe4mx0zkPfCcmVytLpNCSmHYo7qUrltEi+9m3rjc3sixg/bwcAPG3M8w3AqRPe60wAZ47ZvhvAI8dsv2XcZ5TRxzJ6WKnz0uz10UMP/dC74dYKeljO/PisYhFLWAu9G51J9TuRSizHGI+pHPsQVrGEJayG3g2JVKrX87asYRGLNa+vOtYDq9uBpbtqvngJ0OVOZDKNARlDdxPqU1ZdZsmtR0iq1LtJplE5Ol3I3iAqp33xOi+I1JdUPWdb6B0QaYeSIBOoAlefKliTqeE4kFQFYQZ9H3yLMRZ1HalPE6SGoSEx3WmqzImx7MouobQj0OduD/S5Ig1qbThMCjQ0pj51ZZxM3dnzk+r3QbEs06gM9SvVa1LbdNxEGrYdQJkhP2WfJ1ggsF+beee7W3zvDqknyAy6q1BfjHcRuqI7uXHegZetUojlGGMxheMeipfeILlNkCoSO113RdKhJEgJSoRIG1SYxtn4rEtJQd9ijMUYriEqP2VIQ2ImS3UYR6p/l4jET0mQkmIsVD1Qw2+6GBoxbYux8VlXqt8HxbFIPZogVdqQwrnt6m8Ieaz6vUDf/9BzemiyVXFASZAKlAipJ4XCWETSF2NCLoYElMey08uQGIlPTnWanP5WQfjkiEiHlASpyGNlLgYqSCeLoRHTthgbn3Wl+l1QHIvILF0NiZF8aQiOiJSh1WFq0Iz39WhW9cm0ysYgEbKEtdC70YlUvwspxHGMcZjCcQ9hFUtYwmro3cAKlrEcqE6R6rUoxnraGhaxGNm1RyaLsSwJrswKMFolZqZ9FoCdbfbq0eoweVOPkHpSvQveBN1JV48QkVSpzJSU6PpdnnpmzGc11iEqse63ZENJkDmoUlePKg+TKREisUshhmNMxqVw3EPwMjdITsvlakhMN1Koa3n8G3StnUBfa4mMkiBzUiKkHo8Fmxe5F7AxNkDrSvV7kEIM5xSHXVF56VOq1yHFWzNSjY8spJCY0Eoy0hIlQRqggrYeFawySU4NUH0PpCkpJJ9EcqahI2FEXQ7vCL0DInFSEqQhSoTUE3XB0yI1ZvJKhKQohRhWDDbPY1mpITHdl8UpDIlR/UVEXFrAoBdQW49EKAnSII+VuxioIjFeCo1IKSfV74BiuHs65iLrcq+XpVq2zBJTj5p+L+8YrS2hxriEoSRIw3IvcKVZuTdocroTn2tl1bucYrArHstJ9QYRmWze8immpIS0RKvFiDNKgrTAYwXPOzUAJ1MiRJWnmOUevyHomEsdGhLjgxIGG6l+6ID3yUmVYJEalARpiRIh1amgmyz3Rk0uiRB9B3zKJf665LGM9NIbROKha7ZMo7JDxK99Q+9AyvpYRg8roXcjKn300EM/9G6IBJPid2AFPSxH/jetYhFLWAu9G6WlcMxztYJlLKvu0Jjc62IplimhJXF93Q7groCvl/YsQL1jSlBPkJZ5vNvlne6sjKfeIPncUUnxO5B7/MpWHsvH3HuDaEiM5MpzubuqBq1I45QE6YDHip53ngujkHJvSOaUCBF/You/3K8XMdMEqfFoo77icV6Q2CZH9XgMRcQPJUE6okRIdUqEjJd7wya2hmhdKcZ/7rErW6lslC4ozkRK8tLrxMt+SLKUBOmQCuHqUmwINiH3xqQSIfGKPXZji73Yj3cIGhKjITHiS4ploXRrZ+gdEHeUBOmYEiHVqfAbT40bkTCUCGmWysXxNCRGmqJ6lG/93pzf9R1TfqccY34WMFjWuK1HIpQECUAVvupUgMtmsTVE60ox9r03ykXUGyS972ibda9c5gUREUmFkiCBKBFSXYqVsnnl3phUIiRescdubLHn/XirTBwvl94gGhITh9gmR62qyt9X9poaW1khkgslQQJSpa+6FBuD8/LeuGmbKhgi0obce4OIxM570kVEwlESJDAlQqpTImSr3BMhOUgx7mOP29gScN6Pt8pDX1K85uQ8JCbF8ykiUte+oXdABoVyDyuhdyMqffTQQz/0briygh6WMz0mq1jEEtZC70brFPci3VrFEpawGnQfVrCM5QzqCGtYwmLgYy1+qfyLwBKgr7ADC9ASwyWoJ4gTugMmTfB+p7dNsd2Vryu1u3mxx2xscef9eKssFPEttTIoFqsxNmrL7nOMf5tET0kQR/pYVgWwAhXE43lv5LQptgapDMQes4o7aVuoCVJVzkrTNE+HiHigJIhDSoSUpwqabJZDg1RxL/PwnnTyVgZqgtTudLFKjOYFESlU6YGxreHPbvr9RCpSEsQpb5VAz1Sob+W9kSPzSy3uY4/ZHJJvkqfUrjWSl6pJpFDx3u+p3i/SJU2M6pgmTC1PE2ZtpYlS058oNTU5x2zXvB9rb+WfJkgVCc9bXa/sdbSTOskOAHe2+xEpyCLVpIlRS1FPEOfUI6Q83a3aKva76/PI4c68Yt6XHGJOpG0aEuNfDn9j1jShqWRASZAIKBFSngrmrZQISVtqMR97vMYUc96Ptbeyz8PcIJogNU+pzQuiyVE7Fv7SJRkh+TCSl488bif565ue86MkLya5SvI3R7Y/iOTnSF5N8uskX9nWfmo4TCS8dQ32zFt3SQ+8d32X+aQW84rX7uhYi4iISFPM7B8A7AIAkvsA+FcA52562q0AXgHgOZu23wPgN8zsKyT3A3AZyfPN7BtN76d6gkTE210xzzzc6fDG+13ftsR0Z17SoJhrjrdyz0NvkBzEPiRGRMYoM3xGQ2xS8zQA15nZP49uNLObzOzLAP590/Ybzewrxc93ALgawAPb2DElQSKjQrs8JUJkKIdGaWrxnmvSLgQd67hoSIx/Ola+aPiNZIUYDIFq6wEcTHL3yOPkKXvzIgAfrPVnkA8FcBSAS+u8fhYlQSKkREh5qohslHNjR4mQ+MQcrznEW1e8lXnqDSIheGvIB1tKtoPP9VqWrqqXhPhws5kdPfI4Y9yTSC4CeDaAD1f9AJI7AHwEwK+b2e3z7e54SoJEylul0DOvhVkoMTcs56WGqXQppnjL+boQoxx6g2hITHs81Iu8JXXq0rUzMCWGPHsmgK+Y2XeqvIjk/TBIgHzAzP66lT2DkiBRy7XwrsNDge+JCu10pRbrilUBVN5JfFK7Fst8yiTF+z1d5yQpL0bFoTAkCeA9AK42sze3slcFJUEip4pheaqQbJRr4zKmu/N1pRbrMcdqTPEW83HumochMaF6g4iIxGC/baH3IF8kewCeDuCvR7adQvKU4ucfJLkHwGkAXktyD8mdAJ4I4JcAPHVkid1ntbGPWiI3AVo+t7zUlhKdV67LY65iEUtYC70brVKsS2pU1vnQ5bVlDUtYxGqrnxFTXK1hEYuOyi6VMyIyjpn1ARy0ads7R37+NwCHjXnpFzGY2rV16gmSCPUIKS+1u+TzyvXub0x36CXuOI0p1mI+zl3z0BtEpK6Y60J19j2VOUim2lHjNTHNqVFhX3fG9Hc1bR8MjlVbj0QoCZIQJULKi7nwb0OuDZ+YGqd1pBbnMcdp6rHWFZVzG2lIjG+pXYOblkViQuZXdViL8tNSgpIgiVEFsTxVTiQHinOpKuZkU9dy7Q2S2ioxIpslV3Y28TXSHBuSECVBEqREiNSRa8NHd+jjEnOcxhRrno+zyriN1BtkfjHFlHpP+OP5etm50DnLhIZrSLtaS4KQPJPkTSSvGtn2VyMzvf4TycuL7Q8luTLyu3eOvOaxJK8keS3JtxVL54DkgSTPJ3lN8e8BxXYWz7uW5BUkH9PW3+hZTAV6SMll+ueUa0EeU+O0jtTiPNc4FZ/UG6R9MfcG8Xz9bWLfPP99KVrtqpHf1Oc4SErsDL0D4lKbPUHeC+DY0Q1m9kIz22VmuwB8BCPL5gC4bvg7MztlZPs7AJwM4MjiMXzPVwO4wMyOBHBB8X8AeObIc08uXp8lJULKUQG+Ua4NTCVCpAsxxZnna4HKNxGJTUzX/yhpuM7AAjQxagmtJUHM7CIAt477XdGb4wUAPjjtPUgeCmCnmV1sZgbgbADPKX59HICzip/P2rT9bBu4BMD+xftkSRXFctRA3Mhz40fqSynOY45RVYTTE7o3iIbEzC+m+lJKQ2Lq/i2prhDT78UTh8Ek1BCXcELNCfKTAL5jZteMbDuc5FdJXkjyJ4ttDwSwZ+Q5e4ptAPAAM7sRAIp/7z/ymm9PeM0GJE8muZvk7nu/+735/iLHYirYQ0qpgdiEmBuZdalxGpccY7Rrno+xyrbwNCRGRERiFCoJ8mJs7AVyI4AHm9lRAE4D8BckdwLgmNfajPcu/RozO8PMjjazo/c55IASux0vVRbLUSJkI88NoLaknghRjPuQepxJ99QbxC/P113NCzJZqn9Xo9QrQyLVeRKE5L4Angvgr4bbzGzVzG4pfr4MwHUAfgSDXhyHjbz8MAA3FD9/ZzjMpfj3pmL7HgAPmvCarCkRUo4KvY2UCElPSjGeY3x2zfMx9lSuhR4SI/PzFE8iItKeED1BfhrAN83svmEuJA8huU/x8xEYTGp6fTHM5Q6SxxTziBwP4GPFyz4O4ITi5xM2bT++WCXmGAC3DYfNyKCAVyE/W0qNRKlHiZB4eG6kT5N6jEn3QvQG0ZCYMGKY30IC2BF6BxqkXib1LGAwSWxbj0S0uUTuBwFcDOBhJPeQPKn41YuwdULUJwO4guTXAJwD4BQzG06q+jIA7wZwLQY9RD5VbH8TgKeTvAbA04v/A8B5AK4vnv8uAC9v+m9LgRIhs6XUSJxXrI3MeamRKm2LJcY8XwM8lWfqDSKTqE4xWZeTo7bF8zXSrYQa1BKffdt6YzN78YTtJ47Z9hEMlswd9/zdAB45ZvstAJ42ZrsBOLXi7mapj2X0sBJ6N1zro4ce+qF3w4UV9LCsY5GUlOJb8dk+HWOZJKVrSY51o5TO3yxrWMQi1kLvhi/bAdylfZC8hJoYVZzwdAfNK093GkLL8U5HLHfq60opvmONz9RjrAueyrLQvUFSnyBVQ2J8SqksaZOu9yI+KAkiriqPXqlwXxdrQ3MeqVdaFN9SVo7ffxGvNC9Imvq96fXy1bpzZXjIH2qeD3GiteEwEpccu39WlVN30Vly7Ba/ikUsqQute7HGpuJrfp7KsVUsYQmrwT5/BctY7vhYpFRGthVLKR2jXOicSXQWoGRTCeoJIvdRj5DZdMd8XY53hFPuEZJSbMcam7HEV6zHV9KhITHNC10GqFeLiHRJSRDZQImQ2UJXFDxRYygtim2JnacyLMe5QXQNka4p5kSkDiVBZAtPlUivVOjmK5a79bmLNUEXS3zFenxFymqrLtR0/cFTD4pY6kZtHbPkrovjhlRoWVtJhJIgMpYSIbPFUti3LblCv4RYGqp1pBTXscZmyvHVBU/lV+jeICnTkBiRzOkSIHPQxKgykadJ5rzShFkDsU5GOY+UJ7JUXEsZOX7vY6MJUqUKnbtupFx/EAc0MWop6gkiU3m6o+ZVSnfO5xHrXfd5pHzHPpW4jjUuY4ktr8fXU9ml3iDtabs3iKc4msbTkJh5eP07oisPdwT+/Hm/lmrASweUBJGZYqkEhBRdAdkSrw0iyZviUnKmCVL9Sfn4hPjbUj6eItIOJUGkFCVCZlMhPJBbgzOWO/Z1KKbDiiW2vH7nVW6JSKz6venXr1X1lhCZi5IgUpoqlLOp0TjgtVHUllgaq3WkEtOxxmTKsZUTDYlpj4bESB1eh95EyUNCxsM+SFSUBJFK+lhWhWCGVBqN84q10VlXyo3VVGI6t5jsktdjq/JqQENi/PG6VK7O23y8XgvvMyln2GYSQQmKbg0nRm3rkQglQaQWVSynUyViwH1loGEpJ0IkHMVVGtQbRHIxTx1IPTREpAtKgkhtSoRMp0TIQG6JkFSlEs+xxmMMiRCvx1Zl1UCI3iBd0ZAYSaWMEpFuKAkic1HFYDoVyvmJobFaVyrx7LWxngId2+ly6w2SyjWjLTo+8Wj6XKVcV/Bk9KztF2wvxCMlQQoGht6FaCkRMp0qOfk1jFKu3Ciew0k5rtqmcmog5d4gonlBRETKUhJkRNvdKVOmCuZ0qlAoESK+5BaPXdKxnU69QdqhOpxUpflHRPKlJMgmKkTrUyJkOiVC8mscpZoISSWWY4zHVGOqCyqjBtQbpB7FTzWaHHV+/d4cMbejuf2QyCwA2NbiIxFKgoyxhiUlQ2pSJWG6VBqP84ix4TmPVButiuVwYoip3L7nVeXWG0Qm07U0PV1d/1a7WK503Gck1BCWfCkJMoUSIfUoETKdKjxqIKUihVhWLOZF5VMYGhLTnZznBYlxn7OnhIoEoiTIDCpQ61FFczoV1Hk1PmO4c5+zGGMxhpiK8bh2KWRvEA2JqUd1m7yp7haQkiXSMCVBSlAipB5VFqZTYZpXIymGRmsdqcRxjLEYQ0x5PK4qm8JQb5DJUrmObpbq3yUi8ds39A7EYg1LWMRq6N2IzrCy2cNK4D3xqY8eeuiH3o2gVtDDcibHYBWLWMJa6N1onOJYYtPHsotyaRVLWApUt1jBMpYdHANp3hoWsRh5WdPV3xDyWAWrEywBQZs02wHcFfDzU7eA8XO5yAbqCVKBJkytT3feJtOdEp93i9sSw937OlKI4xjjMIZ4ivG4ikySU30mheu6VKCGs2RESZAalAipJ6eKQ1WqaOTVUIqh4ZqrnOIwd17KpJzmBtGQmMlUD2iGjmPElISRDikJUlOMBawHXiqdHqngltgphsOIIamm5JKI5CT7a15bzSQlSqQhSoLMQYmQepQImSz3RmROlYYYGq51pBDDMcZhqvHUNi/lUcjeIF1L4RrhJW6maWqp3HnNc769/A2juo7ffs9/rAFQckKio4lR56QJU+vxMimdR7lPMqmJUuOXQgznFIdd0TH1KdUJUlU/a0YK1/Ns7QBwZ+idmJMmUa1OE6OWop4gDdCEqfXEcCcllBTulM0jxjvxdaV6Bz/3GA4hhljy+N1WWSRe6LoZhsceJ2WtqrErDpHcn+Q5JL9J8mqS/3HT748jeQXJy0nuJvmkYvsukheT/Hrx+xe2tY9KgjRIiZDqVPmcLPfKkMfGUltiaLzmKMYYVCzFSxOkxiWG+kvMjft5pBBfIpH7YwCfNrMfBfBoAFdv+v0FAB5tZrsA/DKAdxfb+wCON7NHADgWwFtJ7t/GDioJ0jAlQqqLoSIRSu4FeYyN0LpSbLymEL85xWBXPB5TlUNpUp3MhxTKgrakWPaP1XSPFfWAcYvkTgBPBvAeADCzNTP7/uhzzOxOM7Piv9sBWLH9W2Z2TfHzDQBuAnBIG/upJEgLVOhWpwroZLlXHjw2mKS83OM3hGwq1QlSbxDxeFxC7lOuvVlc8Z5w8L5/6Tm4GMIyfJy86fdHAPgugD8n+VWS7ya55SyR/DmS3wTwSQx6g2z+/eMBLAK4roW/QUmQtmiekOr6WFYyZAKPlaIu5ZIISbXxGnv85hJ/XfJ4TFX+pKnNuphiRqbxeJ2TDCxgsERxWw/gZjM7euRxxqY92BfAYwC8w8yOwmBq21dv3k0zO7cYLvMcAL87+juShwJ4H4CXmNneOY7GREqCtEyJkOpUqRgv9obkvHKpTKSaCIldbPEXQxzFdky7klNvEGmfelKUU+U4JVEfm/cys62RvZA07QGwx8wuLf5/DgZJkbHM7CIAP0TyYOC+4TSfBPBaM7ukrZ1UEqQDSoRUp0TIeEkUvHPIpdEUQwO2qhRiN7b4SzGO2qayp1spXBfa4PG4zLtPXf9NHo9hXf2erksSDzP7NwDfJvmwYtPTAHxj9Dkkf5gki58fg8Gwl1tILgI4F8DZZvbhNvdTSZCOKBFSnSqj46VUsNcRW0O0rhQbsLnHrmyVy/e5qpC9QVKkITEiJXmZX8PLfkhdvwbgAySvALALwO+TPIXkKcXvnwfgKpKXA/hTAC8sJkp9AQaTqp5YLJ97Ocldbezgvm28qYy3hiUsYjX0bkSlj2X0sBJ6N9zpo4ce+qF3I5gV9LCcwd+/ikUsYS30bjQq9tiNLfZSjKG25V7urGAZyx3+/bFfE6R9a1jEoq5jItEws8sBHL1p8ztHfv8HAP5gzOveD+D97e7dgJIgHRvejVAypLzcK6STqOKYBzVi/VEipFmxHc+urGIJS6orZKvJMl5JBN/mvUavbgeW7prwyx0A7qz91slYBnB76J3oygLUk6YEDYcJRMNjqlF30/FyHl6gbvTxyjluJQ65lzkpTpCqITHz07W7OtVVRHxSEiQgJUKqyaWSUVXOlZJcKheaH8Sf2GLPewx5PJ4eypxc5gaJ/Xog5XifHDW7FWJEMqYkSGBKhFTjoVLqUc6FscfGUxu8N2LriD1uY4s97zEU2/FMnXqDpEVL5YqIrFMSxIE1LGVdMFfVx7KSIWPE3qCcRy6NJ++N2Dpij9tcYi9XHsoa9QaJQxuxEvsxaZKSOBGoOw/Ftkb3QqQUJUEcUSKkGg+VU29yrjDl0hhNMREi3fEeP7l8j2ORYm8QmU/O9YyQ+r0Iv4tq1oSxgEFiqa1HIpQEcUaJkGqUCNkq5wpKLg0o7w3ZqmKP2djiLrX4aZuHciaX3iBd0ASpYcV+vc9W06uNaPUSCUxJEIeUCKlGlY6tcq5kxNYglYHYY1Zx1xwdy3zFfh1oQ5PHRENK/AqSnFZzQzKmJIhTSoRUo0TIVjlXJnNoRKV4Nz/nmO2a9/jx9h32UMaE6g2iITHiRZ0kjocVYrxdz3K2M/QOiBtKgjimCVOr8VBJ9SbnRmUOlQ7vDdncxBZzih/xqItyS0Ni5pNz3cKr1WnDS3ZUfLOyQ1USmh9C8tNaEoTkmSRvInnVyLb/SfJfSV5ePJ418rvTSV5L8h9I/szI9mOLbdeSfPXI9sNJXkryGpJ/RXKx2L5U/P/a4vcPbetv7IoSIeXlUPmoKufKSmyN0jpSa8jGHq85xFxXvB1LD+WLeoPkKbUhMbFf50VcW8AgkdXWIxFt9gR5L4Bjx2x/i5ntKh7nAQDJhwN4EYBHFK95O8l9PetfxQAAIABJREFUSO4D4E8BPBPAwwG8uHguAPxB8V5HAvgegJOK7ScB+J6Z/TCAtxTPi54SIeV5qKh6k3OFw1tDqg1KhPgSU8ylFjuShtivASIi4ltrSRAzuwjArSWffhyAvzSzVTP7RwDXAnh88bjWzK43szUAfwngOJIE8FQA5xSvPwvAc0be66zi53MAPK14fvSUCCmvj2UlQzbJuVIZU6O0rtQasznHq6zz9t31UK6oN0gzNCRGpGNlehEk1NNAfAsxJ8ivkryiGC5zQLHtgQC+PfKcPcW2SdsPAvB9M7tn0/YN71X8/rbi+VuQPJnkbpK79363bL4mLM0TUo0qIhvl3LD01phqgxIhfsQUb97jJqZjKdIWb9fDUPvjbXLULvV7qtOKNKXrJMg7APwQgF0AbgTwf4rt43pqWI3t095r60azM8zsaDM7euGQA6fttztKhJSnRMhG3ipSXVJjSroUU7x5T4R44qFMyaE3SOwTpHrmoZGfSl0klb8jWnl+haUBnSZBzOw7Znavme0F8C4MhrsAg54cDxp56mEAbpiy/WYA+5Pcd9P2De9V/P4HUH5YTlRyLbzr8FBp9STnQjumhmkdqTVmc45VWefte6syRWZRjMioMtew1MpvEc86TYKQPHTkvz8HYLhyzMcBvKhY2eVwAEcC+BKALwM4slgJZhGDyVM/bmYG4HMAnl+8/gQAHxt5rxOKn58P4LPF85OkREh5qpBslHPj0luDqmmpVaRijtWYYi21uEldqN4gXYr5u98GHQ+R8nbmOr+IVocppc0lcj8I4GIADyO5h+RJAP6Q5JUkrwDwUwD+GwCY2dcBfAjANwB8GsCpRY+RewD8KoDPALgawIeK5wLAqwCcRvJaDOb8eE+x/T0ADiq2nwbgvmV1U6V5QspTImQjVajSlVqDNuZYVSKkGd6OY67liSZITUMTQ2Jivi6naLVOAzXV8E/175LG7Dv7KfWY2YvHbH7PmG3D5/8egN8bs/08AOeN2X491ofTjG6/G8DPV9rZRKxhCYtYDb0b7vWxjB5WQu+GG3300EM/9G50bgU9LCf+d69iEUtYC70bjYk5VnOIty7oOG60iiUsqdx3S/WN6epe09ewiMWKZVvM5Uf2tgO4C8A2AHdXeL7IFCFWh5EW5XpHoyotobtRrndzvN1ZboPnO/vik2KmvFzLEU2QKqnzMHlso3Y08B4JDYUQURIkQSrMy8u1AjtOH70skyFKhMQl5hiNKdY8x0xMx7ELOcwNIutivgamSudkROhEybatm/brfi8kAkqCJErzhJSnRMhGORbmOTSqPDdqq4o5RnOItdzkWoak1hukLZ7jQ/OCdKuJ63+/11E8NZXM6LIpEjoB4wUxOO5tPRKhJEjilAgpx3MlJYQcKzVqnMYlxxjtmufEmb6vG6k3yPxUX4pLcsNVCp6vu24o2SENUBIkAyrYy1EiZKMcG5mpN6xUufIhpjjzHDOejmOu5Yd6g4SR0rHo8m9J6biJyHyUBMmEhseUk2tFdpIcKwyeGlZt8NyorSrm+Ew9znIUuvxQbxC/QsfGNBoSM1mqvU0aNWYODpEYKAmSGSVCZtPKMRulWrmZJvUGqhIhPsQSZ57jJZZjmLIue4O0TXUkEZE87Bt6B6R7a1jCIlZD74Z7fSyjh5XQu+FCHz300A+9G51aQQ/LCf/Nq1jEEtZC70YjcozPrqUUL20KXW6sYglLCZfv+q6v07Hwxcv5WN0OLN0Vei9K2g5g2r7O+r2Mtw+aWRI5ceoJkind7ShHPULWxXzHva7U7zJ7vsNfVazxmXqMdUHHMDz1BplN9YnJ6l6/NVylIWoSSIaUBMmY5gkpRxWXdbE2NOeRegNLiZDwYokxz7Hi6RiGLjNSnxsk1u+5ZznNCxJ6Pz1dq1zR3CLSMSVBRImQEkJXaj0JXYEIIfVKi+fGbS5iiTHFiogfOZbHOZh1ne33atZJPQyR0PK24oSSIAJAiZAylAhZl2PFK5ZGau5yjE0Z8PQdDV1ehOgNktJyuRoSI0MaciOSJk2MKvfRhKmzDSswmjDVzyRgXUp5stSUJr6MNTZjia+UYkVEBtawiMWA3+u61+3Q+y3ijS0MJsiV6dQTRDbQPCHl6G7OQI533T3dbW5aSkMdYo3NWOLLa6x4On6hy4nUe4O0LZbeIJ6udZ72JYTk/v5xDWk1riURSoLIWEqEzBa6gutFcoV+CZ4aWk3z2ritI9bYTDm+uuDp+KmcaE+s328JT7GTCCVkZA5KgshESoTMpgruQI4VCk8NraallAiR9ihO/FNvEKlC8190I+X6QyOU3JAOKAkiU2l4zGxKhAwoEZKWVBq4scZlLLHlNU48HT+VEe3RBKnD9/MT7/Pw+nfElhwKPh9E6M8XKUETo0opmjR1uj6WNVkq1iswMU5KWVcsk1nWkcoEmJooNU86fgOrWMJSx+X3CpaxrDIxSyGutylOjppK+Svd27tA9HvbWvyENK7t6gkipalHyHR9LOuOX8Hr3Zy2eLrr3DSvd/qryi0mu5RKjLRJZYOIL7GXCf2eo2tKm+3tstT7JDskF0heVff1SoJIJUqEzKbK7kDsFYyqlAjxL8aYjCWuvMZILMevbSnPDaIhMcP3a+Y4xDb0wxv35cyOCdvbvESo6SAtMLO9AL5G8sF1Xq/hMFLZsEKg4TGTaXjMQKzDEOpKufu9uuaGE0tcKUamU7kguZin7M+t3iAiczkUwNdJfgnAXcONZvbsWS9UEkRq0zwh06nCO5BbhSaWBmuuYo1HxVV9OnYDKc8N0vb3WvUd/9qeFyTFeUdysN82oH936L2QFv1O3RcqCVLYaxoZVIcqBtMpETIQa8OzrlQbXanc6c8tHrvkNUa8fCdVJsiopuOhqWubGvzt83JNyslOAHeE3okO7MVCy0NU/ZRhZnYhyYcAONLM/h/JHoB9yrxWLf8R/TXN5VCHltGdThOmDrgfJ9uwVOci8Dr3Q1UxxmMsMZVKjLQlZHmguUFE1ilmROJG8qUAzgHwZ8WmBwL4aJnXKgmyiRIh9SkRMp0SIflVOGJptFaVSiM3xnhMNaa6oGMn81Adp5p5rq8xXpvbME9Zu6rVUiQgkv9E8kqSl5PcPeb3TyF5W/H7y0m+rtj+IJKfI3k1ya+TfOWMjzoVwBMB3A4AZnYNgPuX2UclQcbory0rGVKTKgnTKRGSX+Um1YaXEiHhxBBTqcRHW9QbRIa0SkxzvOxzV+VKJ8vkjkumKMEi5fyUme0ys6Mn/P4Lxe93mdkbim33APgNM/sxAMcAOJXkw6d8xqqZ3Td2j+S+AKzMzikJMoUSIfVoeMx0SoTE2fCcRwyN1jrU0JVpPMZHqt/FqkIkQroQ63K5Itkqm1BR4iULZnajmX2l+PkOAFdjMMRlkgtJvgbAMsmnA/gwgE+U+SxNjDrDMBHSW/QzCUwsNGnqZJocL7/JKVOdBM3rRJhVxBiLqcZTF7wcO5UDMqRYiIMmjJUY7MVCywn/2w7eNMTlDDM7Y9OTDMDfkjQAfzbm9wDwH0l+DcANAH7TzL4++kuSDwVwFIBLp+zMqwGcBOBKAP8VwHkA3l3mr1ASpKT+2rISITUoETKZKj1xNj7n4aXx1TQlQsKIIZ5SiI1Udb1kbirL5cbAyzGYZz+6+htCHqtg1/AdAO7s/mPvsx3AXQE/X+Z185QhLkNPNLMbSN4fwPkkv2lmF438/isAHmJmd5J8FgaTmR45/CXJHQA+AuDXzez2SR9iZnsBvKt4VKLhMBVorpB6NDxmMq0cM6iA5DQ8JtXu+B6HPlQVYxzGEE8eY8PLccv9+h+jnOozXubYkI7kE9rSMjO7ofj3JgDnAnj8pt/fbmZ3Fj+fB+B+JA8GAJL3wyAB8gEz++tpn1NMvnrFpscXSL6F5EHTXqskSA1KhNSTU8WhKlWE42yA1uWlAdY0j43dqmKMw1TjqW1ejltOk6RqudzJVA9ohpfETYwxGNy2hp4jQZHcTnK/4c8AngHgqk3P+UGSLH5+PAY5iVuKbe8BcLWZvbnEx30KwCcB/ELx+ASAiwD8G4D3TnuhhsPUpOEx9Wh4zGQaHuOnC28XYhjKkKuc4rArGhYjKYmhLuPlOuZlP2IV7bVTQ15y9gAA5xY5jn0B/IWZfZrkKQBgZu8E8HwALyN5D4AVAC8yMyP5JAC/BOBKkpcX7/eaorfIOE80syeO/P9Kkn9nZk8k+YvTdlJJkDlo0tR6hj1CvFcgQlAiJK8KU4qJkGgrbJGLIZY8xoaX4xby2q+5QWSakJOBejyHMU2OurodWOoqEbENwN0tvK+SKdExs+sBPHrM9neO/PwnAP5kzHO+CIAVPm4HyZ8ws0uB+3qV7Ch+d8+0FyoJ0gD1CqknhjspIQy7xOacDPFY8WmLl0ZYkzw2dquKMQZTjKUu6LiJF7oREkaM1/uhfm8Zvb5iRtbtxUJOw7F+BcCZxUSqBHA7gF8phuG8cdoLNSdIQzRpaj2aJ2Sy3McHZ3QBdzM3QZM0P0gY3mMphbhoi+YGiUsM9ZcYr2FN8DIviIi0y8y+bGY/DmAXgF1m9igz+5KZ3WVmH5r2WvUEaZh6hVSn4TGT5X5XKOa7M1WleDdaPUJkHI9x4eX7l/s1v2n6/jZj3iEgOg+Tebn2tG4JaLSar2EyAoDkaZv+DwC3AbjMzC4f+6KCeoK0QL1C6onhrkoI6hGSz50s73fx60jhzn9sMRhDHKUQF6lRb5Dq2qi35F7mbxbb9XdUzPu+wfbQOzCDmg85OxrAKQAeWDxOBvAUAO8i+dvTXqgkSIuUCKlOiZDxcq8UJVORKCGGBmxVKTR4Y4vBFOOobV6OWe7X+6bF9t1tWu5/fxuSGG6zY/ZTpvKeGJFcHATgMWb2G2b2GxgkRQ4B8GQAJ057oYbDtEwryFSn4THj5T5hak7daVPsHutxCETqvMeRx5jwfszalupKMbFJcViU9zLc8/55vFaKXwamkagr58HAhi/HvwN4iJmtkJxamKknSEfUK6Q69QoZL+e7hH30srmr5eWudJNi7xGSS+x1KfaYaEvO1/k2tPndzaWuElujKrb9dcNLOKuniZTzFwAuIfl6kq8H8HcAPlisDvONaS9UEqRDmiukulwqF1XlXkHOpTGqRIg/scVeijHUttyPmeYGSU9s163NYt//tvV7k79Dq0omAAB2ht4BaYWZ/S6AlwL4PgYTop5iZm8oVof5hWmvVRIkACVCqlnDkpIhYygRkkelKMUGmRIh3fIeQx7jwcMxy/0a37TYeoPo/OfDw/VGJCYkdxb/HgjgHwG8D8DZAK4vts2kJEgg6hVSnRIhW+VeSYqtMVpXihUkjw3fKmKLPe8xFHs8tCXUNV69QWSceYeYeL9uVtm/ssfC+98sEqm/KP69DMDukcfw/zNpYtTA+mvLmjS1gjUsacLUTTRhqt/JzJqU4oSNsU/2lkvs5SrF71wVXU+SKu3K8Xq1hkUsRlzGiNSxFwvJJ9/M7GdJEsB/MrN/qfMe6gnigHqFVKPhMePl3Csk9Yv9kPe7+XXE3gMgptjzHj8eY8HDMcvl2t5FbxANiYlXTNfabG2r+TrNWyI1mJkBOLfu65UEcUSJkGqUCNkq5wpTLhUkD40yiZf3+PGYCMlZ18NixD+tuhJGlNdGJTekfZeQfFydFyoJ4owSIdUoEbKVEiHp896QrSrKyt2I2OLOe/x4iwcPxyuX67p6g2zV5Ln3cK3ysA9S2FHhuU0nNJQgkWb8FICLSV5H8gqSV5K8oswLNSeIQ8NEiOYKKWdY6dBcIetynidkWMFKfexzavMVaH6QbqUWP23zcLz6WA5yTdfcIBKzqvOCVLmWl33vMu/p4RqTg/1C74A07Zl1X9haTxCSZ5K8ieRVI9v+iOQ3i0zNuST3L7Y/lOQKycuLxztHXvPYIqtzLcm3FZOggOSBJM8neU3x7wHFdhbPu7b4nMe09Te2Tb1CqlGvkK1yuXs4Tg53mzzcoW6Stx4AVeUQc12JPRakvth7g+Qg1JAYnbfJ+r1863uykYFYw2JrD2f+l5n98+gDwP8q88I2h8O8F8Cxm7adD+CRZvYoAN8CcPrI764zs13F45SR7e8AcDKAI4vH8D1fDeACMzsSwAXF/4FBRmj43JOL10dLk6ZWo0TIVkqEpE2JEF9iijnvseMtFjwcr1yWzI2ZhsTEsQ85Wa069KRsCGtIi4T3iNH/kNwHwGPLvHBmEoTkrw57WVRhZhcBuHXTtr81s3uK/14C4LAZn30ogJ1mdnExA+zZAJ5T/Po4AGcVP5+1afvZNnAJgP2L94maEiHlafWYrZQISZuHxlmTvDV+q4op5lKLHUmDeoOIJKhM1bzuCjOSFZKnk7wDwKNI3l487gBwE4CPlXmPMj1BfhDAl0l+iOSxw+EoDfhlAJ8a+f/hJL9K8kKSP1lseyCAPSPP2VNsA4AHmNmNAFD8e/+R13x7wms2IHkyyd0kd++9+Zb5/poOqFdINUqEbNTHcrbJkBwqu6k1ZpUI6Y7n2PEWBx6OlXqD+Kf6R3vqXFsdduGvxdv1UCQUM3ujme0H4I/MbGfx2M/MDjKz02e+AUokQczstRgMLXkPgBMBXEPy90n+UN0dJ/nfAdwD4APFphsBPNjMjgJwGoC/ILkTwLiEi816+7KvMbMzzOxoMzt64eCDyu28A0qElKeKyFZKhKTLQwOtSarwdcdz7HiLAw/HKofreBe9QWLibUhMKomFcaocn5SPQxQ0JCdrZRMe45RaHcbMjOS/Afg3DJIXBwA4h+T5ZvbbVT6Q5AkAfhbA04ohLjCzVWAw9biZXUbyOgA/gkEvjtEhM4cBuKH4+TskDzWzG4vhLjcV2/cAeNCE1yRDK8iUp9Vjtgq1ykBosa3gUUdqM8zHvGpMDvHWlZjjICWprRTT5nd0DUuqd0yR2/VRK8RIV/ZiIYsbf/MqMyfIK0heBuAPAfwdgB83s5dhMOnI86p8GMljAbwKwLPNrD+y/ZBiIhOQPAKDnifXF8Nc7iB5TDEM53isj/P5OIATip9P2LT9+GKVmGMA3DYcNpMi9QopT71CNsrhTuI4ffSSLxw83KlukreeAFXEFGupxU2bPByrHK7h6g2yUQ7nXKQxqvbLFGV6ghwM4LnFkjP3MbO9JH920otIfhDAUwAcTHIPgNdjsBrMEoDzi6lFLilWgnkygDeQvAfAvQBOMbPhpKovw2ClmWUM5hAZziPyJgAfInkSgH8B8PPF9vMAPAvAtQD6AF5S4m+MmnqFlKdeIRsNK1TqFZKe1O4oxdwTIKZY8xw33mLA87Fqk3qDpKGJv3sNi1gM8J2ss++h9rVL/d4yev2K9bkdAO5sZXeatx3AXS08V6JG8tEAhvOJfsHMvlbmdROTICQPLH5866b/AwDM7FYzu3rS683sxWM2v2fCcz8C4CMTfrcbwCPHbL8FwNPGbDcAp07ar5T115aVCClJ3VQ30vCYNKXWSPPWCK4ipljzHDcxx0AbQl27u0yErGAZy5GWT6prTOf5uuh537JTNaGxDcDdLe2LuELylQBeCuCvi03vJ3mGmf3fWa+d1hPkMqxPKLp5slEDcETVHZX2qVdIeaqcbKRESJo8N2jriLkRnHqsdcVTDHj4fuV67W5STN9NnW9/YuhlsrodWJq3Z0SZZEToBIR6gOTmJAA/YWZ3AQDJPwBwMYD6SRAzO7yx3ZPOKRlSjobHbJRr5SqmCnAdHhpqTfLUCK4qllhLLWbalOuxUm+QcjzfcIl5SEyuOiv/loBGwtZBUqIH4I6wu9CpzCZGJQZTaQzdi/ErxW5RanUYks8F8CQMeoB8wcw+WnUPJQwNkSnHcyWla7nOExJL47Su1BpqMSdCYuE5ZnT+N8o1gd2k1MuA1MR4vrRCTEMm9TZxkHCRzv05gEtJnlv8/zkAzizzwjKrw7wdwCkArgRwFYBTSP5pzR2VAPpry1pFpgStHrNRjrPQp545X0HPxaoWTYl11ZiY4sxzvHg6/56PU5tWOyw3tVLMupTK5y6vh2uOrhnJ2B56ByRnZvZmDBZBuRXA9wC8xMzeUua1ZXqC/CcAjywmHAXJszBIiEhk1CtkNg2P2SjHu4vDCllsd5iqSOlOU6w9AmK6i5lSvLQp9HHK8XrdtLa+l557m2pIzGQxXadFckTyfWb2SwC+MmbbVDN7ggD4BwAPHvn/gwBcUXkvxQX1CilHvULWpXTHqYqY7tbXkdKda089AqpIPca6EOu5b0uI67V6g4SRa9nslZdeJv1eQnGhXiYy2yNG/0NyHwCPLfPCMj1BDgJwNckvFf9/HICLSX4cAMzs2RV2VJxQr5DZ1CtkneYJSVPoO9dNUo+QdnmOFU/n3vNxknJy7A0SWt1jHsv1UybQHB6tMNBNUq4tJE8H8BoAyyRvH24GsAbgjDLvUSYJ8rp6uyfeaQWZclRxWZdjd+vUK1kpNdo8NYariCXGPMeKp3Mf+jiFuE5rpZi45TQkJvR+urze7wBwZ+B9UEJEKjCzNwJ4I8k3mtnpdd5j5nAYM7sQgyExPwBgJ4B/MLMLh486Hyq+aHjMbBoesy7HLripD1vQ0JjwYomxlGJFmtXlsJhYNV2XyLE87lqIa/Os62zdcm7Vw/ASXSakQXUTIEC51WF+BcCXADwXwPMBXELyl+t+oPikuUJmW8OSkiGFPpazq3zF0kitS43b8GKJMa+x4ikBFvoYpX59bntukFi+iynRMReRLpWZGPW3ABxlZiea2QkYTDbyqnZ3S0JRImQ2JULWpV7R3qyPXtIVtdANt6Z4agxXFUt8eY0VT+c+9DFKfZJUGWjqPDdx7QkxD4Gna2bq8zAA0GSlkowySZA9AO4Y+f8dAL7dzu6IB+oVMpt6hazLLREC+Kp0NS10w60pnhrD0i2d+zzE2htEdYfwskhWNMF7qCohIxisCEPyP5B88PBR5nVlJkb9VwCXkvwYAANwHIAvkTwNAMzszbX3WlzTCjKzadLUAU2YmpbQEzs2xdNkmVXEElupxEmbQh+j1CdJlWbFcu2JXdvHud9bRq8fcZ1sG4C7Q+9EvPZiIembdaNI/hqA1wP4DoC9xWYD8KhZry3TE+Q6AB8t3hAAPgbgRgD7FQ9JmHqFzKZeIQOaJyQt6hESViyx5TVOPJ13r8coBeoNMuCp7J2nl0Xd49329TKW67Eb20LvgGTklQAeZmaPMLMfLx4zEyBAiZ4gZvY7c++eRE+9QmZTr5CB3HqFpHznLPRd7KaoR0i7vMZJrOe9aeoNIhKfWddVXd9EAAym6LitzgtnJkFIfg7rvUDuY2ZPrfOBEq9hjxAlQyZTImRAiZB0eG3gVhVrhTGW2PIaJ17Oe+jjk3IiZAXLWG7xb2vrO+i1vhDLNWdea1jEYgvXhrbetymr24Glu8b8YgeAO2u+6XYA496z7O+bsAQ4/DpJ+64H8HmSn8RIBJSZrqPMnCC/OfLzNgDPA3BP1T2UdCgZMt2wm6vHyk2Xht1zc0mGDLvLplh5DN2Aa4qXBnFVuTRKUpfK90h88nTzYZ5EgK53IlLBvxSPxeJRWpnhMJdt2vR3JC+s8iGSJg2Rmc7rXZ6ueaqYdSHVClwqDTglQtrjNUY8nfOQx0i9QeqL4fuXu9YnG1UMRGnnduCOzCZZHUyM6meeoDYNp+0gud/gv1a6P9PMiVFJHjjyOJjkzwD4wfq769PevWXmiJXNNHHqdJo0dSCXi/FQqpOoraCXxCSPnibNrCKGuPIaH7Ge86bldi32zusEqTFca2KnY9w9Xf26VSxd+1WSfzPmd28heXnx+BbJ7xfbd5G8mOTXSV5B8oUzPuORJL8K4CoAXyd5GclHlNm/MsNhLsNgThBiMAzmHwGcVObNY7N2dzGMYZvu3lelXiHTqVdInsNjUr1r5PWOfxWeegdUEUNceY0PL+fc6/Fpi3qD5Mn73BhAHPsoErFXArgawM7NvzCz/zb8uVjm9qjiv30Ax5vZNST/A4DLSH7GzL4/4TPOAHCamX2ueK+nAHgXgCfM2rmZ3R/M7HAzO6L490gze4aZfXHW62I2TIZINeoVMp16hAzkdCcy5Ts9Xu/4V6HeAe1JIT7aFPL45HQNjoHqBlvFXnbOs0zwqHmuE/1eQ99zhafUQPIwAP8fgHeXePqLAXwQAMzsW2Z2TfHzDQBuAnDIlNduHyZAitd8HoOpeGeamAQh+TiSPzjy/+NJfozk20geWObNY7Z295KSITUpETKZhscM5FQJ76MXfYVukhQaujEmQmKJJ4/xEeP5TsFqR+XeSstlSwzfvZyHxMS4z/MIdj0r1cRs+L2a/EyZ18Ekd488Th7znLcC+G0Ae6e9EcmHADgcwGfH/O7xGEx2et2Ut7ie5P8g+dDi8VoMRq3MNK0nyJ8Bgz5iJJ8M4E0AzsZgLd4zyrx5CpQMqUe9QqZTIiSvRAiQbuXMY0O3qhgbxqnGUxe8nG/1BpEh1QnioOuuxGAvFu676drGA8DNZnb0yGNDXoDkzwK4acziKuO8CMA5Znbvpvc4FMD7ALzEzKYlUn4Zg54ifw3g3OLnl5Q5TtOSIPuY2a3Fzy8EcIaZfcTM/geAHy7z5ilRMqQeJUMmU6+QQUU8p8p4qhUoJULCiCGevMaGl/OdUyJEvUG646U3yDzDQro6zk0NXakjVCythu5VkXfVNwdPBPBskv8E4C8BPJXk+yc890UohsIMkdwJ4JMAXmtml0z7IDP7npm9wsweY2ZHmdkrzex7ZXZyahKE5HDi1KdhYzeVMhOqJkmJkHqUCJks90QIkNddyRgq0HV4bexW4aVhXEUM8ZRCbEgzukqESL5iuCa6tSP0DkgKzOx0MzvMzB6KQZLjs2b2i5ufR/JhAA4AcPHItkUMenScbWYfnvQZJN9a/PsJkh/f/Cizn9OSGR8EcCEHjj/HAAAgAElEQVTJmwGsAPhC8WE/jMGQmGxpFZl6hokQrSKz1TARkvMKMn0sa+WYyKWw6oWXFUSqiCGePMaGl3Md8tiket1te6WYNmgVubRkv/LMNgB3V3zNdgB3NfAccYnkGwDsNrNhkuLFAP7SzGzkaS8A8GQAB5E8sdh2opldvunt3lf8+7/r7s/EJIiZ/R7JCwAcCuBvR3ZwAcCv1f3AlCgZUo+W050s90pQTsvoDu9WeW+8VuWxsVuVl8ZxFUqE1OPlXOeUCElhydwYvm9Nndd5/9Z5kgEej3PX+zTPtaHfW0av39F3u63khJIeUStWa/l88fPrNv3uf455/vsBTBo6M/q84Xwju8zsj0d/R/KVAC6c9R5Th7WMG4djZt+a9aa5Wbt7SYmQitQrZDL1Ckn37uQ4Hit58/LY2K3KS+O4ihhiyWNsxHiuJU253wgJJeZeG7p+yWZ7sZDTsLATAPzxpm0njtm2xbQ5QaQCTZxajyZOnSz3uUI0T0jcVtCLfi4IzREiXdIkqc1rc5LUGL5rOZWjo2I4N0Mx7asr20LvgIRE8sUkPwHg8E3zgXwOwC1l3iPbCU7boiEy9WiIzHi59wrJbXiM97v4dXi8819FjHfZvMeSx5jwcp41LEY89gbRkJjMLQFzh2Sbw1o0ZCZHfw/gRgAHA/g/I9vvAHBFmTco1ROE5ENI/nTx8zLJ/SruaHbUM6Q69QqZTL1C8oiLVO8IqUdI97zHkseY8HKePR6bmOXeG0SaV/a8h1x+t3Whl9mVrJnZPxfzjfwCgEvN7EIzuxDA1QAOK/MeM5MgJF8K4BwAf1ZsOgzAR2vtcYaUCKlOiZDxlAjJIy766CVZsY69YeelgVyF9zjyGBMxnucmpTosJjZNlve5lJ3z8pywaONauaokhqThQwD2jvz/XgATl9YdVWY4zKkAHg/gUgAws2tI3r/qHuZMQ2Sq08Sp42l4jIbHxMzjMIgqvAyZSEnsMdEWHZdm5b5STBNCDompI5fz0rgdAO4MvROot8SuAAAMbLUHnDP7mtl9FxYzWyNZKqNZZjjM6uibk9wXgE15vkygITLVaYjMeOoVkkdMeL+TX4fHu/9VxNZTIIYY8hYTXs5xqOOi3iDpib3MjOE6No95/75p16x+L+5z3xTN45Cs75J89vA/JI8DcHOZF5ZJglxI8jUAlkk+HYMuJp+otZsCQMmQOpQI2WoNS1knQ2Kv1JWVYuXPW6O3Ki+N5LJSjKG2xXaOm5bi9TW2uUE8lu+6llTneZiNSAJOAfAakv9C8tsAXgXgv5Z5YZkkyKsBfBfAlcWbngfgtTV3VEYoGVKNeoWM57Gi1JU+lpOsrG+W4jwhSoR0y3v8eIwHD+fY43Fpg3qD5KHrhEDV616V/fN+TRXJgZldZ2bHAHg4gIeb2RPM7Noyry0zJ8hxAM42s3fNs5My2drdS5ovpAItp7uV5grpdmnHUFIb4xz7vAexzRHiPX48xoOHcxzquKS4ZG5sc4M0uVxu7OWk9+uXQEvVSmdI/qKZvZ/kaZu2AwDM7M2z3qNMEuTZAN5K8iIAfwngM2Z2T439lSk0eWo1mjh1vCYrTLGJvYJXVmoVweGdbm+N37I8NJKr8B4/HhMhOcvluirlxTZBaiqivDaWndxUyZNG7cVCDr3rhusb1Z7uZWYSxMxeQvJ+AJ4J4L8AeDvJ883sV+p+qEymZEg1SoZslXOvkFxWj/HekK0jygpeQYmQZnmLBQ/n19sxaYt6g2yl3iDSltXtwFLZ5MMS0OhXs+n3k6yY2Z8VP77dzL5b5z3KzAkCM/t3AJ/CoCfIZRgMkZEWab6QajRXyFa5zxWSuhTHI8c8/4GH+SOq8B4/3mLBw/nNZbUYkUnqXLc8zAtS5j3bXCFG1u0MvQPStL8n+bckTyJ5QJUXzkyCkDyW5HsBXAvg+QDeDeDQWrsplSkZUp4mTt0q5xVkcpg0VROm+rKKxagqot5jx1sseDi3OSRCuujGrZVi5jPv36gVU7pVeZncHSWft332U0TaZGZHYrBgyyMAXEbyb0j+YpnXlukJciKAjwL4ETM7wczO05wg3VMipDwlQ7byVoHqUuqJEMB/Y7Yqb43fqjw0lstKLXYkDbEnQjzLoUwUkXyY2ZfM7DQAjwdwK4CzyrxuZhLEzF5kZh81M43cCky9QqpRImSj3HuFpC61xqwSId3xHDve4sDDec2hN0jsPH+nmhLqb+xiSIxX3q6HlZXpOaLeJVIByZ0kTyD5KQB/D+BGDJIhM02cGJXkF83sSSTvAGCjvwJgZqZhVYFo8tTyNHHqVrmuIJPDpKneJ7ysKvbJID1MqFmW59jxFgcezmsOy+bGPklq01KbINXzKjFV9s3ztTMLWllmi71YyClp/TUMRqy8wcwurvLCiUkQM3tS8W/tpWekXUqGlKdkyEa5ryATuvLXpuEdr1QqZd4awFV5aDCX5bky7y0OYjqvEobn75N0r0xiRTHTsO3QCjTpO8LMbPbTtiozMer7ymyTcDRMpjwNkdlIw2PSlUr3X2DQAI65G7CHIRRleY4bbzEQ+rzmMCxGc4Ns1GSZ3cR59Hy9yFGda9JqqsNPtoXeAenIkSTPKFaI+ezwUeaFE3uCjHjE6H9I7gvgsXX2Utq1dveSeoWUoF4hG+XaK0TDY+LjrTdAFTH1HPAcNzHHQBs0LMY3z98lD+oOialzXKu+xvNwnewMh7yUHfqiITI5+TCAd2Kweu29VV44sScIydOL+UAeRfL24nEHgO8A+Ng8eyvtUa+Q8tQrZCP1CklTanfqvPUGqCJ0z4EqPMeNpxjwcE49HY9Y5dobRJrh+Xo5VHmZ3HHKhF7oniWhP1+6do+ZvaNYIeay4aPMCycmQczsjcV8IH9kZjuLx35mdpCZnV7mzUmeSfImkleNbDuQ5Pkkryn+PaDYTpJvI3ktyStIPmbkNScUz7+G5Akj2x9L8sriNW8jyWmfkRMlQ8rRcrob5bqCTA6JkBgqaWXF3Ojz0GguK6WYaVNM57RJqQ2LaYvn75GGxHRrrYFrRWfl346G3qfLYSkTLhP7ZTY0Zi8W7htG3MbDmU+QfDnJQ4v2/4EkDyzzwplzggD4EskfGP6H5P4kn1Nyx94L4NhN214N4AIzOxLABcX/AeCZAI4sHicDeEfxeQcCeD2An8BgyZvXjyQ13lE8d/i6Y2d8RnaUDClHyZCNck2E5JAMSYXDgri0mBrNXmPG2/kPfU5zmB+kbeoNEkbdxECqS+XGsI/BqbeHrDsBwG9hsDzuZcVjd5kXlkmCvN7Mbhv+x8y+j0FSYiYzuwjArZs2HwfgrOLnswA8Z2T72TZwCYD9SR4K4GcAnG9mt5rZ9wCcD+DY4nc7zeziYlbYsze917jPyJaSIeUoGbJOvULSlFIFy1tDuIrQjeYUeDv/oc+pt+PRNPUGaYd6g0zWRM+N5CkhIQGZ2eFjHkeUeW2ZJMi455SZUHWSB5jZjQBQ/Hv/YvsDAXx75Hl7im3Ttu8Zs33aZ2xA8mSSu0nuxi03z/EnxUOJkHKUCFmXayIk5WRISsNjnHbPLCV0o7ksz7ES67lvS4jjkdKwGPUGkdjFUq6UktkwFqmO5P1IvoLkOcXjV0ner8xryyRBdpN8M8kfInkEybdg0NWkaRyzzWpsL83MzjCzo83saBx0cJWXRk29QspRr5B16hWSJs+N26pibQzHUmH1HCuezn0s57NpKV0r20qEeP4OhdblkJi2eNqXqoItk5tftVKa9w4MVq19e/F4bLFtpjJJkF8DsAbgrwB8CMAKgFNr7ebAd4qhLCj+vanYvgfAg0aedxiAG2ZsP2zM9mmfISOUDClHyZB1SoSkJ+aK22aeGsNVxNJw9hwrns596PPp6Vi0IeZhMV7lNCQm9H6GnBy1kRVi2qJhNY0xEKtYbO3hzOPM7AQz+2zxeAmAx5V54cwkiJndZWavBvCUotfEa8xsntWXP47BJCYo/v3YyPbji1VijgFwWzGU5TMAnkHygGJC1GcA+EzxuztIHlOsCnP8pvca9xkyhpIh5SgRMpBjr5AchsekItYGoMOKxVieY8XTuQ99PlMfFtO2WHqD5FYWhxBiXhDP19m5KdkhzbqX5A8N/0PyCAD3lnnhzCQIySeQ/AaAbxT/fzTJt5d5c5IfBHAxgIeR3EPyJABvAvB0ktcAeHrxfwA4D8D1AK4F8C4ALwcAM7sVwO8C+HLxeEOxDQBeBuDdxWuuA/CpYvukz5AplAyZTb1C1uWaDElVavOExCh0w7ksz3Hi6dzHcj6b1NU1Ur1Bmhe6fEthSIyIdO63AHyO5OdJXgjgswB+o8wLy0xw+hYMVmj5OACY2ddIPrnMm5vZiyf86mljnmuYMMzGzM4EcOaY7bsBPHLM9lvGfYaUM0yELG5bDbwnfg0TIb3FlcB7Et4alrCIfGJlWFHsIc1z30cPPfRD78bcVtDDcoR/xyoWsYS10Lsxk+c4ifXcNy3147CKJSy1WPasYBnLLVznm/7ueCqDPV8XRrW1n7H8/aXtAHDnpm1LgJNwG0ycenfonZCQzOwCkkcCeBgG84V+08xKRWiZOUFgZt/etKlUNxOJm3qGzKZeIQPqFZKWVO6sxbpyTCw9CFKJkzaFPpcaFiNV6Nx1o+0hNqGvO3PTkBkpieSpAJbN7Aoz+xqAHsmXl3ltmSTIt0k+AYCRXCT5mwCunmN/JTJKhEynITLrckyEpFpp1PCYsGKpxHqNEU/nPPS5TDkREuuSuSnPDTLP3+Z1SIzmBalISYyg9mLhvptAbTyceamZfX/4HzP7HoCXlnlhmSTIKRgMU3kgBiuy7MJ8q8NIhNQrZDYlQwbUKyQtUVfERjgsuGdyOhP7Fl5jxNM5j+E8xirWRIiE5fW6VZan65uLpIeHfZAQFooFUgAAJPcByhW4E5MgJP+g+PGnzOwXzOwBZnZ/M/vFYs4NyZCSIbMpETKgREg6Yq8sDrmqNFYQQwPaa4x4Ouchz2PKvUFi5bU3SOjzFqLXRZO8XguHJi2Tu9pmEmFbi+8tufsMgA+RfBrJpwL4IIBPl3nhtJ4gzyJ5PwCnN7CDkhglQ6ZTr5CB3HqFpD48JgWeGsVVKBFSX6znvGkpJ0LUG8SXENeCFIfESANGLg07w+2FtOdVAC7AYMXYU4uff7vMC6etDvNpADcD2E7ydgxmXLXhv2aWVCzZ3lJzxMomWklmOq0iM+Bp9vou9LGc5Ooxw0pm7LPfx7pqRgwrx3hdHcHLOQ99Dr0cBxnwulJMqmWYJ2tYxKLz67mId2a2F8A7i0cl05IgrzWz3yL5MTM7rvbeRWTlzkEFf3mHKghVKRkynZIh6111c0mGpLyUrteGbhXDu+KxNQhDN6LL8BofXhIAMZzDJnXVoI51ydxUzXMd6CpB4PVaNTTP/uV2nZF1e7HgtmemJ9O6P1xc/Ht7FzviycqdvfsSIlKNhslMpyEyeQ6RSVEqBWyMQyU0NKY+L+db84O0o+1hMW3Q3CDN8XLd6Wo/Ovku7xizLb6vmcgW05IgiyRPAPAEks/d/OhqB0NSMqQ+JUMm03whA0qExC+VZXS9NIyrUCKkPi/nO7dESAo0N0jeNC9IC8pWBbX6i4wg+b7i31fWfY9pSZBTABwDYH8A/3nT42frfmCMlAypT8mQyZQMyatXiCZN9S3GRqESIfV5Od85JULUG2Qyr71B5jXP39VVwiHkNSpUUmXSCjGdUUJD5vdYkg8B8MskDyB54OijzBtMnBPEzL4I4Iskd5vZe5ra45iNJkI0b0g1a3cvab6QCfpry1nPFQLkNXFqqhPOeR9bXYaXOSOqiGHcdwqxIc1IYX6QtuYG8fg9ibG88ngcY7G6HVi6K/ReiJTyTgwWcTkCwGUYLNwyZMX2qSb2BCH52wBgZu8h+fObfvf7dfY2JeodUp16hUymXiHqFZKCFIbHrKDnppdAWeoRUo+X85xTb5BUxDAsxkt56vG734Wm/u5ojt/m3h11enuUeY16kcxkIFax2NrDAzN7m5n9GIAzzewIMzt85DEzAQJMHw7zopGfT9/0u2Or7myqlAypTsmQyZQM8VNx60KKiRAgokrbFLE1Dr1UTKbxGBdeznNOiRANi5nM43ckZDnlcUiMt3lBpn1/YygXZtoWegekKpLbSH6J5NdIfp3k74x5zkNIXkDyCpKfJ3lYsX0XyYuL111B8oXTPsvMXkby0SR/tXg8qux+TkuCcMLP4/6fPSVDqlMyZLLckyHqFRI/j5X5qrw0kMvydJdmEo9x4eU8KxESF/UG8cvjdWYSb0kVkQasAniqmT0awC4Ax5I8ZtNz/jeAs83sUQDeAOCNxfY+gOPN7BEYdLp4K8n9J30QyVcA+ACA+xePD5D8tTI7OS0JYhN+Hvd/KSgZUp2SIZPlnAgB8kuGpCaV4TGxUSKkOi/nWYmQZqk3SDPmPVcxTJAqU4xbJreqpnt0bJ/wswRnA3cW/71f8dicO3g4gAuKnz8H4Ljitd8ys2uKn28AcBOAQ6Z83K8A+Akze52ZvQ6DRV1eWmY/pyVBHk3ydpJ3AHhU8fPw/z9e5s1zpmRIdUqGjJd7rxAgn7tZ6hXik5cGchVKhFTn5Tx7P3exaTMREkNvEGle2cSMx+vc0NwrxORRLZOaSO5D8nIMkhjnm9mlm57yNQDPK37+OQD7kTxo03s8HsAigOumfRSAe0f+fy9KjliZtjrMPmXeQKYbJkK0mkx5w0SIVpPZaJgIyXUlmWEiJIdVZGKckX+W2GfsHzaQY1o9xvvKMR5jIsYVgprU9d+fwrWujdVimvxuNLX62rznquvve9XP83g9GvK8b+LPXiy0ndQ/mOTukf+fYWZnjD7BzO4FsKsYynIuyUea2VUjT/lNAH9C8kQAFwH4VwD3DH9J8lAA7wNwgpntnbIvfw7gUpLnFv9/DoBSq9pOTIJIs5QMqU7JkPGUDMljOd1hj5DYGwijhnfFYq7MxdZIViKkOg/nOOR5SzER0uaSudK+NSxi0fF1LCVulsndDqDB/egBuKO5t8vdzWZ2dJknmtn3SX4eg/k9rhrZfgOA5wIAyR0AnmdmtxX/3wngkwBea2aXzHj/Nxfv/yQMeoC8xMy+Wmbfpg2HkRZomEx1GiYzXs7DZDRXSNw8dxEuw8uwibK8D6/wGA8eznFO84N0IbZhMU1+L3IpL2M177wnya8QI1EhechwMlOSywB+GsA3Nz3nYJLDPMTpAM4sti8COBeDSVM/XObzzOwrxZK5f1w2AQIoCRLMMBmihEh5SoaMl2siBMgnGZLiXCEeG75VxNZI9F4R9hgPHs6x9/PWlNSub6kKOUFqF5/XxlK5Hq9tIi07FMDnSF4B4MsYzAnyNyTfQPLZxXOeAuAfSH4LwAMA/F6x/QUAngzgRJKXF49dbeykhsM4oKEy1WiYzFYaIpPPEBkNj/EjtnlCNDSmupyHxmhYTDW5zA0SiobERGDzEJayQ1qWgIhDUzYxsysAHDVm++tGfj4HwDljnvN+AO9vdQcL6gniiHqGVKOeIVtpiEz68aBeIf546DFQlveeBR5jwcP5DXXePPztTYtx2VxPYusNkorgx62JZXJHaVlbaQDJB5B8DMmjSD6gymvVE8Qh9QypRj1Dtsq5Z0guq8ik2CvEWy+AKjz0GChr2KD22ivEYyx4OL859AiJ/bqm3iD+tLlKTNneKWXeM0RPl35vGb1+vN+3OtK6hTTeXiyET5q1rBgi804AP4DByjIAcBjJ7wN4uZl9ZdZ7qCeIY+oZUo16hmyVa68QII+J4FLsERJzwR3bXXPPvUJijgOZTxfXtdgmSfUmVNkz7wSiKWtyctTVsr000q9miV/vBfBKM/sxM/vp4vGjAH4dg2VzZ1ISJAJKhlSjZMhGGiKTdixoeIwvK+hFlQxRIqQ8D+c1l2ExsSdCmpbaSjHevtvSkW0lnqNhMlLOdjO7dPPGYkndUlGkJEhElAypRsmQjZQMSTsWlAjxxUODuSwlQsrzcF5zSYTEzPuSuU2IqTdIm6vEdMnrfokE8CmSnyT5QpJPKB4vJPlJAJ8u8waaEyRCo4kQzRsym+YM2Sj3+UJSHg89rJTGPKZ+VAqrx4SeR6IszyvHeJsjxMN51fwgzWhztRjPPJSF3r7XdcU+L0j0tgG4O/ROSNfM7BUknwngOAAPBEAAewD8qZmdV+Y9lASJnCZRLU/JkI1yTYbkMHFq7JMLbhZzZdlDg7ks74kQwE9CzMN5VSLEN++TpDYh5vMjGdiGckv0JmYwMWpavYPHMbNPAfhU3ddrOEwiNFSmPA2T2SjnITIpS22ukJgnTY1pnhDPQ2MAX93BPZxT7+crBrlOkuqhDKz7fe5iSEyM6lyT+j2/MXqf4VwiZecL2V7huZIckmeUeZ6SIIlRMqQ8JUPW5TpfSC5zhaSWDImVh0ZzGatYdN249hQDHs5piHPV5d+tSVI38hT/KatynGNYtaaR68SOEs8JnXwY81XeGXqfpHEkD5zwOAjAs8q8h5IgiVIypDwlQ9YpGZIuJUJ88NBoLkuJkHJiOqdNSi0R0pbUe4PEfG66Vua6NSuh0tW1r/QyubN0mYBQsiMn3wWwG8BlI4/dxeP+Zd5ASZDEDZMhSojMpmTIupyTISlLqVdI7MNjYqFESDmhz2kOK8a0fe1Sb5AwNCQmciG+Nkp2CHA9gKeY2eEjjyPM7HAA3ynzBpoYNSOaRLUcTaC6LsfJUzVxaly8TRRY1rDxGHpyzTK8T5jq5fyHniw1h4lS29bWajFtTJLalCZWikmpTBnl6foiUpaByd/UA/BWAAcA+Jcxv/vDMm+gniAZUs+QctQzZF2OPUNSHyKTWq+QWIXuQVCWeoSUE/p8ej5PTYj5mtX0sBhPcT+vLnuDtMXLvoS+BlUyq0eHenzIBGb2p2b2tQm/+79l3kM9QTKmniHlqGfIuv7acla9QoBm7pJ5lsodPG9LqFYRy5109QgpJ/T5DHGeUlo2t63eIJ7l1Bsk9LWiic+v+x6Trg393jJ6/cDnbgnI7GsnDSD53DGbbwNwpZndNO216gki6hlSknqGDKhXSHrUKyS8WO7eeV45xtO5D30+tWLMfNqaH0S9QeIT4hh76VXSim2znyJSwUkA3g3gF4rHuwCcBuDvSP7StBcqCSL30SSq5SgZMqBkSHpSSoTE2DhYQS9447ksJUJmC30uU0+ExMprIiT0SjEaEuPP2BViyiyTK9KdvQB+zMyeZ2bPA/BwDPoU/QSAV017oYbDyFgaKjObhskMaPLUtAwrsTF0a54ldLfnukIPpyjL6/AYT+c99LlMeWiMhsVIXZ6uETKH7QDuCr0T/uy1hZxuUj7UzEZXg7kJwI+Y2a0k/33aC9UTRKZSz5DZ1DNkINeeIalSr5CwYrmjrh4hs4U+l17PURM0LGZAvUHajfGmrydtX59CX3PmntBUE6JKeV8g+TckTyB5AoCPA7iI5HYA35/2QiVBpBQlQ2ZTMmQgt2RIykNkNFdIWLEMj/HayPZ0zmM4j03S/CDinafrwzizEjuu9t/DV0SJk1ydCuDPAewCcBSAswCcamZ3mdlPTXuhkiBSieYNmU3JkAElQ9KhREhYMTSglQiZLeR51Pwg/qg3yKTXxh033ucFmXQt6PdaLOeVoJCWmJkB+CKAzwL4fwAuKrbNpCSI1KZkyHRKhgzkmAxJUSq9QjQ8pj1eV47xdL6VCGlHrL1Bmk6ENCXGckxDYmSskQTMfuH2QlpC8gUAvgTg+QBeAOBSks8v81pNjDp0L4E7l4AdmgSrKk2iOp0mUB3ory1nM3mqJk71L8aJ8YYNSu+TpnqcMNXT+Q45WaomSq0vholSPcV5DHS8JEV79y7kdBP2vwN4nJndBAAkD8GgR8g5s16oniCb3bm0/pBK1DNkOvUMybNXSIx31MpQr5BwYukV4o2n860eIe2I8bqU6rCYFCdILaup/ZhnXpCmvnNaJlecWxgmQAq3oGR+Q0mQaZQMqUXzhkynZIiSIalIaYhMbJQIqc/L+c4tEZICTZKaNy/XjqSUnS9kW6t7IfH6NMnPkDyR5IkAPgngvDIvVBKkDPUOqU3JkMmUDMkzGZKiVBIhsVVwlQipz8u5zikRkkpvkDYSIeoNMu61XcVLuO9gqM8OMjnqKCU0pCFm9lsAzgDwKACPBnCGmb2qzGs1J0hVw0SI5g6pRPOGTKY5Q3BfIiSHOUNSnS9Ec4WEEcM8IcMKt+YJGS+nOUJSmR+kDStYxnJk++zRGhax6OBa42U/gtkO4K6Kr1kCZlaN6ryvJM3MPgLgI1Vf13kShOTDAPzVyKYjALwOwP4AXgrgu8X215jZecVrTgdwEoB7AbzCzD5TbD8WwB8D2Of/b+/tw3W5y/re701grb3XTkICARoIkIBBBdQdCAEOioCCgWMNHoMkRQhir/QotPVQeyk1BxFqW1pbX6qCQZE3IUAlJQfQkKOBaptAXgghIUhepCUkBwwQSPba2ZvsfZ8/ZmavWbNm5vnNzO/99/1c13PttZ9nnnnmfa35PN/7/gH4I1X9d/XzpwC4CMBDAFwL4OWqavdK1E6FUIgY006FUIhshzKEMiQHUrz56BLLzfEUQt5Im8KGqcNQhNjH5bWopCapB7G+6PfUkv0Qy/nZxvcyLZEpXq8rJgJjDpQek9HDD8g+hS8i9wDoGwpXUI2ce+yqeXgvh1HVv1XVvaq6F8BTAWwCuLh++bea11oC5IkAzgHwJABnAvgDETlKRI4C8PsAXgjgiQDOracFgDfX8zoVwDdRCRR3sFxmFiyV6YdlMmWVyeTYLySHXiEsj3FDjOUxsexnlsakRQplMaUytTFpLNeAOaS87ITMRVWPUdVjex7HmAgQIHxPkB8BcKuq/s+Rac4CcJGqHlDVvwNwC4Az6sctqgLkK0UAACAASURBVHpbnfK4CMBZIiIAnoetoXHeCeDFztagC2XIZChD+mlkSMlCpDQZkhu5yJCU2I+N6G8wKUKGoQixS4rXH5sihL1B4ieF9esdIWYqNuYxND/2GCEzCC1BzgHwvtb/XyMi14vI20Xk+Pq5RwH4cmua2+vnhp5/KIC7VfX+zvN+YTpkMhxVZhjKkDJkSI6pECDNG5E2TIXYhyJkmNj3XWq4vP6kMFpMLMd17EzZTqbTxjJkbx+Lr8EcJpckTjAJIiJrAH4CwAfrp94C4PEA9gK4E8B/bCbtebvOeL5vGc4XkatF5Gp88+/7JrEDZchkKEP6oQyhDEkVpkL8E/vN9AGsRSdDYtnHofZdjmkQID0REmNZTMg0yBxiFhBT8bku3kaIWYXt5AghHUKODvNCANeq6lcBoPkXAETkbQA+Uv/3dgCPbr3vJAB31D/3PX8XgONE5IF1GqQ9/TZU9UJUw+pAnnx6ryixCpupToajyvRTehPVUhqo5tg8NfXGqc1NcmzN+oZIZfSYmBqmxtKMMVSz1FwbpbrERaNUm6PFxHJMzyX15V/F0vUbe38O55cNjtkFbN4Xeik8cUj45bsBIcthzkWrFEZETmy99pMAbqh/vgTAOSKyXo/6ciqATwO4CsCpInJKnSo5B8AlqqoALgdwdv3+8wB82OmazIHpkEmwVKYfJkMi+cbCMUyFxEcsiQFTUkiFxEQsJVBMhNgj9WtODOSeBimtJIaQkgkiQURkA8DzAXyo9fS/F5HPicj1AJ4L4P8CAFW9EcAHAHwewF8AeLWqHqpTHq8BcCmAmwB8oJ4WAH4ZwGtF5BZUPUL+2MNqzYO9QyZDGbKTkmUIS2TSJXUZEsuNsikUIdOJYf9ShNij5LKYGI7lJaS+/EXQPQVMS1pY+kICEKQcRlU3UcmJ9nMvH5n+NwD8Rs/zHwPwsZ7nb0M1ekxaNCKEpTJGsFRmJyWXybBEJl1yKJFJJaode3lMc+PN8pjtsDTGHi6vNyWUxRzE+qLfP6lf70NxEGtYs3wuTjm/D+wB1vdZ/PBdAEopTyFREnp0GNIH0yGTYKnMTkoeXpfJkDRhKsQvTIVMI4Z9y0SIPVK+1pTMnPMwlZKYpdeYGK5RKXBs6AUg0UAJEjsUIpOgDNkJZUje5CRCgDxkSCrsx0bUMoQiZCeliJCUKaEsJrXeIKUz9bphPEIMh8klCUMJkhKUIcZQhuyEMiRfckuFAGn/kcxUiD1iu/mOYb+WIEJST4O4ECGxEep3TmxpEJ8k32TVpPdH/qeOexRVqZGrRyZQgqQI0yHGsFRmJ5Qh+ZKbDGEqxB+xi5CYZEgM+5UixA4piZDY0iDLlyHda3ubmEpiioRNVclMKEFShzLEGMqQ7VCG5AtlSDyklApheYw5MexXihA7pHRtiU2E5PR7Jgfm7NOYrqtW2QMKEjIKJUguMB1iDGXIdihD8iVHGZIqoW+Yp0ARYk7o/UoREjcllMUsYe41veSSmLnYOI8OhJIKzefuMpyepx0xgBIkRyhEjGCpzHZKHVGGMiQtmArxQ8w3nhQh26EIWQ7LYuaTy++WJdgsifExDxOMm6N26R4OPsXJUPqDhyjp4YGhF4A4phEhR9sdtz43GhGy++jNwEsSB40IWdtVznHTiJCNtf2Bl8QdB7GONeSxT5ublg2kt782sYENxH+taW48d0e4rM0N+DoOBl6SitD7dD82guynA1jztg9cr+MmdidzPdmP3didyLKuYu52n3POHcQa1iK5ZgwR+lqSBHsA7Au9EBFzCMC9oRcifpgEKQWmQ4xgOmQ7TIbkR06pECDdEhmmQuwQUyok9P4sIRHiGlfXk5jLYpgGGSb0OZ0ELofJZU+PJBGRXSLyaRH5rIjcKCK/3jPNs0XkWhG5X0TObj2/V0SuqN93vYi81NVyUoKUCIWIEZQhW1CG5EdOMiT1EpkUiLlpakw34aH3Z+4iJOVGqbmXxSz7/Hh7g5gSehs2JNUctd3jg8IjJw4AeJ6q/gCAvQDOFJFndKb5XwBeCeC9nec3AbxCVZ8E4EwAvy0ix7lYSEqQ0qEMWQnTIVtQhuQHZUh4mApZDkXIFhQh8RKzCFlKLr9Hutg+n20MlTtX5ERx7lB2ZI9WNAU5D6of2pnmS6p6PYDDnee/qKo31z/fAeBrAB7mYjkpQUgF0yFGUIZUlNhElTIkHVIUIUD4m2dTovhDuocDWItGhoQWW6GSO7mIkFSvIUsIXRbjMw1C5hNshBgSEyeIyNWtx/ndCUTkKBG5DpXEuExVPzX1Q0TkDABrAG5dvsg7YWNUspO2CGFD1V7YSHWL0pqo5t5AtfkjNvUGqqk2Tm3+oI+9MV7sTVPZMLUiRMNUX9s/1UapB7COdYvX15yapPrCVYPU0Oe7bTY3dmNjM+Jjiw1S+zkM141R71LV08cmUNVDAPbWpSwXi8iTVfUG0w8QkRMBvBvAeap6eNX0c2AShIzDdMgoLJXZgsmQvMgpFZLit7qpfLsZcyokFkLvSyZC5lNafxCmQfzM30ZJjKv3WmHp4Z3Hnx8EgKreDeATqPp7GCEixwL4KIALVPVKR4tGCUIMYbnMSihDKihD8oElMmEJXVJhSqxNU2MrjwkJRch8UhEhtgh9rPoi9QaptvuCLDpfV40Q46OEZtfqSYgfRORhTTNTEdkN4EcBfMHwvWsALgbwLlX9oLulpAQhc6AQGYXpkIrS+oY0MiRHIZKLDEk5FZLCjUmMIgSIJxUSeh9ShMwnhetGLk1SS0mDEE9QjoTgRACXi8j1AK5C1RPkIyLyRhH5CQAQkaeJyO0AXgLgD0Xkxvq9Pw3g2QBeKSLX1Y+9LhaSPUEaFMB94MkyFfYPGYW9QyrYNyQP2C8kLCnUm4foQWFCLH1CQvd8iXX/2CDFdYu1P0gK1xobuOoNEvtnl8oGgHtCL0QB1KO+nNbz/OtbP18F4KSead4D4D1OF7CGSZAu97UeZBpMhwzCdEhFSckQIN9SGSZDwpFCKiTm8phYCD1yjE9i2u5LSKUsJpb+IDmmQUyxtRxLhsq1tgwbO/cFR4iJnMPYfj9r+5EJlCBjZLjDvcBymVEoQyhDciEnGZIasfyxP0asIiSWm3KKEPukWhYTa38Qsp0UrrvJYZrAp3ghlqEEMYVCZB4UIoMwHVJu35DcyEGGMBXiBqZCxqEIsU+qIsQmJadBpuKqQWrMn+2kOeoUKDRIBFCCzIFCZB6UIYOULkOAstIhlCHxkqoMiR2KkGEoQuyTogiJtSxmKb5/J8RyPfRVEhMN3RFi5ux2EznC3o3EEpQgS6EQmQ7TIYMwHUIZkgO5yJCUYCpkHrGUx4TcfxQh80hBhNgg5HUlxjRIbNdZH31BgsLUCHEER4exSVuE0FSawdFlBil9ZJm2CMl9VBmOJhMnKY4iE3r0ERNiHMUjptFjQuw73/ukESGut3mMx9oqbI4YE8toMQex7vX3QEqj26QwSszmxm5sbC48jvYA2GdlcXbOz/a8U+cwgHtDL0T8MAniCiZEpsOESC9Mh5STDsk5GZIyLJGxT6ypkBgImQjJMRXicp1SuC7EUhYzl5TTIDFfh5eeFxwhhqQOJYgPKESmQyHSC2UIZUiq5FIik8JNT0MqJTIxEVN5TCgoQqbBshgzfDdJjf3aNwWf6xLD9Q/AvJ4iIxxLaUM6UIL4hkJkOpQhOyg9HVLKqDKNDMlJiFCG+Cf2mwGmQvqhCLFLySIkh9FiUsVkmy0dJSb7viCEOIASJCQUItNgOqQXCpH8ZQiQXzokFxmSCkyFTCcWEcKGqfagCEkXH2mQlBukRkF3hBhCIoaNUWOBTVWnwYaqvZTcTLURIWyimhZsnuqX2BunNjepsTSz9NXAcxUlNUxNuVnqJnZHfS2w0Sg1tSapueDiGjDlXJjVHHUdGNzV7Wamu8AvhG1yCGyMagCTIDHChMg0mBDZQcnpkNJKZXIh9WQIS2TswlTITpgIsUdsx9cYOfYHmf+5aaZBQpfEkC2OCb0AJBooQWKHQmQaFCI7KFWGAGWUylCGxEVKMiT2EpnYblRjaJpKEWIPV+vEspjVpHyNT5Gp1w3T82/yCDEm07OBKfEEJUhK3AdKkSlQiGyD6ZC8jwPKkLhIRYQAccsQNk3dSaj9RRFiTgkiJFST1FTTIDaI9TodFEoTMhNKkJShEDGHMmQbpQqREkplKEPiIaVUCBD3H9gUITsJJUJ87osYtvNcYhchNoj5mhEbPkpiSIt1UJCQUShBcoFCxAymQ3ZQogwB8k+H5Da8LmWIH5gKMYflMX5wvY1TGzHGFimXxcSWBomFOUPlTjn+NzcCHTN7Ov+aTl8qip3VAzYfmUAJkiMZHqhOoBDZBtMh+R4HlCFxQBlihxhlSEgoQpaTkgjJrSwmB2w2SPUxDxNmn3PdYXJ9/rrehX4BUroUIb1QguQOhYgZFCLbKF2I5AplSBykJkNihSJkixL6hFCEbBGbCFkC0yDhP3MJk5uj2mBXgM8k2UEJUhIUImZQiGyDMiQ/KEPiIBUZwlSIGaWWx1CEmBGzCFlKSk1SXRHLNTIpibJKoMRziJMMoQQplUzru6xDIXKEEtMhuZfKUIbEQUx/yI8RuwyJBYoQt6QsQmxjS4SUVBYTejltNEiduw42+oIsZkh8MN1BPEMJQiooRFZDIXKEkoVIjuTURDVVGZJKKgQIfxMxBFMhW+Q+ckyqIiTmc7ykspgpJJWsIIQY88DQC0AipC1CaGb7aYuQow+EW44IaETI7qM3Ay+JH9oiZG1Xfvu+ESEba/sDL8kymj+o15DWPmr+oN9A3Nu/ucneQHzn/X5sYHcky3UAa1jHwSCfHWof+dr+rretq/XYxG6r5/cBrGPd0nVuP3Zj94Jl28RGlNeELq6W03S+qWynvnNsc2M3NjYd/37aA2CfxelK4xCAe0MvRPwwCULGYUJkNUyIAGA6JDeYDAlLKsmQWEtkYkuFhCTn8hgmQipy6Q/CNIj5Z45t5+Dple4IMYRECCUIMYd9RFZDIQKgPCGSc+8QypCwpCRDYiQmEVJieYwPKEIqcukP4us67eqciPVa2OCiL8jKEWJ87FIOg0smQgnScCj0AiQIhcg4FCIAyhtdJncZkroQoQxxB1MhqwktQnzvH4qQcXIWIb5JLQ0S47UyS1py5BiW+JMWlCBt7u08iDkUIuNQiDAdkhGUIeGgDJlPTCIktAzxCUXIOLGKkKUwDbKcGEpi+s6rzY24fwcRYgIbo47RFiGsbzOHjVXHYVPVbSKkhIaqjQjJrZFqDk1U239sp9RENYUGqjE2T21uZGNonBq6aarP/eJruzc3bK62ayrNUm2wtEkq4P84c70dD2INa4HO2WxhE1T7HAa/zDeASRBTmBKZB/uIjMOESFEJkVzTITkkQ4A00yGxp0KAOGPfsZTIhEyFsDxmHikkQnIoi/HVJDXk9SnUZ7voCzKJof4dJl+csvcHsQQlyFwoReZBITIMhUgxMgTIs3cI+4aEgSUy84lBhADhe4X4hCJkmBxFSG5lMaZlJjmVxJiwozmqrQR9Or+KSWJQgtiCQmQ6FCLDFC5EmA5JH8oQ/1CGzCOmVEgoKEKmE8Mxs4ocRMi8z4v7OtgmtuuhM2z/KmW5PVkIJYgLmBKZDstmhqEQKU6I5ARliH8oQ+YRw01tSeUxFCH95NoodS5Mg7hhyrJF3xyVJTJkBsEkiIh8SUQ+JyLXicjV9XMPEZHLROTm+t/j6+dFRH5XRG4RketF5Cmt+ZxXT3+ziJzXev6p9fxvqd8r/teyhlJkOhQi/VCIFCFEckyH5FAqQxlin9huEpgK8btPfG1vipDl163UymJiv/ZNwWdJTAzXPwD2xUY6v7qXcxg7v1y2+ciE0EmQ56rqXlU9vf7/rwD4S1U9FcBf1v8HgBcCOLV+nA/gLUAlTQD8GoCnAzgDwK814qSe5vzW+850vzqGUIhMI8MTzwoUItnLEIDpkBihDLFLrKmQ0DcDoVMhPqEI2UmM52zuZTGh0iCxXf8IKYHQEqTLWQDeWf/8TgAvbj3/Lq24EsBxInIigB8DcJmqfkNVvwngMgBn1q8dq6pXqKoCeFdrXnHBlMg0MrWRiylYiDAdki6UIX6hDJlOaBEChEuF5FgeU7IIiaU/yFxSuta6wGeT07nMbo7KchYSgJASRAF8XESuEZHz6+ceoap3AkD978Pr5x8F4Mut995ePzf2/O09z8cPpcg0KER2QiFSjBDJhdRLZShD7BKbDGEqhCLElFJEyBJiL4tJNQ0y5/1L+4IsIpD4iOc3CwnNAwN+9rNU9Q4ReTiAy0TkCyPT9vXz0BnPb59pJV8qAfOIx6xc4CC0RYit4aZypStC2Dl6uwg5+kC45QhAW4TsPnoz4JK4oy1C1nblsX8bEbKxtj/wkkyn/Qf6GuLfH83NwQbi3Nab2MAG4jl3mxvc3QGX6QDWsI6D3j/X577wsZ2bGzoX23I/Nqwv+yZ2WztPD2Ad6wuvT/uxG7sXLE9s53buHMQa1iYc66bH8ObGbmxsTjgO1oGVh94u8ItN4oVgSRBVvaP+92sALkbV0+OrdSkL6n+/Vk9+O4BHt95+EoA7Vjx/Us/z3WW4UFVPV9XTcdzDbKyWW5gSmQZTItthQiTrhEhu5TJMh/gj5mRIbKkQIHyJTKhUCMtjzCkhERKqP0jJaZAUSmK8w1KanRwGcI/DRyYEkSAiskdEjml+BvACADcAuARAM8LLeQA+XP98CYBX1KPEPAPAt+pymUsBvEBEjq8bor4AwKX1a/eIyDPqUWFe0ZpXPlCKmMNeIttpC5HCpEhJQiQXKEP8QBliTiwlMiGgCDGDIsQdpY8WM4TrkpjgTBEee1DWiDBkMqHKYR4B4OJ61NoHAnivqv6FiFwF4AMi8nMA/heAl9TTfwzAiwDcAmATwM8CgKp+Q0TeBOCqero3quo36p9/HsA7AOwG8Of1I2+6IoTlM8O0RQjLZootm8m9ZCa3cpkcSmVYJrOM5g/2WKL0LkofpuCyrGMM3+UxrrexqzIjlsaME3NZzJRlm1puEgIbJTEm58mBPcD6vtYTR2P5F7UmZTQNzd/0+zrP7euZlhRNEAmiqrcB+IGe578O4Ed6nlcArx6Y19sBvL3n+asBPHnxwqYMpYgZ7CWyncKFSI4yBMhLiLRTIakJEcoQO8QkQ0rtFeJzH/jqE1KiCAnNXBFyEOuTr6Oht5vJuq6aJjbhMrkviA32oF9qDD1PSA+xDZFLXMLSGTNYNrNFgSUzLJdJi1RLZZoymRRKZVgmY0boEpmQvUJ84Xr7uiyNsb3sts7JGMpifPYHmYKL3iCuieV6aMSq8hb2+yAOCTk6DAkJUyJmMCWyRYEJEZbLpAPTIe6JPRkSQyoEiKNEJvdUSIqJEMD+sttKNoQui/HJ1G1m+9oSMg0y9D6v18+h0hamOOxxGNyWBjAJQirYZNUMpkQqCmysmntCJKfRZVJPh8ROrMkQpkK2yD0V4nr7utx+TIT0E/NoMabEkgaxRd+xGqohcy8lfzEZMSLyaBG5XERuEpEbReSf90xzlohcLyLXicjVIvKD9fN7ReSK+n3Xi8hLXS0nJQjph1JkNRxxZgsKkaygDAkLZcgyKEO2CCFDWB6zGoqQfnIoiwkxP9/zX8WBpWUslBupcz+Af6Gq3wvgGQBeLSJP7EzzlwB+QFX3AngVgD+qn98E8ApVfRKAMwH8togc52IhKUGIGZQiq6EQqaAQyYZc0iGNDElNiKTSN4QyZDUxyBCf+Nz2FCEVMYmQFIg9DbLq/Jn7OUPvW3K+bm6s2JY+Su7ZPyQaVPVOVb22/vkeADcBeFRnmnvrgU+Aau9p/fwXVfXm+uc7AHwNwMNcLCclSMPh0AuQGJQi4zAlUkEhkg25CZHUoAyZT2wyJBQ5p0IoQipiESFMg/ifHxmgJUeOpSjxjoicDOA0AJ/qee0nReQLAD6KKg3Sff0MAGsAbnWxbGyM2obNQufDbTdOW4SUGvPripDMm6vm3FS1ESEpN1NNtZFqCk1UY22gGsuwuqGH1PXdONXXdne9XVMZQjeWZqlLGqX6GjbX1ZC5toaxXdIg1Vaz077jM0TzZTKBw3D9BewJInJ16/8XquqF3YlE5GgAfwbgF1X1293XVfViABeLyLMBvAnAj7beeyKAdwM4T1WdRBUoQcboSzjw5t4MSpFhOOJMRUGjzeQqRHIZXaYRIpQhdqEMGSekDGmSDb5lSOqjx7jabhQhO/F1vEzZViFGinFB8FFi2iPEmI4KMzSqDAnBXap6+tgEIvIgVALkT1X1Q2PTqup/E5HHi8gJqnqXiByLKh1ygapeaW+xt8NymKmwDGQe3G7DsHSmqLKZXEtmciiXSbF3SAp9Q1gmM07oEhmf+NrmKZbHxFoasxTfpTGxlMX46g0SC92+ILOao5q8hyUt0SMiAuCPAdykqv9pYJrvqqeDiDwFVdnL10VkDcDFAN6lqh90uZxMgiyFiYd5cLsNU3rpTEFlM0yIxAvTIfaJORnCVEh+qZAUy2NiTIQsTYMAyxIhc4ilLMbss5edCz5KYqxwNOZ9CTqUFDFNkJAQPAvAywF8TkSuq5/7VwAeAwCq+lYAPwXgFSLyHQD7AbxUVVVEfhrAswE8VEReWb/3lap6HSxDCWIbltDMg1KkH5bOFFM2k7sQSV2GAOkIkVRkCBCPEGGJjH8Z4rNXCEVIeBEyl5TLYmz1BnHBlGWLvi8IhUhUqOrfAJAV07wZwJt7nn8PgPc4WrRtUIL4gDf40+E266d0KUIhkiw5pUOANIRIOxYeuxChDNlOaBmSYyqEIiSsCPHdH2RqGiQkq9bPZ4PUaNIju2C3RHwPyukpcgjAPaEXIn7YEyQE3f4Y7JGxGm6vfkruJdLuI5JxL5Ece4jk1D8kFdg3ZBox9QsJ0TPE93C6vvqEuNqWLraX7eW1cX6lNnTu1GvelG3kuzdICnT7ghASM5QgscCb/Glwe+2k9AarhQmRXKRI6kIktWaqlCHTiEmGhMC3CEm9aWrsDVNTFyFzcClCbLLq2HdxbkwRNHOOw9HmqO3d4rHZ6TGlJajJIJQgscK0yDS4rXZSshQpQIgA+aVEchEiKRD7qDKUITthKsQeFCHLCCVCQp+DXWJKg4x9xtTtZjq979GlCLEJJUhK8EbfHG6rnZQqRVg2kyQpCxGmQ+xBGbKTEmSIj+3sujzGNhQhFTmXxYRIg3jFpL/f1FQIkx1kJpQgKcO0iDncTjspUYgAFCIJkqoMAdISIinIkFiESOkyxBcpp0Jc9QmxBUVIfsxJnCTRs6QRI6a7cFf9Ho9lNiQ9ODpMbnBUFTM4lPF2Sh11pitCMhxxJqeRZlIfYaYRIbGPLBP7qDIxjSgTw2gyIUaS8Tmcro9t7HIb2h49xubIMTGMGjMX16OYhBoyd+lIMbbe1ze9ybG3ubEbG5tb2+3AHmDd9vC1Q0PiNtKj+9oelPWF32FwyGADmATJHaZFzOF22oKlM6GXxAk5JURYLuOHFNIhMRBLMsQ3vktkXJNKeUxOiRCfjVJTaZK6BN/JDqfnfylfyJEgUIKUCMWIGdxGW5QoRTLvJUIhEgepyZAYhQhlyBa5l8j46hXigpiH0E1VhMRUFpNCb5Ch93kVJ+3UdaARYggBKEFIA2/4V8NttEXpUiQzchp6N1UhwnTIcihDtgghQ3JqnOpq+8XcJ4QiZGj+9pukpkLf+oQarrsXihOyAEoQ0g/TIqvhNtqiNCnClEgSUIi4JdZ0SExNVClD3MJUSAVFiNvjwPa1xHUaJHSz082NhduLcoN4gI1RiTlsJroaNqatKK3RasYNVnNprJpqU9W2CIm5oWojQmJrpBpLE9XQDVRzbp7qetu62naxNkwN3Sx1P3Zj94zPn9r48yDWJ12vTLeL64atSxlaPpOmrUOsOpadNEftMtQsdb31/PrANLlxGGV8IbkQJkEamgOmlG+ybcEkxDjcPhWlnVuZpkSYEAlLSumQ2GAypCJUMsQHKaZCbKdmSk+ETCVkfxAbaZCl8zchtxIfQhqYBBmi72Yt92+zbcC0yDhMijAlkklKpCtCUk2JpJgQSSEdEuswu0yGVPhOhuSUCol9GF1b+zbFRMicFMaURIiNbbL9s+enL6rl8TNcbpfF58HR2Pp7eB0w2vxDSQ9CZsIkyBS6fQ9K+VZ7KeydMQy3TXnnFFMi0ZJiQiSF/iEx9g6JpW9IkwwJ9W1rrv1CUm2aahMby2jjHPGdCImlP4it5fB5bViSHukev7P6gvT1Aul+URbPrxGSOEyCLGXopi33b7eXwsTIMKWnRUpKihSQEmFCxB8pJUSYDulbjjDpkFD9QpgK2YntxEwsfUKWJELm4Lo/iE1cpkGWztvkM0yx3heknQzZhTK+RCNWoQRxBctppkMx0k/p24VSJGlyKJtJWYjELkOAeIQIZQhLZKaSQtPU1EVIjI1SfTdJddFsdWmDVFelYUdg+ct8DgO4J/RCxA/LYXzCcprpsFykn5K3SUnnUYalM6mXzaRWMpNSuUwsxFYq4xvfzVNzKZGxTY4NU+eWxvgaOnfKdchmWczSJqYxD5cbDTl/gUZmwSRIaFhOM53Sy0X6YFpkOzmeP0yJREdqCZHYy2WYDhlaBiZDbJFaKsTmNomlYarvREgu+EyDzJ22m2Da3NiNjc2BfTanOSohFmESJFZK+rZ7KUyL9FPyNinh3GmnRDJJiqScEmFCxC6xpkPCLgOTIbZgKmQZKSVCmAaZPm/T6aceSwf6Gp92MZlmAcc6nj9JByZBUoKpEXNKT0b0UfI2YVIkOVJurtoVIbGnRGJOiMSWDmnf9IRKh5SUDGEqZIvY+oSklAhJpT/Iqn4cLtIgyTPWO4R9RcgIlCA5wCasZpQsAYYotbSoNCmS1qIwrAAAIABJREFUkRAB0pYiFCLziVWIhJYh1TL4Oyd8ypAcSmRiLo+hCBnGhQhxzZyRYlyXxFihGf3FRGq0kx73tZ4rSYYcRlnrOxNKkFxhasQMipHtlLo9cpciTIlEQ4pCJDYZAsQ11G6p6ZAcZUhpqRAby7ZUBuYiQmx9fixpEFujxIz2BZnLUA+R0mQHWQR7gpQGe42shj1GtlPitsj9HMmon0i7j0hqvURS6SMSc/+QpndILP1DQvcOCdE3xGfPENf9QlxuP9vbKKc+ITH3CDGfr73+IEvmMac3iM9rxra+IO0v2foOAfbvIA5hEoQwNWLC0M1/CSmJLiWmRXIvOcsoKZJqSiSVhAjLZcyIpVSGyZB5uNp+trdRTuUxsSZCQpTFmKYwXNO3HFH1JWHygyyAEoQMk/uNnw1KFAJ9lLgdci6hyUSKpNpLJJXGqikIkVhkCBBGiFCGLMOlDIm1PIYiZCeplcXMERVL5Eb3uFl8PM6RG03fEEIMoQRpOBx6ARKBqZHVlCgE+iit6SqlSPQwJeKOWIUI0yHNZ/tvoupbhqTWLyTWVIitPiEpiJApmIoQm6PFuCBEysRJXxBT9mCrf0j755w5DAohAyhB2rDkYT6UI+NQjJS3DXJOUmUgRXJIiVCITCMWIVJaOsSXDEk5FQLYlSExpEJSECGuGqX6KouxnQYxXQarAudomPWbY9KDWIYSxISxkzPnmzgb5HwjuJTSpEAfpW2DXNMilCJBoBCZT2zlMpQh9khZhsSYCgk1ckysIsR8vqtFiI2ymDnYGC63y5SSmAN7gPW+cpehUV/asA8IsQQlyFKYHpkOUyPD8HgqS4xQikRLaqUzKfQRiVGIMB3iv1SmPRKJSyHiQ4aUkAoJWR7TjBozVYa4FCG2G6UuPY5CpUGmMrskZkh6tIUJxQiZASWIK3gzOx3KkWFKEgN9lLL+uSanEpciTInYh0JkGKZD7OJShjAVYo7v8phYRIgNXJTFLE2DOO9pYlts7AHLacg2KEF8w9Ka6VCO9FOKGBiilPXPMS1CKeKV2FMiFCL9xJAOoQwxw8X2ijUVQhFSYbM/SKiyGNvMHiXGtC8IMeMQgHtCL0T8UILEBNMj06Ac2Unpx1AJI9LkmBahFPFKzCmRthAB4pAiJQuRUKUylCFb2NwmMZTH+O4TkpMImft+G2kQ2w1SB/uCuGZ99SSkDChBUoDpkWlQjuyklNREl1LWO7e0SEZShEJkGbGlRGJoqBqqXMZnOoQyZCe2SmRSL48pWYSkkAYZw6gviElz1DZjZTO7Rl4jxUMJkjoUJOZQjmyn1NRICWIkt7RIwlIkpZQIy2bMYTqEMsQE230TbKdCgGXrbSMVUpIIcU2INEgXm/1sjtCIDpNhcve0fm4EyDooQ8gOKEFyptSb3KlQjmynBEnQpYR1ziktQinihZhTIhQi2wmRDvFZKuNjRBlXMqSUEpnSRYjZ/NynQZw3LJ34eYuOr6GUx9DzJpKEkBpKkBJhesQMypEtShRqua9zTmmRrhQBkhEjqUiRmFMiFCJbMB2ynNRkSEypEN99QuYMoetKhKRQFjM1DeKCdknMtr4gbI5KPPMA3x8oIo8WkctF5CYRuVFE/nn9/BtE5Csicl39eFHrPa8TkVtE5G9F5Mdaz59ZP3eLiPxK6/lTRORTInKziLxfRNb8rmXC3DvyIBX3DTxKpMTjJOd1zum4vnd9+yMR9t+7se0RKwfvWz/yiInNg7uPPEJzEOtHHiHYxO4jD3+fuXHk4Zr92NiWELHNAawdkQM2sb19bG6Hpeu7dFnmHqsHJp5j+yd+jun+Mj3XTdZzyTFi6/jqm89Bg2Nk8fFoujvj+vUTF/c7fGRCiCTI/QD+hapeKyLHALhGRC6rX/stVf3N9sQi8kQA5wB4EoBHAvh/ReQJ9cu/D+D5AG4HcJWIXKKqnwfw5npeF4nIWwH8HIC3jC7VITsrlzW5fzO+FCZHKko8TnIup8mljCbREpoUkiKxpkRiGmmmxISIr3QIkyEVtrZDDKkQH+UxKSRCxj8nnjSI05IYU0xKZ9golbTwLkFU9U4Ad9Y/3yMiNwF41MhbzgJwkaoeAPB3InILgDPq125R1dsAQEQuAnBWPb/nAfhH9TTvBPAGrJIgAMtE5sLtNs7Yt+mp3lDOoTQ5kqsYyaWMhlLEGSlIEQoR/zKk+kx3x6vrviEpyZAYeoUskTKliJClnzcmLuY0STWddmn5zGBJzBhjo8AQMoOgPUFE5GQApwH4FIBnAXiNiLwCwNWo0iLfRCVIrmy97XZsSZMvd55/OoCHArhbVe/vmX4+qyLvOdzcuICCZBymR/KVBX3kuq45iJFE+4qkMBxvjA1WKUSYDplLCjIkh1TIkj4hU0UIAGMZYlOEuO4PMrVJqs00yKz93tcXpCs/2PyUWCKYBBGRowH8GYBfVNVvi8hbALwJgNb//kcArwIgPW9X9Pcz0ZHp+5bhfADnAwAe8piJa9CBN/vT4TYbpnQ5UlJqJNd1zVGMRC5F+nqIxCZGYkyJxFI2U5IQ8Z0OoQxZLkNSKo9xPXJMbCJkDr7TINZLYtpyhCkRMoMgEkREHoRKgPypqn4IAFT1q63X3wbgI/V/bwfw6NbbTwJwR/1z3/N3AThORB5Yp0Ha029DVS8EcCEAyGNP7xUlVmCKZDoUJP2UXlqTqzDoI8fUSOpiJMG0SOzlM7FLEQoRf0KEMmQ7Nm98baz/0vX0XR7jeuQY3yJk/DPiSINYZR2weumjKCEdQowOIwD+GMBNqvqfWs+f2JrsJwHcUP98CYBzRGRdRE4BcCqATwO4CsCp9Ugwa6iap16iqgrgcgBn1+8/D8CHXa7TYsZGZMlp5AlbcFv1U/KoNaUcDzmuY+rHbGKj0MQ++kxso87EMNpMyFFmfI4u42NkmWb0EhejyjSjydgcUcbFSDJLWbqOc5dh7rHocuQYm6PGrFq3VZ81NmrL0HuHnu+bl8lIMd1pxvb15sbW+h7YMziZfXx+VsGIyNtF5GsicsPA688RkW+1RoV9ff187yiyLgiRBHkWgJcD+JyIXFc/968AnCsie1GVrnwJwD8BAFW9UUQ+AODzqEaWebWqHgIAEXkNgEsBHAXg7ap6Yz2/XwZwkYj8awCfQSVd0oVJEnO4rXZScnqkhORIjuuYcmIksbRIzEmR2FIiMZTNdG+mfKVEmA6Zhu10SG4lMiFSITkkQlyUxfjE6Jjp6wsyxlhiZA/S+2IlH94B4PcAvGtkmr9W1R/vPNc7imw9+qtVpApOEHns6YpfvTr0Yrgh5Zshn3A7bZHKDadtcj8Gclu/VI/TiKVIl5ikSJfQUqRNyOaqDSFGmvHVULX6LPfHoqthdm2XytjcFjbWecn6Lfn8qcff1D4hU0aOMd0nJufpqvUa+6yxUpah9w093zev7rQm07T3cftYaUaIATojxDQSpL2p9nX+va/184HO681r+wB8vf73GwC+Vr0mN+MaVT19x4JngsjpWo0x4uwTjLZfPQDKR1T1yT2vPQfAL/VIkO50Hwbwe6p62bxlHSbo6DDEE0xHmME+JFuUmh7JMVXRJrf1SzUxklBahEkRM2JLieSYEPHRTNVVOiT3ZMiS9fOZCpnaJyRUImQJc/qDLEmYLBpRZtVQubb7ghBbnCAibctyYd1ncyrPFJHPourd+Uutig4AO0aRtQ4lCKEkMYHbaIsSBUlu8qBLTk1YKUacQiliRujmqqUIEcqQ+GSI7xIZ1+UxU4bQtSVClpbF2Gpu2jcfk3Ucm8ZqSQybnQ5wCMC3XX7AXRaSNNcCeKyq3isiLwLwX1H1/QSwcxTZhZ/VCyUIWQ0FwGqYIqkoTZDkLEdyWrdcxEgCUgSIR4y0pUgsQgTwL0VyFiKu0yHtxo42hUi7sagNIRKTDLExiswcEQJMO9Zc9QmJRYRMfZ/LNMiSIZKNGRIiu7B9KF32CImCtthQ1Y+JyB+IyAmqelffKLIuoARpUKw+MVL4ozkElCTjcPtUDJ1fOZ5XOUuxXORIimKEaZHZxJoSAfxKkRCNVXMTIjGnQ2xug6U3riFKZGIpj4lBhNgaNnduGmSMdhqkXRIzClMfWSEi/wDAV1VVReQMVCPWfn1oFFkXUIJMwcQexv5HdAhMIm2p3UDZJOcbZhOYHqlIfV/nsF4UI06gFBknZOmM75RIDkLEdTokplKZGPqFxJYKyUWETJ3XKrqf1Z2Xyb406gvSyJBdYKojYkTkfQCeg6p/yO0Afg3AgwBAVd8K4GwAPy8i9wPYD+CcWoj8IHpGkVXVj1lfRo4OUyGPOV3xSx5Hh4n9D+vYSOlGyiclb5dSzqEc93EO65Ta8ReZGOkSgxhpE8vIM6FGnfE90oyPUWZcjy7jIu5vc1QZG+u/dB19jyLjcvQY04aptkaNcTFizJTRYuaMFGN9lBiTEWK6o8N0R4j5egmjw5ymwCcdfsKDs9h+TIKEgqmSaTBN0k/JpTallK/lmBRiasQ/kSdGYkuLdJMiQBgxEqp0xnfZjI+ESIrlMi5KZUImQ2JPhUwpjzFtmGq63ZcmQuawtCxm1TSmDVKNS2JsEPPvaWs4b4yaBZQgMUNRMo2ShcAQOd5Am1JCmU0OMqFN6utDMWKNGBuuxlBCE6p0xmfZTOpCxEW5DGXIss+d0yskRHnMEhESoixmavnM7JKYMcZ6hbCPCBmBEiR1TOvhYv5D3BdMk2ynZGmUuyDJTX6lLEdSawickBgpXYqUkBLJRYjYliHAciFSmgyZkwopQYRMGS3GdhrEmKYvSCM1huTGns7/26PCUIaQDpQgpUBZYgZFyRalShIKknSgHPFDpGIktrQIpYg/IQK4kSKuhEjM6ZDUZYjLVMjU8pjcRIgJS9IgK0tijobZ3+WEzIAShGyHJTiroSipKHE75N6HJBdBkvJ6pFJSQzGykhKlSE4pkVSEiK10iI31tSFDUk6FTOkTkoIIMU2DdKdbmgYxLolpjxDTHUWGkBVQgjQcQtrfKvqEqZLVlCgI+igtTZJziiSX62OK65FKaiQRMRKLFAH8ipHQUoRCZCeuymVCp0OWrJfvEplQqZCQImQKc8tiTDEWX3Mlxx5s/Q4tpizmMIB7Qi9E9FCCmDAlihXzH9K+oSwZh6KkLEmSa4ok5dRFG8oRN0QoRpgWqfAtRXylRFIUIrGnQ3KWIS5TITZGjnEhQnyUxYyJkqEyJqOSmFV9QQgxhBLENhQm06EsGaZ0UVLS+ueYIslBkKS4DrGX1PSJESCoHIlFjFCK2MV1H5GUhEjIUpkl6+SrX4iLVIit8pjQIsRGGsRZSQxgJkT2gOUyZBuUICGhMJmGqSwB4vqD3zUliYI+SkiT5JgiSVEudEkpPcLUyGRiECMhS2hCSpEUUyKxC5HU0yFzZEhqqZDURcjcNMicXjCz6Y4gQ4qFEiQVpnZHjvGPcJ8wXbId0+Mnx+OmBEmUmyRJXWylJHhilyMUIzsIlRbxKUVST4mkIkQoQ/qZIkOmpEJSEiFzlm/VNEbvHyuJ6esL0m6OCvQPk7sLLJ0hO6AEyRWmTMxgumQ7JQiDPnJf75IkSez7KZX0SMxyJLJymtBiJFRaJGcpUooQsZEOsVUqE6sMsZkKMSmPWSWXmnNh6BywJUJMy1dWSZSxtMiqNMhgScxQ+QtHiKk5DDjoh5QblCCEKRNTmC6pKDVVkno6YYycJEmqgiSV5Y65d01EcqREMdKVIoA7MeJairhKibSFQTXf5ceErRFmbAqRnGRIiqkQlyLEdllM7zL2pUH6aMsQNkolE6EEaTiMvG9ybEJpMg7TJRWlyZKc0yQmx3QKx3Kq1/jUBUnoYyOSkprYxEhOaRGfUiTWlEhM5TJL1mvuesQmQ2ylQnyKENNplw6/O5QGGaU7SowpbTmyDooScgRKkCnMOfli+gM1FJQmw1CYlCVLcl7XHNIkqciGNiksc4xyJJLUSJ8YAfzIkRjSIilKER8pEZtCBJgvRVJMh8yVIbb7hdhKhfgUIUsapdpIgxiVxDQlL2250e0LQogBlCCuoTiZDqVJP6ULk5wFQpccUyWpS5IUUySxC5IYS2siliM5ihFfJTSpSRHbZTM2UiJLhYiNdIhLGeKqX4hpKmRpn5AQImTncoyLkKH59Uko45IYUxppwtFhSA0lSIzMESdAHH/UhoCiaSdTjXjsN6BTKKUpcG6iJPWSm9QkSaqCpGA5UqoYSVmKxJ4SCS1EfJTKTF1WFyUyJqmQpeUxYw1TbYmQKcvTv4wL0yB9JTF9vUDaoqPI8pdDAL4deiGihxIkJyhPzGHaZDulpkxyT5fktn4pi5KUJEnMgiS29EhgORKqnManGPGRFnElRVynRFIXIjGnQ0LKEBepkLFlNBUhtstiZqdBhkaBaeRH97U9YLkM2QElCKE8MYFpky1KTJnkni7JSZakKkpSkSQxL2dMgqRAORJSjJQqRWyWzaQqRFKVIa5TIVPLY3yKkFX0pUF6MekL0h1BhkPokhpKkIbDmGcJY/xj2heUJ+NQnFSUJk1yFia5yJIURUnM8qFNrCmSWMprIpQjvsUIYF+OuE6LdKUIYEeMxCpFYhEic2QIML1UZooMMZm/iQyxUSKTkggZmqdpGmS0JIaQGVCCLGVpvCq2P7R9sOTiFcsf+q6gWCpLmuQqTHKQJamJkhR6xMQocmJJjwzJEcC5IMk1NeJbjMQuRWwIEWCeFJkrRJamQwCz5XXVN8SmDBkTIdVn7FyWOX1CloiQMaynQdolMX19QbrsMpiGFAUlSGgoUaZBgdJPyamTUhJcOQqT1GVJbqIk9HaObfliGdEoUHrEtxxJXYy4SIvYlCKxpERCCRGX6RAfMsRFKsS2CJlSFjMlDTLKkABp+oN0r+MjvpmUBSVI6tho9BPTH+kuoUDZTsmpk9zTJrk1/k1ZAJkeazEcY7GnSVKSJD72Z6D0iE854qOcxqcYyU2KLE2J+BQic9MhIWTI3BKZOamQoWUKKUIamjSIcUnMrm1v3sIkKZIVhwFLI1PlDCVIw+HQCxAQipTVLK0/jO3GbAklypPc0yY5SZNU0yWpyJKYRUlMkqRAQRJajqQgRmynRbpSBJgvRmxLkRSEiO1SGVsyxEaJjI1UiCsRsgrjNIhJSUy7DKY4GULGoARpc4/FeR1jcV4pQJEyDiVKeUmcnMVJDtIk1XRJCrIkVlESiyQJXWbjWZAMyRHAriBxnRpJVYyEkiJLUiJt8QCYS5GpQsRVOsR0vktlyJJUyBQR0p3PUhFiPQ1CuUFmQAniCgqV6dgawzuVG8kplC5RSkmfzD0HYj/mU5cmKS5/7LIkxsROLPImpCSJRJCkIkf6xAiwXI7YFCO20iKxSJEYhIjtdEgIGbK0POZgvQ3GhsIdS6QMiZCtdZrYG2QVe1BdW/esmpCUAiVICtgUKkD+UoUyZSelSpRS1ju31EmK0qFNSimTHGRJTKIkZ0niUZD4SI/4liMxi5HQUqQEIRKDDLGRCllVHjMmQlZN232uESGDaRBgZ0lMl31gUoT0QgnSUFJPENtSBchTrNiSKUDcN5wm2BiTPfTN3hxyLuFZcnzHdjynPDpSKsJnyvHi+/iIKVUSg7QJIUkiECSxyxEXqRFbYsRGWmSJFJmbEplTNuNDiJjIkLH52ZAhtlIhrkVI3zyMh9M1KYlpEiBAQcPkHgbw7dALET2UIG1cnhi5x68oVsahULEjUoB4bl5XkXMKJYeynVRLrFKQJrEKk1hkSWhR4luSjAkSwJokcZ0eSUWOxCJGulKkev/0kVwAd1JkqrgxFSK20iHtfdC37cdkiK0SmT4hY9InxFSErHp+chpkCKZBSAdKEF9QsEyHYqWf0oVKKamUHCVKDumT1FInsUuTGIVJDLIk5DKY7BOb+8KDJHEpSIbkCLBMkNiUI67EiK+0iA0pYjslYlOILE2HLJEhpiUyJqkQ2yJk53qu7dyGQ8PlNvdG3fuvXO+ZyGQoQXLAh9nM5aLhQqwA6coVm0IFiOdGdRW2UilAnLIByE8WpSxQUkqdxCx5ph4DzkdZmTCtq20UKlXiM03iWJKMCRJgmSRxIUhsyZE+MQJMkyN9aRHAXI7MTYt0pQgwrXcHYDcl4kKILJEh1fy378chGWIjFTLWMHWJCOmmQY7Moy8NAmy/V2lfo4opgyFToARpOAw21ByDomUcV3IFSEuw2JYqQPznU85CJReRsvS4jLkpaB++t3ms4iQmaRJSmIRIlfhMkwSUJDEJktjlyFwx4iotskSK+BAiq+Yzt1TGlgyZUh7TfX3KELmrymIAbF27+g7RdhlMuz8IKR5KEBeEOMFiv1E0gaKln9IFi6vzKcZzJkehkkMvmNQkSgoNfWMUJ7FIk1DCxPfn+hqZyKEkcZUisSlIYpEjc8WIrbSITSliKmpMl8GWEJkjQ6p5jgsNYGeJjGkqZKg8ZpUIMR02d0caBNj+t3575Jh9iPNvP+scgtubhzygBMkFihczfMbhUhAuPq6RsYqW3OWKTaHSkFJviyFibxQ6RGz9MIaIoU9GF1fLFMPQ1KF6vvhMl7hOlaySJMBsUeJCktgSJENyBJgmSJbIkbnlNHPEyNQSGtdSxIUQGUuHTC2V6U93rC6R6b5vrDzGVIR05cpoGgTY/rf+OrYSIGyOSlpQgjSElGax3iSuIlSkLJabzFX4vtDGKl1KEy0uz4vQx34OYsX2OsTaD6MPH8dPjCmUmJYptDjxLU18pUtcp0ociRLbkmRMkADmksSGIPEtR/rESPUes9KVBhM50TAkRkykiElKxLUQcS1Dxspj2iKkmb+JCOmWxQADaZAu7AtCOlCCxEAsiaWYbiTHCF3PF/pGdIiSpYuvcyj0OeL62A9xbKcuVlKSKrGPLBVjD5oYBErIIal9ShMfn+VyNCITUQJMkiWrJAkwTZTYkCRLBcmQHAFWCxJbcsSVGHEpRVZ91hwhMpQOWSpDTFIhQ31CpogQAMNpkIZ92NkXhBBQgmxxGO5vImM/8WKRMW1C33T2QQlTEcqohzyPfJ8jvo9/H8d27GmEVbgWLKlIlViFSkwiJXRpUQh54rPXi2tp4kqYWJYlNkXJUkkyJkiA1ZJkbnpkqhyZmhoxFSOmaRHbUsSVEOnrG9LXILYrQ0xKZMbKY7qyZEiENOu+ubEbwP7+NMgeVH1BmpIYpkFIDSWIT1I48WITNRQzOwktYdqEEDKhzyOf50iO0sXX8RtD08o5xJRkGMP3SCKmhEg/DOGzlMTm5/sejtpXrxeX0sSFMLEoS0xECbBaloSSJGPpEWBYkriUIzbFiElaZUyKjKVExt63Soj0pUOqeQzJDXMZMpQKGRsqd0yEAHVZDDrch+rJopIghwB8O/RCRA8lSIPNIXKXEPpb/tA3mFMJcTGLUcy08SlpYjhn2vg4f2I4R1wd9zn1RfJ5bMaWZFiFDYERa9ompmG6Q4/2FELm+BxJybU8cZVqsT0KkaksAVYKk6WyZJUkaRiSJS4kSZ8gGZIjQL8gMZUjfWIEWF3aAkwXI7alSJ8QOdDZrt2EyFA6pL0/1nBgkgxpREj79TERcmR9N7BVFtOm6QXCpqikAyVIw2H03wDkGEf3gS+Zk+oFzaW8iV3SNKR+4zsVm+dETMe9jWM59DG79FhMbXQuH6KlIeTN+xAuyyKm4OOGfwyXMmDu5/loAOwyYeNCzNhspjtFmACD0sSHLOkTJaskCbBTlExNkYwJEmDnkLDD0w0Li4YxcdHQFhhjYmQsmWIqRfqESPUZO6XIOg5MToeskiFDqZCDreXvm7ZplFr9d39/GqRdEkMIKEFWE/qPc5/YvCnN9SJj60Y2ppvYuSy9+U3x3FpyjqRwTsw5vmM8lqcem7Eci1OOr9DHk3Gk3+lS7MTkRtvXMq1altCNjn2LFV/9bmxt10GRsHC+fcttuwGvLXGyUJqYypKGtjQxTZUA24XJVFGySpIA/aOg9M53oiAZkiPAsMBoaETGHDEylESZmxLpEyJj6ZDty7p/xzq0Bcf2efRvi23r1RUh+1Ad2+utnwkBJcgWPhqjhsL0hiCWG4FQmNyAhL7x8MmqXxQ5ni+rzpXUz5FVx3hqx/fQMZrCsdl3rMV4fA0dMzEcK703bd6XosL2ja2NZQjR6NhnmZRrieOqV43tZI0tKWOjF8xUaXJkGeoyi5nSZKowMRElwJYsMRUlq1IkQP9N/85pNlcKkjE5Mla+M0WMuKAtRLrpEBMZsnNePcvdFiGNv7qv9TMhoATZIpaeIC5o1ov2c5yimiYZ0NyQhW4E65Pcz5XcjvF7kO7xeR/SOM6aWuoYiWn/x3DtuBd+h4f2/Zk+zhlX6xNi35hiY9kWz2OePFk9IO8yDt63bjRsMAB4cghZ0e7rMef1URoR0kjCfZh7mCXIYbg/O9InWwkiImcC+B0ARwH4I1X9d6NvOIQ4v4WziYv1i+UPUJvENlJBaGx8qx7rTdQQS8+V2M8L36M/uGTO8RnL8Tj1OAt1XLkaKtQGpvvf1z432acu9+OqfeVi/6xKIti8+R/7LFufM7QNl267oWW3OUSwzRGBpq5vd3mmLMvc93YTIAbLvL+dVpk4ss7Y6DntNMqYONlWWrKi0euqUW/GmriOjWgz1Ki1rzlrX/PXvvd3+4x0R6Fpl9Gs9zarbY8Ks75yWOTue3qFyQaAR+zH+lex9Tvg6ytnSyyw6j5cRH4LwHPr/24AeLiqHiciewG8BcCxqO7Of0NV3+9kGVXVxXyDIiJHAfgigOcDuB3AVQDOVdXPD7/ndAWu9rSEJCqyVYEzif0G3hWx3dzbJpYbf1ukfJymcqzFfMzEtv9D79NQ+8rnfnC9jV0mNWzP2+a2sLFsS+Yxd13mfObU90xZNgOhAqwehhhYPdTwkDwBhsUJMDw08FDaom/I364o6Xtv933t97SYLustAAAPwklEQVRfay9PW4w0TVbb827Wa6P12lo93w1sHpl2DQePvLaBTRyHu7GxWYuQbwDYB8gP4xpVPb13pTNA5FEK/ILDT7hgdPtNvQ8XkX8K4DRVfZWIPAGAqurNIvJIANcA+F5Vvdv2WuR6+3cGgFtU9TYAEJGLAJwFYFCCVBr8ppFZxvYXVyocG3oBVnN/qA+OdNt8M/QCZEzIK+7fO5x3iMuj7W9zQt/EzsH1ja+tY8bF8bF0/8eyv23twzn7ysZ+mboffG33OdvVdBvO2W53GUxje9uY3vCPLZuNeSxZr7HPH/rMOe+ZJDuG5t1JpQxMt787Xc9nb1MVPXLlWzj+yM9jUqUrU+7GcUd+bouU9vPbJcpDq2l75EkjHZr3tuXGN+vn2vKjb/q7e6bbjU18E8dhA/txN47bIUfuxvH1yDFbaZiDWMPdOO6I+GhGjzmINWxiAw/duAvHP+JbWD8aTIL4Yep9+LkAfg0AVPWLzZOqeoeIfA3AwwBQghjyKABfbv3/dgBPH3/LfgDXu1uiqIj05jtKzJpnlUGJx43l/R9MuA1h6e40CnGW6vGZ6nJHRmx/zYT83iSU4PGVRnG9bV1uP9vbyNa2sLHOS9dt7rrMWfYpiZAp05ouy6p5bnu9p5FF63N6BoQ98v7e3Ef92rdG5rk17U4B0yddurKlm1TpplPaUqWd9mhESp886b7W/H8D+7GOA9vSI2s4gA3sP5IIOQF34biNu7G2cRAPfdhd6Fl7Yhfj+3AReSyAUwD8Vc9rZ6DqtnOrg2WM7s8GW0jPczvqfkTkfADn1/+9Fzjnb50uFbHJCTD7boXEC/dh+nAfpk0++y82wehPDOazD8uF+zB9itmHfWKl+1wCiuGxoRfALXdcClxwgsMP2CUi7R4SF6rqha3/G92H15wD4L+o6qH2kyJyIoB3AzhPVQ8vWtoBcpUgtwN4dOv/JwG4oztRvcMu7D5P4kdErs65nq8EuA/Th/swbbj/0of7MH24D9OH+5DEhKqeGXgRjO7Da84B8Or2EyJyLICPArhAVa90soQAHuBqxoG5CsCpInKKiKyh2sCXBF4mQgghhBBCCCEkV4zuw0XkuwEcD+CK1nNrAC4G8C5V/aDLhcxSgqjq/QBeA+BSVN1OP6CqN4ZdKkIIIYQQQgghJE+G7sNF5I0i8hOtSc8FcJFuH6r2pwE8G8ArReS6+rHXxXLmWg4DVf0YgI+FXg7iDJYxpQ/3YfpwH6YN91/6cB+mD/dh+nAfEtKi7z5cVV/f+f8bet73HgDvcbpwNbJdvhBCCCGEEEIIIYTkSZblMIQQQgghhBBCCCFdKEFIFIjImSLytyJyi4j8Ss/r6yLy/vr1T4nIyfXzzxeRa0Tkc/W/z2u95xP1PJuasof7W6OyWLD/ThaR/a199NbWe55a79dbROR3RaRvyC1iiQX78GWt/XediBxu6jd5DvrFYB8+W0SuFZH7ReTszmvnicjN9eO81vM8Dz0ydx+KyF4RuUJEbhSR60Xkpa3X3iEif+e6vposPgcPtfbRJa3nT6mvuTfX1+A1H+tSKgvOwed2fhfeJyIvrl/jOUhIbKgqH3wEfQA4CsCtAB4HYA3AZwE8sTPNLwB4a/3zOQDeX/98GoBH1j8/GcBXWu/5BIDTQ69f7o+F++9kADcMzPfTAJ6JarzxPwfwwtDrmutjyT7sTPN9AG5r/Z/nYFz78GQA3w/gXQDObj3/EAC31f8eX/98fP0az8M09uETAJxa//xIAHcCOK7+/zva0/IR3/6rX7t3YL4fAHBO/fNbAfx86HXN9bF0H7ameQiAbwDYqP/Pc5APPiJ7MAlCYuAMALeo6m2qehDARQDO6kxzFoB31j//FwA/IiKiqp9R1Wbs6RsB7BKRdS9LTRpm77+hGYrIiQCOVdUrVFVR/bHxYvuLTmps7cNzAbzP6ZKSIVbuQ1X9kqpeD+Bw570/BuAyVf2Gqn4TwGUAzuR56J3Z+1BVv6iqN9c/3wHgawAe5mexSc2Sc7CX+hr7PFTXXKC6BvMcdIetfXg2gD9X1U13i0oIWQIlCImBRwH4cuv/t9fP9U6j1dBL3wLw0M40PwXgM6p6oPXcn9TRw/+bMW5nLN1/p4jIZ0TkkyLyQ63pb18xT2IPW+fgS7FTgvAc9IPJPpz6Xp6HflmyD48gImeg+hb71tbTv1GXyfwWvyhwxtL9t0tErhaRK5syClTX2Lvra+6ceZJpWDkHUaUlu78LeQ4SEhGUICQG+m6MusMWjU4jIk8C8GYA/6T1+stU9fsA/FD9ePnC5ST9LNl/dwJ4jKqeBuC1AN4rIscazpPYw8Y5+HQAm6p6Q+t1noP+WHLODL2X56FfFm/vOr3zbgA/q6rNN9WvA/A9AJ6GKqb/y0sWkgyydP89RlVPB/CPAPy2iDzewjzJNGydg98H4NLW0zwHCYkMShASA7cDeHTr/ycBuGNoGhF5IIAHo6q3hIicBOBiAK9Q1SPffKnqV+p/7wHwXlQxR2Kf2ftPVQ+o6tcBQFWvQfXN5RPq6U9aMU9ij0XnYM2Ob754DnrFZB9OfS/PQ78s2YeoBfJHAVygqlc2z6vqnVpxAMCfgOehKxbtv6a0V1VvQ9VP6TQAdwE4rr7mTp4nmcyifVjz0wAuVtXvNE/wHCQkPihBSAxcBeDUugP6GqqbqUs601wCoBmx4GwAf6WqKiLHofqj73Wq+t+biUXkgSJyQv3zgwD8OIAbQFywZP89TESOAgAReRyAU1E11rwTwD0i8oy6hOIVAD7sY2UKZfY+BAAReQCAl6Cqn0b9HM9Bv5jswyEuBfACETleRI4H8AIAl/I89M7sfVhPfzGAd6nqBzuvnVj/K6j6SfA8dMOS/Xd8UyJRXzefBeDz9TX2clTXXKC6BvMcdMeS62jDjt5YPAcJiZDQnVn54ENVAeBFAL6IKgnwq/VzbwTwE/XPuwB8EMAtqEYreFz9/AUA9gG4rvV4OIA9AK4BcD2qhqm/A+Co0OuZ62PB/vupev98FsC1AP5ha56no/pD4VYAvwdAQq9nzo+5+7B+7TkAruzMj+dgfPvwaai+6dwH4OsAbmy991X1vr0FVSlF8zzPwwT2IYCfAfCdzu/CvfVrfwXgc/V+fA+Ao0OvZ66PBfvvf6v30Wfrf3+uNc/H1dfcW+pr8Hro9cz5sfA6ejKArwB4QGeePAf54COyh6iytJAQQgghhBBCCCH5w3IYQgghhBBCCCGEFAElCCGEEEIIIYQQQoqAEoQQQgghhBBCCCFFQAlCCCGEEEIIIYSQIqAEIYQQQgghhBBCSBFQghBCCCkSEflVEblRRK4XketE5On1818SkRMCLtdLROQmEbm88/zJIrK/XtbmsWbh804WkRsmTP8lEflcvd0+KSKPXboMSxGRXxSRjYnveY6IfMTVMhFCCCEkTihBCCGEFIeIPBPAjwN4iqp+P4AfBfBlC/N94NJ5APg5AL+gqs/tee1WVd3behy08HlzeG693T4B4IJAy9DmFwFMkiCEEEIIKRNKEEIIISVyIoC7VPUAAKjqXap6R+v1fyoi19aJh+8BABE5Q0T+h4h8pv73u+vnXykiHxSR/wfAx+vn/qWIXFWnJX69bwFE5Nx6/jeIyJvr514P4AcBvFVE/oPJiojIG0Tkl1r/v6FOd5xcJ0reVidePi4iu+tpnioinxWRKwC8uvXeJ4nIp+uUyfUicuqKj78CwKNa7/+Z1vv/UESOqp//WRH5Yp0ceZuI/F79/DtE5OzW++9t/bxjG4rIHhH5aL3sN4jIS0XknwF4JIDLm/SMiLxARK6o9+EHReTo+vkzReQLIvI3AP4Pk+1LCCGEkLygBCGEEFIiHwfw6PrG/A9E5Ic7r9+lqk8B8BYAjWD4AoBnq+ppAF4P4N+0pn8mgPNU9Xki8gIApwI4A8BeAE8VkWe3Zy4ijwTwZgDPq6d5moi8WFXfCOBqAC9T1X/Zs9yPb5XC/L7Bep4K4PdV9UkA7gbwU/XzfwLgn6nqMzvT/58AfkdV9wI4HcDtK+Z/JoD/Wq/T9wJ4KYBn1e8/BOBlInIigF8H8CwAzwfwxFULPbINzwRwh6r+gKo+GcBfqOrvArgDVTrluXUp0wUAfrTeh1cDeK2I7ALwNgD/EMAPAfgHq5aDEEIIIflhI7ZLCCGEJIWq3isiT0V1M/xcAO8XkV9R1XfUk3yo/vcabCUGHgzgnXU6QgE8qDXLy1T1G/XPL6gfn6n/fzSqG/r/1pr+aQA+oap/DwAi8qcAno1aKIxway0YTPk7Vb2utS4ni8iDARynqp+sn383gBfWP18B4FdF5CQAH1LVmwfme7mIPALA17BVDvMjAJ4K4CoRAYDd9etPx/Z1fT+AJ6xY7qFt+NcAfrNOznxEVf+6573PQCVa/nu9HGv1en1PvT1urpfjPQDOX7EchBBCCMkMShBCCCFFoqqHUPW0+ISIfA7AeQDeUb98oP73ELZ+V74JwOWq+pMicnL93oZ9rZ8FwL9V1T8c+XhZsOhd7sf2ZOeu1s8HWj8fQiUmBJXE2YGqvldEPgXgfwdwqYj8Y1X9q55Jn4tqnd8B4I0AXlvP952q+rr2hCLy4qHPay+7VMaiafQ6uA1refUiAP9WRD5ep2e2TYJKSp3bed/ekeUghBBCSCGwHIYQQkhxiMh3d/pd7AXwP1e87cEAvlL//MqR6S4F8KpWH4pHicjDO9N8CsAPi8gJdd+McwF8EvP4EoCn1J/1FACnjE2sqncD+JaI/GD91Mua10TkcQBuq0tMLgHw/SPz2Y+qIekrROQhAP4SwNnNuorIQ6QaOeZTAJ4jIg8VkQcBeEln2Z9a/3wWttI1vduwLiPaVNX3APjNZr0B3APgmPrnKwE8S0S+q37vhog8AVU50yki8vh6um2ShBBCCCFlwCQIIYSQEjkawH8WkeNQpRFuwerSiH+PqhzmtQD60hEAAFX9eN0f44q6HONeAD+DqjSkmeZOEXkdgMtRJRc+pqofnrkuf4ZKRFwH4CoAXzR4z88CeLuIbKISDg0vBfAzIvIdAP8fqpTHIPV6vA/Aq1X1TSJyAYCPi8gDAHynfv5KEXkDqpKUOwFcC+CoehZvA/BhEfk0Komyr57v0Db8LgD/QUQO1/P/+Xo+FwL4cxG5s+4L8koA7xOR9fr1C1T1iyJyPoCPishdAP4GwJMNthUhhBBCMkJUmQwlhBBCiB9qQXG6qr4m9LIQQgghpDxYDkMIIYQQQgghhJAiYBKEEEIIIYQQQgghRcAkCCGEEEIIIYQQQoqAEoQQQgghhBBCCCFFQAlCCCGEEEIIIYSQIqAEIYQQQgghhBBCSBFQghBCCCGEEEIIIaQIKEEIIYQQQgghhBBSBP8/GDb9nl2yvk0AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "trigger_grid(supply_sweep, alpha_sweep)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Resolving Passed Proposals\n", "\n", "![image](.\\images\\stockflow_cv_trigger.png)\n", "\n", "\n", "## Social Systems Modeling\n", "\n", "Subjective, exploratory modeling of the social system interacting through the conviction voting algorithm.\n", "\n", "### Sentiment\n", "\n", "Global Sentiment -- the outside world appreciating the output of the community\n", "Local Sentiment -- agents within the system feeling good about the community\n", "\n", "### Social Networks\n", "\n", "Preferences as mixing process (social influence)\n", "\n", "### Relationships between Proposals\n", "\n", "Some proposals are synergistic (passing one makes the other more desireable)\n", "Some proposals are (parially) substitutable (passing one makes the other less desirable)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## cadCAD Overview\n", "\n", "In the cadCAD simulation [methodology](https://community.cadcad.org/t/differential-specification-syntax-key/31), we operate on four layers: **Policies, Mechanisms, States**, and **Metrics**. Information flows do not have explicit feedback loop unless noted. **Policies** determine the inputs into the system dynamics, and can come from user input, observations from the exogenous environment, or algorithms. **Mechanisms** are functions that take the policy decisions and update the States to reflect the policy level changes. **States** are variables that represent the system quantities at the given point in time, and **Metrics** are computed from state variables to assess the health of the system. Metrics can often be thought of as KPIs, or Key Performance Indicators. \n", "\n", "At a more granular level, to setup a model, there are system conventions and configurations that must be [followed.](https://community.cadcad.org/t/introduction-to-simulation-configurations/34)\n", "\n", "The way to think of cadCAD modeling is analogous to machine learning pipelines which normally consist of multiple steps when training and running a deployed model. There is preprocessing, which includes segregating features between continuous and categorical, transforming or imputing data, and then instantiating, training, and running a machine learning model with specified hyperparameters. cadCAD modeling can be thought of in the same way as states, roughly translating into features, are fed into pipelines that have built-in logic to direct traffic between different mechanisms, such as scaling and imputation. Accuracy scores, ROC, etc. are analogous to the metrics that can be configured on a cadCAD model, specifying how well a given model is doing in meeting its objectives. The parameter sweeping capability of cadCAD can be thought of as a grid search, or way to find the optimal hyperparameters for a system by running through alternative scenarios. A/B style testing that cadCAD enables is used in the same way machine learning models are A/B tested, except out of the box, in providing a side by side comparison of muliple different models to compare and contrast performance. Utilizing the field of Systems Identification, dynamical systems models can be used to \"online learn\" by providing a feedback loop to generative system mechanisms. \n", "\n", "\n", "## Differential Specification \n", "![](images/Aragon_v2.png)\n", "\n", "## Schema of the states \n", "The model consists of a temporal in memory graph database called *network* containing nodes of type **Participant** and type **Proposal**. Participants will have *holdings* and *sentiment* and Proposals will have *funds_required, status*(candidate or active), *conviction* Tthe model as three kinds of edges:\n", "* (Participant, participant), we labeled this edge type \"influencer\" and it contains information about how the preferences and sentiment of one participant influence another \n", "* (Proposal, Proposal), we labeled this edge type \"conflict\" and it contains information about how synergistic or anti-synergistic two proposals are; basically people are likely to support multiple things that have synergy (meaning once one is passed there is more utility from the other) but they are not likely to pass things that have antisynergy (meaning once one is passed there is less utility from the other).\n", "* The edges between Participant and Proposal, which are described below.\n", " \n", "\n", "Edges in the network go from nodes of type Participant to nodes of type Proposal with the edges having the key *type*, of which all will be set to *support*. Edges from participant $i$ to proposal $j$ will have the following additional characteristics:\n", "* Each pairing (i,j) will have *affinity*, which determines how much $i$ likes or dislikes proposal $j$.\n", "* Each participant $i$, assigns its $tokens$ over the edges (i,j) for all $j$ such that the summation of all $j$ such that ```Sum_j = network.edges[(i,j)]['tokens'] = network.nodes[i]['holdings']```. This value of tokens for participants on proposals must be less than or equal to the total number of tokens held by the participant.\n", "* Each pairing (i,j) will have *conviction* local to that edge whose update at each timestep is computed using the value of *tokens* at that edge.\n", "* Each proposal *j* will have a *conviction* which is equal to the sum of the conviction on its inbound edges: ```network.nodes[j]['conviction'] = Sum_i network.edges[(i,j)]['conviction']```. \n", "\n", "\n", "The other state variable in the model is *funds*, which is a numpy floating point. \n", "\n", "The system consists of 100 time steps without a parameter sweep or monte carlo.\n", "\n", "\n", "## Partial State Update Blocks\n", "\n", "Each partial state update block is kind of a like a phase in a phased based board game. Everyone decides what to do and it reconciles all decisions. One timestep is a full turn, with each block being a phase of a timestep or turn. We will walk through the individaul Partial State update blocks one by one below." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "{\n", "# system.py: \n", "'policies': { \n", " 'random': driving_process\n", "},\n", "'variables': {\n", " 'network': update_network,\n", " 'funds':increment_funds,\n", "}\n", "```\n", "\n", "To simulate the arrival of participants and proposal into the system, we have a driving process to represent the arrival of individual agents. We use a random uniform distribution generator, over [0, 1), to calculate the number of new participants. We then use an exponential distribution to calculate the particpant's tokens by using a loc of 0.0 and a scale of expected holdings, which is calculated by .1*supply/number of existing participants. We calculate the number of new proposals by \n", "```\n", "proposal_rate = 1/median_affinity * (1+total_funds_requested/funds)\n", "rv2 = np.random.rand()\n", "new_proposal = bool(rv2<1/proposal_rate)\n", "```\n", "The network state variable is updated to include the new participants and proposals, while the funds state variable is updated for the increase in system funds. \n", "[To see the partial state update code, click here](model/model/system.py)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "{\n", " # participants.py \n", " 'policies': {\n", " 'completion': check_progress \n", " },\n", " 'variables': { \n", " 'sentiment': update_sentiment_on_completion, #not completing projects decays sentiment, completing bumps it\n", " 'network': complete_proposal\n", " }\n", "},\n", "```\n", "\n", "In the next phase of the turn, [to see the logic code, click here](model/model/participants.py), the *check_progress* behavior checks for the completion of previously funded proposals. The code calculates the completion and failure rates as follows:\n", "\n", "```\n", "likelihood = 1.0/(base_completion_rate+np.log(grant_size))\n", "\n", "failure_rate = 1.0/(base_failure_rate+np.log(grant_size))\n", "if np.random.rand() < likelihood:\n", " completed.append(j)\n", "elif np.random.rand() < failure_rate:\n", " failed.append(j)\n", "```\n", "With the base_completion_rate being 100 and the base_failure_rate as 200. \n", "\n", "The mechanism then updates the respective *network* nodes and updates the sentiment variable on proposal completion. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", " # proposals.py\n", " 'policies': {\n", " 'release': trigger_function \n", " },\n", " 'variables': { \n", " 'funds': decrement_funds, \n", " 'sentiment': update_sentiment_on_release, #releasing funds can bump sentiment\n", " 'network': update_proposals \n", " }\n", "},\n", " ```\n", " \n", "The [trigger release function](model/model/proposals.py) checks to see if each proposal passes or not. If a proposal passes, funds are decremented by the amount of the proposal, while the proposal's status is changed in the network object." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "{ \n", " # participants.py\n", " 'policies': { \n", " 'participants_act': participants_decisions\n", " },\n", " 'variables': {\n", " 'network': update_tokens \n", " }\n", "}\n", "```\n", "\n", "The Participants decide based on their affinity if which proposals they would like to support,[to see the logic code, click here](model/model/participants.py). Proposals that participants have high affinity for receive more support and pledged tokens than proposals with lower affinity and sentiment. We then update everyone's holdings and their conviction for each proposal.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model next steps\n", "\n", "The the model described above is the second iteration model that covers the core mechanisms of the Aragon Conviction Voting model. Below are next additional dynamics we can attend to enrich the model, and provide workstreams for subsequent iterations of this lab notebook.\n", "\n", "* Mixing of token holdings among participants\n", "* Departure of participants\n", "* Proposals which are good or no good together\n", "* Affects of outcomes on sentiment" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Configuration\n", "Let's factor out into its own notebook where we review the config object and its partial state update blocks." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from model import economyconfig" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# pull out configurations to illustrate\n", "sim_config,genesis_states,seeds,partial_state_update_blocks = economyconfig.get_configs()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "{'N': 1, 'T': range(0, 120), 'M': [{}], 'simulation_id': 0, 'run_id': 0}" }, "metadata": {}, "execution_count": 6 } ], "source": [ "sim_config" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "[{'policies': {'random': },\n 'variables': {'network': ,\n 'funds': }},\n {'policies': {'completion': },\n 'variables': {'sentiment': ,\n 'network': }},\n {'policies': {'release': },\n 'variables': {'funds': ,\n 'sentiment': ,\n 'network': }},\n {'policies': {'participants_act': },\n 'variables': {'network': }}]" }, "metadata": {}, "execution_count": 7 } ], "source": [ "partial_state_update_blocks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialization\n", "To create the genesis_states, we create our in-memory graph database within networkx. \n", "\n", "\n", "### Hyperparameters\n", "* $\\beta$ = .2 # maximum share of funds a proposal can take\n", "* $\\rho$ = 0.002 # tuning param for the trigger function\n", "* $\\alpha$ = 1/8 = 1/2^3 = 3 day half-life when timestep is 1 day \n", "* supply = 21706 # Honey supply balance as of 7-17-2020 \n", "* initial_sentiment = .9\n", "* n= 24 #initial participants\n", "* m= 3 #initial proposals\n", "* sensitivity = .75\n", "* tmin = 7 #unit days; minimum periods passed before a proposal can pass\n", "* min_supp = 50 #number of tokens that must be stake for a proposal to be a candidate\n", "* base_completion_rate = 100\n", "* base_failure_rate = 200 \n", "* initial_funds = 48000 # in xDai\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# import libraries\n", "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from model.model.conviction_helper_functions import * \n", "\n", "# # Parameters\n", "# # maximum share of funds a proposal can take\n", "# beta = .2\n", "# # tuning param for the trigger function\n", "# rho = 0.002\n", "# #alpha = 1 - 0.9999599 #native timescale for app as in contract code\n", "# alpha = 1/2**7 #timescale set in days with 7 day halflife\n", "\n", "# supply = 21706 # Honey supply balance as of 7-17-2020 \n", "# initial_sentiment = .9\n", "\n", "\n", "# n= 24 #initial participants\n", "# m= 5 #initial proposals\n", "\n", "\n", "# sensitivity = .75\n", "# tmin = 0 #unit days; minimum periods passed before a proposal can pass\n", "# min_supp = 50 #number of tokens that must be stake for a proposal to be a candidate\n", "# base_completion_rate = 100\n", "# base_failure_rate = 200 \n", "\n", "# initial_funds = 48000 # in xDai\n", "\n", "\n", "#initializers\n", "network = genesis_states['network']\n", "initial_funds = genesis_states['funds']\n", "initial_sentiment = genesis_states['sentiment']\n", "\n", "# Create initial states\n", "# genesis_states = { \n", "# 'network':network,\n", "# 'funds':initial_funds,\n", "# 'sentiment':initial_sentiment,\n", "#}" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "{'network': ,\n 'funds': 48000,\n 'sentiment': 0.6}" }, "metadata": {}, "execution_count": 9 } ], "source": [ "genesis_states" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exploring the State Data Structure\n", "\n", "A graph is a type of temporal data structure that evolves over time. A graph $\\mathcal{G}(\\mathcal{V},\\mathcal{E})$ consists of vertices or nodes, $\\mathcal{V} = \\{1...\\mathcal{V}\\}$ and is connected by edges $\\mathcal{E} \\subseteq \\mathcal{V} \\times \\mathcal{V}$.\n", "\n", "See *Schema of the states* above for more details\n", "\n", "\n", "Let's explore!" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# To explore our model prior to the simulation, we extract key components from our networkX object into lists.\n", "proposals = get_nodes_by_type(network, 'proposal')\n", "participants = get_nodes_by_type(network, 'participant')\n", "supporters = get_edges_by_type(network, 'support')\n", "influencers = get_edges_by_type(network, 'influence')\n", "competitors = get_edges_by_type(network, 'conflict')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "{'type': 'participant',\n 'holdings': 555.4085932490696,\n 'sentiment': 0.24639842882218166}" }, "metadata": {}, "execution_count": 11 } ], "source": [ "#sample a participant\n", "network.nodes[participants[0]]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Text(0, 0.5, 'Count of Participants')" }, "metadata": {}, "execution_count": 12 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH65JREFUeJzt3XmYHFW9//H3hywEgbCOrIYBRBBRCUYE4XIFFFmURRHhIrJpfl6V5bpdVPBxvRd/j+L+EyIiqOyrICKgJHDhsgUIO0iAIHvCEpKwJ3x/f5wzUJnM9NT0dE1Ppz6v5+mna+s639PV/e3qU1WnFBGYmdnSb5l2B2BmZsPDCd/MrCac8M3MasIJ38ysJpzwzcxqwgnfzKwmnPArJOlOSR9odxztJGkvSQ9LWiBpYhvKP17SMSWWu0TSgcMR03CTNE5SSFq33bEMRNITkrbtZ97OkmYWxu+XtPXwRdf5nPCbJGmWpA/2mnaQpKt7xiPiHRExbYD1dOcv4+iKQm23HwFfjIgVIuKW3jNz3Z/PPwiPSjpO0qhmCur9/gNExOci4nsDvTYidomIU5opdzAknSzp+0287pL8Hi2Q9KqkVwrjx1cR62BJ2kTSwj6mnyHp6FaXFxEbRsS1rV7v0mxpTTKWSRodEUt8CYfResCdAyzz7oiYKWkTYBrwD2BQSWwp/sEE0g9Sz7Ckk4FHIqLlSdSWbt7Dr1DxX4CkLSVNlzRP0pOSjsuLXZWf5+a9ta0lLSPpaEkPSZot6feSViqs99N53tOSjulVzrclnSPpj5LmAQflsq+VNFfS45J+KWlsYX0h6fOS7pM0X9L3JG2YXzNP0lnF5XvVsc9YJS0raQEwCrhV0v0DvV8RcQ/wP8Bmed1H5b/t8yXdJWmvQrkHSbpG0k8kPQOcSfqR2Dq/j3PzcovtUUvaQ9KMXK/7Je2cp0+T9Jle6/6FpOck3SNpx8I6DpZ0d47rAUn/pzDvA5IekfTl/H48LungPG8ysD/wtRzjRXn6f+Z/N/Ml3VssazAkfSHX6WlJ50lao5/ltldqZtsmj28m6QpJz+Z67VlY9gxJP5V0aY7vGknrNRNfYZ0fz9tzrqS/Sdqon+WWl3RqXu52YGKv+a83/0g6Ni97eo7zNkmbF5bdUtKted5p+f05Os9bU9JfczlPS7piKPUb0SLCjyYewCzgg72mHQRc3dcywLXAAXl4BWCrPNwNBDC68LpDgJnABnnZ84A/5HmbAguAbYGxpCaTVwvlfDuP70n6QV8OeA+wFekfXTdwN3BkobwALgTGA+8AXgb+nstfCbgLOLCf96HfWAvrfmuD9/H1+bluTwCH5vFPAGvnenwSeB5Yq/BeLwQOy/Varvf7n5c7Gfh+Ht4SeA74UF7nOsAmed404DO91v0fwJhc9nPAqnn+bsCGgIB/BV4AtsjzPpBf+9382l3z/FV6x5PHNwYeBtYufB42HOCzt9g68rRd83v3LmAcMAW4PM8bl9/ndYHdgX8CE/O88cDjpB+iUcB7gWcK2+QMYDawRa7POcDJ/cS1CbCwj+lnAEfn4c2A+fl9GgscQ/o8js7znwC2zcM/JX0OVwbWB+4FZhbWW1z22Pw+fyjX4yfAtEL9HwM+R/qs7Ev6jvTE9BPgZ3neWGC7dueXqh7ewx+aC/Jewdy8R/n/Giz7KvBWSatHxIKIuK7BsvsDx0XEAxGxAPg6sK9Ss8XewEURcXVEvAJ8i/RlLro2Ii6IiNci4sWIuCkirouIhRExCziBlKiKfhgR8yLiTuAO4LJc/nPAJfTauyoZa1k3S3oWuAg4EfgdQEScHRGP5XqcCdxHSto9HouIX+R6vViinEOBkyLi8rzORyP9q+jLbOCnEfFqLvteUqInIi6OiPsjuRK4DPiXwmtfBb6bX/sX0g/0xv2UswhYFthU0piImBURA/4b6sP+wJSIuC0iXgK+Buwoac1ey/wM2CneOJ6yF3BHRJwaEYsi4kbSdvh44XVnRcTNEfEqcBqwOf0bVfxO5O/Fxwrz9wPOj4hp+fP7X8DqwKQ+1rUP8L2ImBsRDwK/GuA9uCJv20XAHwpxbge8FBHH58/KGcCthde9StqxmBARr0TEVSylnPCHZs+IWLnnAXy+wbKHAm8D7pF0o6SPNFh2beChwvhDpL2PNfK8h3tmRMQLwNO9Xv9wcUTS2yT9Of8FnscbX7KiJwvDL/YxvkITsZa1RUSsEukg3NER8VqO+9O5+aUncWzWK+6H+1xb/94ClE2mj0be/cseItUVSbtIuk7SMzmuXXvF9XQsftzkBfp5/yJiJnAk6Z/Z7NyEsnbJGIsW2w4RMReYR/oX0+NLwB97/citB2zXK0F/HFirsMwTZeqSLSp+J/L34rwGcS4CHu0VJ5JE+gwVt3Hxc9aX/uJcG3ik17LF9f6A9A9gqqSZkr40QDkdywl/mETEfRGxH/Bm4IfAOZKWZ8m9c0gfvmI76QRSM8GTpL/fr59eJ2k5YLXexfUa/zVwD7BRRIwHvkFqjmiFRrE2LbcT/wb4IrBaThx3sHjcves5UNevD5OaYspYJyedHhOAxyQtC5xLakpbI8f1F8q/n0vEGBGnRcS2pPcxSJ+PwVpsOygd8xlPSqY99gI+JelzhWkPk/7NFZP0ChFxZBMxNBPnKFKyL8ZJ/rGdTfqR7jGhyTIX+85kr683Ip6LiCMiYj3Sj93RPcc3ljZO+MNE0qckdeW917l58iJgDvAaqQ28x+nAf0haX9IKpD3yM/Ne4znARyW9X+lA6ncYONmsSNrbW6B0Jsy/t6xijWMdip4fwzmQDpSSD+Y28CSwrvo5wAz8FjhY0o5KB5vXye9HX94MHC5pjKRPAG8nJfaxpCaYOcBCSbsAOw2iXk9S2NaSNpa0Q/4heYn0b2rRINbX43Tgs/kA7DjSj8YVEVHc6/0nsCPwDUmH5GkXABMlfTLXdaykrSS9rYkYyjgT2EvSdpLGAEeR/qFO72PZs4BvKp0EsB6N/0E3chWwnKTJkkZL2gd4d89MSbvnz69Ix2oW0dw2GPGc8IfPzsCdSmeu/AzYNyJeyk0yPwCuyX+ptwJOIrVBXgU8SEoEhwHkNvbDSAfCHicdAJtNOtDan68A/5aX/Q3pS9cq/cY6FBFxF/Bj0sHuJ4F3AtcM8LIrSKeAPiHpqT7WeQNwMOkg3XPAlSz+76ToemAj4CnS9tk7Ip6OiPnA4aRk9Czpfb1wEFX7Lam9fq6kC0g/Hsfmcp4g/dB8YxDrAyAi/gz8d47lMWBN4IA+lnuAlPS/K+mAiHgW+DDpfXk8v/b7pAO0LRcRt5GaN08g/WjuCOzRzw7C0aT35Z/AxcDvmyzzRdJxhMNI22xP4FLe+M68nXTQfj7pc/yjAY6xdSwt3kxpnSbvVc8lNdc82O54lgaSDiKdsdPnFZ/W+STdChwbEae3O5bh5D38DiTpo5LelI8B/Ai4nXQKqJn1QenagzfnZqvJpGM5l7c7ruHmhN+Z9iD99X6M1Oywb/ivmlkj7yAd9H+WdCzgYxGxRLPf0s5NOmZmNeE9fDOzmhhRHU6tvvrq0d3d3e4wzMw6xk033fRURHSVWXZEJfzu7m6mT+/rdFwzM+uLpIGuQH6dm3TMzGrCCd/MrCac8M3MasIJ38ysJpzwzcxqwgnfzKwmKkv4udvXGYXHPElV9bFtZmYDqOw8/Ii4l3yLsXyTg0eB86sqz8zMGhuuJp0dgfsjovQFAmZm1lrDdaXtvqQ78iwhd1U6GWDChGbvYAbdR13c9GuHYtaxu7WlXDOzwap8Dz/fbm534Oy+5kfElIiYFBGTurpKdQdhZmZNGI4mnV2AmyNiSDe1NjOzoRmOhL8f/TTnmJnZ8Kk04Ut6E/Ah4LwqyzEzs4FVetA2Il4AVquyDDMzK8dX2pqZ1YQTvplZTTjhm5nVhBO+mVlNOOGbmdWEE76ZWU044ZuZ1YQTvplZTTjhm5nVhBO+mVlNOOGbmdWEE76ZWU044ZuZ1YQTvplZTTjhm5nVhBO+mVlNOOGbmdWEE76ZWU044ZuZ1YQTvplZTVSa8CWtLOkcSfdIulvS1lWWZ2Zm/Rtd8fp/Bvw1IvaWNBZ4U8XlmZlZPypL+JLGA9sBBwFExCvAK1WVZ2ZmjVXZpLMBMAf4naRbJJ0oafneC0maLGm6pOlz5sypMBwzs3qrMuGPBrYAfh0RE4HngaN6LxQRUyJiUkRM6urqqjAcM7N6qzLhPwI8EhHX5/FzSD8AZmbWBpUl/Ih4AnhY0sZ50o7AXVWVZ2ZmjVV9ls5hwKn5DJ0HgIMrLs/MzPpRacKPiBnApCrLMDOzcnylrZlZTTjhm5nVhBO+mVlNOOGbmdWEE76ZWU044ZuZ1YQTvplZTTjhm5nVhBO+mVlNOOGbmdWEE76ZWU044ZuZ1cSgEr6kZfKtC83MrMMMmPAlnSZpfL494V3AvZK+Wn1oZmbWSmX28DeNiHnAnsBfgAnAAZVGZWZmLVcm4Y+RNIaU8P8UEa9WHJOZmVWgTMI/AZgFLA9cJWk94LkqgzIzs9Yrk/Avioh1ImLXiAjgn8AhFcdlZmYtVibhn1scyUn/jGrCMTOzqvR7T1tJmwDvAFaS9LHCrPHAuKoDMzOz1mp0E/ONgY8AKwMfLUyfD3y2yqDMzKz1+k34EfEn4E+Sto6Ia5tZuaRZpB+IRcDCiJjUVJRmZjZkjfbwe8yU9A2gu7h8RJQ9cLt9RDzVRGxmZtZCZRL+n4D/Af5G2lM3M7MOVCbhvyki/rPJ9QdwmaQAToiIKb0XkDQZmAwwYcKEJotpn+6jLm5b2bOO3a0t5daxzmZLgzKnZf5Z0q5Nrn+biNgC2AX4gqTtei8QEVMiYlJETOrq6mqyGDMzG0iZhH8EKem/KGmepPmS5pVZeUQ8lp9nA+cDWzYfqpmZDcWACT8iVoyIZSJiuYgYn8cH7CJZ0vKSVuwZBnYC7hh6yGZm1owybfhIWgXYiMIFVxFx1QAvWwM4X1JPOadFxF+bjNPMzIZowIQv6TOkZp11gRnAVsC1wA6NXhcRDwDvbkGMZmbWAmXb8N8LPBQR2wMTgTmVRmVmZi1XJuG/FBEvAUhaNiLuIXW7YGZmHaRMG/4jklYGLgAul/Qs8Fi1YZmZWasNmPAjYq88+G1JU4GVAB98NTPrMGXP0tkC2JZ05ew1EfFKpVGZmVnLDdiGL+lbwCnAasDqwO8kHV11YGZm1lpl9vD3AyYWDtweC9wMfL/KwMzMrLXKnKUzi8XvcLUscH8l0ZiZWWXK7OG/DNwp6XJSG/6HgKsl/RwgIg6vMD4zM2uRMgn//PzoMa2aUMzMrEplTss8ZTgCMTOzavWb8CWdFRH7SLqd1JSzmIh4V6WRmZlZSzXawz8iP39kOAIxM7Nq9ZvwI+LxPLgM8HjhtMzlSF0fm5lZBylzWubZwGuF8UV5mpmZdZAyCX90sSuFPDy2upDMzKwKZRL+HEm794xI2gN4qrqQzMysCmXOw/8ccKqkXwICHgY+XWlUZmbWcmXOw78f2ErSCoAiYn71YZmZWas1Og//UxHxR0lf6jUdgIg4ruLYzMyshRrt4S+fn1fsY94SF2L1R9IoYDrwaET4nH4zszZpdB7+CXnwbxFxTXGepG0GUcYRwN3A+MGHZ2ZmrVLmLJ1flJy2BEnrArsBJw4mKDMza71GbfhbA+8Hunq1448HRpVc/0+Br9F3s1BPOZOByQATJkwouVoD6D7q4naHYGYdpNEe/lhgBdKPwoqFxzxg74FWLOkjwOyIuKnRchExJSImRcSkrq6u0oGbmdngNGrDv1LS1cA7I+I7Tax7G2B3SbuS7pg1XtIfI+JTTcZqZmZD0LANPyIWAas2s+KI+HpErBsR3cC+wBVO9mZm7VPmSttbJF1I6jDt+Z6JEXFeZVGZmVnLlUn4qwJPAzsUpgVQOuFHxDR8a0Qzs7Yq07XCwcMRiJmZVWvAhC9pHHAo8A7SwVcAIuKQCuMyM7MWK3Ph1R+ANYEPA1cC6wLuQM3MrMOUSfhvjYhjgOcj4hTSlbPvrDYsMzNrtTIJ/9X8PFfSZsBKQHdlEZmZWSXKnKUzRdIqwDHAhaSrb4+pNCozM2u5Mmfp9HR8diWwQbXhmJlZVfpt0pH0Pkm3Slog6VpJmw5nYGZm1lqN2vB/BXwFWA04DvjJsERkZmaVaJTwl4mIyyPi5Yg4G3BXlmZmHaxRG/7Kkj7W37j70jEz6yyNEv6VwEf7GR9UXzpmZtZ+jfrDdx86ZmZLkTIXXpmZ2VLACd/MrCYanYf/ify8/vCFY2ZmVWm0h//1/HzucARiZmbVanSWztOSpgLr51scLiYidq8uLDMza7VGCX83YAtSf/g/Hp5wzMysKo1Oy3wFuE7S+yNijqQV0+RYMHzhmZlZq5Q5S2cNSbcAdwB3Sbop94tvZmYdpEzCnwJ8KSLWi4gJwJfztIYkjZN0Q+5x805J3xlqsGZm1rwyN0BZPiKm9oxExDRJy5d43cvADhGxQNIY4GpJl0TEdc0Ga2ZmzSuT8B+QdAzp4C3Ap4AHB3pRRATQ094/Jj+imSDNzGzoyjTpHELqGvm8/FgdKNXPjqRRkmYAs4HLI+L6PpaZLGm6pOlz5swpH7mZmQ1KmVscPgsc3szKI2IRsLmklYHzJW0WEXf0WmYK+ZjApEmT/A/AzKwiw9KXTkTMBaYBOw9HeWZmtqTKEr6krrxnj6TlgA8C91RVnpmZNTZgwpe0TZlpfVgLmCrpNuBGUhv+nwcfopmZtUKZs3R+QepiYaBpi4mI24CJTcZlZmYt1m/Cl7Q18H6gS9KXCrPGA6OqDszMzFqr0R7+WGCFvMyKhenzgL2rDMrMzFqvUedpVwJXSjo5Ih4axpjMzKwCZdrwl5U0BeguLh8RO1QVlJmZtV6ZhH82cDxwIrCo2nDMzKwqZRL+woj4deWRmJlZpcpceHWRpM9LWkvSqj2PyiMzM7OWKrOHf2B+/mphWgAbtD4cMzOrSpnO09YfjkDMzKxaAyZ8SZ/ua3pE/L714ZiZWVXKNOm8tzA8DtgRuBlwwjcz6yBlmnQOK45LWok37n5lZmYdopnukV8ANmp1IGZmVq0ybfgX8ca9aEcBbwfOqjIoMzNrvTJt+D8qDC8EHoqIRyqKx8zMKjJgk07uRO0eUo+ZqwCvVB2UmZm1Xpk7Xu0D3AB8AtgHuF6Su0c2M+swZZp0vgm8NyJmQ7pXLfA34JwqAzMzs9Yqc5bOMj3JPnu65OvMzGwEKbOH/1dJlwKn5/FPApdUF5KZmVWhzIVXX5X0MWBbQMCUiDh/oNdJegvpatw1gdfy6342xHjNzKxJjW5i/lZgjYi4JiLOA87L07eTtGFE3D/AuhcCX46ImyWtCNwk6fKIuKtl0ZuZWWmN2uJ/CszvY/oLeV5DEfF4RNych+cDdwPrNBOkmZkNXaOE3x0Rt/WeGBHTSfe3LU1SNzARuH4wrzMzs9ZplPDHNZi3XNkCJK0AnAscGRHz+pg/WdJ0SdPnzJlTdrVmZjZIjRL+jZI+23uipEOBm8qsXNIYUrI/NR8HWEJETImISRExqaurq8xqzcysCY3O0jkSOF/S/ryR4CcBY4G9BlqxJAG/Be6OiOOGGqiZmQ1Nvwk/Ip4E3i9pe2CzPPniiLii5Lq3AQ4Abpc0I0/7RkT8pelozcysaWXOw58KTB3siiPiatJ5+2ZmNgK4iwQzs5pwwjczqwknfDOzmnDCNzOrCSd8M7OacMI3M6sJJ3wzs5pwwjczqwknfDOzmnDCNzOrCSd8M7OacMI3M6sJJ3wzs5pwwjczqwknfDOzmnDCNzOrCSd8M7OacMI3M6sJJ3wzs5pwwjczqwknfDOzmqgs4Us6SdJsSXdUVYaZmZVX5R7+ycDOFa7fzMwGobKEHxFXAc9UtX4zMxuc0e0OQNJkYDLAhAkT2hyNjXTdR13clnJnHbtbW8ptV32hfXVup6X989X2g7YRMSUiJkXEpK6urnaHY2a21Gp7wjczs+HhhG9mVhNVnpZ5OnAtsLGkRyQdWlVZZmY2sMoO2kbEflWt28zMBs9NOmZmNeGEb2ZWE074ZmY14YRvZlYTTvhmZjXhhG9mVhNO+GZmNeGEb2ZWE074ZmY14YRvZlYTTvhmZjXhhG9mVhNO+GZmNeGEb2ZWE074ZmY14YRvZlYTTvhmZjXhhG9mVhNO+GZmNeGEb2ZWE074ZmY1UWnCl7SzpHslzZR0VJVlmZlZY5UlfEmjgF8BuwCbAvtJ2rSq8szMrLEq9/C3BGZGxAMR8QpwBrBHheWZmVkDoytc9zrAw4XxR4D39V5I0mRgch5dIOneQZazOvBUUxGOLK7HyLFEHfTDNkUyNEPaFiOozkvDZwoa1GOI7/V6ZResMuGrj2mxxISIKcCUpguRpkfEpGZfP1K4HiPH0lAHcD1GmpFQjyqbdB4B3lIYXxd4rMLyzMysgSoT/o3ARpLWlzQW2Be4sMLyzMysgcqadCJioaQvApcCo4CTIuLOCopqujlohHE9Ro6loQ7geow0ba+HIpZoVjczs6WQr7Q1M6sJJ3wzs5ro6ITfSV03SJol6XZJMyRNz9NWlXS5pPvy8yp5uiT9PNfrNklbtDHukyTNlnRHYdqg45Z0YF7+PkkHjpB6fFvSo3mbzJC0a2He13M97pX04cL0tn3mJL1F0lRJd0u6U9IReXpHbY8G9ei07TFO0g2Sbs31+E6evr6k6/N7e2Y+aQVJy+bxmXl+90D1a7mI6MgH6UDw/cAGwFjgVmDTdsfVIN5ZwOq9pv1f4Kg8fBTwwzy8K3AJ6VqGrYDr2xj3dsAWwB3Nxg2sCjyQn1fJw6uMgHp8G/hKH8tumj9PywLr58/ZqHZ/5oC1gC3y8IrAP3KsHbU9GtSj07aHgBXy8Bjg+vw+nwXsm6cfD/x7Hv48cHwe3hc4s1H9qoi5k/fwl4auG/YATsnDpwB7Fqb/PpLrgJUlrdWOACPiKuCZXpMHG/eHgcsj4pmIeBa4HNi5+ujf0E89+rMHcEZEvBwRDwIzSZ+3tn7mIuLxiLg5D88H7iZd0d5R26NBPfozUrdHRMSCPDomPwLYATgnT++9PXq20znAjpJE//VruU5O+H113dDoQ9NuAVwm6Sal7iQA1oiIxyF9CYA35+kjvW6DjXsk1+eLubnjpJ6mEDqgHrk5YCJpr7Jjt0evekCHbQ9JoyTNAGaTfjjvB+ZGxMI+Yno93jz/OWA1hrEenZzwS3XdMIJsExFbkHoP/YKk7Ros22l169Ff3CO1Pr8GNgQ2Bx4Hfpynj+h6SFoBOBc4MiLmNVq0j2kjuR4dtz0iYlFEbE7qSWBL4O0NYmp7PTo54XdU1w0R8Vh+ng2cT/pwPNnTVJOfZ+fFR3rdBhv3iKxPRDyZv7CvAb/hjb/RI7YeksaQkuSpEXFentxx26OvenTi9ugREXOBaaQ2/JUl9VzUWozp9Xjz/JVIzYzDVo9OTvgd03WDpOUlrdgzDOwE3EGKt+cMiQOBP+XhC4FP57MstgKe6/nLPkIMNu5LgZ0krZL/pu+Up7VVr+Mie5G2CaR67JvPqlgf2Ai4gTZ/5nJ772+BuyPiuMKsjtoe/dWjA7dHl6SV8/BywAdJxyOmAnvnxXpvj57ttDdwRaSjtv3Vr/WG64h2FQ/SWQj/ILWbfbPd8TSIcwPSUfhbgTt7YiW13/0duC8/rxpvHP3/Va7X7cCkNsZ+Ounv9aukPZFDm4kbOIR0MGomcPAIqccfcpy3kb50axWW/2aux73ALiPhMwdsS/qrfxswIz927bTt0aAenbY93gXckuO9A/hWnr4BKWHPBM4Gls3Tx+XxmXn+BgPVr9UPd61gZlYTndykY2Zmg+CEb2ZWE074ZmY14YRvZlYTTvhmZjXhhG9tJ2kvSSFpkzbHcaSkNw3yNf+Se0qckc/FLs5b0Gv8IEm/bEWsZs1wwreRYD/gatKFM+10JDCohA/sD/woIjaPiBcriMmsZZzwra1yfyrbkC6E2rcw/QOSrpR0lqR/SDpW0v65//HbJW2Yl1tP0t9zh1t/lzQhTz9Z0t6F9S0orHeapHMk3SPp1Hwl6uHA2sBUSVP7iHNHSbfksk/KV0V+BtgH+JakUwdZ70Zx/1zS/0p6oFcdvirpxvyanr7Xv6fcn3we/0Gui9kSnPCt3fYE/hoR/wCe0eI3e3k3cATwTuAA4G0RsSVwInBYXuaXpC6A3wWcCvy8RJkTSXvzm5KuitwmIn5O6r9k+4jYvriwpHHAycAnI+KdwGhSH+cnkq4I/WpE7N9HOcvpjZt5zAC+W5jXKO61SFejfgQ4NsewE+mS+y1JnYu9R6kDvt+SL9eXtAzpR3NQPz5WH0741m77kfoxJz/vV5h3Y6S+018mXXZ+WZ5+O9Cdh7cGTsvDfyAlyoHcEBGPROqka0ZhXf3ZGHgw/yhB6tO8UW+nPV7MTT2bR+pR8VuFeY3iviAiXouIu4A18rSd8uMW4GZgE2CjiJgFPC1pYs/8iHi6RGxWQ6MHXsSsGpJWI90sYjNJQbqDUUj6Wl7k5cLirxXGX6P/z25PXyELyTs0ubOusYVliutd1GBdr4c6wPxWKPZxUoxPhef/jogT+njticBBwJrASZVEZ0sF7+FbO+1NatZYLyK6I+ItwIOU20vv8b+80fa/P+ngL6RbSr4nD+9BuhvRQOaTbrnX2z1At6S35vEDgCsHEWNf+ou7P5cCh+RjHkhaR1LPjU7OJ92x6r2MgF5IbeRywrd22o+UrIrOBf5tEOs4HDhY0m2kRNxzAPM3wL9KugF4H/B8iXVNAS7pfdA2Il4CDgbOlnQ76R/G8YOIcTBx9ykiLiM1AV2bYziH/OMU6fZ+U4GzImLREOOypZh7yzTrcPlg7c3AJyLivnbHYyOX9/DNOpikTUn9q//dyd4G4j18M7Oa8B6+mVlNOOGbmdWEE76ZWU044ZuZ1YQTvplZTfx/5nVWkEbiaF0AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "# Let's look at the distribution of participant holdings at the start of the sim\n", "plt.hist([ network.nodes[i]['holdings'] for i in participants])\n", "plt.title('Histogram of Participants Token Holdings')\n", "plt.xlabel('Amount of Honey')\n", "plt.ylabel('Count of Participants')\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Text(0.5, 1.0, 'Participants Social Network')" }, "metadata": {}, "execution_count": 13 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFPCAYAAACcdb3UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdUVMfbB/Bn6VVY2KU3sdAVwYKFIEajYokoYgE1VoixvCImscQSjQU1aqKoUaPRiLElmoC9d0UU0agoooigKKBUKbv3+/5B2J8rbYEFVpzPOZzj3jJ37srhuTN35hkeABDDMAzDMA1KqaErwDAMwzAMC8gMwzAMoxBYQGYYhmEYBcACMsMwDMMoABaQGYZhGEYBsIDMMAzDMAqABWSGkdHixYtp3LhxVR4XHBxMCxcurIcaKZbz58+TnZ2dTMdu27aNunTpUsc1qh88Ho8SEhIauhpMI8ACMtNo2NjYkKamJuno6JCxsTGNHj2acnNza1TWmTNnyMLCQmrbrFmzaPPmzVWeu2HDBvruu+9qdN3qmD9/PgUGBtbo3Ddv3tCYMWPIxMSEdHV1qWXLlrRs2bJa1cfT05Pi4+NrVQYR0ZMnT4jH41GfPn2ktgcGBtL8+fNlKsPGxoZOnDhR67owTH1iAZlpVP755x/Kzc2lGzduUHR0NC1atKjaZYhEojqomWKZNm0a5ebm0r179ygrK4v+/vtvatasWUNXS8qVK1fo4sWLDV2NCn0MvydM/WIBmWmUzM3NqXfv3nTnzh0iItq6dSs5ODiQrq4u2dra0saNGyXHlraGly1bRiYmJjRs2DDq3bs3paamko6ODuno6FBqamqZFumFCxeoU6dOpK+vT5aWlrRt2zYiIvriiy9ozpw5UmUvXryYBAIB2djY0M6dOyVlREVFUZs2bahJkyZkaWkp1QIsbSn+9ttvZGVlRQKBgH744QciIjpy5AgtXryYdu/eTTo6OtS6dWsiKukKtrW1JV1dXWratKnUtd4VHR1Nw4cPJz6fT0pKSmRvb09+fn6S/ZcuXaJ27dqRnp4etWvXji5duiTZl5mZSaNHjyYzMzPi8/k0YMAAqXsttXTpUmrWrBnp6uqSo6Mj/fXXX7L/BxLR119/LfkeyxMZGUmurq6kr69PnTp1ori4OCIiGjFiBD19+pT69etHOjo6FBYWRqNGjaKVK1cSEVFKSgrxeDwKDw8nIqKEhAQyMDCg0qSFmzZtoubNm5OBgQH179+fUlNTJdfk8Xi0bt06atGiBbVo0aJMnS5cuECWlpZ0+vTpat0rwxARERimkbC2tsbx48cBAE+fPoWjoyPmzJkDAIiMjERCQgI4jsOZM2egqamJmJgYAMDp06ehrKyMr7/+GgUFBcjPz8fp06dhbm4uVf68efMQEBAAAEhKSoKOjg4iIiJQVFSE9PR03Lx5EwAwatQozJ49W6rsadOmoaCgAGfOnIGWlhbu378v2R8XFwexWIxbt27ByMgIf/31FwDg8ePHICKMGzcO+fn5iI2NhZqaGu7evVumPgCQm5sLXV1dSdmpqam4c+dOud/V2LFj4ejoiF9//RUPHjyQ2peRkQF9fX1s374dxcXFiIiIgL6+PtLT0wEAPj4+8Pf3R2ZmJoqKinDmzBnJvbz7ne3ZswcpKSkQi8X4448/oKWlhdTUVADA1q1b0blz53LrVnrfOTk5MDMzk/yfBgQEYN68eQCAmJgYCIVCXLlyBSKRCNu2bYO1tTUKCgrK/C4AwJYtW9C3b18AwM6dO2Frawt/f3/Jvv79+wMATp48CUNDQ8TExKCgoACTJk2Cp6enpBwiQvfu3ZGRkYH8/HzJtocPH+LIkSOwsLDA1atXy70vhqkKC8hMo2FtbQ1tbW3o6enBysoKX375peSP5vs+//xzrF69GkBJIFFVVcXbt28l+6sKyIsXL8aAAQPKLbu8gJybmyvZP3jwYHz//fflnjt16lT83//9H4D/Babk5GTJ/nbt2mHXrl1l6gOUBGQ9PT3s27evwvsulZ+fjx9++AFubm5QUVFBs2bNcOjQIQDA9u3b0a5dO6njPTw8sHXrVqSmpoLH4yEzM7NMmeV9Z+9q3bo1Dhw4AEC2gFxcXIx169ahQ4cOAKQDcnBwsORhq1TLli0lDwfvB+SEhATo6elBLBYjKCgIGzZskNR15MiRWLlyJQBgzJgxmDFjhuS8nJwcqKio4PHjxwBKgu/JkyelrktEWLx4MaysrBAXF1fh/TNMVViXNdOoHDhwgN68eUNJSUkUHh5OmpqaRER0+PBh8vDwIAMDA9LX16dDhw5Renq65DyhUEgaGhoyXyc5OVnmd658Pp+0tbUln62trSXdoFevXiVvb28SCoWkp6dHGzZskKoXEZGJiYnk31paWhUOVNPW1qbdu3fThg0byNTUlPr06UP3798v91hNTU2aNWsWxcTEUEZGBvn7+9PgwYMpMzOTUlNTydraWup4a2trSklJoeTkZDIwMCA+n1/lfW/fvl3Spayvr0937twpc29VGT9+PKWlpdE///wjtT0pKYlWrlwpKVtfX5+Sk5Olupff1axZM9LR0aHY2Fg6f/489e3bl8zMzCg+Pp7Onj1LXl5eRERl7l1HR4cMDQ0pJSVFss3S0rJM+atXryZ/f39ycXGp1v0xzLtYQGYavcLCQho0aBCFhoZSWloavXnzhnx8fCTvDIlK3g2+6/3P77O0tKRHjx7JdP3Xr19TXl6e5PPTp0/JzMyMiIiGDx9O/fv3p+TkZMrKyqLg4GCpelWmvDr27NmTjh8/Ts+fPyd7e3saP358leU0adKEZs2aRXl5efT48WMyMzOjpKQkqWOePn1K5ubmZGlpSZmZmfTmzZtKy0xKSqLx48fT2rVrKSMjg968eUPOzs4y31spVVVVmjdvHn333XdS51paWtLs2bPpzZs3kp/8/HwaNmwYEZX/3Xh5edG+ffuoqKiIzM3NycvLi7Zv306vX78mV1dXIqIy956Xl0cZGRlkbm4u2VZe2Xv37qUDBw7Q6tWrq3V/DPMuFpCZRq+oqIgKCwtJKBSSiooKHT58mI4dO1bpOcbGxpSRkUFZWVnl7g8ICKATJ07Qnj17SCQSUUZGBsXGxlZY3rx586ioqIjOnz9PkZGRNHjwYCIiysnJIQMDA9LQ0KBr165RRESEzPdlbGxMT548IY7jiIgoLS2N/v77b8rLyyN1dXXS0dEhZWXlcs9duHAhRUdHU1FRERUUFNCaNWtIX1+f7OzsyMfHhx48eEAREREkEolo9+7ddPfuXerbty+ZmppS7969aeLEifT69WsqLi6mc+fOlSk/Ly+PeDweCYVCIioZVFc6wK66RowYQYWFhXTkyBHJtvHjx9OGDRvo6tWrBIDy8vIoKiqKcnJyJN9NYmKiVDleXl60du1a+uSTT4iIqGvXrvTzzz9Tly5dJN/T8OHDaevWrRQbG0uFhYU0a9Ys6tChA9nY2FRaRzMzMzp58iT99NNPksFiDFNdLCAzjZ6uri799NNP5O/vT3w+nyIiIqh///6VnmNvb0/Dhg0jW1tb0tfXL9MVamVlRYcOHaKVK1eSgYEBubq60q1bt8oty8TEhPh8PpmZmVFAQABt2LCB7O3tiYgoPDyc5s6dS7q6uvT999+Tv7+/zPdVGtQNDQ3Jzc2NOI6jlStXkpmZGRkYGNDZs2crDA48Ho9Gjx5NAoGAzMzM6Pjx4xQVFSXpoo2MjKSVK1eSoaEhhYWFUWRkJAkEAiIi2rFjB6mqqpK9vT0ZGRmV2yp0dHSk6dOnU8eOHcnY2Jhu375NnTt3lvne3qWsrEwLFiygzMxMyba2bdvSpk2baNKkScTn86l58+aSUe5ERDNnzqRFixaRvr4+rVixgohKAnJOTo4kIHfp0oXy8/Mln4mIPv30U1q4cCENGjSITE1N6dGjR/THH3/IVE8rKys6efIkLVu2TKb56gzzPh6q24fEMIzMzpw5Q4GBgfTs2bOGrgrDMAqOtZAZhmEYRgGwgMwwDMMwCoB1WTMMwzCMAmAtZIZhGIZRACwgMwzDMIwCYAGZYRiGYRQAC8gMwzAMowBYQGYYhmEYBcACMsMwDMMoABaQGYZhGEYBsIDMMAzDMAqABWSGYRiGUQAsIDMMwzCMAmABmWEYhmEUAAvIDMMwDKMAWEBmGIZhGAXAAjLDMAzDKAAWkBmGYRhGAbCAzDAMwzAKgAVkhmEYhlEALCAzDMMwjAJgAZlhGIZhFAALyAzDMAyjAFhAZhiGYRgFwAIywzAMwygAFpAZhmEYRgGwgMwwDMMwCoAFZIZhGIZRACwgMwzDMIwCYAGZYRiGYRQAC8gMwzAMowBYQGYYhmEYBcACMsMwDMMoABaQGYZhGEYBqDR0BRimUXv5kmjbNqK4OKKsLCI9PaJWrYhGjyYSChu6dgzDKBAeADR0JZgPFAs2FYuOJlqyhOjw4ZLPBQX/26epSQQQ9e5NNHMmUbt2DVNHhmEUCgvITPWxYFO59euJQkOJ3r4t+S4qwuOVfF8rVhB9+WX91Y9hGIXEAjJTPSzYVK70+8nPl/0cLa2P73tiGKYMFpAZ2bFgU7noaKKuXav3/ZTS0iI6e5aobVu5V4thmA8DC8iMbFiwqdrAgUQHDlTec1ARHo/I15do/37514thmA8CC8iMbFiwqdzLl0TW1tLv06tLQ4Po6VM2II5hPlJsHjJTtZcvSwZw1fTZDSA6dIjo1Sv51kuRbNtW+zJ4PPmUwzDMB4kFZKZqLNhI5OXlkZ2dHU2ePJliY2NJ0sEUF1e71jFRyUC527drX0mGYT5ILDEIUzUWbCTU1dXp4cOH9OjRI9q0aRNpamqSvb09bc3IIHt5XOD1a3mUwjDMB4gFZKZqWVnyKecDCTYikYju3LlDN27coH///ZcePnxIycnJlJaWRllZWQSAxGIxicViKiwspJs3b9Lb5s3lc3E+Xz7lMAzzwWEBmamanp58ylGQYJOWlkbR0dF069Ytio+Pp8ePH1NqaiplZmZSbm4uiUQi4vF4pKmpSfr6+mRsbEzW1tbUvXt3cnZ2pkWLFtGjR49IU1OTFi1aRFOmTCHllSsJ8+YRrzY9CZqaRC4u8rtRhmE+KCwgM1Vr1apkhHQtgk0Bj0dnU1NJ4+xZ8vDwIHV1dTlW8H+KioooLi5O0rpNSEig5ORkevXqFWVlZVFBQQEBIFVVVdLV1SVDQ0MyNzcnLy8vcnBwIFdXV3J3dycDA4MKr3H8+HESCAS0c+dOsrW1pbS0NPr1+XOaVlBAGrWpPED0xRe1KYFhmA8Ym/bEVE0OU3rEqqq05Msv6Z8rV+ju3bvk4eFB3bp1o27dupG7uzupqMj2bJiSkkLR0dEUFxdH8fHx9OTJE3r+/DllZmZSXl4eiUQiUlJSIk1NTeLz+WRsbExWVlbUsmVLcnFxIXd3d2rZsiUpKdV8PCMA4vF4lJCQQCtXrqTdu3fT0KFDKSwhgbRPnCAemxrGMEwNsIDMyEaO85CzsrLo3LlzdOrUKTp16hQlJSWRp6cndenShczMzCg7O5vu3btHjx49krRus7OzqeC/BwI1NTXS1dUloVBI5ubmZGtrK9W6bdKkiTzvvIzo6GgKCwujM2fOUHBwME2ePJmMjIzowOzZ9NnixaRVk0I/luQpDMNUiAXkutAYV0GqRaYuaGkRTp+mZGNjSev2wYMH9OTJE3rx4gVlZGRQfn4+cRwnOUdTU5OMjIzI3t6e3N3dqVWrVtS2bVtq2rRprVq3NQWAjh49SsuWLaPExEQKCQmhsWPHko6ODhUVFdG0adPo5MmTdGboUDJZvrza6UWncRyddXCgoKAg6t27N1lZWdXdzTAMo5BYQJanxr4KUg1yWecTUQgRbfzvs7KyMuno6JCZmRlZWFhQs2bNyNHRkdq0aUNubm6kpaVFz549o9OnT9OpU6fo5MmTJBaLJd3b3bp1I2tr67q4u3IVFxfT7t27KSwsjHg8Hn399dfk7+9PqqqqRFQyQMzPz4/4fD7t2LGD9PT0ZF6AAzweFRBR3KhRFJqQQBcuXCB1dXXi8XhkbGxMR48eJTs7u3q6U4ZhGhwY+QgPB7S0AB4PKPkzXP4Pj1dyXHh4Q9dYZmKxGA8fPsSuXbtwoFcvvFVWhqiyeySCiAj5Skr4Vl8fFhYWICIQEVRUVKCkpIQnT57IdG2O45CQkIBffvkFQ4cOhZGREWxtbTFu3DhERETg+fPndXLPOTk5WLVqFSwtLeHt7Y3Dhw+D4zipY65duwZLS0vMnTsXYrFYuoDoaGDgQEBDA9DUlP5+NDVLtg8ciPidOyEUCrFjxw5oaWmBiKCkpIQWLVogKyurTu6NYRjFxFrI8vCBr4KUnZ1NMTExFBsbK3l3m5KSQunp6ZSTk0NFRUXE4/FIXV2dmjRpQl11dGhyXh51SE8nUlIi1eJiSVmcujoVFRaSSv/+dL1HD+o4eTKpqKiQWCyWDIb69ttvafHixTWqKwC6e/eu5P3zmTNnyMzMTNJ67tq1K/FrMb3q5cuX9NNPP9HGjRvJ29ubZsyYQe3K6c3Yvn07TZ8+nX755Rfy9fWtuMBXr0peX9y+XTIPm88vmdr0xReS1xdr1qyhnTt30pMnTyg9PZ2UlJTo//7v/2j58uXE4/FqfC8Mw3xYWECuLQVfBYnjOIqPj6eYmBi6ffs2PXz4kJ4+fUovXrygN2/e0Nu3b4njOFJRUSFtbW0yMDAgU1NTsrGxITs7O2rdujW5u7uThYVF2cIrCDYjT52i9n36UHBwMOnq6koGYxER6ejokK6uLu3atYu8vLxqfX9isZhiY2Ml3duXLl2ili1bSgJ0ly5dSEdHp8pySkdM//HHHzR06FCaPn06NS8n2UdxcTHNmDGDoqKi6MCBA+Tk5FTrewBAffr0oZycHLp9+zYdO3aMgoODqWPHjvTTTz+RsrJyra/BMIziYwG5tuS8CtKNGzfoxx9/pG3btsk0Fej169d0/fp1Sev28ePHlJKSQhkZGZSTk0PFxcXE4/FIQ0OD9PT0yMjIiCwsLKh58+bk5OREbm5u1KpVK1JTU6t+/Stw5coVGjp0KD18+JB8fHzoxIkTRFSSdvL+/fv08OFDGjFiBE2fPp1CQ0Pl2gosKiqia9euSVrQ169fJ1dXV0mA9vDwIA2N/80Wfn/E9KRJk8jY2Ljcsl+9ekVDhgwhdXV1ioiIqFVL/H0vX76k1q1b07p162jgwIGUnZ1NAwYMIKFQSNu3b6+zedsMwygOFpBrQ45L7hXo6tKcOXMoPDycRCIRJSQkkJmZGd27d49iYmLozp07UikcS1u3AEhFRYV0dHTI0NCQTE1NqWnTpmRvb0+tW7emtm3bVhhg6pK3tzeNHTuWsrKyaPLkyeTu7k5Pnz6lc+fOkZ2dHT19+pT8/f3J1NSUtm3bVjIYqg7k5+fTpUuXJAH633//pQ4dOpCFhQXFxcVReno6TZ8+XTJiuiI3b94kX19fGjZsGC1atKhOWq1Hjx6lcePGUWxsLBkaGlJBQQEFBARQVlYW/fXXX6Srqyv3azIMo0Aa5tV1I7FsWcngnCoGOFX2I1ZXx5FPP4WWlhZ4PJ5k8JOysjKICDweD1paWjA1NYWrqyv69euHkJAQbNmyBbGxsSguLm7ob6FcR44cgZOTE168eIEff/wRYrEYW7ZsQdOmTSUDsQoLCzFp0iQ0b94csbGxdV6noqIibNy4EdbW1jA0NISVlRWaNGmCPn36YOXKlbh582bZwVkAIiIiIBAIsHv37jqvY0hICAYMGCAZQCYSiRAUFAR3d3e8fPmyzq/PMEzDYQG5NgICahWMS392a2hIRtcSEVRVVfH1118jPT29oe+wxjiOQ5s2bfD3339LbZ8/fz7c3NyQnZ0t2VYa8LZu3VondSkdMW1lZVVmxPSrV6+wd+9efPnll7Czs4OhoSEGDRqEdevW4c6dOwgNDUXTpk1x69atOqnb+woKCtCmTRts2LBBso3jOHz33Xdo0aIFHj9+XC/1YBim/rGAXBt9+8olIKNvX+Tm5mLnzp3o3LkzeDwefvzxx4a+u1rbvXs3OnbsKDVdiOM4jBs3Dr169UJRUZFk+507d2BnZ4fx48fj7du3crl+Wloa5syZA4FAgMGDB+PatWtVnvPs2TPs2LEDw4cPh4aGBtTV1eHn54ctW7bUWzC8f/8+BAIB/v33X6ntP//8MywsLBAXF1cv9WAYpn6xgFwbcmohY8QIqWLT0tKQk5PTQDclPyKRCM2aNcO5c+ekthcXF8PHxwejR4+WCtbZ2dnw9/eHm5sbEhMTa3zdhw8fIjg4GPr6+ggODsbDhw+rdX5cXBxsbW0REhKC+/fvY9OmTRg2bBiMjY3rZQ40AGzatAkuLi5lHk527doFIyMjnD9/vs6uzTBMw2ABuTbk8A4ZmppAWFhD30md2bhxI3r37l1me05ODtq2bYu5c+dKbec4DqtXr4aRkREiIyOrda1r167Bz88PAoEAc+bMwYsXL6pd371790IgEOD3338vs4/jOPz777/4+eef4evrCz6fD0dHR0yaNAl//vknMjIyqn29inAcBz8/P0yZMqXMvqNHj0IoFJZ5HcAwzIeNBeTaSEurfUDW0AAa8WCdt2/fwtTUtNxBW2lpaWjWrBl++eWXMvsuXrwICwsLzJ49GyKRqMLyOY7D4cOH4e3tDSsrK6xevbpGvQsikQizZs2ClZUVYmJiZD4nJiYGy5cvR+/evaGrqws3NzeEhobi0KFDUu/JayIzMxNWVlblPphcvXoVxsbGdfbenWGY+scCcm35+ladLrOiHx6vJL1iIxcWFoZhw4aVu+/BgwcwMTEpN+ikpaWhW7du+PTTT8uMMC4qKsKOHTvg4uICFxcX7NixQ+qddHW8fv0affr0gZeXF9LS0mpURmmdLl68iIULF6Jr167Q1tZGp06dMGfOHJw6dapG78bPnTsHExMTpKamltl37949WFtbI6wR97AwzMeEBeTaunatJDd1TQKyllZJzuNGLisrC4aGhkhISCh3/5UrVyAQCModdFXacrW0tMSlS5eQk5OD1atXlztiuibu3r2LFi1aYPLkyTUO6BXJz8/HiRMnMGvWLHh4eEBHRwfdunXDokWLcOnSJZmvN3fuXPTo0aPcKVnJyclwdHREaGhorb4HhmEaHgvI8lC6sER1g/EHtMBEbc2aNQvBwcEV7j948CBMTEwqHIC1fft2aGtrQ1tbG35+fjKNmK7KgQMHIBQK8euvv9a6LFlkZWUhMjISISEhcHV1RZMmTeDj44MVK1bgxo0b5QZcoGQQXKdOnbB8+fJy92dkZKBjx44YNWqU3B8qGIapPywgy4uMqz1x/632NFNfH0OHDkV8fHxD17xepKWlgc/nVzoyef369WjevLlU9/TDhw/x5Zdfgs/nY/jw4XB0dIS/v3+t3s+KxWLMnz8fFhYWuHr1ao3Lqa1Xr15h3759mDhxIuzt7WFgYICBAwdi7dq1uHv3rlSL9/HjxxAIBLh+/Xq5ZeXl5cHHxwd9+/ZFXl5efd0CwzByxAKyPFWx5F6xigqumJsD0dFwdHQEEUFdXR1ubm74/fffG32X41dffYVvv/220mNmzZqF9u3b4/z58xg8eHCZEdNv377FuHHjYG9vX2aeriyysrLw+eefo1OnTnU6bakmUlJS8Pvvv2PMmDGwtraGiYkJhg8fjs2bNyMxMRG7du1CixYtKhy0VlRUhMDAQHTu3BmZmZm1q0xaWsksgoCAkvn2AQElnxvxAESGaWgsINeFly9LpjKNGFHyx2zECCAsDDmJiRAKhfj333+xZs0aqKqqojRVppqaGpKTkxu65nUqMTERBgYGePPmTbn7OY7DoUOHYGJiAg0NDaxYsaLC4PPrr79CIBAgIiJC5uvHx8fDwcEBQUFBKCwsrNE91KfExERs3rwZw4cPh4mJCWxsbNCiRQt4eXkhJSWl3HPEYjFCQkLg7OyMZ8+eVf+i166VDFTU0Cg7g6B0HWdf35LjGIaRKxaQ69nixYsxfPhw3Lt3T7IgvbKyMs6cOdPQVasXAQEBWLJkidS2oqIi/P7772jVqhVcXFywdetWdO/eHUFBQZX2Gty8eRPNmjXDpEmTqgywUVFREAqFUikpPyQcx+Hu3btYuXIltLW1oaOjA3t7e0ycOBH79u2TSrPKcRyWLVsGGxsb3L9/X/aLyPjaBf+9dvmYxkAwTH1gAbmeZWdnQygU4t69exAIBDA2NsaAAQPQr18/hV0oQp7i4uJgYmKC/Pz8SkdMZ2dnw9XVFYsWLaq0vNevX6N///7w8PDA06dPy+znOA6LFy+GmZkZLl68WCf3VN+io6MhEAgQGRmJFStWwMfHB02aNIGrqytCQkIQGRmJrKwsbNmyBSYmJoj+byT/b7/9hn379pVfKBuYyDANjgXkBrBw4UKMGDEC586dw4sXL1BUVITPPvsM48ePb/TvkQGgR48e6N27NwQCQaUjplNTU2FjY4Nt27ZVWp5YLMbSpUthbGyMY8eOSbbn5OTAz88P7du3r1n3rQILCwtD586dJQ9x786B9vb2hra2Njw8PODn5wc9PT1ERkaiadOmUFVVxeLFi6V/z9jUPYZRCCwgN4A3b95AIBBITfHJzs6Gm5sbFixY0IA1q1ulI6Z1dXWhq6uLe/fuVXnO3bt3YWRkhKNHj1Z57OnTp2Fqaorvv/8eDx8+hIuLC0aPHi23xSoUiVgsRvfu3TFv3rxy9+fn5+PkyZOYPXs2nJycULqUJxFBQ0MDX3zxxf96ZFhyG4ZRCCwgN5D58+dj9OjRUtueP38OW1tbbN68uYFqVTeio6PLjJj29PSUeUDW+fPnIRAIZEppmZKSAicnJ6ipqWHZsmWNuschNTUVxsbGMi00sWjRIskAwtKf9u3bs/SvDKNAWEBuIJmZmTA0NMSjR4+ktleWSvJD8m6OaUtLS6xatUpqxHRUVBRatWolc8Dct28fzMzMKl0CkeM4LF++HMbGxvD394eNjY3k/Wlj9ffff8Pa2rrKaU7Tp0+XDCB0cHDA0qVLcenSJbZACsMoEBaQG9BK7EgzAAAgAElEQVScOXMwbty4MtuvXLkCoVCIK1euNECtauf9EdMV5ZjmOA4uLi6IioqSuew1a9bA3t6+3FWV8vLyMHz4cLi5uSEpKQnA/1Zu2rBhQ6NuKU+aNAn+/v6V3mNOTg4yMzPx4sULtGnTBl9++WXJoh11tIQowzDVxwJyA0pPT4eBgQGePHlSZl9kZCRMTEw+mExe746Y7tq1q0w5pnfu3AlPT89qXSc0NBSdO3dGfn6+ZNuTJ0/g6uqKwMBAqe1AydxjZ2dnjBw5stFmsMrPz4ezszO2bNki0/FZWVnw9vaGn58fRD4+8gnIffvW8V0yTOPHAnIDmzlzZoU5njdt2gRbW9saretbX9LS0jBnzhzJiOnqpKIsLi5G06ZNceHCBZnPEYvFGDp0KAYOHAiRSIRTp07BxMQEq1atqvABIDc3F4GBgXBxccGDBw9kvtaH5M6dOxAIBDLPO3779i0GDRqEY8bGrIXMMAqCBeQG9urVK/D5/HLn0ALAggUL4ObmVuu1deXt3RzTwcHBNQ504eHh6NevX7XOKSgogLe3Nz755BMYGRnhxIkTVZ7DcRzCw8MhFArx559/1qiuii48PBxt2rRBQUGBTMeLRCLs69ABb2s6wpq9Q2YYueIBADEN6uuvv6b8/Hxau3ZtmX0AKCgoiJKSkigyMpJUVVUboIb/c/36dQoLC6NTp05RcHAwTZ48mYyNjWtc3tu3b6lp06Z04sQJcnZ2lumcgoICGjNmDP3111/0f//3f7RkyRKZrxcdHU2DBw+mwYMH05IlS0hFRaXsQS9fEm3bRhQXR5SVRaSnR9SqFdHo0URCoczXqm8AyNfXl5o3b04rVqyQ7Zy0NBKZm5OqWFzzC2toED19qtDfDcN8EBr2eYABgBcvXoDP51eYvKK4uBj9+vXDyJEjG2RwUnkjpuXZYl+8eDECAwNlOjY5ORnt2rXDkCFDEB8fD0tLS+zcubNa10tPT0evXr3wySefIDU19X87GkEe51evXsHc3FymedsSvr4Qs3nIDNPgWEBWECEhIZg6dWqF+/Py8tChQwfMnDmz3uok64jp2nrz5g0MDAwqndIElMxHNjU1lZpffPv2bQiFQpw6dapa1xSLxViwYAHMzMxK8og3ojzOJ0+ehJmZGdLS0mQ7gWXqYhiFwAKygkhNTQWfz5dusb3n1atXaNmyJX7++ec6rcv7I6YPHTpU5y3zb775Bl999VW5+ziOw/r162FkZITDhw+X2X/69GkIhULExcVV+7pHjhzBDF1dFKmqVj8QKXBQ/vbbb+Hj4yP7/1sNclmLNTTAKfB3wDAfGhaQFciUKVMQEhJS6TGJiYkwMzPD/v375X792oyYrq3nz5+Dz+eXadUVFBRg/PjxcHJykko1+r5du3bB0tKywsFxFbp2DeL3165uBK3DoqIitGvXDmvWrJH9pP+CMidDLwGnpYUgIhgYGOD777+XzP1mGKbmWEBWIM+ePSs3KL3vxo0bEAqFOHfunFyum5CQgC+//BL6+voICgpqsKlBwcHBmD17tuRzSkoKOnbsiIEDB8r0znr58uVwcnLC69evZb9oI87jnJCQAIFAgNjYWNlPio4GBg6EWE0N+e99L5ymJjh19ZJ7jo6W5MhWVVWFhoYGPDw8GmXecIapLywgK5ivvvoKM2bMqPK4Y8eOwcjICP/++2+Nr1WaY9rQ0BCzZ89u8PnOCQkJMDQ0RFZWFi5fvgxzc3MsXLgQYrFYpvM5jsOUKVPg5eUl29SfjyCP8/bt2+Hg4FD9pCgvX+LN7Nk4qKeHy0IhztnYYJe7O2y0tfH8+XMAwOrVq6Gurg4igrq6Onx9fRt1RjSGqWts2pOCSU5OptatW1N8fDwJS6eRVDANZ6+ODoUuW0YXL14kCwsLmcoHQEePHqWwsDBKSEigkJAQGjt2LOnq6tbdTVXDsGHDSCQS0dmzZ2nLli3Ur1+/ap0vFotpyJAhpKKiQhEREaSkpFTxwWFhRPPmERUU1LzCmppECxYQzZhR8zLqEAAKDAwkXV1d2rBhQ7XPz8zMpK5du1Jqair16NGD/vjjDzI1NaXLly8Tx3Hk6OhIpX9CLly4QG3btpX3LTDMx6NBHweYcgUFBZWMppZhGk68kxOG2NqW2007ffp0rFq1CoD0iGlnZ2ds3769TkZM10ZhYSH8/f2hrKyMW7du1bict2/fokuXLpg+fXrlB34keZzfvHmDpk2b1jghSnJyMlRUVGBgYACikmUcBQIBHjx4AEdHR0ydOhV//vknTExMatVjwzAfOxaQFdDjx48RoqUFTlOzyvebHI+HQhUVrGzRQqqbdtu2bdDQ0ICOjg7CwsLqdcR0TZQuydivXz/06NEDv/zyS63Ky8jIgIODA1avXl3xQX37yicgfwB5nC9fvgwjIyMkJyfX6HwDAwNoaWmBiCTvjUvTl5basWMHLCwskJiYKK9qM8xHhQVkRRQejgJl5WoFhbfKyvjFzQ1isRgxMTHQ1NSU/PF0dXVVuJWj3n14iI6OhqWlJebOnQuxWIyzZ8+iefPmUn/sa+LJkycwNzfH3r17yz/gI2khl1q0aBG8vLxq9L126tQJWlpaUFJSAhHhp59+QnFxcZnj1q1bB1tb2wqT3DAMUzEWkBVNLZI0vFVSwvf9+0NDQ0MSjIkIxsbGtQ5u8nTz5k1oaWnh+vXr+O2338rkl+Y4Dh07dsTu3bvlcq0KR6R/ZGsBi0QieHl54Ycffqj2uaNHj8bs2bORnZ2Ntm3bgs/nV7iQxdKlS+Hg4IBXr17Vtso1k5ZW8n8bEFDSexEQUPJZgQffMQzAArLiqcU0HI7Hw2EtLZiamuKzzz7Dp59+is6dO+OTTz7BmzdvGvrOJAYMGAAejwcNDQ3Y2Njgzp07ZY75+++/0aZNG7l0r5eOSL979670jo9glPX7nj59CiMjI1y+fLla5y1ZskTyTv7UqVOwtLSEiYkJrlWQRnTmzJlwd3ev39+7RpD6lPm4sYCsSOQQIDh1dbQ2M0NERET9112GVsmTJ08kU2V4PB5at25d7uAysVgMJyen6uVkrsRvv/0Ga2trpKSkSO9oxPOQK7J//340bdoUWVlZMp/z559/SlblEovFsLCwwJo1ayAQCHDs2LEyx3Mch6+++gqenp71sw51I0p9yny8WEBWJHLqQk0NCZF5WcJaq2arZPDgwZKudF1dXRARIiMjyy16+/bt6Nq1q9yq+sMPP6B169bSgegjzeM8YcIEBAQEyHz8v//+i5YtW0o+f/PNN5gxYwbOnTsHIyMj7Nq1q8w5YrEYI0aMQK9evVBYWCiXeperBmk/WVBmFBELyIpEjoOMzpw5A6FQWL0sTdVVg1aJvr4+rK2tMXXqVOzfv7/SwT9FRUWwtraudvdqRTiOQ3BwMLp37y4dIGrwB/2tkhJEa9fKpV4NIS8vD/b29ti+fbtMxxcUFEBdXV3Sm3Hnzh2YmZlBJBLh1q1bMDc3LzfHenFxMXx9feHn51fuILBa+0gfqJjGiQVkRSLnaTh79uyBubl5laso1Ug9tUp+/vlnDBgwQG7VFolE6N+/P0aMGCH1frpwzRrk8XhVLkPI/ZfHeY29PSZPniy3ejWE2NhYCAQCJCQkyHS8ra0t4uPjJZ/btGkj6YVJTExE8+bN8d1335V5719QUIAePXrgiy++kDnrmsw+wlcOTOPFArIikVML+YazM/bt24fExESsXr0adnZ2SE9Pl18967FVkpeXV/6ArFrIy8uDh4eH1FKW8+bNw9fdupX8gdbQKOluf7fempooVlHBNUtLIDoar1+/hr29PcI/8G7P1atXo3379jIlienduzf+/vtvyecff/wRo0aNknxOS0uDm5sbgoKCyozqz83NRadOnTBlyhT5zYP/CAflMY0bC8iKRA7vkIvV1HC0e3f069cPFhYW0NfXh6WlJczMzLB161bcu3ev9lOg6rlVsnDhQqk//PLw6tUrtGjRAuHh4Xjw4AEMDQ3/t1LUy5clU5lGjCjpbRgxAggLQ2Z8PPT19fHyvz/gCQkJMDY2xvHjx+Vat/rEcRx69+4t0zrbU6dOxfLlyyWfnz9/Dn19falBW1lZWejWrRsGDRpUJp/469ev4erqiu+++04+lf/Ipq0xjR8LyIpETqOs/by8MGDAAPTo0QMuLi6wtLSEvb09zMzMYGtrCx0dHXTq1AmTJk3Cr7/+itjYWNnTaDZAqyQzMxN8Pl/uS/w9evQIpqamcHV1lQo0lRk9ejSWLFki+XzmzBkYGRlVOCf3Q5CWlgZTU1OcPHmy0uPCw8Mxfvx4qW29evXCzp07pbYVFBTAz88P3t7eZUZyp6Wlwc7OTubvu1IfWWIXpvFjAVnR1LL1Wdy/P5o0aYJ3E4Ooq6sjPT0d3bt3R3BwMDIzM3H69GmsXLkSAQEBcHBwgKamJtzd3TF+/HisX78eV69eRX5+ftn6NVCrJDQ0FFOnTpXTl/w/S5YsgbKyssxLWV6/fh3W1tZSvQybN29G8+bNkZGRIff61ZcjR47AwsKi0lcbJ0+exCeffCK1befOnejVq1eZY0UiEYKDg9GmTZsyq4glJyfDxsYGGzdurF2lP6LUp8zHgQVkRSOH97NJSUnQ19eXBGR9fX2sX78eKSkpcHV1xaJFi8pcNjc3F5cuXcLatWsxZswYuLq6QlNTEy4uLhg5ciRWr16Nc+fOoWjIkAZplaSkpIDP58s1+1N2djbMzc0RFhYGY2NjqQFLlenQoQMOHjwotW369Onw9vZWuAU7qiMkJASff/55he94k5OTYWxsLLUtNzcXenp6kiUZ38VxHObNm4fmzZuXyW/98OFDmJub126+PGshM40MC8iKSA4jmK9fvw4tLS2oq6tj8+bNGDBgAPh8PsaMGQNzc3P8+uuvVVajoKAAMTEx2LRpE7788kt06NABUUpKDdYqGTduHObOnVvt8yoSEhKCL774AkBJK9fW1lamNaG3b9+Ozz77TGqbSCRC3759MX78eIVcvEMWBQUFaNOmTYUD1TiOg7a2dpnsWyNHjpSsKlaetWvXwszMrMwKXrdv34axsbHUQLFqYe+QmUaGBWRFJYfMQwcPHpRK/pCUlIRZs2bBwMAAampqmDNnTrXnhoqHD5dLQN6rqYmBAwdi6dKlOH36NHJycqq89oMHDyAQCGQ6tiq3bt2CUCiUDNACSkZau7u7V1n+27dvIRQKy7Sos7Oz4eLiUmlwUnT379+HoaFhuelMgZKpTu+nyzx+/Djc3NwqLXf37t0QCoU4e/as1PZr165BKBRW+f66XGyUNdPIsICsyKKjK5yGU6SqWrJ94MBqJzcoKCjA3LlzoaKiAiMjI/zwww9IS0uT7WQ5tEo4TU2kf/MNIiIiMHXqVHTs2BFaWlpwcXHB2LFj8csvv+DWrVvljgYfPHgwfvzxx2rd7/vEYjE6deqEDRs2SG3nOA5jx45F7969q+x6njlzZrnvtJ88eQJTU1NERUXVqo4NafPmzXBxccHbt2/L7BsyZAh27NghtU0kEsHc3LzKtZCPHz8OgUCAAwcOSG0vTWJTowQwbB4y04iwgPwheG8azsvevbFQTw8FNVzbttTBgwdhaGgIPz8/6OnpISAgAJcuXaq8y1UOrZICJSXMmzgRERERuH//PsRiMQoLCxEdHY21a9di5MiRsLOzg46ODj755BPMmDED+/btQ3JyMq5fvw5zc/MyU2qqY8uWLWjfvn25SSqKiorQu3dvjBkzptLvISkpCQYGBsjNzS2z7+LFixAKhbh9+3aN69iQOI7D4MGDy018Mnfu3HKnLc2YMQPffvttlWVHR0fDxMQEW7ZskdoeFRUFIyOjMt3aVWKZuphGhAXkD1SvXr3KtPBqYuPGjWjWrBnu37+P5cuXw9bWFm5ubtiyZUv5o6yBWq9I9bxTJ/zwww8YNGgQmjZtCh0dHXTp0gVTpkzB1q1bcevWLRQVFSEzMxNHjx7FwoUL0bdvXwiFQpiamkIoFGLQoEE4deoUsrOzq3W/6enpMDIyQkxMTIXH5OTkwN3dHfPmzau0rM8//7zCkcI7duyAjY2N7D0PCiYzMxNWVlb4559/pLbv3LkT/v7+ZY6Pi4uDpaWlTJm44uPjYWNjg6VLl0o99OzevRtmZmYyD66TYLmsmUaCBeQP1KVLl2BtbS2XpP1z585F27ZtkZOTA7FYjKioKPj4+MDQ0BDTp08vm1qxFq0SrpxWSWZmJk6ePIkVK1Zg+PDhsLe3h5aWFtq1a4egoCBs2LAB165dQ35+PhITE/Hdd9+Bz+ejY8eO0NbWhpOTE8aMGYONGzciNja20vfi48aNkynl5YsXL2Bra4tNmzZVeMyxY8fQqlWrClvSs2bNQufOnWvVmm9I586dg7GxMVJTUyXboqOj0bp163KPb9WqFU6dOiVT2c+ePYOzszOmTZsmFcQ3b94MKyur6s85Z6s9MY0AC8gfsO7du2Pz5s21Lqf03WmvXr2k3p0mJCQgNDQUhoaG8PHxQVRU1P/+eNZwQYavlJURFBSECxcuVNqaysnJwYULF/Dzzz9j9OjRaN26NTQ1NdGqVSuMGjUK1tbWWLRoETIzMxETE4Pw8HCMGjUK9vb20NHRgaenJ0JDQ7F3714kJSWB4zhcunQJZmZmMq/RGx8fDxMTkwrfB4vFYrRs2RLnz5+vcP/AgQMxcuTID3bk9dy5c9G9e3fJ/1VWVha0tLTK/b9bvnw5xowZI3PZmZmZ6Ny5MwIDA6V+71atWoUWLVrINOJdSnQ0uNKVx94bc5HP40GsplajMRcMU19YQP6AnTt3Dk2bNpXL3Nfi4mL4+Pjgiy++KBM88vLysGXLFri5ucHW1hbLly8vSYIhY6ukdEGG2OBgKCkpgcfjQUdHB3p6ejKvNgSUjG6Ojo7Gxo0b0bNnT2hra0NTUxN2dnYYNmwYli9fjpMnT+LJkyc4fvw4Fi1ahH79+sHIyAgmJiZo0qQJhgwZghMnTsi8FvDly5chEAjKjCwutXr1agwdOrTC83Nzc+Hm5oalS5fKfJ+KpLi4GJ06dULYO1ODTE1N/5dm9B2lc8UrfNVRjry8PPTt2xe9e/eWeh8/f/58tGrVCpmZmTKXtXLlSmhpaZWb+vT4Z5/hm2o8LDBMQ2AB+QPn7e2NrVu3yqWs3NxctG/fHrNnzy53P8dxuHz5MgIDA6Gnp4cxY8bg3o4dlS7IwGloYB8RJri54eXLl9DW1kZpwhJNTU1cuHChRnUVi8Wwt7fHkSNHEBcXh23btmHq1Knw9PSErq4ubGxsMHDgQCxatAhRUVEICQmBk5MTpk2bhi5dukBbWxuOjo4YPXo01q9fjxs3blTY1X3w4EGYmpqWuyrS69evoa+vX25ijFLJyckwNzfHX3/9VaN7bWiPHz+GUChE9H8tSy8vrwrzd/fo0QN//PFHtcovKirCqFGj4OHhIcl2xnEcpk2bBg8PD5mmuYWHh0NFRQU8Hq/cB4JHjx5BIBB80IlbmMaPBeQP3OnTp9G8eXO5rTX78uVLyaILlUlLS8MPP/wAS0tLeHh4YM+6dShevLjMggxcWhqICEpKSjAyMkLPnj1BRFBWVkaXLl1q9Q5869at6N69e5ntYrEY8fHx2LVrF2bMmAFPT0/weDwIhUL06dMH3333Hfbu3YuoqCiEh4dj9OjRcHR0hLa2Nrp06YKQkBDs3r0bT548kfQWhIeHo3nz5lLzlktNmDAB33//faV1vXbtGgQCAW7cuFHj+21If/zxB1q0aIGcnBxMmDAB69atK/e47du3o0+fPtUun+M4hIaGwtHREcn/zR7gOA7jxo1Dt27dyp2CVWrJkiXQ0tKSPOQ9ePCg3OM6d+5cZpAawygSHgAQ88ECQF5eXjRhwgQKDAyUS5mJiYnUpUsXCg8PpwEDBlR6rEgkosjISFq3bh3FxcXR2LFjKTg4mKysrCTHqKiokFgsJiIiJSUlUlJSon/++YfWr19PPB6P9uzZQ2pqatWuZ1FRETVr1oz++usvatu2bYXHDR06lGxtbSkoKIhu3LhBN27coJs3b9KNGzeosLCQ3NzcyM3Njezt7UlJSYlSUlLo2rVrdPXqVQJA7du3pw4dOtCdO3coISGBzp49S1paWpLy4+LiyMfHhx4/fkyqqqoV1mPPnj0UGhpKV69eJVNT02rfb0MbM2YMERE5OztTUlISrVmzpswxubm5ZGFhQQ8ePCAjI6NqX2P58uW0du1aOnr0KNnb25NYLKaAgADKz8+n/fv3l/l+b9y4Qe7u7sTj8QgA6enp0f79++nTTz8tU/b69evp3LlztGvXrmrXi2HqRYM+DjBycfz4cdjZ2dV+WcV3XL9+HQKBoFpdyvfu3cPkyZPB5/MxYMAAHD9+HBzHQU1NTdJK9vDwkCSAKCwshK+vL/r27VvjkcirVq3CoEGDKtx/7Ngx2NjYSC0R+K7U1FRERUVh4cKF8PX1hY2NDXR1deHp6YkpU6bgxx9/xMqVKxESEoIuXbpARUUFOjo6GDFiBMLDwxETE4OioiJ4enpi7969VdZ3wYIFaN++fbXesyqKnJwctGjRAl9//TV69uxZ4XGBgYFYs2ZNja+zdetWGBsb4+rVqwBKfk98fHwwfPjwMoPJSl+j2NvbQ1VVFcrKyhW+wklPT0eTJk1kHj/AMPWNBeRGgOM4dOrUqXaJ+stx5MgRGBkZ4e7du9U6LycnB+vXr4ezszPs7OygqakJe3t7WFtblxmxXFRUhEGDBsHHx6fSbsmK5ObmQigUlrv8YUFBAVq0aFHtbsqMjAycOHECYWFhGDp0KFq2bAktLS20b98eY8eORdOmTdGmTRuMHDkSTk5O0NbWRsuWLWFhYYFdu3YhMTGxwlHVHMdh6NChGDp06Ac58vr69eswMDCAhYVFhcccOXIE7dq1q9V1/v77bwgEAhw9ehQAkJ+fDy8vLwQFBZX53goLCyEQCBAfH49//vkHz549q7Dc/v37Y9u2bbWqG8PUFRaQG4kjR47AwcFBpsQM1fHbb7/B2toaKSkp1T6X4zicPXsW/fr1g56eHnr27Al7e/sydSwqKoK/vz969uxZo5bj/PnzMXbs2DLbv//+e3z++efVLq882dnZOH/+PNasWYNhw4ZBQ0MDKioqcHV1RWBgICZOnAgtLS14eXlJkpf07dsXCxcuxNGjR/H69WtJWfn5+ejQoQMWLFggl7rVt6VLl4LH41U42Kq4uBgmJia1XiP6/PnzMDIykjxoZmdno127dpgxY4ZUUD5w4AA8PT1lKnPPnj3ljjtgGEXAAnIjwXEc2rdvjz179si97MWLF6NVq1Yyz98tT0pKCubOnQtVVVU4ODhg9+7dUiNei4uLMWzYMPTo0aPC7uWKpKeng8/nSwYDASVzqA0NDfHkyZMa17kyKSkpsLKywrx587BhwwZMmDABpqamUFZWhoODA3x9fTFy5EgMGTIEnTt3ho6ODuzs7DBy5EisXbsWhw8fhqWlJXbv3l0n9atLYrEYWlpaCA4OBlAyHe39wXkhISEVjtavjri4OFhYWEi6wNPT0+Hs7Cy1hOigQYPwyy+/yFRefn4++Hx+jR4wGaausYDciERGRsLFxUXurWSO4zBx4kR4e3vXOuvU4cOHYWpqCk9PT5iammL+/PmSTFDFxcUICAhAt27dqh2Up02bhpCQEEl9fXx86nzu7927d2FkZCTpVn327Bn4fD4uXryIrVu3YvLkyZJg3LRpU3Tv3h2+vr7o1asXHBwcJK3soUOHIiIiAo8ePfpgurE/++wz6OvrY926dRAIBGXW2L558yasra3l8rv4+PFjtGjRAnPmzAHHcUhNTUWzZs3w008/ITMzE02aNJHqgajK6NGjsWLFilrXi2HkjQXkRoTjOLi7u2P//v1yL1skEsHX1xdDhw6t1R9ZjuPg7e2NzZs3Iy4uDsHBwdDX14e/vz/Onj2L4uJijBw5El27di134YaKJCcng8/nIyMjA3/++SccHBzkkla0KufPn4dQKJRMZ/Lz88PatWuljhGJRLh//z4iIiIQGhqKbt26QV9fH6ampmjZsiXU1NTg5uYGExMTCAQC+Pj4YMGCBThy5Ei1EmPUp5CQEDg7O4PH44GI4OPjI7Wf4zg4OzuXWW6xptLS0uDu7o4JEyZAJBLh8ePHsLS0xKhRozB48OBqlXXy5Em0adNGLvViGHliAbmROXjwIFq3bl0nLa38/Hx07twZ06dPr1U5ly9fhqWlpWQQ15s3b7BmzRrY2dnBxcUF69atQ0BAADw9Pau19vHo0aMxe/ZsWFpa4vTp07WqY3Xs27cPZmZmePz4Mc6cOQMHB4cqv3+O45CYmIj9+/fD29sbTZo0gVAoBJ/PR+vWreHh4SEZMNaiRQsEBgbi559/xrVr1+rlQaMqnTt3lgRjIoK1tXWZY5YtW4Zx48bJ7ZrZ2dn49NNPMXDgQLx9+xb37t2DqqqqTKtMvUskEsHMzKzK5SIZpr6xgNzIcByH1q1b4+DBg3VSfkZGBhwcHGq9JnH//v2xatUqqW0cx+H48eMYMGAA+Hw+nJyc4ObmJvOKTvfu3YOWllalqSzryurVq2Fvb4/09HQ4OTnh5MmTJTvS0krWkA4IKEmYEhBQ8vmdBCMcx2HUqFEYOHAgkpOT8c8//+D777/HgAEDYGlpKRnF7ezsDEtLS2hqaqJ9+/aYMmUKdu7ciYcPH9Z7V3dERAT09fWhqakpmdL2/rS70l6Lmoyer0hBQQH8/f3RtWtXxMbGQl9fH0KhEIcPH65WOaGhoZg1a5bc6sUw8sACciO0f/9+uLu719kf6aSkJMkUn5qKi4uDsbFxhcE2KSkJ3377LTQ0NKCnp4edO3dWmY3s9u3bUFNTw8KFC2tcr9qYPn06OnfujNWrV2NG164ly1RqaGOT2/wAACAASURBVJRdP1pTs2Sbr2/JylkoCTRdunTBzJkzy5T76tUrHDt2DEuXLsWQIUPQrFkzaGhowMrKCra2tuDz+dDX10fPnj0xf/58HDp0COnp6XV6ry9evICBgQFu3LgBd3d3EBHi4uJKdr7zEHLJ0BBPPD3LPITUhkgkwsSJE2FiYoIxY8bg4sWLEAgEOHfunMxlxMbGyu0dN8PICwvIjZBYLIaLiwsiIyPr7Bq3bt2CUCiUebm98gQEBFSZcjI/Px+ffvopdHR0YGFhgcWLF5ebvpLjOHh6emLGjBmwtLRskJzFYrEYQ4cOxToXF+T9t6hGdZYCfPnyJZo2bSrTghtZWVk4e/YsVq1ahZEjR8LOzg5qamowNjaGqakpNDQ0YGFhgSFDhmDNmjW4cuWKXJeB5DgOenp6ePXqFQDg7NmzEF+5Uq2HkNoQi8WS+dCPHj3CsWPHIBQKcf36dZnr7+TkVK0gzjB1jQXkRmrPnj1o3759nXZlnjp1CkKhELdu3arR+aVTk6pqzXEch0mTJsHJyQkBAQHQ09NDYGAgLl++LLm/bdu2wd3dHSKRCN26dWuw5A9FP/2Et0pK1Vsn+p2gfOfOHQiFwhotupGXl4crV64gPDwcY8aMgaOjI1RVVaGvrw8+nw81NTU4ODhg/Pjx2LFjBx48eFCr34/27dvj4sWLJR/qeT3iK1euoGXLlli3bh3MzMxw8+ZN/PnnnzA2Npb53fCSJUsQFBRUq3owjDyxgNxIicViODo64siRI3V6nT/++AMWFhbVX1D+P8HBwZgxY0aVx3Ech6lTp8Ld3R0PHz7E8uXLYWtrCzc3N6xZswZGRkaS1YiOHTtWJ0lSqnTtWrXXiJYKyv/V/9ChQzAxMcHjx49rXaXCwkLcvHkTW7ZswYQJE+Dk5AQ1NTVoa2tDS0sLmpqacHd3x/Tp0xEVFSVp8b7v+fPnCAwMlBr5HhgYiF9//bVGa2PXNih/9dVXklcTe/bsgVAoxJkzZ7B9+3ZYWFggMTGxyjKSkpJgaGgo154DhqkNFpAbsYiICHTs2LHOB/z8+OOPcHBwkCydVx3Pnj2DgYGBTIkaOI5DSEgI2rRpg/T0dIjFYkRFRcHKygoaGhoIDQ2VzOV1d3fHgQMHanI7NefrW3ULsbKW48CBkqJWrVoFZ2fnOsm7LBKJcPfuXfz+++8ICgqCs7Mz1NXVoa6uDhUVFfD5fHzyySeYP38+Ll26hLdv32LGjBkgIujq6kpSqS5cuBBrR42Sy0NIdZSmynz3geXEiRMQCoX466+/sG7dOtja2laaQrOUl5fXB7ssJtP4sIDciIlEItjZ2VW4dq08lQ5oqknqyxkzZkiyPlWF4zh8/fXXaN26NV69eoWrV6/CxMQEMTExmD59OgwNDeHj44NZs2ahQ4cO9Tf6OC2t7HvT6v5oaEgGPnEchwkTJqBPnz5yXTSkIhzH4dGjR9i9ezfGjx8PZ2dnSeISZWVlqKioSKY48Xg8/Pbbb9izZw8um5rK7SFEVgcPHiw3Veb169dhamqKTZs2YcmSJXBwcKiwxV/ql19+gZ+fX7XrwDB1gQXkRm7Hjh3o0qVLnQcmsViMYcOGwdfXt9oBJD09HYaGhkhISJDpeI7jMHPmTLi4uMDFxUVqEFReXh62bNmCNm3aQFVVFcHBwTVquVfbsmW1D8iamkBYmKTIoqIieHt7SzKQ1TeO4/Ds2TPs3bsXysrKkoBc+vPN6NEoqGkwLuchRFZ+fn4Vpsp88OABbGxssHjxYnzzzTdwd3evNOVrTTJ9MUxdYQG5kSsuLkbz5s3rJVFGQUEBunXrhokTJ1b7AWDBggUICAiQ+XiO49CzZ09oaWnh+fPn5e6fOXMmTE1Noa+vjzFjxiAmJqZadaqWgIDaBabSnxEjpIr9f/bOPK7G9P3jn/Z93zeRJGkh21C2kBAhxpjGNnbZZ+wMYw9jZpCsX/s6C2Ub2WkwosgoZKkoREVp75zP74+m85O2U53EzPN+vXr18pznue/rPs08171c1+dKSUmhra0tN2/eXHO2S8G7q2Nzc3N269aNabNnM7O6431vElIR0jjQxMREOjo6cuLEiRw7dizd3d3LlWLt27cvt2zZUqnvQ0CgJpCvhRLMAh8QRUVFzJkzBwsXLqzxvlRUVPD7778jLCwMy5cvr9SzU6ZMwalTp3D79m2p7n/x4gWuX7+OoUOHwsPDA8+fPy/2uZycHObPnw85OTn8+uuvqF+/Pnr37o02bdpgz549yM3NrZR9FfLmjWzaSUsr9k99fX0cPXoUc+bMwfnz52XTRxWYO3cujhw5guzsbCQmJuL48ePQjY+HenUbzs4GpPybA8Avv/wCT09P6OrqlnmPubk5Ll68iIiICLx+/RrW1tbw9fVFXl5eqff7+flhx44d2L59O7755ptKD0FAQGbU9oxAoObJy8ujjY3NB8u5TExMpLW1dcnUowpUq1avXi11uUQ/Pz/OmDGDZGGZRXt7e0mRindZtWoVBwwYQLJwt+DQoUPs3LkzTUxMOHv2bCYkJFRjpMUMqpEVchGnTp2isbExY2NjZWOvLPD2ls2Yvb2l7tLd3V1qFbqsrCz27NmTnp6e9Pb2pq+vbwlxmbCwMHbr1o0AqKqqSgMDg0p9BQICskRwyP8RtmzZ8kHrwBZVQjpx4kRhOpAUghE5ly7RysqKV65cKbftM2fOsE6dOsVScJYsWUI7O7sSkbXp6ek0NDQs4chiYmI4YcIE6unpsXfv3jx9+nT1ztlr4Az5fdavX097e/uP57yzhich7/Po0SMaGhpWSss7Pz+fQ4cOZYsWLdihQwcOHTq0WDrc119/Xex83NnZudJfg4CArBAc8n+E3NxcWltb/7+QwwcgLCyM32hosEBVVWrBiEv/lF8sbxwNGzYsNVVl+fLltLW1LVYXmSTnzZvHUaNGldpeRkYGg4KC6OjoSHt7e65Zs6ZqqUYyjrIuiwkTJrBLly4Vyoh+EAICmKeo+MHOkBcuXEh/f/9Km1kUmd+wYUM2a9aMEydOlEy+8vPz2a9fP6qoqBAAe/fuXen2BQRkheCQ/0Ns2LCBXl5eH67D9euZr6JSqRe0WF2d84yMykzVWrp0Kb29vctcza5cuZL169cvJlSSnJxMPT29Ure0ixCLxbxw4QL79+9PXV1djhkzhrdv367ceGWYh1wW+fn57Nq1a5Uck8x58YIFSko1PgkhC/8+DRo04NWrV6ts7qpVq2hpaUl7e3vOnTtXcl0kEnHw4MEEwK+//rrK7QsIVBfBIf+HyMnJoZWVFf/666+a76waqlX5ysoc7OBQwuk+fvyYBgYGFaowrV69mvXq1WNcXJzk2oQJE6RSBCMLz8Dnz59PMzMztm/fngcPHpROG1tGSl0V8fr1azZq1KhE3eXa4K2nJwuq6owrkYd89epVNmjQoNrpezt27KCRkRGtra25cuVKyXWxWMyePXvyf8uXV1idS0CgphAc8n+MwMBA9ujRo+Y7qsZqUSwnx1M6Ovz999+LNdmzZ08uXrxYqu5//vln1q1bV+K84+LiqK+vz9TUVKmHkJeXxwMHDrBdu3Y0NzfnggULyl1lk6ySjGSmnBynqqtz9uzZvHbtmlSSnw8ePKCJiQlDQ0OlHk9NILp6lW+r6pArMQnx9/evsBCJtBw9epR6eno0MTHhxo0bCy9KGecgi8IYAgJlITjk/xjZ2dm0sLCQuipOlZDBeWqBkhLd7OwkIiPBwcFs2LBhpXSH161bR2traz58+JAkOXjwYC5ZsqRKQ4qKiuLo0aOpq6vLAQMG8OLFi2Wv1ipZaOFIjx4ECmsKa2pqUkdHh8eOHavQpgsXLtDIyIgxMTFVGpOsWGhmVhgnUIm/b5a8vNRa1kVSmdLoU0vLn3/+SX19ferp6fHasGEftDCGgEBZCA75P8jPP/8sdXpRlZBBxLFYTY3rrK25c+dOvn37ltbW1jx9+nSlTQkKCqKVlRVjY2P5999/08TEpErynkW8fv2aP//8M+3s7Ojk5MQNGzYwIyOj5I3h4YXbsaqqhSusd7fklZQKr/ftS4aH88WLF1RWVmZRpK++vr7UhSW2bt1KW1vbGq9/XB6+vr4MHz5caqcmVlfnt5qakolSRQQHB9Pd3V3mdt++fZvTtLQqL24iOGWBGkJwyP9BsrKyaGZmxsjIyJrpQEbpMM89PVmvXj1Onz6dAwcOrLI5GzdupKWlJe/du8devXrJ5OxVJBIxNDSUPj4+1NfX58SJE3n37t2SNyYnF0YRDxpEenszoWNH/mxpWeJMskOHDgRABQUFdu/evVL1nL/99lu2b9++UulAsmT27Nn8/vvvy52ESLZ9/5mETJgwofAZKejXr9//by3LkmvXKHrfzhrYbhcQkBbBIf9HWb16NftWQdhfKmQoGOHu7k4NDY2Kz24rYOvWrbSwsOC+fftobW1dKYdXEfHx8Zw1axaNjY3ZpUsXHj58uEw974KCAtatW5fX3juL/O2336impsawsDD27NmTPXr0kHolX1BQQG9vb44YMeLDFdN4h+3bt/PLL7/8/wvvTUI4aFDhv9+ZhFy7do22trYV2puWlkZtbe1Knf1LzQeIihcQqAyCQ/6PkpmZSRMTE0ZFRcm+cRmtkHM+/5zNmjWjtrZ2MRGQqrJ9+3aam5uzefPm3L17twwGWpycnBzu2rWLn332GevUqcOlS5cyuZTo3ICAAA4ZMqTYNbFYLHE6eXl5HDhwINu3by91TnR6ejqdnJy4evXqao+jsly5coXNmzev1DNisZh2dnYVisBs2rSJvr6+1TGvdD5Q3riAQGUQHPJ/mBUrVvDzzz+XfcMyOEPOkZfnTAUFampqskmTJhKZzOqyc+dO6uvrS7U6qw7Xr1/nsGHDqKury0GDBvHq1auS/l6+fEkdHZ1ySwMWFBRwzJgxbN68eYUlBIuIi4ujmZkZjx49KpMxSEtKSgq1tLQq/X0uWrSI48aNK/eetm3b1kxd6w+grCYgUFkEh/wfJiMjg8bGxrxz545sG5bB6kOsokIHIyMuX76cvXv3ppycHJ2cnDh//nxGRERUy5nu3r2bioqKXLt2rQwHXTqvXr3iypUraWNjw2bNmvF///sfs7KyOHToUC5fvrzcZ8ViMWfMmEEHBwcmJiZK1d/ly5dpaGhYMzsf5WBoaFjpY4XHjx+XK4VZ0efV4gPLfgoISIPgkP/jLFu2rFoBU2VSzfO5SBubYnKXQ4YM4aBBgzh16lTWr1+fderU4fjx4xkaGlqlF/bEiROppKTEmzdvynLUZSISiXjs2DF269aNhoaG/Oqrr2hhYSFV7ehly5bRxsZG6qjk3bt3s27dunzx4kV1zZYaNzc3nj9/vtLPtW3btsxiEYsWLao5RbIaKIwRFxfHdevWFeq3CwhUAcEh/8cpKr4g81zWaqhWFaiq0lNfnykpKZLmioQ9nj9/TrFYzL///ptLlixhy5Ytqaury4EDB3L//v1Sn7nm5+fTxMSE+vr6jIiIkO3YK+DBgwf85ptvqKioyObNm/P48eMVioGsX7+eFhYW/Pvvv6XqY86cOWzTpg2zs7NlYXKFfP3111WKhN60aRP79etX4nrRGXN1pDLLo2DgQJk45KQuXfjll1/SysqKqqqqVFBQ4KRJk2rEZoF/P4JDFuCiRYs4qCa23qqgWiVWV+cya2tu27atRHMTJ07kxIkTS1xPTEzkhg0b2K1bN2ppadHT05OBgYEVllbcsGEDXV1daWxsXLNCKWWwadMmOjo60tXVlfXr1+eqVauKTULeZ/fu3TQxMSkRoV0aIpGIvr6+HDRo0AeJvF6+fDmnTp1a6efS0tKoo6NTooLVX3/9JROpzCLevHnDEydOcM6cOWzXrh1nKykxu6o7OO+cIe9zdWVR/nhR2lrfvn156NAhPnjwQCrVNQGBIgSHLMDXr1/T0NCQ9+/fl33jlVStuvDFF3R3dy/1Rfb8+XPq6+sX06h+n/T0dP7yyy/86quvqK+vT1dXV37//fe8efNmiZd7dnY2zczM+OOPP9LY2FgqRydLsrOzaWRkxHv37vHKlSv08/Ojrq4uhw8fXuaqPSQkhEZGRjx37lyF7b99+5aurq5cunSpjC0vyaFDh+hdibrG7+Lr68tNmzYVuzZ+/PhqSWUmJSXxwIEDnDBhAps0aUINDQ22b9+ec+fO5R9//MH0Bw9kFmUdHBxMTU1NysvLU1VVlV9//TV79OhBKysrampq8rPPPuPIkSO5du1aXrhwoWZSuAT+FQgOWYAkuWDBAg4dOrRmGpdSMOLVH3/QyMio3ICkOXPmcNiwYVJ1m5+fz3PnznHy5MmsV68e69aty4kTJ/LMmTOSPOSAgAB++eWXEkdXU1ukZTFjxgxOnjxZ8u8XL15wyZIltLKyYuvWrbl79+4ScqFnz56lkZERjxw5UmH7T58+pYWFBX/77TeZ2/4u0dHRbNCgQZWePXz4MNu2bSv5d15eHo2MjKQ+MxeLxbx79y43b97MIUOG0MbGhvr6+uzZsydXrFjBy5cvlx5nIMM85Pj4eLq4uFBBQaHY3ys1NZUXL17kunXrOHr0aLZu3Zqampq0tLRk9+7dOXPmTO7Zs4e3b9+WaW68wKeJ4JAFSBa+OPT19aV+CVaJCgQjBg8ezG+++abcJtLS0qp05i0WixkVFcVFixaxefPm1NfXp5+fH7dv3y4Z99GjR2lkZMTLly9XeYiV5fHjx9TX1y+RZ52fn89Dhw6xU6dONDEx4Zw5c4ptwf/11180MTHh3r17K+wjPDychoaGNXpWnpOTQxUVlSoF2BVpVRfJhYaEhJQrlZmfn89r167xhx9+YJ8+fWhkZMQ6derQz8+PQUFB/Pvvv6XbKpZxda68vDypKqmJRCI+fPiQhw8f5sKFC9mvXz82bNiQqqqqdHZ25ldffcUVK1bwxIkTTExMrBWxF4HaQXDIAhLmzp3LESNG1Erf58+fp6WlZem60O+xfPly9u/fv1r9PXnyhOvXr2fXrl2prKxMKysrBgUFcffu3TQyMmJYWFi12q8MvXr1KrFl+y4xMTGcMGEC9fT02KdPH54+fZpisZi3b9+mhYUFg4KCKuzj4MGDtLS0rLbiWXnUr1+/dPlQKRg3bpykklf//v2LBYi9ffuWp0+f5oIFC9ipUydqamrS0dGRY8eO5Z49e4rVvq40VYhzqCkt68zMTIaHh/N///sfJ0+eTA8PDxoaGtLAwIAdOnTgxIkTuWXLFl67do2ZmZky71+g9hEcsoCElJSUShU2kBV5eXl0cHDgr7/+KtX9mZmZNDMz440bN2TSf2xsLDU0NNi3b1/q6enRzs6OGhoa3L59+wdZnZw8eZIuLi4V9pWRkcGgoCA6OjrS3t6ea9euZWRkJOvVq1dhTjNJLly4kC1atKhWcY3y6N69e5kpTBVx5coVNmzYkKmpqdTU1OTOnTs5depUtmjRgurq6mzTpg1nzJjBI0eOyP4MVso4B3EtVHsSi8V89uwZT548yVWrVnHw4MFs0qQJ1dTU2KBBA/r6+nLBggX8/fffhSCyfwFyJAkBgX+YPXs2UlNTsWHDhg/W54oVK3Du3DkcP34ccnJyUj2zfv16HDlyBCdOnJCJDf7+/tDR0cH333+PixcvYu3atThy5AhMTEzwxRdfwMfHB25ublBUVJRJf+8iFothb2+Pbdu2wc3NrcL7SeLixYsIDAzE6dOn4e3tjT///BOff/45li5dWuZ3SBJ+fn4QiUTYv3+/1N+1tEyZMgXm5uaYNm2a1M+QxOPHj3Hx4kVMmjQJioqKyMjIQKdOndC2bVu4u7ujRYsWUFNTk6mtJbh+HVi2DDh+HJCTA7Kz/99GNTXk5eTgjZsbjH/8EWjevGZtkYL8/HzExsYiKioKUVFRuH37NqKiopCSkgJHR0c4OzvDyclJ8ltfX7+2TRaQAsEhCxTj1atXsLOzw61bt2BlZVXj/SUkJMDV1RVXr16Fra2t1M/l5eXB3t4e27dvR7t27aptx+PHj9GiRQs8fPgQOjo6AIAzZ86gX79+6NWrF27fvo2EhAT06NEDPj4+8PT0hKamZrX7LeKnn37CtWvXsHfv3ko9l5SUhE2bNmHDhg3IzMxEmzZtEBISAhUVlVLvz87ORseOHeHl5YUFCxbIwPL/Z8OGDbhx4wY2b95c5j0ikQi3b9/GpUuXEBYWhkuXLgEA2rZti7dv3yI8PBwbNmxA3759ZWqb1Lx8CWzfDty+DaSlAXp6gJMTdsrL49cLFxASElI7dpVGcnKhrVFRwJs3gI4Oshs0wC1XV0Q8eSJx1Ldv34a2tjacnZ2LOeqGDRtCWVm5tkch8C61uDoX+EiZNm1azSkkvUefPn2kLsP3Pjt37qSbm5vMtpX9/PxKbP2eP3+eRkZGPHXqFOPj47l27Vp27tyZWlpa7NGjBzdt2sRnz55Vu++0tDTq6upWua3c3Fz+73//o7a2NtXU1Pjdd9+VeV787Nkz1qlTh/v27auOySU4e/ZssWhpsjC168KFC1y8eDG9vLyoo6NDe3t7jhgxgjt27ODDhw8lf7/z589TTk5OJoVEZE1mZiYNDQ0ZGxtb26YUBqP16VOYnfB+6lZR1kKfPoX3sTCI7NGjRwwODuaiRYvYv39/2tvbU1VVlU5OTvTz82NAQABPnDjBp0+ffjpBZC9eFGqS+/kVBon6+RX++xMu+CE4ZIESvHjxgnp6enz69GmN9nP06FHa2tpWWU2qoKCADg4OMiumEBUVRVNT0xL2XLx4kUZGRjx58qTkWlpaGvfu3csBAwZQV1eXn332GZctW8bo6Ogqv9BGjhxZrdxbsrDWddu2bWltbU0dHR0OGDCAFy9eLGHTzZs3aWhoKFVUsLQ8ffqUhoaGPHLkCGfMmME2bdpQQ0ODLVu25NSpU3no0KFSq18VsWjRIpqamkqVzlUbzJw5s1Rhmg9KJfP6yzvvzsrK4vXr17lt2zZOmTKFnTp1opGREfX19dmhQwdOmDCBmzdv5l9//fVxTZIqOSH5lBAcskCpTJ06tUZfPpmZmaxXr14xJ1cVfv/9d7q4uMgsmKVHjx7csGFDiethYWE0MjIqVac4NzeXJ0+e5Lhx42hpackGDRrw22+/5aVLl6TSqi7i5s2btLCwYH5+frXGkJubywEDBrBt27YMCAignZ0dnZ2duXHjxmIv1sOHD9Pc3LxCRbPySEhI4J49ezh27Fg6OjoSADt06MAFCxbwzJkzUr/Ii6Qyp02bxgEDBlTZnpokISGBenp6UsuzypwPFBH+/PlzhoaGctWqVRwyZAibNm1KNTU12trasm/fvlywYAF/++03xsbGfvggMhlOSD5GBIcsUCrPnj2jnp5ejaXJzJ07t9qpS2Thi7xFixbcv3+/DKwiL126RBsbm1Kd4uXLl2lkZFTuilwsFvP69eucN28eXVxcaGRkxGHDhvHw4cNSpaq4u7tLHW1eHgUFBRw1ahRbtmzJly9fMjQ0lD4+PtTX1+ekSZN47949koXCKE2aNJEq3UwkEvHvv/9mUFAQ/fz8WKdOHRoZGbFv375cvXo1w8PD2bRp0yqtuoukMl+9ekUdHR2+fv260m18CAYMGMAff/zxw3cs45zpypKfn887d+5w//79nD17Nr29vWltbU0NDQ22atWKI0aM4Jo1a3j+/Ply5V+rxUeUolZTCA5ZoEwmTZpUJX3iirh79y4NDAxktiV+6tQpNmjQQGZKR+7u7mWer169epVGRkYMCQmRqq3Hjx/z559/poeHB7W0tNirVy9u3bq1zEpM+/btY8eOHats+7uIxWJOmzaNjo6OkolVXFwcZ82aRWNjY3bp0oWHDx/m4MGD2bt37xKrndzcXF6+fJkBAQH09vamnp4e69evzyFDhnDz5s28e/duia3wL774gjt37qy0rePHj5fEEvTp04dbt26t4qhrlsuXL9PGxqZSOx8yQYaqYrIkLS2Nly5dYmBgIMeMGcM2bdpQS0uLFhYW7NatG6dPn87du3czKiqqemU0a3lC8qEQHLJAmSQmJlJPT4/Pnz+XWZtisZidO3fm6tWrZdYmSXp4eHDz5s0yaevo0aN0cXFhXl4ejxw5UmJle+3aNRobG/PQoUOVajc1NZW7d+9m//79qaOjQzc3N65YsUKyWiULnaCpqanMalSLxWIuWbKE9evX56NHjyTXc3JyuGvXLrZq1Yp16tRh3bp1OWbMGP7xxx+cM2cO27dvTw0NDTZt2pQTJ07kwYMHparJPH/+fM6dO7dSNr4vlfn777+zQ4cOlRvoB0IsFrNly5Y8fPjwh+tUBvXFi3S3PwRisZiPHz+WBJF9/vnnpQaRHT9+XPogso90QiJrBIcsUC7+/v6cNm2azNrbt28fnZ2dq31O+j5XrlyhpaWlTMoNFgmP6OjoUE5OjpcuXSpxz40bN2hsbFzl7eWcnByeOHGCY8aMobm5Oe3t7TljxgxevnyZc+fO5bhx46o7jGKsW7eOlpaWxRx9UlISDx48KAlMA0BtbW0OGzaMf/zxR5XOSvfu3Vvpo4iQkBC6ublJ/p2Tk0MDA4PqKXDVIHv27JHZLoZUBARU3yGrqRXK1NYiVQ4i+8QmJNVBcMgC5VIUyFJedKy0vH79mubm5jUmS9mrV69qr7xv3bpFbW1tKisrEwB1dHTKPBONiIigiYkJDx48WK0+RSIRr127xjlz5tDR0ZFGRkZUVlbm/v37ZaaqJRaLGRAQQG1tbfbo0YP169cvUYDh3Llz1NDQoJmZGZs3b85t27ZVuv/r16/T2dm5Us/079+/RCDd6NGjP0iVqqqQm5tLc3Nz3rp1q8b7yszMZJq3d/WcUdFPTZRYlQEVBZGd7NyZ+crKn/yERBoEhyxQIWPGjOHMmTOr3c6kSZM4fPhwGVhUOlFRVbAhbAAAIABJREFUUTQ2NmZ6enqV23jz5g3btWtHdXV1AqCGhgYjIyPLvP/mzZs0NTWVaU7vgwcP6OzsTFtbW2pra7N3797ctm0bX758KXUbZRVgaNeuHTU1Nbl9+/ZSI2SPHz9OU1NTbt26ld26daOhoSGnTZtWbLu7PNLT06muri519G1aWhq1tbVLyGGGhYWxUaNGH21O7OLFi/n1119Lda9YLGZ6ejofPXrE8+fPc/v27Vy8eDHHjRvHfv36sX379nR2dqa1tTUNDQ2prq5ORUVFAoU1lkNk4YyBwlzdT4T8/HxGR0dz//79jGjc+F89IXkXwSELVEhcXBz19fX56tWrKrcRGRlJY2PjSjmVquDn51dloZEiRCIRZ86cSSUlJcrLyzM6Orrc+4vyl3fv3l2tft/l3LlzbNSoEV++fMkdO3awb9++1NbWZtu2bblq1aoSAhXvF2DQ0tKik5MTx44dy7179xbb/j19+jSNjIx47NixUvv+6aef2LhxY75584YPHjzgN998QwMDA/bo0YMnTpyo0Nmam5tLvd28efNm9i3lfE8sFtPGxkZmeuWyQCQSMTU1lQ8ePODx48eprq7OBQsWcMqUKfzyyy/ZpUsXurq6sn79+jQ2NqampiaVlJQIgHJycgQgqZmsp6dHKysrNm7cmO7u7uzduzebNm1KVVVVNmzYkIMGDeLmzZsLa3/7+f1nHFKpyGqH4BOYkAjSmQJSMXLkSJiammLRokWVflYsFsPNzQ3Dhw/HiBEjasC6/+fhw4do1aoV7t27BwMDg2q19euvv2LAgAG4f/8+6mtplZAphLMzMGwYYGSEO3fuoEuXLggICMCgQYOqPQ6ScHJywtq1a9GxY0cAQE5ODs6cOYPg4GAEBwdDRUUFZmZmyMjIQHx8PJo2bQp3d3e0bdsWbdq0gZ6eXpntX716FT4+PlizZg0GDBhQou+xY8fiyZMnCAkJgYKCArKysrBv3z4EBgYiIyMDY8eOxbBhw0rto2PHjpg9eza6dOlS4TjbtWuHqVOnonfv3iU+mz9/PtLT0/Hjjz9W2E5lKCgoQFpaGlJTU5GamoqXL1/iyZMnePr0KZ49e4bk5GSkpKTg9evXSE9PR2ZmJnJycpCfnw95eXkAhf9Ny8nJQUlJCXp6etDW1oauri4MDAxgZGQEMzMzWFhYoE6dOqhbty7MzMygr68PJSWlMu3atWsXRo0ahZycHMjJyYEkGjZsiLtffw3Mnw/k5FR90GpqwPffA5XQGf9o+OorYM+e6rczaBCwc2f126lBBIcsIBWPHj1C8+bNsXr1aqxfvx579+6tUHs6JCQEHh4e2LdvH7Zt24awsDDJC60mGTt2LDQ1NbFy5cpqtyW6ehUKK1YARUUs3n0pqqkVzr27dQNmzUKMpiY6d+6MJUuWYOjQodXue/369Th79ix++eUXPHr0SKL9HBYWhmfPnsHBwQHKysqIj49Hbm4uevXqBR8fH3h4eEBVVbXC9qOiotCtWzcsWLAAI0eOLPZZfn4+vLy84OLigtWrV0uuk8TVq1cRGBiIY8eOwdfXF/7+/mjatKnknjFjxsDJyQn+/v7l9h8XF4fmzZsjKSmpVE3l2NhYtG3bFk+fPi21qEdOTo7EqRb9JCcnSxzrixcv8OrVK6Smpkoca3Z2NvLz86GoqAg5OTmIxWKIxWIoKytDXV0dmpqa0NHRgYGBAQwNDWFqagpzc3NYWVmhTp06MDExgYGBAfT09BATEwMvLy88fvy4yprQGRkZuHDhAkJDQ3HixAk8ePAAAKCkpIQmTZrgzJkz0MrOBqytq+eQVVWBhATAyKjqbdQWK1b8dyYktbc4F/hUEIlE3Lt3LzU0NKisrEwVFZVSI4/fJTs7mwCop6dHLS2tcs9hZc3Tp09lI/1ZBVWgu3fv0sLColp5tAUFBYyIiOCKFSuopKREY2NjmpmZ8fPPP5eUXHw/D/b+/ftcuXIl3d3dqaOjQ19fX+7cubNCkYbY2FjWrVuXK1euLPFZSkoKGzRoUGat5ufPn3Px4sW0tLRkmzZtuGfPHubm5nL16tWcMGFCheNctGgRx4wZw4yMDMbHxzMyMpJnzpzhL7/8wo0bN3LhwoU0NjZm69at6e7uzkaNGtHc3JxaWlpUUFCgvLw8lZWVqaqqShUVFSoqKlJOTo7q6uo0Njamra0tW7RowW7dunHo0KGcNWsWAwMDefjwYV6+fJn37t1jSkpKtdSmPDw8uGfPHqnvLygo4F9//cVFixZJzvM9PDy4bNky3rhxg9bW1lRWVmb//v2L59X/R9J+SuU/FGUtrJAFKuTGjRto/k7JOW1tbZw4cQJt2rQp85knT57A3t4eWVlZUFRUhJubGw4cOAATE5MPYTKmT5+O9PT0qpeRDAoCvv0WyMqS/hl1dWDVKtzv1AmdOnXCvHnzMGrUKLx48QLGxsZlljvMzs5GeHi4ZPV75coVmJmZoW3btnj06BHs7e2xdu1aqcslvnz5EkePHkVwcDDOnj2LZs2awcfHBz4+PqhXr16J+58+fYouXbrA19cXixYtKtbP/fv30bZtW+zfv1+ydf4+BQUFCA4Oxpo1a3Dnzh24urri2bNnmDNnjmTl+uLFCzx79gwvX75ESkoK0tLS8OzZM8jJyUFeXh7KysrFtoPz8vIgFouhpKQEeXl52NjYlNgONjMzg6GhoeTHwMAAOjo6Mi8rWR4hISFYvHgx/vrrrzL7jYuLQ2hoKE6dOoUzZ87AwsICXbp0gaenJ9q2bQsNDQ3JvStWrEBaWlrJMprh4UCHDpX777EIdXXgwoWPomxklenbFzh8uNC9VhY5OaBPH+C332Rvl4wRHLKAVBw7dgwDBw7E27dvoaysjHPnzqF169Zl3n/jxg20b98emZmZUFZWhrKyMs6fP49mzZp9EHtTUlLQsGHDSpd1BCCTl98DXV14eHigS5cu2LVrFw4dOoQePXoAAFJTU/Hnn38iLCwMYWFhuHXrFho3biyp/+vm5gajf7YWY2Ji4OHhgfj4+Cpti2ZlZeH06dMICQmR1Hcucs7NmjWTvPRfvnwJLy8vtGrVCvPnz8fr168lzvTSpUsIDAzEkCFDAADJycmS7eC0tDSkp6cjKysLysrKUFRURH5+PvLy8qCkpAQFBQUUFBQAALS0tKCjoyM5S42Ojoa/vz9MTU0lW8Tv/tbS0kJKSgpsbW3x5MkTaGlpVf7vUcOIRCLY2dlh9+7dkv8f3rx5g3PnzuHUqVMIDQ1Fenq6xAF37twZ5ubmVeusGpNEjB1btT4/Fv4jExLBIQtITUJCAjp37ozY2FicPn0anTp1KvPeo0ePolevXlBSUkLv3r0RGBgIQ0PDD2gtsGjRIty9exd7KhsQIoPZOH/9FePGjcPGjRtBEl27dkW9evVw6dIlJCQkoFWrVhIH3KpVq2KrpPfp1KkTRowYgYEDB0ptRk5OTrHApdTUVLx69QqRkZG4ceMGYmJikJeXBz09PSgpKSE3Nxdv3rxBdnY2FBQUoK2tLVmdksTbt2+RlZUFOTk5KCoqQkdHB3p6ejA0NISJiQlMTU1hbGwsOV8dNmwYJk2ahJCQEMjLy8Pf3x9DhgyBtrY2AGDChAkwMjLCd999V+FYfHx80LdvX8mE4GNj9erVOHbsGNq1a4fQ0FBERUWhdevW8PT0RJcuXeDk5CS72ImgIIi/+QbMzoZCeffJyRWem/4bnHER/4EJieCQBSpFXl4eBg0ahJUrV6KOqmqZkcc/7NyJ7777DkeOHIGHh0et2JqRkYEGDRogNDQUzs7O0j2UnFztABqqqKBj/foIu3cPIpFIcv3HH3+Eu7s7mjRpUmqQUol2SGRmZmLPnj3YsGEDfvjhhxJBTKmpqUhLS0NKSopkO/j169coKCiAhoYGVFVVi20Hi0Qi5OXlIScnB5mZmZCXl4ecnBxEIhEMDQ1Rr149JCUlQUNDA2PGjIGpqalkxbp27VrExcXhjz/+KDdaGAAaNWqEgwcPwtHRERcvXkRgYCBOnz6NL774AqNGjYKnpyeuXr0KGxubCr+HX3/9FRs2bMDp06crvPdDQBIPHz6UrIDPnTuHt2/fYsSIEfD19YW7uzvU1NRqrP9No0ahxenTaPrsWaHjzc7+/w+LAg27dwdmzfokVoWVosgpZ2eXP2H+RCckgkMWqDzh4cCyZRVGHnPmTMi1bFk7Nv7DTz/9hHPnziE4OFi6B2QQ0SlWVcUSJSUsyMyEWCyWXJ8+fTr69+9fqlN99yclJUVyzqqgoAANDQ28efMGpqamkpW0WCxGQUEBcnJykJWVhbdv30JdXR36+vowNjaGkZFRiS3g938bGBhARUUFAPDixQvJufP58+ehpqYGXV1dHDp0CA4ODgAKz4q9vb1Rv359BAYGljn+3NxcdO/eHc2bN4eBgQH69esHGxsbJCYmYtOmTVi3bh0KCgqwdetW+Pj4VOjcc3JyYGFhgVu3bsHS0rLKf5fqkJaWhrNnz0rOgnNyciQr4M6dO2PZsmVQU1PDsmXLatSOvLw81K1bF6GhoXA0MSmcEN++DaSlAXp6gJMTMHTopxlNLS3Xrxe+f44f/9dNSASHLFA5PrEZak5ODuzs7HDgwIFyz7wlyCjn8aCKCgbk5ha7pqCgAB0dHZiYmEBRUVGyHVxQUIDc3FxkZ2fj7du3yMzMhJaWVrGApadPn0IkEmHgwIGlOtiKclwrQ2ZmJk6ePImZM2fi8ePHaNSoEfr27SsJCmvTpg38/f1LTWvatm0bRo4cCXl5ecjLy6OgoADHjx+Hp6en5J5+/fpBT08P9+7dw6NHjzBq1CiMGjUKpqamZdo0cuRINGjQANOnT5fJGCsiPz8fV69elTjg6OhouLu7S86CHRwcigVdPXz4EJ999hni4+Ohrq5eY3YdOHAAGzZswLlz52qsj0+Gly//fROSDx7XLfDp8onWI928eTM7dOggnQyjjFSBTv6ThgNA8uPi4kINDQ02a9aM06ZNY0BAALds2cLDhw/z0qVLjImJYXJycqmFN54/f05dXd0SEpM1iVgs5uTJk2ljY8MxY8bQ1taWderU4aBBg6irq8ujR49SLBbzyJEjzMnJkdipo6MjGbO6unqxsnvvS2XeunWLo0aNoq6uLr/44gteunSp1L/ThQsX6OjoWGNSmmKxmHfv3uWaNWvYs2dPamtrs1mzZpw5cybPnj0rGV959OrVixs3bqwR+4qQVb1sgY8TwSELSMcnXI80Pz+fDRo0YGhoqORadnY2nz59yps3b/LMmTM8cOAA169fz1vOzjJxyK99fJiSksLExETOnz+fNjY2TEpK4tOnT2lnZ8fFixdXehxffvmlzMtWVoRYLOaiRYtoa2vLx48f886dO1y6dCkdHBwoJydHc3NzAuD+/fslzwQHB1NFRYUA2K9fv2LtlSWVmZaWxp9++ol2dnZ0dnbmxo0bi1X8EYlEtLa2lmk++8uXL7l//34OHz6cVlZWtLS05Ndff839+/dXSeL1zJkzdHBwqLFJQ2RkJC0tLWVeKU3g40FwyALSIWNhgkePHtHf3794mbUqkpmZyYSEBEZERPDUqVPct28f165dywULFnD8+PEcOHAgnZycqK6uTisrK2poaFBJSYlmZmZ0dHRkhw4d6Ovry9GjR/N4x47MU1SsnkOuoLJMUlIS7e3tK625/eeff9LW1rZaQhZVZc2aNbSysmJMTAxJ8tWrV7S0tJSshJWVlenp6cnAwEAmJCTw888/J4ASdYPbtWtXbh1pkUjE0NBQ+vj4UF9fn5MmTZLUi54zZw6nTp1a5THk5OTw7NmznDVrFps1a0ZtbW16e3vz559/ZkxMTLUdqVgspqOjY7GJnywZMWJElSZyAp8OwhmyQMXIIPK4SLovR0sLS5YswQ8//ID8/Hxcv34dLi4uAP4/qvjVq1dISUmR+rdYLC4mDlHabz09PUyZMgVTpkyBn58fNDU1SxdykOFYyzvHev78OTp16oT+/ftj/vz5UolZkISrqyuWL1+Orl27Vt2+KrJz507MmDEDx44dw+TJk3H58mVJFLmdnR2WLl2K4OBgHD9+HFZWVkhKSkJwcDBatWoFOTm5CqUy3yc+Ph4bNmzA1q1b0bRpU/j4+GDx4sV48uQJFBTKTfoBUPh9RUdHS86Bw8LC0KhRI0kw1meffVZlycuy2Lp1Kw4dOoSjR4/KtN20tDTY2Njg7t27H0xcR+DDIzhkgYqRkZbstR490PnkSWRnZ6OgoACKiopo1KgRAEgcrKKiYoXRwe//VldXl8qhHT9+HNOmTUNUVFT5L/Rq5iGzd2/I/f57hbcmJyfDw8MDffr0wcKFC6Uaw5YtWxASEoKQkJDK2yYDDh06hNGjR2Pt2rW4cOECduzYgZycHIjFYrx9+xYaGhooKCjAX0eOIGX1aogiI6EtFkO7Th081tTEXw4O+KGSAv85OTn45ZdfEBgYiMjISPj5+SEgIEAinvIuL168wOnTp3Hq1CmcOnUKysrKEgfs4eEBfX19WX0VpZKdnQ1ra2uEhYXBzs5OZu2uXr0akZGR2LVrl8zaFPgIqcXVucCngozKv122taWSklKxYKfu3bvz5s2bfPLkCbOysmp0GGKxmG5ubtyxY0f5N1bjvDxfWZnNAKqoqNDc3JyOjo7s3bt3scCmd0lOTqaTkxNnzpwp1ZZpZmYmDQwMpK5PXBOEhobS0NCQJ06cYHp6OgMCAqihocHr168Xfnd9+hRqB7+nP5wJMBvgNSsrnlq6tEp1q7/55hva2NhQR0eHgwcP5oULFxgaGspp06bRxcWFOjo67N27NwMDAxkbG1sr9ZTnzJnD8ePHy6w9kUhEGxsbXr16VWZtCnycCA5ZoGJkFHkcqqpKOTk5SW1YAOzcuTPv3bv3wc5FL168yLp165bpICVUIaI8S16eG5o0YZ06dSTjA8BGjRqVO76XL1+ySZMmnDZtmlQOZMqUKZw+fXplhy5TLl++TGNjYx48ePD/L0pZjEMkJ8dseXlOUlGhl5cXg4KCmJiYKFW/z58/p6amJmfNmsUGDRpQTk6OGhoa9PHx4dmzZz+KgKfExETq6ekxLS1NJu0dO3aMzZo1q5XJhcCHRXDIAhUjoxXyARUVysvLF3NWSkpKEgetoKBALS0tWlhY0MXFhV5eXhw1ahQDAgIYEhLCuLg4mThuLy8vrlu3ruIbK1ntKW/NGn711Vds3LgxVVVVJWMcO3ZshWkzKSkpbNq0KadOnVrhizc2NpZGRkbMzs6uzLBlzs2bN2lmZsYtW7ZUaQIjVlPj9REj6OfnRz09PbZo0YKLFy/m7du3i30HSUlJ3LFjB/38/GhiYkJ1dXV6eHjw0KFDTElJ4dGjR+nl5UVDQ0NOnz69VncPihg4cCB/+OEHmbTVrVs3btu2TSZtCXzcCGfIAhUjgzNkqqriyYgROGRri82bNyM6OhokYWtri1atWsHe3h6ampooKChAYmIi4uLikJiYiJcvX+L169fIyspCXl4eAEBRURHq6urQ0dGRVP+xtrZGgwYN0KhRIzg7O8PMzKxMWyIiIuDt7Y3Y2NhyNaQBVFoViCQWL16MlStXIjMzE3379kV+fj5iYmIQGBiIzp07l9lVWloaunTpAnd3d/z444/lnil369YNX3zxRa3rO9+/fx/ftm+P31JSoJSfX/kG/hH+z3dxwaVLlxAcHIzDhw8jLy8P5ubmSEtLQ1paGjp16iQ5C7527Rq2bt2K0NDQYk09ePAAQUFB2LFjB1q3bg1/f394enp+kBrc73Pt2jUMGDAADx48kCoArSwePHiANm3aID4+vkblOAU+DgSHLFAxNRB5HBkZiVWrVmHKlCm4ffs2IiIiEBERgVu3bsHU1BRNmzaFq6ur5KcogOfZs2e4ffs2YmJi8ODBA8TFxUnK+r158wZZWVnI/8cxKCkpQUNDA7q6ujAyMoK5uTnq1q0LW1tb/Prrr2jXrh0WLlwonf2VVAXavn07xowZg127dqF///44evQoJk6ciBYtWmD16tWwsLAotZvXr1/D09MTrVq1wpo1a8p0ykePHsXChQtx7do16eyvQbK8vKBy8mT5xQ7K4p8guMi5cyXR0H/99Rfs7Oygp6eHxMREvHr1Cj169ICPjw88PT2hoKAAc3Nz3Llzp9TKSVlZWdi3bx/WrVuHt2/fYuzYsRg2bBj09PSqPdbK0Lp1a0yfPh19+vSpchtTp06FsrIyli9fLkPLBD5WBIcsIB0fqB6pSCTC/fv3ERERgcjISImj1tLSgqurazFHbWFhUarDEovFePr0KaKiohATE4OHDx8iPj4ez549w6tXryTlAotSdlRUVCSO29jYGBYWFqhXrx4aNGiAxo0bw8nJSVKlqDL8+eef6NevH+bNm4dx48YhOzsby5Ytw/r16zFr1ixMnDixVLnLN2/ewMvLC02bNsW6detKXeGJRCLY2tri4MGDaNGiRaVtkxkymKzlAPCwtUXzbt3QpUsXdOjQoVipxSdPniAkJATBwcG4evUq2rVrh7S0NHTu3Bnff/99me2SxJUrVxAYGIjjx4+jX79+8Pf3R5MmTapsa2U4cOAAgoKCcP78+So9n5mZiTp16uDGjRuoW7euTG0T+DgRHLKAdNRiPVKSePz4scQ5F/0AKLaKbtq0KWxsbKQuUP/1119DVVUVnTt3xt27d/Hw4UM8efIEz58/lzjunJwciEQiyMnJQUVFBZqamtDT04OxsTEsLS1Rr1492NnZwdHREY0bNy6hY/zw4UN4e3uja9eu+OGHH6CgoIDY2FiMHz8eSUlJCAwMRLt27UrYlp6ejm7dusHR0RFBQUGlOuUVK1bg9u3b8PT0xP3797Fo0aIqfLvVREbFOOQXLgSmTavw3jdv3uDEiRPYtGkTLl68iBYtWkjqO9vb25f5t3/x4gW2bNmCDRs2oE6dOvD390e/fv1knof8Lvn5+bCxscGRI0eqNAnYtGkTjh8/jsOHD9eAdQIfI4JDFpCej6geKUkkJSWVcNIZGRkltrvt7OxKPcdLSEhA06ZNER0dXa7YQkFBAe7du4e///4bd+/exaNHjySOOzU1FRkZGZJcXHl5eaioqEBLSwv6+vowMTGBsbExwsPDoaenh/Xr18PV1RVKSkr47bffMGXKFHTs2BErV64sYUNGRga6d+8Oe3t7bNy4sZhTTkxMxLJlyxAYGAhVVVXo6+sjMTFRdl+wtMioGAcGDQIqkZ8sFothbW2NefPmISoqCiEhIVBVVYWPjw969eqFNm3alPo3LygoQEhICAIDAxEdHY0RI0Zg9OjRNVZFavny5bh37x62bdsm9TNFr2QXFxesXr263LgDgX8XgkMWqBwfebWn5ORkREZGFtvufv78OZydnYs5aQcHBygrK2Py5MkgiZ9//rnafefk5CA6Ohp///037t+/j8ePH+Pp06d48eKFpLRi0Ta5vLw8VFVVoampCZFIhPT0dLi6usLLywsODg5wcnJCgwYNkJOTgx49eqB+/frYvHmzxMn069cPhw8flrTn4OCAO3fuVHsMlaZnT0AWqlTe3sCRI5V6ZNasWRCJRFixYgVIIjIyEsHBwQgODkZSUlKxc+fSKjDFxMRg/fr12LNnDzp27Ah/f3907NhR6h0WaUhJSYGtrS3u3bsHY2PjCu8/efIk+vXrh65duyIiIgIPHz6UqT0CHzeCQxaoPJ9YPdLXr1/j5s2bEgcdGRkpKSvYqFEjHD58GLt370bXrl1rNJKVJFauXIk1a9ZgyZIlKCgokDju2NhY3L17F/n5+ZKyhSShoKAAVVVV5OfnQ11dHS1atIC1tTUsLS3x66+/4v79+8jLy0ObNm3w559/1pjtZVJLK2QAiI6ORpcuXZCQkFBiNRwXFyc5dw4PD0eHDh3g4+ODnj17lnCMGRkZ2L17NwIDAyEWi+Hv749BgwZVKW6gNEaNGgVLS0t89913Fd578uRJ9O3bF9nZ2VBQUICbmxv27t1bavCawL8PwSELVJ1PuB5pZmYmbt26hcjISGzevBlPnjxBVlYWbG1tiwWPNWnSRGYv5iJ+++03jBkzBlu2bIGPj4/kOkns2bMH06ZNQ8+ePTFz5kw8ffoUd+7cQXR0NA4cOACxWAxtbW28fv0amZmZklQwANDW1oa2tjYMDQ0lqWC2traSVDBzc3PZpwDJSFYV338v1Rny+zRr1gwBAQEVppMdP34cwcHBCA0NRePGjSXnzg0bNpTcRxIXLlxAYGAgzpw5g4EDB8Lf3x8ODg5VGlYRd+7cQefOnREXFwcVFZVy77127Ro6d+6MjIwMiYzsjRs3BIf8H0FwyAL/eV6/fg07OzucOnUKIpGo2Jn07du3YWFhUSJ4zMDAoFp9Xrt2DX369MG3336LyZMnF9uWfP36NebNm4eDBw9i6dKlGDZsGOTl5ZGdnQ0fHx8YGBhg165dUFRUBEkMGTIEKSkp6OPmBsNjx6ATHw+Ft2+RUlCAyIICbBGJ8KygAEBhKpi6ujp0dXVhaGgICwsLSQ530Va5NFurEj5QMY6y+PHHH3Hr1i1s375dqvtzc3Nx7tw5iR64pqamxDl/9tlnkglLYmIiNm3ahE2bNsHe3h7jx4+Hj48PFBUVK20jAHTp0gWDBw/GoEGDyr3v/v37cHR0hFgshqOjI06dOlWqZrfAvxPBIQsIoDBiOTw8HL/88kux6wUFBbh7926xM+nIyEjo6ekVc9Kurq7lipGURkJCAry9veHm5oa1a9eWeNlHRERg3LhxkJeXx/r169GkSRNkZ2ejT58+0NHRwe7duwvTpsLDC48QTpwofPBd5/jPEQK9vJA8fDhuyMsjJiYGsbGxSEhIKJEKVvCP41ZWVoaGhgb09PSK5XAXpYI5OztDV1e3sI8PlBJXGs+fP0ejRo2QmJhY6jkMQIALAAAgAElEQVRxeZDEjRs3JOfOycnJ8Pb2ho+PDzp37gw1NTXk5eXh0KFDWLduHR4/fozRo0dj5MiRMDU1rVRfx44dw/z58xEeHl7umXBycjJMTEzQsWNHHD9+HKqqqpXqR+DTRnDIAgKAZLv6yJEjaNasWbn3isViPHz4sJiTjoiIgJKSUokIb2tr63JfwOnp6RgwYADEYjEOHjwIHR2dEn1t3boVc+fOxYABA7Bo0SKoqKjA19cXampq2N+hAxRnzJBZkJ1YLEZ8fHyxHO4ix52SkoL09HRkZ2dLUsGUlZXRVlUVIenpUKvCqyRXURFdVVSg06kTWrVqhcaNG6Nly5aVmtx069YNgwYNwpdfflnp/t/l0aNHknPniIgIeHh4wMfHB97e3jA0NMStW7ewfv16HDx4EF5eXvD394ebm5tUQVdisRj29vbYtm0b3NzcCi8mJxce+URFAW/eADo6oLMzNuXlYeTs2bWiMCZQy9SsMqeAwKdDYGAgu3btWqVnxWIx4+PjeejQIX733Xf09vamubk59fT02KlTJ3777bfcu3cv7969W0KPOz8/n+PGjWPjxo35+PHjUtt/+fIlR4wYQTMzM+7evZvZ2dlc5+jIbAWFymmKq6sX6k5Xk/z8fEZHR/PAgQP8/vvvub1VK2bLy1fKllwlJQZ36ybR/FZQUKCysjI7duxYKVv27NlDLy+vao/pXV69esWdO3fS19eXOjo6bNu2LVetWsXY2FimpaXxp59+YoMGDeji4sJNmzbx7du3Fba5Zs0a9uvXr9yKWFRTK7zWp0/hfQL/KYQVsoDAP+Tl5UlWMe3bt5dJm8+fP5espIt+v3z5Ek2aNCl2Jm1vb4+goCAEBATg0KFDaNWqFQBg4sSJcHd3x+effw4AuHr1KsaNG4eWcnIIjI6GQlXObqsp1FImUqbEiVCozjVXVRUb5eSQ/W6UPiDJ3zY1NYWVlRVsbGxgb28PR0dHNGzYsMTWflZWFiwsLBATE1PprWRpyMnJwdmzZxEcHIyQkBDo6+tLIrbfvHmDoKAghIWFYfDgwejSpQtEIhF69uxZop2MjAwsMDXFShLyOTkfZdqgQO0iOGQBgXfYtWsXNmzYgLCwsBrL/0xLSyvhpBMSEtC4cWMYGBggLCwMc+bMwcSJE6Gvrw95eXkMGTIEa9asgZKSEkQiEeJcXVE3KqrK+tHVObctFylT4m517w7P2bOxfv16uLi4wMnJCSQl59aOjo549eoVkpOTkZqaiszMTOTm5hZLBSuKKDc1NcXjx49hZ2eH4cOHw9nZGTY2NjWy5SsWixEeHi45d05LS0PPnj3RunVr3LlzB2vWrEFeXh5Gjx6NwMDA4ulYQUHImzgRyv+c00tFDQnrCHycCA5ZQOAdRCIRXFxcEBAQgB49enywft++fYtbt24hIiICp06dwh9//AGSEIlEIAklJSVYW1vjxIkTsNXWrtXIZqmQIiXu5s2b6N69O5YsWYJLly4hKSkJISEhmD9/Pnbs2IHt27fD09OzWLNv3rzB7du3ER0djfv370uqgsXHxyM5ORmKiorIy8sDSSgqKkJNTa1EKlj9+vUlqWCWlpbVctwPHjyQOOdbt24hMzNTcr6uo6ODmTNnYvjw4TB8/LjWpGcFPh0Ehywg8B6HDx/GggULEBERUWuBNYmJiWjTpg0SExMhEomgoKAAkUgEJycnRH31Va3m/sqSe/fuwdPTE5MnT8akSZMk3/fZs2cxZMgQDBgwAEuXLq1Qc1okEsHa2hqhoaFwcHDAq1evEBUVhejoaMTGxiI+Pl5SzvPNmzfIzMwsVhXs/XKeRVXBGjVqBBcXl3KlVYtYsGABFi5ciHdfqTY2NkhNTcUpLS00e/oUcrUQiS7w6SA4ZAGB9yCJzz77DFOmTMEXX3xRa3Z89913WLx4MbS0tDBt2jT4+voWFlAYNKjW1LFqgoSEBHTu3Bl+fn747rvvJEcFKSkpGD58OJ48eYK9e/cWE/EojenTp0NBQQHLli2Tuu+kpCRJRPmDBw8QHx+PpKQkvHr1SlLO891UsKIcbmNj42KpYA4ODpg3bx7CwsIAAOrq6rC1tUX79u0xf+xY6Dg7Q7EyW9XvU9M7GgIfBx88jExA4BPg9OnTtLW1ZV5eXq3ZkJeXx7dv33Lq1Kls2LAhY2NjCz/w9q5cZHVZP97etTa293n+/DldXFw4efLkYlHoYrGYQUFBNDQ05JYtWygWi8tsIyoqilZWViWi2KuLSCRiXFwcg4ODGRAQwJEjR7Jr1650dnamhYUFNTU1qaCgIIkWL/qRl5enr68vw3x8mK+sXL2/lZoauWKFTMcl8PEhOGQBgTLw8PDgpk2batsMkmRQUBBNTEx46dIl0s9PNg550KDaHlYxUlNT2bp1aw4bNoz5+fnFPrtz5w6dnJzYv39/pqamltmGi4sLz549W9OmloqXlxcBUEVFhYqKiqxXrx7Hjh3Lv+zs/pV/LwHZI2SeCwiUwdKlS7Fw4ULkVOesVkaMGTMGO3fuRN++fREhEhVuYVYHNbXCIKuPCD09PYSGhuLJkyf44osvkJubK/nMwcEB165dg5mZGZo0aYJLly6V2sagQYOwa9euD2VyMVRUVODi4oKgoCCkpaXh0aNHWL9+PVra2cmmg7Q02bQj8NEinCELCJRD79690b59e0yZMqW2TQEA/P333xjavTuuPHsGpX/pmWRubi4GDhyIzMxM/P7779DQ0Cj2+bFjxzBixAiMGjUK8+bNK5aXnJSUhMaNG1dJSrPGqMWKWAKfFsIKWUCgHBYvXozly5cjIyOjtk0BADg6OuJYeDj+1NKCuKqNyMkVlsf8CJ0xULjSPHjwIMzMzNC1a1e8fv262Oc9evRAREQErly5gvbt2yMuLk7ymbm5OVq0aIEjlaytXKM4O/8rdzQEZI/gkAUEysHR0RGenp748ccfa9sUCSYmJvgsOBj5ClWSBSl8uc+aJVujZIyioiL+97//wdXVFR07dkRycnKxz83MzPDHH3+gb9++aNmyJfbv3y/5rDa3rUtDPHgwCkSi6jVCFuZwC/y7qe1DbAGBj50HDx7QwMCAL1++rG1TiiEKDGSuomKtaFl/KMRiMb/77jva2dkxISGh1Htu3LhBOzs7Dh06lOnp6czIyKCOjg5fvHjxga0tSUREBFu3bs1zenoUy8lVLZhLTo7s27e2hyLwARBWyAICFVC/fn18/vnnCAgIqG1TiiE/bhyU16xBgbIyKlx/ycl9kjKMcnJy+P777zF69Gi0bdsW9+/fL3GPq6srbty4AQUFBbi6uiImJgY9e/Ystmr+0KSlpWH8+PHw8vLC8OHD0e7EiapvW38COxoCMqK2ZwQCAp8CiYmJ1NfX59OnT2vblJKEh/NF27bMBpivpFR69aC+fcnw8Nq2tFps2bKFZmZmvHnzZpn3HDx4kEZGRhw+fDibNWv2Aa0rRCQScdu2bTQ1NeXYsWOZkpJCsjCn/Gd7e+b8y3c0BKqHEGUtICAlM2bMwJs3b7Bhw4baNqVUHly5gl+9veFpZoam9epBrhT96E+dX375BePHj8ehQ4fQpk2bUu9JSEjAl19+ifDwcJw6dQrt2rX7ILZFRkbC398fIpEIgYGBaP6P9jRJjBo1qlCru3t3KEyfLrP61QL/Mmp5QiAg8Mnw6tUrGhgY/L9i1kfIy5cv6ebmRl9fX2ZmZta2OTXCiRMnaGRkxNDQ0DLvyc/PZ+vWramhocHg4OAatSctLY3jx4+niYkJt2zZUkIpbOnSpWzatCkzMjIKL4SHF+5YqKoW7mD8S3c0BCqP4JAFBCrBokWL+OWXX9a2GeWSk5NDPz8/tmzZks+ePattc2qEixcv0sjIiL///nuZ90RGRtLExIR169bluHHjmJWVJVMb3t2eHjNmjGR7+l327NnDOnXqMDExsWQDycn/1969B0V53W8AfxZQLtEihkWMMEs0ikVj1Kya4KWQjjUIokSd2qiNhkwNVtPgZawTM9EkjcFxvITBu5am+EtiYDRR8TqOeBdQKnghahoj1gteweCKu+z398dbiKncdvdd9l14PjMMI/u+55wXnH32Pee85yjLYU6cKJXDhskXrVpJ2fvvKz+n2t24IZKSoqxWFxenfE9JaTa/MwYykQ3Ky8ulQ4cOcurUKVc3pV5Wq1UWLFggBoNBioqKXN0cpzhx4oQEBwdLenp6ra9brVbp2bOnbNu2TcaNGyc9evSQwsJCVeouKCiQyMhI6devn+TVcSebk5Mjer2+0XW+/fbb8sEHH6jSvmYnN1ckIUHpPfDxqb1XISFBOc6NMZCJbLR06VIZMWKEq5vRKBs3bhS9Xi87d+50dVOc4ty5cxIaGirLly+v9fWUlBR56623xGq1Snp6ugQGBkpqamq9m1TU5+7duzJ9+nQJCgqSNWvW1LmRRXFxsQQFBcmePXsaXfbZs2elQ4cO8vDhQ7va1mytWKFMbmvosTGdzu0nwTGQiWxkMpkkNDRUjhw54uqmNMqhQ4ckODhYVrjxG1V9fvjhB3nuuefkww8/fCJoS0pKJCAgQEwmk4iInD9/XoxGo8TFxUlpA92cZ8+eFYvFIiJK93R6eroEBwfLlClT5NatW3Wed+PGDencubNs2LDB5msZNmxYnXf8LVJ1GLeQmekMZCI7rFu3TqKiouy+02pqFy9elPDwcElOTq4Jmebk2rVr8vzzz8uMGTOe+Ju88sor8s3atTVjj5bhw+VERIR81Lat7P/661rLO3v2rHh5ecmSJUvkX//6lwwcOFCMRqPkNtAlWlFRIQMGDJD333/fruvIzs6W3r17u83/K6fKzbU9jB8PZTecFMdAJrKD2WyWbt261TvTV2vu3Lkj0dHREh8f//OM32bk9u3b8tJLL0liYuLPHzpyc+VS375S6eHxxNijpXVrMQFS2LWrPDp8uKacqqoq6d27t+h0OvHy8pLAwEBZvXp1gx9kLBaLJCQkyIQJE+wO1KqqKunWrZvk5OTYdX6zkpDQcDd1M1vdjIFMZKevvvpKjEajW93NVFZWyptvvil9+vTR5iInDrp//7789re/lbFjx4o5NVXEz6/BJSurAHng4SHX/zuhKi0tTby9vQWAeHh4SHx8fKPqnjFjhkRFRUllZaVD15CWliavuWGYqOrGjScnb9n65ePjdrOvGchEdqq+k8rKynJ1U2xitVrl008/lZCQEDl58qSrm6M6k8kkK3r1EpOHh01v4BWA7Bw1SnQ6neh0OnnqqaekTZs2AqDBDy+pqanSvXt3uXPnjsPtv3//vjz99NPyww8/OFyW20pJcTyQfX2Vx8rcCFfqInLAjh07MHPmTBQVFcHz9m0gPR0oLATKygB/f2XrvcmTNblSVmZmJpKSkrBhwwaMGDHC1c1RT14eJCoKugcPbD7VpNNhXMeOGPbeewgLC0NgYCA6dOgAg8FQ5znffvst3n77bRw+fBjPPvusIy2vMXv2bIgIFi9erEp5bqel7iHt4g8ERG7NarXKWy+8IJf69nXLZySPHz8uHTt2lCVLlrhV13u9HBh7tOp0UtC5sxgMBjl06FCDVeXl5Yler29wspetLl26JO3bt2+WY/2NEhfn2N1x9VdcnKuvxCbc7YnIAbpVq7CquBghJ08CDx8qX48zmZSfbdkCREUBK1e6pJ116d+/P44ePYr169fjz3/+MywWi6ub5JjSUmDHDuXt2A46EfS+ehWrP/4Yo0ePxoIFC+r8nVy6dAkjR47E2rVr0a9fP0da/QSDwYCoqCj84x//ULVct+Hvr045AQHqlNNEGMhE9lq5Epg1C56VlfBs6FgR4MEDYNYszYWywWDA4cOH8e9//xtxcXEoLy93dZPsl57ueBk6HYZdu4aTJ0/i0KFDiI6Oxo8//viLQ+7du4fhw4djzpw5GDlypON11uLdd9/F8uXLYbVanVK+pvXqZf92ldV8fZXNVdwIA5nIHnl5SrjaOk5ZHcr5+c5pl538/f2xbds2dO7cGQMHDnwigNxGYeGTvRS2MpmAoiI888wz2LVrF+Lj49GvXz9s2rQJAPDo0SO89tprGDZsGN555x0VGl27QYMGoU2bNti5c6fT6tCsSZMcL0NEnXKaEAOZyB4LFypv3PYwmZTzNcbLywtpaWlITExEZGQkcnNzXd0k25WVqVPO3bsAAA8PD8yePRvZ2dmYN28e3nzzTbzxxhvw9/d3+oQrnU5Xc5fc4gQFATExyjaU9tDpgOHDNTmZsj4MZCJbOThOCREgOxu4eVPddqmgOgRWrVqF2NhYZGZmurpJtnHS2KPRaMTJkydRUFCAzZs3Y9asWfD0bHCgwmG///3vUVhYiLNnzzq9Ls2ZO1fpdraHr69yvpthIBPZSqVxSlXKcZIRI0Zg9+7dSE5ORkpKCsRdno504thjVlYWysrKsHz5ciQkJGDx4sVOH9/19vbGlClT8Nlnnzm1Hk3q1w9YvBjw87PtPD8/5Tyj0TntciZXT/Mmcjvjx6vzSMbEia6+kgZduXJF+vTpI4mJiQ6vQNUkVFjhyert/cQKT3v37pWgoCA5d+6ciCgbWkRGRsrQoUPl6tWrTr2ka9euSbt27Wrdb7lFaEG7PfEOmchWKo9TalmnTp1w4MABlJaWIiYmBne13mYHxx6tAHZ5euL/9uypufs9ffo0/vCHP2DTpk3o3r07ACAsLAw5OTmIjIxE3759sW3bNrWu4AnBwcGIj4/H2rVrnVaHpiUlATk5QEKC0vvxv93Yvr7KzxMSlOOSklzTTjW4+hMBkdtpQXfI1SwWiyQnJ0t4eLhcvHjR1c2pn4O7BOWvWiX9+/eXvn37ypdffikGg0E2btxYZ3UHDx4Ug8Eg06ZNq9nmUW0nTpyQ0NBQefTokVPKdxulpcpymBMnKot+TJyo/NvN1qyuCwOZyFYtdJ1dEZEVK1ZIcHBwo1axcikH99G1Wq3y+eefi7e3tzz33HNSUFBQb3V37tyRsWPHSs+ePeX06dNOuaTBgwfLV1995ZSySRsYyES2aqE70VTbsWOH6PX6eu8aNeG/oVxlx9ij2WyW2NhYmTx5sqSmpkqHDh1k/Pjx9W74YLVaZcOGDRIYGChpaWmqL0WamZkpkZGRqpZJ2sJAJrJHC9yr9XFFRUViMBhkwYIFml4D25qbK7vatJGq1q2VXon/7aXw8VH+Fo9tZm+1WmXq1KkydOjQmi7i8vJy+eCDD6R9+/aSnJwst27dqrPO7777Tvr27Svx8fFy8+ZN1a7FbDaLwWBQfd1s0g5O6iKyRwt8RvJxPXv2xLFjx7B9+3b88Y9/RGVlpaubVKvjVVWY1rEjdCUlwIIFyu4/cXHK9wULgMuXgaysXzwis2TJEhw8eBCZmZlo1aoVAKBt27aYP38+zpw5g4cPHyI8PByffvopTLUsDtOtWzccPXoU4eHh6N27N/bt26fKtXh5eWHatGktc6GQlsLVnwiI3JaD45TNQUVFhYwZM0YGDRqk6t2gWqZMmSJ/+9vfGn38119/LSEhIXL58uV6jysuLpbRo0dLSEiIrF+/XiwWS63H7d69W5555hmZM2eOKo+N3blzR9q1ayf/+c9/HC6LtIeBTOSIFvSMZF2qqqrkr3/9q3Tp0kWKi4td3ZwaDx48kICAgAbDtdqRI0dEr9c3OIHrcUePHpXBgwdLjx49ZOvWrbV235eWlkpsbKwYjUa5cOFCo8uuy9SpU2XevHkOl0Paw0AmclRenjIO6ePT6HHK5mj9+vUSFBQk+/btc3VTRETkiy++kKFDhzbq2AsXLkhwcLBkZ2fbXI/VapVvv/1WIiIiZMiQIXLs2LFaj0lNTZXAwEBJT093aNy9uLhYgoKCnPaIFbkOA5lILc38GcnG2LdvnwQFBcmGDRtc3RQZNmyYZGRkNHjcrVu3pGvXrrJ69WqH6jObzbJu3Trp1KmTjB49Wr777rsnjjl16pRERETIuHHj5N69e3bXFRMTI+vXr3ekuaRBDGQiUtW5c+ekS5cuMnfuXKmqqnJJG65cuSIBAQFSUVFR73Emk0kGDhwoc+bMUa3uiooK+eSTT+Tpp5+WpKQkuX79+i9ef/DggUydOlXCwsLkyJEjdtWxc+dO6dWrl6ZnuJPtOMuaiFTVvXt3HDt2DAcOHMC4ceNqnYnsbP/85z8xZswY+NWzMYHVasWkSZMQEhKCTz75RLW6/fz8MHfuXBQXF8Pb2xsRERGYP38+fvrpJwCAr68v0tLSsGzZMiQkJOCjjz5CVVWVTXX87ne/g9lsxv79+1VrN7keA5mIVBcYGIi9e/eiVatWiI6Oxo0bN5qsbhFBeno6JjWwOf17772HK1euID09HR4e6r8VBgYGYunSpcjPz8eFCxfQtWtXrFixAmazGQAwcuRInDhxAvv370d0dDQuX77c6LJ1Oh3eeecdPgLVzDCQicgpfHx8kJGRgVdffRUvvfQSzpw50yT1Hj9+HFarFS+//HKdx6xZswZZWVnYsmULfBzdrrEBzz77LDZu3Ijt27dj8+bN6NGjBzIzMyEi6NSpE3bv3o3Y2FgYjUab9p+eOHEiDh8+jPz8fKSkpKCwsNCJV0FNwtV95kTU/GVkZIher5ddu3Y5va6Gnj3Ozs6W4OBgVR5Bssfu3buld+/eMmDAAMnJyan5eW5urnTp0kUSExPlp59+arCcwsJC+fWvfy2enp7i5eUla9ascWazqQkwkImoSRw8eFCCg4Nl1apVTqujoWePCwoKRK/X2z2ZSi1VVVWSkZEhYWFhEhcXV7MhRXl5ubzxxhvSrVs3OXHiRJ3nl5SUiE6nEw8PDwEgbdq0kS+//LKpmk9Owi5rImoSgwYNwqFDh7B06VLMnDnT5olMjfHNN9/AaDQiNDT0iddKSkoQFxeHFStW1Nud3RQ8PDwwfvx4FBcX45VXXkF0dDQSExNRVlaG9PR0zJ8/H6+++iqWLFlSsy/z40JCQpCRkQFvb28AgMViwa9+9aumvgxSGQOZiJpMly5dcPToURQUFGD06NGoqKhQpdyMjAx8//33dU7mKi8vR2xsLN59912MGTNGlTrV4O3tjeTkZJw/fx5BQUF44YUXMHfuXMTExOD48ePIzMxETEwMrl+//sS5r7/+Ovbv34+2bdvi4cOHeOqpp1xwBaQmBjIRNamAgADs3LkT7du3x5AhQ3D16lWHyhMRTJ48GREREdi7dy/u3buH+/fv17xuNpsxZswYDB48GDNnznS0+U7Rrl07LFy4EKdOnUJpaSnCw8OxZcsW7NmzBwMGDECfPn0wc+ZMiMgvzuvfvz/OnDmDjh07IiAgACgtBRYtAiZMAEaMUL4vWgTcvOmiKyObuLrPnIhaJqvVKgsXLpTQ0FCb1o+ujV6vFwACQDw9PWXUqFGSmZkpVqtVEhMTJTY2Vsxms0otd77Tp09LXFychIWFSUZGhkyfPl0ASFRUVO1LZubmKluC+vg8uVd39fKtCQnKcaRZDGQicqlNmzaJXq+XrVu3iojIo0ePpLCw0KYyevbsKQCkdevW8uKLL8qoUaNEp9NJVFSU9OnTR+7fv++MpjtdTk6OGI3Gmslbnp6eEh4eLmfOnPn5IG5w0mywy5qIXGrs2LHYunUr/vSnP2HZsmWYNGkSjEYj7t692+gyqic0DRw4EAcOHMDBgwchIsjJyUFoaChat27trOY71ZAhQzB06FB4eXkBAKqqqnD79m385je/wapVqyArVwKzZgEPHiixWx8R5bhZs4CVK5ug9WQrnUhDf0UiIue7dOkS+vfvj7t378LLywsffvghZs+e3ahzExIScPnyZRw7dgwlJSWIiIhAZWVlzevLli3DX/7yF2c13ak6d+6MH3/8Ea1atYLVaoXZbMaECRMgublY9/338LFntrqfH5CTAxiN6jeY7Obl6gYQEQFAfn4+ysvLYbFYYLFYsHjxYsyYMQOenp6/PLC0FEhPBwoLgbIywN8fm19+GVizBmjVChs3bkRlZSVat26NF198EXPmzEFsbKxLrkkNFy9eRGVlJUwmE0wmE+7du4ewsDD4vP46dOfP21eoyQQsXAhkZanbWHII75CJSBM+/vhjLFq0CFarFZWVlbBYLPj73//+82NMeXlKiOzYofz74cOfT/b1VbpkY2KQ2qYNtpeWIjU1FV27dm3y62gSpaWAwfDL34GtfHyAy5cBvV69dpFDOIZMRJowb948lJWVIT8/H5999hl69OiBkydPKi+uXAlERQFbtigh9L9BZDIpP9uyBdOzsrBz5MjmG8aA0kPgKJ1OnXJINbxDJiJte3ziUmP5+QGLFwNJSc5rlytNmABs3Oh4ORMnAp9/7ng5pAreIRORduXl2R7GwM+zifPzndMuVysrU6ccG2ayk/MxkIlIuxYuVLqj7VE9cak58vdXp5yAAHXKIVUwkIlIm0pLlQlc9o6qiQDZ2c1z2chevZRJWY7w9QWef16d9pAqGMhEpE2cuFS3WjbQsJmIOuWQahjIRKRNhYWOPdYDKN3WRUXqtEdLgoKAmBjlA4c9dDpg+HA+8qQxDGQi0iZOXKrf3LlKt7M9fH2V80lTGMhEpE2cuFS/fv2UR7v8/Gw7r/qRMC6bqTkMZCLSJk5calhS0s+h3FD3tU7X/J/PdnNcGISItInLQzZefr7yiFd2thK8jz8qVr2s6PDhSjc174w1i4FMRNr12mvKcpn2vE3pdEBCQsvaQOHmTWVWeVGRMnYeEKD0EEya1Pw/lDQDDGQi0q68PGUNa1tX6gK4xSC5HY4hE5F2ceIStSDcD5mItK16AtKsWcrYaH2dejqdMmbKiUvkhthlTUTugROXqJljIBORe+HEJWqmGMhEREQawEldREREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIRGmxNm4AAAEVSURBVEREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIREREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIREREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIREREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIREREGsBAJiIi0gAGMhERkQYwkImIiDSAgUxERKQBDGQiIiINYCATERFpAAOZiIhIAxjIREREGsBAJiIi0gAGMhERkQb8P0kIXK+NMYdLAAAAAElFTkSuQmCC\n" }, "metadata": {} } ], "source": [ "nx.draw_spring(network, nodelist = participants, edgelist=influencers)\n", "plt.title('Participants Social Network')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "{'type': 'proposal',\n 'conviction': 0,\n 'status': 'candidate',\n 'age': 0,\n 'funds_requested': 1012.0991460762266,\n 'trigger': 573.2863572044846}" }, "metadata": {}, "execution_count": 14 } ], "source": [ "#lets look at proposals\n", "network.nodes[proposals[0]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Proposals initially start without any conviction, and with the status of a candidate. If the proposal's amount of conviction is greater than it's trigger, then the proposal moves to active and it's funds requested are granted. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All initial proposal start with 0 conviction and state 'candidate'we can simply examine the amounts of funds requested" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "funds_array = np.array([ network.nodes[i]['funds_requested'] for i in proposals])\n", "conviction_required = np.array([trigger_threshold(r, initial_funds, supply, beta, rho, alpha) for r in funds_array])" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Text(0, 0.5, 'Amount of Honey requested(as a Fraction of Funds available)')" }, "metadata": {}, "execution_count": 16 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFBCAYAAACGk4NZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYnFWZ/vHvTcJmJAEhgBBCIgScIIgQEAEBxQUUCCIKAZVtREYRFMcRHWVzA1yAcXQQZUcFBMWwDPCTzQ2EhNWwOIEkEBZlCWENkPD8/jinSKXorjod8na/dN2f66qr372et6q6Tp1dEYGZmVk7Sw10AGZmVn9OLMzMrCMnFmZm1pETCzMz68iJhZmZdeTEwszMOnJiYWZmHQ3tdICkVYGtgDWA54G/AVMi4uWKYzMzs5pQb53yJL0HOBx4E3AL8E9gOWA9YB3gAuAHEfFU/4RqZmYDpV1i8T3gRxFxfw/7hgI7AUMi4sJqQzQzs4HWa2JhZmbW0LGCW9Jqkk6VdHleHy/pgOpDMzOzuihpDXUGcAXw5rz+d+ALVQVkZmb1U5JYrBIR5wMvA0TEfGBBpVGZmVmtlCQWz0paGQgASVsAcyuNyszMaqVjPwvgMGAysI6kPwMjgd0rjcrMzGqlqDVUbiq7PiDgnoh4qerAzMysPtr1s9it3YkR8ZtKIjIzs9ppVwy1c5t9ATixMDPrEu6UZ2ZmHZV0yltZ0n9JulnSVEkn5dZRZmbWJUqazp4LPAp8lNQK6lHgvCqDMjOzeulYDCVpakRs2rJtSkRMqDQyMzOrjZKcxTWS9pS0VH58HLi06sDMzKw+2jWdfZrU6knAMPJwH6QE5pmIGN4vEZqZ2YBzaygzM+uoZLgPJK0EjCPNlAdARPyhqqDMzKxeSubg/lfgUGAUcCuwBXA98N5qQzMzs7ooqeA+FNgMmBUR7wHeQWo+a2ZmXaIksZgXEfMAJC0bEXeTBhU0M7MuUVJnMVvSisBFwP+TNAd4qNqwzMysTvrUGkrStsAI4PKIeLGyqMzMrFba9bN4U7sTI+KJSiIyM7PaaZdYzGBhp7xWERFvqTIwMzOrD3fKMzOzjnptDSXprfnvJj09+i9Eq5qka3N/mlqQtJqkP0h6WtIPBjqeJU3SUZLOGeg4eiPpDEnfGug4Xg8khaR1BzqO/tCuNdRhwIFAT/+sgTvlLVGSZgKrAQuAl4C/AAdFxAMDGdfikHQGMDsivr6YlzgQeAwYHj1kffP19wJezI+pwOdzs+5Bq+Uz0rBeRNSidaKkAJ4jfT/MJU1l8OWIWND2xAEiaV/gXyNi64GO5fWg15xFRByY/76nh4cTimrsHBFvBN4M/AP40eJcRFLRMC5VkDRkCVxmbeDOnhKKJsfn12oU8E/gjF7iGbDXoiI7R8Qbmx61SCiavD2/L9sCewD7D3A8toSUdMpD0tskfVzSpxqPqgPrZrkT5AXA+MY2SR+WdIukpyQ9IOmopn1jcnb4AEn3A1f3dF1JEyXdmq9xr6QdmnavLenPuejnSkmrNJ33a0mPSJqbi4c2aNp3hqT/kXSZpGeBA4C9gf+Q9Iyki3uJZUtJN+Vr3iRpy8b1gH2azn9fh9fqOeCXwNvy+UdJukDSOZKeAvaVtKykEyU9lB8nSlo2H7+dpNmSvibpMUkzJe3dFOcISWdJelTSLElfl7RU3reupOvyPTwm6bym807K79NTeYbJd/fyOiyXY31c0pP5tVit3T33cI3tJM1u2Taz8drl1+T8fB9PS5omaULTse9Qmgnz6XwPyzXtW0XSJTm2JyT9sXH/7UTEdODPwMZN1xoh6VRJD0t6UNK3Gj8uJA2R9P38Ot4n6XP5Mz209X6a7umcpvUtJP0lx3mbpO2a9u2br/m0pBmS9pb0L8DJwLvy5+zJfOyyOY77Jf1D0smSlm+61pdz/A9J6q6EMCLaPoAjgWtIv3RPBx4BLuh0nh99ewAzgffl5TcAZwJnNe3fDtiQlMBvlN+PXfO+MaSs/1mk4eSX7+H6m5OKBt6fr7Em8Na871rgXmA9YPm8fmzTufsDKwDLAicCtzbtOyNfd6t83eXytm+1udc3AXOAT5KKQifl9ZWbrtnu/Ff2A28kJRZ/zOtHkYrxds3xLA8cA9wArAqMJBXxfbPpdZ0P/DDf37bAs8D6ef9ZwO/y/Y8B/g4ckPf9CvjPpvveuinGTwAr5/v7Uv6/Wa4pxnPy8meAi/N7PgTYlFT81vYz0rJ9O1KxX2+fp6OAecCH8nN8F7gh71sGmAV8EViaNBvmS02v73dJX6pL58e7yQ1jeogjgHXz8luBh4EvNu2/CPgp6TO6KnAj8Jm87yDgbmCt/Pm4Jl9vaE/33vIargk8nu9vKdJn/PH8Xg8Dnmp6P98MbJCX9wX+1HIPJwKTcwwr5Pfmu3nfDqT/u7fl6/6y+Z4H+6PkS+yO/AbcltdXAy4e6MAH2yP/MzwDPEn68noI2LDN8ScCJ+TlMflD+5Y2x/+0cXwP+64Fvt60/llSx8uejl0xP9eIvH4GTYla07Z2X/afBG5s2XY9sG/h+WeQvvyeJH0JTwbWyfuOAv7Qcvy9wIea1j8IzMzL2+XXe1jT/vOBb5C+WF8Axjft+wxwbV4+CzgFGFXw/s4hFdE0Ymx80e1PSrw26uNn5EngoqZ76JRY/L5p33jg+by8Tf6sqWn/X1iYWBxDSiw7fiHmz8VTpMQ2SInpsnnfavm1XL7p+EnANXn5alIdXWPfByhPLL4CnN0SyxWkHOqw/Fp9lJYfUbQkFqRuAs82Pkt527uAGXn5NBb9EbUeXZRYlBRDPR8RLwPzJQ0nlQ+7j0U1do2IFUm/cA8GrpO0OoCkd0q6JheHzCX9Elul5fx2leFrkb40e/NI0/JzpF/sjeKBY5WKrZ4i/dPS8tx9rYRfg/Rrttks0i/EUt+PiBUjYvWI2CUimu+tNZ7W55uVtzXMiYhne9i/Cgt/efcU53+QvmBuzEU7rxRLSPqSpLtyEdWTpJEPWt8vgLNJX2zn5qKN4yUt3ea+d833vWJE7NrmuFat7+9yuYhnDeDByN9+TffY8D1gOnBlLso5vMPzbEL67OwBvJP0ZQ2pHmpp4OFcVPQk6QfMqnn/Giz6vrV+PtpZG/hY47r52lsDb87v6x6k/5eHJV2q3NKzByNJObypTde5PG9/rTG+7pUkFlOUxob6GanVyc2k7KNVJCIWRMRvSK1eGi01fkn6Bb1WRIwgFQ20dphsVyH8ALDOYoSzFzAReB/pC29M3t783K3P26nzzkOkf/Bmo4EHFyO+nrQ+f+vzjWbR8c1WkjSsh/2PkYpkWs99ECAiHomIT0fEGqQcx09yPca7Sb92Pw6slH8AzKWHDq4R8VJEHB0R44EtgZ2AvtYJPkv6kgNeaWQwsvfDF/EwsKak5thGN8X3dER8KVIn3J2BwyRt3+6CkZxPyi0ekTc/QMpZrNKU2A2PiEb918OkHzSviqGnewRWb1p+gJSzWLHpMSwijs3xXBER7ycVQd1N+i6DV39OHgOeJxVTNa4zIlKFfUmMg1pJRdVnI+LJiDiZVBa4T0TsV31o3UvJRGAl4K68eQXgiYiYJ2lz0pd4X5wK7Cdpe6W51Nds8wur2Qqkf/LHSf+s3yk45x+0z31eBqwnaS9JQyXtQSoauaTg2ovjV8DXJY1Uqrg/Amjt53C0pGXyF/1OwK8jNfk8H/i2pBUkrU1qUn4OgKSPSRqVz59D+vJZQHrN5pOG8h8q6Qigx2mIJb1H0ob5C/4pUuLU16amfyflFD6ccyVfJ+VOS1yfYz0kvxe7keq3GvHtlBNA5fgW9CG+Y4EDJa0eEQ8DVwI/kDQ8fwbXURpvDtLrfIikUUqTrbXmYG4F9pS0tFLl/O5N+84Bdpb0wZwTXk6p0n+UUp+dXfKPgRdIxXiN+P8BjJK0DEAuQfkZcIKkVfP9rynpg00x7itpvKQ3kOpzu0bHxELS7/I/9bCImBkRt/dHYF3qYknPkP4pv01KmKflfZ8FjlGaG/0I0ge3WETcCOwHnED6lXsdr/5135OzSNntB4E7SRXFnZwKjM9Z+Yt6iOVx0hfyl0iJ0H8AO0XEYwXXXhzfAqYAt5Pq4G7O2xoeIX3ZPwT8glR23uiz8XnSr9r7gD+Rcnin5X2bAX/N79lk4NCImEEqVvpf0pf4LFL9Sm9FdauTWr49RfphcB2vTsjaioi5pM/Hz0nv07PA7LYnLTz3RWA3Uvn9HFKRzW+aDhkH/J70JXs98JOIuLbw2neQ7ufLedOnSMV6d+bnuoD0ax/Sl/QVwG2k9+c3LOobpJzxHOBo0vvQeJ4HSLnfr5ES6Afycy6VH18ivbdPkBowfDafejUwDXhEUuOz9xVSsdsNudj19+QpGSLif0l1hVfnY3psdThYdRzuI6f8ewAfJhU/nQdcEnmOC7PXM6UmludExKhOx1r/kTQGmAEsHRHzBzYag4L5LCLiOlJF6xBSr+1Pk35Z9ZitNjOzwae0U97ypKZnB5Gy3mcWnreDpHskTe+pFYVSB5jz8v6/5l8TjX0bSbo+tzK5Q9JyreebmVn/KCmGOo/UBO5yUjn5tbkiqNN5Q0hltu8nlZ/eBEyKiDubjvksqX35QZL2BD4SEXvkJn03A5+MiNskrQw8GTUdY8bMbLArGTfndGCvxfii3hyYHhH3AUg6l1QJdWfTMRNJnWsgVXb9d2518QHg9oi4DV6pEDUzswFSUmdxudLYUONpGjMmIs7qcOqaLNoCZDYph9LjMRExX6mz2crknpGSriC1Fz83Io5vfQJJB5JGKGXYsGGbvvWtJS1BzcysYerUqY9FRMd+OR0TC0lHkoYTGE9qH78jqQlhp8Sixxn2Co8ZSuqMthmpt+lVkqZGxFWLHBhxCmm4BSZMmBBTpkzpEJKZmTWTVNQTvaSCe3dge+CR3Bnv7ZR1+JnNor0dR7For9lFjsn1FCNIbaFnA9dFxGORRhW9jDSMgJmZDYAqx4a6CRgnaWzuIbknqeNSs8mkwb4gJUpX5zFqrgA2kvSGnIhsy6J1HWZm1o9KKrhbx4Z6hoKxoXIdxMGkL/4hwGkRMU3SMcCUiJhM6ul7tqTppBzFnvncOZJ+SEpwArgsIi7t++2ZmdmS0LHp7CIHp34Qw+s45IfrLMzM+i7XB0/odFyfppyMiJmLHZGZmb1uFfXgNjOz7ubEwszMOioZonwdLTq5/SG5wtvMzLpESc7iQmCBpHVJrZfG0jSWvJmZDX4lFdwv52awHwFOjIgfSbql6sCs/4w5fPC0Sp557IcHOgSzQakkZ/GSpEmkznONaS/bTShvZmaDTElisR/wLuDbETFD0lj6OO2jmZm9vpWMOnsncEjT+gzSROxmZtYlek0sJN3Bq0eJfUVEbFRJRGZmVjvtchY75b+fy3/Pzn/3Jg0bbmZmXaLXxCIiZgFI2ioitmradbikPwPHVB2cmZnVQ0kF9zBJWzdWJG0JDKsuJDMzq5uSfhYHAKdJGpHXnwT2ry4kMzOrm5LWUFOBt+eJjxQRc6sPy8zM6qRkDu5lgY8CY4ChUpo2OyJcZ2Fm1iVKiqF+B8wlzZL3QrXhmJlZHZUkFqMiYofKIzEzs9oqaQ31F0kbVh6JmZnVVknOYmtgX0kzSMVQAsI9uM3MukdJYrFj5VGYmVmtlSQWvY4PZWZm3aEksbiUlGAIWI40U949wAYVxmVmZjVS0ilvkcptSZsAn6ksIjMzq52S1lCLiIibgc0qiMXMzGqqpAf3YU2rSwGbAI9WFpGZmdVOSZ3FCk3L80l1GBdWE46ZmdVRu5nyhkbE/Ig4enEvLmkH4CRgCPDziDi2Zf+ywFnApsDjwB4RMVPSGOAuUkU6wA0RcdDixmFmZq9NuzqLGxsLkn7U1wtLGgL8mNRPYzwwSdL4lsMOAOZExLrACcBxTfvujYiN88MJhZnZAGqXWKhpeatej+rd5sD0iLgvIl4EzgUmthwzETgzL18AbK/GsLZmZlYb7RKL19oZb03ggab12Xlbj8dExHzS6LYr531jJd0i6TpJ7+7pCSQdKGmKpCmPPuo6dzOzqrSr4H6rpNtJOYx18jKUjw3VUw6hNQHq7ZiHgdER8bikTYGLJG0QEU8tcmDEKcApABMmTHBPczOzirRLLP7lNV57NrBW0/oo4KFejpktaSgwAngiIoI8d0ZETJV0L7AeMOU1xmRmZouh18QiIma9xmvfBIyTNBZ4ENgT2KvlmMnAPsD1wO7A1RERkkaSEo0Fkt4CjAPue43xmJnZYirpZ7FYImK+pIOBK0hNZ0+LiGmSjgGmRMRk4FTgbEnTgSdICQrANsAxkuYDC4CDIuKJqmI1M7P2KkssACLiMuCylm1HNC3PAz7Ww3kX4o5/Zma10WtrKElX5b/H9XaMmZl1h3Y5izdL2hbYRdK5tLRcygMKmplZF2iXWBwBHE5qxfTDln0BvLeqoMzMrF7atYa6ALhA0jci4pv9GJOZmdVMyeRH35S0C6mFEsC1EXFJtWGZmVmddJz8SNJ3gUOBO/Pj0LzNzMy6REnT2Q8DG0fEywCSzgRuAb5aZWBmZlYfpdOqrti0PKKKQMzMrL5KchbfBW6RdA2p+ew2OFdhZtZVSiq4fyXpWmAzUmLxlYh4pOrAzMysPoqG+4iIh0mD/pmZWRcqrbMwM7Mu5sTCzMw6KiqGkjQEWK35+Ii4v6qgzMysXjomFpI+DxwJ/AN4OW8OoNO0qmZmNkiU5CwOBdaPiMerDsbMzOqppM7iAWBu1YGYmVl9leQs7gOulXQp8EJjY0S0DltuZmaDVElicX9+LJMfZmbWZUp6cB8NIGmFtBrPVB6VmZnVSskQ5W+TdAvwN2CapKmSNqg+NDMzq4uSCu5TgMMiYu2IWBv4EvCzasMyM7M6KUkshkXENY2ViLgWGFZZRGZmVjtFraEkfQM4O69/AphRXUhmZlY3JTmL/YGRwG+A3+bl/aoMyszM6qWkNdQc4JB+iMXMzGqq18RC0okR8QVJF5PGglpEROxSaWRmZlYb7XIWjTqK7y/uxSXtAJwEDAF+HhHHtuxfFjgL2BR4HNgjImY27R8N3AkcFRGLHYeZmb02vdZZRMTUvLhxRFzX/AA27nThPKz5j4EdgfHAJEnjWw47AJgTEesCJwDHtew/AfjfslsxM7OqlFRw79PDtn0LztscmB4R90XEi8C5wMSWYyYCZ+blC4DtJQlA0q6kcammFTyXmZlVqF2dxSRgL2CspOb5t1cgFRl1siZpxNqG2cA7ezsmIuZLmgusLOl54CvA+4F/L3guMzOrULs6i78ADwOrAD9o2v40cHvBtdXDttaK8t6OORo4ISKeyRmNnp9AOhA4EGD06NEFIZmZ2eLoNbGIiFnALEl7Aw9FxDwAScsDo4CZHa49G1iraX0U8FAvx8yWNBQYATxByoHsLul4YEXgZUnzIuK/W2I8hTQcCRMmTHhViy0zM1sySuoszmfhdKoAC4BfF5x3EzBO0lhJywB7ApNbjpnMwjqR3YGrI3l3RIyJiDHAicB3WhMKMzPrPyXDfQzNFdQARMSL+cu/rVwHcTBwBanp7GkRMU3SMcCUiJgMnAqcLWk6KUex52LdhZmZVaoksXhU0i75yx1JE4HHSi4eEZcBl7VsO6JpeR7wsQ7XOKrkuczMrDolicVBwC8k/TepQvoB4FOVRmVmZrVSMjbUvcAWkt4IKCKerj4sMzOrk5KcBZI+DGwALNdoyhoRx1QYl5mZ1UjJtKonA3sAnycVQ30MWLviuMzMrEZKms5uGRGfIo3hdDTwLhbtP2FmZoNcSWIxL/99TtIawEvA2OpCMjOzuimps7hY0orA94CbScNx/KzSqMzMrFbaJhaSlgKuiogngQslXQIsFxFz+yU6MzOrhbbFUBHxMk2DCEbEC04ozMy6T0mdxZWSPqp2w7+amdmgVlJncRgwDJgvaR6p+WxExPBKIzMzs9oo6cG9Qn8EYmZm9dVrMVQeMbaxvEH/hGNmZnXUrs5i/6bls6sOxMzM6qukght6nv7UzMy6RLs6ixUlfYSUoAyXtFvzzoj4TaWRmZlZbbRLLK4DdsnLfwB2btoXgBMLM7Mu0WtiERH79WcgZmZWX6V1FmZm1sWcWJiZWUdOLMzMrKPSaVXfBowHlmtsi4izqgrKzMzqpWNiIelIYDtSYnEZsCPwJ8CJhZlZlygphtod2B54JLeQejuwbKVRmZlZrZQkFs/neS3mSxoO/BN4S7VhmZlZnZTUWUzJ06r+DJgKPAPcWGlUZmZWKyVDlH82L54s6XJgeETcXm1YZmZWJ0WtoRoiYmZFcZiZWY1V2s9C0g6S7pE0XdLhPexfVtJ5ef9fJY3J2zeXdGt+3JYHNDQzswFSWWIhaQjwY1JT2/HAJEnjWw47AJgTEesCJwDH5e1/AyZExMbADsBPJfUpF2RmZktOx8RC0jqSls3L20k6JFd4d7I5MD0i7ouIF4FzgYktx0wEzszLFwDbS1JEPBcR8/P25Uij3JqZ2QApyVlcCCyQtC5wKjAW+GXBeWsCDzStz87bejwmJw5zgZUBJL1T0jTgDuCgpsTjFZIOlDRF0pRHH320ICQzM1scJYnFy/mL+iPAiRHxReDNBef1NLteaw6h12Mi4q8RsQGwGfBVScu96sCIUyJiQkRMGDlyZEFIZma2OEoSi5ckTQL2AS7J25YuOG82sFbT+ijgod6OyXUSI4Anmg+IiLuAZ4G3FTynmZlVoCSx2A94F/DtiJghaSxwTsF5NwHjJI2VtAywJzC55ZjJpEQI0rAiV0dE5HOGAkhaG1gfmFnwnGZmVoGSTnl3Aoc0rc8Aji04b76kg4ErgCHAaRExTdIxwJSImEyqAzlb0nRSjmLPfPrWwOGSXgJeBj4bEY/17dbMzGxJKRl1dhzwXV49RHnH8aEi4jLSSLXN245oWp4HfKyH884Gzu50fTMz6x8lxVCnA/8DzAfeQxqa3F/kZmZdpCSxWD4irgIUEbMi4ijgvdWGZWZmdVLSK3qepKWA/8t1EA8Cq1YblpmZ1UlJzuILwBtIldybAp9gYQsmMzPrAiWtoW7Ki8+QmtGamVmX6TVnIekUSRv2sm+YpP0l7V1daGZmVhftchY/Ab6RE4y/AY+Sms6OA4YDpwG/qDxCMzMbcL0mFhFxK/BxSW8EJpDGg3oeuCsi7umn+MzMrAZK6iyeAa6tPhQzM6urXhMLSXfQZh6JiNiokojMzKx22uUsdsp/P5f/Nnpt7w08V1lEZmZWO+3qLGYBSNoqIrZq2nW4pD8Dx1QdnJmZ1UNJp7xhkrZurEjaEhhWXUhmZlY3JcN9HACcJmkEqQ5jLrB/pVGZmVmtlLSGmgq8XdJw0mCCc6sPy8zM6qRjMZSk1SSdCpwXEXMljZd0QD/EZmZmNVFSZ3EGaba7NfL630mDC5qZWZcoSSxWiYjzSdObEhHzgQWVRmVmZrVSklg8K2llcgc9SVuQKrnNzKxLlLSGOgyYDKyT+1eMpId5s83MbPAqSSymAdsC6wMC7qEsR2JmZoNEyZf+9RExPyKmRcTfIuIl4PqqAzMzs/poN5Dg6sCawPKS3kHKVUCay+IN/RCbmZnVRLtiqA8C+wKjgB+wMLF4GvhatWGZmVmdtBtI8EzgTEkfjYgL+zEmMzOrmZI6i1GShiv5uaSbJX2g8sjMzKw2SlpD7R8RJ0n6ILAqsB9wOnBlpZH1szGHXzrQISwRM4/98ECHYGaDUEli0air+BBwekTcJkntTnjlRGkH4CRgCPDziDi2Zf+ywFnApsDjwB4RMVPS+4FjgWWAF4EvR8TVJc9p1heD5UcC+IeCVaukGGqqpCtJicUVklYgD/3RjqQhwI+BHYHxwCRJ41sOOwCYExHrAicAx+XtjwE7R8SGwD4snKXPzMwGQElicQBwOLBZRDxH+rW/X8F5mwPTI+K+iHgROBeY2HLMRODMvHwBsL0kRcQtEfFQ3j4NWC7nQszMbACUFEMFKWewE2kq1WHAcgXnrQk80LQ+G3hnb8dExHxJc4GVSTmLho8Ct0TEC61PIOlA4ECA0aNHF4RkZs0GSzGci+CqV5Kz+AnwLmBSXn+aVLzUSU/1GtGXYyRtQCqa+kxPTxARp0TEhIiYMHLkyIKQzMxscZQkFu+MiM8B8wAiYg6pKKqT2cBaTeujgId6O0bSUGAE8EReHwX8FvhURNxb8HxmZlaRksTipVxZ3RiifCQFFdzATcA4SWMlLQPsSRq9ttlkUgU2wO7A1RERklYELgW+GhF/LnguMzOrUEli8V+kX/irSvo28CfgO51OypMkHUyaZe8u4PyImCbpGEm75MNOBVaWNJ00FPrhefvBwLrANyTdmh+r9uXGzMxsyelYwR0Rv5A0FdieVMewa0TcVXLxiLgMuKxl2xFNy/PoYW6MiPgW8K2S5zAzs+p1TCwkjQaeAy5u3hYR91cZmJmZ1UdJ09lLSfUVIjWZHUuaAGmDCuMyM7MaKSmG2rB5XdIm9NKU1czMBqc+T48aETcDm1UQi5mZ1VRJncVhTatLAZsAj1YWkZmZ1U5JncUKTcvzSXUYngzJzF7XBstQJ9A/w52U1FkcXXkUZmZWayXFUK29rhcREbu0229mZq9/JcVQM4DVgXPy+iRgJqlntpmZdYGSxOIdEbFN0/rFkv4QEV+rKigzM6uXkqazIyW9pbEiaSzg8cDNzLpISc7ii8C1ku7L62Nwpzwzs65S0hrqcknjgLfmTXf3NGudmZkNXh2LoSS9AfgycHBE3AaMlrRT5ZGZmVltlNRZnA68SJpaFdLsdh4+3Mysi5QkFutExPHASwAR8Tw9z51tZmaDVEli8aKk5Vk4reo6gOsszMy6SElrqCOBy4G1JP0C2ArYt8qgzMysXtomFpIE3A3sBmxBKn46NCIe64fYzMysJtomFhERki6KiE1Jo82amVkXKqmzuEGSJzsyM+tiJXUW7wE+I2kW8CypKCoiYqNKIzMzs9ooSSx2rDwKMzOrtZLhPmb1RyBmZlZfJXUWZmbW5ZxYmJlZRyUDCR4saaX+CMbMzOqpJGexOnCTpPMl7ZAH1/nuAAAOQElEQVQ76hXJx98jabqkw3vYv6yk8/L+v0oak7evLOkaSc9I+u/S5zMzs2p0TCwi4uvAOOBU0jAf/yfpO3mMqF5JGgL8mNSaajwwSdL4lsMOAOZExLrACcBxefs84BvAv5ffipmZVaWoziIiAngkP+YDKwEXSDq+zWmbA9Mj4r6IeBE4F5jYcsxE4My8fAGwvSRFxLMR8SdSomFmZgOspM7iEElTgeOBPwMbRsS/AZsCH21z6prAA03rs/O2Ho+JiPnAXGDl4ujNzKxflHTKWwXYrbW/RUS83GHGvJ7qNmIxjun9CaQDgQMBRo8eXXqamZn1UUmdxRGk4cn3A5A0UtLYvO+uNqfOBtZqWh8FPNTbMZKGAiOAJ0qDj4hTImJCREwYOXJk6WlmZtZHJcVQRwJfAb6aNy0NnFNw7ZuAcZLGSloG2BOY3HLMZGCfvLw7cHWuHzEzsxopKYb6CPAO4GaAiHhI0gqdToqI+ZIOBq4AhgCnRcQ0SccAUyJiMqmF1dmSppNyFHs2zpc0ExgOLCNpV+ADEXFnn+7OzMyWiJLE4sU8r0VjWtVhpRePiMuAy1q2HdG0PA/4WC/njil9HjMzq1ZJ09nzJf0UWFHSp4HfAz+rNiwzM6uTklFnvy/p/cBTwPrAERHx/yqPzMzMaqOkGIqcODiBMDPrUiWtoXaT9H+S5kp6StLTkp7qj+DMzKweSnIWxwM7d+hTYWZmg1hJBfc/nFCYmXW3kpzFFEnnARcBLzQ2RsRvKovKzMxqpSSxGA48B3ygaVsATizMzLpESdPZ/fojEDMzq6+S1lCjJP1W0j8l/UPShZJG9UdwZmZWDyUV3KeTBvxbgzT/xMV5m5mZdYmSxGJkRJweEfPz4wzA44GbmXWRksTiMUmfkDQkPz4BPF51YGZmVh8licX+wMdJ828/TJp3Yv8qgzIzs3opaQ11P7BLP8RiZmY11WtiIelHtJkPOyIOqSQiMzOrnXY5iylNy0cDR1Yci5mZ1VSviUVEnNlYlvSF5nUzM+suJRXc0KY4yszMBr/SxMLMzLpYuwrup1mYo3hD04RHAiIihlcdnJmZ1UO7OosV+jMQMzOrLxdDmZlZR04szMyso14TC0nL9mcgZmZWX+1yFtcDSDq7n2IxM7OaateDexlJ+wBbStqtdafn4DYz6x7tEouDgL2BFYGdW/Z5Dm4zsy7Srunsn4A/SZoSEacuzsUl7QCcBAwBfh4Rx7bsXxY4C9iUNEfGHhExM+/7KnAAsAA4JCKuWJwYzMzstes4RDlwtqRDgG3y+nXAyRHxUruTJA0Bfgy8H5gN3CRpckTc2XTYAcCciFhX0p7AccAeksYDewIbkKZz/b2k9SJiQV9uzszMloySprM/If3y/0l+bAL8T8F5mwPTI+K+iHgROBeY2HLMRKAxQOEFwPaSlLefGxEvRMQMYHq+npmZDYCSnMVmEfH2pvWrJd1WcN6awANN67OBd/Z2TETMlzQXWDlvv6Hl3DVbn0DSgcCBefUZSfcUxDWQVgEeq/IJdFyVV39NKr936O77973XVt3vf+2Sg0oSiwWS1omIewEkvYVUj9CJetjWOnptb8eUnEtEnAKcUhBLLeT6nwkDHcdA6OZ7h+6+/26+dxg891+SWHwZuEbSfaQv8bWB/QrOmw2s1bQ+Cniol2NmSxoKjACeKDzXzMz6Sckc3FdJGgesT0os7o6IFwqufRMwTtJY4EFShfVeLcdMBvYhdQDcHbg6IkLSZOCXkn5IquAeB9xYeE9mZraEleQsyInD7X25cK6DOBi4gtR09rSImCbpGGBKREwGTiW1tppOylHsmc+dJul84E5gPvC5QdIS6nVTZFaBbr536O777+Z7h0Fy/4rwJHhmZtaeR501M7OOOiYWkq4q2WZmZoNXuyHKl5P0JmAVSStJelN+jCFVOlsvJK0l6RpJd0maJunQlv3/LikkrTJQMVapt/uXdJSkByXdmh8fGuhYl7R2772kz0u6J28/fiDjrEqb9/68pvd9pqRbBzrWJa3NvW8s6YZ871MkvT47GEdEjw/gUGAG8AJwX16eAdwGHNzbeX4EwJuBTfLyCsDfgfF5fS1Spf8sYJWBjrU/7x84Cvj3gY5vgO79PcDvgWXzvlUHOtb+vP+WY34AHDHQsfbje38lsGPe/iHg2oGOdXEe7QYSPAk4SdLnI+JH5cmPRcTDwMN5+WlJd5F6oN8JnAD8B/C7gYuwWm3uf9Brc++fBo6N3Ow8Iv45cFFWp8Nnnzycz8eB9w5YkBVpc+8BDM+HjeB12mesqDWUpC2BMTQ1tY2Is6oLa/DIxXZ/AN4GbAdsHxGHSpoJTIiIyofAGEgt938YsC/wFDAF+FJEzBmo2KrWcu9/IP1A2AGYR8ph3TRgwfWD5vuPiKfytm2AH8Yg6NHcTst7vyapNEGkov8tI2LWgAW3mEoquM8Gvg9sDWyWH4P6jV5SJL0RuBD4Aqm/yH8CRwxoUP2o+f7zl8X/AOsAG5N+gf1gAMOrVA/3PhRYCdiCNCrC+flX9qDUw/03TAJ+NTBR9Y8e7v3fgC9GxFrAF0n9y153OuYsclZqfJRkQewVkpYGLgGuiIgfStoQuAp4Lh/SGMJk84h4ZIDCrEzr/fewfwxwSUS8rZ9Dq1xP9y7pclIx1LV5/V5gi4h4dMACrUhv730e0udBYNOImD1Q8VWpl/d+LrBiRET+gTA3Ioa3u04dlfSz+BuwetWBDCb5A3EqcFfjAxMRd0TEqhExJiLGkMa/2mSQJhSvuv+8/c1Nh32E9NkaVHq7d+Aicjm9pPWAZeiHUXj7W5v7B3gfabigwZpQ9HbvDwHb5uX3Av/X37EtCSU5i2tIxQY3klpGARARu1Qb2uuXpK2BPwJ3AC/nzV+LiMuajpnJIK2z6O3+SUUQG5Mq/GYCn8mVgoNGm3v/PXAa6f5fJNVZXD0gQVao3Wdf0hnADRFx8kDFV6U27/1TpBlDh5Lqqz4bEVMHJMjXoCSx2Lan7RFxXSURmZlZ7XhsKDMz66jjqLOSnmbhxEPLAEsDz74eK2jMzGzxlMxnsULzuqRd8XzYZmZdZbGKoSTdEBFbVBCPmZnVUEkx1G5Nq0uROuS5osPMrIuU9LPYuenxQeBpYGKVQZm1I2lBHsHzb5J+LekNAx1Tg6TtJF3Sw/YJkv6rl3NmLu4IxJJ2lTS+af0YSe/Ly+/Oo5/eKmlNSRcsznOYgVtD2euQpGci4o15+RfA1JbOfyJ9tl/u7RoVxrYdqQ/FTn04ZyaL2ecm9124JCJelRBIOhn4a0ScvhjXHRKDYypjW0JKxoYaJem3kv4p6R+SLpQ0qj+CMyvwR2BdSWPyPAI/AW4G1pI0SdIdOQdyXOMESc9I+oGkmyVdJWlk3t6Yd+D2/JlfKW8/RNKdefu5edvmkv4i6Zb8d/12QTbnOCStLOnKfO5PSQPMNY77hKQbc27gp5KGNMX8bUm35RhXUxrgcxfge/n4dSSdIWl3Sf9KGt31CEm/yK/P3/K1hkj6nqSb8j19pinGayT9ktSxzOwVJcVQpwOTSRMerQlcnLeZDag81tCOLPxiWx84KyLeAbwEHEcaXmFjYLPckg9gGHBzRGwCXAccmbefBXwlIjbK12xsPxx4R95+UN52N7BNfq4jgO/0IfQjgT/lcycDo/P9/AuwB7BVRGwMLAD2bor5hoh4O2k0009HxF/y+V+OiI0j4t7GE0TEz5v2Na7RcABpfKLGwKCfljQ279sc+M+IGI9Zk44V3MDIlmzsGZK+UFVAZgWW18KZ1v5IGo9nDWBWRNyQt29GmmTmUXiluGob0hhNLwPn5ePOAX4jaQRpsLfGyARnAr/Oy7cDv5B0UT4f0rwEZ0oaR2rwsXQf4t8G2A0gIi6V1BimfXtgU+CmVJLG8kBj3osXSQPUAUwF3t+H52v1AWAjSbvn9RHAuPwcN0bEjNdwbRukShKLxyR9goXDCk8CHq8uJLOOns+/vF+Rv1yfbd7Uh+t1qrj7MOkLfhfgG5I2AL4JXBMRH1EaQffaPjxfb88p4MyI+GoP+15qGvl5AWX/u70R8PmIuGKRjam+5dkez7CuV1IMtT+p7PMR0hwEu+dtZnX2V2BbSavkcv9JpCInSJ/7xq/qvUhFQnOBOZLenbd/ErhO0lLAWhFxDWmGwxWBN5J+jT+Yj923j7H9gVy8JGlH0jwXkIaw313SqnnfmySt3eFaT5Om8OyLK4B/UxpOG0nrSRrWx2tYlynpwX0/6ReV2etGRDws6avANaRf0pdFRGMq22eBDSRNBeaS6gkA9gFOzk1x7wP2A4YA5+RiKgEnRMSTko4nFUMdBvR19NijgV9JupmUgN2fY75T0teBK3Mi9RLwOdJ87b05F/iZpENYmAB28nPSzJc355ZjjwK7tj3Dul7JqLNjgc/z6mlVnYDY61Jz01szK1NS7nkRqQLxYhaO0W5mZl2kJGfx14h4Zz/FY2ZmNVSSWOxFalZ3JYvOlHdztaGZmVldlBRDbUhqGfJeFhZDRV43M7MuUJKzuBvYKCJe7J+QzMysbkr6WdxGaltuZmZdqqQYajXgbkk3sWidhZvOmpl1iZLE4sjOh5iZ2WDW5/ksJG0F7BURn6smJDMzq5uiwcgkbUwaQ+fjwAzgwiqDMjOzeuk1sZC0HrAnC0eZPY+UE3lPP8VmZmY10WsxlKSXSXMFHBAR0/O2+yLiLf0Yn5mZ1UC7prMfJQ1Lfo2kn0nanr7NEWBmZoNESae8YaThiyeRem2fCfw2Iq6sPjwzM6uDPrWGkvQm4GPAHhHh4T7MzLpEn5vOmplZ9ykZ7sPMzLqcEwszM+vIiYWZmXXkxMLMzDpyYmFmZh39fwGHoFuhOjrLAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "plt.bar( proposals, funds_array/initial_funds)\n", "plt.title('Bar chart of Proposals Funds Requested')\n", "plt.xlabel('Proposal identifier')\n", "plt.ylabel('Amount of Honey requested(as a Fraction of Funds available)')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Text(0, 0.5, 'Amount of Conviction')" }, "metadata": {}, "execution_count": 17 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYHFXZ9/Hvj4RFBJJAwpaFYQloVDYDIgoi8KqsiTwIAkJEIC4ICgriBojohT4oiy8CUZCEfZEdZBFC1FdZkhjW8LxEDCQQIISQsEPi/fxRp0ml6enpmp6e7pn5fa6rr+k6dbrOXV09fXedqjqliMDMzKxWKzQ7ADMz61mcOMzMrBAnDjMzK8SJw8zMCnHiMDOzQpw4zMysECeOPkbSPZIOb3YcJZLWkfQXSa9I+lWz4+lqkk6WdEmz46iVpB9I+n0nX/uopJ26OKSm6up1kjRb0q5dtbxmceJogvTheUPSq5IWSrpF0vBmx9UZki6SdGodixgPvAisERHfaWf5b6f36iVJd0r6QB3t9RiSDpQ0Na37PEl/kvTJRrYZET+PiA5/WFTa7hHxoYi4p6tjSj923kzvw4uSrpW0Xle3U0mj1qmnc+Jonr0iYjVgPeB54DedWYik/l0aVbG2+3XBYjYAHovqV6L+Mr1Xw4AXgIvaiadp70VXk3QscCbwc2AdYATwW2BMM+Nqom+mz8AmwGrA6U2Op1d93opy4miyiHgTuAYYVSqTtIekf0paLGmOpJNz89okhaTDJD0N3F1puZLGSJqRlvEvSZ/Lzd5A0v9L3UN3SBqce93Vkp6TtCh1IX0oN+8iSedKulXSa8BhwEHA8enX4E3txLK9pAfSMh+QtH1pecC43Our7sJHxOvAZcCH0+tPlnSNpEskLQa+LGllSWdKejY9zpS0cqq/k6S5qTvmxbTnd1AuzgGSJkmaL+kpST+StEKat4mkKWkdXpR0Ze51Z6XttFjSNEk7tPM+rJJiXSDp5fRerFOh3gDgFODIiLg2Il6LiHci4qaIOC7VqWU9vyPphbS3cmiat13avv1y7X1e0kO59/SS3LxPSvp7ineOpC9LGl9puyvXDdPZ+DoSES8D1wNb5mJcQdIJ6XO+QNJVktbMzT84bc8Fkn5YFudye06l2HLT+bqVPm+F2q5lHXsCJ44mk7QqsD9wb674NeAQYCCwB/B1SWPLXvop4IPAZyssc1tgEnBcWsaOwOxclQOBQ4G1gZWA7+bm/QkYmeZNBy4tW/yBwM+A1VMbl5L2CCJirwqxrAncApwNrAX8GrhF0loR8eWy1/+5/PVly1qN7Avrn7niMWSJd2Ba1g+B7ci+WLYAtgV+lKu/LjAYGEqWtCZI2izN+w0wANiI7P09JL1PAD8F7gAGke355PcQH0jtrUmW2K6WtEqFVRiXlj88vRdfA96oUO/jwCrAde29FzWu54C0nocB50gaFBH3kn2+ds7VPTDFvRxJI8g+D78BhqS2ZkTEBDrY7p2Nr8r6lmJaC9gHmJUrPhoYS7bN1gcWAuek+qOAc4GD07y1yLZfZ5V/3rqz7dYREX5084PsS/xV4GVgCfAs8JEq9c8EzkjP24AANqpS//xS/Qrz7gF+lJv+BnBbO3UHprYGpOmLgElldS4CTq0Sy8HA/WVl/wC+XOPrLwLeTO/Vc8CNwMZp3snAX8rq/wvYPTf9WWB2er5Ter/fn5t/FfBjoB/wFjAqN++rwD3p+SRgAjCshu27ENgiF+Ml6flXgL8Dm3fw+oOA5zqo09F6vgH0z81/AdguPT8VuDA9X50skWxQId7vA9dV2S6nlpXNBnatN752PrOvA4vS53EGMCI3fyawS256PeAdoD9wInBFbt77gbdzcS63Him2ue2sU6XPW6fb7skP73E0z9iIGAisDHwTmCJpXQBJH5M0OXWZLCL7ZTq47PVzqix7ONk/bnueyz1/nazPGEn9JJ2WdrsXs2wvJd92tXYrWR94qqzsKbJfmrU6PSIGRsS6EbF3ROTXrTye8vaeSmUlCyPitQrzB5PtfZW/thTn8YCA+5WdafOVUqXU5TIzdWO9TPZLunx7AVwM3A5ckbpvfilpxQr1FgCDVb0PvaP1XBARS3LT725nsr2LfVLX0T7A9Igo30bQ8eeomnriq+ToiBgAbM6yvb6SDYDrUnfay2Rf5kvJjg2tT+4zkrb9guKr867yz1t3tt0ynDiaLCKWRsS1ZB+20hkzl5H9sh6e/lnOI/vSWu6lVRY7B9i4E+EcSLYrvivZl19bKs+3Xd5uR8MrP0v2z5U3AnimE/FVUt5+eXsjUlnJIEnvrzD/RbJfiuWvfQYgIp6LiCMiYn2yPZHfKjvusQPwPWA/YFD6MbCI924vIjtO8ZOIGAVsD+xJ1h1W7h9ke1nl3ZNF1rNdEfEY2Rf5brTTTZVU+xwV3e41x1dNRDxMtsd0jqTSezwH2C39uCg9VomIZ4B5ZAkQeLdreK3cIl8DVs1Nr9tRCGXT9bTdYzlxNJkyY8h+Rc1MxasDL0XEm+l4xYEFF3sBcKikXdLBu6Gq7RTW1cm6axaQ/TP9vIbXPE92TKA9twKbKju1tL+k/clOBLi5hmV3xuXAjyQNUXbQ/0Sg/DqKn0haKX3p7wlcHRFLybqtfiZpdUkbAMeWXivpC5JKv3IXkn2BLCV7z5YA84H+kk4E1qgUmKRPS/qIsgPTi8kS1dLyehGxKMV9jqSxklaVtKKk3ST9ssB6VnMZWf/8jsDV7dS5FNhV0n5p260lqXRQuqPtXm981UwkOwa3d5o+j2y7bQCQ2iydfXYNsKeyg/wrkZ10kP/emwHsLmnNtMf/7YKx1NN2j9UrVqKHuknSq2RfID8DxkXEo2neN4BTJL1C9g93VZEFR8T9ZAd1zyD79TuF9/7qr2QS2S/RZ4DHWP6AfXsuAEalXfXrK8SygOzL+TtkCel4YM+IeLGGZXfGqcBU4CHgYbID/PnrDZ4j++J/luyL8WsR8XiadxTZL9Angb+RfblemOZtA9yXttmNwLci4t9kXU9/Av4/2Xv3Ju13561L9mWymOxHwhTa+TKNiF+TJa4fkSWlOWRdmqX3uKP17MjlZP35d7e3LSLiaWB3sm33EtmX7BZpdtXt3gXxtSsi3iY72eLHqegssm1yR/qfuRf4WKr7KHAk2bacR7bt5+YWdzHwIFm37B3AlRRTT9s9ltJBG7NeT9kVwJdERO84s8U6RdJs4PDo4Cw+a5/3OMzMrBAnDjMzK8RdVWZmVoj3OMzMrJBeOUjX4MGDo62trdlhmJn1KNOmTXsxIoZ0VK9XJo62tjamTp3a7DDMzHoUSZVGEHgPd1WZmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhThxmJlZIb3yynHrvLYTbml2CF1m9ml7NDsEs17JexxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhThxmJlZIQ1LHJIulPSCpEdyZWtKulPSE+nvoFQuSWdLmiXpIUlb514zLtV/QtK4RsVrZma1aeQex0XA58rKTgDuioiRwF1pGmA3YGR6jAfOhSzRACcBHwO2BU4qJRszM2uOhiWOiPgL8FJZ8RhgYno+ERibK58UmXuBgZLWAz4L3BkRL0XEQuBO3puMzMysG3X3MY51ImIeQPq7diofCszJ1Zubytorfw9J4yVNlTR1/vz5XR64mZllWuXguCqURZXy9xZGTIiI0RExesiQIV0anJmZLdPdieP51AVF+vtCKp8LDM/VGwY8W6XczMyapLsTx41A6cyoccANufJD0tlV2wGLUlfW7cBnJA1KB8U/k8rMzKxJGnY/DkmXAzsBgyXNJTs76jTgKkmHAU8DX0jVbwV2B2YBrwOHAkTES5J+CjyQ6p0SEeUH3M3MrBs1LHFExAHtzNqlQt0AjmxnORcCF3ZhaGZmVodWOThuZmY9hBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhThxmJlZIU4cZmZWiBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhThxmJlZIU4cZmZWiBOHmZkV4sRhZmaFOHGYmVkhThxmZlZI/44qSNoUOA7YIF8/InZuYFxmZtaiOkwcwNXAecDvgKVd0aikY4DDgQAeBg4F1gOuANYEpgMHR8TbklYGJgEfBRYA+0fE7K6Iw8zMiqulq2pJRJwbEfdHxLTSo7MNShoKHA2MjogPA/2ALwK/AM6IiJHAQuCw9JLDgIURsQlwRqpnZmZNUkviuEnSNyStJ2nN0qPOdvsD75PUH1gVmAfsDFyT5k8ExqbnY9I0af4uklRn+2Zm1km1dFWNS3+Py5UFsFFnGoyIZySdDjwNvAHcAUwDXo6IJanaXGBoej4UmJNeu0TSImAt4MX8ciWNB8YDjBgxojOhmZlZDTpMHBGxYVc2KGkQ2V7EhsDLZMdQdqvUdOklVeYtK4iYAEwAGD169Hvmm5lZ16jlrKoVga8DO6aie4DzI+KdTra5K/DviJifln8tsD0wUFL/tNcxDHg21Z8LDAfmpq6tAcBLnWzbzMzqVMsxjnPJzmj6bXp8NJV11tPAdpJWTccqdgEeAyYD+6Y644Ab0vMbWdZdti9wd0R4j8LMrElqOcaxTURskZu+W9KDnW0wIu6TdA3ZKbdLgH+SdTHdAlwh6dRUdkF6yQXAxZJmke1pfLGzbZuZWf1qSRxLJW0cEf8CkLQRdV7PEREnASeVFT8JbFuh7pvAF+ppz8zMuk4tieM4YLKkJ8kOVG9AdsGemZn1QbWcVXWXpJHAZmSJ4/GIeKvhkZmZWUtqN3FI2jki7pa0T9msjSUREdc2ODYzM2tB1fY4PgXcDexVYV4AThxmZn1Qu4kjHcAGOCUi/p2fJ6lLLwo0M7Oeo5brOP5YoeyaCmVmZtYHVDvG8QHgQ8CAsuMcawCrNDowMzNrTdWOcWwG7AkMZPnjHK8ARzQyKDMza13VjnHcANwg6eMR8Y9ujMnMzFpYLcc4viZpYGlC0iBJFzYwJjMza2G1JI7NI+Ll0kRELAS2alxIZmbWympJHCuke2gAkO7+V8tQJWZm1gvVkgB+Bfw9jWgL2YCDP2tcSGZm1spqGatqkqSpZPcEF7BPRDzW8MjMzKwlVbuOY42IWJy6pp4DLsvNWzMifBc+M7M+qNoex2Vk13FMY/l7fCtNb9TAuMzMrEVVu45jz/TX41KZmdm7OjyrStINkg6QtGp3BGRmZq2tlrOqfg3sD5wm6X7gSuDmdEvXXqnthFuaHUKXmH3aHs0OoUfpLdsdvO2tsWo5q2oKMEVSP7Izq44ALiQb7NDMeonekjidNBuvpgv5JL2PbKDD/YGtgYmNDMrMzFpXh4lD0pXAx4DbgHOAeyLiP40OzMzMWlMtexx/AA6MiKWNDsbMzFpfLcc4bpO0vaS2fP2ImNTAuMzMrEXV0lV1MbAxMAMo7XUE4MRhZr1CbzkxALrn5IBauqpGA6MiIjqsaWZmvV4tw6o/Aqzb6EDMzKxnqGWPYzDwWLr4761SYUTs3bCozMysZdWSOE5udBBmZtZz1HTluKR1gG1S0f0R8UJjwzIzs1ZVyyCH+wH3k935bz/gPkn71tOopIGSrpH0uKSZkj4uaU1Jd0p6Iv0dlOpK0tmSZkl6SNLW9bRtZmb1qeXg+A+BbSJiXEQcAmwL/LjOds8CbouIDwBbADOBE4C7ImIkcFeaBtgNGJke44Fz62zbzMzqUEviWKGsa2pBja+rSNIawI7ABQAR8XZEvAyMYdkYWBOBsen5GGBSZO4FBkpar7Ptm5lZfWo5OH6bpNuBy9P0/sCf6mhzI2A+8AdJW5DdYfBbwDoRMQ8gIuZJWjvVHwrMyb1+biqbl1+opPFkeySMGDGijvDMzKyaDvccIuI44Hxgc7JupQkRcXwdbfYnG2H33IjYCniNZd1SlahSWBXinBARoyNi9JAhQ+oIz8zMqmk3cUjaRNInACLi2og4NiKOARZI2riONucCcyPivjR9DVkieb7UBZX+vpCrPzz3+mHAs3W0b2Zmdai2x3Em8EqF8tfTvE6JiOeAOZI2S0W7AI8BNwLjUtk44Ib0/EbgkHR21XbAolKXlpmZdb9qxzjaIuKh8sKImJpGyq3HUcClklYCngQOJUtiV0k6DHia7PRfgFuB3YFZZEnr0DrbNjOzOlRLHKtUmfe+ehqNiBlkgyeW26VC3QCOrKc9MzPrOtW6qh6QdER5YdojmNa4kMzMrJVV2+P4NnCdpINYlihGAysBn290YGZm1praTRwR8TywvaRPAx9OxbdExN3dEpmZmbWkWgY5nAxM7oZYzMysB+j00CFmZtY3VbsAcOXuDMTMzHqGansc/wCQdHE3xWJmZj1AtWMcK0kaR3aAfJ/ymRFxbePCMjOzVlUtcXwNOAgYCOxVNi8AJw4zsz6o2um4fwP+JmlqRFzQjTGZmVkLq+V+HBdLOprs5ksAU4DzIuKdxoVlZmatqpbE8VtgxfQX4GCy27ce3qigzMysddWSOLaJiC1y03dLerBRAZmZWWur5QLApfkbN0naCFjauJDMzKyV1bLHcRwwWdKTZLdx3QDfE8PMrM+qZayquySNBDYjSxyPR8RbDY/MzMxaUi17HKRE8Z67AZqZWd/jQQ7NzKwQJw4zMyukw8Qh6a5ayszMrG9o9xiHpFWAVYHBkgaRHRgHWANYvxtiMzOzFlTt4PhXye47vj7ZPcdLiWMxcE6D4zIzsxZVbZDDs4CzJB0VEb/pxpjMzKyF1XIdx28kbQ+05etHxKQGxmVmZi2qw8SR7gC4MTCDZUONBODEYWbWB9VyAeBoYFRERKODMTOz1lfLdRyPAOs2OhAzM+sZatnjGAw8Jul+4N0xqiJi74ZFZWZmLauWxHFyo4MwM7Oeo5azqqZ0RyBmZtYz1DLkyCuSFqfHm5KWSlpcb8OS+kn6p6Sb0/SGku6T9ISkKyWtlMpXTtOz0vy2ets2M7PO6zBxRMTqEbFGeqwC/Bfwf7ug7W8BM3PTvwDOiIiRwELgsFR+GLAwIjYBzkj1zMysSQqPjhsR1wM719OopGHAHsDv07TSMq9JVSYCY9PzMWmaNH+XVN/MzJqglgsA98lNrkB2XUe913ScCRwPrJ6m1wJejoglaXouMDQ9HwrMAYiIJZIWpfovlsU5HhgPMGLEiDrDMzOz9tRyVtVeuedLgNlkewGdImlP4IWImCZpp1JxhapRw7xlBRETgAkAo0eP9sWKZmYNUstZVYd2cZufAPaWtDuwCtkw7WcCAyX1T3sdw4BnU/25wHBgrqT+wADgpS6OyczMalTLWVXDJF0n6QVJz0v6YzpG0SkR8f2IGBYRbcAXgbsj4iBgMrBvqjYOuCE9vzFNk+bf7eFPzMyap5aD438g+/Jen+x4w02prKt9DzhW0iyyYxgXpPILgLVS+bHACQ1o28zMalTLMY4hEZFPFBdJ+nZXNB4R9wD3pOdPAttWqPMm8IWuaM/MzOpXyx7Hi5K+lC7Y6yfpS8CCRgdmZmatqZbE8RVgP+A5YB7ZcYavNDIoMzNrXbWcVfU04JFwzcwMqO0CwA2Bo3jvrWOdTMzM+qBaDo5fT3Zm003AfxobjpmZtbpaEsebEXF2wyMxM7MeoZbEcZakk4A7WP4OgNMbFpWZmbWsWhLHR4CDyUavLXVVBXWOkGtmZj1TLYnj88BGEfF2o4MxM7PWV8t1HA8CAxsdiJmZ9Qy17HGsAzwu6QGWP8bh03HNzPqgWhLHSQ2PwszMeoxarhyfkp+W9AngQGBK5VeYmVlvVsseB5K2JEsW+wH/Bv7YyKDMzKx1tZs4JG1KdqOlA8hGw70SUER8uptiMzOzFlRtj+Nx4K/AXhExC0DSMd0SlZmZtaxqp+P+F9lQ6pMl/U7SLoC6JywzM2tV7SaOiLguIvYHPkB2l75jgHUknSvpM90Un5mZtZgOLwCMiNci4tKI2BMYBszA9/02M+uzarly/F0R8VJEnB8RHqfKzKyPKpQ4zMzMnDjMzKwQJw4zMyvEicPMzApx4jAzs0KcOMzMrBAnDjMzK8SJw8zMCnHiMDOzQpw4zMyskG5PHJKGS5osaaakRyV9K5WvKelOSU+kv4NSuSSdLWmWpIckbd3dMZuZ2TLN2ONYAnwnIj4IbAccKWkU2cCJd0XESOAulg2kuBswMj3GA+d2f8hmZlbS7YkjIuZFxPT0/BVgJjAUGANMTNUmAmPT8zHApMjcCwyUtF43h21mZklTj3FIagO2Au4D1omIeZAlF2DtVG0oMCf3srmprHxZ4yVNlTR1/vz5jQzbzKxPa1rikLQa8Efg2xGxuFrVCmXxnoKICRExOiJGDxkypKvCNDOzMk1JHJJWJEsal0bEtan4+VIXVPr7QiqfCwzPvXwY8Gx3xWpmZstrxllVAi4AZkbEr3OzbgTGpefjgBty5Yeks6u2AxaVurTMzKz79W9Cm58ADgYeljQjlf0AOA24StJhwNPAF9K8W4HdgVnA68Ch3RuumZnldXviiIi/Ufm4BcAuFeoHcGRDgzIzs5r5ynEzMyvEicPMzApx4jAzs0KcOMzMrBAnDjMzK8SJw8zMCnHiMDOzQpw4zMysECcOMzMrxInDzMwKceIwM7NCnDjMzKwQJw4zMyvEicPMzApx4jAzs0KcOMzMrBAnDjMzK8SJw8zMCnHiMDOzQpw4zMysECcOMzMrxInDzMwKceIwM7NCnDjMzKwQJw4zMyvEicPMzApx4jAzs0KcOMzMrBAnDjMzK8SJw8zMCukxiUPS5yT9j6RZkk5odjxmZn1Vj0gckvoB5wC7AaOAAySNam5UZmZ9U49IHMC2wKyIeDIi3gauAMY0OSYzsz5JEdHsGDokaV/gcxFxeJo+GPhYRHwzV2c8MD5Nbgb8T7cHWsxg4MVmB9EkfXndoW+vf19ed2j99d8gIoZ0VKl/d0TSBVShbLmMFxETgAndE079JE2NiNHNjqMZ+vK6Q99e/7687tB71r+ndFXNBYbnpocBzzYpFjOzPq2nJI4HgJGSNpS0EvBF4MYmx2Rm1if1iK6qiFgi6ZvA7UA/4MKIeLTJYdWrx3SrNUBfXnfo2+vfl9cdesn694iD42Zm1jp6SleVmZm1CCcOMzMrxImjwSQNlzRZ0kxJj0r6Vtn870oKSYObFWMjtbf+kk6W9IykGemxe7Nj7WrVtr2ko9IQOo9K+mUz42yUKtv+ytx2ny1pRrNj7WpV1n1LSfemdZ8qadtmx9oZPsbRYJLWA9aLiOmSVgemAWMj4jFJw4HfAx8APhoRrXxhUKe0t/7AfsCrEXF6UwNsoCrrvg7wQ2CPiHhL0toR8UIzY22Eap/9XJ1fAYsi4pRmxdkIVbb9mcAZEfGn9GPp+IjYqYmhdor3OBosIuZFxPT0/BVgJjA0zT4DOJ6yixl7kw7Wv1ersu5fB06LiLfSvF6XNKDjbS9JZD8gLm9OhI1TZd0DWCNVG0APvR7NiaMbSWoDtgLuk7Q38ExEPNjUoLpRfv1T0TclPSTpQkmDmhZYNyhb902BHSTdJ2mKpG2aGVt3qLDtAXYAno+IJ5oRU3cpW/dvA/8taQ5wOvD95kXWeU4c3UTSasAfyT44S8i6Kk5salDdKL/+EbEYOBfYGNgSmAf8qonhNVSFde8PDAK2A44Drkq/vnulCutfcgC9cG8jr8K6fx04JiKGA8cAFzQzvs7yMY5uIGlF4Gbg9oj4taSPAHcBr6cqpSFUto2I55oUZsOUr3+F+W3AzRHx4W4OreEqrbuk28i6qu5J0/8CtouI+U0LtEHa2/aS+gPPkB3bm9us+BqpnW2/CBgYEZF+LCyKiDWqLacVeY+jwdKH4wJgZunDExEPR8TaEdEWEW1kY3Ft3UuTxnvWP5Wvl6v2eeCR7o6t0dpbd+B6YOdUZ1NgJVp7xNROqbL+ALsCj/fipNHeuj8LfCo93xnokd103uNoMEmfBP4KPAz8JxX/ICJuzdWZDYzupWdVVVx/sm6KLckOFs4GvhoR85oRY6NUWfc/AxeSrf/bwHcj4u6mBNlA1T77ki4C7o2I85oVXyNV2faLgbPIuivfBL4REdOaEmQdnDjMzKwQd1WZmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHNajSVqaRhp9RNLVklZtdkwlknaSdHOF8tGSzm7nNbM7O1KypLGSRuWmT5G0a3q+QxqldYakoZKu6UwbZuDEYT3fGxGxZbrq/G3ga/mZyrTU5zwipkbE0Q1Y9Fjg3cQRESdGxJ/T5EHA6em9eiYi9q11oZL6dXGc1sO11D+UWZ3+CmwiqS3dB+G3wHRguKQDJD2c9kx+UXqBpFcl/UrSdEl3SRqSykv3TXhI0nWlQRglHS3psVR+RSrbVtLfJf0z/d2sWpD5PRFJa0m6I732fEC5el+SdH/aSzi/9AWeYv6ZpAdTjOtI2h7Ym2wAvRmSNpZ0kaR9JR1ONgrtiZIuTe/PI2lZ/ST9t6QH0jp9NRfjZEmXkV3EZvYuJw7rFdLYR7ux7EtuM2BSRGwFvAP8gmyIhy2BbSSNTfXeD0yPiK2BKcBJqXwS8L2I2Dwts1R+ArBVKi/t3TwO7JjaOhH4eYHQTwL+ll57IzAirc8Hgf2BT0TElsBSsr2GUsz3RsQWwF+AIyLi7+n1x6W9in+VGoiI3+fmlZZRchjZeEnbANsAR0jaMM3bFvhhRIzCLKd/swMwq9P7tOwOcn8lGx9ofeCpiLg3lW8D3FMaRFDSpcCOZGNG/Qe4MtW7BLhW0gCygeimpPKJwNXp+UPApZKuT6+H7L4KEyWNJBtCZcUC8e8I7AMQEbdIWpjKdwE+CjyQDXvE+4DSfTveJhs8D7IbBP2fAu2V+wywuaRS19UAYGRq4/6I+Hcdy7ZeyonDero30i/yd6Uv2tfyRQWW19EYPHuQfdnvDfxY0oeAnwKTI+Lzykb6vadAe+21KWAzpl3lAAABPUlEQVRiRFS6X8M7sWysoKXU938s4KiIuH25Qmknln8Pzd7lrirrC+4DPiVpcDpOcABZtxRk/wOlX9sHknUbLQIWStohlR8MTEkH2YdHxGSyOzcOBFYj+5X+TKr75YKx/YXUBSVpN7L7dEA27P6+ktZO89aUtEEHy3oFWL1g+7cDX1c2BDiSNpX0/oLLsD7GexzW60XEPEnfByaT/cK+NSJuSLNfAz4kaRqwiOy4AsA44Lx0eu+TwKFAP+CS1JUlsntHvyzpl2RdVccCRUe5/QlwuaTpZMns6RTzY5J+BNyREtY7wJHAU1WWdQXwO0lHsywZduT3QBswXdmu2nyys7PM2uXRca1Pk/RqRKzW7DjMehJ3VZmZWSHe4zAzs0K8x2FmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhfwvJMOJH06THM0AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "plt.bar( proposals, conviction_required)\n", "plt.title('Bar chart of Proposals Conviction Required')\n", "plt.xlabel('Proposal identifier')\n", "plt.ylabel('Amount of Conviction')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conviction is a concept that arises in the edges between participants and proposals in the initial conditions there are no votes yet so we can look at that later however, the voting choices are driven by underlying affinities which we can see now." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "Text(0.5, 66.89999999999998, 'participant_id')" }, "metadata": {}, "execution_count": 18 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAABA8AAAElCAYAAACLT8ssAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XvcrfWc//HXe+9QOonGoVKbHHMoCuUYYmKQjFODcmwGFWYYjPlRGNNQY5ynTalxjMYhJEKFUG1NqSRCaXdQqSRJdvvz++O67iz3Ye177X2v+7r2vV/Px2M97nW41nW912Ffe63P+ny/V6oKSZIkSZKkmSzqOoAkSZIkSeo3iweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGkoiweSJEmSJGmo9boOIEmSJEnSQpSX71yj3qc+9IOMI8uasnggSZIkSdIYZFEv6wCrxeKBJEmSJEljYPFAkiRJkiQNZfFAkiRJkiQNZfFAkiRJkiQNlVg8kCRJkiRJQ9h5IEmSJEmShrJ4IEmSJEmShlpIxYNFXQeQJEmSJEn9ZueBJEmSJEljsJA6DyweSJIkSZI0BhYPJEmSJEnSUBYPJEmSJEnSUBYPJEmSJEnSUInFA0mSJEmSNISdB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaaiFVDxY1HUASZIkSZIWoizKyKdZrTfZPcn5SS5I8oZpbt86yYlJ/i/Jj5I8eU0fi50HkiRJkiSNwTg6D5IsBj4APAFYDpye5Niq+vHAYv8KfKaqPpRkO+A4YMmabNfOA0mSJEmSxiDJyKdZeChwQVX9oqpuAj4N7DFpmQI2ac9vCly6po/FzgNJkiRJksZgTHMebAlcPHB5OfCwScscCHw9yf7AhsBua7pROw8kSZIkSRqD1ZnzIMm+SZYNnPadvNppNlWTLu8FHFlVWwFPBj6WZI2+/9t5IEmSJElST1TVUmDpkEWWA3cduLwVU4clvATYvV3f95OsD2wOXLG6uew8kKSeSfL2JFcluby9vGeSi5Ncn+RBSc5Nsuss1zV02SRfTbLP3CS/ZZ0nJXnpXK5zXdO+1ndfxTJbt8stnq9cXUtyZJK3d51jXPy3I0kLz5iOtnA6cM8kd0tya+C5wLGTlvkV8HiAJPcF1geuXJPHYueBJPVIkrsC/wRsU1UTleFDgP2q6ovt5fvNdn1VdcuySQ4E7lFVzx+4/UlrHHoOJTkJ+HhVfaTrLPNlusdcVRut6n5V9StglcvNhSQF3LOqLpiP7UmStFAsGsPP9VW1Isl+wNeAxcARVXVukrcCy6rqWJrPkx9O8hqaIQ0vrKrJQxtGYvFAkvplG+A3A4WDievO7SiPxiTNdMpjmUVJw00891W1susskqSFbfHsjp4wsqo6jubwi4PXvXng/I+BR8zlNh22IEnzLMkbkvw8ye+S/DjJnu31uwEnAFu07eifSnI9TUX5rCQ/b5e7sF2WJAcm+UyS/2nXd26SnQa2dWGS3ZLsDvwL8Jx23We1t/9Fm3SSFyc5L8k1Sb6WZJv2+iR5d5Irkvw2yY+S3H/Iw9w2yWntsl9McvuBbeyc5HtJrk1y1sSwiiT/BjwKeH+b8f1JDkryvvb2WyX5fZJ3tpc3SHJjks2Grbe9bdMkhye5LMkl7dCQxe1tL0zy3SSHtI/7l0lm7Mhon9M3tq/dNUk+2o4jJMlmSb6c5Mr2ti8n2Wrgvicl+bckpwA3AB+b/Jjb5SrJPQYe56FJLmqfz++21y1pl1tvYN3/PuR5/2ySy9vbvp1ksCvlyCQfSPKV9n10apJt29u+3S52VpvxOUk2bx/btUmuTvKdzDAJU5L3pBl2c12SHyZ51MBtq3r/PijJGe1tR9O0XM70urwwySlJ3tc+xp8kefyQ5/7uSbZIcmz7GC5I8rJJ2Y5JcnS7/TOSbD9w+33bdV7b5n7awG1Pbt8fv2vfb6+dzftj0uO5R5KT28dyVfv4JUlrmcWLMvKpryweSNL8+znNF8ZNgYOAjye5S1V9A3gScGlVbVRVew20r29fVdvOsL6n0Rzf93Y0493eP3mBqjoeeAdwdLvu7Scvk+TpNAWGZwB/BXwH+FR78xOBRwP3arfzHOA3Qx7j3sCLgS2AFcB7221sCXwFeDtwe+C1wP8m+auqelO7zf3ajPsBJwO7tut8CHA58Jj28i7A+VV1zbD1tsse1ea4B/Cg9vEMji1/GHA+zURC7wQOT4b+VPA84K+Bbdvn5F/b6xcBH6XpFtka+ANTX48XAPsCGwMvnOYxT3YIsCPw8Pax/TMw0y/m0z7vra8C9wTuCJwBfGLSffeieT9uBlwA/BtAVT26vX37NuPRNK2Qy2neJ3eied/M1Ap5OrBDm/2TwGcnii2tad+/acZwfoGmwHJ74LPA386wjQkPA35B8zq+BfjcYAGFv3zuL6J5fy+neb6eCbxjsOBAc8zszw5k/0KaItatgC8BX6d5PvcHPpHk3u39Dgf+vqo2Bu4PfKu9fjbvjwlva9e/Gc1EWO9bxWOXJPXQ4mTkU19ZPJCkeVZVn62qS6tqZftF7GfAQ9dgld+tquOq6maaL1pTCgOz9PfAv1fVeVW1gqbYsEOa7oM/0Xzhug9Nu/d5VXXZkHV9rKrOqarfA/8PeHaaX/qfDxzX5l1ZVScAy2gOITSd79NMCHQHmuLF4cCWSTaiKSKc3C4343qT3ImmKPPqqvp9OyTk3TSTC024qKo+3D6HRwF3oflSPJP3V9XFVXU1zZfsvQCq6jdV9b9VdUNV/a697TGT7ntkVZ1bVSuq6k9DtkH7a/6LgVdV1SVVdXNVfa+q/jjDXWZ63qmqI6rqd+19DwS2T7LpwH0/V1Wnta/9J2i+8M/kTzTP0TZV9aeq+s5M4yir6uPt87Kiqg4FbgPce2CRmd6/OwO3Av6r3cYxNIWIYa4YWP5omoLQ3wzcfstzD9wZeCTw+qq6sarOBD5CU2CY8MOqOqZ9nf6TpvNh5/a0EXBwVd1UVd8Cvkz7Pmifn+2SbFJV11TVGe1zMZv3BwPr2AbYos333VU8dklSDy1eNPqpr3ocTZIWpiR7JzmzbXe+luaXyc3XYJWXD5y/AVh/opV9RNsA7xnIdTXNmPwt2y9H7wc+APw6ydIkmwxZ18UD5y+i+RK4ebuNZ01so93OI2m+iE5RVX+gKQI8hqZ4cDLwPZoxfIPFg2Hr3abd/mUDtx1G84vxhFuew6q6oT07bDLCyY9vC4Akt01yWJohBtcB3wZul788IsLgfVdlc5ovrD+f5fLTPu9JFic5OM1wmeuACwfWP2Hy+2jY438XTXfC15P8IskbZlowyT+lGQrz2/a533QV2514/24BXDKpKHHRkEzMsPwWA5cHn58tgKvbL/GDy2853fLt/AgTXQpbABdPmjNh8L5/S1MQu6gderALzPr9MeGfaf79ndYOi3jxKh67JKmH7DyQJK2W9lf8DwP7AXeoqtsB5zA/E+etaobdi2larW83cNqgqr4HUFXvraodaY72cC/gdUPWNXjs4a1pfkW9qt3GxyZtY8OqOnhIxpOBx9EMNzi9vfzXNN0aE+Pxh633YuCPwOYDt21SA0eiWA2TH9/EsZX/ieZX9YdV1SY0BQ/4y9d38mMc9rpcBdxIMzxidXJNPO9/R9OCvxvNl/cl0+SatbaD4Z+q6u7AU4F/nNTu36y8md/g9cCzgc3a9/tvZ7ndy2i6TAaX3XoV95lu+cHjXg8+15cCt0+y8aTlLxm4fMvz2XaBTBxH+1LgrvnLeR5uuW9VnV5Ve9AUqL4AfKZdZjbvD9p1XF5VL6uqLWi6gj6Ydh4MSdLaw+KBJGl1bUjzBeZKgCQvouk8mA+/BpZkhontgP8G3ph2Ir00kww+qz3/kCQPa8d6/57mC+3NQ7b1/CTbJbkt8FbgmLYt/ePAU5P8dftr+PpJdh2YNO7XwN0nretkmrH8P66qm4CTaOYr+GVVTRyveMb1tsMrvg4cmmSTJIuSbJtkpnbx2Xhlkq3a8fT/AkxMZrcxzTj2a9vb3jKLdU33mIFbfu0+AvjPNJP7LU6yS5LbzLCumZ73jWkKKL8BbkszJGUUf5ExyVPaCf0CXEfzXpju/bAxzdwLVwLrJXkzMKxjZdD32/sekGS9JM9g1cN77tguf6v2vXtfJs1EPaGqLqbpYvn39v3yQOAl/OVcEDsmeUbbCfFqmufwB8CpNP8O/rnd1q40RZRPJ7l1kucl2bQd7jDx/Ew8H7N6fyR51sC/i2to9hvD/s1JknrICRMlSaulmsPmHErzxejXwAOAU+Zp859t//4myRnTZPs88B80X4Cuo+mImDjqwCY0HRPX0LRn/4ZmIr+ZfAw4kqYlfX3ggHYbF9P8Av4vNF8oL6bpYJj4/+g9wDPTzEQ/Mdnf94AN+HOXwY9pihcTl2ez3r2BW7f3vQY4hhmGSszSJ2kKEr9oT29vr/+vNutVNF8yj5/FuqZ7zINeC5xN03VxNc1rNNP/39M+78D/0Lxul9A8Bz+YRa5BBwJHtcM+nk0z8eI3gOtp3ssfrKqTprnf12gmavxpu/0bmeWwjbZQ9AyaSSWvoZmk83OruNupbbaraOYTeGZVDZvYcy+aLoxLgc8Db2nny5jwxXa719DMhfCMdj6Fm2gmenxSu60PAntX1U/a+70AuLD9d/QPNHNywGjvj4cAp6Y54sqxNPNe/HIVj1+S1DOLM/qprzLD/EaSJGkaSS4EXlrN0TF6I8lJwMer6iNdZ+lCkhfSvC6PnKP1HQjco6qev6plJUmaycM+9dyRv3Cfutene1lCWJ0JtSRJkiRJ0ir0eQ6DUVk8kCRJkiRpDPo8h8GoLB5IkjSCqlrSdYbpVNWuXWfoUlUdSTPfw1yt78C5Wpckad3V5zkMRmXxQJIkSZKkMbDzYJ786SN79W42x0N32LTrCFOccNHvuo4wxTf32LvrCFOs/PZXuo4wrd9/9pyuI0xxw6H9e/2+cuFpXUeY4jkf/lnXEabY8KCXdh1hWvXLH3cdYYpXX3tp1xGmeNWDHtB1hCnOuOKCriNMsedp13YdYVrvuMcGXUeYYscnntR1hCk23rh/H6QfddEHuo4wxQ3/MuyANt057/P9O+jH+T/t3VcGli97bNcRpvjSz6/rOsK0vvPsT/ZvpzCHFtKcBx6qUZIkSZIkDdXrzgNJkiRJktZWC6nzwOKBJEmSJEljsHgB9fpbPJAkSZIkaQzsPJAkSZIkSUN5tAVJkiRJkjSUnQeSJEmSJGko5zyQJEmSJElD2XkgSZIkSZKGcs4DSZIkSZI0lJ0HkiRJkiRpKOc8kCRJkiRJQ9l5IEmSJEmShlq8cGoHFg8kSZIkSRqHRXYeSJIkSZKkYew8kCRJkiRJQy2gIzXOb/EgyR2r6or53KYkSZIkSV2w82AWktx+8lXAaUkeBKSqrh7XtiVJkiRJ0twZZ+fBVcBFk67bEjgDKODu090pyb7AvgAffMFOvPTR9xhjREmSJEmSxmPRAhq3MM7iwT8DuwGvq6qzAZL8sqruNuxOVbUUWArwp4/sVWPMJ0mSJEnS2DhsYRaq6pAknwbeneRi4C00HQeSJEmSJC14C6jxYLwTJlbVcuBZSZ4KnADcdpzbkyRJkiSpL+w8mKUk96GZ5+BE4BvAtu31u1fV8ePctiRJkiRJXVqUhVM9WDSuFSc5APgisD9wDvDEqjqnvfkd49quJEmSJEl9sDijn/pqnJ0HLwN2rKrrkywBjkmypKreQ3PYRkmSJEmSFiznPJidxVV1PUBVXZhkV5oCwjZYPJAkSZIkLXCLHbYwK5cn2WHiQltIeAqwOfCAMW5XkiRJkqTOLcrop74aZ+fB3sCKwSuqagWwd5LDxrhdSZIkSZI61+c5DEY1tuJBe5jGmW47ZVzblSRJkiSpDxaNs9d/no31UI2SJEmSJK2rFtKcBxYPJEmSJEkagz7PYTAqiweSJEmSJI2Bcx5IkiRJkqShFlLnwQKavkGSJEmSpP5YnIx8mo0kuyc5P8kFSd4wZLlnJqkkO63pY7F4IEmSJEnSWiLJYuADwJOA7YC9kmw3zXIbAwcAp87Fdi0eSJIkSZI0Bosy+mkWHgpcUFW/qKqbgE8De0yz3NuAdwI3zsVj6fWcB5tccFnXEabYbMWcPO9z6sx99uw6whRXrbiy6whTnPSkr3UdYVrPfuntu44wxY2HfanrCFPc/++27zrCFLd9fv9eu7z+3V1HmNYLn3G/riNM8bZ3n9V1hCl+d+l3uo4wxf773qfrCFPseYdNu44wrUO+9suuI0xx7fdf0HWEKerKq7uOMMV1L3971xGm2OgFD+46wrT+8KqHdB1hir1u2LDrCFNscNhxXUeYYtnrn9R1hHXSmCZM3BK4eODycuBhgwskeRBw16r6cpLXzsVGe108kCRJkiRpbbVolnMYDEqyL7DvwFVLq2rp4CLT3K0G7r8IeDfwwpE3PoTFA0mSJEmSxmB1Og/aQsHSIYssB+46cHkr4NKByxsD9wdOSlO8uDNwbJKnVdWy0RM1LB5IkiRJkjQGq9N5MAunA/dMcjfgEuC5wN9N3FhVvwU2n7ic5CTgtWtSOACLB5IkSZIkjcU4igdVtSLJfsDXgMXAEVV1bpK3Asuq6tg53ygWDyRJkiRJGosxdR5QVccBx0267s0zLLvrXGzT4oEkSZIkSWOwKIu6jjBnLB5IkiRJkjQG4+o86ILFA0mSJEmSxsDigSRJkiRJGsrigSRJkiRJGmoRznkgSZIkSZKGsPNAkiRJkiQNZfFAkiRJkiQN5aEaJUmSJEnSUHYeSJIkSZKkoRZS8WDh9FBIkiRJkqSxsPNAkiRJkqQxsPNgFpLsPnB+0ySHJ/lRkk8mudO4titJkiRJUh8syqKRT301zmTvGDh/KHAZ8FTgdOCwme6UZN8ky5IsW3HmpWOMJ0mSJEnS+CwiI5/6ar7KGjtV1b9W1UVV9W5gyUwLVtXSqtqpqnZab4ct5imeJEmSJElza1Ey8qmvxjnnwR2T/CMQYJMkqapqb+tvL4YkSZIkSXOgz8MQRjXO4sGHgY3b80cBmwNXJrkzcOYYtytJkiRJUuf63EkwqrEVD6rqoCT3AbYETq2q69vrL0/yyXFtV5IkSZKkPlhIxYNxHm1hf+CLwP7AOUn2GLj5HdPfS5IkSZKkhWEhHW1hnMMW9gV2rKrrkywBjkmypKreAz2eQlKSJEmSpDmwkDoPxlk8WDwwVOHCJLvSFBC2weKBJEmSJGmB6/OhF0c1zp6Iy5PsMHGhLSQ8hWbixAeMcbuSJEmSJHXOQzXOzt7AisErqmoFsHeSw8a4XUmSJEmSOtfnOQxGNc6jLSwfctsp49quJEmSJEl90OdOglGtsniQ5MHDbq+qM+YujiRJkiRJC0PWsc6DQ9u/6wM7AWfRTHj4QOBU4JHjiSZJkiRJ0tpr0VinGZxfq3wkVfXYqnoscBHw4Kraqap2BB4EXDDugJIkSZIkrY2SRSOf+mqUZPepqrMnLlTVOcAOQ5aXJEmSJEkLwCgTJp6X5CPAx4ECng+cN5ZUkiRJkiSt5dbVoy28CHg58Kr28reBD815IkmSJEmSFoAsoDkPZl08qKobgXe3J0mSJEmSNMQ61XmQ5DNV9ewkZ9MMV/gLVfXAsSQDDnrWfca16tW2z3137jrCFD+6qn+jR15y/PldR5ji5x/asesI07r6eXt2HWGKb1x2WtcRpnjSTZt0HWGKox/av+arrf/7fl1HmNbSxz+76whTfHfvU7qOMMWu331R1xGmuHTDTbuOMMUPdvmvriNM61MnPrXrCFOcvsHKriNM8ajDl3UdYYqN77Vx1xGmuOrhT+46wrT2OPTQVS80z/Z9xFZdR5hit0ds3XWEKf6w85FdR5jez97QdYKxWtc6DyaGKTxlnEEkSZIkSVpI1qnOg6q6rP170bDlkny/qnaZq2CSJEmSJK3N+nzoxVGNMmHiqqw/h+uSJEmSJGmttmgdG7YwW1PmQ5AkSZIkaV1l54EkSZIkSRpqnZrzYASZw3VJkiRJkrRWC4u7jjBn5rJ48II5XJckSZIkSWu1darzIMnvmH4+gwBVVZvQnDlnjrNJkiRJkrTWyro0YWJVbTwfQSRJkiRJWkjWqc6DyZLckYHDMlbVr+Y0kSRJkiRJC8A6ebSFJE8DDgW2AK4AtgHOA+43nmiSJEmSJK29Fi2gYQujPJK3ATsDP62quwGPB04ZSypJkiRJktZyyaKRT301SrI/VdVvgEVJFlXVicAOY8olSZIkSZJ6YpQ5D65NshHwbeATSa4AVownliRJkiRJa7eFNGHiKI9kD+AG4DXA8cDPgaeOI5QkSZIkSWu7sGjk06zWm+ye5PwkFyR5wzS33ybJ0e3tpyZZsqaPZeQySFWtAL4PXAhct6YBJEmSJElaiBZl0cinVUmyGPgA8CRgO2CvJNtNWuwlwDVVdQ/g3cB/rPFjGWHZbwPrJ9kS+CbwIuDIUTaW5A6jLC9JkiRJ0tpqTJ0HDwUuqKpfVNVNwKdpRgoM2gM4qj1/DPD4JFmTxzJK8SBVdQPwDOB9VbUnTZVj+oWTg5Ns3p7fKckvgFOTXJTkMWsSWpIkSZKkvhtH5wGwJXDxwOXl7XXTLtOOHvgtsEY/5o9UPEiyC/A84CvtdcMmXPybqrqqPf8u4Dlty8QTgEOHbGTfJMuSLDv1cz8eIZ4kSZIkSf2xOodqHPxO3J72nbzaaTZVq7HMSEY52sKrgTcCn6+qc5PcHThxyPK3SrJeW+XYoKpOB6iqnya5zUx3qqqlwFKAd/7wH9bowUmSJEmS1JWsxjfawe/EM1gO3HXg8lbApTMsszzJesCmwNWjp/mzWRcPqupk4OQkGyfZqKp+ARww5C4fAI5LcjBwfJL/Aj4HPB44c01CS5IkSZLUe7Vy9PusemaC04F7JrkbcAnwXODvJi1zLLAPzcEOngl8q6rmp/MgyQOA/wFu31zMlcDeVXXudMtX1fuSnA28HLhXu617AV8A3r4moSVJkiRJ6r3VKR6sapVVK5LsB3wNWAwc0Y4OeCuwrKqOBQ4HPpbkApqOg+eu6XZHGbZwGPCPVXUiQJJdgQ8DDx9yn8tp2i1OrarrJ65Msjtw/MhpJUmSJElaW4yheABQVccBx0267s0D528EnjWX2xxlwsQNJwoHbZiTgA1nWjjJAcAXgf2Bc5IMHjriHSPmlCRJkiRp7VIrRz/11CidB79I8v+Aj7WXnw/8csjyLwN2rKrrkywBjkmypKrew2xGcUiSJEmStDZb2d9iwKhGKR68GDiIZtLDAN8GXjRk+cUTQxWq6sJ2mMMxSbbB4oEkSZIkaaHrcSfBqEY52sI1wAFJNgVWVtXvVnGXy5PsUFVntve/PslTgCOAB6x2YkmSJEmS1gYLqHgw6zkPkjykPXrCWcDZSc5KsuOQu+xNM2HiLapqRVXtDTx6tdJKkiRJkrS2WEfnPDgceEVVfQcgySOBjwIPnG7hqlo+04qq6pRRQkqSJEmStNZZQHMejHK0hd9NFA4Aquq7wKqGLkiSJEmSpLXcKJ0HpyU5DPgUUMBzgJOSPBigqs4YQz5JkiRJktZOPR6GMKpRigc7tH/fMun6h9MUEx43J4kkSZIkSVoI1sXiQVU9dpxBJEmSJElaUNbF4kF7iMa38OcjJZwMvLWqfjuOYJIkSZIkrc2qbh75PhlDjrkwyoSJR9BMkPjs9nQdzdEWJEmSJEnSZCtXjn7qqVHmPNi2qv524PJBSc6c60CSJEmSJC0IC2jYwiidB39I8siJC0keAfxh7iNJkiRJkrQA1MrRTz01SufBPwD/0859AHANsM/cR/qzA3Z46jhXv1pu/c3juo4wxRdufVPXEaZY9s3Lu44wxZ12vF3XEaZ10Pnf6jrCFPd6XP8yXf6r13cdYYojPvuQriNM8dGHbt11hGn98YB3dh1hiscuf1/XEab4wZWndB1hirttcqeuI0zxnWN27TrCtO5+72O7jjDFfa8/uOsIUxy692VdR5hiv+2e3nWEKd582tFdR5jWlffdqusIUxy3xcZdR5hi71d8u+sIU9zlMXfuOsK6qcfFgFHNqniQZBFw76raPskmAFV13ViTSZIkSZK0NltAxYNZDVuoqpXAfu356ywcSJIkSZK0CuvohIknJHktcDTw+4krq+rqOU8lSZIkSdLabgF1HoxSPHgxUMArJl1/97mLI0mSJEnSArGOFg+2oykcPJKmiPAd4L/HEUqSJEmSpLXeOlo8OAq4Dnhve3mv9rpnz3UoSZIkSZLWej2ew2BUoxQP7l1V2w9cPjHJWXMdSJIkSZKkBWEBdR7M6mgLrf9LsvPEhSQPA/p3QGpJkiRJkvqgVo5+6qlROg8eBuyd5Fft5a2B85KcDVRVPXDO00mSJEmSpM6NUjzYfWwpJEmSJElaaNbFOQ+q6qJxBpEkSZIkaUFZWV0nmDOjdB5IkiRJkqTZWhc7DyRJkiRJ0ggsHkiSJEmSpKEctiBJkiRJkoay80CSJEmSJA1l8UCSJEmSJA3lsIVVS3IG8DngU1X183FtR5IkSZKkXlpAnQeLxrjuzYDbAScmOS3Ja5Jssao7Jdk3ybIkyw7/8PFjjCdJkiRJ0hitrNFPPTXOYQvXVNVrgdcmeRSwF3BGkvNouhGWTnen9vqlADfe/JX+PnOSJEmSJA1j58Foquo7VfUKYEvgP4Bd5mO7kiRJkiR1ZuXK0U89Nc7Og59OvqKqbgaOb0+SJEmSJC1YVaM302cMOebC2DoPquq5Se6T5PFJNhq8Lcnu49quJEmSJEm9sIA6D8ZWPEiyP/BFYH/gnCR7DNz8jnFtV5IkSZKkXlhAxYNxDlvYF9ixqq5PsgQ4JsmSqnoP/e3EkCRJkiRpbvT46AmjGmfxYHFVXQ9QVRcm2ZWmgLANFg8kSZIkSQtdjzsJRjXOoy1cnmSHiQttIeEpwObAA8a4XUmSJEmSNIfG2XmwN7Bi8IqqWgHsneSwMW5XkiSNbG8iAAATVklEQVRJkqTuLaDOg7EVD6pq+ZDbThnXdiVJkiRJ6gXnPJAkSZIkSUPZeSBJkiRJkoZaQMWDcU6YKEmSJEnSumtljX5aA0lun+SEJD9r/242ZNlNklyS5P2zWbfFA0mSJEmSxmHlytFPa+YNwDer6p7AN9vLM3kbcPJsV2zxQJIkSZKkcZj/4sEewFHt+aOAp0+3UJIdgTsBX5/tii0eSJIkSZI0DvM8bAG4U1VdBtD+vePkBZIsAg4FXjfKip0wUZIkSZKkcViNToIk+wL7Dly1tKqWDtz+DeDO09z1TbPcxCuA46rq4iSzztXr4sHK6t/MlNl2664jTPHec3/WdYQpfv+xkYpY8+LzV/6w6wjTeufpF3UdYYq3vH7briNMcefPfrXrCFPcdHP/jtu765lXdR1hWjfd8bZdR5iirrm46whT3Hjzn7qOMMXJm/571xGm2GpF1wmm99RD7td1hCnufMhhXUeY4urnPbHrCFPs+vmjVr3QPDvxPvfqOsK0vvecT3cdYYrn77tN1xGm+OKVXSeY6j6vfFTXEdZJtRqfF9tCwdIht+82021Jfp3kLlV1WZK7AFdMs9guwKOSvALYCLh1kuuratj8CP0uHkiSJEmStNZa82EIozoW2Ac4uP37xckLVNXzJs4neSGw06oKB+CcB5IkSZIkjcfNNfppzRwMPCHJz4AntJdJslOSj6zJiu08kCRJkiRpDGqeOw+q6jfA46e5fhnw0mmuPxI4cjbrtnggSZIkSdI49HCOrNVl8UCSJEmSpHG4uX8HAVhdFg8kSZIkSRqD+R62ME5OmChJkiRJkoay80CSJEmSpHFwzgNJkiRJkjTUAhq2YPFAkiRJkqQxKDsPJEmSJEnSUCs92oIkSZIkSRrGzgNJkiRJkjTMQjpUo8UDSZIkSZLGwc4DSZIkSZI0lMUDSZIkSZI0jMMWJEmSJEnScDcvnKMtLBrXipPslOTEJB9PctckJyT5bZLTkzxoXNuVJEmSJKkPamWNfOqrsRUPgA8C7wS+AnwPOKyqNgXe0N42rST7JlmWZNkRHz5+jPEkSZIkSRqjm2v0U0+Nc9jCrarqqwBJ/qOqjgGoqm8mOWSmO1XVUmApwA0rvtTfZ06SJEmSpGF63EkwqnEWD25M8kRgU6CSPL2qvpDkMcDNY9yuJEmSJEmdqx53EoxqnMWDf6AZtrAS+Gvg5UmOBC4BXjbG7UqSJEmS1D07D1atqs5K8mpgC2B5Vb0KeBVAkt3HtV1JkiRJknrBoy2sWpIDgM8D+wPnJNlj4OZ3jGu7kiRJkiRpbo1z2MLLgJ2q6vokS4BjkiypqvcAGeN2JUmSJEnqXJ8PvTiqcRYPFlfV9QBVdWGSXWkKCNtg8UCSJEmStNAtoAkTxzZsAbg8yQ4TF9pCwlOAzYEHjHG7kiRJkiR1rlbWyKe+Gmfnwd7AisErqmoFsHeSw8a4XUmSJEmSOuehGmehqpYPue2UcW1XkiRJkqQ+6HMnwajG2XkgSZIkSdI6a6WdB5IkSZIkaRg7DyRJkiRJ0lC1cmXXEeaMxQNJkiRJksbACRMlSZIkSdJQDluQJEmSJElD2XkgSZIkSZKGWkidB6laOA9mmCT7VtXSrnMMMtPs9DET9DOXmWbHTLPXx1xmmh0zzV4fc5lpdsw0e33MZabZMdPa7fJn7jzyF+47H/ODjCPLmlrUdYB5tG/XAaZhptnpYyboZy4zzY6ZZq+Pucw0O2aavT7mMtPsmGn2+pjLTLNjprVY3Vwjn/rKYQuSJEmSJI3BQhq2YPFAkiRJkqQxWEjFg3Vp2EIfx+SYaXb6mAn6mctMs2Om2etjLjPNjplmr4+5zDQ7Zpq9PuYy0+yYSb2wzkyYKEmSJEnSfFr+5J1G/sK91XHLejlhosMWJEmSJEkag1q5susIc8bigSRJkiRJY9DnoyeMasHPeZBk9yTnJ7kgyRu6zgOQ5IgkVyQ5p+ssE5LcNcmJSc5Lcm6SV/Ug0/pJTktyVpvpoK4zTUiyOMn/Jfly11kAklyY5OwkZyZZ1nUegCS3S3JMkp+076tdepDp3u1zNHG6Lsmre5DrNe17/Jwkn0qyfg8yvarNc26Xz9F0+8skt09yQpKftX8360GmZ7XP1cokO81nniGZ3tX++/tRks8nuV0PMr2tzXNmkq8n2aLrTAO3vTZJJdm860xJDkxyycC+6snzmWmmXO31+7efq85N8s6uMyU5euB5ujDJmT3ItEOSH0z8n5zkoT3ItH2S77efFb6UZJN5zjTt58wu9+dDMnW2Px+Sqev9+Uy5Ot2nry1qZY186qsFXTxIshj4APAkYDtgryTbdZsKgCOB3bsOMckK4J+q6r7AzsAre/Bc/RF4XFVtD+wA7J5k544zTXgVcF7XISZ5bFXtUFXz/sVlBu8Bjq+q+wDb04Pnq6rOb5+jHYAdgRuAz3eZKcmWwAHATlV1f2Ax8NyOM90feBnwUJrX7ilJ7tlRnCOZur98A/DNqron8M32cteZzgGeAXx7nrNMOJKpmU4A7l9VDwR+CryxB5neVVUPbP8Nfhl4cw8ykeSuwBOAX81zHpj5M8G7J/ZXVXXcPGeCaXIleSywB/DAqrofcEjXmarqOQP79f8FPtd1JuCdwEFtpje3l7vO9BHgDVX1AJr/9143z5lm+pzZ5f58pkxd7s9nytT1/nymXF3v09cKK1fWyKe+WtDFA5oPvhdU1S+q6ibg0zT/6XWqqr4NXN11jkFVdVlVndGe/x3NF70tO85UVXV9e/FW7anzf01JtgL+huY/Yk2j/UXj0cDhAFV1U1Vd222qKR4P/LyqLuo6CM0Qsg2SrAfcFri04zz3BX5QVTdU1QrgZGDPLoLMsL/cAziqPX8U8PSuM1XVeVV1/nzmmLT96TJ9vX39AH4AbNWDTNcNXNyQed6nD/n/993AP893HujnZwKYMdfLgYOr6o/tMlf0IBMASQI8G/hUDzIVMPHL/qbM8z59hkz35s9fhk8A/naeM830ObOz/flMmbrcnw/J1PX+fKZcne7T1xZ1c4186quFXjzYErh44PJyOv5CvDZIsgR4EHBqt0luGR5wJnAFcEJVdZ4J+C+aD5l9mv2kgK8n+WGSfbsOA9wduBL4aJrhHR9JsmHXoSZ5LvP8IXM6VXUJza93vwIuA35bVV/vNhXnAI9OcocktwWeDNy140yD7lRVl0HzgQa4Y8d51gYvBr7adQiAJP+W5GLgefTgV6okTwMuqaqzus4yyX5tO/AR89nKvQr3Ah6V5NQkJyd5SNeBBjwK+HVV/azrIMCrgXe17/NDmP9fiadzDvC09vyz6HCfPulzZi/253367DthSKZO9+eTc/Vtn95HDltYe0x3iIv+vho9kGQjmra/V0+qJnaiqm5uW6G2Ah7atlN3JslTgCuq6odd5pjGI6rqwTRDdF6Z5NEd51kPeDDwoap6EPB75r+1fEZJbk3zIeqzPciyGc0vL3cDtgA2TPL8LjNV1XnAf9D8OnU8cBZNy6LWQkneRPP6faLrLABV9aaquitNnv26zNIWx95E/z7wfgjYlmbI3mXAod3GucV6wGY0bcuvAz7T/uLfB3vRg4Jw6+XAa9r3+Wtou/A69mKazwc/BDYGbuoiRN8+Z8Lalanr/fl0ufq0T+8rOw/WHsv5y8rqVnTfDtxbSW5Fs0P4RFXN95jBodqW95Pofq6IRwBPS3IhzTCYxyX5eLeRoKoubf9eQTOWcV4nZ5rGcmD5QKfIMTTFhL54EnBGVf266yDAbsAvq+rKqvoTzXjdh3eciao6vKoeXFWPpml/7cOveRN+neQuAO3feW2dXpsk2Qd4CvC8qurbp5FPMs+t09PYlqZwd1a7X98KOCPJnbsMVVW/bovnK4EP0/0+fcJy4HPtsMLTaDrw5nWCyem0Q76eARzddZbWPvx57oXP0oPXr6p+UlVPrKodaYosP5/vDDN8zux0f97Hz74zZep6fz6L56oP+/Remu/Og9lORJrkne0EmOclee9sisELvXhwOnDPJHdrf2l8LnBsx5l6qX2zHA6cV1X/2XUegCR/NTGbbJINaL5k/aTLTFX1xqraqqqW0LyfvlVVnf5KnGTDJBtPnAeeSNOe2Jmquhy4OMm926seD/y4w0iT9ekXql8BOye5bfvv8PH0YHLJJHds/25N86G8L88XNPvxfdrz+wBf7DBLbyXZHXg98LSquqHrPACTJt58Gt3v08+uqjtW1ZJ2v74ceHC7D+vMxJep1p50vE8f8AXgcQBJ7gXcGriq00SN3YCfVNXyroO0LgUe055/HD0ovg7s0xcB/wr89zxvf6bPmZ3tz3v62XfaTF3vz4fk6tU+va86GLawyolIkzyc5kfRBwL3Bx7Cn/dbM1pvTZP1WVWtSLIf8DWaGcyPqKpzO45Fkk8BuwKbJ1kOvKWqum5pewTwAuDs/PkwR/9S3czwPOEuwFHtUTMWAZ+pql4cGrFn7gR8vi0Wrgd8sqqO7zYSAPsDn2gLd78AXtRxHuCWNuUnAH/fdRaAqjo1yTHAGTStiP8HLO02FQD/m+QOwJ+AV1bVNV2EmG5/CRxM0y79Epriy7N6kOlq4H3AXwFfSXJmVf11x5neCNwGOKHdP/ygqv6h40xPbouKK4GLgHnLM1Omrv//neF52jXJDjRDLS+kg/3VDLmOAI5IcwjAm4B95vMX0CGvX2dz2MzwPL0MeE/bEXEjMK9zEc2QaaMkr2wX+Rzw0fnMxAyfM+l2fz5TptvQ3f58pkzvpcP9+ZBcL+lyn7626GAYwh40+wBoJiI9iab4NKiA9WmKwKGZmH6VHbnpXxejJEmSJElrv/N2uM/IX7jve+ZPVns+mSTXVtXtBi5fU1VThi4kOQR4KU3x4P1V9aZVrXtBdx5IkiRJktSVlatxfLY0R08b7FpaWlVLB27/BjDd/DyrLAC0978HzaG5Jw77eUKSR7eHep2RxQNJkiRJksZgdYoHbaFgxmGsVbXbTLcl+XWSu1TVZUMmIt2TZvjL9e19vkpzJJ2hxYOFPmGiJEmSJEmdWLly9NMams1EpL8CHpNkvfZIGo9hFhN2WzyQJEmSJGkMVtbopzV0MPCEJD+jmST8YIAkOyX5SLvMMTSHbD0bOAs4q6q+tKoVO2GiJEmSJElj8H/3HX3CxAedt/oTJo6Tcx5IkiRJkjQGczAMoTcctiBJ0hxI8vQk2w1cfmuSYRMa7ZTkvWPI8cIkW6ximY8MZp103/fPdSZJktZVHcx5MDZ2HkiStIaSrAc8Hfgy8GOAqnrzsPtU1TJg2RjivBA4B7h0yLZfOobtSpKkSfpcDBiVnQeSJAFJliT5SZKjkvwoyTFJbpvkzUlOT3JOkqVJ0i5/UpJ3JDkZeD3wNOBdSc5Msm2SI5M8s132IUm+l+SsJKcl2TjJrkm+3N5+YJKPJflWkp8leVl7/UZJvpnkjCRnJ9ljIOt5ST6c5NwkX0+yQbu9nYBPtDk2mOGxnpRkp/b8i5L8tH0cjxjvsyxJ0rplIXUeWDyQJOnP7g0sraoHAtcBrwDeX1UPqar7AxsATxlY/nZV9Ziq+jeaQyO9rqp2qKqfTyyQ5NbA0cCrqmp7YDfgD9Ns+4HA3wC7AG9uhx7cCOxZVQ8GHgscOlG8AO4JfKCq7gdcC/xtVR1D083wvDbHdNu5RXv854NoigZPAKYMZZAkSavP4oEkSQvTxVV1Snv+48AjgccmOTXJ2cDjgPsNLH/0LNZ5b+CyqjodoKquq6oV0yz3xar6Q1VdBZwIPBQI8I4kPwK+AWwJ3Kld/pdVdWZ7/ofAktk+yAEPA06qqiur6qZZPh5JkjRLC6l44JwHkiT92eTDKRXwQWCnqro4yYHA+gO3/34W68w0653ttp8H/BWwY1X9KcmFA9v/48CyN9N0RawOj9ksSdKY9LkYMCo7DyRJ+rOtk+zSnt8L+G57/qokGwHPHHLf3wEbT3P9T4AtkjwEoJ3vYLri/R5J1k9yB2BX4HRgU+CKtnDwWGCbWTyGmXJM51Rg1yR3SHIr4FmzvJ8kSZoFOw8kSVqYzgP2SXIY8DPgQ8BmwNnAhTRf6GfyaeDDSQ5goMhQVTcleQ7wvnYCwz/QzHsw2WnAV4CtgbdV1aVJPgF8Kcky4EyaQsSqHAn8d5I/ALsMm/egqi5ruym+D1wGnAEsnsU2JEnSLFQtnAa/LKQHI0nS6kqyBPhyOzHifG/7QOD6qjpkvrctSZLG5xt3vPfIX7h3u+L8rHqp+WfngSRJkiRJY9DnYQijsnggSRJQVRcC89510G77wHGsN8nngbtNuvr1VfW1cWxPkiT9JYsHkiSp96pqz64zSJK0LrN4IEmSJEmShrJ4IEmSJEmShrJ4IEmSJEmShrJ4IEmSJEmShlo58oEa+2tR1wEkSZIkSVK/2XkgSZIkSdIYOGxBkiRJkiQNZfFAkiRJkiQNtZCKB6laQDM4SJIkSZKkOeeEiZIkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaSiLB5IkSZIkaaj/D2ALH7I/uL1bAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "m = len(proposals)\n", "n = len(participants)\n", "\n", "affinities = np.empty((n,m))\n", "for i_ind in range(n):\n", " for j_ind in range(m):\n", " i = participants[i_ind]\n", " j = proposals[j_ind]\n", " affinities[i_ind][j_ind] = network.edges[(i,j)]['affinity']\n", "\n", "dims = (20, 5)\n", "fig, ax = plt.subplots(figsize=dims)\n", "\n", "sns.heatmap(affinities.T,\n", " xticklabels=participants,\n", " yticklabels=proposals,\n", " square=True,\n", " cbar=True,\n", " cmap = plt.cm.RdYlGn,\n", " ax=ax)\n", "\n", "plt.title('affinities between participants and proposals')\n", "plt.ylabel('proposal_id')\n", "plt.xlabel('participant_id')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run simulation\n", "\n", "Now we will create the final system configuration, append the genesis states we created, and run our simulation." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "from cadCAD.configuration import append_configs\n", "\n", "# Create configuration\n", "append_configs(\n", " sim_configs=sim_config,\n", " initial_state=genesis_states,\n", " seeds=seeds,\n", " partial_state_update_blocks=partial_state_update_blocks\n", ")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "tags": [] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "\n ___________ ____\n ________ __ ___/ / ____/ | / __ \\\n / ___/ __` / __ / / / /| | / / / /\n/ /__/ /_/ / /_/ / /___/ ___ |/ /_/ /\n\\___/\\__,_/\\__,_/\\____/_/ |_/_____/\nby cadCAD\n\nExecution Mode: local_proc\nConfiguration Count: 2\nDimensions of the first simulation: (Timesteps, Params, Runs, Vars) = (120, 1, 1, 3)\nExecution Method: local_simulations\nExecution Mode: parallelized\nTotal execution time: 206.88s\n" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from model.model.conviction_helper_functions import *\n", "from model import run\n", "from cadCAD import configs\n", "pd.options.display.float_format = '{:.2f}'.format\n", "\n", "%matplotlib inline\n", "\n", "rdf = run.run(configs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After the simulation has run successfully, we perform some postprocessing to extract node and edge values from the network object and add as columns to the pandas dataframe. For the rdf, we take only the values at the last substep of each timestep in the simulation." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "df= run.postprocessing(rdf,1)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": " funds network run \\\n485 48001.43 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... 1 \n489 46908.46 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... 1 \n493 45904.88 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... 1 \n497 45892.37 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... 1 \n501 45892.55 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,... 1 \n\n sentiment simulation substep timestep \\\n485 0.60 1 4 1 \n489 0.95 1 4 2 \n493 0.96 1 4 3 \n497 0.97 1 4 4 \n501 0.97 1 4 5 \n\n conviction candidate_count \\\n485 [1311.6792775331276, 483.34839378676656, 264.2... 4 \n489 [1901.0676649170223, 264.27490604388095] 2 \n493 [2326.1867429585373] 1 \n497 [129.81482795472695] 1 \n501 [130.8490796626999, 1730.0790298211587] 2 \n\n candidate_funds ... funds_requested \\\n485 3076.13 ... [1012.0991460762266, 2739.6231533404134, 1010.... \n489 1981.34 ... [1012.0991460762266, 2739.6231533404134, 1010.... \n493 18.28 ... [1012.0991460762266, 2739.6231533404134, 1010.... \n497 67.45 ... [1012.0991460762266, 2739.6231533404134, 1010.... \n501 216.44 ... [1012.0991460762266, 2739.6231533404134, 1010.... \n\n share_of_funds_requested \\\n485 [0.021084769929574625, 0.021053421396028896, 0... \n489 [0.021543968122490927, 0.02069438837146324] \n493 [0.00039815187039820877] \n497 [0.00146976295054582] \n501 [0.0014697574881539163, 0.003246521378631558] \n\n share_of_funds_requested_all \\\n485 [0.021084769929574625, 0.0570737798820036, 0.0... \n489 [0.021576047079858086, 0.05840360439656978, 0.... \n493 [0.02204774422099061, 0.0596804283265386, 0.02... \n497 [0.022053753974195095, 0.059696695961076886, 0... \n501 [0.022053672011149893, 0.059696474097579395, 0... \n\n triggers \\\n485 [678.1185818891028, 677.8810040617275, 671.634... \n489 [677.8762460317461, 671.6296431997818] \n493 [544.7923880309272] \n497 [550.7343180714626] \n501 [550.7365401905004, 560.7282393582785] \n\n conviction_share_of_trigger age \\\n485 [1.9342918960855657, 0.713028379451024, 0.3934... [1, 1, 1, 1] \n489 [2.804446498967589, 0.3934830880674369] [2, 2] \n493 [4.269859113425209] [1] \n497 [0.23571225488418238] [1] \n501 [0.23758924660680597, 3.085414481355773] [2, 1] \n\n age_all \\\n485 [1, 1, 1, 1, 1, 1] \n489 [2, 2, 2, 2, 2, 2, 1] \n493 [3, 3, 3, 3, 3, 3, 2, 1] \n497 [4, 4, 4, 4, 4, 4, 3, 2, 1, 1] \n501 [5, 5, 5, 5, 5, 5, 4, 3, 2, 2, 1, 1] \n\n conviction_all \\\n485 [1311.6792775331276, 0.0, 483.34839378676656, ... \n489 [nan, 0.0, 1901.0676649170223, 264.27490604388... \n493 [nan, 0.0, nan, 0.010597423732356288, 0.0, nan... \n497 [nan, 0.0, nan, 0.010597423732356288, 0.0, nan... \n501 [nan, 0.0, nan, 0.010597423732356288, 0.0, nan... \n\n triggers_all \\\n485 [678.1185818891028, 1062.6340891139957, 677.88... \n489 [678.1138142691855, nan, 677.8762460317461, 67... \n493 [nan, nan, 681.6081121441088, 675.164269641699... \n497 [nan, nan, nan, nan, nan, nan, nan, 544.838888... \n501 [nan, nan, nan, nan, nan, nan, nan, nan, 550.7... \n\n conviction_share_of_trigger_all \n485 [1.9342918960855657, 0.0, 0.713028379451024, 0... \n489 [nan, nan, 2.804446498967589, 0.39348308806743... \n493 [nan, nan, nan, 1.5696067177814655e-05, nan, n... \n497 [nan, nan, nan, nan, nan, nan, nan, nan, 0.235... \n501 [nan, nan, nan, nan, nan, nan, nan, nan, 0.237... \n\n[5 rows x 29 columns]", "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
fundsnetworkrunsentimentsimulationsubsteptimestepconvictioncandidate_countcandidate_funds...funds_requestedshare_of_funds_requestedshare_of_funds_requested_alltriggersconviction_share_of_triggerageage_allconviction_alltriggers_allconviction_share_of_trigger_all
48548001.43(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...10.60141[1311.6792775331276, 483.34839378676656, 264.2...43076.13...[1012.0991460762266, 2739.6231533404134, 1010....[0.021084769929574625, 0.021053421396028896, 0...[0.021084769929574625, 0.0570737798820036, 0.0...[678.1185818891028, 677.8810040617275, 671.634...[1.9342918960855657, 0.713028379451024, 0.3934...[1, 1, 1, 1][1, 1, 1, 1, 1, 1][1311.6792775331276, 0.0, 483.34839378676656, ...[678.1185818891028, 1062.6340891139957, 677.88...[1.9342918960855657, 0.0, 0.713028379451024, 0...
48946908.46(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...10.95142[1901.0676649170223, 264.27490604388095]21981.34...[1012.0991460762266, 2739.6231533404134, 1010....[0.021543968122490927, 0.02069438837146324][0.021576047079858086, 0.05840360439656978, 0....[677.8762460317461, 671.6296431997818][2.804446498967589, 0.3934830880674369][2, 2][2, 2, 2, 2, 2, 2, 1][nan, 0.0, 1901.0676649170223, 264.27490604388...[678.1138142691855, nan, 677.8762460317461, 67...[nan, nan, 2.804446498967589, 0.39348308806743...
49345904.88(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...10.96143[2326.1867429585373]118.28...[1012.0991460762266, 2739.6231533404134, 1010....[0.00039815187039820877][0.02204774422099061, 0.0596804283265386, 0.02...[544.7923880309272][4.269859113425209][1][3, 3, 3, 3, 3, 3, 2, 1][nan, 0.0, nan, 0.010597423732356288, 0.0, nan...[nan, nan, 681.6081121441088, 675.164269641699...[nan, nan, nan, 1.5696067177814655e-05, nan, n...
49745892.37(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...10.97144[129.81482795472695]167.45...[1012.0991460762266, 2739.6231533404134, 1010....[0.00146976295054582][0.022053753974195095, 0.059696695961076886, 0...[550.7343180714626][0.23571225488418238][1][4, 4, 4, 4, 4, 4, 3, 2, 1, 1][nan, 0.0, nan, 0.010597423732356288, 0.0, nan...[nan, nan, nan, nan, nan, nan, nan, 544.838888...[nan, nan, nan, nan, nan, nan, nan, nan, 0.235...
50145892.55(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...10.97145[130.8490796626999, 1730.0790298211587]2216.44...[1012.0991460762266, 2739.6231533404134, 1010....[0.0014697574881539163, 0.003246521378631558][0.022053672011149893, 0.059696474097579395, 0...[550.7365401905004, 560.7282393582785][0.23758924660680597, 3.085414481355773][2, 1][5, 5, 5, 5, 5, 5, 4, 3, 2, 2, 1, 1][nan, 0.0, nan, 0.010597423732356288, 0.0, nan...[nan, nan, nan, nan, nan, nan, nan, nan, 550.7...[nan, nan, nan, nan, nan, nan, nan, nan, 0.237...
\n

5 rows × 29 columns

\n
" }, "metadata": {}, "execution_count": 22 } ], "source": [ "df.head(5)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "" }, "metadata": {}, "execution_count": 23 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztvXm8JWV17/1dezqn+5xumh4YG+xGQZkbaQlIjHAjEVQgMZoLN2qIvvJqRHNzgxe43IsR46tGIzcD6odLvGgGwBCHjnbEeUJFGkWBhsZWUY490HQ3fcY9P+8fVc/edfauPVU9tfc5+6zv59Of3kOdqmfXsGrVbw2PGGNQFEVRlgapQQ9AURRF6R9q9BVFUZYQavQVRVGWEGr0FUVRlhBq9BVFUZYQavQVRVGWEGr0FUVRlhBq9BVFUZYQavQVRVGWEJlBbXjt2rVmw4YNg9q8oijKouTBBx98xhizLurfD8zob9iwgW3btg1q84qiKIsSEfllnL9XeUdRFGUJoUZfURRlCaFGX1EUZQmhRl9RFGUJoUZfURRlCdHR6IvIx0XkaRF5pMX3IiJ/KyI7ReQnIvJC98NUFEVRXNCNp38HcHGb7y8BTvT/XQ18NP6wFEVRlCTomKdvjPmWiGxos8jlwCeNN+/i90VklYgcbYzZ7WiMHfn3H+/ip3un+rW5lizLZfjj8zcwmk1H+vvJfIl//N4vKZQqjkfm8TunHsVpxx4W+t3BmSL/9P1fUqpUE9n2q848hpOOXBH63YGZIt/92TO86oxj5n3+nZ8+ww9+sT/S9n7rpHVs3rA69LuZQpk7vvtkYvt5KfHi563l3BPWhH43V6xwx3efZK5Y7mpdqZRwxYuO56jDRmufHZgp8s89nJcj2TSvO/c5HLYs23HZL2/fy8MTz3a13kbaXUut+MEvDvCdn+5ru8zKZVn++PyNpFMSaVzd4KI461jgqcD7Cf+zJqMvIlfjPQ1w/PHHO9g0fP3xp3n7nT/y1+9klZGwUw2fcsxKXnpStGK5b+7Yxwfv3QG4/y3GwBN7p/nY688O/X7rI7v56y8/kdi2Jw7O8eH/vCn0+7se+BV/9cUdvOR56zhsef1ifc/nt7Nj71TP4zEG7v/FAe7+f88L/f47O59JbD8vJYyBb/30GT77tvNDv7//F/v5wBcfBzrvZ3v9ZNMp3nbh82qff/GRPV2fl3Ydx65axu+edWzH8d/4mYd5eqoQ6fxqdy2F8eiuQ7zuH+6nWK623J4d//nPW8vJR6/sbVA94MLoh/2E0NnWjTG3AbcBbN68OfaM7NOFMjd+5mFOOnKcz7/9JeQyg4tLP/LrQ7zq774Ty3sslD1v5lvvvJDj1yx3NTQAfv+j32UyX2r5/eSc541tv/nlLM+5LdS+/Nb7eGam2PL7Xc/OeWPIl+YZ/cl8ideevZ4PvvbMnrb3ho//gENzrX/rrO95fv3aC9i4dqyndSt13vzJbTx1YLbl97NF71r44n99CS84qr0RM8Zwwv/YSr7h+pnz3//4pt+Zd26EsevZOV78/q81raMVU/kyb37JRm585SldLW+57O+/Q77c/XV+aK7EW//ph6xenuML7/hN1oyPhC73tcf38sY7ttXsQFK4uLongOMC79cDuxystyMfuncHuyfz3PNfXjxQgw+QSXv3vnI1+r2s7D/C2nW5ZHwkw7OzrQ3vTKFMSmBZRGmqHauXZ9k3XWj5/Z5D3nczDTLAdL7M+Gjvp2guLRTbXDj5kvfdaFaT1+KQS6cotpFdrPEdzXQ+p0SEbDrVdNzs+2ym8zWRTXvHs92YLJWqYa5UieTghI2zFcYYrv3XH7Pr2TnuuvrclgYfIJPyxl9OSGK1uDjrtwBv8LN4zgUO9UPP/9GvDvKJ7z3JG859Dmc/5/CkN9cRe8DiaOIl/4aRiNEfzTBVaK2tThfKjI9kkAT0jtVjIxyYbn3D2TPpefrT+fr4qlXDdLHMipEIRj+TotjGE+vFGCmt8fZzNzfX7vbzSDrV5OXa9efSnU2Vdfy6Mcj2CWJspPdzINeD0f/br+7ky9v3cv0lL2gZY7LY675UiS2CtN9OpwVE5E7gAmCtiEwA7wKyAMaYjwFbgVcAO4FZ4I+TGix4F+w/ff+X3Pr1nRy1cpR3XvyCJDfXNVnr6cc4YPYOn02590BXjGTmGdVGpvJlVox2Dn5FYc14jgNtnjKspx+8Kc2WKhhDRE+/kwfamzFSwsmlU22dnNrNtcsnqlymeX2lSpWUQKYLoz+S6d7Tn/XPtSiefi6TanoqDeNj3/wZt3zlCV591rG86Tc3dlzePqmUqwOWd4wxV3b43gBvczai1tvhcw/t4n3/8Rh7Jwu85MS1/K9XncJ4BE8wCTIODpi9YSQl70y39fRLie3L1WM58qUqs8Vy00VWLFd5xpd+gjcl+3p8pPcbUS6TolRuffO1Xt7IgCXBxU4nT3+uZvS7u7mGra9YqXYt3dqngW68cHstRDnnO/1ugP/zrZ/z/v94nEvPPIa/es0ZXT1BZ1LxHcduWBgWswMHZ4rc+NmH2frwHjYdt4q/ueKslmligyLr4NGs5N8wsl14Nb0yPpphtlihUjWh6WDThWj6eTesXp4DYP90keWr529j72R+3hjqr71AbKTH70x7T79QqjCSSZFKMC1uKdDJ+BVKFUS6v7mGHbdiudqVtANeymcm1T6eY7FB5uU5t+dXpWr46y/t4CPf+BmvPP1obvmDM7t6SoH6dZ9U2rRlQRr9pw7M8uEvP1EzAg899SzPzha57uIXcPVvnZBoDmtUsi40fd87TcTo+x7NTLHMyhAZZ7pQ6Sq3OQqrxzyjf2CmyHGr52clBY3+zDyj712UKyLJO+kOWnNFpR0HdLq55stVRjKpruNEYVp5oVwl10PspRsvHOrn2lgET3+khab/zHSBd9z5I777s/1c8aLjeM/vnta1wYeg0V9inv6OPVO8/h/uZ7ZYqRmIk44c53+84mROPaa3Yoh+knGh6Ve9HN4kbmrW6E/nWxj9fIn1q5Y53y7A6nHf6Ifo+rsP1Y3+lEN5p1OAUTN34uNp+oZq1YQ+NfV6cw2Vd/wbR0/r6EbTj+vpN4xzMl/i0r/7DgdmivzVa87gDzYf1+KvW1PPAFxCnv4Pf3WQP/6/DzCSSfFvb30xzz8qvIJzIVK7S8c4YKWKSSSIC/WAaCtd32bvJIGVd8IyePb4Rj+dklB5J7LmWqlijAn1MvNl9fRdkAsETkdTzfszX6r0lCEVKu/0oOlD95k1sTX9hnH+7Olpdh/K8zdXbOLyTZ0Lw8KoqwXJevoLxt15fM8kr7/9flYtzy46gw9ugjDlSjWRIC7UT+6pFhk8UXPiu6Hm6YcUaO2ZzLM8l2bteG5eINeOM4q80ymLY65YSaQeYanRcT+XqizrwZPOhaZsVrrW9KF7eccW6C2PYvRbyFAA69rk4XeirhYsAU//4EyRN39yG+OjGe6++rx5vTcWC+lU/ANWrprazcM1K9p4+tWqYaZYSczTXzGSIZsW9ocZ/UN5jlo5ikhjIDe65hrM4hgJ8TTz5SojavRj0ykvPu8HzHtZX6NTUiz36OlnUhS6uAZn/JjRmCN5x74fiSEb1tWCIff0y5Uq19z5Q/YeKvCx1529KA0+eBWFuXQq1gEr9fgo2wtWG58JMfo25ziKV90NIsLqsRwHQ4z+7kNzHHXYKOOj2Xl5+vVAW7SLEtobo1FN14xNpxTJXjX9kZgpm3ZMvQRyo+bpl6teLMNiPf1cOrozUcsATLgNw8DP/A9+aQf37dzPe3/vNM46fvCVtXHIpCXWAStVqrXKXtdY4xlWoBXHq+6Ww5fnQj39vZMFjjpslBUjmXk3pKlCmVwmFeqpdyLXQXYoaPaOE7IdjH6hx4B5NqSorliu1oxhN3SdvVP0ZKMoTlbY+eXC03dR69MNAzf6X/jJbl528hG8NkK0e6GRSUnM3jsmMU1/he/ph7ViqGfKJGf014znODAzv/9OtWrYO+nJO+MNFcPT+WgtGKCzMcqXqqrpO6DTzTVf7i120ko26Slls0tPf7ZYZnmEp0i7DWBe/KHgt/3oJf7QiJV2hz6QWyhXWbdicUo6jWQ7lKV3olQ1ieToQ3tP394Ikgrkgtd/5+Ds/M6Xz8wUKFcNRx82yvhopknTjzqeTvLOXKmiKZsO6Lifiz2mbIZcP8WK6TmQ2801OFOoMBaxm2zY73ap6SddkTvwM7/XPNyFTCYt8bN3EgrkZtIplmXTtVTIIPZGENWz7oY1Yzn2N3TatOmaRx22jPGRDFOB1s/T+egppGGeWBAtznJDN55+/Dz93oPB3eTpzxTKkeJFUD+/gjeXuqYf3ZalU4LIEpB3Cj0e1IVMNp2Kn6efkKcP+N50c/fJmT54+ocvzzGZL8+7UGxhVk3eKZQx/kwS04Vy5BiDPZ9aeXxq9N0w0oWM1ssTVdzeO9BDIDekD1TX22jr6cc7r7J+wVuSDNTaGmN6TslayMQ9YKVKb0GrXmnVdM3KO1Efd7vB5uoHM3hsC4ajfHmnaupNuqYL0TX9jtk75Wqsx3DFo7uUzd48/cZ0y15679h1dNt7J7KnH/KEYzX9uA5sNiWJ994Z6JlfrhqqZni6HWZSEjNPv9pTr45e8YKlbeSdBD39NWPNrRh2H8qTTQtrxnL1NhH+DciJph9yLCpVz9HQQG58ujH6vRRn2Z429mnPrrvnPP0uUzYje/ohTzgFfxrEuPJsJp1aFJOoRKY2QcKwGP3Ynn5yxVnQ2tPvV8omzG/FsOdQniNWjJJKSb14zL8BudD0w4yR9chU3olPp5trqWJ6bsMA87NXejX6I91q+sUY51emOWZkY5NxJyHKpmW4i7NqOtiQzGCUTUvMfvrVxDX9sDYM04Uyo9lUotte48s7wVz9PYfyHO0X4zV6+lMJZe/UJlAZEkdjkLS7ufY6gQq0yH9PSNOfLVQiNVuD8POr0KMM1YpMasg9/cKwefqpmNk71eTy9MHLzgmb8cdrtpZMW2VLsL2yZc9kvlaBPRboAlosVymWq4zHDbSFXDz5Hif2UFrT/uba+35uvIlU/aeFJDT9mWL8RIFiQ/aOi9Ye2Uw8G9INC8LTd3GHXAjEztPvR/ZOmKefLyeq5wOsWpZFpG70jTG1vjsQaAhXKMfOJmqXsqlG3x21/Rx2cy3bKSl7qMhtuIlYo9qLUxhW1dtIuVIlX6pGz9P3Wy3M9/R7awzXimyq/fjft/Wx2NvoapQicrGI7BCRnSJyfcj3zxGRr4rIT0TkGyKyvpv11iLeQ5JJEd/oJ5u9M9aQFmmZjpGz3C2ZdIrDlmVrRn9yrsxcqVLz9IOafpy2txDwxEKMfq9T+CmtaefpzxXje/o1o9+jp1+pGiptdPHZGJOi220Ex2lfu7BjnWp9PvfQrtjb6DhKEUkDtwKXAKcAV4rIKQ2LfQj4pDHmDOBm4H3dbNxFQcNCIpOO24Yhud474BnRUsU0ecBxgqa9sHosVzP6uyfnADj6sGW1sYH32B2nrTJ0qekPiaMxSOqBV0fyToNsUoog/3bKKAJPz4dozdbmj7Ne8+JU028TF8yXm+tseqWbUZ4D7DTG/NwYUwTuAi5vWOYU4Kv+66+HfB9KlMe3hUwm5SB7J0lNv0V75ak+aPrgV+X6/Xce2z0JwPH+7GhWypma5+lHG1Ot906IMSqop+8M11lSjU9oUexDrs2xt9i4VlRP3z6NN3v6DjT9tLS1IfZmGodu9uaxwFOB9xP+Z0F+DPy+//r3gBUi0nHm8kJpCLN3YubpJzVzFgS86QajP1NIXtMHL23z4IxXJ/AfD+/hyJUjnHrMSsA7B7Jpb/asOG2VoYOnrymbzsikU6TEXZZUo6cfJebXTtqzzMQsRqyPM9hauVKrUI5DNt3a0zfG1PZrHLoZZZjr2XgruhZ4qYj8CHgp8GugKWIoIleLyDYR2bZv376h8/S9A7Ywu2xC69mzkpwqMciaca+98kyhzDef2MfFpx41b25V22nTVghHvRFl/B4m4bKD95kWZ7mhVa8b65H2NnPW/ABplDqeTv2AoD6BStQumyMhgVyXmn6pHG5Duik664ZuRjkBBPserwfmRROMMbuMMa82xpwF3Oh/dqhxRcaY24wxm40xm9etW1d71B6aitx0vBLqYh/y9KFZ3klyqsQgq8dyHJwt8vUdT1MoV7n4tKObxjddKMeaFB3qE9q0DzAOxzk3aFru5ziavr++KCndXWn6RUeefkOevgs71q5/V8GBlw/dGf0HgBNFZKOI5IArgC3BBURkrYjYdd0AfLybjdu78bAY/WwqXvZOuWIS770D89srF8oVipVqnwK5I1SqhrsfeIo1YznO2bi6YXxZX9P3J0WPcSNqVY6v8o5bcpl0i9RYK+9ECeRW/P+jaPrNXngj0wnIh656iLWr9XERxIUujL4xpgxcA9wLPAZ8yhjzqIjcLCKX+YtdAOwQkSeAI4H3drNxe+caFnkndmvlPvTegYa5aPswgYpl9ZjnuX/7p8/wO6ceWZtX2GJnz5rOlxGB5TEMc6ty/CjGSGlN2BSHELEitzFl01bs95iyGfzbMGaLNmUz2jmfTgnplDRl77iITWbapH27COJClxOjG2O2AlsbPrsp8Poe4J5eN1739IfjAoyTp2+MV32YTbL3Toi8Y/XNfnn6lkZpBzzP65npItP+BBepGPuilexgL5xhqQ0ZNJ00/V4yWhp72sTT9FsbyDjz49a203B+OSvOapP27SKICwulIndYPP0Y0yXaYpIkPX07ZWLQ6E85kFK6xXbaXDma4bwTmpO7xkeznqZfKMW+CbUqxy+UKogMj6Q4aDzj12xgreHuJWDelLIZxeh3mEAHAp5+xN47dkxJBHKzbbpsuvL0B9x7Z7gCudlMKrK8Y28WSQZyR7Mp0ilpmosWkp01y2L777zslCNDL2Rv9qxyrLbKllZGf65UYTSTjt0NUfHIZqRlwDwl9BSjaqyvsP/3ck3kMs059I3MFMqMZFKxHKzGJxyXxVmt8vT7Ku8kxbB5+tmUUKx4/cB7NSr1Ezw5YyQiTe2Vp2P2uemFo1aOcuU5x/OG854T+v2K0QzThRJTDiqEW8sOvc3mpLQn16LXjZ2drJfroFbh69uFUkKB3DjN1urbSTW3Vnbi6bfOAMy3+U29MFCj72rigYWC9RwqEbpl2ieEpPeF9aYt/eilb0mlhPe9+vS2Y8uXqhyaK3HYsngVwu00fc3ccUcukwrNK+91fly7Lqg7QFHatIT15G8kTltlSzCAXakaylVTu+HEoV0rl6GQd1xNPLBQsIY+iq5vdbwkNX2wE6nUZ8+a6qO80wl749k7mY89dWMreSdfrqrRd0gukw7vslmq9jxnQcvsHdeB3GLZ6flVnx/Xlbwz1Jq+Gx1soWBbKETJ4CnVNP2EPf3RTC1jB/ozKXq32BvP01OF2OPJppvnWwVPa1aj7452xVmjPXrTjT1tYmXvtNX0o8+Pawm2cLaxSRe2LNcmLtjP4qzEcDXxwEKh5ulHCObWPP0Ee++AL+80aPopWRhtCayhNyZ+Cmmr/PFCuaKavkO8/RySveMHzHtBROZNjh6r4VrSmn6m7pG79fTbafpD4On3OtP9QsdmGbQqo26H1SCzCQe1vYlU5ss74yOZBSGxBQ193AZwwYsySD6CMVJa4zpgPpJulk2iaPptUzYdaPrBJxyXLeIzfv+uxjkvYGjkncrQpGtC/fE0Sntla6CSLM4CGM81Z+/0ozCrG4KSTuzsnZaBXM3ecYnrgHmjVp6S3uJcYVMZNjJdcKvpF2qevoPWyqnWccGhKc4alnRNqEszUdor17J3kg7kNkyZ2K9ma90QNPQuHr81eyd5WgfMHRj9HidFh+7knVlH8k6hPF/Td+HA2us/TCLOlypNrUuiMFijX3HTmW6hkInj6Vdt9k7yKZszxQpV35OYKS4gT9+xvBPm7c2VKgsifjEstCyCK0bbz8HjFkX+TaWETCq8YMwyU6xEbqvcapz2s7jU1IIQibhQ7j0jKozByjslN02KFgpW02833Vkr7J09yUlUoG5M7exBU/ky46PJz5rVDW7lnXRLeWeYkgcGTauJyL393Pu5nG3QyqMY0mwLyQk8GbVYjj4pumUkRNN31VoZWnv6Lp5SB+7pD5O80+6AdaLch4pcaO60OV0oL4gcfZjf3zzJ3juq6bvDC5ib2pOjpRBV3mkI5EYJjrZ6yoP6/Lgu5cMo9QStqKsFreJRi9zoF8qVoTL67Q5YJ4r9Ks6ynTZ9Xb9fk6J3QzoltSZYTnrv+C0xgkTVmpVwrKFrlCO84qx48k4polPY6oYPgflx42bvZFJNlcMuVIt2tT75csVJWujAA7nDpOnXD1gUT78/xVnWw5kKePr9aMHQLXYsK2JO1B6WxVGuVClVjGr6DmkVOM2XKizLxTPYURM9WvUDgvqsWcsdZofVirMcevphakGU2ocwBm70h9HTj5S9YwO5SWv6gcnRq1XjBXIXSPYO1D38uBWTYcbINqxSeccdYRWwpUqVctVEMlDByW+iyr+tCvMApgvx2ypDkvJO67igq3TjgVfkDldxlo28R8nT718bBvBkndlSBWMWRt8dix1L/DYMzS128xHmbVXaEzYReZz97EzTb2H0Zx01GMz6RVTVqok0l28rcm0yAIcjkOuoHelCIVaefrVPmn5A3qlNlbjAPP1cOhVbH835fx9qjIYoY2zQhD5RlaI/UTmRd9oEcmdqE6jEjxmBd34VHWr6mQ6avgujP/DWyi7akS4Uam0YIlXk9sfTt1r5d3c+w/7pItCfqRK7ZXwk4+QmFCY7WGM0TI7GoAnfz71PlRhcXy1AWqlyWK732E6rKmEIavrxWyuDZ/ST0PTDPX038k5XV5eIXAz8DZAGbjfGvL/h++OBTwCr/GWu9+fVbcuwefrZGNk7tTYMfcjeWbU8y2cf2gXsAuDYw5clus1e2Lh2nGf8m1Ec6n3Vm42RBnLdEdbrxhrBSMVZCcs7tfkjXHn65apTTb+e9p1c36iOv1xE0sCtwEXABPCAiGwxxmwPLPY/gU8ZYz4qIqfgTaK+odO6i5Xh0vTbBWE60a9JVNIp4Vv//UIOzXpN10ayKY5YMZroNnvhnS9/PtWQZlO9EjZXqmr67gnT9OeKVt6J23snWm+uXCY1r79UkHqevrtEAZeTQWU69N5xUVjYze3uHGCnMebnACJyF3A5EDT6Bljpvz4M60K2wV7XQ5W9k4rfcC1pTR9g5WiWlQukCreRdEpIE//iaZxkG4Jasxp9V4yEZknZm2tMTT9qnn4becfm6S937Om7mgwqG/KEanFVWNjNLz8WeCrwfgL4jYZl/gL4koi8HRgDXtZppVU8wzhUefpxKnL7NInKUqGd1qwpm+7Itt3P0eSdWj/9cjXS9ZBtl71T9Axn3MZluXmavrt2Mu1qfVwFcrs5+8P2TuOIrgTuMMasB14B/KOINK1bRK4WkW0isu2ZZ/YDw2X069MlRpF3+pOnv1QITSUsq7zjmly62TOtPVFFrMgt+ZXUpYqJlqffMGl5EFetxBvlHVeKRatan0rV2x/9Ks6aAI4LvF9Ps3zzJuBTAMaY7wGjwNrGFRljbjPGbDbGbF69ejXgJs1poRAne6fYp+ydpUK7VEIN5Lqj3RNVpIrcdApjvCffYsTsvlYT6ICXpx9X2rHbAC9m5HJekFa1Pi6fUrtZwwPAiSKyUURywBXAloZlfgX8NoCInIxn9Pe1W2l1CDX9ONk75UqVTEoWxAxWw0CYMZqrpRIOzzk3aEIDuXY/R/T0oa6VJ5GnH3fWLLsNiDfOMFrV+rhMQug4UmNMGbgGuBd4DC9L51ERuVlELvMX+3PgzSLyY+BO4CoTNt/X/PUCw2X04xVnmcR76S8lwoxRQbN3nBOWJRVnPwc96CQCuVP5Uuy5GqAxT9+dpt+q947LFiJd/Xo/535rw2c3BV5vB87vZcP2ljBMmn7c6RKT7qW/lGibsjlEkuKgaZ8lFc1LB683VHD9va6jldGfnCtz9GHxU5St7ORa06/FSJq6lvbR008Km70zTJ6+iJBOSeQ8ffX03dGqIjedEo2bOKR9llS07B2oF1FFLc6yfXEamSqUWLksfrpyNlPv7RS1niAMm7JdCulaCm5ioAOzuHVPf7i8rmxaIqZsVhOvxl1KhAVy50oVRh3lUyserTT9TEoinc92fTWjH9HTbxyTZXKuzEoXbT4CWUsFhy3i6xmAjYFcd/LOAI3+8Hn64OXZtgoitaNYNmr0HdKqDYPq+W5plSUVdT9b42mbAUbV9IGmtM1q1TCVd+PphxVnuaBVnr7LeNTAPf1hasMA3p06qqev8o47Wsk7avTdkkmnSElzRW5Uj9Qet6kY8k5YnAG8atyqwUkgtxZwrvQnT99ljcngNH0r7wxZ+lwmnYqu6Sfcd2cp4aW/NhdnDdv5thBoTJHMlyqRZVsbII3l6beQdyb9dbpoQTISCOQWXWbvpFrl6Q+DvGMDuUPm6WdTEj17Z8j2xSARkabUvUKpooVZCZBt2s9VlkXMhbdBdpu9E+WayIZITuClawLO5R2XxVkiXqJBY62Py8yzgcs7w+Z5ZdIpzdNfIOQy88vx51TTT4SRBk9/LkZjsMZAbtSUTWg2+pNz7jz9pIqzwKv3aS7OctcscIDyjt9wbYgmUQHPU4k2XaJ6+q5pNEauJqFQ5tP4RBWn77uT7J2QfkAAk3PW04+v6adTXnp2sVJxmr0Dnq7fqBb0uw1DIgxja2XwHi0bc2y7QYuz3OPSGCmtaSyGipMl5SR7J2RiF4BJX95Z4aituD2/XHv62ZC44FAEcofV6GfSEjoBQie0OMs9Lo2R0prm/Rz9iaoWyI1ZnAVh8o7v6TuaEzqXSTFXqlCuGqf1RplUcwZgwU716cBeDrQiN+M/Ig0TmVTrDn/tKFVNXyZQWUqEGyM1+q5pyt6J0fe9KWUzSmvlFtk7U/7TgzNPP5OK9UTSimw61Szv+MFiF4WFA/X0h83LhxgVuZUq2SG7AQ6asFRC1fTd0ySjFeMb/Wlfiomm6dfTKYNM5ktINb+WAAAgAElEQVQsy6ad9smJE3BuRVj2TsGhwzLQitxharZmCdPjukHlHfc0phKqvJMMTU9U5RjyTmMg16m8U3YSxA1uZyoBTz+s1serfXCzjYEWZw2jp58JeTTrBs3ecU+TBxrDGCmtyWXStSkOIWb2jm24lneQslmpzPt8Ml9yJu2AN9ap2jjdavph2TuL39PHbfBjoeAVZ0XR9NXouyYo75QqVSpVo8VZCRC8uRpjyJcqsYuz4mj6rTz9qbybZmvB7cRJLW1FNqTWx2W6sWr6jonce0fbMDhnJCA7uOxHrswnlxGKfkphqWKomuj72VZSx6vIrbc9DjLpqNmaxZN3vNiDa02/qcumo0nRYcCa/rC1YABf3mmh6e+dzPPMdCH0u1JFs3dcE/T061MlqtF3TS4gadanSox+LucyqVjTqdqCz6Y8/bmSk2pcS1Deca3pN96wXNaYDFTTH7YWDODJO608/bff+SP+12cfCf3O66evnr5LgrLDbMEzRsvV6DsnGMidLXpGMM7k49aAihDp6bddwzXXgVzrkSfu6ZeqzuzlYOWdIfRsw/Q4y5PPzPDsbCn0u3JF++m7JmiM9k7mAThyZfyp8pT5BJ+o9k56T7JHrhyJvj7/Osilo+Wl1+ZSKNcNpzGGyTnHgdyAoXcbyA3T9Pss74jIxSKyQ0R2isj1Id/fIiIP+f+eEJFnO62zasxQPmpn0imKIZ5+qVJl33ShZZC3WNF++q4JGqM9vtE/ysH8qMp8cul07ea659AcEG8/W2MaVTIJ9sWx5EtVylXjVt6ZZ/Rd5+k3VOSW3eXpd3zWEZE0cCtwETABPCAiW/zJ0AEwxvxZYPm3A2d1Wq9hWD398Dly900VMKa5CZSlrL13nDPfGKnRT4rgE9Vuu59jPFFZYxorLtCgi0/m3TVbs4ykkzL64Xn6o33M0z8H2GmM+bkxpgjcBVzeZvkrgTs7rXRYi7O8R7NmT99eDGFPAdWql/Ggnr5bGo3RipEM4yPuLnrFwz5RGWPYM5knl06xeiwXfX0BeSfWmIJGv9Z3JxlP33Ugd9B5+scCTwXeT/ifNSEizwE2Al/rtNKqcXt3XCiElVBD3dMM+85m+6im75Z5xuhQXr38hAj2urH7OU6PmLjyjv3bYCB30uEEKsFtWFxq+mG1Pv3O0w87eq0S0a8A7jHGVMK+FJGrRWSbiGyrVCrDm6cf0mXTasphRt8+GWievlvmGaNJNfpJEZwcffehfCxpBxwZ/fT8CXTsBCou5scNbqP22nE//aBaYIzpe57+BHBc4P16YFeLZa+gjbRjjLnNGLPZGLNZJDWknn6KStVQbTD8NsAV1mvf3gjU03dLsEhnjwNjpIQTrIDd6+DmOuLA6I80yjt59/JONqFAbmPvHe9p1V1hYTcjfQA4UUQ2ikgOz7BvaVxIRJ4PHA58r5sNG4azItca7sYCrXaavtXvNE/fLdYTmytV2DddUE8/IYKTlux2IKMlounbSdFd5ukn5Ok3zrOdd9hLH7ow+saYMnANcC/wGPApY8yjInKziFwWWPRK4C5jTFc9CKrGDKXRtxJNYzB3bzt5x79BaEWuW3K+zrrr2TyVqlGjnxDW0Xl6qkCxXI39RGXXF+fJN5tu0PQTDOSmIhaRtaKx1qfguIVIV7c9Y8xWYGvDZzc1vP+LXjc+jA3XrOFuNPq72wRyVdNPBntR/urALABHq9FPBNf72Vkgt0HeyWVSTnsvBWUoF5ObWBqzd1xOig4DrMiFYZV3vIMflHeqVdPW01dNPxlqxmj/DKDVuElhZY7afnZk9OPm6QevNdcdNiE4TrfOazYt8+xHfX7cRd6GAYY1ZbPZ0z8wW6RUMRy+PEupYmhUwGy2j+bpu6VmjGoe6LJBDmdoGVkMnr7jZmsQiD04tmOZVApjoOLbhVqH2MXecA2G09O3Ek3Qy7A5+sevXu5/N9/o25NTPX23WGP0y/2z5DIpDl/u9qJXPHKB/ZwSWDceve8OuAvkFhoCuSsc5ujbbYB759U6f9aGDJe8M4RGrpa9EzD6Vs8/rmb050s81tPX7B23BLXmo1bGKxhSWhPcz+tWjMROSHCRstlUnDVXSlDecWvHrF0sN3r6QyHvDGXDNT97J5CnbwuzWhp9/31Ge+84xV6UWpiVLNZIefs5voTmQt4ZCem947IaF4Lyjls7VvP0E5oASD19x1jDPV/emSOTkprW2djn28o9qum7xZ5fxmjmTpJY42wMHO0gWF6Xd6IbuUZNP9lArmt5Z36tT75s5Z2h8PSHz+hbiSYYyN1zqMARK0ZqgZhGTb+svXcSIegpajVucszbzw5uron03kkikOtgnGFkG2p98rXZyIbA0x8ZQiNXy94JpFztmZzjqMNGyWbC5+7UlM1kcG2MlHCCT+wLxuin58+PXChXncs7Iwl7+tbouy7O0uwdx2Rq/V7q3vzuQ3mOPmxZaJDXe6/FWUkwzxipp58Yrp+osjV5J/r1kA3IO3YeW9fyjh2na6PfWOtTz94ZBnlnCCtyGz1929b3yJWjte8aPf1yrffO8N0EB4l6+v1hoXr6Zb/xYRJtlSHJ4qz5zmGhrJ7+gqax985UocxsscLRh43WLo7mlE3be0c9fZcEjZEWZiVH8Dp2ETCvpWzGzNMHL2nCevou2ypDksVZjZp+lXRKnDmFavQd03iXDk7TV5uwuSGQW+uyqSmbTgk2xFo7Hn0mJ6U9wevYRasLF6mQwbkUkmi2Bsll7zTaEJdTJUKXDdeSYhjbMDTm6QeNvu2+0DJPXz19p9iL8ogVo9rBNEEyKUEEVi3LOpEgXGXvgCelJi3vOPf0G2yIywlUQD1957T09FeO1if1aArkavZOElhjpHp+sogIuXTKSWEWuNP0wTf6czaQ6zh7x68jcJ69k2r09KvDY/SH0dPPpuZLOLYFQzCQ2zh7lk6ikgw1Y6SZO4mTy6Q4amW8nju1dTnqvQOw7ZcHeWz3JOB2ApXgNlw7r7lMc56+y5qmgco7w+jp1x7N/Lv03qk8a8Zy5DKplpq+TqKSHGvHR3juEWODHsbQs258hOeuG3eyrjV+w7Z1K6LHYQ5f7v3tO+78EQDjIxmWOW77ksukWDGSYW3MBnONNHv6FadjH6zRH0IjV+ub4etx+6cLrPGDiJqn338+/Scvdv5YrzRz19XnMjbixpw874hxvnHtBTxnzfLI63jpSev4t7eeV8txP2bVMucN99Ip4d4/+63a9e2KepdNzy4cmCnWbmJO1u9sTT0iMJRdD628Yz39AzNFVo9Zox+u6WuefnLoxCn94QjH+3nD2nhPZ6mUcPZzVjsaTWuOWeU+Fbix1ufATJFjD49+A2xkYFZmGA0+eJWAUDfkB2aKrBnzHv9a5emXKlVEPM9BUZSlTWOe/v6ZImvG3Hn6XRl9EblYRHaIyE4Rub7FMn8gIttF5FER+ZeOGx5S+1abRCVwlz58zJMXWgZyq1X18hVFAebLwCW/uGy1Q6PfUd4RkTRwK3ARMAE8ICJbjDHbA8ucCNwAnG+MOSgiR3Sx3uijXsDUDbuhUjU8O1dite/pZ1sFcium1llPUZSlTd3oGw7OFAGcGv1u3MtzgJ3GmJ8bY4rAXcDlDcu8GbjVGHMQwBjzdKeVDquJS/u54eVqlWdnixhD7dGstaZf1cwdRVGAYHFWlf0DMvrHAk8F3k/4nwU5CThJRO4Tke+LyMVhKxKRq0Vkm4hsq1Yr0Ua8CMimUpQqhgP+ATvcGv2QCVbAy/TRHH1FUWB+rc+gPP0wa2Qa3meAE4ELgCuB20VkVdMfGXObMWazMWbzxnUreh3roiGTFsqV+l3aevqplJBJSWgbBp0qUVEUmF/r02hDXNCNpZkAjgu8Xw/sClnmc8aYkjHmF8AOvJtAS1yWFS80sn5b1wMhd+lsOhXacM1OsKIoytIm2HunUS1wQTdG/wHgRBHZKCI54ApgS8MynwUuBBCRtXhyz8+djXKRkU0LxUq1dsDWzDP6EjpzlnbYVBQF5svA+2eKiOC0OKujpTHGlIFrgHuBx4BPGWMeFZGbReQyf7F7gf0ish34OvBOY8x+Z6NcZGRSKcoBo78qcMBymVSIvGO0w6aiKIAnA6d9GfjgTJFVy7JOa3i6qsg1xmwFtjZ8dlPgtQH+m/9vyeNp+t6j2YrRzLweQ5680zyJimr6iqJYMqm6DXEp7cCAu2wOK9l0ipKvxzUGYFpq+urpK4riY+3E/pmC0yAuqNFPBO8uXZ3Xd8di9f4g5arm6SuKUieTFsrVKgdnSk7TNUGNfiLU79JhRj/V3IahrJ6+oih15tsQt62b1egnQDbtBWEOzBSajH5YIFd77yiKEiSb8rL8Ds4WWT3mtjW4WpoEyKRTgUez+XfpME2/XDHaS19RlBqZdIoDMwUqVaOe/mIgkxKenS1RrFSb7tJhmn5Je+8oihIgkxaenioAbqtxQY1+ImTTKfZOegcs3NNvDOSqpq8oSp1sqm5DNGVzEZBNC/tnwu/SuRCjX6qopq8oSp1MGxsSF7U0CZBJpzC+bB+evROm6euhUBTFI9vGhsRFLU0CBKWaJqMflr1Tqaq8oyhKjXY2JC5q9BMg6LV3V5ylvXcURaljbcjyXNp5R2I1+glgDfhIJsXy3PwD1krTV3lHURSLtSGuvXxQo58ItjXq6rFc01zAuUyqqbVyWXvvKIoSwCZ2uA7ighr9RLATooTdpcMbrmn2jqIodawT6DpdE9ToJ0Im4Ok3kk2n5mn6xhhf09dDoSiKh7UHKu8sEuxdOuzRLOf35TF+Pla56v2f1TYMiqL4WHug8s4iwd6lwx7NbP5txTf2ZV/qUU9fURRLOxsSF7U0CdDuLp3N2PkvPWNfqnpSjwZyFUWxtFML4qJGPwGyNT2uuTue/c7q+ra3vnbZVBTFUo8Luu2wCV0afRG5WER2iMhOEbk+5PurRGSfiDzk//t/nI90EdEuCJPz7+A2V7+m6Wf0/qsoikc2wUBux4nRRSQN3ApcBEwAD4jIFmPM9oZF7zbGXON8hIuQbJvCCnswrdG3/2e1OEtRFJ92NiQu3Viac4CdxpifG2OKwF3A5c5HMkRYqaat0S83BnJV3lEUxWPQFbnHAk8F3k/4nzXy+yLyExG5R0SOC1uRiFwtIttEZNu+ffsiDHdxcNKRK9iwZjnHrBpt+s7KOFbTt//nVN5RFMXn+Uet5NRjVrJytKMY0zPdWJowF9Q0vP93YIMx5gzgK8AnwlZkjLnNGLPZGLN53bp1vY10EfHi563lG++8kOW55gPWqOnPFMoAjIUsqyjK0uSyM4/hC+94SVMbFxd0Y/QngKDnvh7YFVzAGLPfGFPw3/4f4Gw3wxs+GjX92WIFoKkxm6IoShJ0Y/QfAE4UkY0ikgOuALYEFxCRowNvLwMeczfE4aLR6E9bT39EPX1FUZKno6UxxpRF5BrgXiANfNwY86iI3AxsM8ZsAd4hIpcBZeAAcFWCY17U1PL0/UDubFGNvqIo/aMrS2OM2QpsbfjspsDrG4Ab3A5tOMllGjV9T94ZU3lHUZQ+oCkjfaZR3plReUdRlD6iRr/PNBl9P5C7zPGUaIqiKGGo0e8z9d47vqZfKLM8lyalvXcURekDavT7TK5WkVv39MPy+RVFUZJAjX6fyTYFcsuMj6i0oyhKf1Cj32eai7PK6ukritI31Oj3mUZNf6ZQYUw9fUVR+oQa/T6Ta8reUU9fUZT+oUa/z9g+2bVAbqHMuOboK4rSJ9To95l0ShCZ33BNm60pitIv1Oj3GREhm04FNP2yVuMqitI31OgPgFw6RalSxRjDTFEDuYqi9A81+gMgmxZKlSqFcpVK1WggV1GUvqFGfwDkMp6nbydQ0Q6biqL0CzX6AyCbTlEsm1qHzeWq6SuK0ifU6A8Aq+nP+BOoaMqmoij9Qo3+AMhao1/Q+XEVRekvavQHQDYjFMtVnSpRUZS+05XRF5GLRWSHiOwUkevbLPcaETEistndEIcPL0+/Wtf01dNXFKVPdDT6IpIGbgUuAU4BrhSRU0KWWwG8A7jf9SCHjUZ5RzV9RVH6RTee/jnATmPMz40xReAu4PKQ5d4D/BWQdzi+ocQL5JqavKN5+oqi9ItujP6xwFOB9xP+ZzVE5CzgOGPM5x2ObWixxVnTvqevFbmKovSLbox+2OStpvalSAq4BfjzjisSuVpEtonItn379nU/yiHDy9P3ArkiOim6oij9oxujPwEcF3i/HtgVeL8COA34hog8CZwLbAkL5hpjbjPGbDbGbF63bl30US9yspm6pj+WyyCik6IritIfujH6DwAnishGEckBVwBb7JfGmEPGmLXGmA3GmA3A94HLjDHbEhnxEBDU9DVzR1GUftLR6BtjysA1wL3AY8CnjDGPisjNInJZ0gMcRuqavrZVVhSlv3RlcYwxW4GtDZ/d1GLZC+IPa7ixKZuz2lZZUZQ+oxW5A8AGcmcKOj+uoij9RY3+APBaKxtmimVtq6woSl9Roz8ArKY/W6hoW2VFUfqKGv0BkE2nKFcNU4Uy4yrvKIrSR9ToD4Bs2tvth2ZLLNdArqIofUSN/gDI+Ua/WKkypp6+oih9RI3+AMim6xW4mqevKEo/UaM/ALKZ+m7XPH1FUfqJGv0BYDV90LbKiqL0FzX6AyAXMPqap68oSj9Roz8Agp6+avqKovQTNfoDYH4gVz19RVH6hxr9ARAM5KqmryhKP1GLMwCCmr5Oiq4sdkqlEhMTE+TzOj22S0ZHR1m/fj3ZbNbpetXiDID52Tsq7yiLm4mJCVasWMGGDRt0FjhHGGPYv38/ExMTbNy40em6Vd4ZALmMBnKV4SGfz7NmzRo1+A4REdasWZPI05Ma/QFgA7kpgZGMHgJl8aMG3z1J7VO1OAPAavpjIzopuqIsFB566CG2bq1PELhlyxbe//73J7rNb3zjG3z3u99NdBuNqNEfAFbT12ZrirJwaDT6l112Gddff32i21ywRl9ELhaRHSKyU0Sa9oKIvEVEHhaRh0TkOyJyivuhDg82ZVPbKiuKG2ZmZnjlK1/JmWeeyWmnncbdd9/Ngw8+yEtf+lLOPvtsXv7yl7N7924ALrjgAq677jrOOeccTjrpJL797W9TLBa56aabuPvuu9m0aRN33303d9xxB9dccw0AV111FW9961u58MILOeGEE/jmN7/JG9/4Rk4++WSuuuqq2ji+9KUvcd555/HCF76Q1772tUxPTwOwYcMG3vWud/HCF76Q008/nccff5wnn3ySj33sY9xyyy1s2rSJb3/7233ZVx1dTRFJA7cCFwETwAMissUYsz2w2L8YYz7mL38Z8GHg4gTGOxRYTV89fWXYePe/P8r2XZNO13nKMSt516Wntl3mi1/8Iscccwxf+MIXADh06BCXXHIJn/vc51i3bh133303N954Ix//+McBKJfL/OAHP2Dr1q28+93v5itf+Qo333wz27Zt4+///u8BuOOOO+Zt4+DBg3zta19jy5YtXHrppdx3333cfvvtvOhFL+Khhx5i/fr1/OVf/iVf+cpXGBsb4wMf+AAf/vCHuemmmwBYu3YtP/zhD/nIRz7Chz70IW6//Xbe8pa3MD4+zrXXXut0n7WjG6tzDrDTGPNzABG5C7gcqBl9Y0zwKI8BxuUgh426pq+evqK44PTTT+faa6/luuuu41WvehWHH344jzzyCBdddBEAlUqFo48+urb8q1/9agDOPvtsnnzyya62cemllyIinH766Rx55JGcfvrpAJx66qk8+eSTTExMsH37ds4//3wAisUi5513Xug2P/3pT8f+zVHpxugfCzwVeD8B/EbjQiLyNuC/ATngPzkZ3ZCimr4yrHTyyJPipJNO4sEHH2Tr1q3ccMMNXHTRRZx66ql873vfC11+ZGQEgHQ6Tblc7mob9m9SqVTttX1fLpdJp9NcdNFF3Hnnnc62mQTdaPph6SVNnrwx5lZjzHOB64D/GboikatFZJuIbNu3b19vIx0irNHXSdEVxQ27du1i+fLlvO51r+Paa6/l/vvvZ9++fTWjXyqVePTRR9uuY8WKFUxNTUUew7nnnst9993Hzp07AZidneWJJ55IdJtR6MboTwDHBd6vB3a1Wf4u4HfDvjDG3GaM2WyM2bxu3bruRzlkWE1/XOUdRXHCww8/zDnnnMOmTZt473vfy80338w999zDddddx5lnnsmmTZs6ZslceOGFbN++vRbI7ZV169Zxxx13cOWVV3LGGWdw7rnn8vjjj7f9m0svvZTPfOYzfQ3kijHt5XcRyQBPAL8N/Bp4APgvxphHA8ucaIz5qf/6UuBdxpjN7da7efNms23btpjDX7yceONWXn/uBm66VBOdlMXNY489xsknnzzoYQwlYftWRB7sZF/b0VFfMMaUReQa4F4gDXzcGPOoiNwMbDPGbAGuEZGXASXgIPBHUQe0VLjhkpP5jRNWD3oYiqIsMboSlY0xW4GtDZ/dFHj9p47HNfS88TfdNlFSFEXpBq3IVRRFWUKo0VcUJTadYoNK7yS1T9XoK4oSi9HRUfbv36+G3yG2n/7o6KjzdWuiuKIosVi/fj0TExMs5dqbJLAzZ7lGjb6iKLHIZrPOZ3dSkkPlHUVRlCWEGn1FUZQlhBp9RVGUJUTHNgyJbVhkH/DLgWw8WdYCzwx6EAmiv29xM+y/D4b/Nz7fGLMi6h8PLJBrjBnKjmsisi1OX4yFjv6+xc2w/z4Y/t8oIrGalqm8oyiKsoRQo68oirKEUKPvntsGPYCE0d+3uBn23wfD/xtj/b6BBXIVRVGU/qOevqIoyhJCjX5EROQ4Efm6iDwmIo+KyJ/6n68WkS+LyE/9/w8f9FjjICJpEfmRiHzef79RRO73f9/dIpIb9BjjICKrROQeEXncP5bnDdMxFJE/88/PR0TkThEZXczHUEQ+LiJPi8gjgc9Cj5d4/K2I7BSRn4jICwc38u5o8fs+6J+fPxGRz4jIqsB3N/i/b4eIvLybbajRj04Z+HNjzMnAucDbROQU4Hrgq8aYE4Gv+u8XM38KPBZ4/wHgFv/3HQTeNJBRueNvgC8aY14AnIn3W4fiGIrIscA7gM3GmNPwZr67gsV9DO8ALm74rNXxugQ40f93NfDRPo0xDnfQ/Pu+DJxmjDkDb+raGwB8e3MFcKr/Nx8RkY4Tb6vRj4gxZrcx5of+6yk8Y3EscDnwCX+xT9BikvjFgIisB14J3O6/F+A/Aff4iyz237cS+C3gHwCMMUVjzLMM0THEq8VZ5s91vRzYzSI+hsaYbwEHGj5udbwuBz5pPL4PrBKRo/sz0miE/T5jzJeMMWX/7fcB23rzcuAuY0zBGPMLYCdwTqdtqNF3gIhsAM4C7geONMbsBu/GABwxuJHF5n8D/x2o+u/XAM8GTsAJvBvdYuUEYB/wf30J63YRGWNIjqEx5tfAh4Bf4Rn7Q8CDDNcxhNbH61jgqcByw/Bb3wj8h/860u9Tox8TERkH/g34r8aYyUGPxxUi8irgaWPMg8GPQxZdzOlfGeCFwEeNMWcBMyxSKScMX9u+HNgIHAOM4UkejSzmY9iOoTpfReRGPFn5n+1HIYt1/H1q9GMgIlk8g//PxphP+x/vtY+Q/v9PD2p8MTkfuExEngTuwpME/jfeI7Jt37Ee2DWY4TlhApgwxtzvv78H7yYwLMfwZcAvjDH7jDEl4NPAixmuYwitj9cEcFxguUX7W0Xkj4BXAX9o6nn2kX6fGv2I+Pr2PwCPGWM+HPhqC/BH/us/Aj7X77G5wBhzgzFmvTFmA16w6GvGmD8Evg68xl9s0f4+AGPMHuApEXm+/9FvA9sZkmOIJ+ucKyLL/fPV/r6hOYY+rY7XFuANfhbPucAhKwMtJkTkYuA64DJjzGzgqy3AFSIyIiIb8QLWP+i4QmOM/ovwD/hNvEepnwAP+f9egad7fxX4qf//6kGP1cFvvQD4vP/6BP/E2gn8KzAy6PHF/G2bgG3+cfwscPgwHUPg3cDjwCPAPwIji/kYAnfixSdKeJ7um1odLzz541bgZ8DDeFlMA/8NEX7fTjzt3tqZjwWWv9H/fTuAS7rZhlbkKoqiLCFU3lEURVlCqNFXFEVZQqjRVxRFWUKo0VcURVlCqNFXFEVZQqjRVxY1fpfMP/FfHyMi93T6mxjb2iQir0hq/YrSD9ToK4udVcCfABhjdhljXtNh+ThswqvFUJRFi+bpK4saEbkLr7/MDrzinJONMaeJyFV43RbTwGnAXwM54PVAAXiFMeaAiDwXr4BnHTALvNkY87iIvBZ4F1DBa1T2MrwimWXAr4H3AZ8H/g44Ha+Pz18YYz7nb/v38AqhNgL/Yox5d8K7QlG6ItN5EUVZ0FyP12t8k9/t9POB707D6346imewrzPGnCUitwBvwOsldBvwFmPMT0XkN4CP4PUZugl4uTHm1yKyyhhTFJGb8Ko6rwEQkf8Prz3FG/2JLX4gIl/xt32Ov/1Z4AER+YIxZluSO0JRukGNvjLMfN14cx1Micgh4N/9zx8GzvA7pL4Y+FevNQ3geecA9wF3iMin8BqVhfE7eE3prvXfjwLH+6+/bIzZDyAin8Zr26FGXxk4avSVYaYQeF0NvK/infspvN7ymxr/0BjzFt/zfyXwkIg0LYPX2+X3jTE75n3o/V2jbqo6qrIg0ECustiZAlZE+UPjzX/wC1+/t3Oqnum/fq4x5n5jzE3AM3gtbBu3dS/wdr+DJSJyVuC7i/y5W5fhxRbuizJGRXGNGn1lUeNLKPf5E0l/MMIq/hB4k4j8GHgULygM8EERedhf77eAH+O1JD5FRB4Skf8MvAfIAj/xl3tPYL3fwetq+RDwb6rnKwsFzd5RFMf42Tu1gK+iLCTU01cURVlCqKevKIqyhFBPX1EUZQmhRl9RFGUJoUZfURRlCaFGX1EUZbII7KoAAAAWSURBVAmhRl9RFGUJoUZfURRlCfH/A3wNIY+PkaI/AAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot('timestep','sentiment')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "" }, "metadata": {}, "execution_count": 24 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW99/HPL3NC5glCAiTMMxEiQ20dUZyqtQ5YtaLXR257W6v12jo9KrXt7WSHq7Vaq1btY7UOtcWR4lxHBEQGAQlzmMkMmZP1/LF2IGAgRxLIwPf9ep3XOWfttfdZa+999m+vPaxtzjlERERCEdbZBRARke5DQUNEREKmoCEiIiFT0BARkZApaIiISMgUNEREJGQKGiIiErKQgoaZrTOzJWa2yMzmB2mpZjbXzFYF7ylBupnZ3WZWaGaLzWx8i+nMCPKvMrMZLdInBNMvDMa1jq6oiIi03xdpaZzknMt3zhUE328CXnPODQFeC74DnAEMCV4zgfvABxngDmASMBG4oznQBHlmthjv9EOukYiIHDYR7Rj3XODE4POjwJvAjUH6Y87fav6BmSWbWVaQd65zrgTAzOYCp5vZm0Cic+79IP0x4GvAywf78fT0dJebm9uO4ouIHF0WLFiw0zmX0Z5phBo0HPAvM3PAH51zDwC9nXNbAJxzW8wsM8ibDWxsMW5RkHaw9KJW0g8qNzeX+fPnh1h8ERExs/XtnUaoQeM459zmIDDMNbMVBytXK2nuENI/P2GzmfjDWPTv3//gJRYRkQ4X0jkN59zm4H078Bz+nMS24LATwfv2IHsR0K/F6DnA5jbSc1pJb60cDzjnCpxzBRkZ7WphiYjIIWgzaJhZLzNLaP4MnAYsBWYDzVdAzQD+GXyeDVweXEU1GSgPDmPNAU4zs5TgBPhpwJxgWKWZTQ6umrq8xbRERKQLCeXwVG/gueAq2Ajgr865V8zsI+ApM7sK2ABcGOR/CTgTKASqgCsBnHMlZvZj4KMg353NJ8WBbwOPALH4E+AHPQkuIh2nvr6eoqIiampqOrso0kFiYmLIyckhMjKyw6dt3fV5GgUFBU4nwkXab+3atSQkJJCWloZuker+nHMUFxdTWVlJXl7ePsPMbEGL2yYOie4IFznK1dTUKGD0IGZGWlraYWs5KmiIiAJGD3M4l2e3DRoNTd3zsJqISHfWbYPG1nKdtBPpKe6++25GjBjBpZde2q7prFu3jtGjR3dQqaQ17elGpFOVVtXx/upipgxK6+yiiEg7/eEPf+Dll1/+3Ilb6Xq6bUsjKjyMW/+xhNqGxs4uioi0w7e+9S3WrFnDOeecQ1JSEnfdddeeYaNHj2bdunWsW7eOESNGcPXVVzNq1ChOO+00qqurAViwYAHjxo1jypQp3HvvvXvGXbZsGRMnTiQ/P5+xY8eyatWqI163nqjbtjT6JseyZsdu7n9zDddOHdLZxRHpEX70/DI+3VzRodMc2TeRO7466oDD77//fl555RXeeOMNfv/73x8w36pVq3jiiSf405/+xEUXXcSzzz7LZZddxpVXXsk999zDCSecwA9+8IN9pnvttddy6aWXUldXR2OjdjA7QrdtaSTERPDVcX25941CCrdXdnZxROQwy8vLIz8/H4AJEyawbt06ysvLKSsr44QTTgDgm9/85p78U6ZM4X/+53/4xS9+wfr164mNje2Ucvc03balAXD72SN5Z9UOrn/qE5799peIDO+2MVCkSzhYi+BIiIiIoKmpac/3lvcaREdH7/kcHh5OdXU1zrkDXl56ySWXMGnSJF588UWmTZvGgw8+yMknn3z4Cn+U6NZb2YyEaH563hgWF5XzhzdWd3ZxRKSdcnNzWbhwIQALFy5k7dq1B82fnJxMUlIS77zzDgCPP/74nmFr1qxh4MCBfO973+Occ85h8eLFh6/gR5FuHTQAzhyTxbn5fbnn9VUs3VTe2cURkXY4//zzKSkpIT8/n/vuu4+hQ4e2Oc6f//xnvvOd7zBlypR9DkH97W9/Y/To0eTn57NixQouv/zyw1n0o0aP6HuqrKqO0377NtV1jaTFRxERHka4Gc2t1pyUWPL7JZPfL4UBaXFkJkYTHRHeiaUX6TqWL1/OiBEjOrsY0sFaW64d0fdUtz6n0Sw5Loo/XV7AY++vp66xicamJhqDO8abHKzZsYtXl2/fZ5yMhGhOGpbBGWOyOG5QOlER3b7RJSJy2PWIoAEwrl8yv+6XfMDh5VX1LNlUzuayarZW1FC4fRcvL9nKU/OLSIiOYNLAVCYPTGN0dhKJMZEkxEQQFmbUNTRR39hEU9Aii40Mp39qnPrqEZGjUo8JGm1Jiovky0PS90mrbWjk35/t5LUV2/lgTfHnWiMHctnk/tzx1VG6WktEjjpHTdBoTXREOFNH9mbqyN4AbC6rZu3O3VTW1FNR04BzjqiIMCKDcyQAH60r5eF317J2527uvWQ8yXFRnVkFEZEj6qgOGvvrmxxL3+SD3wB0xpgsRvZN5Ja/L2Ha795mfP8UctN70Tc5ll5R4cRFRWAG9Y3+sFavqAjSE6LJTIgmOzlWh7VEpFtT0DgEF0zIIS89jvveXM3KrZXM/XRbSF21J8dFkt8vmYIBKZw0PJORWYkKIiLSrShoHKIJA1J5cEYqAA2NTZTsrqOqrpHddQ04B9ERYUSEh7GrpoGdu2rZUl7D4qIyFm4o5def7eCuf31GdnIsk/JSiYoIwwycg7rGJuobHalxkeSm9yI3rRd9kmLonRhDSlykgoyIdCoFjQ4QER5GZmJMm/kumdQfgJ27anlt+Tb+tWwbH6wppsmx5+qsqIgwIsKMnbvq2FXbsM/4YQbhYT5oxEVFcEz/ZI7NTeXk4ZmMyErs4FqJdF+zZs0iPj6eG264gdtvv53jjz+eqVOn7pPnzTff5K677uKFF1444HQWLVrE5s2bOfPMMw+pHN/4xjdYtmwZV155Jd///vcPaRrNHnnkEebPn3/QTh2PBAWNTpAeH830Y/sz/dj+B8zjnKN4dx3ri3eztbyW7ZU1FO+q2xNcSqvqmL+ulDdXruRXc1Zy1tgs/vvUoQzMiD9S1RDpFu68885DHnfRokXMnz//kILG1q1bee+991i/fv0h/35XpKDRRZkZ6fHRpMdHHzRf8a5aHn1/PQ/+ew2vLN3K1BGZnDA0k68MSadPUgwRYaZDWhK6l2+CrUs6dpp9xsAZPz9olscee4y77roLM2Ps2LFcdNFF/OQnP6Guro60tDQef/xxevfuzaxZs9iwYQNr1qxhw4YNXHfddXzve98D4Kc//SmPPfYY/fr1IyMjgwkTJgBwxRVXcPbZZ3PBBRfwyiuvcN1115Gens748eP3/P68efO47rrrqK6uJjY2lj//+c/k5eVx++23U11dzTvvvMPNN9/M2WefzTXXXMOSJUtoaGhg1qxZnHvuua3W6bTTTmP79u3k5+dzzz33cNttt3HXXXdRUFDAzp07KSgoYN26dTzyyCPMnj2bqqoqVq9ezXnnnccvf/lLwHeR8rOf/YysrCyGDh26p9PGp59+mh/96EeEh4eTlJTE22+/3e7FFCoFjW4uLT6a608dyuVTBnDfm6t5eckW5izbtk+e4IgWTc4/vGpgRi+G9E6gb1IMTc7R2ATpCVHk5yQzJieJhJjITqiJHK2WLVvGT3/6U959913S09MpKSnBzPjggw8wMx588EF++ctf8utf/xqAFStW8MYbb1BZWcmwYcP49re/zeLFi3nyySf5+OOPaWhoYPz48XuCRrOamhquvvpqXn/9dQYPHsz06dP3DBs+fDhvv/02ERERvPrqq9xyyy08++yz3HnnnfscErrllls4+eSTefjhhykrK2PixIlMnTqVXr16fa5es2fP5uyzz2bRokVtzoNFixbx8ccfEx0dzbBhw7jmmmuIiIjgjjvuYMGCBSQlJXHSSSdxzDHHAL71NGfOHLKzsykrKzvkeX8oFDR6iPT4aG47eyT/96wRrN6xi/dWF1NeVU9Dk6OxyWEGBlTXN7J6x24+3lDKnMpaIsKMMLM950/MfF9deenxDEiNIyoiDOd8emJMJEmxEcRFR9DcdslIiObY3FR6RWtV6hHaaBEcDq+//joXXHAB6en+5tvU1FSWLFnC9OnT2bJlC3V1dfs8Bvass84iOjqa6OhoMjMz2bZtG//+978577zziIuLA+Ccc8753O+sWLGCvLw8hgzxD2277LLLeOCBBwAoLy9nxowZrFq1CjOjvr6+1bL+61//Yvbs2XueLlhTU8OGDRva3XfXKaecQlJSEgAjR45k/fr17Ny5kxNPPJGMjAwApk+fzmeffQbAcccdxxVXXMFFF13E17/+9Xb99helf3oPY2YMzkxgcGbCFxqvrKqOT4rK+WRjGYXbd7F2524+2VhGQ2MTYWY0OkdVXetPPosIM/L7JdM7KYamJkeYGWePzeL00X10aEza1NozMa655hquv/56zjnnHN58801mzZq1Z9j+z9VoaGje4Wl7XTtQnttuu42TTjqJ5557jnXr1nHiiScesKzPPvssw4YNa/O39tfyWSEtnxMCX7xO999/Px9++CEvvvgi+fn5LFq0iLS0tC9cpkOhoCGA7/TxhKEZnDA044B5GhqbqKhpYHeLq7rWF1fx3uqdvL+mmOVbKggPWi0vLtnCxLxUbj1zBGNzkhQ85IBOOeUUzjvvPL7//e+TlpZGSUkJ5eXlZGdnA/Doo4+2OY3jjz+eK664gptuuomGhgaef/55/vM//3OfPMOHD2ft2rWsXr2aQYMG8cQTT+wZ1vL3HnnkkT3pCQkJVFbufTLotGnTuOeee7jnnnswMz7++OM9h4zakpuby4IFC5g4cSLPPPNMm/knTZrEtddeS3FxMYmJiTz99NOMGzcOgNWrVzNp0iQmTZrE888/z8aNGxU0pOuJCA8jtVcUqb32dp3SLzXuc316NTY5/vbRRn79r5Wce++7xEX5Th6zk2NJjI0kPjqCmMjW++1Kj4+mf2ocuem9GN4nQcHmKDBq1ChuvfVWTjjhBMLDwznmmGOYNWsWF154IdnZ2UyePLnNhzGNHz+e6dOnk5+fz4ABA/jKV77yuTwxMTE88MADnHXWWaSnp/PlL3+ZpUuXAvDDH/6QGTNm8Jvf/Gafp/uddNJJ/PznPyc/P5+bb76Z2267jeuuu46xY8finCM3N/egl+y2dMMNN3DRRRfxl7/8JaQnCGZlZTFr1iymTJlCVlYW48eP3/Oc8x/84AesWrUK5xynnHLKnmByJPSI52lI11RRU8/sRZtZs2M3G0p2s6mshl219eyqaaCmvon940GTc9TU733UZ8GAFG4+czgTBqQe4ZIfXfQ8jZ5Jz9OQbicxJpLLJg/4QuNU1NSzsaSKBetLuef1Qs6/732mjerN/z1rJP1S4w5TSUUkVAoa0qUkxkQyqm8So/omccGEHB7691rue2s1U3/zFt85aTAzjx9ITKSeuihdx5w5c7jxxhv3ScvLy+O5557rpBIdXjo8JV3elvJqfvLicl5cvIWE6AiyU2LpnRjDsD4JfHlwOhPzUhVI2mH58uUMHz5c5496EOccK1as0OEpOTplJcVy7yXjuWTiTl5euoWt5bVsKa/m/XeLeeDtNURFhJHWK4owMyLDjczEGHJSYumXEsfgzHiG9k4gJyV2zzmUmIhwwsK0gWwWExNDcXExaWlpChw9gHOO4uJiYmLa7g/vUKilId1WVV0D89aW8P7qYkqr6mhs8r0EbyuvYWNpFVsramht9c5IiOYbE/tzycT+9Ek6PH+s7qS+vp6ioqLP3Tsg3VdMTAw5OTlERu7bu0NHtDRCDhpmFg7MBzY55842szzgSSAVWAh80zlXZ2bRwGPABKAYmO6cWxdM42bgKqAR+J5zbk6Qfjrwv0A48KBzrs3bUhU0pC019Y2s2bGbVdsr2VK+d4M4b20Jb6zcTpgZgzPiSY6LJC0+iuOHZPDVcX11d7v0WEc6aFwPFACJQdB4Cvi7c+5JM7sf+MQ5d5+Z/Rcw1jn3LTO7GDjPOTfdzEYCTwATgb7Aq8DQYPKfAacCRcBHwDecc58erDwKGtIeG4qrePKjDRRu30VZVT2by6spKq0mPjqCr47ry1eGpDNhQAq9Q+jyXqS7OGLnNMwsBzgL+ClwvfkDnycDlwRZHgVmAfcB5wafAZ4Bfh/kPxd40jlXC6w1s0J8AAEodM6tCX7rySDvQYOGSHv0T4vjh6cP3/PdOcfCDaX89cONPPdxEU/M2wBAZkI0fZJiyIiPZkjvBC6YkMPgTHU/L0evUNvhvwN+CDR3aJQGlDnnmvuTKAKyg8/ZwEYA51yDmZUH+bOBD1pMs+U4G/dLn9RaIcxsJjAToH//Az+LQuSLMjMmDEhlwoBUfvb1MXy6pYKF60v5dEsFOypr2Vxew1uf7eD+t1ZTMCCFk0dkMjA9nrz0XuSmxxEdoau35OjQZtAws7OB7c65BWZ2YnNyK1ldG8MOlN5afxKtHjNzzj0APAD+8NRBii1yyKIiwsjvl0x+v+R90ndU1vLcx0U8Nb+IX76yck96eJgxIC2O4X0SOGdcX6aO6E1EeOvdpIh0d6G0NI4DzjGzM4EYIBHf8kg2s4igtZEDbA7yFwH9gCIziwCSgJIW6c1ajnOgdJEuIyMhmpnHD2Lm8YOorKln3c4q1uzcReH2XXy2rZKF68t4aclW+ibF8PXxOSTG+r9XQkwkx+amMCgjXpe0SrfXZtBwzt0M3AwQtDRucM5damZPAxfgr6CaAfwzGGV28P39YPjrzjlnZrOBv5rZb/AnwocA8/AtkCHB1VibgIvZe65EpEtKiIlkTE4SY3KS9qQ1NjleXb6NR99bx+/fKPzcOKm9ohiXk8TQ3gkM6Z3AsN4JDOkdrxsTpVtpz7WFNwJPmtlPgI+Bh4L0h4C/BCe6S/BBAOfcsuCKq0+BBuA7zrlGADP7LjAHf8ntw865Ze0ol0inCA8zpo3qw7RRfaipb6SxyR9B3V5Zy0drS/hgbTGfbq7g3cJi6hp9x4xhBoMy4rn9qyP5ypADd0sv0lXo5j6RI6yhsYl1xVV8tq2SFVsreXHxZopKq3nkyolMGXRknokgR6eOuORWZ+tEjrCI8DAGZ8Zz5pgsrj91KE/95xT6p8Zx1aMfsWB9SWcXT+Sg1NIQ6QK2V9Rw0R/fZ3N5DenBQ65io8IZ2TeJMdmJjMlOZkxOEvG6W13aQR0WivQQmYkx/PXqyfzxrdV7nsVeXl3PwvWlPP+Jv5jQgvMf6fFRNDY5nIMzxmRx+ZQBROoSXzlC1NIQ6eKKd9WyZFM5n2wsZ8mmMipqGogMNyprGlhcVM7gzHhuOXM4QzITiIoIIzzM9nTU6Frc8pQcG0VUhILL0eyI9j3V1ShoyNHOOcdry7fz4xc/ZX1xVZv5oyLCGJeTxPgBKXz9mByG9UlocxzpWRQ0FDREqG1o5PXl26msbaCh0dHQ1OS7XwhuJDR8Fwvrd+5mwYZSlm4qp6HJcd4x2Vx/6lByUvQY3aOFzmmICNER4ZwxJivk/GVVdfzhzdU88t46/vHxJmIiw/fcUxIVHkZ0ZBgpcVFMGJDCsbmpDEiLo7HJ0egcTU3+kFeYGUMy48lUL8BHHbU0RI5Sm8uqeXLeBqrrGwkLWiV1jU3UNTSxpbyG+etKqKhpOOg0clJiye+XTN/kWNLjoxjWJ5EThuomxa5KLQ0ROWR9k2O5/rRhBxze1ORYua2S7ZW1RIQZYWaEhxlmUN/YxKebK1i4oZRPisqY++k2ahv8Xe7fOmEQN54+TP1s9VAKGiLSqrAwY0RWIiMOcOTrS4PS93x2zlFZ28AvXl7B/W+tZueuWn7+9THq7bcHUtAQkXYzMxJjIvnJ10aTkRDN715dxcINpQxM70VGQjRnjslS31o9hHYDRKTDmBnXTR3Kry8cR05KHJvKanhpyVYuf3gef3xrNd31HKrspZaGiHS48yfkcP6EHACq6xq54elP+NnLK/hs2y4umeSfuhkRZgzrk6Cu4bsZBQ0ROaxio8L5/SXHMPS1BH776mc8u7Boz7DIcGN0dhLjcpJJ6xVFYmwkuem9+PLgdMLDdCK9K1LQEJHDzsy4duoQThvVm+2VtYBvgSzaWMZH60p4av7GPX1uAfRPjeObkwdw4rAMEmMjiY+OIC4qXFdkdQG6T0NEuoS6hiYqaur5cE0Jj763jnnr9u0mPjEmgryMeAakxhEd9KEVHmakxUeRmRBDVlIMgzPj6Z8ap6u2DkD3aYhIjxEVEUZ6fDRnjc3irLFZrNhawcqtleyqbaCypoFNpdWs3bmbjzeW0tjod3brmxwlu+v23NEO/q72YX0SmJiXyqS8VKYMSiMhJrKzqtXjKGiISJc0vE8iw/sktpmvsclRWlVHUWk1hdt3sWpbJYs2lvGXD9bz0DtriYoI46RhGZw1ti9TR2QSF6XNXnto7olItxYeZqTHR5MeH01+v+Q96TX1/pzJK0u38tKSLcxZto3YyHBOHdmbM0b3ITHWtz4SYyIZnZ2o8yUh0jkNEenxGpscH60rYfYnm3lpyRbKqur3Gd4vNZbz8rM5fXQWQ3vH99hzIuoaXUFDRL6guoYmlm4upyE4L7KxpIp/LNrEO4U7cc6fWxnRJ4GMhGic8z3M902OZWjvBEZkJZLfL7nbXg6soKGgISIdZGt5DR+uLWbppnKWba6gvNq3RpocFJVUUVnre/ztmxTDhQX9OCe/755ntifGRBIb1fVvUlTQUNAQkSPAOcfm8hoWri/lqfkb97RKmvWKCmfGl3K5+isDSekV1XkFbYOChoKGiHSCjSVVvFu4k+Yrfd9fU8wLizcTFxnOtFF9yEvvRf+0OOKiInDOP6ndb2odMZHhHDc4nchOOG+ioKGgISJdxGfbKvn964V8uLaYbRW1B83bNymGmccPZPqx/Y/oYS0FDQUNEemCqusaKSqtoqa+qflR7YSZf4BVUWk1f3xrNfPXlxIfHUFBbgoT81IZ0SeRpLhIkmIjyUyIPiw3JOqOcBGRLig2KpwhvRNaHTYiK5FTR/Zm3toS/rFoE/PWlvDmypWfy5cUG0l2ciy9E6PJTIghMzGazIRoMhKi6Z/aixFZCZ1yb4mChohIJ5iYl8rEvFQAinfVsr6kivLqesqr6tlWUUNRaTVFpVVsq6hlyaYKinfX7nPyfXifBC6Z1J+vHZNN4hHsJkWHp0REuoGGxiZKqurYUVnLoo1lPDFvA0s3VRATGcZXx/blG5P6c0y/ZMwM5xxNjj0PvWq+WVGHp0REjhIR4WH+MFVCDKP6JnHppAEsLirjiXkbmb1oE08vKGp1PDOYnJfGV8f17ZhydMhURETkiBubk8zYnGRuPWsELy3eQlFpFZhh+BPvYQa76hqY++k2bnluSYf8pg5PiYj0cM45lm+pZFR2UrsPT7V5d4mZxZjZPDP7xMyWmdmPgvQ8M/vQzFaZ2d/MLCpIjw6+FwbDc1tM6+YgfaWZTWuRfnqQVmhmN7WnQiIisi8zY2TftruZD0UotyTWAic758YB+cDpZjYZ+AXwW+fcEKAUuCrIfxVQ6pwbDPw2yIeZjQQuBkYBpwN/MLNwMwsH7gXOAEYC3wjyiohIF9Nm0HDeruBrZPBywMnAM0H6o8DXgs/nBt8Jhp9i/mLic4EnnXO1zrm1QCEwMXgVOufWOOfqgCeDvCIi0sWE1PlJ0CJYBGwH5gKrgTLnXEOQpQjIDj5nAxsBguHlQFrL9P3GOVB6a+WYaWbzzWz+jh07Qim6iIh0oJCChnOu0TmXD+TgWwYjWssWvLd2i6I7hPTWyvGAc67AOVeQkZHRdsFFRKRDfaFuFp1zZcCbwGQg2cyaL9nNATYHn4uAfgDB8CSgpGX6fuMcKF1ERLqYUK6eyjCz5OBzLDAVWA68AVwQZJsB/DP4PDv4TjD8deev650NXBxcXZUHDAHmAR8BQ4KrsaLwJ8tnd0TlRESkY4Vyc18W8GhwlVMY8JRz7gUz+xR40sx+AnwMPBTkfwj4i5kV4lsYFwM455aZ2VPAp0AD8B3nXCOAmX0XmAOEAw8755Z1WA1FRKTD6OY+EZGjREf0PXXkHx0lIiLdloKGiIiETEFDRERCpqAhIiIhU9AQEZGQKWiIiEjIFDRERCRkChoiIhIyBQ0REQmZgoaIiIRMQUNEREKmoCEiIiFT0BARkZApaIiISMgUNEREJGQKGiIiEjIFDRERCZmChoiIhExBQ0REQqagISIiIVPQEBGRkCloiIhIyBQ0REQkZAoaIiISMgUNEREJmYKGiIiETEFDRERCpqAhIiIhU9AQEZGQKWiIiEjIFDRERCRkChoiIhKyNoOGmfUzszfMbLmZLTOza4P0VDOba2argveUIN3M7G4zKzSzxWY2vsW0ZgT5V5nZjBbpE8xsSTDO3WZmh6OyIiLSPqG0NBqA/3bOjQAmA98xs5HATcBrzrkhwGvBd4AzgCHBayZwH/ggA9wBTAImAnc0B5ogz8wW453e/qqJiEhHazNoOOe2OOcWBp8rgeVANnAu8GiQ7VHga8Hnc4HHnPcBkGxmWcA0YK5zrsQ5VwrMBU4PhiU65953zjngsRbTEhGRLuQLndMws1zgGOBDoLdzbgv4wAJkBtmygY0tRisK0g6WXtRKuoiIdDEhBw0ziweeBa5zzlUcLGsrae4Q0lsrw0wzm29m83fs2NFWkUVEpIOFFDTMLBIfMB53zv09SN4WHFoieN8epBcB/VqMngNsbiM9p5X0z3HOPeCcK3DOFWRkZIRSdBER6UChXD1lwEPAcufcb1oMmg00XwE1A/hni/TLg6uoJgPlweGrOcBpZpYSnAA/DZgTDKs0s8nBb13eYloiItKFRISQ5zjgm8ASM1sUpN0C/Bx4ysyuAjYAFwbDXgLOBAqBKuBKAOdciZn9GPgoyHenc64k+Pxt4BEgFng5eImISBdj/oKl7qegoMDNnz+/s4shItJtmNkC51xBe6ahO8JFRCRkChoiIhIyBQ0REQmZgoaIiIRMQUNEREKmoCEiIiFT0BARkZApaIiISMgUNEREJGQKGiI9ZOSNAAATWUlEQVQiEjIFDRERCZmChoiIhExBQ0REQqagISIiIVPQEBGRkCloiIhIyBQ0REQkZAoaIiISMgUNEREJmYKGiIiETEFDRERCpqAhIiIhU9AQEZGQKWiIiEjIFDRERCRkChoiIhIyBQ0REQmZgoaIiIRMQUNEREKmoCEiIiFT0BARkZApaIiISMjaDBpm9rCZbTezpS3SUs1srpmtCt5TgnQzs7vNrNDMFpvZ+BbjzAjyrzKzGS3SJ5jZkmCcu83MOrqSIiLSMUJpaTwCnL5f2k3Aa865IcBrwXeAM4AhwWsmcB/4IAPcAUwCJgJ3NAeaIM/MFuPt/1siItJFtBk0nHNvAyX7JZ8LPBp8fhT4Wov0x5z3AZBsZlnANGCuc67EOVcKzAVOD4YlOufed8454LEW0xIRkS7mUM9p9HbObQEI3jOD9GxgY4t8RUHawdKLWkkXEZEuqKNPhLd2PsIdQnrrEzebaWbzzWz+jh07DrGIIiJyqA41aGwLDi0RvG8P0ouAfi3y5QCb20jPaSW9Vc65B5xzBc65goyMjEMsuoiIHKpDDRqzgeYroGYA/2yRfnlwFdVkoDw4fDUHOM3MUoIT4KcBc4JhlWY2Obhq6vIW0xIRkS4moq0MZvYEcCKQbmZF+Kugfg48ZWZXARuAC4PsLwFnAoVAFXAlgHOuxMx+DHwU5LvTOdd8cv3b+Cu0YoGXg5eIiHRB5i9a6n4KCgrc/PnzO7sYIiLdhpktcM4VtGcauiNcRERCpqAhIiIhU9AQEZGQKWiIiEjIFDRERCRkChoiIhIyBQ0REQmZgoaIiIRMQUNEREKmoCEiIiFT0BARkZApaIiISMgUNEREJGQKGiIiEjIFDRERCZmChoiIhExBQ0REQqagISIiIVPQEBGRkCloiIhIyBQ0REQkZAoaIiISsu4bNJoaOrsEIiJHne4bNCo2d3YJRESOOt03aFQVw7p3OrsUIiJHle4bNMKj4IXvQ0NtZ5dEROSo0X2DRnI/2PkZvHt3Z5dEROSo0X2DRnQijDoP3v4VVGzp7NKIiBwVum/QADjpVmishWV/7+ySiIgcFbp30EgfAn3GwpJnOrskIiJHhe4dNADGXACbF0Lx6s4uiYhIj9f9g8bo8/37Uh2iEhE53LpM0DCz081spZkVmtlNIY+YlAP9vwRLngbnDk/hyjbC+vfgs3/Bylegoe7w/I4cfco2wDP/4dev7qyqBN78OTx79edb/TXlUF/TOeU63BobYPFT8NYvYcfKzi7NERHR2QUAMLNw4F7gVKAI+MjMZjvnPg1pAmPOhxf/G7YthT5jQvvRhjqIiGo737w/wcs3gmvcm9ZnDJz3APQeGdpvdTTnoGIT7NoOu3dAZCzkHOvfO9tnc+CD+6D/FDjue1+8TPXVsOwf/uKGXduhtsLfk3P8D3yr0uzwlPtQNNbDmrcAB4nZ/jLw6ITQxy9aAE9M98tw5Stw2TMw4Euhjds8n/qMgT6j96ZXlcD6d6EpWF8rt8CGD2Djh/5771H+NfoCyBobellb09QEWxb5HbYFj0L9boiMgxUvwKl3wqCT4d3/hU+egNgUmPojGDsdwo7QvmpNBax5A8KjIXsCxGd88Wk0NcHaN8HCIG0wJPT162TFZj+f37vbB36AN34KfcfDkNMgdSCk5PoLdSo2++XQ3PVRRCwMngqZww+9bk1NUFMGu3f6dS4x69Cn9QWZO1x751+kEGZTgFnOuWnB95sBnHM/O9A4BQUFbv78+f7L7p1w11D40jVw8m1+Zu78DIrmw6YFPk9CH4hNhZ0roegjv6ATsyFzpN/49xnrX6kDITzC70HMuRnmPQBDpsHkb/uFU7YeXvoh1FbC8TdA7lf8yhSXBvVVULd778rhmvyGr2w9lG+Eym2wezs01MCA4/zKlTYIqsugvMhPs1l4lN/gRsZCrwyIjvc3Mi59Ft6/1wfIlsKjIGci5H3Fb3hyjvUbjtK1ftrNZQqP8hcQJOf6DXDJGj+faisgJtn/uZNyIDUPIqKDeji/kWquX9VO2Fno53FTAyT39/N3/p+hcC70yvT1TOoPp9wO2eMhLhWik/bdYNTX+OVQuhZK18GOFf4wY02ZXw5pg/083/kZbF3i5/Xk/4JdW325I3tB3vGQU+DrtXuHr2vdbv9ndfh6pORC3S745En46CE/n0d81V+yXVMGn8725W5q8JdyxyT5OqXk+u87VsD2T6GxDvpNhv6ToWQ1LPqr/829azIMORUm/ScMPNkv9/Xv+jrGpvh1JCLG/07lFnjtTojvDefeCy9e7zculz3r18utS/z4zdPtlQ59j/HzZfnzMOdWKN/gh4272P/msud8/ep27btuJPWH/pMgLMKvNztW+rqMuQhOvtVvxEpW+xZ1bYWfP+FR0G8iZOXvu3NVXuRbRev+7Vveu7aChcOYC+G4ayE2Gf75XVj9WrC+RfvybVvq/4vZBZA1zs/3+mpIHxqsH2nw2Su+btWlftmM+wZkjvD/7907/O9Ex0NUPISF++k3NfiWTHUZVJf4vFXFPkiueQua6vedD8NO92XNnuDrsOgJ2LrY/w8zR0Lv0b58yf1h7dsw93YfGPcs4jD/v26WXeC3A33Hw9JnfIDcuhS/8rUhcxQMP9MH/owRfhnXVvrl55xfBma+fBvnweZFvm7VpX7+7el/z3wQmnCFL3vdLh8wty+DTQv9/6fPGBg8FRt+5gLnXEHbhTuwrhI0LgBOd879n+D7N4FJzrnvHmicfYIGwP87Hwpf43MLK3mAn/m7tvk/RGIO5EyA9GH+T7ntU79RaLlyRSf5P8ruHTDlu36vqXklBdi1A56/Fla++MUqGhnnA4CZ30g2p9VXtT1udKIfr6bcr9zjZ0DKAD+9qhJY97b/k2xd4ueBhe/bOmqtLOFRfuVrjYX5edVY5/+Mja0ckrNwP1+ah0Unwgk3wsSZ/k/7yk37BTeDmEQ/f5vq/Yazpah4v9EtuApyv7y3VdHUCAse8RvZ5vJGxPjfdU1+o4fzwbg1ETG+PvVVfmORkAWr5vrAAj5IDJnm32sr/Z+ybINfRg3Vfh3qPcpPY8P7/o9r4TDsDDjmMh8Qyot8YFn4Fx8wo+I/v/HeX85EuPivfg+4cis8chYUFx58nMhefo8+cyRMneW70vnwj74uFuY3tsde7esCfiOe2HffaVSX+RbAB/f5+h1MRKwfv6HGB+Pm+R+dCINOgqFn+J2fXml7x3HObzzLi2D85X6HoqkJFj8Jb/zMlz8m2a9/xYV7/3thkTDwRF/mFS+G9r84kNSBMPwsGHaW/75pgV92ha/6ukTE+rpHJ0G/Y/2yLlmzNyBEJUBdJST1g5Nu8TtSxYW+TrGpfp6kDvQb6f1bvy13hiJj/U5AQh9fX/CBbflsv4O08UNCCjARsdA3P9j5TfGvXhkQl+6Dwsf/Dypb6Y8vNgXShvj/YX0V9qOKHhM0LgSm7Rc0Jjrnrtkv30xgJkD//v0nrF+/fu/ALZ/4vYaYJL9Xm9zf7233St+bp6F2795zSw11wd7sYihd7/8Y1aU+eo+9qPVCO+dXtOLVfmWqLoWouL0b42bxmb4sSf38BrNZyVq/AhevhqRsv1LGJAEGON/Sad6z373d38BYtwtGfx0GnXLgwzTVZX5F3PghRPXyK3Zy/71lqtvt9zS3L9+7EW2eT9VBvcvWw85V/j0ixq94MUl+QxgZ67+nD4GUPL/3WrnFt6TShuy78Whq9HtzlduCPaQSvwdUW+E3cCm5/pU8wLcImgPqgVSV+A1zSu7ewwTr3/UbTgsL5nOOb51ExPjfL17l69tQA/mX+PqCL0fhq36Z5B7f+qFK5/w6Exmzb1pxoZ8f8ZmfH6ehDj79h99LzRrng1/aEF/WqhK/oQqL9PMtNW/fnZGKLTD/Ib9h6DMWUgf5+eGc3yBsWuj3enuPgvFX+BYx+BbCihdg8KmQPvjA829/FZth0eN+w5k60O+ExCT7+Vdb4Tey698PDoHG+HmaNti3ZHuP3rfsh6q+xu8RV27186o52NXu8oFj93bfcu2V5udDbYVfh5s37hbmx2nekMalBy26Axx6rqnw093wPgw8AYadufcQal0V7FjutyVbl/i6Fly17/LvaHVV/ujH9hV+h7C5JWVhfqeoqWHvrQXhkQeeTmMDrH7d/xejE/wrbbD/r5j59XjDB9igE3tM0Gjf4SkREWmTmbU7aHSVq6c+AoaYWZ6ZRQEXA7M7uUwiIrKfLnH1lHOuwcy+C8wBwoGHnXPLOrlYIiKyny4RNACccy8BL3V2OURE5MC6yuEpERHpBhQ0REQkZAoaIiISMgUNEREJmYKGiIiErEvc3HcozGwHsL7NjN1LOrCzswtxGPX0+kHPr6Pq170Nc859gV41P6/LXHL7RTnnDqHLyq7NzOa3927Nrqyn1w96fh1Vv+7NzNrdjYYOT4mISMgUNEREJGQKGl3LA51dgMOsp9cPen4dVb/urd3167YnwkVE5MhTS0NEREKmoNEJzKyfmb1hZsvNbJmZXRukp5rZXDNbFbyndHZZ28PMws3sYzN7IfieZ2YfBvX7W9ANfrdlZslm9oyZrQiW5ZSetAzN7PvB+rnUzJ4ws5juvgzN7GEz225mS1uktbrMzLvbzArNbLGZje+8kofmAPX7VbCOLjaz58wsucWwm4P6rTSzaaH8hoJG52gA/ts5NwKYDHzHzEYCNwGvOeeGAK8F37uza4HlLb7/AvhtUL9S4KpOKVXH+V/gFefccGAcvq49YhmaWTbwPaDAOTca/8iCi+n+y/AR4PT90g60zM4AhgSvmcB9R6iM7fEIn6/fXGC0c24s8BlwM0CwzbkYGBWM8wcza/NxjAoancA5t8U5tzD4XInf2GQD5wKPBtkeBb7WOSVsPzPLAc4CHgy+G3Ay8EyQpbvXLxE4HngIwDlX55wrowctQ/x9XLFmFgHEAVvo5svQOfc2ULJf8oGW2bnAY877AEg2s6wjU9JD01r9nHP/cs41BF8/AHKCz+cCTzrnap1za4FCYGJbv6Gg0cnMLBc4BvgQ6O2c2wI+sACtPIS62/gd8EMgeJgzaUBZi5W3CB8ou6uBwA7gz8EhuAfNrBc9ZBk65zYBdwEb8MGiHFhAz1qGzQ60zLKBjS3y9YT6/gfwcvD5kOqnoNGJzCweeBa4zjlX0dnl6Shmdjaw3Tm3oGVyK1m786V7EcB44D7n3DHAbrrpoajWBMf1zwXygL5AL/zhmv1152XYlh61zprZrfhD4483J7WSrc36KWh0EjOLxAeMx51zfw+StzU3f4P37Z1VvnY6DjjHzNYBT+IPafwO37xv7romB9jcOcXrEEVAkXPuw+D7M/gg0lOW4VRgrXNuh3OuHvg78CV61jJsdqBlVgT0a5Gv29bXzGYAZwOXur33WRxS/RQ0OkFwfP8hYLlz7jctBs0GZgSfZwD/PNJl6wjOuZudcznOuVz8ibbXnXOXAm8AFwTZum39AJxzW4GNZjYsSDoF+JQesgzxh6Umm1lcsL4216/HLMMWDrTMZgOXB1dRTQbKmw9jdSdmdjpwI3COc66qxaDZwMVmFm1mefgT/vPanKBzTq8j/AK+jG8GLgYWBa8z8cf9XwNWBe+pnV3WDqjricALweeBwUpZCDwNRHd2+dpZt3xgfrAc/wGk9KRlCPwIWAEsBf4CRHf3ZQg8gT9HU4/f077qQMsMf/jmXmA1sAR/JVmn1+EQ6leIP3fRvK25v0X+W4P6rQTOCOU3dEe4iIiETIenREQkZAoaIiISMgUNEREJmYKGiIiETEFDRERCpqAhR62gl9r/Cj73NbNn2hqnHb+Vb2ZnHq7pixwpChpyNEsG/gvAObfZOXdBG/nbIx9/L45It6b7NOSoZWZP4vtXWom/sWuEc260mV2B7+k0HBgN/BqIAr4J1AJnOudKzGwQ/uavDKAKuNo5t8LMLgTuABrxHf1Nxd9gFQtsAn4GvADcA4zB92M1yzn3z+C3z8PfSJcH/NU596PDPCtEQhbRdhaRHusm/HMG8oPehl9oMWw0vvfhGPwG/0bn3DFm9lvgcnxfWg8A33LOrTKzScAf8P1s3Q5Mc85tMrNk51ydmd2Ov6P4uwBm9j/47lX+I3gozjwzezX47YnB71cBH5nZi865+YdzRoiESkFDpHVvOP+sk0ozKweeD9KXAGODHoq/BDztu2YCfOsA4F3gETN7Ct/RX2tOw3fqeEPwPQboH3ye65wrBjCzv+O7nVHQkC5BQUOkdbUtPje1+N6E/9+E4Z8tkb//iM65bwUtj7OARWb2uTz4fo3Od86t3CfRj7f/MWMdQ5YuQyfC5WhWCSQcyojOP/9kbXD+ovl50uOCz4Occx86524HduK7n97/t+YA1wQ9yGJmx7QYdmrw3OpY/LmVdw+ljCKHg4KGHLWCQ0DvmtlS4FeHMIlLgavM7BNgGf6kOsCvzGxJMN23gU/wXYqPNLNFZjYd+DEQCSwO8v24xXTfwfcquwh4VuczpCvR1VMiXUhw9dSeE+YiXY1aGiIiEjK1NEREJGRqaYiISMgUNEREJGQKGiIiEjIFDRERCZmChoiIhExBQ0REQvb/AZeM/D2ny5oMAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot('timestep',['funds', 'candidate_funds'])" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAATAAAAKdCAYAAACkkTVeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsXWd4VFUTfieF3nsn9Cq99yZVULqgKCKgiBQFaSpVigqIgqB0FaUjoCAIUhWkI006gSQQaoAACWnn+3FuztwTdkP8lOyye97n4WGy98zdc+/enT1z5p0ZEkLAwMDA4GmEj6snYGBgYPD/whgwAwODpxbGgBkYGDy1MAbMwMDgqYUxYAYGBk8tjAEzMDB4avGvDRgRfUREN4go1Pq7LREFEdE9IqpIRMeJqEESz5XoWCL6hYhe/bdzTnDObUTU8788p7fB+qwLP2ZMAWucb3LNy9UgooVE9JGr5/Gk4A7fHb9/o0xE+QEMAlBQCHHNenkygLeFEGusv8sk9XxCCDWWiEYDKCqEeNl2vMW/me9/DSLaBmCREGKuq+eSXHB0zUKIdI/TE0JcAvDYcf8FiEgAKCaEOJsc72fgOvwrAwagIICbNuMV/9rxf3leAzcDEREAcvU8vBHx914IEefqubgdhBCJ/gMwDMA5AOEATgBoa73eBEAEgDgA9wAstv4XAO4DOGeNCwTQxJJHA1gG4FvrfMcBVLG9V6B13uYAogBEW+f8yzq+DUBP2/geAP4GEAZgI+RKEJBftM8AXANwB8ARAGWdXN82ABMB7LXGrgGQxXa8BoBdAG4D+AtAA+v18QBiAURac5wBYAyA6dZxf+s+fGL9ndoamzmx81rHMgKYB+AKgBAAHwHwtY51B/A75Eo3DMAFAC0S+fwCAQy3PrswAAsApLKOZQbwM4Dr1rGfAeRLcG/GA/jD+qy/T3jN1jgBuVqOv84pAC5a9/N367UAa5xfEu/7cgCh1rEdAMrYji0E8CWAdZDP0R4ARaxjO8DP4D0AnQFks67tNoBbAHYC8HFyvz4HEATgLoADAOrajo1G4s9vRQAHrWNLASwB8JGT9+lu3dfp1jWeBNA4kXtfFEAeAGutazgLoFeCua2w3jfcmkd52/FS1jlvW/NuYzvW0no+wiGft8H/4PnoaclFAWy3ruUGgKWPsy3/xb+kGLCO1o3zsR6G+wByW8caAAhOMF49zE4MWKR1w3whH+A/Exm7yIGxib9hL1gfYinIleQHAHZZx5pZD18mSGNWKn7OTgxYCICyANICWBn/vgDyArhpzdcHwLPW39mdGNRGAI5aci1Iw7/HduyvJJ53NYCvrfnkgPySv2F78KMB9LLuYR8AlyF/oZ0ZsGMA8gPIAvmF+Mg6lhVAewBpAKSHNBqrE9ybS5DbAH6QRlm7ZgcG7EtrTF5rfrUApIRjA+bwvlvHe1hzSglgGoDDCQzYLQDVrHl9D2BJIs/gRABfWfP3B1A3kfv1snVf/CC3R0LBBn80nDy/AFJAGu13rPfoYH1OiRmwGNv4zpBf/iyJ3PvtAGYCSAWgAqRhaWybW7T1vv4ABkP+uMVf81kAI6x5NoI0ViUs3SuwDDWk0ar0D56P+O/jYgDvQz7PqQDUcQsD5uDGHwbw/L8wYJttx0oDiPg/DdgvAF63HfMB8ADShW0E4DTkKsfhL22Cc05KMKco6wEdCuC7BOM3AnjViQGLX2VlhVy5jgAQDLn3MwbAF9Y4p+cFkBPAQwCpbce6ANhqe/DP2o6lse55rkQM2Ju2v1vCWh07GFsBQFiCezPW2WeQ8DO3PoMI2H75bWMC8KgBc3jfHehmsnQzWn8vBDA3wTWdTOQZHAu5wivq6Lof83yExV8PEnl+AdRDgh8SyBV2YgYs4fi9ALo5uveQP0CxANLbXpsIYKFtbvbFgA8sw2T9C4XtuwBpcEZb8iUAbwDI8Jh74ej5iP8+fgtgNmwrtOT499goJBG9QkSHieg2Ed2G/MXM9ji9RBBqkx8ASEVE/89eXEEAn9vmdQtytZVXCLEF0qX7EsBVIppNRBkSOVeQTb4I+YuVzXqPjvHvYb1PHQC5HZ1ECBEBYD+A+pAP9HbIh7i29dp229ydnbeg9f5XbMe+hlyJxUPdQyHEA0tMbIM84fXlAQAiSkNEXxPRRSK6C+l+ZUoQKbTrPg7ZIH99zyVxvMP7TkS+RDSJiM5Z8wq0nT8eCZ+jxK7/U8gVyK9EdJ6IhjkbSESDiOhvIrpj3fuMj3nf+Oc3D4AQYX2bbdeUGByNz2P7235/8gC4JYQITzA+r6PxQu6XBVt6eQAECX0Pza7bHvJH4CIRbSeimkCSn494DIH8/u212AQ9HnPt/wkSNWBEVBDAHABvA8gqhMgE6Y4kx2aueMzxIEi3KpPtX2ohxC4AEEJ8IYSoDLkELw7gvUTOld8mF4Bcit+w3uO7BO+RVggxKZE5bodcAVYEsM/6uxmku7PDNndn5w2CXIFlsx3LIGwR2v8DCa/vsiUPAlACQHUhRAZIowvon2/Ca0zsc7kBuQIt8n/OK/6+dwXwPOR+aEbI1VvCeSUZQohwIcQgIURhAK0BvEtEjROOI6K6kKvjTpB7lZkg3bqkvO8VAHmtDXf7NSUGR+Mv2/623+vLALIQUfoE40Nsf6v7SUQ+APJZepcB5Ldee0RXCLFPCPE85I/kash9PiBpzwesc4QKIXoJIfJAruZmElHRxC7+v8DjVmBpIW/idQAgotcgV2DJgasAAhLcdDu+AjCciMpYc8tIRB0tuSoRVSei+I30SMjltzO8TESliSgNpLuxQggRC2ARgNZE1MxaFaQiogZElM82x4T8p+0AXgFwQggRBWuZDeCCEOK6NcbpeYUQVwD8CmAKEWUgIh8iKkJE9ZN22xyiLxHlI6IskG7tUuv19JAu323r2KgknMvRNQNQv/rzAUwlojzWtdUkopROzuXsvqeHNOI3IV3kCUm7TMdzJKLniKioZSzuQj4Ljp6H9JD7UtcB+BHRSACJrdzt2G3p9iciPyJqB/mjlRhyWOP9rWe3FID1jgYKIYIgV/MTreelHIDXIff/4lGZiNpZK8KBkPfwT8ggx30AQ6z3agBpyJcQUQoieomIMgohosH3J/5+JOn5IKKOtu9FGKTdSOw7958gUQMmhDgBGVHaDflQPAO5CZwcWG79f5OIDjqY248APob8EO5CrgzjeWIZIFeOYZBL5ZuQUTtn+A5yXyUU0gXqb71HEORKYATkQx0EuZKLv2+fA+hARGFE9IX12i7IvbD41dYJSAMa/3dSzvsK5GZrfORwBZy4rUnED5BG8bz1L55cOc2a6w3IB31DEs7l6JrtGAzgKOTq8xbkZ+TsOXN43yH3Uy5CrhBOWHP7JxgN4BvLBe8EoBiAzZBRyd0AZgohtjnQ2wi5t3raev9IJNGFtn6s2kHubYVBbsqveozaHmtuNyAjjh2EEDcTGd8FcjV6GcCPAEYJITbZjq+x3jcMQDcA7YQQ0dbc2kB+P25ABgJeEUKctPS6AQi0vkdvQgYygH/2fFQFsIeI7kFGSgcIIS485vr/NUh3wQ08DUQUCLnRutnVc7GDvJAEbAcRdYf8XOr8R+cbjQTEb2+AyYU0MDB4amEMmIGBwVML40IaGBg8tfD4FRgR5SeirRa35zgRDUhwfDARCSL6N9w2AwMDF+DfJnM/DYgBMEgIcdDi0Bwgok1CiBMkq2k8C8lENjAweMrg8QbM4lVdseRwIvobkoF8AjLhewhk+PmxiJnfVfnbU8szPWjzxXtK/rVNN00nbsc6JT9YxUU6Hnz6qpJ/CdRZAh3nchWYNCNf42sJPKnkd+9c1nQGVCyv5IPXWP/5Pbe0cZOKpVZy5WbblJw+PXMTa5+fruk8eH+qkk+t4cj4qdO8/RCyr6Gms/4CE8ZT+PBC/4ef+Lci8+wRmk715QuUvPXQbSWnHtZVG9fr0HYlz8nE7BIRHa3k6D/OaDopujTiPx4+UGLfwNM8t106Y+LVOsxDnVaoFB9IxaT/BTcOazo9Ss98oiRv6lPDJXs+YtafblmJxNtcyNOQbOI9RLQYsurFN5CpFk2c6Pcmov1EtH/OdlNeysDAneDxBgyWCwlJtLsPLk1SFzKZuAIkMdAhT0oIMVsIUUUIUaVX/SeeGWFgYPAP4BVRSCul6GdIpnV9S54GmWpxF5wzVk0IEersPDFxmxzeLF8f5544xcawvm0R7mf77RA++u8I2d4lRrC+jy2ryueRDEXO03X2PgAQAx7n5yyHPmHdPNv7Ctu5nc0T0O+JPYd4md9bSm77iZ7e+dfLFZS88SKn+F19oM9n4PDdSr69prOSQ4suUnK+869qOun90yi50M4TSg6ZsV/J26bV1HRefshxneVVlii5QdssSn6hXYCms+vFxU/U1fLpW9MlX9i4L3e7pQvp8Xtg1kb9PsjUnEIAskOmTuQF0A9ALsjk1A2JGS8DAwP3gze4kJUga2xdhlxppYPMKTsC4BBkralwyGJ/j0DbA5u9ztEQA4NkA/mQS/65K7zVhZwBWdF0thBiMxEFAPhZCJFopY0pB99UN6tbqVrq9WM3OTrYc+MpTee0rRDDg5fbK/n3yxx5bOGbV9NZXniWkod9xVM69VpvJe/Kr9HZUG8HRyuRNqMS99aepo0L29JGydlSc2WWulN/U3L63Ok1nWv9BrLOZxyRfKMWz/vY9UhNZ+R7e5W8eG5dJX8SkULJ4s59TeeX19k13L+pgZI/OKmPy3CK3cvL1/j5vfYXt2YYNqqqpjPgjT1KHjKZXdWt+zlK27KGTgXcWuEZJW+r942S0//1kpLDy3+v6TS8cvKJftt9+9VyyRc2dvout7RiHr8Cs0qozIOsnb8Ksk7XHshqmnWJaA/kBv5lpycxMHATmBWYDo83YADaQu55vQlZSiYtZPXT4pA1vMtBupYNEhSXA6C7kH+uOpHwsIGBgQvh8S4kEeWGrFQ5DrK44GuQDUGmQtIothHRFOv1Eraig49AYKu6WfYInLPIHADE2aJ+9tqMFMevJ4xCOr2WRD4qkcQfyaS8b8L3cXZ92utxziOXdpyvz65v9jK6yyY+76vkyFh2G+80+FgbV3RhFyVHb2Ii6ZiqvI1ZPJMen+oWxJOljOwi97rHH3fI3ShN5+uZx3hucXzhBWZ04NeDrmg6Pk2/fKLLFb8BtV3yhY35/A+3XIZ5fBQSsljexwD+FkJMJKIakBHI1QAaEdF2yBLGDyELtxkYuC3c2Z1zBbzKhSSiSACtICu27odsSRYJWdp3nHCwHLW7kLNn/5yM0zYwMHgcvGEFthtAZcgywTshKRV/QxJZX4EstesH2chhZkJlIcRsyHZReBDzk4iIkXmPqS/yfpg4znl3D1q01vQP3Tig5KkHuEnNjlO82MuTPa2mE2uzo0ezZ1Xyw/0cfUv5VltNZ2fUeSVfK7RcyTE6v1Qjj+aJ48jhjc6cSdV0v17Be2MxzkDY3YYJnS17Byh57cxATafO2o5whMKbJmp/f3GSfxSa3udrSOHL0dudC/R2ANkLl1Cyfx+OFAZt5ZTW8tn0Mvx3lhxR8sw+JZU8pyjnOJ5orReHvbeNI7sf7OLPO/uVQB7kBwyuXFr9WQxPFg62ab0aHr8Cs5K5j0I2Tv0OktSaF7LpQCbIOuaHYaKQyQ678XpaYTdeBskPj1+BJcLEnwXZOMQXsuFHFVfN0cAgqTB7YDo8fgUG50z8ryFXZm9Bdsb5yZGyfQ9s/pykNO0xMDBILnj8CkwIsYaIUkAy8edDMvHPQ27c5xJCCGuV1tuJvtoDE1dmClyXNaMefM7drBa/UVzJRQoM1fRLnhui5BWZmBrwZ9cAJdceu1HTKVE9n5Ipd3Yl332P2f9/Zh+v6WTMyL/Mrwzi5s47V+ph/vQhTBuIbMT7P6HZMil52Fv7NJ1zhZiq0KA9Nwj/5XOuDVb3rN66cdJJvj9DC9VQcsRHvM34duVcmk6JA8yWP9ORk7Sn3ziqjctU+QMltz38ipIX/8K1vXK0K6Xp1LzM9cmGX+U9xgc/8L2/s7GzplPxi51Knh/MNd/OTuCeuAeuntd0imWEQTLC4w0YEaWCbLEuIF3InJAuZCSAS1Zk0qzLDZ4KGBdShze4kFUAZIVszJsPQErIjsZ/Wa/nhaxI8dCRskajWPR78szYwMAgSfD4FZgQ4nebC/kdZOfiXZBpRBmEEDFW9+Y5TvSVCxk9q7OIWS3LGa/ow25jh8JcTnnL7yk0/dzENAhU4h6mNSPZpWnbqoRdBdM+55C/yMFs9R01lim5Y4/Mms6wbuWUfLocxyMeDn2gjZscyMnmhzptVXKT7lzq+dbGFzWd6O1cCvthT05k3vztMB4Up/M1Bu0L4/OVZUpD2GamkhQd2kPTyfvLSiXnW/wDv+f9aG0cNtZTYp6MfOxhM6ZUbMifTlNZNqGakt8VfE+b12TXcEDAEk3nhU/4M74fw7/1NXZy8v7ynxK0U1iIJwqzAtPh8QbMym+cD7mZXxvAlwDOAQi3jJcPJAcs3PlZDAwM3BHe4EI2BPAyZPTRD8BAyLzHbEQUBSAWwB0AYY6U7S7k3N/PJdOUDQwcw1Sj0OHxKzAAWwGkF0Lcs+qCXQBQALJWfgUAv0HywfI5Ura7kGk/aCQGW1G8+4VeVmMiPvpKyS0S6N/9kGthpb/OTPpNsSyPGrJH0ylYnyOCsVk4rNVjBHfJia2vl2Mm31RKjvyYGekvVdcTpldkYJc2XXvu6FMgN7tcD0pX0nRSl2OXzW/gSCX/avv521NxlKZz7jxH+jql8VfyHz80VXLRWD15+vtvOaMhz9jmSv67oO4O+jXj2lwpt7zN8kZua/BdKz0nv/4V2+f1MUcXtzcurORtuleO0BK2aHBHvt+UjiPDeBZ4OGcpDFwDb1iBZQMb6vSQ7PsLkDXA4qvevYgktlYzMLDDGC/XwhsMWEEAIUQUB+AmgJtCiKmQzPwF1vGGkO3VHoHdhYw5aLKNDFwL40Lq8AYX8gCAnJYLmQ3AeSLqCsnEfwFyNXYAMrF7VkJluwuZcVxT9ots9a7CRzABMoefzb0AsP0yR/ruFuVF3uvv51dyZLMEdbEmvMdv8y4nPw/qylG2IbiPPsO5LHWhEbWV3PQZdjuHltXPff/jQ0oOK8o+U4rKtmra1y7aVUC5mBTarz3n/qVey67YM+0DNJ0LU5jkmusGby+eycPJ7mEARv/Jbt9nwxso+VYpfp8W33FyOgCcal1Eyaej7ij5zqdMIr6yT2+a+0so//i0yMeR4qvpuFtRwpJmX9sqfReK5mhjs/v82afo2gRHU/AcOBZskBzweANmlciJj5U/sOQaQoj+gMruPwQne2DuCrvxelphN15PK+zGKzngzqshV8DjXUgiykdEB4goApIqkRbAr0Q0j4j+guzKPRjA9sTOY2Bg4H7weAMG2S7ND8AZAKcgmfgZAJyEZOL7AUgD4CNHyvY9sKj9wckzYwMDJzB7YDo8via+HUSUBsBZACuEEP2JaBRkl6IrAAKFEB8npn/p2YrqZvmv6adez/knJztTiaK6UkqmAPiPm6fk2KhYJS+fr1PQdv7KtIXJZ5gpvq4/Fxps0DW3phN1lzOhsr3MIf/NPXZq4xrP4u7T7+ZgesO0AlyKL9dPesrUvWs8h5/mMv3jHr+MeT9U13RW52aPfH/XVUou/Rzv/d2f0E3TyX6ZE8/vFWAW/MnSw7VxZdoXUvKDoLu2SfRRYtagIE1HFGUmfuxXs5WcLzpCyaFdX9B0Sv28XskHj/L7pB7AFI+0X+lFTB5M2PpEv+3pRzdxyRc2fPRmt7RiHr8HRkTZIcmqWwAUhdw7/pWIegLoC5nkfQLAIJdN0sDA4P+CN7iQBQEEASgBabDTAQiEjCxmhnQn60LmSj4Cuwv5Q7Dp+WHgWhCRS/65Kzx+BQadRhHPxO8N4FvIbtwriKg+gPccKdtpFD9nKCGOhMjk6NaD2A25/hmzwbMeP6mfIAvXnX9QjOPyd3ezK5Y1UO+y3XQ00wZiZw5WcuZRTIFYPECvd/Xq94FKbh7D77nhul7m/0ZnrqXVekoDJftO+lHJR8Y+r+mUCWY364NW7Oa9X5UpEd2nJGgnUIrnV2kMu2+31p7l9ymo1zTb/TPPZ8qSLUoO29xTG0dZCiq57DJOwF59n93G26/oHbOPLLqq5AqL/1byqoucDZAjdpWmc70HJ66LhrbPazHXOrvX5BkYuA7eYMCyAYgvWRDPxL8IoBagkr1bQ27qGxi4Ndx5Q90V8BYXUmPiA/gMsjv3Esj9sX7W64/A7kJuiLqdTFM2MDBICrxhBfYIEx8y93EiZImd3pCs/EyOlO0uZME57UR8zCldCEelAu8y67zwz3pidngoV+kJmcyu0Jr63G7ttTm/aDoHR3Lp6Mjs7yq5Y3+O4J364ICmM/zd8kp+s/kOJdMpPTE7/DKHDtvN36/k1d/cUnLWyz9qOrSEE7jblOZYxyc/8GrgyuD+ms6ai78qOVVtLh39VgSX1d4UrFcwylWEo4uNOjItb+lIvVTbpb1cf21uM66lFhPHkd1pE2tqOtPBUdsDK7jlW80T/Lv1mr9eO01c4tpp14ty0ndIhK+SH+44D58PuaO43sztv4dZgenw+BWYkHiEiQ/ZjXusECISMieyjJNTGBg4hd14GSQ/PN6AOWPiQ/K/dhLRA8jKFA4NmN2FvLfjgqMhBgYGLoI3uJB2Jr4fgMKQ1In4tfh5yEYf0Y6UE7qQT3qyBgaJwbiQOjzegAkhjgAoD2hM/BrW/80hN+8vQRqxRNGxJBcDHHWQN/T3POS9k739m2o6a89zFde8g/XW9fF4LbdewSIyhm1ps43tldw/hnlouRrpRf66leTKEs+MtFEs/PQa/TMmcIuzyNUceLUz6Zse1jMDaOA4JcfOYxZ6tfycdUD372o6LX+2MeFj2e6H23qnFF72hqbzaeAxJa+cVEHJfzZtro37pQhX6GjZm/fXHrzAdI00/voX/eGSXUqu3Jf3wN714SoTU7MFaDoR8ziL4dJg3veq3JHfx77XBwAvFE5Y0tLgScLjDRgR5YMsVlgasgbYPUgXMjs4gdsHklphYODWMCswHR6/BwbnydxVIRn5WSB7RDrc4LLvgR1Za6hiBgbuBK9N5gbQDMDbkFywaQBSCyFGJKIOcW0236wL3JE5eg+zy5vm1l22PQe4kJ5/ak6eDhnxlpL7b9OzmPr3/0PJO5cwZeCNsm2U/OaWFZpO+2LMAuk8lxn78yaGaOPaDGKqAqVktyjNDaYTRCRwaTe/wonVrdIz87z4Gp534NFQTadTM04Of68Ky+fzc+HbV4fm13TSZLEVF4zl6oJnjt/TxgUUsrVpe7OLklvu+E3JfxzR5/NtNy7Y6GNLjWl9i98TeROUhLsYqERxld33I7WYUlH8kx12DaT5ZMMTXSJl/bSlS76wN99b75ZLP29wIR0mc0M28vgFcjO/C+S+mIGBwVMEb3AhnSVzT4C8/uuQ/LDPHClrnbm/3eFoiIGBgYvg8S6kleuYNkEy92oAbwIoLYQ4TUTTAHQSQuRJ7FzL/Euom1UgiF2X6hE2N+SezuZGXnY3xN7dSk658aiStw9prKlkf4Hdw9G2ROgDNlb/piXnNZ18X3Jd/mu5OaCa457eusxn1HwlPyzFLlOKN15T8q5bezWdM7e5RVm3K7xon5yRz/1eilyaTr+b7LrWasiGv2nEh0rOelGPm2ReweOuRLO73aJMBm3cWxU4GlwnD2cgXL7PieZRsXqn8PLZOCMhja3m/4X0POZ0mF6wslkMv8+R1guU/IBz2zF7dm27ChY8O++JulrZprRyyRf2xqB1bulCesMKzFFbtfNgHhggN/G94V4YGHgUvOFLmxvAVouJfxPAQ0h3MQzAESJ6CKA/AIeZ2nYXcnOcSeY2cC1MSWkdHr+JbxFZKxLRuwBqQvaALAMgvqFHOABfADmc6Csm/tUHC9Xy/VatSWrMiJlcArr+c3pvkGZ7uiv5dHV2J1PuOq3kmlHp7SqI7sZZTdsvsdFMl4Kjho06FdZ0dtgih9vTM9Gz3nMZtXGbZrC7uvkZrn/1Ytg0JXeqU0DTmbfiuJJfncS1y/7Yzkno7T9Zqem8uLytkguGv6PkbCm5Jlrc8d80nbDmVZX8UxZ2xQ//cFwbl3Mgl9bONpTdxj4B7Mq3K6YTfUsM+VTJaRdyF/FxW7ie2PzS5TWdjRW/VHLwTr5vTQpwy7dRAE7eugQD18DjDRigyKytAIyHbN3XHJKdn0sIEUNEAwAMT+QUBgYOkdzGy51XQ66Ax7uQFo3iSwDDIFdShQDEk7NOEpGApFFEONFXLuR387clw4wNDAySCm9YgXWGrL66BpKBHwVgE2RaEQDEANgBwGESmzMX0sDAwPXwBgOWF9JIZYZcZWWEZN5HASgJyczfAivhOzGUm8t7Rmf2cj33SQN4f+XOyrqaTvPCVZRc4jQXO7wuUik5x6ptms73488oOWgd7yXdmsHtzr4frNdiz3WcswEGz+I9mlN/6yz2BpuYQhD3EV/yolZMqWidoZym0yR/aiVvLTlGyav3vsmDpugMlD13mdmfIQXrH73Brcq6B+lNUua+wgnXZS9zna221fTu12HjA5Wc5QYnnt97q5eS43Zt1HQK1OU9wksbeb9uXqq0POjadbsK7u1tpuSehbj+f6rh3EI0UwG9Dmbo23iicOcGG66Ax7uQQojhAP4AUA+SsBojhHgJwH3IKhR5AEwH8JPTkxgYGLglPN6AEdFzAK5Btk67ajs0BkAwJB8sNXRemF1f7YFF7DIFKwxcC0Oj0OENLmRtAG0hCawRAPyIaJEQ4mUA84koEMBcALkcKdv3wILvcTJ3hkhmem9czm5M1FCdtvDg/alKTvUcu3abPmOX79ytCZrOsqZML0g5jxO7L37dQ8mVS32i6Vytyq5MdD1mhKRurbdfo0LsKvp/wi7x4qas8+AjvSVZtu850rZ2BVNG9l3j6hwfLNWpDgs/u6bks2d5e7HbgiNK3tqvgaZT/m1OcF8XyC7gsu16oZAFd79Qcvhxdjtzz56l5IxHU2S8AAAgAElEQVRp9Ec7uOvLSj4fx1kCucZwQnrqF6toOqXaca2vw1v48YjoqLPvDVwHj1+B2VzIOgDGArhhGS87OgLYkNxzMzD4p3DXFRgRNSeiU0R0loiGOThegIi2EtEhIjpCRC3/i/vh8QbM5kIeBjAYVvchItpNRFGQyd5lALzuRF+5kN/PN8ncBgYJQUS+kFSlFpCFQ7sQUekEwz4AsEwIURGyK1iCTsj/H7zFhWwDedNSw3IhIeuBvQPZ3OM8pJF7BHYX8vL9ucqFjJq3TI3JdJw7OJcepzPx03zCYamr4GhaoYB1So56baqm81obLtXcK4LLS3+4m93J2YtbazptrnP9qwu7OboXl/GWNk40aKXkz99k16zHQnYBC1XIpulMX8wu5BRw1kDsIWbBv9dPnw9e4hLTLxxn/RoVub1ZpQ2nNZX1fdl1vbq7kZLX9dFbpEVOmKHkAXUcVwLvViar9vdlYje/3OQ1Su7YPEDJC8pWt6ugSGe+J6uycx2zrYe4RtvA6CwO39/LUA3AWSHEeQAgoiUAngdwwjZGQNKYAMkEuIz/AB6/ArNcyBoADgEYAXYhO0EasS6Qhs1wvAzcHm7qQuaFLFkVj2DrNTtGA3iZiIIBrIdsJv2v4fEGzMI0SCb+IHAD268AlIWskf8mZJ2wR2B3IRcZF9LAS2H/Hlj/etsPO1BJuCDoAmChECIfgJYAviOif21/PN6FTECjOAnAHwCEEH5EVAXAQEi2/nlH+nYXMt3IxmLsx4sBAKeHcj2w57/hSNaQnsU0/XeiI5V8ISJQyTOncvfto9fu21VwfA9PZePw+kreGsxukO93OzUde7nqQgHcoej63nPauAvt+O+iGdlmz3iZo5Vf/6W7nY3b8vna3Gb3tHxZdidX7tin6dwM51phI+oyybVfNj0qOu06exn3tjRQcolU/Gg2yNUAdohm3IH7q0Kc1J7Kl+fw7uogTSdVHF/Dwo+57lf2eRyRjA7qpOls6MLnbnrCRrr9lGu53QSQsR6XxvbnfPQnAh8XLTns3wMHCAZgrw+eD4+6iK9D5iBDCLGbiFJBlrpyuHWTVHjDCiyeRjEeQCUA2YhokbXx+CmA9yB7QrZ3fgqDJwG78XpaYTdeXox9AIoRUSEiSgG537w2wZhLABoDABGVApAKshryv4LHr8CEEMOJqBiAjwH8CNmZuxtkVDIfZF38VJA/pgYGbg1fN0wlsiq6vA1gI2RpqvlCiONENBbAfiHEWsjtmzlE9A6ke9ld/AfloD3egDlg4meHTB8qBeAK5D2IhZNNRcvX7w0AKVqVgH+lhHuTBgYGQoj1kJvz9tdG2uQTkN7QfwpvqIk/EUB3MBM/I4C7kKuucMj8yAIAzgshijo5DQDgz9DR6mY1m8MMcP80vP9Ur4ROQQi11aQvkJHbgWWx7fEUy6z/jgzMx3XwKQUnG8dtYWb42q6/azrPzeLNF/8/meW/Z7TOFxxvawH3UinOGuhQ9AUl78zXV9Opu5jP0SeG6RGzl3Mn7Qx59Lr1IVd5nypNJ04an5GRqxbZ28QBQIpgG5v/Gu/DramvF0ssUphXIbHbXlGyqPutkn9cUE/T+eYo72F93ZQ/5uq5Kiv5dnM9IyJgORdvFIe5VZ1P43b8+jGdNkPPjH6iS6SCc9q55At7sdcq91v6wQv2wJwkc2cGsBRyuZsbMorypdOTGBi4CXx9yCX/3BUeb8ASSeY+DGAd5IosBk5yIe3h49XfHXjS0zUwMPgH8Pg9MDhJ5gZQHEBXIUQkET0LmWb0COzhY78BtcXkiZsAAN2eK8lvkIddw6YDd2v64VfZZarVkWvN+9rq21/NpCeAR//OaZl5HjLF4u06nIg9cr1ef/FqNa7hFdeyAb/eZ642LrYb0zzaFnlOyRW++1rJW8+N0nQiRzIL/Xo9Zr6Lz95XMr0zXtMpV4X3Cg9+yzXs+/Wpw4Pu6EGoJvvZTaudl13nSsd0Nzh99iIs+zPjPtOH7HpXyFpI06nXnMdVHMEUlEzDmEoSkSGlphPwI9NjTvXgTLOQuv2VXLmFXgfttl6m7T+HO27iuxIevwJLJJm7KIDORLQfwEIAIU5PYmBg4Jbw+BVYgmTuNWAmfmbI9IYYSEPeAcAbDvRVFJIaFYZPWYeepoFBssDX45cc/wweb8DgPJn7FIDmQohAIlqJJNTEj9vcT0WAfFcy63uGP7shadeMhB2+Q7nc9PgWzOxO48+ugH85nQHebt1CJQ/IwQzyDytx9Csw4oxdBTUXMm9wdD1OmH72mt4pPCAjl7JO/c5YJcdMHa3kkfuWazqVZnDS9+KJHJmL28hJ0Qnz5c415wwCeo3bxB2+xWW1a01eoOm0rReg5DFFayh5zd2j2rha33O9tFvnOVq5vj9H6Z+b+aums+l7TjzP/xLfn2uzOIqYqYSemD2nGbvbXX/h5P1RtzjBfvv3FxH+m/75GSQfPN6eJ5LMvRpAIyJKD6ApgL9dN0uDpxXGeLkWHm/ALDhK5t4F2aH7JiQnbJQjRXsUcva6Y46GGBgkG3yJXPLPXeENRNbnILPfz1r/PyOEyElEpyFrFk2FLAWSQgjRPbFzRX/9orpZsT27qddzTvhcyWHV9WTusHocdUs7hbtAH//2lJIz50yh6ZRvxOWd713lrkJxPZto44JLcFQy+BnurF3jdy7NvPS+XnOrTh6OVh4rMEXJPoeZyNp9va5z7W/Ot7004TUlt1m9SRvXoQS7u+lS8EPf+h2OzGbfOE7TSRMdp+Trr32s5J5dmWy6cLXei6BkBY7aBt5i/axRHLHt1qSIpvNBNS4XfeY21ydbeCJUG/fjLj52YGBzJU/cxwv00TUqazqfHuDo6YwGc57ot73MNx1d8oU9/upyt7Ri3rIHZqdRZLT2wARkLmQ1yNVYaqdncEPYjZc7wG68kgq78XIH2I1XUmE3XskBd14NuQIe70I6YeK/DFnSdgNkNHIQZGUKAwODpwgeb8AcMfGtQmoTITfuW0KWA1njRF/tgc3dec7REAODZINJJdLhjS6kH2TZD38hRFkAIKK0kGTWR2CnUYgLn6j9hyvNP1BjtgUz2z5yuF7UIvM2DufTcxWUXNb2UGz9VA+AztvNxfhS2cjhl04zM3zD53qd+K7NbYzwSJ5P7oabtXGB+5kq0KIzu32xwezOXUqhe9OH3+e9oJAKk5W8+RjvZ/10YZum061EByX/uoATvQ9cZApE8Uw6p65pA2b5XzjDe38ppvbSxt3+iOvq5c/NRRUnNeHsiMJ1t2g6f9xn9v1zfWxdyDPxltKtMe9pOiH3maqSwpc/rwKXubDk9JwFYeA6ePwKzBETH5Lz5UNE8cSqNwG414aMgYHBY+HxKzDLhWwKoASALACyWAXYxgFYTkQE4CGAQCf6ion/1fh26N2luqNhBgbJAl/39eZcAo83YJAuZBrIqhO+AKKtKORlAO8LISYR0Tw4KbZmdyGLze8gJm/dCwA41beSGpMvE7sxZ++d0vSLVWGDJw7vV3LKoexqtrj0vqZTtCq7OLOeZVrGC9u5Vv6lX3RqQauLXKdro+C0zlThetS9ThbONp7ztq3O+wVu+ZbyUKCms9Lm2t1Zy+3ORq5n9v8vrfVeweExt5X8zlae97Hnn1dy9IIfNZ27YXwNf/VlJr9v9Y+0cd/9/KySa7/7p5K/b8DlnVudH6rp3BwwT8n9ng9Q8p0gdrdnHtOrIFdvt1XJX5/lrt9hUUwrOXpTzxLQq5AZPGl4vAGzSkp3AVAFsgvRYCHEy0R0FkBdIkoJWZkibWLnMTBwB7jzhror4PF7YBbi+9ZtABC/hCgA6TZGAtiLJLRVu7PdYeMiAwMDF8HjV2AWQiE7cPsA2ERE9SANV1UAXwNYDKCHI0WtndTDdeyP+XNS9JmaXB+q6Ki6mv7Fujwu/2VOPC44jwvAlq6hd7Y5Vovd002CXbF9YMb+1EYFNJ0Sd7h9253C3CW74dwb2jifK3uVnMaPf82pCr/n32P0ctV+3TlyuPePh0re0JujmDOKrNZ0us9mNv/RDuy2/lmR3cEPJuuM9vAmfO9C07MbnXvfGG1cv/X8Xq+W4YXzgwLMtr+YUk9if7YxJ3CPacrXd6M9X0O/Zl01naHfclnsWv3ZzY8sy/e+JgD/bp2RXDBEVh3esgKLBQAhxDXIzkTVIBt6xG+6ZMW/7E9n4J1ITuNl8Cg83oBZHK98AIKI6AFkUvcxyCTug5B7Y3MAbHaiz8ncczc4GmJgYOAieIMLmROS43UO8nozQqYUdQEwH9ILEJCRykfg1IU0MHABzCa+Do83YEKI80R0GUADIcQNIhoNoJoQYgeAxkS0DXJF5pvIaQAANJCZ5ysHc8G9dru/UHJoJ50SETZom5IL/syVHAJvMW0hZr+eokRFuLb7s0GcLPygcy0lt66q0wS6FeIKDb4+/LFuz6QnWTc/yIX9pn/ETUpoF7Pti2/VK0a89DtnAPy8jykaYUOYIR/b83NNJ+1Ybpl2su18JdvL/+/4XaeCdErF7en6PLtYyecO6W7aH2VKKPmDgkxhOeXHDPldQRc0HXsl00wXeG4r7jLjv9f3W+0qaNqFmf0l+3AWxZG2zPKPaFNc06mTpi0Mkg8eb8ASuJAC0m1+wTo2HpL/VR9ASacnMTBwExgiqw6P3wOD7kJeAhAG4AERtYWMPPpCupC/OFK274HhhNnnNzBwJ3j8CiwRF3IyEb0EYByAnyHTiRzpqz2wqM/aqz0w/1u8ZXZzNBdz7dlNL2jYNIDpZaWX2VquDeH+IekX77SrICiSk7lzpOD3Kb2Q25v59iuj6fzy5Qklx9iyAfKm0luF/Vq9lZLT7Gd38HBddklPHI/VdBZd4mPbXvtEyZkGcPpoXJeymg5i+Byla2ZS8vcDmTpRZPdVTaVMNp7r+d8aK7n/dP3+rFvAbvDgFpwlkHEeu5o3IsM1nfdr8NLl2QJcGNKesN2jXKSmk/fSTSV/UpmpKRuuM62k2Y0Ea4DceKIwe2A6PN6AWS4kAPxq5T1mANCXiN4AECKE+IuI0kDWzDcwMHiK4C0uZB4Apax/+SGjkNMAvEVEEZBFDR/rQs7dfcHREAMDAxfB41dgNheyis2FrA+5LxYOSWbNB2A4Ef0ohAhNoM80ithNyoUcf3CFGvNBuhglx6bUM5JSLuRk3z7FuVt1aCuOVmZqkVfTyfz1T0rOHsduzcm+XZScVfd2kP4iM/bnXubmI+X76/S2VXO4bnxEGCcyFx3FtfuLFdNrXO2LDVZyg83MVv/CVgOsX0G9Q3WcrYZ8XA9OAMc9/s18MYvutQ96yC7pIVtH88g7+sVW7xag5NWvc+37QbOmK9l+bQAQ9gp3zYsY9pmSr64MVPLCIRXsKkhxmK+hTh7+XAPOdFdyhum/2VUQbjpzJys8fgVmuZBkk5tCVmD9FMAEIUQAgGAAlRIaLwMDA/eGxxswSBeyAGSqUDiAUkKIeEr9cCKKhHQrJzhS1pj4c9Yly4QNDJzBtFXT4S0uZDAeTeY+Arlx/xyADwEUcqKvXMhlZ/qJZedlzaihpzhZeMTEt5W8MqdOAo3pwUTS9Bd4gRfxw0AlX70SqOv8zhHFiCAmZ0bEMOkyNoPeNuzkfibGvvwMJ43/WCmnNm5ghZZKHt7W9vHbopVZV+vJ3D+8yH5RxDdHlLytHp+71SS9m/eFxc8pOWeLVUqO3mqrG1YgALl7s7s8uSMTVFukYncyspSe7J47gu/DlfV8T2fl5YjtV1+d1HRS3lyp5OOjmGxa4MxSJf/VVo/snuvCxOFxe/5S8vxMnKB/t1U1ZN1i4j+ugscbMAsqmZuI4pO5qwGYJISIJKI5kFQKg2SE3Xg9rUhu4+XrDT7TP4DH345EkrmbAVhERPcBnIF0Mx3pKxdy8xLTmdvAwJ3g8QYMTpj4kOx7P+v1qwDiLJ6YBiHEbCFEFSFElSYvlk142MDAwIUgITy/wAIRBUKnUdwD0ATAJADbIQ2bAFBZCHHd2XnixG/qZn1ygPd8GnbepuSq0xtoOpFNmfm+9yrXbz9/h/e2tgXrNIHxtTiZ25fYy190kmvqz/lLL1RYyLYvUyAj72d9+v1ZbVzhYtwy7fYlpl4M61ZOyROKVdN0PrqwT8lvTD6CpKBUVd77u9m/r5KHH+D2mx8F6td9ux1THTKtYlre1oF7tHENJjGb/2J7nuuUg7xCnlmjtaZTfTUnh+dNz/dnZaWqSo5eqidz+7fj1nX9LnB2w/Qy3OfgSoIaJnnS9nyiO97Pr33FJV/YNW2+dcudfI/fA0skmTsTgEWQvSKzQkYobzg7j4GBgfvBm13I6gBOQ7ZaewDginCwHNVoFLPNPr+Ba2E6c+vw+BWYs2RuSKM2HzKlaCyS0FZN/DVK4MgOAMCQSK7FnvPtoko+07ixpj9iJ7tMr/ZkesKVJdw2bK2txhYApPZjV/HLy8xWf/EbdpEGD9dr758oz0z4jC8tU3KWQim0cZ+3LK3k7qU4qXnxaWbsx2bVmfjnD3MS+m1b+7Vis9srucl5veHJwaZ8O/+uPkjJE359V8kh5TQV7Eo/WskdQ4crueT5Otq4yScPKvnWMaacDPqQXc0bBfVu54dzc7m3hZu5qkjfz7gG2aszjms6bXyjldykeFYlL77Fkcepv+qL9v0v9YRB8sHjDZizZG4A6yD3vzIAGAGgluMzGBi4D9yZVOoKeIsL6SiZ+0MAKSFr418BsNCRsuZCrjjgaIiBgYGL4M1RyEkAGgshthNRDwCzhBApEzkNHgxqqm5WxDVm4medwVG2v+vrLcBqdmR3bHp7djUb56+o5NyBlzWdmN3s/vjZInM5vmHX8FCvNppO1o/ZVX2tVnYlL2nWTRsXFs0uj2//r5TcytZ27Mc1eqnn1Fk5cpkumlnwYtIAnk8N/brDwvi5qhUyVcmzj/E+YsnMGTSdGrk4opj+NtfiSj35e23crVj+mII/bKrk07e5TljDqX9pOoeG8wK7dmouA91y60Ylr6/bUNNZnP1jJXc5a+u6l4Hdycyz9QyE2+9vfKJLpI7rurvkC7u81UK3XPp5iwuZMJl7rPVa/IfyAHJPzMDArWGY+Dq84XbkBJALsrltOIBnANwBcArAeiJ6CGABnBgwuws5/0iwoyEGBgYugsevwKwo5BoAvwJYC9n/MTOAXZDXHw7gFoA6TvRVFPLKg/kiPgZnJ5jGrFyv5MJdS2n6N/Nx15wXz3EtrhuRHGmsnlNPuG51nUmuf4DdoivZbR2GVu9Eit1MUo2bxNG9Sqe5RpW4xiWTASD/THZ5yjTg982bhqNxd4P0csxZ2rPLdaAuJ5HvLMtuY73nMmk6vTty1kLQaa7i0b9ES23cyMOcD9nk0i6et21My3oBmk7qWhzpLfonR0iLVWPiaVwNnY9cejiTVOkLTtpeX5ld+atvztZ0utzkmm0Nf+OeoLG2yT1TLCsm1i2K5ILZxNfh8QaMiDIAqAqgsxBCENEqAKUB1AVQXwhxhYhqw0ljW3eF3Xg9rbAbr6cVyWm8DB6FxxswSGN1G8AFIsoFec0jAAQA2EpEUZCsfLMHZuD2cGdSqSvgLXtgFQCkhmTj7wOQDdJL8QGQCsBlOGlsa98DWzR/e/LM2MDAIEnwhhXYcQAxAHJZLmRdyJI6FyHZ+VcsGsU0R8r2PbDbD5er3Y+AyXPVmJiHXBM//I3nNf2Y3Fykb3lUlJKvCd7nypxS3wO7WZv3oMjWp8vnjx+VfDlUj6ZX/5kL9u1OzVkCxf/SPePAEdwd/NeLvH9UviPvm/2xTM8myDWH99Eud+d9qvk/cHfyB7v1PSexgQMeaSa8o2S/QWOV3PsFfb8wbL6etB2PqTNf1P7+NpiT4ntvZvb8iZp8rws30nnJqytwTfvXTjHFIqoSZzQc2xGm6eS8cFrJtfOx/quleE8wtZ/eA8EgeeENBiwdgEgAwUSUFXLltQaSwHqQiK4CKApgt/NTGBi4B8wmvg5vcCH9AKSFvNbTkO7iNQBdAJyArFQhIBt7PAK7C7lw7lO1z29g4PHwhhXYbciS0nnsLqQQ4iIRfQvgTciekA57KttdyFOVSomr82Qy960vmA6wpR2zy2uX1hdym/fxse7Pcvu0RRW4ptTtzLc1nXuV2EVZeOIPJS+fzy5O8eF6nfhC0RyDmFGaE7iPX9BdzXYbmXk+cwYnhxeqn0XJF/rt0nT8O5dUcuuX7iq5Wjgnmqesqt++nX153tEL+7O8nTMDbn+6SdPp3rGwkifX5xZnmXr9oI17ZdorSr7aha8793imOqBXfbsKuq7gbud7eudQcnZbF/NGq57TdEQYJ64/U4DvafVZ/EO2uKuekZ7/CXuUhsiqwxsMWLwLuZKICkGutnYQUXMAkwFEAegEoKHzUxgYGLgjvMGe+0FGIJtAJnOXBZAdwAxIwwYAZQBscqRsdyGX3rjtaIiBQbLBtFXT4Q0rsGBIQ/WuEGIuETWEdCGLElF+AHMhV2UOE7ntLmTE+y2VPxZYjpO0m5zlyNrJwG2afu4znJT8VgZmu484zzWtxl+L1XTyHwxUcurMnEi9JpCjcVcn665q1A6ucXXnG46exSRw7X5qz3W6Iipy5PBeGn4UUq95XdMZd4xds7gXeiu55U5mtwd/eVDTWb2Yo3tTorjc9QLBieuvp9Q7cy8uycnd5T9mkut9m8sIANHL2IXr0L2ekn94lX+Pd1zQMxB+TsmR4qCP2b3dOZCZ+GXW7td0wotzjbXnf+fI8Ij8HOV9a/M5RMWyGxvMt8cgGeANK7AHkIZ6p/V3fQBHiKgYgM8ADIFcoZ1xrG5g4Bx242WQ/PCGFVhhAOchjZY/JCesPYAtkHXCWkGuvn5xpExEvQH0BoDpLcrg9YoOu68ZGCQLfN3Xm3MJPL4eGBFVAbAXwEQhxPtENB3SZWwH4CshxEf2emGJnet+9Bp1s4rNW6heT5uCSfyfvn1U0ykZwiWG833IrljakZ31k1/gksw+C7cpOapCgJLTndHrhkW8wB114k5z0veJ57mTdlRsjKbzzDwuyhh7h124tHd0EmfgJ+y2lZu2Wsmf2WqadZp5StNJO/ZVJYtt7F6ebMBRzJ2XAzWdXjfYc/ddygTVKJuLnuKIXp/sox7llTy0cgclX2k5VBuX6/liSn6nFLun79uSvtMNWqTppK6ai+Wjl5S8vB/f66Zf6qWnb4/tpOQn3ZXora09XfKFndlwrluaTm9wIeNpFB9Yfy+D3LTPDOBdy3jlgyS15nJ4hieNC+cfPyYB7Mbrv4bdeCUVduOVVNiN138Nu/FKKuzGK6mwG6/kgA+RS/65K7zBgNmZ+JGQZXWuA/gUciWWC7Kw4QYhRKjLZmlgYPCP4Q0GzBkT/wiAQ5CVKMIh26s9Aq2g4dyNjoYYGCQbfMk1/9wV3rCJ75CJD7nymiSEiCSiCgAcNn200yhil3cXWC0TqoOyZlRjQmZzcvDtoO6afsGp25QcvI8XeH6dv+QxQ/XE49c7cME9v1Ic5j/ccoaSfe//oenEduFzRNf6RsmdhpTRxlV4huf9Ylvec7ralu330D/15iX2fa8HMbwFE7KL9+SKh1/TdHbV5EyBzWfYRR7+O1M3fPro9fof2ire/vTuYSXvCXxJG1ctB1M00n44Tsk1eunJ4XZsSsXX9+cd3lOr0YqvbWJO/ZuaLTKbktuc573ETBn4HtzemaDRS3PTVi054Q0GzCETH5LYWpeIxkN25v7nG1EGBgYuhbe4kI6Y+MUBvA+gHOQmfgOrb6QGuws5Z/PphIcNDJIVPuSaf+4Kb1iBOWTiQ/LAJgkhthHRFACvQRY61Apb2V3I4bt6i/hQ5vgYztotU5vbbO1MQEspmI1/I6Z800DJfX44qeRF7bZoOi/aEoJvP8elo+//yq6UyFrDroKrD7m794KvmTW+qEQebdzH+y4ouUPUTCX7vsX138dm1B+L7ne5rv/bEZxZ8PYebpcW0m6kpvNGhwAl50rHidAji7ErtyLzME2nea98So472kzJopaezP377+zOpUjL5144h9vR5V8+XNOx10ubV4wTxX1adVHyuqV6TXwRx59l2Dfcjft2F67371OrAQxcB28wYA6Z+JDVWRsR0XYAXQE8BJAoD8zAwNVw5w11V8AbXEg7Ez8Osh7+DgD7AfSBXJ3lADBOOGD12l3Iw2v+TnjYwMDAhfCGFZgfgJLQmfh1IevkvwKgjTWmE4CZCZXtLuSfoaOVgcu7iqNkN7OxW+R/PwXsOLH3lpLzXORqFg/fY9fl5jm98/T9UG6/lmlcez53A57eklM6g7xuS2aaT//pEz5w/Zw2rkGBq0qOHPqpktu04BpkJ29FaTq+a7gXwML+lZQcu3yxkvu9UVrTuXyU32dp7wb8Pr8zi/2nHW01najfeY+xci9+z4Df+2vjloafULLdzavTPkDJV0Z9oelUr8FR0QPXmGFfNg1HLj//8JCmU3E4X2t0EU64D/liLw/6Yu8j7uqThI87b0i5AN6wAnPGxBeQHLB2AA5D8sMMDP4RktN4GTwKbzBgZSCvM4yIHgDYBkmtGAXgG8iI5BQAEx0p213I1d8dcDTEwMDARfAGFzIEcrV1BUA0ZJ/IkwC+BBAEmVJUF8BPkL0iNThzIQ0MXAGzia/DG6pR5ALwpxAigIiaQq62LgFoDiCf1VYtN4BgIYTD3pDxuBu1Ut2syQc5rShzKl7IpvfXF7U7QiKV/OtppiD88iVXcmjSo7Cmc/StdkrOZGu55j+P98r8GpXXdG7lD+A5zFrB48roCcrpd3AgIrwW73ulsrUnO3XorqZDa3speeaRI0puXpCZ6o3H61SQOg35mgpk4KTtO7YWdCtP3dN05rfgub6Zq7KSxSF9b4rKcbWNh7PXKfnGu62VXGLSEk0nLobrdj0Y9LKStz5k/laO8jgAACAASURBVHLFkXp2w28j+B73XMqfV5+GXCkjWyr98x5U6asnamKG7+rtki/sxFqz3dJ0esMKLCOAbET0N2S0MQOY67WLiAoC6Au5SjMwcGuYPXwdHr8HJoQ4BaAOJB8sI4A4AAMg6RP3rdf7Wv8/Avse2IK5DsvmGxgYuAjesAKDEOIwEY0FMBJApBDiKBEFA3gWwGLIDfwvnOiqPbC0HzQSI8bKUP+Dm2zvYptxwnQGWz17ALhbKUDJl9czWz7fnjFKPtVHf+sy89YquUZAJiUHlGRG/ItNv9F0AipwkvaId7nV16FreiOS9Qs42Hr1ONM1crfklm+xu/XihsWHsesa++UEJUfPmKXkkMl6ErPfa/OUnH1yRyXfycl0hhQVgzSdjAW/VjLdbaTkpS30fpwvjGIaRPownmvUdb5WO0MfAC7f49/qkNTsTsaVYYZ+QL+Cmk7ETHZd179TR8nXCqxS8oNjehfzJw2zB6bDKwyYhS6Qq6yl1t9rAcRX4XsOslu3gYHBUwSPN2BEVALM/QKACkTkByAVgA8hE73LAajkRF/VxE/RogT8KuVxNMzAwMAF8PgoZDyI6HnIva5yAKoDKAGZ0L0ZwEUAoUKIoc7PAGSe2FzdrFvd26jXxTlmu58snUPTKXWH1/xxeznSl8aWVE0JdmYXTuG6Yf2ncqSwU3mO0g0as1fTKTixuZJ73+eUzmEf7NHG3b/DUUAbiR1Z9jLbPf++k9AQwyz0U0N+U3LJdW8p2ecjPeG6UBV2SU/FcDu5wPncMyD1bwM0ndsPOWvhWI4FSq5YXt+qLf41M/hj9vO9t9e9n55d71y+piq7wbXbcPK9WPCmkvtv0yOpS+pyVDNuL2cGwI9/929V03/3sqV6+Yk6eaP3vOGSL+zo6l+7pfPq8SswG7pAJnGnFUJchDRasCroHAVQ0bmqgYGBO8LjDVgCF/IugNRENBBALQAvQN6DepDkVkf6yoVM/UJppKyW39EwA4NkgdnE1+HxBsyiUZQnohSQ+Y7hAH4EMF8I0YmI3odM5N7tRF9FIVeff4eX76HcxqzDbXbZng3R2RgF53C/3Mt7WKftaO4qtHStbjs7LuG2Xx8/jFDyxvMccas+q46m45OXI2izt/M4nx2fauM2XOZ2Z43W2IrQLmD3KSJBqee3t3FUdP6GgUqutJnPtXG5Hrl8dgiTcUUQu8Sff8yRVOzfhy/u2jyirzhBvnNQPyVPCNFb1Y0IYJKsbziTYT87y6Xc/iiht5Pr0ItJt9mKsRwazSTbJgXSaDono/n+TBYcsU0Ra7Miu7dh2ARbitkmJskaPHl4vAGzoQWk2xhpuZAgolchI5ArAeR24dy8EprxekqhGa9kgCGy6vB4A2a5kEsBFATgD8DXciFPApgMIAWAGpAldxzpKxeyz0eN0bTLM46GGRgYuADewsSvBcnAfwh2IWdAJncTZLmdpU70ZwshqgghqhjjZWDgXvD4FRgACCEeEFEPMBP/IoCiRLQCwDjIlmqPbRNd7R1O9l05hWvSz1nKofxbp/W9oHtb31NyHv/MSv48msctrlpP09kdzW2/OodwYcChmQsp+c2LZzSdnGlYZ0F29jPq5R+ojbu6lZnjU2vxXtCwMi2UnGWcnhlwpyRTIr66zi3krt7jwofNOmbWdE5n4Uerh62d3Bab23j/Vb2r9Z+leQ+q3kCmPeQclSBAHM0J8j41+XouT+YWa9V1DRQqzzsEETZayOVuU5TcZcX7mk6a65wpMKcCt3KLmsec5x+/rK3pFMCTha8bd8l2BTzegCXiQjYG0BBAUcj9r/0um6SBgcH/BW91IX+BbLN2H/IeRAFw2JHUnsy9KPCaoyEGBskG01ZNh8evwIBHXUjIjfs4yBVZBuvv9URUTQgRmkBX0SiqL35RxKf+7r7GHueDjCwXr5Tero6Mn3Hd+Kv+7CItaMR1vobm1uvJD97JteHtddofdmcaRovxOvWiTn+mFtx4jeXQ7U20ca/m5STp9flGKFnsYxrGmBeKaTox5Z9X8oxF85W8oWM1JaddpDPxi6Tj/cIdTdhVDU+XVsmFv5ir6dgzEk7bW7HtvKKNS9mAx7V4j+9v6EKe5w9BIZrOmeLsal5qxwnp3ftwIv5bQds0nQG/sVv+WrnsSq7/GddUy/JicRi4Dl5hwCyoZG6rGsWnALpDklsjADRMaLwMDNwNhsiqw+MNWCLJ3LMA3ILMj0wDWVK6tAN9RaMIeL0KcjQukhzTNjAwSAK8OZm7MID3AbSC3MT/RQhRyvkZgLg/h6qbFbH0oHo97BRHFIf216kW397iiFeOEGbsb/uGWd4hl/XPoNkZ7nSTfyVHvGY3LarkVh/v1HTWfMdzaP3Hi0p+767ebOmZbJxYffBatJKnhjxU8pVFJzSd2KU9lBxcliOU3Uay+2UvGw0AS5by9Z2fzl2279kiiM0mbtd04oZzVDIiD7uxD2P17IZMwYFKvjmSswQiw/ga4qJj7Sr4fTOfI8clzhIYs5vdxMMn9D3O5V9wFLJWKLudu3Kx6502rb4kqht08omukaYcfNMlX9gnXSr7/4XHr8Bs0JK5rf6Qk4QQD4moLYC/Elc3MHA9fDw+7PbP4PG3g4hKENFfADoA6AGgkkWjaAbgF6tb92QAVZ3oqyjk7NWHHQ0xMDBwETx+BZZIMndPyHpgAwAsAtCSiEgk8KntUci4tT0FrsnOQqlbceaRXz6OeLUqpCcEryzCvxGH29RScsp9XBI67a4umg5snXvuXWfXJ/uzPyl5L4BqTbjcdJu73LVbBHHkcs0BnVjbqDUnRnfKyF5BRGsmq/bqpXvSb+T8XMmXdnMU82hprkEm3tHJr8WbMHF02DV2zV5feFbJ91KlR5ohXNtrN5i0m7ESE4BPndG9pqt7eQ5vTuTO5XF7uGNS7FXd7Qz/jGuAdbnN7m6jDFyKOyabngBeYCxHTK+9M5nPvbG9Nq74UY4a6/Ti/x6GyKrD4w2YDVoyt1UTP764eT1Iw5YN3LHIrWE3Xk8r7MbraYXdeBkkPzzegCXCxN8PufKKAJAV0oDdcHYeAwN3gDuTSl0Bj98DSySZuzqA0wCyQPLDriR0H4EEe2AbHdY8NDAwcBE8fgUGOE7mtjbv5wOYBmAsgNpOdNUe2IaLQ8Sv1uvj9wSrMROmMe2gX1ykXR3vNuAKrkHhHAQYmpt/O672Xabp+GdhO3p0O3fzrvcW0yjC3npV09lZsK+Se40rq+TN35/Vxh09/JyS39/HDPetjZoq+YuWehHEoqf6KFn8xdfa9iK3JNuSTV8apAhnSkPznkyXqNCHqXZnx36r6YipTB95+wumfyQkbz6fmRPH0331Mxxhwcc6E3/9Sk7v/iMVt2U7eoMLFR7qoe9FZlrGCeWhE7hnQMQn3yk5KPo+DFwHjzdgibiQswAsB+ALGYWs4rJJGhgkEYaJr8ObXcivIZt5vAVgISQT/xHYXcj1PxiqmIGBO8HjV2CAUxcyB4BcQghBRPlhpQs50FUu5K4ro5Rvt+UmM739z3+m5KFH9P64A35jakBMcLiSo19hxv6ebHoCeLU/2T0tOYbdt2vhHGMQv/2m6ZSsnUXJJ7JwhHLO5zW1cRuP8TlWrWOmuc+Wr5QcO6qupuM7iWs9vtCCk5dXPeTfvwwxcZpOsK0heOrt45W8oelIJRca3UDTyffdQiUHdeAI5dLs47VxDUOZYvHb25z0XflHTrJO9abuyke3Zpd771XOYhiwlfc1RZTuDv5dnukkf9fnTuq5q3B7u2VLEqTPfoInCrOJr8PjV2A2xCdzx5cviAAQnxMywqGGgYGBW8MrDBgRDYFk4tcE0IiIUgEYDmCMtZn/KqRr6UhXuZBrFiVvAwcDg4TwJXLJP3eFxydzE1FeAL8DGAKgF4DbANYDaAlglRBiCREtBlBTCBGQ2LkEtqqb5dOHI2bZinO9q1er6M2NJtfpquQTYdxN+8dznOy87txdTWelLRH69N47Sv5tJZeezphC/+0pVJtbnBUrwg9cubo64TV2Jrtj+69xiezzd5gt/8LyIE1nViu+pu5fsJs27GVOuJ4ZGqXpbKrNblYaf3bzLt7lzICD13SdVoX4Pradt0/JQ1rqFUCGVeFk7BR9Rym5Wr0AJfd4Ri9x3X4is/TtZb+L/TJYybl+WK3pXH3jDSXvusWfXd/fdDrNoec78B/pOz7Rb/vc42+55Avbs8xMt7RiXrECg9zr6wIZjUwD4ApkSekVROQDICOAe87VDQwcQzNeBskOjzdgQogQAAcBtIWMPJYFcAyyCusDyI5EV5zpa0TW2Y45RwYGyQVTUlqHN7iQpQEcAFAcQCiAQADrADSHzIHcBqANgO+FEIn2TfvkANdiOncnxum4KasuKPnm30xELfAJk0ipnM6bzTptupJ7186n5KqN9ZpZ7buza2QvwXzlU3Z38g6fo+mUqJRHyYfCWSfFG68pWVw/p+ncycolrwtP4zLSw5pw6en3KnfWdPaE8lyvRbBbnLXBem3cM2fYjfUfM0/J6e5y6PJB/pyazpE57LoumM1dySfV5m5K9jpdABBpC0S2XsBdpCin7R5mz2JXQfAgdiPnjeECJQ9j9e/J2L/Ytfd/zdaNO1XrJ/p1n3/CNS5kj9Lu6UJ6A42iLuQq6z4AAeAaZAHDNADi+Qp5ICtV/GvYjVdSYTdeicGZ8UoMduOVVNiNV1JhN16JwZnxSgx245VUREY+fkxC2I1XYnBqvJIBhsiqw+NdSACHIUms1yEbehSDLKNzH8AlSOM1HU6IrAYGBu4LbzBg4QBSA7gA4CRkJ+4yAMZArsDIOu7wt82+B7Zn1QlHQwwMkg0+RC75567whj2wNwBMgWyafBfAPgBBQog21vFAAHMBpBZCvO/sPAAgDn2oblZIMU7Sznud927K79T74/5Vu7KSF0VzEvGV+8zk/+LAVU3nz9VMY8jVgZnvvvXLK7nHeb0OVaaU/Fs0BczsP/feRm1ckc95H+7hhuNKvmWbQ758vppO4CevKHnVOaYjPF+YE7NrL9qi67CXBf+qfK+y7uOSf2Hv9LWrIGLcLCUXys21+0Wc/ozeOMPZBLXqBih54/5bSo75qJemk/4270UihO8vFeHE92xz9OTykCieQ864CCUHDuYWomW/0dvJBff+8Yl+27872dclX9huJb9M9LqIqDmAzyFzi+cKISY5GdcBMge5qhDiXzeT9oYV2GHIVdglyGhjRgCbEozpCGBDMs/LwMAjQES+AL6ELBpaGkAXK3iWcFx6AP0B7Pmv3tsbDNhpSMqEP4D0AHICiCSi3UQUBVmlogyA1x0pazSKlQcdDTEwSDb4kmv+PQbVAJwVQpwXQkQBWALgeQfjxkFmi/4fIRbH8IYoZCdIA5ZJCBFBRHsAvAjZ1OMdABUBnIeMTj4CezJ3lo9biOG/ylXv0ZG8YIu0dW3u+Hx+Tf94Jl7xbznIn9vYmhyiH71yqaZTtCzXYt86jo1mjRZMH5h9Vufddi2QWsk+TbgL9d3bOoVhdUOOtJUM4XZpZd7/Ucn3p+uedEjtYUruWYkjlDsXM/u/xJzKms5vIzjtqlwtTk4/tLQ7z81HZ+LfHf6CkmeEHlNy+1g9Khp+fLOS0zfizuNHG9sS5+/okcuKD9Mp+dZUnvfxj/nzCc2ms/f92nNC+VeXWSdjBNc6y54mBbwB9v6oFmZb3w0AyAvAnr4RDFkw1K5fEUB+IcTPRDQY/xG8wYCFAEgFIAsRXYWMOq6FNGzNIBn5UyEpFgYGbg1Xbajbf8gdwNGk1PfJynb5DED3/3peHu9CCiF+BnAW8lchGkBmyETuryBZ+fcAvAkgnSN9uwv5cE+QoyEGBt6OYAB21yMfdF5lesjv2jYraFYDwFoi+tdFRD1+BWZtJgZARiHjmfifCiH8rBs4EEBnSDfyEdh/efzfqSOiQmXRCnukbvlkZrEPH/eOpu+zfrmSZ+5nF+dKdXaf7neup+m0PM9T8R3E7uCNAYtYPnlL01nbJAefuyG/T42W2bRxQzrx3mrbIG49dmI3R1If9p6s6exaWF/JA1fz3G7+zBHN5nf1Wlq+Xdgdu+fPvw3dtnOS9uzFernry1O5g/fl+9w1vNk53R3cOIYzAN77e7eSC2Tgx3n48lOazvXR/LksfIcjj8+mZHf95z77NJ1mp/ked+7XRsnvHmHSboMCGdB/FCd64wnzWt2U0rAPQDEiKgTp8bwIQFUxEELcgez4BQAgom0ABpsoZNLgkIlvRU4+BfAe5MqsvdMzGBg4gWa8vBRCiBgAbwPYCOBvAMuEEMeJaCwRtUlc+9/B41dg0Jn4AjIC8i2A0QBiAGyHJLKmdqRs37z0aVwEPs/kcjTMwMCrIYRYD1mmyv7aSCdjG/xX7+sNBszOxI8EUAjSH+9q/R0Cach6OVJO6EImw3wNDJzCTV1Il8Fbmfi5IftBXoM0XgUAnBdCFHV2HgAIbllF3ay0P3Jd9sqLuC3a1P+xd93hURZf90xCL6ETOqF3kCpN6VUFKSIgIAIWioKAIAKCShEpKgKiFAGlKL0ovXeQGprU0HtvCSGZ74/ZzHknbIL5fSa7hDk+ebxs5r7ZfZOdnXPvufdWy2H4lM5YQNt3H1GeXmwAe+e/UT+/4TOzeCltl1i9SdvnL1M6EbmY+1wwP4t8UlJBvmlIoLHusaOJRq2jlEuI5Om0ve2mGQtad459398tynhYvu+pXL/+emXDx+c7lpZeuclIRbHKlJysaVnR8JFVf+Fz68R+9AkjCZFypEqi7RIZGcPacIb3d29ANsPHd+YWbYe9Ulzb7yVlRUT3kubvoYCjUuH3t6i9bHG5h7avpDBlFP7J2sbqDjPn+EceecM2zTvaK3fO5+EE5o5C9ocS1PlCbWQC6oRmYeHV8BHPQ9j63+N5uBtRFXOHABghpUwGtcHlcOfslFFMP3M1jp6yhYXFv8HzcAJ7CWqzKgdSyIxQ2pW5rvqsOwDcRuedMbDk/arLL12PXxvK6cw7Pm2u7YtlBhn+2ab78R8O2nfuHKlLpQvmPJEMh1iAHfqAcoLNnapru9bv2wyfe53Z2rjADywwLvaDqZD/cyMLDh6kTKXtMMkqgVx+AYbPtfR8fhfvn9b2zSD2lk84zlT8z53C710+x8aJo645CtW7mx1uC7xDBn+yPQvIr9YYYKzLVJa/qvwFWGR9pij9N75hdkf6aAZHxW3Lzx7/i2fv0fZ384MMH/9cpKqrrjomoZ9mUf71XOZIPP9ksIhDPA8bmLOY+6HLngzgEIDqUDGw/VANDi0svBo2iG/iedjAnMXcCaA2qmAAWwD8CqXAD4EqLXoCThlFonoFkOB/6HBqYWERO3geNrCoirmzQ9VC/gnV3LApgCemdjgpZNjvb+sMkG8DjvZK3W+kthO/YRZzX5pGpXiyERzFtnUEle+355m9vW6cpAJ8ejdSQL/mLPq+MKur4fOgz1Q+50z8ta4ONX/FKVOQujojeqk/pvq+65tF4cSVB0xdtijIx8M7sJA62exNThe8vvwVbfskL6LtPD9wXeLm5s+ZWYQj4H7cTxpd8ffXjXV1lrKx5K7mrAZosJLTyjd+YIY0Hy1lH7IL90jLndncBN93N3y2V2ERexbHLIGrvflZV3CPmeWFmVj9z2FPYCaehyC+s5g7AVQx9xGojOTrUJtWcvxHPfEtLCziDvH+BOZq3xFRzA2okqI+UNTyO6gyo3tQAtcn4KSQP3Yoj3dr5ne3zMIiTmBPYCaeByFrVGPVWgFoI6WcI4RYCSCxlPLlKC8EoM2Kdvpm7bjAsWGBbSjiT3DjvOGTfBSzlaf6MZOV8TopZKrJfxo+M0Yyy1WtLSlpwlzMGiZsVc/wQSiziO0OMrN26Z7Zc6t/+dzarnCOVOryMLaEzpEjoeET+pDrHr/EDTzsGovBIwtmg7exBC7X68wIpslrTgr3783MKgL43ObnGK7tufNNXrZwC+/P3Y4sYd1SfrS2uwwuYfhsbs4q62SSn9vyAsWqofO2Gj5pb/J3tOR9jmUrndFsonCuLEMDhfYeidUdZklQD4+8YV8NGOmVO+fzQCHdFXMHAEgopZzjWjMeqrGhRRzC2LyeUTg3L4u4x/Owge2F2sAixqplhxqh5iOE2CeEOAYVpA935+wUsh796x93Syws4gw+HvrPW+G9z+y/gy9MJX4KKCnFRgCFoNrh+kC11HkCUsqfpZRlpJRl8tcv4G6JhYWFh/A8xMBGAnhVSlnA9e+5UMXc6QBUlVJeFEI0h+rx7RfNpbAgWQF9s9KkYUigz0iyz03pzQaCla9xBNgbBRnDSusYg/Z2PnP+gTzPeNJaX0oqzt9jsXJZ/wDD59cjlAnUbLyBP/9zMxZ0fTWV9FePMMbT8GNKHY6362T4FPiF487WL2T8qW4TPoddD83PwgQvUyJxNYCShnXnWCj+w57rhs+mtWyWmMKfTRBv5jKLJHxfIfUUqbNqW96kyj985QbD5+xr5bQdkIj5mvCl87R9oabRxh3nS4zSdqq/OfMl/0aexEOPmK8hca/YHau27HQvj7xh6+b8xsbAPIQdAPIIIY4IIQ4BqA112soGYJUQIhxAd0Qx2NbCwsJ78TxsYAcBPIAK3OeEes1BUBKSJFBxsY1QJUVPwBkDW/H4lrslFhZxBjuZ28TzQCHfAFBHStnB9e/1AG5ADeCsCmAmgKEARkfQzKgQvqiDvlnhdzhaa0IJ0p0dl0zZwteVWETs68P0/b1Qboaz/jlg+ARe47UHOyZ7Z/+L9Ov6XFO9nywjSzmPD2Qf/ZvFzGnTgcuqabtCU44KK9IoQNsT3zIlcZ2PUC4RVJd0OV0Pjmh7vY5ZYpUiEWcG/LmM9Hbj57W1XTlZIcMn+fAJfJ69qL4v/4s5h/iPpuzndSuEz+31dKSJ8pYpZ9lde6K2S05ilcC6gMTarjVsneHTsE4+bS9zSDdOn+TvJ8FUsyIiTeI3Y/XdvuJMb4+8YWvnGOaVu9jzcAI7AKCaECKdECI/VFeKq1Cj1SKEWa8CWBiFv4WFhZfieVDiH3a1zIloaHgYShOWBKqxYVIAxQGUcudvKPE7VcJ7dQq6W2ZhESewDQ1NPA8UsijUqPNyAB4BOAZgCoCtANYAWAXgNIBLUsre0V1r1tEu+mZVycb9bl+2Ydpu2M6cIp2pALOSGZJR4b62GXuIzfhnheFTuSWpXfLNXbTt03iStq/NMIcohZTjyLVMDlqUqWJWY12yG8xqzu1JdXnjANIquXut4RN+knRMpCFdFsWLaftRhpyGT2If9tLqs3Wmtof4ptX2uQHm6y5Yhir96aP4MzuOMKnmxY6kbXc7fUX7Altuj+ppZl8HV2TxffjnP2g79Br7iaVsZ2Yh171Oily2Ce/j+S0sm83Xr7zh49P4l1ilWqvO9vHIG7Zm9qFeSSHj/QkMSuu1V0r5QAiRA64BtlLKFQAgVIAyEFaJb/EMwJsD6p7A83AePQCgmRAiBKqA+zGA9EKIP4QQjwC8DNUf3+0G5sxCrv79oLslFhYWHsLzcALzhYp/XYHqxpob6hTWQUrZTAjRF6pn2FZ3zs5+YKJjeTnxWzVMeH1/0p3B45kpDK5R2/C/1IEi0DP7KURNUYr0q0i6DIbPjJ9YUz51JntcHS1NQWf6kZuRtCOzjfVHldX22q3MmJ0/w6JzAPi0IzN4L7zDAu4xY5hZy11rjeGzbRknETV8m8/n6tVV2q57/hvDp+TcKdqePHiftsMOkr5l/qsGQgd8p//90EFvU6XiSWN3W3M26p7CHbWdrwapXVgIlTDHboYYPv5f8+fc7N5C20tv7dV2/YCXDJ+Dy/n7qpqUYtyLfUhVLwJ4+cRDxBXsCczE83ACKwRgqZSypKvbxAmo5oZ3hBBvQ2Ug50IF+J8ZODevZxXOzetZRVxuXhZP4nk4gR0A8KMQohLU680JYIoQoi6AEVDdWssDsOlFC4tnDM/DBuYLICVU19UwALeh+uOPgSopSux6/HcAL0R2dsoo8HIuoHDGOHnSFhbuYCmkiedhAysE4NdISvzUUsq8Qog5AL6Caiud2J2zMwbmbGhYrN9GvWa9o7f79tAgw//Tlnm0vaZjGm0PusvC4x/XXzF8/mjI+FiXbxg/kgGsNX8wcpnhU7sdR4q904yTtGUzs7g8VSJGDZIs/UjbGVOzgWC7b83DaNhWyga+qs7Y34mDVMEjkTnUaetpNlhMvJpSkOD+32o7/K5ZtZChAGOBFc71o/95s41RwZaMR91qxvjcqpKsOuh1eIfh03kjC+YHHOOU7m0X+Brq5jQ7KhWp45CTbGAzypytODqhWFuzQ+/BaFtiWvzXeB42sKgo5PsA0gP4A6o7RZDHnqGFxb+EFbKaeB7uRgSFDIDaqCIo5HAAZaDErY8AtHPnbBsaWlh4L56HE5g7CpkWKnh/C2pzSwTgNyFEOSnlJaezk0I+ntpK4qKiPee+f0OvSTqaxcYjQ+8bP3xdg7e0vebqZm2/l5bU46tZkwyfMhPY0/5+Cqr3x7cmHR288rTh81tV0p3MeRknSTHtM2Nd/hQcHZbqgxParnF3oLYvf/y94XPju4+1ndrRH9+nzxhtl/vDfA2/dSG1S9GWcwFaOCj1jj0XDZ/7rThdvP6iWdr+K3duY93Ut9i7DMnSabN8fVJ0/2GNDB88pMQi63ssez0whOr7JDvMHmJVplMSU2jzLm2vWfKhtq9OjNsSWh/b9cnA83ACc1fMfRmqO+tPLvsxgHaRNy8LCwvvRrzfwKSUh6FOWVehCrlPQBVz5wLQCSp4nwDAX0I8meJxUsgJ645F/raFhYUHEe8ppKuYO2ISUUQx9y0o5f3XUsp1rrbT70AF9Z0Dqw0KeTPkd3nX9XjOxJRT3L84X9uz8qdxukNeZtysWo5afHzZH9q+m8nMtzHmwQAAIABJREFUFG77/rC2A5eyf1ePwuyR1T3xdsMnPIDP5/KrVJQnefDAWNekLZ9fuXKkX6t8WXztLPIGgI5rlmp7Rgj7fDmzkAd6mf3AMiVjT7FkLVmM/efGc9ouXMy8V2GLWdz9TkV+73xXc+zckh4s1E7VimLYJt34M78PPWP4pEyUSNvpl3Oy9qMdp3jd2osMn03LSYNH92Sb78Ln7xrrjvdojbiClVGYiPcnMDiKuaGmcke0U1gAoLrr1NUSQAiAa+4vYWHhHnG5eVk8iedhA3NbzA3gbwAdoVpKZwTwlXTTW8hJIadMXBX52xYWcQof4eORL29FvKeQiLqYewiANgAaQN2HZgDGRXaOTCHj5ilbWFj8GzwPG1hEMbehxIcq3k4NoDGAL6FKjaLF+vPbtF2mC5X4+7cwJlK7vBkLkucoFdifjOr0PAsZG9vTv6LhU/UUfVamofJ9SVoq51858Ynhk2IPO0hMas7n+fMfpY1107ry37lSMQaW9NfZ2v4tY0LDZ46jSKFyMF/rZ9MY06s80FS+l6/GSoO+bfdr2y8l1wQd7mz4hExhpwufouz/n7erOVbtdlXKLRLtYhek1sdYtZChonlarrPUIavIE6DNxcXZoBGHzXvVID1jatfPMRYZMvAnbQc3jlSQ/lcrxCZsDMzE87CBuVXiA/gLwGyoE9oIKFGrhYXFMwTvJbf/HaJS4v8E1Ym1E9SGttidszFWbWaguyUWFhYewvNwAnNbzA0VuM8kpZRCiOyI6DgRCc4Y2NZcBSUmKhlA1g0f6DVZrziSlzkCDP/bfpzGXeIeVfr717NA+qV2ZhHx/E8qaPubnaRio0930Pa+MLMA/EAfSiyypV2v7eZp0hnrxF1yuDOdKRvw+YL9xab8utvwyVGaNPZMJl4veBw71I7uUsTwWVOYUowUu25q++hKyijwwKxaSNyK8o9GuXjfQjaaI+Qu1e6j7c1r2I/r2lKTijuR4Deq7Bf2YDVBlWyVtX3i9mHDJ12jL7SdqRErJy7fJI27OjN2KWNkWApp4nk4gUU1Vu0hgIg6m8+icrawsPBexJsNTAgxWQhxRQhxwPFYWgCjAWSHykLuhppCdB/ABgBfCSHCoQL5d5+8qkkhF9y1k7ktPAsrozARb8aqCSFeBnAPwDQpZVHXY98AuCGl/FoI8SmANFDNC1NBySnqA3gRKh4WIqUs5/biLizxK6BvVq0+VJefWcASowmjKhk+n5Vhpu7cPRZPF03NjNfFpv0MnyyZSBM2LOGm2e4L9h37p6A5PfvKKGZFp3zKvozN8hc21sn6nH5duDzV7gc3sx99nlltDZ+ym5gR/HEgM31l5ryp7VO5TKoasIoF6aI66emRqoO0vS/Q/Ntr/RH7ge3p96q2i/VbYKwL70Mlffgm9rT/riB7kpXMmNbwuZN/rraLFGPkJOvmr7X90Xrz59TOwet9s4OUPZEv39BzZp4wfLIs3BGrHG/vtSEeecO+kP4zr+Su8SYGJqXcIIQIiPRwQwBVhRAZAUwFsAmqC+tWAAtc8a8dUAH+gXH2ZC0s/kfYGJgJ7z0bxhBCiMlQ6vq8joczAZgGNbj2GJSEojNcG5aLPl4GcBPARriBk0Iue2QppIWFNyG+UciUAOZKKZO4HgsGMNBBIQdKKZMIIVZC9cDPBbV51QPQS0q5K4rLAwAefdtE36yEb9XRj/92g7TqrVspDJ/BPtz0VgQxzLahELNawXP/NnwefMoeYpfKMRNWtBKzgVuWmZtpk96ktGfTsPV0yRBzas6KRSxyvjWB073DqrCfV9JNnQyfZO1maNt/HPs+Zpnzl7YvH7xs+Ax5hwXXTT/cpO2M6/l6Ltw/afj8eYp07PN5zDymz5naWLd363Vtpx7CEWkzM7Nddf7LZnaw1FHer/ATfK6LPiA9fuWeKUpNuJViWJGYYt7k880JfPff51RzkbNnrB6R9l8f6pE3bPF0fbzy6BdvTmBSyg1QGi8nfABEtFJYCr7ek1CB/Ih8ejYAF2BhEUM4N6+4gA+ER768FfEmBuaikI2guqtGIBzAHEebrwjB1R2owP1D12PXpJRme1BeV08lGvtGSXSokMvdMgsLCw8g3mxgAHJA1TcKIcQ5AAMACNeXdP0/AvOhMpKNXf+O8iPGKWR1UkgLC0/ABvFNxJsYGAAIISoDWOWIgT0CUFZKuU8IUQLATillIsf6gVCyig+klFndXdOJWx2q6puVJiELs49sJ3NdOKGK4TN+L/sjHs9A2YIoQ6nD9bRmjKfAD4w5TWjMWNnrJ6ggvzR2p+GTeTLjVkvvUiE//YjZ4mzTWT7XA7sZF1rcjTG0TFXMQujgbQ20XXko43XXj1J6kW31N4bPzsscXeZ809WfykaM9UqYRdqnbvGebsrGovhbE81C8aLl2QBy/nCq54vU46/w7vl7hs8H7xTQ9rwQRk66OwrX+/98yPBJ+z775fcSjF9+UppSmevBZuyvcNresbrDHLoxzCNv2Nh+Xf8r4s0JLCYUUgjREGoeZEYASRBFBtLCwtvgzaJSTyA+3Q2DQgoh2oMUEjBpYiDUZKKUrq+6Qgg/uIHR0PCIjfNbWHgTnlsKKYQoDhUL6wPgCylloaiuqxHyp75ZottX+mFnD/lkZZcaLmUu9Nf24XxUoTtatKPs2GpOF4jC+fiPy6SAIaVIXY7e2u90wYhdjmqAvSye3tW6uLEu8DoV5Rfvs4g8oeOjrPNP5vxLv5a8xqESpHbVf+OYuLz+pnxkxSb+nOT9OIJuZVFKHW5trW34vPGA6nl5na8hvOprxrqQbsO0XawEi76P+7Ma4PRIc2ZA9tUjtO17hXKNSutY+N6ysEnluxRl37ExB+Zo++WsnAx+4No5w6dlgbGxSrWO3BzukTdswTSfWArpAYRDabz2uf4fQSFzAFgONeRjPIC4zYVbWPyPsEF8E/GGQgohTkAVaCd2UMhHAD5xncQ+gRrcAQCfQ8W+gqGykavdXDLiuppC/jxxWay+BgsLi5gh3lDIKJT4NwD8KKXsK4QYDJVtTOf6ni+AlVCbWGkARaSU0U4lOvlycX2zck2iAlzkKqVt/3FjDZ+bQaRCuYv7a7tXOY5BazTioOGzsg8p2xsgZdvbYKq2S1c3R5LdESw87vsGJ1nnS2MesjtnKKbtkIw5te0zerK2E5QNMHxyHKJiPjQ4TNtlc5K+fVmxgOFT9kuq9INL8OfMfZk0L2cdM9s5aSIp8qQ5vCd5y2Yz1s0ZoRuOYP1M0u+v1rB32pVmJj0Vfpm1fSL8vLZzh5G2ikRmV3Gf3qSdYV++r+1PDpE6d3mhhOETkLJLrB6Rjt0e5ZE3bL5U3b3y6BdvTmBRKPEjQwCAECIvgA8BzIWaUpQAwPVo/CwsLLwQ8SYG5qKQuWAKWRMA+EAI8QlUv6+IqawDALSCOn0lALDe3Ug113W1En9Q3qxokTmtu2UWFnECn/hz5vhPEN8pZFTF3OsAJJBSVhZCTAGwREo5J6prR0Bu/5Q3y4d/SElnk1JcHdzN8Gnx1zxthzk6R/ctz5KkysnMBOi8TAO1neQwRaTvrTiu7dNpUjldMPcFtoqu8SV7cQ1ob1577O/s6y9H9tb2nY9HazvFm8UMn6EpQ7Sdy4+feS0KMEt3u8MXhs8vXQpqO2dKTv0umCazsW7cfr6mXH6c+t3tBEWtPrlNCnmpECmybDFe26H3Hmk7Y0VTlxzan0XoCYf8ou08mShknfa5KWQ9sqq6thv2cmQ155jdxwP6TNN22A9bYpVqnbj9nUfesHlSdbMUMjYRw2LuAgBKCSGCADQFME4I8Tos4hTOzetZhXPzsoh7xCcKGZNi7hYAFgLwh7oHl6SUZjtOCwsvhLBKfAPx6W7ERIl/Aqp9TgEA66Cop1sYMooFe6NaZmFh4QHEmxgY8O+V+EKITgCySCn7udYFASjzNBmFT+cK+mZ1fZP96fv+xNjJrN6m8j1/alYo1c7G1H6bVdO13bbNZsOn6hTGXo6Xz6PtChM4fftau2aGT/iqtdoWiXmwHpHdnLLdZQYlER+/QkX55MVHtL1mjnkbSp8aru0E4yjlOP121GPMzt9jUrfMUE4KTxnGUWpJUiUxfA5scjQqdIxVWznjqrGu2Uo2k5SXWJB+7jVWRMz8x6xUqNFinbYd4Uv0GEQJzIpzIXDi1laWjvlO41T0lBPnIyok6vJHrMaKgu6O8cgbNrblIf8rnlcKWRaqV343qCG3obAyCguLZw7PK4WsCtWF9RSAwwCSAjDH90Q4OSikjNQ22cIiruGZfqzeu008rxRyGYB0UENuA6BqJTtIKf+I7vrOkVY/7icV+6liQ23f7zPa8MmRhRTukkP6EDSBFGfLFLOH2JaLlAP8eIe/H1GVqvMriR4bPn8GsWdWi+lB2h71enZj3We52OMq65zF2q6fj/q2sv6JDJ8Qiu8xZCNplbMP/qPiOZ0uSHKIqvgHAez7tbEZFfs1kuQxfObnIFVttL+tto9lMGlwvnBWMYSMma3txJ931/bf+ToaPu37k9qvWU4lfrqBHN9W/4ApoxgzkjHPi7MbaTugPasMEvuZ9yrDrNiVUZy+O84jb9icKTt5JYX03q31v0FEMTfgKOYG0BdAHqhAfiCAGwAOPeFtYWHh1Yg3G1gMi7mLQm1maaDU+akBnHnyqiaFnDtth7slFhZxBjuZ20S8oZAxKeZ2bXbrpJTthRAFAWwBUFdKGe0OleLzGvpm3X2NVEyW4eRpnzCT2k38Z6G2299jRnKa3x1t3w01fwcnbvEaIx8n1Xbixbu1PbBlEcOnRQ+O+tr4U2Vtt0mR31gnD7LXV4bA09q+0P1DbXdeZxYlXHIo3Bcl5WsIDeQcFN80ZkbRt4IjpPiAqvpml9g/a/6KY04X3M9KapioHXuAhaTxN9Yl7cJebOFDu2j7tC8zkncrjDF8spbh1O+q1VkNcP4yW0//1M+csv3el1T8X05n9goznnfrxtpOnfiNWKVaZ++N98gbNnuKD7ySQsabLKRrMnflpyyL+CUkcNg3AfhB1UpaWMQIzs0rLuDNAXVPIN7cjSgoZGIAXYUQEkAt8PUuBNBICBEC4CzUZpbMzWUNChm6+7y7JRYWFh5CvDmBAXgHpJDZAEAI8S2U5usnAD2h+n8BwK9Q3SiOQKny64MBfgPOsWpbcxWUOKg2sZNrmMHLtJZ08p9bgYb/tYe87JZmrFbaPe0lbX8batIvUcDRW+seKc7NUE6HxtTjeOSgdh16ldR20dukoHfzmFnI/ifZZ+v6B+9oe4U/i9Cz/VnV8BlemQJccZP9zbYWIa2qcsFkNqnnbND2nQuky4un0/9tAG/3ZyZy9zhOGCrrz95ciatRbAoA9xKyfXXYQjaZzFmcBfJhn5Y1fK42ZgZ3gy8LL/KMZmH32e1ma+8bhUhjl1ykiLj2EmZYk02YjeQnmJkN/Zbts2MD3hyP8gTizd2Iopj7ItQQW0DJJiIatdcEMFxKWQJAEyj92DPVJ8e5eT2rcG5ezyqcm5dF3CPenMCiUOIfAbAXanzaZSjqCAAFAZQTQvQFsAPAOaiMpIWFxTOEeHMCg3sl/lAAJ6HoYREAX7vW+kFtavcA5ASwzeX7BJwxsAV3b7lbYmERZxDCxyNf3op4cwKTUtZ0KPGdHfAqCCFuARgmpYwYJb3D9XURQBkA+aBEre6uq2Ngtee1khGtAlfUf1OvSf4FR4Xt/eRVpzt6neM07bTvUa2+oShT9EEJzV7sCX14iLxVjw37ioxgjCZFjQaGz+x5s7QddoxlnQmznjXWTdlA6USJDCwAD1rCaoCAlL6GT9pufH0hhXhrU7dkbOqDuycNn42d+FyLpy6j7dEfsMHj1avmn9+WLVy3KZzy/5cPnzLW9WvKWNeoQo7Kgrl/anvXcvPXGdKQ69ot5+v+8XXS2H9umrR8c/4e2n6hCONuvT9lvPFQ6/Kw8BzizQYWQywCMAPAD1CB/3xQG5qFhVfDtpQ2EW/uhjsZhRBiuBAiFEAqAD8IIZa7lmcBkB5qJuRbAH6WUoZFcV1NIc9FEl5aWFh4FvFdiV8IKv61HcCHUspfXY+XhArq13Z9VZFSZnV7YQfkWfYjf5SFUod7oYyNbbxgHuQqZOLYLX9fqsHvdhup7V39Khg+C09wqvXwUw+1/XAbaVGhkmZP/FypqdhfvptShZAv2hrrUvxKKYf/dT7vP0aSAubMZR7Mk67uqu3sn3D8mlPOkKxzpOniOdgvTR75W9th+0kHN9U0C8DnHOPrbpqPqvxruc3KgNptOWru6jcspM99hq9nd9NZhk/IOlL+WmM3avt6UkoqVg07YvgUKMT7kLUy/zwGNw3Q9uUH5ufexBqTYlWxfuXhNI+8YTMmbWOV+LEJd0p8KeVhABCRphlLqUJZrsdvAEgihEgspTQ72llYWHg1nksKKYQo5yrwngigE9TJza0oyWgpPX1L3LwYCwuLf4XnlUImg+pUUQDAny4/fynlY3fXjkDzpW31zer7CdskfzmMmaiO7bcaPqkDW2u761p27FnU0EF9Rv1i+FwMp+I+Sa8PtO3bnUXMwsc8Vb5QjtnBvxq/ou12K1Ya6374jn3IvvyMWb8hlTgVO1OweTC/3Yu0MVXXqtqenYTZzhrZzfbS6T/+XtuXr/O5ZhjbXtsy0Gz7LArk5fdOMVs6PX2wsa5kBlYX3C41hY83ZYvsx0Pfd7og5Z6d2j7akQX2HRwZxQ2VzIzi5a4ztO0/kUXjCL5nrBMZHJ99vrVilWpdC/7NI2/Y9ElaeSWFjDcnMHdKfCnlYSnlP27WPgCQCcB8qBKjaDcuC4uoYGxeFnGOeLOBuZT4i+FQ4gsh3hBCHISikLkcj6cGsBZAcgCzASyN6vTlpJAnlh6NzZdgYfFUCPh65MtbEW82MLhX4meCqoEEgO4OGUUXKClFcqg2Oi2EENkjXxBQQlYpZRkpZZk89fK7W2JhYeEhxKcsZFRK/B9cSnwdA5NSDhJCHABQCcB9qM4U/lCtdaLE8JcYI/HdzoTnnJ4Ttf39iU8Mn75bGBP7sisbEoY3YKeDGx1bGT77Kw7SduE+/Iz5uBmbGPb9xTwNpi6YT9uLMwzW9s+XzeeTbDFfol8iXjtBO74GjGxu+Pi1ekHbIYXZ5SFRSvagTznYVL53frOYttMnYBPE236Uf6SZbUpOfBPt0va9UZ9pu1XQAWNdxmmUQYxdVUvbZRax3VGW4T8bPis6MMbnn4YxxnWP+RY43vgnw8f/BUo5cJOvr+bufdpe6W9qA30q10JswnajMBFvNjB3xdxCiDcADMSTFLImgLkADkKd0lIBCIq7Z2thYfFfwKu2cyFEqei+nuIeEwrZFyo7GQ4gDMCMqIbaOmNg0ydvdLfEwsLCQ/C2E1iEPD0JVJH1PqhuqcWhpBBRtoyOCYWEin1JqGEeSQE0FEJ0kVKajdRhFnM7+5GvPEM6OH8qle9ZxuaCE926jtB2nb5U7695wBkiiT9fYfjc4OWw8swqbY8oywJumcmkVTPD2Wu+blNSn9Q7zXVtm7GI/OtRpELpR3Bs2KNM+QyfhGdJza4+JAXNkIGZ9cRHzW614bVZgZB2EfVzla5Tbb/pL7O7xz9LOZE8yT02QVxUYrKx7soxVgY02bVd2692ZYPGT/f+afgUn0h6KlYM1fZLs6dp++v5jQyffJlYXSAvsdni4asPtL2u8xLDp/qlkYhN2JbSJrzqbkgpq0kpqwE4DaCUK3heGkBJAMf/wx/VDGoa900AtwDMdLd5WVhYeDe8agNzoKCUUvdmllIeAPBCNOtjWsx9EUBdAMFQvcE+EEJkiOK6lkJaeA3sWDUTXqnEF0LMhMoO/gZF9VoBSCGlbBGNT0yU+AkA7AbQ2jW1exOA7k8bq1Z7Xit9s5ZXoPLc50vSkJYNCxk+p25RRd6tdHptV85CipWwvUmRBnVktnHflfvaXpOSGTxRzPw5Ih2p6zWHnnfRSbP8qfkkHmS3zyCNrdeao8tO/vPQ8JnUl2r1NEn4x9zJkXgM3XMRBhwZzsQd2Cf+Vg9m+urUyGS47NlJGhryFvuTPS75krHuZvOB2h7XgxO3B+Tk85QnzRFp63JwuveVnHO1HeTog987aRbD51IuRiI6r1nPnzmF2ugEiU2NVPrpm2NVsX7n0VyPvGH9EjXxSiW+t8XAIvAOgI4AIoIdGwD8GJ1DTIq5ATQFEOjavHJDZSj/S4pqYREr8ObuqJ6AV94NKWWwlPJbKWUj19e3Usrg6HxiSCE/ANBcCBEGtXFlgcpiuruu7QdmYeGl8CoKKYT4Q0rZTAgRCDc96qWUxd24RfjGhEL2BNAZauRaLgAbAbwipVwd3fNzFtKeuRukH689jWLVwI5NDB//bXu1vf4tZhvv3+fLqz/L7KV14WUqRrIlZ0awxjyKTXuUNulOPT8KR7eGkD6VHLPTWJeoCGns76XZC+v1X9gPbFuXkoZPtRScsl1oAfuJBbZ5V9uhn31n+CSpyP5ZfdPzc7J1QdYOlv5mqeEzpHlBbXf/ifetek2z3nBSbfZPy+mYYh62hn3HDg//2/ApVYuvO3tR0uXjjmngSJLY6YLb0/Zou3p10t3dJUz6fm0wf68ZZm2JVap1N3S+R96wKRM2shTyXyCCMr4a7So3iCGFPAdgvZTymhCiO9QGVwpAtBuYhUVkODevuIBtKW3Cq+6GlPKi6/+n3X1FrBNCbI3sG5NibqiN6jVXOVFPAAEADsENnBRy2qQ17pZYWFh4CN52Avu3SOLmMUOJD2AAgGQwlfiVpJR1ANQCcBSq/jEcStB68MlLmkJWT/VisrCIgA3im3hWNzB38bGYKPElgGtQ1PEugDfBCd5RIt1d5hHW3Lqs7Wvduml76tH5hk/7hVS7Fx7GEN7xI1e1/aBaPcOnzh+/afvEwenavpONUrWsZw4bPlc/qq3tCjcZF/qh2RVj3btzKJ14ayMLwsPeYrFztWxmQbJvZxZW71nLMoEEJSnR+Op1s5lH4UqUHXw5xlEMPoOU68MWZnePxj3YJPL2EI5B+/yi2enIx5fxtRQTqD9e+gtlGB8NLWH43N7D553wnfe0fTWY8o+Mt8xGheGhjKMNezmA3xCptVmyuj+cOAeLuMSzuoE9gZgUc0NN6B4MFWuTAEY5ZkZaWHgtvFlU6gk8q3fDXUYkJsXcXwFIDDULsiiALkKIp/fEn7bhP30RFhYW/z88qyew1pEfiCGFrA1gkZSyIwAIIW5A1UcORSQ4Y2AHixeUh6Yqsf5H77EwO39zShXajt5t+Id/5uitlZChu8WdOO06vKJZeHzhwl1tj3mbqvyjmShVu5qmrOETIjlV+lGqNNouH5bZWDfitXBtX/uBin2RPJm2H080e2mFfcYCiB3Lxmn71Ieky/2amnRwZzZ+xvgWIeVb15vyiMwdIhWNp+BE8u6TSW8vX3lgrMvkUMgHbmQTkS8nkwYvr1zF8Dlej/Sy+D0WkWc8HaTtU53nOV2QrwTHxoVlrqrtnFMmaPvRQ9uN3JPwqg1MCHEXbuJbUCcuKaX0A3Rt5P8HRwHUdZUU5YcK5tuRahZeD9uNwoRX3Q0pZUoppZ+br5QRm1dUiEKJv8ChxJ8ohIjQebUDkAJqMtEBAOcBnIjiuppCzr5xy90SCwsLD8GrlPiRIYTICIdkQkp5Jpq17pT4tQGsAbAKqkXPJSllbyFEYQAzAZSDKiM6DKDM0052i1IU0Dfr4jb2rnq/UGNtzwsy6WCjhKR9t/xJpTZeYB+rrHX/Mnz8djBLlvcGKUq3MyxlGlb5dcPnfJVPtZ1rYFVtL2tqCi3rnxuibXmdU7JXCmZFU1ZZaPjkKs2s26ld3MR3LmAFwcgdlw2fHuWYnes6nor2Ue8zI5nv5bWGT8Zjb2m7yGDGG31SJjLW1SjGovbxtZjZlS9N1XapGmkNn+MHWBS/egypZteZnMYd/jjc8Jn0Dul7lhS8B51Xkd7+MTLQ8Cmy/0isKtZDw5d75A2b0KeOVyrxveoEFgEhRAMhxDEApwCsh2r3vDQ6nyjGqq1wTBsKBBARPGkKtdGFAMgL4AHU5mdhYfEMwSs3MKgsYXkAR6WUuQDUALA5OoenUMiXAQwDECEOqgygvxAiGKo3/l4AWaO4rqaQy0MthbTwLAR8PPLlrfBKCimE+FtKWUYIsQ9ASSlluBBih5SyXDQ+0VHI3gDeBjDfRSF/B7BRSjlGCFEUStDaRko5N4rLAwCKT2umb9b2fyh63NmZxdcvpzQFlJuL9td2uIOhpGCCC4VaFYATiV8lzZqWiNSu3gBSMf905u8t7DX6pN1Daji5uVl43GArp2mXF8xcVs3BEOPgHdcNn/R3qfGdO4YtpXPlYQ4oy4tmtjPZZ021LQ+wyGHBayalbTiJgtUrr1fV9vqUw7T95vX+ThfUWbNM26kS8zmcuUOhcdBVM3PZqzKL3zec4/dm1mevsqR3bho+V5LwF9Z3K5tZNm6yyVjXokdObd/uvyJWqdbj8JUeecMm8IndieP/K7x1a70lhEgBdaKaLoT4Hk+Znh0VhQTwFpRgtT9IIfeClPEggIQArsIiTuHcvJ5VODcvi7iHt25gDaHiUh8DWAaVIXwtOocoirlnQ2m4/AB8BxVPA4CTAD53nfDOQkk3oqWoFhbeAG9tKS2EqCuE+EcIcVwI8amb7ycWQvzu+v52IUTAf3I//ouLxBZcAfitUEH8p9UqulPiVwRwBUBaAGmgurwCaqMb4nosI5QGzO0R2RkDu7H2pLslFhbPNYQQvgDGAqgHoDDUpPvCkZa1B3BTSpkXwLdQMen//8/20hjYLgAvQW0w2wD8DeCBlPKtp/hFKPGTOB57G6oD63cAGkRcQwiRDSo+9hnUzc/qyFi6xYHrX+ublS81Y10LT1IG0SzTy4bP4CMci1bOP3FYAAAgAElEQVQnJxXkZQdQbuGbyOyrfngbkwU+CfkZs3MrY1YVbnU1fHI46pAffr9Y2xs6FjPWZUlBlX6xdJw0jkAWX//deJbhk3BrG21feUCWnisVpRKvLzA7HB1s2U7be28zdld/DqsWCmVIZvgs2sTC8xTBrEZwTvkGgK4lGde7H8q416X8lFFkzWJ+HiXc2F7bBX0pbQnfRrnGiuarDJ8XqvNe5c6fVNs58qfT9sn9pnzk0aiNsRorkljrkTesQLUoX5cQogKAga5OLxBC9AEAKeVQx5rlrjVbXQLySwAyyP/nBuStJzAhpXwAoDGAH6SUjaB29qgdYkAhhRCpAayFmg85G8DSp21eFhYWUSIrVCgmAufwZFZfr3G9126Ddcr/M7x2A3Pt6m8BiDiqPK3sKSYUsguUgDU5VDudFkKI7E9eMpISf2q0Q4ssLGIdQnroy/E+cH2953xabp5q5JPVv1kTY3hVLaQD3QD0gZI9HHRNDlobnUMUxdyTHBSyG4AGrrWDXN1YK0GNb2sFVQ951s11dTH3vBPd5NFblwAAu66wKKDWp+wbdf33ioZ/36L1tb3sCvME4YM7aTsklflBtPsKN8oKIE3Lk4nUadMl83bseUjKda5lgLY7/XPfWPdNWoYSmyzktOoNi/nSixwebvgcucmeZi/0JOVySjkGtDXlI6G+/Gws2X+Rth9mZk+zKqnCDJ/bg97U9r5gJoVbLDEL5NsW5mt68Svqm7MNo3L+9Ftmvf/9T8fyH4PYy/+fXuwi/noHc8xbfkfv/Puvssu53MR7MK+TOZsgvsL5PnCDcwCcB4BsAC5Eseaci0KmAvD/bmHllScwKeV6KWUDAOOEECmklCellB/F9DpCiLpQGrAGUJvUUtfjhV2PfwF1IzNAJQosLCxijp0A8gkhcgkhEgFoDmBRpDWLoLSYgKqEWfP/jX8BXrqBCSGKCSH2QBVaHxJC7BJCFHmKzxNKfKh6x3xQnwZ1AEQUMI4F8CKU9qsLgItSymtPXtU8Oq+YFehuiYVF3EGGe+YruqekYlpdACyHqiv+w8WcvhRCNHAtmwQgnRDiOIDuAJ6QWvwv8NYs5BYAfaWUa13/rgpgiJSyYjQ+USnxswJ4D8AWAI9dSvwdAF6A2thSQ/XF/1xKOcbtxV1Yd76vvlmNppF+jW3MXohvfbfL8Ln9/SfaDm3PHmA7B/Gl1LmV1PARARwvlmTweG0/7PW2th+lMZXvp8v30LYM4+/09Bnzjy9zJoYivv+eRc0TCpIC+s9Zafgc/YBZyDrzWKywRbLIOv1ps3V14IcscM8mmc277Ev6tzOT2X6t3VfsKXapEDOF69qY2cHmfbhuWUuKYZ16pVIDFhs+Z88wR5PYj8/bz1FB0Din+XvoXpqsqOpuvj6fanWMdTe78s8mzeT1satYD1/tmTesTw2vVOJ7awwsecTmBQBSynVCiOTRObgbqwZ1wvwEQBWo+seI+pZmAJZIKYsKIQYCuPe0zcvCwh2cm1ec4CmnoecNXkkhAZwUQvQXQgS4vvpBdaaIEk+hkGcA/AGWEgFAbiHEfSgdWB8hhLtJRwaFXPzbHndLLCwsPARvPYG1gwqwz4NKv24A8M5TfN4BKWQ2ABBCnIVZzB0x9uYK1IbYEuoeLILqOxYc6ZpG9uWvoE/kg1AlJq1ZnBmrFmlIvzJ+ZvZd3JCeE33qz+PkoBIZSBPlabMN2a6Q49o+f5GZuvEXHVO2LwId8zHDOXQIp1VnSUFh7KCc5jDzRzM52/LttsyKzlzF/fvnPkcNn0GlWIC97hCznaIaqfOu8XsNn4+K8drz//yHr+cCTxClqqXCd71YhH62fCNt3whlQXm+F0yR7KU8Dvp8wvF8EpMabl9hFmancWRWDxYirT8xi6HPVgCKFSFTKrzqJT7XO+x3Obv2F8a1c7wVrUTxv4U9gRnwyg1MSnkTwEdCiFQAwqWUd/+Fj7vJ3CtcMoqIYu6IgGJVAHuklPsAwNV7LC+U4v+ZgHPzelbh3Ly8Ac7N698iTjcviyfglRRSCFFWCBEIYB+AQCHEPiFE6af4xKSYuy2A+kKIO0KIh1AxMrOuxcLCwuvhlRsYVMq1k5QyQEoZAKAzgF+e4hMTJf5DqJ74Z6D0X6FQLXWegDMGtnTGPndLLCziDl4oo/AkvFVGsVlKWelpj7nx+1fF3EKI5gDqSinbCiGGQCnyl0gph7u9sAu+H1bUN+vEkJb68VshVLdXn7TR8Pn7T47zqtQ8t7YPtKPqPF1iUwGevP9X2t7craa2z9xlvCZL8jSGT5XRVObv6Ul6ee2hyb7LzGK87e5uFiJf/I5K86KJzXFntxLyDzjlXMoTEjgme1eoksvwSeEoUF/emIXU4TP4OeTzointezhhnbYfnOU9Pb/HbLBYYs9IbaceMVrb01ryejXHmHFFZ3H4kHcYs/x+xyVtn7wYaviMb0IZxcdFGZ8LX0ON5ub2qw2fl87Gbk98hC71zBs2YT0ro4gBdgghfoLKIkoAbwJYJ4QoBQBSyt3ROUfAocSvAmAygN9d31oOoJcQIpnr2lcAHPpPX4GFRWwg3HtPQ56At25gEdHdAZEerwi1oVWP9HiEjCIXXBTS5TsCiipecPldBfAbgHtQNZC3oO7BOSnln5Gv6brue1BCWIiquSEc9XEWFhaehVdSyP8FMVTit4TKSF6E2sTeAVBVShkU3c8oOKWpvlmHazDh+SgLe9on8jXlZBfvM/2+4zJ7w3/joC5b15sSt+o1KU9YVaaktstuooxieRNzrJrfLwu0Hf6AVMjX39T/tkpHajerFiduh2/g/n2qdG7DZ9VZyiDeLcJe9+ISH2+1b6fhk8OPIcXbITw1jM3DrN1KmL20sjfgOLeCq3rxG7fNbt9huTiD4FE4lS+J587hmqsPDZ8O+TmEYGpO3l95nb3XRAZzFFv4zsPafrDxnLaT1yFdfvRaY8Mnie8rsUu1ghd75g2b5DWvpJBeGcQXQqQSQoxytO4Y6ZJURAl3PfFBJX4DAJtAIauEaqXzBlTm8hGe3vHVwsLCy+CVGxhUvOouVMlPM6jNJdosZAyV+AsBlIY6ne0EsEhK6ba1hzMLeWudbSltYeFN8NYYWB4pZRPHv78QQuyNcrVCTJT4X0FJKRJBbXC7hRA/SilPRL6oU4kfvqC9Pr6vK8cia99dpFUvhaaGE0d8uS9mqMbeVQUmMqG6uZdJQ0JmUMU+u/hpbe/M68j0XTRbl11aEaTtTINe0XbGFWYTxnl9qPLHcY4UE8Wo2M8+dZnTBQuys8j5ZvBsbfeZxF+JHNnb/DkX2aK6zVR28RhXupa26/T+w/CRW9kmPWzRPG33zmJO5l69lTmcP35gtvHSBVYt5H7BnFM8/hSztsf6k8bmmMNMapLenQyfwDRkaynHsYwsV0NHyGDlEoSddqj+3+e9jxV4saTBE/DWE9hDp6peCFEJasOJEjEcq1YbwAopZaiU8hBUY7Vm/93Tt3heYGxeFnEOb93APgAwVggRJIQIAjAGwPvROUShxJ8B4CeoTOQPUBOOAOAogJZCjXj6B6oba0gU19UU8ucVR/5/r8rC4v8LK2Q14HUUUgjhA6CAlLKEEMIPAKSU/ybAbijxoWQUEU0L00NtYh2hNsOZAOpCxcDCoYL4T9BH1892SyEtLCw8D6+UUQghNkgpX376yif8olPiLwWQWUrZ0SWSXSelnOla8xBAHRcNjRKrMhbQN6v6b1TIO8dxFS1vxl5C7vBgd2IGFfKl+nA8fdrWZseIKnfIhE/cIHO+fY6Pj29VyPAZ41Crb3/FoRrfsclYF7ziGJ/bNV47VVtHqWkis6rKpxCLrqdeYKVBm3uM9wXmNl930cOsGgivWFfbGy6wYuDrHWcMnzDH3+K7xRizelOazRt9vmM1QIN6bG74cjaWs/Yo1tDw+XgrY2pLT5L2vZqHP2f1afNzcttZ/u6SXWBDw+3962m71CYzsePT+JfYlRvcm+uZN2yKJl4po/C6E5gLK4UQPaGU87qFZ1SZQkBTyEZ4kkI2gzplFQUQ0XOmIICXhBBTAEyBaqPz4D99BRYWFrEOb42BtQPQCap7xN+Or+jgrpj7RSix6iGoTSyiGZYPVIH3XQDVXN93+8nmjIH9+fCWuyUWFhYegreewApDbWCVoTaWjQDGR+cQ1Vi1iO8LIYYB6OD65yEA4wAUgCorehdPjoGKuK6OgW240E9vcomHr9NrQs9/o+3g4RMN/0RF02u74gIqu6/4MeV/vEIBw2f9dtK8v8qRPt0Joeq8ds4Khs/LnUfw2q+T+mRZbJaNLvqYvfhfzERFe/uNpMHflzd7jV2tPlDbrb9mU8YHc6m+FytNWYfYwEaOQ/+mQr51IU7ZnlnfnLjd7M8l2n49D2nao28mGOsW9uJrCH7MqoMEPqwy2Jr/Y8Nn6DssUO+5k1UQmT9h7/1VL5tK/PSTOd/g8eecNP7zZT5eKpnbRr6xBy8OqHsC3noCmwqgEIDRUNnDQq7HYgQhRD4hxGCXHqw1gAiB1SIAEZMqcgC4LaW8+P9+1hYWFnEKbz2BFZBSOielrhVCRNuMK4pi7p6uxySAMCg6CahJRGUB1IKilm8/cUFeVxdz9xhWDw1alYpqqYVF7MOewAx4axZyCoDxUsptrn+/COBtKWWnaHzcFXP7RUgwhBADAHSVUqYVQlSEml/XFUpKUVxK+WIUl9Y4Va2Evlm3Z7Of1/3S07TduEd+w6flC+xeMfwUs34TSjFrVy/A7IsV/Jjr8h9m9kueZ1Hzlu7bDJ9KU0nteiSg/6h8JY11qx+T6jWdRno5qxU/Lx6FPzZ8IuYAAED6pHzerRayA9GRd1sZPqn2U7keuolF3wmbsALh7xrmoOdyNZnVDDr6xHgCjTnDy2u75wRWA4S9xmxpYM91hk/xpR20PewqqxEqZiHFrzrY7O2VIDE/37s1Ydb33e6slChYzizRDfthS+xm6+787pk3rN+bNgsZA7wIoI0QIiLPngPAYVebaSmlLB7ZIYqxav5gkXZpADdda7cAgBACUHWSz36DeYvnA/YEZsBbN7C6T19iIioKKYTIBxXrC4cqIYrQhk0A4As19SjEeVqLdF1NIQfnz4oWWdL9b6/IwsLiP4dXbmBSytNPX/UE3BVzz3ZQyMUAvgFQBsBcANOgphNNguoT5lbt78xCjtz9gYyQQw52tI6eE8JT/aVqZoxsfjJKL1KtoNjf/zEFlLXeM9tQZyzA7+WoSIrzV5Ny2s5ywJzos67Aj9q+MoVZuqUhZq+xJuOZObwOFmlfaP6XtnO2MSnt5JeYnUtdnoLQC7Mo5g2O1AdNlqnBfzgopM9QFnD3mPyS0wWjUjKLmNPRwnlGwo+MdR/tpqDX533eB5Ewi7b9/BMbPvuSkwa3aEf6vW876fbjJfUMn76JKA0cWuo1ba86xUL15aeuo+PXZjbVIu7grVnIGCOKYm7npnQI6oQGKeU9AMUATATwKVSA38IixojrzUvKMI98eSvizQYWRTH3WCHEZSHEI6iA/d+ux3NA9cVPBqX2/zWa62oh67Z5tm2+hYU3Id5sYHCvxM8GVcx9BKp1dMT4n8+hJnGngCoh6hfVRaWUP0spy0gpy5RvbIeYWngY4eGe+fJSeKWM4n+Fu2Jux/eGAeggpUzn+nc3qHmQZQHUA1BESnktsp8TEmv1zfpi+yz9eLYUjN20Lvia4fPwfTbpu3GUpZy5plJ2kGHeesPn9Gkq6TP68Y8n5C4fvz2il+Fz9h4b8609xwLj2jlMlX/qLlTFD2hPaUD1eqxjb/SP2bkow2zKC6Y14SZedz+LolsnMmnG9DpttC069dF22LjB2k7W+0vD524ujpdLcYK64tJlshrrVu3mz707sLm2s/VlFUTKTGZx+YYOVbRdJNgxwzgh/1QGnDSr1casp+TEJwE/6y/5MyaYcPMxw0f+uC1W5QbyxjSPvGFF2jZWRhGbiKKYeyyAplBDbcPhmswthOgCNbHoAFRcLCGA67Cw8HZYGYWB55VCfgw2MAwBMERGcRQ1Ghr+vMTdEgsLCw/huaSQQoiLAFJBDbRNDxUHe09KuSCynxMLTn6sb5ZzMnZouRnajhwu+G0qtbV9yjLln2MrC7tF7aaGj09HUq7vP6CS/r2FHO2V+AOTqopk1KfJU+xBD78UxjqnnCBje77c8X343L7IYeqEg39kL/8kH1HegAuOAu5gs6Htwmrztb3iT8olfvyDPexT5zDnBwgfspRpg0mDW/UOMNaFPmQBt5NWH95GyUreP3sYPu32UD3fpyypc/aR7E/2RhmzmHtxRdLODNP4eva+z15jCdpONnwyzYllCnl9imcoZLq2lkLGNVwi1rZQhdu+YDF3Cygt2G2oezDiaZuXhYVXwFJIA/GGQkYxVm0RgB5Qpyw/sJh7N4BWUJQzNYBhT15RX1dTyBUzA6NaZmFh4QHEGwoZw2Lu1FCTuutKKc+4ai5LPS0LeeH+RH2zcg1gAffXrZiZ63rPnIT9cO5+bSfrVJ3fSEkKernLFPPn/PiqtpcGkaY168L20FXeiVQ0XoSK/eF+VKSHHwky1iVYR1W8M1N3PRMpaIUU5t/E8mXntb11IQvKXwl8V9ujrh83fDrN5/O+tInUN3trqvzD7z0yfIr70a4ZwPvz+bgDxrpMGWiHtSHNO5yPPnOPm62eKzVYp+3HOzjV3BkKePDYfD4nb7OQ3r8K+6WVDPpK23OOrzV8OhQZF7sU8upEz1DIDB28kkLGmxNYFJO5/R22LuaG6pE/z7V5RdTn2CykhcUzhnizgUVFIYUQj4UQ4VAdJyKODB0AfCqECIMatZYNSmrh7rqaQv42OdqZHxYWsQ87Vs3A80QhF0NNJSojhBgDVdRdA0BDqJrIF6SUR91fXeH+RzX1zRrVKo9+vF5ANm1nSuZv+GR19PC6NWyFtju+wSnb1RyTrwGg5gekigmWdtT22P3mcPJf95HiXOzYVdtnanfXdrbeZochn0oswL7RkW2op3Yjtes11aRsj4PZHyw4B8Wm4Q+YDUxxyxzwGjqaNCt0+BhtL2yUzVjX4A9OJsqdjp+nZ5KSigeE3Dd8lo5mBjdwLovGJx1gFnJFiK/hc30BBafpu3Pg1SEH7ey6zoxxLt7C312iko7f6yNTtDuzIq/RuuDY2KWQV372DIXM+J6lkLGJmBRzAzgHYJmU8j7U1O7dAJwdYL0ezs3rWYVz83pW4dy8LOIe8UZGERMlPoC1ABYLIZpCjVg7A9Wh1cLCu+HFdYmeQLw5gSFmSvymAPZASSiCofqBHXjykmYMbPKB8+6WWFhYeAjxJgYGxEiJ/yeAoVAasdkAvgJQUUp5Obrry0vj9c16nJExrL0FGH/qO6yM4fPnDcZLzk1nO57AyYzdFGq+3PBp8VFRba/fzuRoo6qMP/3+iqnET32TMagvTrMf/YAs5gTvD45xn36zJRspZjnMnvH3y08yfMpUp2J+fX/G0Mr/zkOrf7AZp3JOEf974CvaLnmGve5FPrOX1tdHKUnYeoHNBEdXK2+sKzWeJV2BnRpre+9VSkQOXL9r+BSvxWsnO/CGtruuYWxsZE8zxphkDwvF2y0/yGsL/nn5lspr+IhiA2M3BnZxnGdiYJk7eWUMLL5TyAglfmeo0qGInWIfgLFQ07qLA8gJdVqLdgOzsLDwLsR3Cvk1gCZQZUSPAUSoG3cByA418OMoXDTS3UWNYu5fN7pbYmERd7AyCgPxnkIKIeZAUcQlAO5JKQsJIX4CsE5KOVOo0USPABSWUh5ze2EXjBR2KKmQzyAWc4e9XcXwmfMSSyzf2NKE1wqlBKHymXOGzz1Hmn5fSar8gz5iQXHOT8zJ3MnWkc6d+aK9tv27jzPWTe9WWtvN8lGR/uizUdrOmsr8m3irQnb6b6XCPkESHuA/q2bKI7peoYzheF/St7BQvhmSpDH71udaRVlHYIkPtV10k9lvcuwZFmanLbFG27Uf9td2un/MX+Xh7OwBVvCA46B9i4lqUSiP0wUltpKKz3iFsw6Wnw7Sdml/c8hL1ayDY5dCXhjjGQqZpYtXUsj4dAJ7AkKI9wGcl1Lug2ofHfFXnROsi+wA4BoUxbSwsHiGEG82MDdK/I5QgfpaQogLANJCTSUCgIwAlrsU+h9B0cin9wObZpX4Fh6GpZAG4g2FjKzEF0IUA7AaqmFheqge+OehFPjDoDatZFD1ke8CqCqlvOju2hFYm7mgvlmzZ1DhPtqRWUtx8Kzhs/p30pWrazm2K4WjlXGtIWZB8O51VJQXqJ9D2ykf3dP2ytlm6WbQGmY10yfltRedNMtDx1djZi3z999re/pgUq6yDTIZPmeHux/TWTgNM64+O1YZ35uXnuPKphxkhjRpAlLL2fXfNnx6bZmp7TIZSS9bjN5lrGv+CttkL9xCMezZvu9pO02ijIaPPM5RaiJjgLaX5RrIn/+dqWXek4D3cXNV/h4Kf2L+vnYM5hi7+gHDY5dCnh/tGQqZ9SNLIWMTkZX4UspAKWVGANsBlIcanVZdSnkJwB8AKkP1xM8B4PbTNi8LC3dwbl5xAjvUw0B8klG4m8x9FerUVQsqExlR95EaaphHLSiF/ttPXJDX1ZO5u/v549VkqaNaamFhEceINxsYIk3mFkIkgyoZegfAt1AnsAgucwpAPqhZkVkBdAMw84krwpzMvcSvgLx/X53gkyXgiTrB6xRq3g1dZPgHH++m7UftRmo73ZQB/BljqkMeYAF32cpHtL2zLmnnsYSO0s7BwO0XmWGscpDCzyszSLlK/vqO8XzqzJ+i7WtH2f4szwkWjddastXw+Twnfb6fSto4pY6jDrBoLly8z/rM+ulIsY/f+lPbeSuRfs3BVuS/0Fb/+4XKnM7U6mNSwLBhnyAq9PFju+uHzXh/Vy8zqXOT/W20nfJbCnUnOfSu/drvw6W/2bMt5e/8PTx4o4W2L07Ire2SADLMc1DKgCif6n8DL45HeQLxlkICyAN1ItsJJVj1BbBGCJFJSrlFShmxmZ2BErF6DM7N69/CuXl5A5yb17+Fc/PyBjg3r38LY/OyiHPEmxNYZCW+lDJQCNEBqmXOWQDDATSRUl4SQjSE0oZlhAruW4WqhcUziHhzAsOTSvyOAPoC+Akq1uVEIJSsIqXrq64Qwg9u4JRRLHt0y90SC4u4g5VRGIg3MgrAVOI7ZBTJoTpRZIFLRuE6hRUHMB9AHwBfSCkLRXXdCBy9NULfrHyg1OBKIlYhjdyzxfDpV7aOtqf/Q6lB9pRUhr82bLPhkyh5IrjD5Vv8vEk1ooPxvdDfGHtLdY507n6Dssa6a9+RrmacMVDbfoOpgr8YaZ++uI0J2kOBrCDwcXz8bV5mViCU9efrq5CZY9pSD+ZkcCQ0Pz/nt8ip7WabKb1YVj2zse4VwX9vTsS4YNrEbIJ4PMdkw+fVJYwlhr1MO/GHA7XdpL45xXzBKvb5n/w+JRa3H/EN/Xah2oZPyoSNYldGcXqEZ2QUOXt6pYwi3lDIyHBSSCllVyHEY7hkFEKIHFCF3Y8AjAfwSnTXsrDwGnixpMETiDcUMgolfl8AnwshesKUUXwOFfsKdj22Oprragr5+5RtUS2zsLDwAOINhYyJEt91CvMFsBJqEysNoMjTxqrtK0wl/tVrvG/Fq3Kic4b+dUynTExwBo9mMXaSDznducUuk3bOqvmmtrcX/JivcUtLbd9zFJMDwKXsc7Vd9R5lB1kSZTXWyeuntf3uwZ3a/rpSNW333bLO8FlwwNF7v1Q+bZ8qxiLv3NfMydyP17K3VoLS7Jl1vi9lD2kLmZOwkz8gHTy0lTx27HcvGetGJ2C4clk2fgZfuM+eZCN2mlnRclkcPofZ6/7sA1YGfFvLrEDoXIK/y+RrSf93duTnXZkhLxo+vm9OjV0KeWKYZyhknt5eSSHjzQksJkp8IUReAB9CTed+DEWl7Vg1C4tnDPEmBhZDJf4AqMncwVD3YL2M4ijqVOL3y+SPpmmsEt/CwlsQbzYwxEyJnx3AZillZSHEFKheYW7hVOJfaFhOb3JJklDCnXH659oO37kGTvxVabi2h01kL64NPrz1gVfMdswLznL82u7pL2u7VWJm9m4Umm74NP2BWTLfheyaUUaa1C5vWo5wm7qXNC1hco4UG3fJnFDd9ltOm3vcgwXOx7KTfr2315wX0PvT3doucIoUMCAnX/fCn04bPhO2syD9pbz8XpYzkeYVZ+Q1Kg5iH7TOTdnme8ObDQyXfCN+0/aSn1kAftxRTNC5p1lR9voiZkxXv0r6XqWJY3zCriA87PkW4gw2iG8g3mxgUsoNLhlFBJxK/FugEr8MgAIAUgkhgqDiY/WFEI+llAtgYREDxOnmZfEE4k0MzKXEXwyHEh+qWeFEqBMY4FLiA2gB1YnCH0BiAHei2ryMydxBz/4sRotnHLYbhYF4s4EhZkr8EwAuQJ3E1kFRT7eQUv4spSwjpSzTKiBjVMssLCw8gHgjowD+vRIfQGMAWaSU/Vx+QVDyimhlFBsu9NM3680FjINM+oxxmAT7Xzd8hu1kv/uvP2WXiA2/V9V291JvOl1wqDg7Q5xfQrlFnaHs1hDeoabh4xxRVnX5Qm0fuWzG17a9zb08UzLGjK4+ZCPGE7fNpow5UvprO1k79v9/oxm7MqzPZso1Ajss1naBQHaJSHyFsS3hbyrfmy//VdvL917S9v4PzXsaGs4YXcABPtfgcowX4rOxhg98qAIQjgoAn9RsnJggcwrDpUZCVljMWcDnvWpASfoUW2n4NA35J3ZlFIcHeUZGUaiflVHEJmJIIdsAeF8IcU8IEQzVI997z8kWFhZuEW82MMSMQoZAncxOQXWqiBC7PgFnDGzRb7vdLbGwsPAQ4lMWsqaDQmZzUcgvwCwkAMx1ZSGXAlgrpbuz2RUAACAASURBVBwohJgBNdC2BFSf/MjX1TIK+c9gCZd64uAO6l7TrOS4tFIbThj+O1uy6PrRFirAU+fJr+3Qb8cYPttnsS9Vq7ksKJaj+mj7rfVmzqGYg/1u3BCk7UtXjWVYXJ3TwUs35c+dMp5Sh9aFcho+uRNQcR/0Syt+YykrCB69WNV8PkNuaNu3y1faDu9OShyc0awmGF2Vr/v2wGHa/uFl84NjWBYq+686itMzjCeNHv5mgOHT5fcgbV/pxdLX7Lv4K+/la9LtZRVJ7RNlpjymTs5y2k59Mj/iFF4cUPcE4tMJzICTQkops8Lsib8QwEtCiJQA6gJIB+BwlBezsLDwSsSbDSyGxdwXAGSGKh9KBWCPlPKAm8uaY9V+3+luiYVF3MHKKAzEmyxkDMeqtYPauPIDWAY1PzKTlPKRu2tH4NcjnfXNavM9M4pnhrfVtmz0k+FzYAKzhYnKsWdXo06kZbu6mWPLcs3htRM0YJH11ZRUwV99cYjhU2hMfW0HLyFNXDXulLHute0UXu5uzIxi9hKUpBd+0SyyPnefn3NnPmLfr7xrDmo7yabjho/z7+rX0eSxyY6Tvm2/dM/wGeTHwvcNtfncqgR9a6xL9TX/7ZuI1QDb51Fhn3R1V8PnUAAzoSVrcpr2rmHUPi86ecPwGV2FFNI5S2Bl5iza3pIrqdMFlTN/GbtZyMCBnslCFhtos5CxiRiOVZNQtLEKVDvpG1BF3RYW3o1w6ZkvL0W82cDcUMj2QogGcF/M/RuAN6HGqwUCGCWl+765Tgq59o+D7pZYWFh4CPGZQkYu5q4BoLCU8qgQYiHUQI+KUJvbQgD+Uso77q/uwu2Z+mbNSjtQP/xK8NfazvyVmVE8uJnZyizNCmp7YQ2q+pskCjBfS3YKJR9LHgwTOH5V98MfOF1w+SGFlrkes2PGQ780xro7zQdru1RNtmYun439so7feGj4bGvZWttj9nFE2sclG2k7PNL+H9Z3NK9dmIUO+wrkNtaFn6Fg9dFBZlKPzyElLTrJFLIm+I3F6uGP+XM/bc3W1VWyml1DkiRIqO2crVi7HzCFr+3d42YeZ4IfBbzXRq7TdrJfexvrbj8iRc6SvEPsUsh9AzxDIUt8YSlkbCImY9UAVADwq1RYAUUp43jEsoVz83pW4dy84gQ2iG8g3mxgUSjxV0NtThF/ZV+4YmBnAfQWQhwXQpwFkBSquNvddZmFnBJl52kLCwsPIN4IWRFJiQ9gMICXAHwtpRzkGuoRUUzYD8AiqMB9qOv/N568pClkdVJICwuPwIsD6p5AvNnAolDipwHQ3TWdCABWCSHKAXgBwOdSyqFCCAHgAdScyGjx6rq/tN3zTFP+7C6M90zuWdTwEVupFP+8GONMxcLCtO03+S/D58wZFmMnSEyZgB8Y9wprYTJev3KltO3bh4XMIUVzGOtO72ETw/2/ddH2kZtUpFdKZMap/Mf+rO2mxRkXarCQTQK3HTGpVKIsHA2XxVFI/TiQsboExUzFv88ZhiDHjKa8YaIj5gUAf05nXLHu6UHa3vGAMayS88yEy+NzbECZunQqbT88y5Fx4y+aKpq/P5in7dITKHWpu3i2tlfUaggLzyHebGBRTObeCaAyFEUUAAa6euJXBlBYCNESgB+UoDWN+ytbWHgRvDge5QnEmxgYnizmbg8VwO8DVbh9FyoTCagmhskBJARwDOr0FWVP/IgY2Jnlx2L5JVhYWMQE8eYEFplCAoAQYqD6lgwXQrwA9r5fDWC1g0KGgIH+yNdlDOzhQirxN5LmVSxI9vnTfjOU1mzxl9r+5INvtP33EnZ3PVXHbIRx8m9SpHUzq2o79AUWjR9+4UPD585d0tCwHT21vaP8CGPdi3u+4M+tRzV/qbKUVIRmNunXlQ9JNavOn6rtfuVJAWtUMkefySNHtD0vC6Ug+/wyaDtpTbOv/y1HDvmnw0O1/aMp2MeJQYV57Yz9tP1oH5uOvLjf7LdfrAKp9FdFaIcf5u/hzqogw6fMAvbBR0aq70cn4NTwGivMovrVTd6ARdwh3mxgUSAFgLZCiDYAHgL4x/X4IgAzhBCjALSHCuJv9sxTtLCIASyFNBBvKKQ7JT6AegCyAsgH1S4nogguOZSQ9S6AMQAmSSnDnrxqJBnFpOWx/TIsLCxigHirxHc9NhDAPSnlCCFEAIAlUsqiLpV+BqjJ3D2hurZmkVJGWw8ZvqC9vlmHP+eBrVkP9qE68rc5XixdXhYO96vKYuUPM1Ntj7NnnC6YX5lZrnJXe2j7YslRfLymqTQP/5GUa2kQ6eTy07eMda0LkT51Xk2q+HV3TtKu2LOw4bN3HIvD8xwkZRuzb6O2V5++a/g4W0wvI/syFPG+L85zuuCluczoZd7BjOLspsWNdQVSsx9YrTl8rRmS89p9Ov5t+DgPLrUvfqfto/d5D4buNJX4kxKyguDxHrauPtqmrLaP3Lxg+DTNOzpWFevh23p75A3rU36YVeLHJtwo8QFFISPQCEBEy5xEUDSyD1QtZPzYxS0snjPEmw0sCgrZCsBwIUQ4gGEAItpqdoFqpTMdwEmoWKBbHZhBIVcccbfEwiLuYEuJDMR3CjkcwBUAIwF8BSCzlLKdw2cuVDysMID8UsrgJy7sgHMqUaaGpD95+1NUuqrdRsPnBhNWyJyJp/AqR9hm+a/s/ZwuqNY5j7ZlKP94EuYxaaOzIPzXQ6SK+dJw0s573c3cxFSHQLRhblLabmtJn2a8UsnwSdWVlLZBXVLDDVWravv4a98bPqXqMat5BexjNqhOFmPdoEKcJCQ3rNO271L2l2zdyKS0o6vU03aK2eyxdmwEG06+91kpw2etI5O5qDP7rZWvTVFr0Ph6ThfMO056OHgrC80TvVLSWHfxMxaHZ1m44//Y++7wKIvv+zMJgdB7770XIfQqShEREKQKiCgdFbEgiCgo0kRsgFKkiaL0Lr13QZDeQ++9JQQyvz9mM+edsIvk+zPZ8H7mPE8ebjZz3+y+YWfn3nvuubEbQm78wD8hZKVhNoSMTfgIIe/AQ6MAMBaAFjMXQjSCOn1tBnAfquH7qYFz83pa4dy8nlY4Ny+LuIdraBTRmfge1AZQTgjxOYBIAH971j4PYCaAvQAyQamzhsbl87Ww+D8hHodz/oBrTmDwzsRPCUVQPQwlbBhVSvoYakOLhFJq/dXXUFs7Vs3CIv7CNScwH0z87IhGo/AsTwq12aWC6pNsKIToLqX8wct1NRM/Yc+q8ruvlKBF8ma59JolDkb6oZVBhn+3bBW1HZ6SlAo4cls9vynudMHuth20HTmCGvsjQpgD6z/RnEFyNQVzOQ7dRFw4b35il6nJ6d51+nEyd94c9K84Zbnhs2p4fW2vC2Kj90XHGLICpZMbPpEN+bo3NmIOrWh/RzvWodxOF9SKoJCic/waAszP2bTf/KztUX2OabvnSObKTjvuBwBs6bVK28XO8f5mvsb788qavw2fVU3bajso3NFwn4AN9sln9EacwqpRGHDNCSy6HpgHtQEMFkLcgwoXozLdzaDY9+kBJIHazMbF3bO1sLD4L+CaDQwxCyEvQk3lrgRgAtRJNPiRK8IMISP/efoVRC2eclgahYH/1RCyBtQsyF0AOgkhCgLIB+AvL9fVIeTWCwP0+T1k22m9Rpxg6BNStLbhf6rx5/CGh9M1mwMJo4VIYQ+p+3X+j4ParjOejPhe1U1Kxey2DJ9+GcF180+bIUe+8xyrlmg66QTbXu2s7VWnlxk+M49Qn75MBva8f7gmVNtLpl9zuuB+PjLcK/1BTftjKcnYn/zglOEzsz7XHXZo/B/KMdZYN2ZHHW1feTGXtu/M5lT0yMRmZ0DFfZz0fW8Irze3bX5tr89laqf9fGC+tt+sQopFw6UMiWftjDbMvfnLsIg7uGYD8wFfzdzPAIAQYglUr2R2KEqFhYXFUwTXhJAxbOauA6AVgGoA8kCJGr7yyEVhhpCzpzxyQLOwiFvYENKAm05gr4NM/H8LIUcBOCalbOeRnl4DlS97BM4Q8o/Db8nQmyqEul6CAq5bzlO/q/n9o4Z//oGcmO38jyCCWLmcO+Gg0wXPB/2u7audCmv70DO0j+RJa/jk3sWG8H1fMIxtEGiGgyUW7OK1nZOoL7I6mCBaSLvvCqWWkwRR9nnK4H+0/dN0Uw+szh+skq78iiFt6719tN3/sNklkHQKuxtO9yVl5ZXOmYx1Ex338Y0ijbXdKSe7ESJ+mWH4LLpAae8X3uC09IYP+Np63jcFKwcUcPztHG+VRat4WA8GkCRNEv19dCa1RezCNSewGDZzLwFQwqNK0crjtw8WFjGEc/OKE9jJ3AZcs4HFsJn7DpQW2FUAvQDsl1Iu9HJZI4RcPm2PtyUWFhZ+wv9kM7cQohuAEAA/QtEo7gEo6+mZ9IkjFYvpm5W1JitWwW81MNZl/J174YmL1Ek82pO9fwVn7zJ8yiTkuk1/MbRLIR0VyWii1x++wZDy52JluK7rJGPdlL5sPv4wX3VtO6csza9ay/C5GMxbse4sw7lui0K1fTIs0OmCS6tZVUxTwiEd3ZTPrfBuU9GjXBZOamrXliHls9u6wBcCvpym7cj+7R0/MDMich8/cH5Oyz79Wm9v1Haxqqac9633OmlbfDhc205J6t2bTP22h011iy0CasayHtjSbv5p5q490jZzxyZi2MxdBEoXvwWAX6AIriH/xfNwbl5PCufm9aRwbl6Pg3PzelI4N68nhXPzelI4N6//Gs7N60nh3LyeFM7NyyLu4Zokvo9m7mQA3hJCfAHV9xj1LtsFFToWBnAWSgssO4CtcfaELSws/r/hmhMYvDPxQ6BGqB0GcBqqnQgANkFtWOFQ3DABtcE9AmcObNoFr8O7LSziDpZGYcA1JzAfTPw6ABpJKZdHo1HUBzBESjnIs+4afLQSOWkUI3Z2llHc7NptV+s1hb8gm/tQ57ZwIvsPE7V9IgXDvqA2bOBOPGuK4XNhJ0d9iWfYJB1xL0LbE6NNnv65YFFtrxlCzfb3D5nTpmUWMub/eLGZttMOH6XtYz3aGz5N0jC6Lj6RtIz9S9toO82yUMMnIAn/azU5x/ByXzYKHf6U0RxBUKouNc6e3czDcMG0ZqVvag/m1Jx5r/Z/M4fWoVg2pwu27Sf9I9vPpJncTMTm9Por5xk+6/pxXe3vKVQ5qivD8uM5zCnmeWERl3DNBuYDRQBUFUIMhCKxRhF4ckINvYUQohbUSSzC6xUsLOIT4jGlwR9wTQjpg0aRDcB7UCz8zAAqeAbZpgIwykOv+BnAajzBZO5NMy1VzMIiPsFNJzBvTPxOAAIBVJJShgshQgGkgyKtXgewE0pKOj9UMv8ROEPITbkLSfyiwrsAB29f/jFZ2ykymwz57+rn0nb2r3/U9h/DyeYel8GsUFfowJB0WHVq0F9qtVrb3d41me/fXGVTcdN81IMfcG27sS4knJ0CzfqxKbnrCxxVlnzmfMMnYB2vHbqGE8HzJyuo7cB8Zvg1uRlpBx+mIqXiTDuu6+AULgNw8Vo4fcrydb+QyNQNkwf5fER+djSsDKW88/hbZt7mtets7n6zE1n5+PN1bQ6uUtTpgu4r2WkQnJIZhuzJGdLeeXAPcYp4nI/yB1xzAvNBowgAsM+zeRWA2swuQ8lJV4TSBEsOtYHZCqSFxVMG12xgPkLIIAA1PaHifijGvQSQBeok9iOAVwGMeZLJ3HNuXfe2xMLCwk9wOxP/ONSpK0qNYjqAXABKAbgApdhaG0B1KWVWL5c1EHrrB32zcjmasU837q/t47tvGz4V+zOcu/0qtaJSnqTG1vQiEw2f5m+yUfzTdiW1fe4O99huJc16V5a3GT5lzUyGfN1quYx1cypwrNrJxKwCZh63QtsyzNzLZ/flyLV0oWyeLtD+T21fn9bM8Cn0G+WZcwawEvrTC6zavRRgjliD4Odp8nEkBI9uZYaa3aez6fp6I460E0UZVt/79GvD583KrHB2K8nwtuJ9Vnk7HDEnc68M5QfWccfE9WQZkxnrEiYl9fDKB4til4k/703/MPEbjLNM/NiEjxAyGMC3UspwKeVWqJAxnZTybyllVM7rKoBgIUQiWFjEEM7Ny8I7hBBphBDLhBCHPf+mfszaFEKIM0KIR+ZTeINrNjAfmvgPAHQWQtwTQtyFGqF2WQhRTgixE8AAAG0BnJZShj9yUZgh5K8TNnhbYmERd3g61Sg+ArBCSpkfqoXvo8es/RxK3uqJ4JoNDN6Z+A+g8l3HAJwEEBXf7YGiUqSEajcq5tEFewRSyjFSyhApZUir1yt7W2JhYfF4NAQQpTAwCUAjb4uEEGUAZASw9Ekv7BoahQ8m/hcA+kkph3u+PwoVQl7yrF0J4A0AI6GS/I9FRCRzOdIhANiyXQFtr6vb0PCR4Szfp+5BdYO6tUmV+Phkc8Nn0Bky8QtU5TiwjFtrajt94oyGz+JPSmn76igKJI7PmdR8Pkf4vMPfYZ4pfONAbc8/Zo5Va9arm7ZT9huk7YQ1+RwOdTOpF7eC+Nl4tjvzbkHfkNF+9pxJCdj6J1u1LnZlruxKj03GumsfUdXj9AekZZyawJPCw4mmsOTYT6n5vzLN+9o+fpqvbZpD4x8AbpZirkx05MyBRqeo13/pbhzzn/1EoxBCdATQ0fHQGA/F6EmQUUp5DgCklOeEEI+MlRdCBECpxrQB8NyTPi/XbGA+mrmjQsgvoE5nEiqETAVgFdRItekAJkkpH8DCwsIrnHxIbxBCLIdK0UTHx0/4K7oCWCSlPKW45k+G/9UQsrvn8aRQwoYtPfLTj8Bo5p64ydsSC4v/eUgpn5dSFvPyNRfABSFEZgDw/HvRyyUqAujuIZt/BaCtEGLwv/1e19AoAMARQkbRKM4B+CpaCFnBE0I2AlAZSjOsNYAWUsrHTu0oOqmpvlnD3iFL+4VdnPSc+hdTg751ZYYhuVOQ3jB4DceyZY7WrLwzHyka219jaPZMXzZVB20+YvhsXsqSf8lDDFUT7TH5uS3PMvzJnZKH1UElOKpMnjAbxb9/cE7b3Q5QYHHzh1u0PeqnioZP0wIc+xZZlMKJ+fPy0zVvvVyGz/JRx7Xdvj87Ay4WNBkulyfv1vatsQy/I2tzXFr2BvkMn42vkWVfbWmotgMrMjTc2fgXw+fwEb43Xg7/Ttubc76j7V0LnzV8upcYHat0g4fT2/nlDRvYdOL/+XV5hEWvSCkHCyE+ApBGSvnhY9a3AxAipez+b9d20wnMGx4AaCCE2CKE2AqVsL8shCgCpQfWHyqRnx5AqN+epYWFuzEYQC0hxGEAtTzfQwgRIoQY9/9zYTflwI4CyA1PCAngUwA3ARSCqjgCVJwYCaA81NTuBACOSikv+7iuTl5mblcaqWvk8bbMwiJu8BSqUUgpr8BLYt4T8bzp5fGJACY+ybVds4HBdzN3GIAc0Zq5k0Kdzi5AbW4ZhBDdpZSPkOecycu/CxeS2KzCl5ITWVk7251j0NZObGz4n71N/a2WvzLsPB+YWNtvZ/MtrVy7fS5tX3eEjTciExvrkv/pqH5eZcgXeSDUWPduH4Z9J/6kDr74YJi2H7asZPiUK8BqY8NQVve29mQl9Xw0ObXAYcwXZhjCpu8Cmchi33fCbM06/S7DvsgHrLZVuW1O2T5ckQ3z31/gPcl8mh0E6Y6a1648hUoiV95hFX//NVZly9QwOwM69GUTemTQ29puceNLbYeeXgkL/8E1G5iUcq0nB+aEr2buZgAWSCmLCSE+g5od+UTMXwsLv+Lh03cCi024JgcWw2ZuAMgjhLgDoA+A3kIIr4qszirkzOu2mdvCIj7BNVXIGDZzJ4ZSZG0FdQqdB6ColPKxO9Tt7s/pm5VsEImRQf2+1fb6eWYqrewIHgpPf09trq1rWc2r389sVk58+oK2d3/BcCe4Pqtkc0eah813T5PG1sYx5ejLymWNdS/NXq3tmQ0raHt7mp+0XeKSKSm95kyotp1aWMtOUKZ50dFrThccLEQNL5GdVUR5+JixLjSEYWOOedu0vak37aBtLQyfYzc4Xy5VeZJuq7clEyYgjfl5dNcRUgYEsRqcshmrkPdr1Td8bkfwNV1/1ndF/4UO/Psdbj8jdquQv7b1TxWy1eR42czt9hAyGIpGEQ5gqxDiAVQOrCyAv6WUuwDAUx3JB+CxNAqL/xbOzetphXPzigvIpzCJH5twUwj5xM3cANoBqCeEuCmEuAegOhQr39t1dQj5894z3pZYWFj4Ca45gSEaEx+KRuFk4gcCiJLxuAfFCTvkeTwvVL7sETirkM4Q0sLCL7BJfAOu2cBi0swNYLFyke2EEF9CMfJLQ0l9+ESqQI6nLzVvhrZnjmVOptw6U9hvcWr61JvbT9siknmu5J+YDPDV85ivSXN2lravL+QYs55nTC32gMUUFzy6l/m1zu+aLZ6rllH6P01FKgiV6ceOgeNJchg+bxZlo/jN1z7Xdv3R72q7e6kThs+WUmybK3SAgo+R6UnJuHn7uOGToFU7bWdtwNzdxGhTtvvn5PNJ0IbCiRHf9tZ2x5W/Gj5ju5PeEjGFTewv37+j7ZH3zBP2/OO89s6BzBcGOrJBSwdsgwEzfWgRy3DNBhaTZm6ojWqkEGIPgAIAzkEN+rCwiN94aId6OOGaHBhi1sxdCyp8TAI1kTsVOLXbgDMHFrnnfCy/BAsLi5jANSewGIaQUSexLVBqFM2h2o68XVfnwHKObawTEJsfMGWW4DobfT/cMtPwD7/JnMXt/BSizJqFcUjGjwsbPjkKkHmeeTzpGlk/Zlh2ecQ7hk/mkru0Xbk4f2foAZPFHvQqdRvPZSHT/EomstsDt5phUYrlvHZIA4aXH10hq7/KMHN8W77jo7UtV87W9oUKDP8Ca0w2fFI2X63tue0ZQparbQp0DlvFz90HH3MSurhJkYPBPx8wfLaPyMXX0P4Vbc/etFbbdxKld7rgrXHsnHjw9WfaTvfNN9oetfwrWPgPrtnAfCCqmbsZAAFPMzeAGVAqkW9BTeXuIaW86vMqFhbxBJZGYcI1IaQPJn5UM3cpKCJrlDxpJQBVoTav4wD6CiG8dmk7Q8jba497W2JhYeEnuJ2JvxWPTuYuC3UCE1LKah55230Aukkpf/d+dYXItT31zRJFS+jHc82irHFoiDndeXNjTr92VuNKTeavKpM5OXwhZSIekndf5Mi2OVNNyeQsC4fwm1VztbnmVVNevE1/hqunW7XWdtjXE7WdqI75GgImrtb2ne8psJloJiuxEa+Y1de9Rd7TdpFmHAG3rD0bu4dtM3OKL+VlU/v71xiii7SpjHVZt7AqeaYpm9jlYaqCL603x/CpPYN6Z3/UWqLtYMcsqkbnBxg+G++wrpMqEWmChQ6w22J9LnOYVbUsX8QqYz3ipxZ+ecMGdZoWL5n4rjmBxXAydxAAKZR27R2o1qJAWFhYPFVwzQbmI4TMB+AVTzP3AUCRvwD8BhVShgG4BpUL/NexamPm/eNtiYVF3OHpHKsWa3BTEt+bHti7UJOH3gHwC1T7kACwGkrc8ASUPnclKDrFI3BWIX/a00WOhSKQVnE094ZOZbPxswcOGf6Jv2Y17bUTnMgT+iInDOGWeXBMPJ5h373mnDZ9fpRDrjpRIDL1oUbchP2sfr61khW4xdtZcQOAk0dIck30GZvQbwzpxdcwa6rhE/khSaA3HpKYm9AxwXtBkp6GT/krJLmmG/yHth+ONquVmz9kaJc/JUPXacd4D179xpTplkN47RQjKOi5thvlnUNeSGf4DE3BiVJd36TuV6oEfD3pJpiE4itHrmj7wfsOnbf0abRZ9Q4wN9CbxLtFXMA1JzAfIeRpAFFU9mpQlIl0AOoD+FpKWVJKWQvAfQBe5XTiK5yb19MK5+b1tMJuXv6Fa05gPpj46QBMg9q4onpYLkO1DhUTQrQCkAiKFxbHA/4sLGIOaXshDbjmBAbvTPxKAJYDSAOV45rqyYFJqMR9AgBXoE5fXv9nOHNg66bbbiMLi/gE15zAvDHxAT2i6QzUBhYlZr4RwEYp5SBPTiwcasCHt+vqHNgfQQUlvlSl/117ntdrLtaYpu1tb5i66tcyMRdzariDUT6LNIyv75wyfO41razt/g/4tIaXJN1iS96Uhk+xCEbA4wexJ71idnP8mqhZUtt/TmX4k/gOm7Rr1TJ1uuQ5PoeUYcwlrf6I8mmNw0YZPtsLcOJ1taHMA46txZxesqDUhk+S05wo3uIwD8S1rpmfs9d7kuV/c3gnbT9cuFjbO7ZeMXya9tig7Y4fl9F2xuNsnN+24LThk6Ufw/SjLSZqO0+v8tou4bifcQI/TeaOr3DNCcybHpgQ4ncABwGkAJAWSpEVUL2R/YQQuwCcgjp9bYCFhcVTBddsYPASQkopmwNYB2ArgE1gQn8+1GksNYAMUCcwr0Q9Zwi5PNJq4lv4GQ+lf77iKVzDxAcenczteSwBVAj5EEB1KeVhz+PZoCgWfaDmRGaVUj549KpE5IKO+mYdqVJAP375HhumKybOb/jcSsLxZ8kTsvzecy31qr5OnsnwOVeAk7nnHyftoGMxst0DuvQ2fB6+yJA09d+h2r7+SjVjnbzB5/pHGmphNbtIRvnNshUMn/yjJml79QSGpLl3cBRb0HiTepGgMUPsh4tWa3ttLzaKJ0pkfmbcWttA24XSsGk86y/rjHXHWzIkPXuHuvU371MjLSRDEcMn7CHpI4tCydgf/w9bYHfkz234IHMG2ilo/3KeI+P+DL3r9MDUuhNilbF+f0QTv7xhE747M14y8V2TA3sMnofS+3rg2LxSAVgFVYGcCKDNv21eFhYW8Q+uCSG9MfE9ObBfoRj5eYQQOz3Lu0PphN2C0gSbJoTI7uO6ZOL/ud/bEguLOIOMlH75iq9wTQjprZnb83hUCDkHwBkp5QDHz2ZC8hQzxgAAIABJREFUMfCfAdDCM+rcJ5amK6hvVu2jn/EHAY6DbEJzNojowere3XTU3Ap+t7m2zyQMM3yyrN2h7VkFSGt7JfdL2g6ZNs7wGf0ZNbuOh/JvWryoefJPv7mvtiMlK1qHC3HadMXRNczXkJd7e+ltbKea2YDV0tzX7hs+v9yjckebLAxjD9diw/Txo+aht2onNn0HtyjHHyQ0xxVscrDqK6Xhur1l2UBedPsIw6fQ1PHa3h3Ov9e1tvW0vTHtQMOn9tteBUqQ+NXy5gPJ+DcXuT+M1VArfHhjv7xhE703y4aQsQkfY9UAFUIeAFAPQE0AEELkhtq0jkHdg9oAQuPmmVq4Csm8DrOKPcTjhLo/4JoNzBNC5oY5lag2lHz0AwApoWgUpQA0AzAYqpk7AYCjUsrLPq7bEUBHAHgnaQbUC07lbZmFhYUf4JoNDF6auQGMBwAhxGgAhaGqjoAao3ZKSplDCPEZqJX/CJxE1qXpCsp0+zkZKP9M1UB9uGlzyFAlqS8KlIW8dcG4hp4y1D4tulZTFcefAUT+6Zkq3aAKsjqKWRJA2FrPlJ8C+dEkMYml58JJej160mz9DJmmGrePV5iO4ZOfAQBMHLITuZtSg+s2gJ05VFhb4sTHSO8p3B0GkHVPd/XNuj04W6209sl65hLkJVbrFvyupmuHN6iMXPs8k3wyp4fc7WhkzxeEFus9Ps2A3ZU+BQAEJw1EvmmvqedZdjyS7XZM3f5hG16tqGSdZwKQpxRpWOTNjutDHLpmA2sgZKYnH9mhnA7T9wDYO7MWAKAogPDvxtInbQA2rfUQcstnRmB2fhBdqzxI269/wkrkmRvA27UUMfm7ZWcRXI7V4qBxqsE8okdDIDgZ4gz2BGbANRuYrxDSkwNrDEWj6OB5uBSATB6Bw1QAIoUQYVLKHx73O7xtXgD05gXA9+YF6M0LcGxegLF5AY7NC4jx5gVAb14AjM0L4OYFQG9egGPzAozNC4DXzQsANy/A3LwAbl7g5gVAb14AzM0L0JsXwM0LgLl5Ady8YOYYozYvINrmBXDzAp5o8wK4eQHwunmpH8Th5mXxCNxUhYwJE78ZVFiZHqoKKQGYWXELC4t4D9dsYIgZE/8ilBZ+JQAToE6iXuV0nDSKWZO3eVtiYRFnsDQKE24KIb02cwN4E2TiR4WQNQD8LaXcBaCTEKIgFFfsERqFMweW/LPn5bcjVwMAbjYlNeDCp4u0/UxNk1W/sQAZ7ov2M4yRyRh6yPR5DZ/Eb72g7YiZHPs1/Bk2P88bFWr4nH6rkba3PENhP3ndnDZd5SE1+l9ax1CoZ6et2i5Q2tToz9eEnQFH+zFMO/MpQ7s0xUwBwSv9+HyqXSJb/vpQThp3ThAHgI57KIp7oxHv409dzbFzeSqu0vbDFS9qO+xHauWvm2JOCj+zho3ZKcuw2X39Ev4dj443R7HVyMquhTubWOOJaMeGdJHaK33QIo7gmg3sMXiEiQ9FoYAQYgmArACyQ1EqLCziN+xkbgOuCSFjyMSvA6AVlEprHqgc2SteLmuEkBHbz3hbYmFh4Se46QTmlUYRnYnveXwUgGNSynZCiOIA1kDxxB6BM4SUl8bpZMCSu6y6DWxGxvay50rAiZx5Mmv7o0zMJTxczCrbXxfMZuUKaVhFTBDCytjUnYe1/d7BDw2fOUeZn6uYmRXA+rPMvN2czmSuz0/A0LD0V2S3P5czheFzrFRtbWecMEXbd8uxmnezaSXDJ/MfDH3P3ubnZPKEHP6UOp+pB9bI0UPe/gU2xb+bv4Cx7sopR0VwIMPY9AVZxbzQxLy2LNRU23+F8m/SsAyb0FOfGm34rGjBEXLJejEEDZ5KXbfwkLiV9o7P+Sh/wDUnMB+a+IDJxP/N89gSACWEEEmgTmI3oGZDWlhYPEVwzQb2LyFkYSjdr6gM9m2oeZBXAfQCcEVKudDHddnMPXmttyUWFhZ+guubuT0/00x8KeUAzzCPBgBGQLH1kwGoIaUMfdzvcGoxhaRlKLTtDMOvPRPNStZdR6EtoWPcSOY81AnbN64WnNh8ngfJ3iGs5q04tVLbFQdsNXxSdWNlLPIYpZEDqpQz1vUN3antH5aHanvKEFbtgqMRSvLkZzN1nmGcJFQmlL9n0cxQpwvyF2eV9bmQrNqet5ihd0RlUzvt/K8kqGb95W1tF5gzz1hXKzdD17feXa/thyvaabvQgj1OFyT6izWai9f5uT23N0P+HtMPGz7Xi7OYLR0j5A6/UNxYl+t7frAF95sfq03P9z550S9v2MSfL4yXzdyuOYH5CiEdTPwCYAgpASQF0BLAbKixajfj5plauAnOzcsi7uGaDSyGTPy5UO1y7wD4GMA8KeVVeIEzhBy36bi3JRYWcQc7mduAazYwxIyJ/zmUGutWAMUAdBdC5PVyTUgpx0gpQ6SUIW9WzO1tiYWFhZ/gGhpFDJn4taFOXV0AQAhxFao/chAegwsdmKuaHMYDW6KkRbX910t/+vSvnpV0i8LDOQIsySyzAHouPSkAM1KzttBn3Tltv/SaSS1omoWfRVfTUHv/uXRZjXVlHPSPhW+St3CoCZvGK7deZfjkndmZ31zj6x73Bp9b4n8+d7rg5prV2g6oShqGWMxbvLxqZqcLGv1zUtvvHWRu61DFUsa6LKvYMDFyYVdtd95FscXq7Uz6yLmmvCdzP2Pea/JeNtsnTZ/U8Lm/h+z7jIJdAtPzb9F2mc7m/b2D2IUdbGvCNScwHyFkKQC7oULIlFBTiADgEIBWQogjQoiDUFO7w2FhYfFUwTUbGLxP5h4K4DRUqPir53tAJfMTQLURZYNK4h/1dlFnDmzqz+u8LbGwsPATXEOjAB4dq+bpdZwI4BsAAwBUllK2EkL8BGC1lPI3z7p7AOp4Kpk+IQ8P0jdrfU2OGru1jlr1Lw4xN7l2jRlevlGM4UbqOn9ou8hUUxdrf1ZSLEJvMoypm7OutjN8/bXhs2oC99+Z46tre9h8kxrQpQ5TfcPycqp02Eg2pOdIZ36ubZzG4kWiFOSC5MzHRvXUuUzm+9Y51C6r9hrpEh9UyKjtro5uBABI+Aq15lNNYxh7491Oxrqqi6jFVj4zw77vZpPCElbTbACf14zs+UzHWmq71cLd2l467qDhs2IsqSkFUzMETZGQf5/SaSsaPgh4LlbpBnc/rOuXN2ySoX/GSxqFa3JgPtADqk0oBdT8x6h+l+wALgGAEKIWlLT0XW8XsLCwiL9wTQjpjYkP4BOoauMlqE0qikaRBsBCIUQk1FDbfVDhp7frkok/bau3JRYWcYeHkf75iqdwTQjpjYkvhIgA0EBKuVgIUQ+q8phACDEJKpGfBMA1qOpkDSnlOR+XBwAM3NZJ36w+uR2jtU6Q5Z1u5Q7DZ/Uk/uz13gzZFjWmjtXi0M2Gz9Ct1A3bupNVsgxJyQbfOOus4dPmI1bWupXm+LYl0SZHz17IMCksB5uiv3qeoV2dnNkMnzTB7HPPOna1tlNeuKLtzR/WcbogbesZ2o6McLwB5nTUZupEGZ0uxpi35HMWaPvAwC3GugeOaWzl6nFi9r3G/JsElHve6YKlZ9nFcDWMtcKKmTnBO8eB04bPb+UYqra81Iv2NmYaor+3p784MXZDyPdq+yeEHL40XoaQrjmB+WDihwOI4gpUAtn2fwCoAiACKvl/4982LwuL+ACryGrCNRuYjxByIIBPPKFiHygCK6AGeZQF0BdAZ6ieSF/X1SHkttl2MreFRXyC20PIEwCmSCn7CiEGAegspUwthKgEYD9UK1FWACWklOV9XTsKo3d30TdrzC4SOi/dZTP3yTxm+JV6E0O202cZ+6QJps/qWeZIyp/GUlvrq3HcNFu3YAVx6YstDZ8Zp5Zo+8UJR7SdKdicfn0lK6Wf1/bZru2KHUhklRFmXJSwMEPS3YNJInWGcok2v+Z0QfGTDF0vDKR0deb0xjLcCmQVMUnrEG3n3s3q6eHbZvRycRkbz7MOa6BtUaAsX8MN80Ad9q1jilQ4Q/HE73Ay992v5hs+d88x1Lx8gH/vhMnMSeGH9/FvWffqwVgNte68W8svb9ikI5bFyxDSNVVIH2PVskARWQHgHyjVCUgpNwKAEAIATkJphVnEMZyb19MK5+YVJ7BMfAOu2cA8TPyX4WDiAzgPYIoQYgoAAeCEZ21DqHAyA9Q0IstQtbB4CuGaHBi8M/GDAFyGChcvQm1YgDqVpYEKOZMDqCuESPHoJc0c2PoZVrTVwr+wSXwTrjmBeWvmFkL8CKC1lPJ3IURLAJM9a495aBWzAfQG0F9K6VUPzJcmfqXmX+k122fU1Hb6hWZH0uWP39P2urNkg899EKHtN0qaMj3ntrCcX6wXqRdfZieTf8fNvw2fbMnIFA9uxSbt4BXmpLjdw0jzuLqe1IcUI/n4sc9bGz7XwjkWrfRm5tfOD2eTd4YbJl1jfEIy8UuNImUk9YSN2t44zBwE1aEk6RqT6pFJ33T7KWPdtBukf2Rdx/twtgiZ89lnmfms0x/zua6/xkbvyreZ50rSvrLh8/JhvtY0idk8f+YWw8b+b2+Hhf/gmg0shiFkDihdfAD4HUoTzMIi3sOqUZj4Xw0h+0HlvpJBtRD19XVRq4lvYRF/4RoaBeC1mTsC0UJIKWWQ52c9oIisZQG8AKColPKyj0sDALKNeVnfrCPnySHo+yxDGod0OgDgrZ7Uter6cWltjx7M0GfW6GqGT9MeG7Rd2DG6LE8JMtd3njTVfwLSsMH44bnb2t7xixmmVZrRmD4/k50e2YcN5fL4ScMn0Wy2UJUuR5rIuIHU199/0Px/NHQiNby2VeDrbrR3r7bnZM1h+DwfylD6l18Yvt0+e9tYV/oF6ojN+4nh9oRJpJ/86ZiCDgARdxmynw/kvRLBnG1waZk5zfvmKU7mLlaVIfr6BaRU3FvX2PCpme3LWKUb3OpS0y9v2OSjV1oahR9wEsB3QoivACSGGq8GIURlqHCzJtSQ2wQArvi6iIVFfEF8Tqj7A64JIX0w8Y9CCRmmgwoXoz5FJgOoCjVe7QUAf0sfR1FnCHlnbWgsvwoLC4uYwDUhZAybuc9BbWwXoTa3uwA6SinnPO53RK5/T9+sO+XJmV1zhmFicLkFhs/NTS9ou8lXbNru0qyYtkcWMKd5f3CMGlX/XLqn7c27L2j7l7bmaK/gQLLDq4yitHKuzOYhe/NMhknZ21Kr7GxzVvBCxi0yfAY8n13bPaeyM2DfFlYnc35shsEPDvC5rm9Eln/1TWxCD61tSkXnTcROA3mVz3MdTN2wchN4f/Kk5WfwHw15TxJV+8PwOXyE/89b7mvDH0Sy62BH418NnzJ7v+Wy9ZQAT7Fyt7HuYhjvfWzrZl1/s4Zf3rCpxq2OlyGka05gMWzmbgk1IzIXgBkAuv7b5mVh4Q3Ozcsi7uGaDSyGzdwAUNWjxPoqgMGPuS6rkPP+8bXMwiJOYImsJtyUxH8dDCGjiKwnAHzpaObuB6U8cRTAWagEfjEAP/i6qJPIGrnybYn7qpqVqucwvWZsF4ZC7caY7Zh3clDeefI7rIS99BWrcdMnmZ1MqTfW0PbsdQzFWj3L6tv43Zcx7ldW6jKkZig0/T1O4747mb8HAHJ25nN9PR3//D+8P13bv39iyiSXz8g+9zdzsgJ35E+Gdglmm4TZB80d1whhI3V4O05myrx9CZJ8zgncN7sP1XbG1HzT9Glc0Lj2ixEkn67/jlXI/TVJ9M0f7aO55Z5X+U0wqYJ9z/MeflzfrIquzOaYDl46ubaPJOF9uwmgcBlWihlUW8QFXHMC8xFCem3mBvAS1EZ3Ukq5CECAECIdniI4N6+nFc7N62mFc/OyiHu45gQWEyY+gLYA8nq4YAmgZKfjr26uhYUHMtL+N3XCNScwxIyJHw4gKYDjAE55vvd6AjNyYAv2xPJLsLCwiAlccwKLSTM3gMUAVkkpPxNC/ArgAoCSUDr50a+rc2Dvr+sgP4SiNTz4uC0XRYRp8+6LuQ3/ZHfI5h7m0Lpv/R4121slXWz4rHmFTd/fzGAO7achu7Td9fVChs/J6mzgzi4pQHiqsalXdTYfc2CTHiTT9oEPv9B2ja2mGKCoRo5vRBg7EE7MdYgJfrXe8MmwjUKOlw/z2kjiyBd1+MLpggLFmWcKO8SmiIBoBfxvmzkaq79ho3eZjMyv5VvX03S6YM4QiEL4A+bagp/LY/ys1BVSWCJGveHVf+fDuB1mZXshTbjpBOYNUUz8UwC+h4eJD2AuVBUyOYC6ANJCndIsLCyeIrhmA4shE/88gIxQ7UMpAcyVUnqND50h5D/zDnhbYmERZ7A0ChP/q0z8YVBtRKUArAdQT0r53L/9jlQD6+ibdbUiS/thC7mxnelX1/Ap8BEZ4VmfIQ3im7cojpg7lxkj9ficzc+LVpGqkK8wQ75zxXIZPmm3MPo9F8mJ2effrmWs67eJul/F0rLeUT83Q98iQWYoNe4kp2S/lJsUjTBH+JTtT3Nm5jd5g7VdMTOb0OcfZ3j6RWiY4XP+Nx6Cs8wnpeLLbdOMde/OZLP5wxtsaq9Tnb9nzTUz2R30OjXOTkQw7Mw6i/pkV5vVNnzSbWfIjpukbojcbGhPNcNUKLnxSeyOH7v8amW/vGHTTd1gmfixiRgy8YsA2AygOoAfAeQSQmSEhYXFUwXXJPE9IWRueKqQAD6FYuIPFEJ84lnWzPPvLqicWBDUVO5snq8LiAYhREcAHQEgccMiSFg2W/QlFhZxBpvEN+GaDQzemfgXAHwqpfxcCDEawFCo3sfZUPMgj0HlyTLCBw/MWYWclbigxJJQAEDBkayY/RPM25h3r1nBezhqoLavhV/UdprnGAY9WGpO807juF6iomR3nM2YRNtnhppVv8+Hki1/60uGPscLmE0G9S7yDRBSjn18GdY4Qk0Z7HRBr0Wh2n6jGkcHfB3EqeHt5pnE2p49amg7YABHvi3+nVz1wHNfGz6Rkz/R9u0IXrtPhvzGupSJqXF25NN22l7/N5us7zetASfC3+HvGtKE4fKmQHZHbB5ltsPed4i7vVOR8+B+vMvQ93q9cki73MpK+wtuDyEzAIiq1X8JIKfHfh7AMCllSQBNoPhjaWBhEUPE9eZlk/gmXLOBeZj482Ey8cMAnBBC7IY5Oq0QgLZCiNsAVgA4DSC1j+vqKuTSB9e9LbGwsPAT3BRCGkx8qBzYWQCZoGgUYVAS0gCQAup0dhvqVLbR4/sIHgkhLSz8iMh4fBryB1xDowC8auLfBJBSSik9NIslUsrEQojeHpdzAEIA5AfwmZRy0+Ou7yxhp25Akb6AAlQxWJjaZGYfvMry+4azZHaPHE/qRWCQeRBOVY0Cgglfa6rt4YdX8HdGOzvnrkSqQ8PTHLKU/JtJxrrbvdlAHfb1z9ruWYk5nm+rNzV8HnxCYT8ZwVTh+c1kt0fcjjB87i2laOCW86QtpA1m3u2VLM8aPgl6c1Tdga3MBgwbWMFYN2cPc4llc3IU2+TZofw9ic3ns60/R7vVnUJhySzpOR18y+E7hs+Z5RRV3PGXQ0nkY+bk1nx32PCpe/VgrNINzr9SwS9v2EwzNsdLGoVrTmA+mrlPANjv4YNldzx+CcB3AK5CaeWHAzCJTBYWFvEersmBwXszd1qoEDE/VDN31KfXdqgNLCHUJp5QSvnw0UuaObDJR857W2JhEWeQD6VfvuIr/idDSMf6dlAhZEsAWaSU4V4uqxExrqW+WYFFyAcTSUlvuFrQbLJOE8yRa3OTcDr0gbUMn77ZbFIv3ihDTm3rLmR6//gtdev7jTNbN4tXZgh4pmlDbRdbsNBY16gAaxVLjjFMC3R0TJfNnNzw+dUxKXxy8yLarp+WoV2hmb8bPjfusun7/G5u/Mtmkkbx3GIzVD2cl43emXrxeWdIGY1Vn4RhaI7cfD0pEzGgaFPU1OnqdJwh4LFBDCEvnOXzrN85l+Ezui/HvAUfrqft16ZSJPJGjw6GD5I3jdVQ69zL5f3yhs08e4sNIf2AAwAaCCHmAxjuY01eqKlEj928LCziA+IzpcEfcE0I6aOZexeAWQAeAMgDKC0cIUQ5IcR9AOOh1ChKCyGK+LiuDiHHrX36VVAtLNwEN53AvDHxOwOoKaVc46k8dves3QOVF1sG4H0A4+BFCwwwaRRph9WTfa+psOtseeqBJYpgGNJn41zD/7u/qKV1aB3DxuqvrNZ2tY3NDZ9aI0lZG+yYCH2iTFltv3TOnFZ9fl2otkVLNnO3KmLyc/vkLKPtbMk4Hbz/GlYUb98304FX6lPffr4kF07epr7Z/npmIzQc7PmALr21/dwqatMH/GCOb5vfq7K2//mAI9KSzDQrfb8MIhN/yVyy6i/f49+haf7Khs+H16mx1tfR3VCsKk80s4YcN3yq3PtS259s+lPb79fh71x+3eyieD65GRZbxC5cs4FJKdd6cmBOFAKwVggRAKAMKKeTEMA8AL2hNPPtudziqYANIU24PYS8CUVgvQelPBGVne4OoACAqVD9kAngo5XIGUKGbT7pbYmFhYWf4JoqpA89sN1QG1gAlPZ9bSllEofPTCht/CIACkgpwx65sAPhwxvzZjlKy2cXM6TJVCmr4ZPoRU6/npeJIU7OFykjnWjD64ZP4Rss+AQMnaXtH7s9o+0ev5hVyHP9u2l7/vHV2i7dbIWxrsj8N7UdNoHrNv3IMO3ZJS0Mn0/vsUo6oMzL2paXGXLJ/abY44IGbOD+egLD1kl1eUjuttLkDS/8k8/h954MlxvkMTXW5gVTLvrV7qy+vtO4sLYnbjUlpMc0Ykh7J4IVyV/339T29pNmq9jRru21fes+UwHpxpgS4AHpWYVO0HpKrFbrTtcL8csbNtuiv+JlFdI1JzAfzdw5AZSTUpYB8DUYQkII0Qjq9LUZwH2o+ZAWFjGCc/OyiHu4JgcWEya+EOJ5ADMB7IXqlUwJINTHdbUe2A+vlMKbFXJ7W2ZhESewY9VMuOYEhpgx8T+G0v+KBPAQwK9SysuPXlJVIaWUIVLKELt5WVjEL7jmBOZjrNoIAEmcTHzP8qRQm1kqqF7IhkKI7lLKH7xdOwrZAjii7FIn5q0Srhus7expzFTBgdIltT19NfNRU3eSV3s30PxUfTjnN20nSk5KROeRpD1Ejh5k+KQf7miE7tZS28manzbW7U3GPFyx3l20XfIorydPnDF8WlWl/v+5CObDgt6fqu1ceU0RxAvt2Xr6ZzqGWU7t/NW7zTxV5MCu2u6xm1SSpslPGesWLCRFoqXj8U4lmANrlC8znMiQmEKMFceu1PaS10gRKXFmt+GTEHxNt1uP1XbGcmT/L+2/1/Ap2xoWcQjXbGAxbOZuBiUlnR5KVvoWFBfMwiJeIz73JfoD/6sh5EWoqdyVAEyA2siDH7kiotEoNlkahYVFfIJraBRAjPTA6gFoJaVs7Vm3GsD7Usq/Hnf9q+1I2y5YkjpUhbIyPFm/6pjh80HrEtqu+RLZ4FVfo4ZY/oLJDJ9TqXm9iy9xMneTecu0vWXDCcPnxFGGt9kWDNH2pIMzjXX9N3JuyfYNTPtNeYedVG8WrWf4JPh+orbPOLTv54xg+FWu4WrD59Yt/r9aMKuatqtl5efEnitm+2n7orxXOS9TV+1KX7O7Ic0vA7QdcJPaYPKqI9S8b+qBycO8X1PyMvA4eoMhdZIE5uf5mF3sNKiSnX/v3RepGzZrvEkfyb1qV6zSDU48V8ovb9icK3ZaGoUfENXMHQCzmfsZABBCLBFC7PF8f8yLv4WFRTyGazawmDRzA6gDoBWAap7HUwB4xcd1dQg56ZDVA7PwLyIjpV++4itck8RHzJq5RwE4JqVsJ4QoDmANFBfsETibucMfLtZ/yRO9KbOc9BAPb5s+NVnjWZNRDyz7cTZzv7uLlbCHO81xlOuqUGssT8Pvtf32SFbfIkqZnU8J+7GpeF1OsvKbHh9mrNt2YZ62Uzdvpe1XBHW6Ptsy3/AZ0voFbZ9qHqrtd/bQJ11Xk2Ly7rMMkb89zgaHvcU59fvMHTMMzpqUbPlb77Oym3Z4G2PdLcfIteQpeX/LLuBYtMHv7jR8WvejTlvoDlZ9g/t01/acFG8bPnvfzct1JViJrXY9VNu5V34DC//BNScwH0x8X83cSwCUEEIkgTqJ3YCqSlpYWDxFcM0GFsNm7tsA7kBp4vcCcEVKufDRq0bTAxu72NsSC4s4g5WUNuGaKmRMmrmFEK0ANAAwAkrUMBmAGlLK0Mf9js+3dtI3q29uNhuvi6BbZLT7+ewXJK9GtqvB5xvynLYDe3xq+EQ0ZPPzzWkkV6Ya61h356rh49Tm2vM8w5qio8yKYsAzrByeAH1WnNqj7VcXmBLXAe9TCvtORxJek9dkmNgwqfm6G+enLPXr6UtrWyRNa6zLMJaTkd4oS/Lp7kuc4PT5R9sMn0WTWZmt2YyV3QSOhEjZXSbRN3IHJ5nn3s8m9Lkvh2i7/izz92xr/ZK2T5ccqm1nhRUAbm/ixKMGub+O1WrdsWol/PKGzbP2n3hZhXRNDsyHHlhOmDSKOlHLodj4LQHMBtAc6rRmEYdwbl5PK5ybV1zA6oGZcM0GFkMm/lwAAwHUh9rMvpZSmkcaCwuLeA/X5MAQMyb+5wASQc2CLAaguxAi76OXNHNgf83e722JhUWcwebATLgmBwbEiIm/G8B6KWUXz7qzAL6XUg7yeXEAcvdn+mbNDGHDdZLEXLNhcXXDp2xGTn5ulLactkef5Li0xnnLGz4ZH/CCI45x4rZTSeX9sSZNQA59T9u1l5G5XjhtYmPdN5lyaftSDh5Kf9q9QdttChd3uiDHloPaFsUo0Nho60Ztz6nyvOGTdizvz9lwHvRvH+RB958VpgDIitm8d59uJ1UioKs5uuzkbX6QZB1JOoqMoJZ/whr5DZ+0G1hkvnmW2YIpP1ArqEjEAAAgAElEQVSo8Nk7vQyfM7fZ1F5yNpu2N73EqexVE+QwfESGjrGaKzpSsZhf3rD5Nu2Jlzkw15zAhBDZ4RlWK4TYK4R4B4qJ30oIsQzAUs/PUkMN8KgrhPheCHECQGYA6Xxd28LCIn7CNRsY1OaVC4rrlQpqYMffUM3aNQBsg6pIfgSgPZQKRVcoLfxQqHzYI3CGkGNmbI/VF2Bh8W+QkdIvX/EVbgshcwFYIKUsJoSYC+AHz1cNKIrF71D6YAWFED8BWC2l/E0IsRHqFFZJSnnO68UBHL3xjb5ZOZJTe6rmjEnanvmSycQv+wvZ4Z9UImu82XcMg5J/Zo7iyjyTevLht9jwfPWNxlx0yWxrOpaNDeCZkzKdl/j4HmOds8l5YVLyfqtlqaTtAmMmGy5bXqujbdGYulgJU1KrLNP4dwyfU4G8dvakZLEfrkDme9Yq5vwAJ5LeZZjnnOYNAFcd36ZPx8im40Cqgh/MlcXwOVOOzerZbrKBe1UkNcmSPzvL8Gn+UVF4w7nDDDsntDeVyFsU+CFWQ63D5Yv65Q2bf8veeBlCuqYK6YRnI3sGwFEAGQFcADAEwPcAhnsY+DkAnBJC1ILqlTwGICsAnxuYhYW/EZ9PQ/6Aa0JIz4nrIICiUJvRCQAvQZ28bkGFiC2hQswMUI3cy6HaiqIy6o/873CGkNMmboz+YwsLi3+BECKNEGKZEOKw59/UPtYN9eSv9wshvhNC/OupzzUhpBAiMxTX63MAq6GauxsBWA9gtJTyYyHEQACdpZRphRCToJL5SQBcA9ABio3v8wRW/rcW+mYdO8/J2Me6v6HtpGtWGj43qpJbm2wKw8nAPBwHVvHCRcNndgNW9DafZwhYKwerdEdvmJSOZz5hk/bbLVhFnLTeFGHc2KWmthMFMgTMPIBTsjvXyWb4JAvi51zNupR6Ll6Uj+f/wqy+ipwM4c45wrkvtm7W9shsJnPl+BusXO7ZwdC581dFjHVrJ3H82t0FnPR9INNEbWc5aU47LzuFHQ2RdxlGJ37vNW3Lm+affn9idgOcvMWwseZcU3lpaYOc2q6fa3ishloHSxf2yxu24I79/+fXJYQYCuCqlHKwEOIjAKmllL2irakEYBjUwQJQ79veUsrVj7u2a05gAM5DqU3s99Ah9kOFhNER9Yf4A0AVABFQ4eSNx21eFhbe4Ny8LHyiIYCoRPEkqINFdEgoVeSEUBzNIKjUz2Phpg3sZQBtAHQWQoQBeBFK5yuB57H7ADoDCPSsTwWgLIC+nsdHeLuoM4S8uOJoLL8ECwtXImPU4cDzb4boC6SUmwCsgspBn4PibP4rc9xtIWRmqLBwHVTy/nkAOwB85ji+fialDPYcWfcDeAfqpFZCSlne+9UVFqQoqG/Wi3s66ccPJieB8vxdc7pz9aSsVm66x9AnVwqSSKv//qfhc6goiZIF9lLC+c79h8Y6Z0J3/as1tH3vAfW3Mr1tantdP8bqYIY1/bU9fh/lqnv/av6/WTebH4RlxrLKOiUjZazb3k9v+Dwozqpm5IiftF0vl0msXbmcHwptXmaouHAXq6y5syQ3fBbPp3R0us/ZcL0/LT+PC8uMhs+PZ7dou/MDUv5O9zZFSHLkZidaqhyptH21FcP6C+/NMHzee5N/46l1J8RqCLm/VCG/vGGL7DrYCZ75qB6M8WjlAQCEEMuhZqxGx8cAJkkpUznWXpNSGnkwIUQ+AN9C9SUDwDIAvTwyWT7hmiqklPKcEOIygAUApkDJ52SFOmVG6eAsBjDAs34jAHjyhCcB1MNTBDdUo5ybV3yAc/N6Ujg3LzfDKezp4+fP+/qZEOKCECKz5z2aGaqtLzpeBrBZSnnb47MYQAWwwOYVrtnAPEz8bVAxdG6okWltoIbXznAUNCI96xtCJfwzQMXe62BhEc/xlA7mngfgNQCDPf/O9bLmJIAOQohBUHnq6gD+Ve7WTTmw0lBh41kA2aA0vqJoE1G7l/N4vxuKhZ/c81VXCJEC0eDMgf15/3r0H1tYWPw7BgOoJYQ4DKCW53sIIUKEEFHzWGdA8TZ3Q82y2CWlnO/tYk64JgcGAEKIIKgQcgnUDv4DgIUAykopdwkhSgLYJqVM6FlfAkoPrDeA/lLKx8YDGb59Sd+sC60a6sf7HOa06ecarTF88hyhPv2tCqO0XXA3hySl+eQrw+dGduY4/xq6S9tFDw7Udsp3TK37sHykKtzbz4ZpObKLse7Oy/Rr1pYNzxvrc6bJ32U/NnyK76Uu/4JkZNLXvP6ltm9HmGz5tN8t0Ha3chQxHFeNv6fSTJPxXz0Hc13PZmOKpM+6UGPdthCOX7ubh0z4G/cp0PhXRvP+3PiLEU5rSeFEkZuT0w9W+tDwGTWCFJj2XXhAv7WimbZPZvnd8GklD8ZqDmx3Mf/kwIrvORAvmfiuOYF5SG/joRLzs6CY+FugQsaoqRQvgCFkDqiNLgGAH6H6Iy0sLJ4iuGYDg4NGAcXETwrF87oP4AMPjeIDAFEMyX5Qua8wAKkBrIh+QcAMIe9tPOFtiYWFhZ/gmhAypkx8j08gVLk2DGpqUVEp5WUvl1e/o0sFfbNODeOBLVkQw50U2zYbPvIcGdzXHVOtk+Rgum1NR7Mh+MiNW9rOlCRI2y9NJ6v+5i6zkJNuCBu9L2VgCJqx5yhj3ep5zONVm0OfK8VJYdh6fpfhU/1bao8lHfa+tnNOID0itFIpwydixT/aDnqlhrYn36AuV+X2ZoEp7ziGZq1PUbf+RvgDY13bIqQ39NtA7nG7YqRHfFTwOcMn7LtftH1lMxu4s3zHRvqHq0yNtZMT2QXx23DOEjjuaAZ/u1Q+w6dE2t6xGmrtKuKfELLkPhtCxjZixMT38E7eAjATqpk7AYArXtZbWFjEU7iGRgGGkOGegbYJAEwGmfgfQDV1RzHxPwXQGur0lQDAGunlOCqE6IgoAl+13ECRR0jEFhZxBhfQ//5TuGkD2wQVBjqZ+PuheGFfOpn4nvXZAWyQUlYRQkyEql4+Al+TubdfZKhYYdMmba+vYB76qlzlLU7dhWGIk9BTc5ZJ6ByYlU3Wa/M7pkNfYXUxIq35P7n0eo4Ee78tQ6HIS2ZFMWEwuYgRBUs6fsIG5xcSmVO2Tw7g90kln3e+NGTV3xltVl/rVycTflEG9guGXaU0c/5SyQyfO1N4H6cOYkXweof+xromD/gcLl9hw3WvpGxCf3/nUsPnc0cDd4psrHY22cvnkzNfUsNn+AA2vvfJSOno66MdNKapRxD2w2uw8A9cs4HFlIkPoCCAlEKIUCg56XpCiAdSyjmwsHhCxPXm9ZQSWWMNrsmBeZj4p6AatDtDyXJE0ShmeEh0MzzfA4rkGgF1UksE4Ka3zctO5rawiL9wzQkMZOLvBZAHSo7DycSXMJn4R6FY+3Wg+GMl4AW+QkgLCwv/wzU0CiBmTHwhRFcAWaSUfT2+oQBCnpRGsaEfdeLLZqTywo78pjb8J8M4uv79EObHDl2n5vuv+8wWpSYFUmq76PMcqxb2F/vN86U01RaKBjL/0+3v1dr+adY+Y136glSNWDyS49JK7R+t7d9EZ8On2cSy2g6s4aBLnOetiv7/6HJJ6sl/sol0idEJSB85WtIUTiz/IxUx3q7BnFPHL/821mXPwc/d8PLMEe79knnAvDXNXGSCb3tqe8wepjuTBfEzrX0Ok3qx4DIVeAukInu//2bmzaZWa2D4IMnLsUo32JbfPzSKsofjJ43CNSewmDZzQ4WaNYQQPaBOaxGwNAoLi6cKrsmBIebN3DU8645DVSsTAzC1i2HmwLDPmwqIhUXcITLSP1/xFa45gUkp5wohEkKFkD9DhZDHoDatJs4Q0uNyEMBlAOWg5knughoIsjfadXUOzNnMXWETWfGtErPFaOAOM/xa9tE0bVfNxjJ9/6lked9MbIpgJK5KuoWczP894p5DA+7KTacLThRiGNrjmULa/nnxYWPd6lfZoFyw2Yva3piTTd81m5gzFyaX5fNrd4rM97/yM9QNyVDZ8EnenwK32eoxnLv3G7XpL+Q3aRTThlFr/sXz7Eb4qFxmY936cQx9Tw5soe28Dob9wFam3n7L6+wMeCuJY5p2/gravBJmjqoLDqQ+WMWxnHVQKg/vj7xkUmCEVZiOU7hmA/PSzN0DZjP3LjiauaGUIpdBndiSQ21mZsLIwiKeIT6fhvwBN4WQMW3mLga1maWGYuenghJVM2CbuS0s4i9cU4X8P4xVOwo1mfsNIUQhABsB1JVSbvX+G4Bj1Urom5V7DpuaE35OdntAoPmZcCsHW48OvFpG28WPUJv+asmShk/qRPQRodt57aGcHP37OFN/q8kkyvnPfYP67/Vuf22sKz5pgrYP5mBoNigl9e0b5jGZ+FXHrNb27LZ8DWezURv+97nmOIHdl+5o+2gFvr4081jZO340zPB5u1kebZfLxG6E8k1WGety7+6r7bR3eSQ58sIQbWd7wXwNR2awkb7vl+W0vWY39f7PPzQlpcN6tdX2nVeGanvTCIb4H645Y/gce2NmrFbrNuX2TxWy4nFbhYxtnIeavr1fSjlICFEBjx+rlsBhX4OaYHTLy3oLi3gDG0KacGUIGW2sWiIA7wghJJScbdRrXgKgpRDiIVT/pIAacmvAGUL+du5q9B9bWFj4EW4LIb2NVdsMxfn6CcD7AJZJKVMLITKBDPw7UKevN6WUu7xcHgBQf24bfbNGj2axMms/EiAfVjCHszz45Fttv1qRJNIpSxl6XDtiElkzvsQK2tAQal/1fkg7bM4/hk9wjVzaDt/AVF74uTvGutRBDNuq12TIVjAt9+4x0/cYPoEJA7W9fRmpcm0+YvPCP01fNXzONPtC26ny8Xl3eYHj5Dp12Gj4lPvkGT4fwZC2b0WTtOtUZEiViEFEvVy1tH2zxUCnC0pWY1herzD/DqkS8TN8RNVWhs+hcpQD37GDI+2an+xmrNsQQEJvlcwDYjXUWpfdPyFk1VM2hIxVPKaZ+xyAKM5BWnhGOkkpzwN4UQjRDkAIgPpQnDALiyeGc/OyiHu4ZgN7DBP/AICdUOPTLsAz0kkI0QhKVjo9gJRQM+luermu1gMr3qU8ctTJH32JhUWcwebATLgpB+aLiT8IilYRCUVUHexZnxKKOpEAwA0oWsUjkFKOkVKGSClD7OZlYRG/4JoTmC8mvpRyM4CKQojrAIZIKa961k8CMMkRQrYUQiSSUoZ7/w3Aghpspt7Vm43DWSvW1Xbg/N8Mnw1dmdeZGcncS8BCssnfeM+kUYwJIsO9chaKBt5OX1rbKYqUNnzufDpO29s/IKWhSJpCxrr3tlF4cOB6jiH7Ng/Z9nLYB4bP4ANsst7eiZ95/zhyTksvmfmsq8P5HJqdZPrkt4VszB5//FvDZ2N2NsIfO8GfXbh/zliXUZAJn3wIR76t/4Mihu/0N+/PuZT0EYX4QRQ+gbNcLoSYPL99v7Nhv9l5vlVOpqCd4I6bzgBPH1yzgfkKIYUQTaFUWFN6Ho9aXw6qRSgN1Ens+OM2LwuL+AAbQppw08eHrxAyE1TyHgB6CiGWeOw9UBtXSs/aYkKI4tEv6qRRjJnodfKahYWFn+CaE9hjQshlAL73hJBvSSmneNbfFUJUAbASwBsARkL1UUa/rm7mlseHSnn1FACgVHVSAyImk92eoFlTwz9fk895rY+qafvMWX6UlvznguEzpiBHqZ3NtlDb1c+SlysjTBZ7YOpgbZfot17b/dua1/46H8NVeYXh3AdJqM3VdI050b1fL+r/FxvfSNvBn32j7XvvmzQKkZVMeJmM4fLFXx3j1m6b9JE/p/P+RDrCSbmtsbEuY8aq2i5eiGH53tkFtb0yWtfXvWdra3th6HJtdwqiVv65r2YaPm8kJnXiSvdO2s4wZKy2n82eyPA59gZiFW6hPf1XcM0J7DGTuX2tTwVgFdRw24lQLUYPfK23sLCIf3DNBgYfzdxCiGFCiAioUPF7RwjZF0A+qFxZAgB/ePJoBowQ8jef+6GFRZzA6oGZcBsT31szt4SiUGyBI4QUQuQCsEBKWczz/SoAH0gp//L5OxyS0t2aM13WtQSnM7+51JzuvP0vMu5nj2M4F7b9BW3ff2ge/M7d5fdOSemNC2toOyLagMAvJzM0i2zHdddGbzDWpRnNJvSDlT/Sdq6mDL8uvVXP8Mnq0B5bVobhU4P2mbR9JcJshP77QzY8Lz/J1z3OMVH8w/KZDJ+Kr/C13r7Nxy9cNF/rc03TavuZmmTpH9xPpw8amMJc60/xNfz2Fe9VoU+oB3Z/pylY2acOQ/a/L7Cj4cMObLBPd9AMnctl7BerjPXlGQr65Q37/MWD8ZKJ76YTmNfJ3FLK/VLKg17W66SPECIn1Ji10Lh4ohYWFv8N3LSBeW3mfkwIWRZAEU8z9zGoe3E7+kWtpLRFfIINIU24LYT01sztK4RMAsUbawWVA5sHoKiU8vqjV1d4d20HfbO2nOVet2Ivw5OFQ48YPtd3sNH7F8f0oZ6vMwxp2MaUcE6TJ422pw6iZHHdM9SkwoP7ThdE7mKlcEAQn9vrfcy8XY6fW2u7wkZGy8kcDdsfdzOj6Kr9ScYNSM5QMdIx7TpBSVN/SxRgiP0geTptzzlmVjibpKM21/0xrAIGZqHcdNrjZiV1x9sMcVN1pybZ2b/Zl1jstxaGT7EdbL4/e5aqSQmCWYhPkswMg0MbkqA89zYL1EkSmOtSP8dJ3bE9vWdpOv+EkLUvx88Q0k00Cq/N3B4aBRxTiaJQA8DfUeoTnsG3+QD4zIFZ/Ldwbl5PK5ybV1wgPp+G/AHXbGAxZeIDaAfgeSHETaixasHwogdmYWERf+GmHFhMmfj3PGtOQiXvI6A2MgPOHNjueQdi9QVYWPwbbA7MhGtOYDFl4gNYrNxkOyHElwAqQ22CK6JdVzPx/zj8ls4/DE/IPFW7NGyKntyno/G8rnQcpu03R5Fdnv5z5s2udX3N8Kk3m9r3zw1lU3LkqsXaDh1sNk9vHkt2erpwfi7lGFrfWLcuiHm4k9fI5j/bgmz3S9WOGT4JmpDFvuwuC7ovj2FD++GW5lTrGUc4jbvrdur/f+uYpBZczpy43fAUc10P3+9O+7MvjXUj/mY+a2QyUk4ejmuo7aMdZxg+e5f11/bdL9j4HlyV9JG9nRcaPgtr8cC+98pdbXcoxpxgh+Fmo3ncBpQWrtnA/g8h5AoAI4UQewAUgBI+tGPVLCyeIvwvh5C1oCqWSaCqlKkQbagtYIaQy6ftif5jC4s4hQ0hTbiGRgEAQoggqBByCVQI+YOjCmmEkEKIllAUiqNQevjNAVSI0gvzhkWhH+ibVXcnl6XefUrb199qa/h8cWidttsUJrVgp2Oic4OT5t9gZV5qgD2XvKi2k331s7ZLFjN14nuGsKm5iSCD/Eg6M61X5huGoX92rKTtCicYTspjZlgUvI0hZVhZ6uj3zcUG8oBoRd623fi6k2biRPLsOXnov/bNe4ZPyjv3+BwO8bMkoHApY92dJKy1XA5jp0OOsxw11+G0GQb3Lcewr/BAhpdDWhbW9vCtJl3jeFbq6EfsJwcwYW3OAhC5owmYJGsSq3SDBSn8Q6Oof9PSKGIVj5nM7QszADQE8BbUsNsej9u8LCziA+LzacgfcFMIGdNm7koAqkJtXscB9BVC5Il+UWcIufhXnwOLLCws/ADXnMAAbAJQHmYzdyhURXIcojHxAQwAcFRKWU0IkQEqgV8WavPTcFYha89qLQ/uUOHVqECeqH8fQfGp3V1POd1RMj3Dp0ulf9B2wxWsVqbesMTw+SBpLm2X/uQnbd9qQdn+k5WLOl1w/yFDwPDvKBudt1IuY93rjvFrGZuy2hnZnqHQ0prmPOCW6Rz/Ta5RI+vT8qz6JTpkVhSxvLc200/4nY8f4Vi2B9EEcButp07X9JOO11OmgrHu862sFg4pyJ89WL1b2w1qZzF8si9ixfRWAf5safWV2j4+rabhU/MWq6ere3TR9rlw59/4BjLuJEs/oFITxCbsCcyEm05gMW3mDgIgPaHnHQCJAQR6WWdh4RPOzcsi7uGmDcxXM/ccRwg5TggRxfP6DUBJAGEArkGdRh/RxHeGkKeXHo6L12FhYfGEcE0V8jHN3NmgZKOXAzgB4LyUspdH/34lFO3iIlROrLWUcrav33Hx3mR9szK9P1o/Lh3aXJs+rWv4lDtGHakbZUK0va/Ap8a68gP4s8DarA4mHPqrtjcuMIeoPtuSod6VT6nzNTthD2037JPP8BGfddX24ZKsAs4cX13bb/1gskkKlaZ89obXa2g7x8h1xrrklxke7ljG51r0xxe1PStThOFT5aOt2r78E+Wqt1/kdPEec8yK4tlwhrSJQhgOiuyZuSihWX3dnYGH67rT+TtP58tmrLtTnWFk9qE/avuXIaHaTnPQbBRvOI2N+ZfeXRCr1bpZif1ThWx8L35WIV1zApNSngOwG8BMqGbubVAh5FKHVPRuUAesPoCvpZQlpZS1ANyH6oeMczg3ryeFc/OKD3BuXk8K5+YVH+DcvJ4Uzs3LIu7hmiT+Y5j4wwC8BLVxFQPQx+NSGWoSUSsAiaBkdyKiX9fCIj7BJvFNuOYEBt9M/DseOxiKbR+loyyhEvcJAFzx/PyR47kzBzZ5/KroP7awsPAjXHMCe0wz909CiONQ/LBvADTwuGwEsFFKOchTiQwHcMnLdTWN4qc9XeTso5sAAMt7P6vX1BnOxuUXp5hh0aVn8mo71QG2WgY4PjoapTLTC/c3sVH7fjtHk3RrUhjW5jCj3YTXyJ535r3WjDQFFn+vRurE7w2YMwpaelzbgzKan2thbdjo/VvqIdq+lIPPO2//YobP0bfKarviRM4JuFGUOaeAnzobPrfrf6XtpZ/Sv2uNHMa6FpdIsThyhez77jmZ53q9gNnEXmw+X3fZLMm1HTiT9ApZw/QZ81motut8x26A2TmmaTvis1yIS9gTmAnXnMB8jVUTQtQF0Atq42oNpUIBKAXWFkKIRAC6AHgAYEP061pYWMRfuGYDgw8mPhRdIj9UaFkHQE0AkFLuBfCHZ+1IAPOllA+jX9QZQq6bbsUqLCziE9xGo/A2Vi0bgKwAOkKFjQ+klL08PtmgTmzbACySUn716JWJo1WK65uVthBHez38gVOb07/3neGzfSVDnOx/99V20sEMQ47NMsO8IhNe0XajM6QT/DiBfNySNTIYPvkyUmhrQ0GGkHeLmRXO6n+QlvF+WTaAXw7j3n0j3IxTjt+k5tbz2dlo/uMuto4OrlrA8AkQ/Gws/h31+sMvUFerQpV0hs+ADmTSNz1DiseZaDq5gW3Ga/viQbLly9dng/uRPXcMn9+/4H0on5n3rnJQLm3vqTHU6YLnOuTX9qgPD2l7/7oa2u43wWwvk6M3xyrdYFqgf2gULR5aGkVswysTH+o1fgAVQq6Hh0bhmcy9DkoXbK23C1pYWMRvuCaJD0WLaANgtxBiH9SAjskAhkDRJJZB0Suihna8CyAHlJROBQAPhRCTpZTG7DQhREeo0xu+yJsFLTKlgYWFv2CT+CZccwKTUq6XUgooRv09AC2klDOllPmklNkBTIdi3j/vcUkKoKWUsgSAHwGMiL55ea47RkoZIqUMsZuXhUU8g5TSNV9QDdpLAPSM9vhrUGoVSRyPrYNSqwgFcB3AVQDdn/D3dIyJ/V+vi88+8e35+Os12K+4+fL7E/jPXgggoELGb6I9XhdKKif9Y3w/A/B+DH7XXzGx/+t18dknvj0ff70G+xU3X27NgUUxJ/sA+A6eHJhnuO1mKWVn75ewsLB4muCaDUxKuR7qFBYdi57A97P//AlZWFjEOlyTxI9jjImh/V+vi88+8e35+Os1WMQBXENktbCw+N+DPYFZWFg8tbAbmIWFxVML1yTxYwtCiEJQ8yOzQumFnQUwT0q5P9q6cgCklHKbEKIIFH3jgJRykYfh3zb6tR2+CQG0AHBWSrncI7JYCaodaoyU0gotWlh4gc2BPQZCiF5QoojT8P/aO/doq6rrjP8+xfgo+AggVlshxsdoIalNIIk1KoakLWmMWkxNdAzFUW0b28bWNEltUzEv4xix6WhQUl9RG0nVMgItxqapFWirVlAElHJ5XhAIj8gjXuUC3ntn//jm4Wyv98JV4F6OrG+MPc7ce6/X3ues78y55lpzwZq8/EuYbB4EpmFi+wgwBv8hHAMcD6zDUWE34kXmj+OAil/HkWHPALbhJU+nAIvxRNytOADj/2Q9v4BDAC0F/iki6quXC/Yako6NiK2drgn4AK//05odESHp2oiYJHm1ekR05P4KhwEro2yO3KsoBLYbSFoCDO+sAaXGtAbvZrQI+DhwB4471gL8HPhd/KOenuk+jeP1rwGmAhNwCOsmvEbzv3D0jLXAzThm/yzgBuD+LONi4NqImPkWn+f46GK5lKSBEdFtUHtJx2Q7LsKkDCbmWmy1wSn/Pt5UpQNHuF0NjMPkuwYYD/xRRPygUvadeCH+OOB0TODL8cqJTZhIluINW0YALwB/HhEbKmX0i9z3QNL78NDIiojYLOlk4OWI2CppDHAcfudNEdEmqQ14Fq/g+F62YVLWeVxWcSwwCH9/43AsuU8Br+DwTQ/jWHKnA5+NiOndvcuCfYy+nkl7IB/4hz60i+tDcQTX/nm+MM+vA57DnfU/gDOxlrUi07WSKwLy+vPAb+JlTG1456TWrPdQTAJLgBfz2pZMtwi4BWt238SbmHw2090ODATm4hUI04Br8tpK3DkfBhZgot2a11fhReszgAewhrgCaMeEtA139Ak4fPfHgGWYcK/HZNuOF8n/JdZctmNCb68cbZi4P5jltGSZY/P+3+D4ba3ZxvPyPQXWSh8EflT5LsZjoluSZbThCCOrcSy45nx3V2e992SbX808zVnv+vxsBUP8bYgAAAroSURBVP4UhxtvAR4CbszvdVs+06v5Lu7Dm8G8UvldlNn4vdlH+7oBB/KBx7GWYe3izuwoLZisdmYHW5A/7B3Aj4FvA/OwqTk1O83qJJDNwFVZ9iasBYA1rh1Yq3k2CeOe7LgrMCGekGmXJXn8fZZxbxLI5mzTX2ebAhPapuyYzdmWdkyEQyttezHz7AAux2ZzK3BbPsfWTHNatm0lJrqWfPYZeQTWRAZmPf+I9ymYl0eNLJZj8vzvPK/l7wDm5HNuq7yfedmeTwCTM92K/F425XdTI5OdePXFXZjMbs/77ZV7m/J93ZdltWQ9tXcyNdNMA6bgiCYt+f1sxGR/ZR5rgJcqv5m5ff27PZiOPm/AgX5gc+RD2HTYipcrvSs76tj80Z+Ox0n6Zadtz7yDsiNsyc7bjP/Rl+N/8ciOOAtHyTgx8305O8nUJJUa6Q3OPI9XOnyt87dk53siO9UaTKjvAbZl/masQfTL81eBeSmfkx1+fZbXVnkHP8nOPwSbcMtT3gg8Vkm3Mzv1wnxX78+2rqdOxi9gIqyl2w58OPO3Y01nXD7LRuDzmW9bpZ52bLI/k/JTWd6WfCd/kOe19ozP99aS56vy/VyZz1wloHXZhgnAd4HLsAnfhs3MFXn/kEz/AaA55UOBF/r6N3swHcULuQdERAfwvwCSPo5/rM2SLsWdfH3emxkeh7lC0h2Z9yWsjbwOkgbg8NY78ODwhur9iPi6pKnAr2DSGixpSERskLQQr/E8D3eeMeGB5PnAO7G2cSvWYK4G/g44XNINwNF43OZRSbcALwMnSToXOyG24M5+DnCupBvCwSGfyvpmYY3sSBz1thlrODVMxeNEG4CJEfGspI9iTWt4tumLuPPfL2kDJqJvSzodE8xyrGktwgTWH2tB1+a7OyGv3x8RfyjpUUxiozCxnIuXlA3Dm7T8FnaEbAQGYCIi6xqVz3C8pLPxn8gC4M+w57mNujf4o3ntSEyq7wC2R8Rs/IcGNulvoaDXUAbxD3BIOg6PKV2IvZuH4c44BY+RTQ9Pvfgq8H8R8WBuZDIxIk6TdCrWgoQHo2/FJtlluHMHJqhpWKP5JtZivovJcAgmni9jLWoZJsYZwNPYOdGc8oexeXkSJsu11KeWfB4TSQvWvEbgMaiLgRMxcdyOTbwh2KmxFZPZTqzd/ACPax2KyWObpKOBP87nuA1rb5dmO27GZBx4XGxE3t+Q72Nn5vltTNwvAl8Lb5Jc0AjoaxWwHG/9IE3Lrs47y1hzGLGndN3In8Om1TTqJnFN3pnySqzxLM7ztpSfweb1y3gwfEeWNQGblq9i7W4C1g4XYzN4LTYv/xkTdhPwDeyYGL0P3+ExWGtqyufZRN1Jcmwl3dFYO/w+9rbW5MuASZV0k/ZV28rRg++vrxtQjr348uDF7s67k3uarpP8PLA65SbqHtcmrJ1dh022DuALmW57ktdfYBNvfl5vBRamPA9rUrV6OvKzHx4Dq43PHZXkdgvWANuynJ/jcam7qXtfF2Nt7uEkmnvyfAswP9v8Y+zRfACbxUuzrDnYgVFzkixIgroMmJ3Pej0m6teAS/CUii3A4dnWMojfi0cZAzvAIWlBp0unVeQjJLWmfLiT7zo/ohu5mu7N5Km1ZVheG4vH55ZRd2bsBMbkDlEdwGhs6nYAh0gaiImntrPsc8Apkq7CWleHpA9hEjqE+k7pR2MNcgs2UxdjE7cJm4Ad2FM4A49HnYpN7knAt4ALMs8vZ/3nY61wMjZZPxMRU3Ke2GNZjrADpDbGNyCvXYBNd/CUkU9ign9cUm3T5ILeQl8zaDl2f+DxmjMxQQzF//5jcQDH9pR/A08L2JRy9d7u0vU0z7OZbijemm4j1pLWZbqa9zWw57EmH5X3XsnzZmxqbsYm2Bzq3sFWTCqBtZufYY1nETmfLN/HYHLeVZ4/l2lr3teqt7KjIm+jrtEtAV6iPvdrCjAk77Vir/OXst2n5fVF1LXQRXj6Sc2Tuqoq9/Vv5mA6igZ24OMRPGF2HoCkf8Wd+QlJK1N+Mr2WJ0fEk5lu5Z7SvYk8FwLfiYhVkn4v5TZJo4Bfj7r39YfA2oi4QtL3IqK2CWR/SWdnuYPwrPqVwK9ix0TNPDsFOAFYFxELUhu7BDsIrpH0RTylYXUu5RmMB/zn4/GoW4F3SLoea0uqyIdSD16wCRPrDcBEYCQwS9JJ2Ls4GZPan1TyTMeEtkuOuid1YlV+M19uwd6heCELGgKdvLG1CadrsTZ3aUSsSe9rzSx8Jx7PuheT46eBBRFxqaSPYMJbgM3Av8JLv1bjcbPN2JM6AJupJ/FGj2tVPici/i3bObYmF+x/FAIraHhIuioi7t2d3N09SZ/DmtjT2FRfhbXARXgKxwZs6p6DCe3RTvKZeOLyu7PcuRHxvl547AJKPLCCtwe+0gO5u3vX4AnJF2GnwznA3XnehglsBh5na+tCHg38oqTrsryu9mUo2E8oY2AFDYFO3tiqJ3Zvva9VD2uNfGqeVPDM/im83uPa2fu6DBgraSiFwHoVRQMraBQMAa7A0xhewWNWY6hvSjwGL/fpyHtVuXO6qvwcnp5xQR6v4QXxgzC5nUp9NcDwLuRBneT37K8XUPBGFA2soFGwyxtb8cTutfe16mHN/I9S96T+EFjf2ePahff1jui0Dragd1AG8QsKChoWxYQsKChoWBQCKygoaFgUAisoKGhYFAI7SCHpInn7t9r5VzP4YHfpR0r6zn5ox3hJJ+4hzd3VtnbKe9u+blNB46B4IQ9CSOqHdxh6BMfXIiJu3F2eiHgGh8fZ1xiPw0z/dDd1X70f6i14G6BoYA0KScMkNUm6X9ICSVMkHSXpRklzJL0g6U5JyvQzJd0saRaOtPBJ4FuS5kl6t6T7JF2SaUdJelLSfEmzJQ2QNFrSI3n/Jknfl/S4pKWSrsnr/SX9p6S5kp7PKQq1ti6SdJekhZJ+IunIrG8kMDnbcWQ3zzpT0siUr5K0JJ/j7P37lgsOdBQCa2ycgXfufi+OeHotcFtEjIqIETiG1icq6Y+NiPMi4hs4EN8XIuLMiFheSyDvefkQcF1E/BqeENrKG/Fe4HeAs4Ab0wzcDlycawHPB/62RqB49vztETEcTyQdFxFTsFZ3ebajq3p2IWfHfwUT18dwNIuCgxiFwBobqyPiiZQfwMH+zpf0tKTn8Y7hwyvpH+pBmWfgcDZzACLi5Zyk2Rn/EhGt4Y1LZuANRgTcnMtyHsNRHIZk+uZaSCAcX2xYTx+ygg8CMyPiZxGxs4fPU/A2RhkDa2x0noUcOArpyIhYLekm6tFDwfHn9wR1UW5P674crxN8f0S8ljPha/XvqKRtx9rhW0GZeV2wC0UDa2ycLOmslD+D47wDvCSpPw4G2B1aqId2rqIJODGXy5DjX1390V0o6Qg5TPRoHHLmGGBjktf5eKHzntBdO7rC08BoSQMlHQZ8qof5Ct6mKBpYY2MRcGWuv1uK48Qfh2O0r8Sk0h0eBO7KeFi7iC4idsp7Xk7MQfVWPA7WGbOBHwEn463IfippMjBd0jN4w46mHjzDfcA/ZGSIs3Y3DhYR61KrfAqHs56LI60WHKQoayEbFJKGAY/kYH1v130TDql8a2/XXVBQRTEhCwoKGhZFAys4YJBhbt7V6fKXIuLf+6I9BQc+CoEVFBQ0LIoJWVBQ0LAoBFZQUNCwKARWUFDQsCgEVlBQ0LAoBFZQUNCw+H+vnjN3bG/YLwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "affinities_plot(df)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "" }, "metadata": {}, "execution_count": 26 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAFACAYAAACWdPreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4XHeV4P3vuaV9s2XLm7zJux3bWR2WhISQsIUEAiEB0kAv0KR5Z5ge3pnp6e7Z6OWhp9/uhh6avEAM2cmekBDATnA2W/K+25ItS7IsWVJp31WLarln/rhlW3G8lG2V1vN5Hj+uunWr7inZqlO/7fxEVTHGGGMulzPaARhjjBnfLJEYY4y5IpZIjDHGXBFLJMYYY66IJRJjjDFXxBKJMcaYK2KJxJgUE5F3ReRPRzsOY1LFEokZ80SkTkRCIjIgIq0i8piI5I12XMNBRKaKyKMi0iIi/SJSJSJ/OeRxFZGll/B6lrTMiLNEYsaLz6pqHnA9cCPwP84+QTzj7f/0vwJ5wCpgCvA54PioRmTMJRpvv3RmklPVJmAjsAZOfwP/vohsBYLAYhEpFpHXRKRLRGpE5Funni8ifyMiL4nI84kWwD4RuWbI46sSr9kjIhUi8rkhj31GRI4kntckIv8lcbxQRH4rIu0i0p24PS/Jt3Qj8Iyqdquqq6qVqvpS4nW3JM45mGiNfflC1xKR7wO3AA8lzn9IREoSrZq0Ie/jdKtFRJaKyGYR6RWRDhF5/hL/SYyxRGLGFxGZD3wG2D/k8NeBB4F8oB54FmgEioH7gH8QkTuGnH8P8CIwDXgGeFVE0kUkHfgN8HtgJvAfgKdFZEXieY8Af6aq+XiJ7O3EcQd4DFgILABCwENJvqUdwPdF5E9EZNnQB1T11sTNa1Q1T1Wfv9C1VPW/A6XAdxLnfyeJ6/994v0WAvOAHycZtzGnWSIx48WrItIDlAGbgX8Y8tjjqlqhqjFgNvAR4C9VNayqB4Bf4CWbU/aq6kuqGgV+CGQBH0r8yQP+UVUjqvo28FvggcTzosBVIlKQaEHsA1DVTlV9WVWDqtoPfB/4aJLv6z8ATwPfAY4kWlB3nu/kK7zWuUTxklJx4udVdgWvZSYpSyRmvPi8qk5V1YWq+u9UNTTksYYht4uBrsSH7Cn1wNxzna+qLmdaL8VAQ+LYuZ77RbzWUH2iO+jDACKSIyIPi0i9iPQBW4CpIuK72JtS1ZCq/oOq3gBMB14AXhSRaec6/0qudR7/FRBgV6Ir7xuX+TpmErNEYiaCoSWs/cA0EckfcmwB0DTk/vxTNxKD8/MSz/MD888asD/9XFXdrar34HV7vYr3oQ/wn4EVwAdVtQA41SUll/QmVPvwWlq5wKLznHaxa51dzjuQ+DtnyLHZQ67ZoqrfUtVi4M+An1zKLDFjwBKJmWBUtQHYBvxvEckSkauBb+J1H51yg4jcmxiA/i4wiDdWsRPvg/e/JsZMbgM+CzwnIhki8lURmZLoEusD4onXy8cbq+hJtCS+l2y8IvI/ReTGxOtnAf8R6AGOJU5pBRYPecrFrvWe81W1HS8Rfk1EfIkWx5Ih179/yMSAbrxEFMeYS2CJxExEDwAleC2MV4DvqeqmIY//Gvgy3gfn14F7VTWqqhG86bd3Ah3AT4A/VNXKxPO+DtQlupS+DXwtcfz/ANmJ5+wAXr+EWBVv8LwjEe8ngLtUdSDx+N8ATyRmkX0piWv9CLgvMaPr3xLHvgX8BdAJrMZLtKfcCOwUkQHgNeA/quqJS4jfGMQ2tjKTiYj8DbBUVb92sXONMcmxFokxxpgrYonEGGPMFbGuLWOMMVfEWiTGGGOuiCUSY4wxVyTt4qeMXUVFRVpSUjLaYRhjzLiyd+/eDlWdMVyvN64TSUlJCXv27BntMIwxZlwRkfrhfD3r2jLGGHNFLJEYY4y5IpZIjDHGXBFLJMYYY66IJRJjjDFXxBKJMcaYK2KJxBhjzBUZ1+tIjDHGJE9dpaGya9hf1xKJMcZMcMG+CEe3+TlS5qevI0xRQfH5tnK+LJZIjDFmAlJXaTzWTUVpE7UHOlBXEUfwpQnZGbmFw3ktSyTGGDOBhPojHN3WTEWZn772EOIIqCI+0LgSd0EZ3v1DLJEYY8w4p6o0VfV4rY/97bjxM62PeCyRM+Kpu74lEmOMGcf6OkK8vr6c9pP9p1sfjk9wE62PkWCJxBhjxqmGyi7eWF9OdDB+OnmA14U1klKWSETkUeBuoE1V1ySOPQ+sSJwyFehR1WtFpAQ4ChxLPLZDVb+dqtiMMWY8U1UOvtXAtpdrEJ+AgBsbvW3TU9kieRx4CHjy1AFV/fKp2yLyA6B3yPnHVfXaFMZjjDHjXiwS552nK6na2Yo4iVbI6OUQIIWJRFW3JFoa7yMiAnwJuD1V1zfGmImmvyvMxp8eor1hAMcRXHeUM0jCaJVIuQVoVdXqIccWich+EdksIrec74ki8qCI7BGRPe3t7amP1BhjxoCmqm5e+IfddPoDOGljJ4nA6A22PwA8O+R+M7BAVTtF5AbgVRFZrap9Zz9RVdcD6wHWrVs3dn6SxhiTAqpK+eYmSl+oRhxGfTzkXEY8kYhIGnAvcMOpY6o6CAwmbu8VkePAcsA2ZDfGTErhQJRjO1qoKGuiuzmI4wgaH+6lhMNjNFokHwcqVbXx1AERmQF0qWpcRBYDy4DaUYjNGGNGjarSUttHRWkTNXvaiMdcnLMXFo5BqZz++yxwG1AkIo3A91T1EeArvLdbC+BW4O9EJIa3/vLbqjr8JSqNMWYMGgxGObazlYrSJrr8gTMLC9PE68YaoYWFlyuVs7YeOM/xPz7HsZeBl1MVizHGjDWqSmtdHxWlfqp3txKPuji+97Y+dAy3Qoayle3GGDOCIqEYVbtaKC/109k4cLr1Mda7ry7EEokxxqSYqtJW309FaRPVu1uJRbzWx+muKxi3SQQskRhjTMpEwjGqdnljHx0NA970XWVctz7OxRKJMcYMs/aT/ZSXNlG9q/V0QcXRbH048Qh5A02kqpaKJRJjjBkG0cE41XtaqdjSRFt9PyLe8ZFuffhiYXzxQQDSowPMadnOnJadpMeCp88Rr200bCyRGGPMFeho7Kei1M+xnS1Ew4nWx5CS7iOSRNRlWnclxf4yijoO4wyZL+yKj46iqxnIm0tmyFtVkdn8u2G9vCUSY4y5RNFInJo9rVRs8dNa1zdqrQ+A7GAbayp+QX6giUh6Lk1zbwVHEFVccXDFx5yWXcxs33/6OemDPcO6MsUSiTHGJKmzacBrfexoJjJarY8hpnVWsPrIYyAOVUu/SH7fSYqbt+JzoyMahyUSY4y5iL7OEG8+doTmmt5RbX2cpsrCk5tYfOI1ArlzaJp7C0trXsbnxkYlHEskxhhzAZFwjN/95BA9LUGv9eF6G0mNVhJx4oOsqnyKWe37aZ1xHZGMApZXPY+MSjQeSyTGGHMe6iqbHj1Clz/gJZFRXvuRFepgbfl68gJ+jpfczbTuSmYNGfsYLZZIjDHmHFxX2fHKceoOdXi7EY5yEinsqmTNkUcBl6Mrvsqi+g1kh8dGbVtLJMYYM8RAd5gjW5s5UuYn0DOIOIzuboTqMr/xHZYef4Vgziwa5n2MFdXPj/iA+oVYIjHGTHquq5ys6KSi1E/94Q5UQRzwpTnEY6NTwz090s+clh0UN28lJ9RO+/SrCebMYEXVs6M6HnIulkiMMZNaPO7y2x8fpLGyG8fnfUSLA+pC3B3hJKLK1J5q5vrLmNFxAEfj9BQspqn4FqZ3lrOw4a2RjSdJlkiMMZOWqlL6XNXpJHJqPUiKSlKdV3pkgNmtOyj2byU31EY0LRv/nJsJZxcyq3Uvy47/amQDukSWSIwxk1b55iYqSv3eOEh8ZLJHbsBPsX8rBf313gF1yR9owtEYvQUlVBd/npxAC7Nbd5KWqJk11lkiMcZMSicOtlP6QtV7WyIp4sQjzGzfT7G/jKl9tbjio7dgEa7jfQT753yYwazpzGjfx7Ljr6Y0llSwRGKMmVRUlX1v1LPj17XetN4UzsjKCbRQ3Fx2uvpuMHsGtSWfwYkPMqd1D5mRXu/E7sqUxTASUpZIRORR4G6gTVXXJI79DfAtoD1x2n9T1Q2Jx/4a+CYQB/5cVd9IVWzGmMkp0DtI6fPVHN/XhjipaYmIG2Vm+0GK/WUU9lYnqu+upXfKEgo7j7KobiMy0oMwKZbKFsnjwEPAk2cd/1dV/ZehB0TkKuArwGqgGHhTRJarajyF8RljJomGyi7KNzdx4mAH6mpKWiLZwVbm+rcyu2UHGbEAoazpnFh4J6JxZrfuYmb7gWG93liSskSiqltEpCTJ0+8BnlPVQeCEiNQAHwC2pyg8Y8wkEI+5lL1YTfnmJm9qryqOb/gG1sWNMaPjIHP9ZRT2VOGKQ+f0tfRMXUJh1zFK6l+fcK2PcxmNMZLviMgfAnuA/6yq3cBcYMeQcxoTx4wx5rIE+yK8vv6wV7F3yKys4ejnyA61U+zfypyW7WREBwhlTntP62NGx8Erv8g4MtKJ5KfA3+PN0v574AfAN+CcCzXPmcZF5EHgQYAFCxakJkpjzLjV2x6kotTP0a3NDIZiwzYrS9wYRR2HmNu8lWndlSgOHdNX01O4nKldVSw8+QaOjs4q+NE2oolEVVtP3RaRnwO/TdxtBOYPOXUe4D/Pa6wH1gOsW7du4rcZjTEXFY+7nDjQQUVpE42V3QCIgOMbnj1D8vvqubr8YTIjvYQzCzmx4FPgCLNbdjGj8/AVv/54N6KJRETmqGpz4u4XgPLE7deAZ0Tkh3iD7cuAXSMZmzFm/OnrCFFR5ufoVj+h/iiOTxBHUFV0mPYMyRjs4eryh1FxqFp6H1O7q1jYsGnStj7OJZXTf58FbgOKRKQR+B5wm4hci9dtVQf8GYCqVojIC8ARIAb8e5uxZYw5l3jcpf5wJxWlTZys8Mqop6rAohOPcHX5w/jiYaqWfYlVlb+cFIPnlyqVs7YeOMfhRy5w/veB76cqHmPM+NbXGeJoorx7sC+SaH1430qHq8CiEx9kRvvB0wsFp/ZUkd/fQOXyB1he/aIlkfOwle3GmDHLjbvUlyfKu1d0QorKu2eFOljQ8BazW3eRFg+fPq4ItYvupuTkG+85bt7LEokxZswJ9AxSUdrEka1+Aj2J1ocAMvzl3TMGe7hh/w9JjwZom3EN/QULmdJzHCceAaC4eRvZ4c5hu95EZInEGDOm1B3u4PePVBANx1O+udTQMZDKlQ+w5Pivmd22NyXXmsgskRhjxgRVZe/r9ex8zSum6K1AT+HmUqqsqvzlmTGQqhet++oyWSIxxoy6SDjG208e5fi+9pQVUzxF3DjTuyqY27SF6d1HqS25y8ZArpAlEmPMqOptD7Lhp4fp8ge8NSApKuueGe5mTss2ipu3kTXYw2BGAbUld1HYVWljIFfIEokxZtScPNLJ739RQXQwjpMmuMOwgPBsGYM9LK9+gRkdhwDoLlxBw/zbye+to6T+DRyNDfs1JxtLJMaYEaeqHNjUwPZXahBHQEhJEinorWVtxc9Ji4VpmH87sbQsZrXuYVnN2N4DfbyxRGKMGVGB3kG2vlRD9e7WM/uCDEcOUZfC7mPkhLx98zIifSw8+XsGMwupWv5ZllW/bOMgKWKJxBiTcuoqDUe7qCj1c+JQO+oybJtLZQz2Mqdl+znXe3QWrqRvymJWVj5jq9JTyBKJMSZlAr2DVG5vpqLUT39nOLG5FFe+uVSi9THXX0ZR5yEcdemespTGubeSN9BEWiyEApmRfhbVbRi292PO7aKJRERuBg6oakBEvgZcD/xIVetTHp0xZtxRV2ms7KaitInaxNa24gi+tDMl3S+3JGt6pI85LTuY699KdriDaFouTcW3Esks8MY+jr8yjO/EJCuZFslPgWtE5Brgv+IVXnwS+GgqAzPGjD+BnkFeX3+Ylto+bxBdFfGBxpX45a4rVKWwp4pifxkzOg7iaJyegiU0zv0IuQN+ipu34XMjw/o+zKVJJpHEVFVF5B68lsgjIvJHqQ7MGDO+NB/v5fWHDxMaiL53V8LLbn0MMLtlB3Obt5ITaiOalkPTnJuJZE1lZutelh1/dfiCN1ckmUTSLyJ/DXwNuFVEfEB6asMyxownFaVNbHmuCgQc58o2lHLiEZbVvMyclh04GqO3YBE1cz5PTrCZOa07SYsPDmPkZjgkk0i+DPwB8E1VbRGRBcA/pzYsY8x4EI+5lL5QTcWWJq8V4ipcQWmszHAXa8vXkz/QiH/OTYSzi5jZto+ltdb6GMsumkhUtQX44ZD7J/HGSIwxk1igd5A31pfTfLwXca5sFpa4cYo6DrKi+nkcN0bligdYWP97cpq3DmPEJlXOm0hEpJ9zLxMSQFW1IGVRGWPGtNa6Pjb+7BDBvrPGQy5RWjTA/MZ3KG7eRmakl0D2TBoWfIJlNS9ZF9Y4ct5Eoqr5IxmIMWZ8qNzezLtPV6J6ZeMheQONrC1fT1a4i67ClTTMv4P83hOsOPY0Mswxm9Rykj1RRGaKyIJTf5I4/1ERaROR8iHH/llEKkXkkIi8IiJTE8dLRCQkIgcSf352eW/HGJNKR7c189YTR1H16mVdbhKZ2baXG/b9wOvGWvk1ssOdLD3+K2Z17LckMg4lsyDxc8APgGKgDVgIHAVWX+SpjwMP8d7xlE3AX6tqTET+P+Cvgb9MPHZcVa+9pOiNMSOmuaaHd5+uvOyuLCceYWb7for9ZUztq6W3YBFtM65lxbGncTRFm1eZEZHMrK2/Bz4EvKmq14nIx4AHLvYkVd0iIiVnHfv9kLs7gPuSD9UYM1r6OkNsfPiwV6X3Eutj5QRaKG4uY07LTtJjQYLZM6gtuYvsYJutRJ8gkkkkUVXtFBFHRBxVfSfRmrhS3wCeH3J/kYjsB/qA/6GqpcNwDWPMFYgOxqne08q+1+sZDMa8qTZJNB6ceJQZHfsp9m+lsLcGV3x0FK2ld8oSpnUeYVHdBiuiOIEkk0h6RCQP2AI8LSJtwBXtBCMi/z3xGk8nDjUDCxIJ6wbgVRFZrap953jug8CDAAsWXHSoxhhzGTqbBqgo9VO5o5loOO4VW0xiz5CcYCvF/jJmt+wkIxYglDWdEwvvRDTOnJadzGw/MELvwIykZBLJPUAI+H+BrwJTgL+73AsmyqvcDdyhqgqgqoPAYOL2XhE5DiwH9pz9fFVdD6wHWLdunX2lMWaYxCJxava1UbHFT0ttL5IY9R5abPF8CnprWXLiNxT2VOGKQ8f0tfROXUJh1zFK6l+31scEl3QZ+cQA+XZgJV730yUTkU/jDa5/VFWDQ47PALpUNS4ii4FlQO3lXMMYc2m6/AEqSpuo3NFCJBTD8cmZVep68em9xU2lLK95gUhGwenWx+zW3czsODhC78CMtmQSyRbgFhEpBN7CayV8Ga91cl4i8ixwG1AkIo3A9/BmaWUCm8T7urNDVb8N3Ar8nYjE8Eq8fVtVuy7rHRljLioWjXN8XzsVpU001/SC13OFky640eRaD+LGWF79AnObt9JZuIq+ghIWnnzDZmBNQskkElHVoIh8E/ixqv5TYlD8glT1XDO7HjnPuS8DLycRizHmCnS3BLyxj+3NDAbf2/pQBU0yiWQM9rKm4hdM7aulfv7HyQm0sKh+Y4qjN2NVUolERD6M1wL55iU8zxgzBsSjLscPeGMf/uqeM62PNAc3dumth4LeE6yt+DlpsRCVy7/C/MZ3yQ22DH/gZtxIJiF8F69L6hVVrUiMYbyT2rCMMVeqpzVIRZmfym3NhANeTSzHEVxNtD4uI4lM7anm2oMPMZg5harlX2Jpzcukx0IpiN6MJ8lU/90MbBaRfBHJU9Va4M9TH5ox5nJEB+O8+0wlVTtbARABX7pDPHplYxdZoQ7WlP+ccNY0/MU3sbLyaZuNZYDkSqSsxStzMs27K+3AH6pqRaqDM8Zcmr6OEBt+eojOpgDikKiJxRUnEV8sxNWHf4ag1C/8OCsrn7GaWOa0ZLq2Hgb+k6q+AyAitwE/B25KYVzGmEsQCceo2tXKjlePEx2M46TJRRcPJiuv/yRLj79KTrCVypVfZUXVc5ZEzHskk0hyTyURAFV9V0RyUxiTMSZJg8Eo21+tpWpni5dAklyBfjG+WJiZbXuZ21xGQf9J4k46NUu+wOITv8HnRocpejNRJJNIakXkfwJPJe5/DTiRupCMMclw4y6vry+n6Vg3kNwK9IvJG2j0Spy07iYtHmYgZzbHF32W9Gg/JSdfJyMaGI7QzQSTTCL5BvC3wK/wZg1uAf4klUEZYy6u7KUaGiu7T5d1v5QkIm6c/P6TOInWRXa4g2L/Vqb01xF30mkvupb+gvlMbz/M4hO/sa4sc0HJzNrqBv5cRKYArqr2pz4sY8yFlG9p4vA7jZe8V3pmuJvi5m3Mad5GVqTnPY8FcmZRW3I3abEAs1t3M7tt93CHbSaoZGZt3Qg8CuQn7vcC31DVvSmOzRgzRDzuUneog4pSPw1HupLfYEpdpndWMLe5jOmd3mTL7sIVNM37KNmBVkBxnTRyQh0sqvudTek1lyyZrq1HgH93an8QEfkI8BhwdSoDM8Z4+jpDHCnzc3RrM8G+CI5PEEfOu8FUWjTAVZVPnk4aAIISSc+nYf7txNKymNWymyW1vx6pt2AmuGQSSf/QTaZUtUxErHvLmBSLDsbZ/Owxju1sAQVxwJfmEL/AivTcgSauLl9P5mAPTcUfOd26CGdNI7e/iblNm/G5V7SdkBlnTsyCN691KF8o6KnBrr8e3mskk0h2icjDwLOA4lX+fVdErgdQ1X3DG5Ix5uyFhQioC3H33EkkY7CXOS3bWVj/BvG0LCpXPMDS46+QER0Y2cDNiIukwTMfdWic8f7HenOE+llCelS5uk5JT3yHaPCJM5wxJJNIrk38/b2zjt+El1huH86AjJnsGiu7eOPn5UTCF19YmB7pY0X1CxR1HMRRl87ClXRNv4qVx562cu6TQEcB/PO9Pupmw5JmkLP+yXPDypc3K/3ZULZa6Mv1miT1M5LZMDl5ycza+thwXtAYc26qysG3Gtj2cg2SxMJCJx7l6sMPkxdoorH4o0Qz85nVuptlNb8awajNaHAFdi8T1t/pEPPBn21wefXDDu1Tzj5TOLIATm93mSLJzNqagtcauTVxaDPwd6ram8rAjJlMYpE47zztFVoUJzEb60KTp1RZWfU0U/rrOLr8AZbWvmpVeCeBgSzYuE54+xqHzgKhuFO5e5fy2CccBjNGb7VPMl1bjwLlwJcS97+ON2vr3lQFZcxk0t8VZuNPD9HeMOCVeT/PbKzTVFl48vfMbt3NiYWfZmHDm5ZEJoG6mfDPX/TRPlVYe8LlM3uU6tmw/tOS8hbHxSSTSJao6heH3P9bETmQqoCMmUyaqrp5fX25t1f6RcZDfLEws9r2MNdfRv5AA60zrmNKby05ofYRjNiMhq2rhJ/e5ZAbhv/ndy6vfVB46vaxU28gmUQSEpGPqGoZgIjcDNjXH2Muk+sqJ8s7qShtor6886LjIXn9Dcz1lzGrbTdp8UEGcudQs+hz5A80MK2naoSjNyMl6oOdK4RN1zkcXSAsb1Q+UO21QOK+sZNEILlE8m3gycRYCUA38EfJvLiIPArcDbSp6prEsWnA80AJUAd8SVW7RUSAHwGfAYLAH9vUYjORDHQPcnSbnyNlfga6B89U6j3PeEhaNMBVR5+gqKuCuJNO24zrCOTPY3r7IZaceM3qX01Q/mneuo/Na4X+HGFmj3J/aZyWQuGXHxvWWbvD5oKJREQcYIWqXiMiBQCq2ncJr/848BDexlin/BXwlqr+o4j8VeL+XwJ3AssSfz4I/DTxtzHjmqqy5bkqKkqbUDexsPAiOxYOXVhYW3IXabEgs1t3M6d11whGbkZK1Ae7lgtvXidULHTwxZXra5RVTXB4vvLSzQ7qjN2vDhdMJKrqish3gBcuMYGcev4WESk56/A9wG2J208A7+IlknuAJ1VVgR0iMlVE5qhq86Ve15ixZM+GOso3NyGOl0QutLAQYEbbPq6qfIqYLSycMMLpsG2VcHCR4J7VqFCBo/O91seMHuWLZXHijlC6Rti9QmActD2T6draJCL/Ba876vRmBKradZnXnHUqOahqs4jMTByfCzQMOa8xccwSiRm3ava2ses3JxBH0IvOxnJZfOK3lJx8g96CEtpmXm8LC8ehjgIou0oYyPYSQH827FghhLKE6X1K9uD7n7OqQVnZCBXzlVducnDHcOvjXJLdjwTg3w85psDiYY7lXD+59/3miciDwIMACxYsGOYQjBkeqkrjsW7efPxIUlV606JBrjr6GEVdR/DP/hCo2sLCccQV2LfE65rav1hQR8iIev/mPheur1EWt8L+RUr9rPd/1HUWCLvGSevjXJJZ2b5omK/ZeqrLSkTmAG2J443A/CHnzQP854hnPbAeYN26dVbv2owpkVCMql0tlG9porMp4A2oX6Qse06gmavL15MV7qB68ReY2baPKQP1IxOwuSKd+fD2NWcWCE4Z8BYIZkXhUAnEfN55h0uEravHb6K4mGRWtmcB/w74CN5vRCnwM1UNX+Y1X8Ob9fWPib9/PeT4d0TkObxB9l4bHzHjRVt9HxVbmqja1Uos6uL45KLrQgCK2g9yVeUTuE4GlSu+ypLaX5MZueThSDOCXIEDi4U3rxX2LvVm3q2pUz6zR6mZ5a08j6VNzIRxPsl0bT0J9AM/Ttx/AG//9vsv9kQReRZvYL1IRBrxSq38I/CCiHwTODnkdTbgTf2twZv+a9v5mjHPjbtse+U4B99s8Kr06sX3TnfiEWa27WVu81am9J2gL38BLbM/wMpjz+BofOSCN5ekKw/euVp461qHjilCQUC5a7eSGxHKVo2tBYIjLZlEskJVrxly/x0ROZjMi6vqA+d56I5znKu8dxzGmDEtPBDljV+U01jZfXo2FnDeJJIb8FPsL2N26y7SYyGC2TM5XnIX2eFOlle/NIKRm0u1Z6nwg3sd4j5hTZ3LnXuU2lnwxvVCNH3yJpBTkkkk+0XkQ6q6A0BEPghsTW1Yxoxdwb4IldsmvOblAAAgAElEQVSbOfROI8G+wYsOposb56qjjzOrfR+u+Ggvuob+ghIKOytYXLfBtrYd4+pnwI/ucVjYBjcdVd5dKzx1hyWPoZJJJB8E/lBETibuLwCOishhvIaEbblrJjx1laaqbipK/dQeaMeNK+KA41y4GwtgSe2rzGrfR/38OwBhdusuZrVb0YaxxgXKS4Qta4SCINxxwCUvDP90n4+cQbjlCDxhCeSckkkkn055FMaMUaH+CEe3N3Ok1E9vewhxBFRPt0LiF1kbMqd5Gwsa36ax+BYKu6soGGi44PlmdLy7Vnj5ZofWQiEnrAymw28/mEZ+UAmnw7d+rzz8aUsi55PM9F+bh2gmnZ7WILt+e4Lj+9oSrQ/Bly7EE2sD9CLrQlCXme37WVH1HF1Tl5Me6bckMgbUz4DK+cL1NcqMPog58OgnHN683mGJX/nEfpeTRVA5T5jdq/TkwKf3uTxxuzPmCiWOJcm0SIyZVE4c6mDTIxXEoy6qenoabzyJBeYZgz0UN2+nuHkrWYPdBHJm0ztlMYvqX0994OacXKBsjfDG9Q7Vc71k8OgnlWtrlUCmUDVPuHunS8tU+OXtZ+qXtE0Dx1V+8anxt9J8pJ03kYhIpqqeYzG/MROTusqejXXs+s0JbyGho2gM9CJjIKgyrfsoc/1lTO84jINL19TlNMz7GPl9dZTUvzEyb8C8TygDHrrbYfcKhzmdypc3u3QWQPsU4cRMIZgFf/q6y8Z1QlPR+5OFJZDkXKhFsh24XkSeUtWvj1RAxoyGSDjGW48fpfZA+5mtbpPgxCOsqHqOOa07iaTn0TjvNmLpOcxq3cOy41biZKTFHBjI9m735MK/fc6Hfzo88E6cY/OEF24VNLGboC+mrK5XnrlNCGZZwrgSF0okGSLyR8BNIvK+bXVV1X5LzITQ0xZkw08P0d0STG6r24TMcDdrK9ZT0H+SugWfJGOwh7n+UnxuNMURm7M1Toc3r3PYvEYIZJ9JCnlB5dsbledv8UqYDBVPEw4tsQQyHC6USL4NfBWYCnz2rMcUsERixrVO/wAVpX4qtzUTj3llTS5W0gQgO9hGcXMZxc3bEY1zdPkfsLBhk215OwJc4NAirzjioZIzJdkj6YIvrtxYpczshUg6iEJeSPj5J7FFgyl23kSS2Fq3TET2qOojIxiTMSkVi8R5/efl1B/uJNHLgVwkiYgbY0bHQYr9ZUzrqcIVh87pa+iatoplx18mLW7DianUk5soT3KNQ1uhkB9UbjqqSKIIYn7IxRWhdLWwY9XZScOSSKolM2vrKRH5c+DWxP3NeEUbrf1uxh1V5e2nKqk/3Om1QFxvm9uzB9SLOg4xp3mbt+pcoaC/jozoAOHMQk4s9JZWzW7ZxYyOQ6PxNiaFUwsEN10n7Fnm7VO+6qTLp/YrdTOgbLUQOd3SsGQxmpJJJD8B0hN/A3wdbxvcP01VUMakyr436qne3eqNhZxrQF1dFtVtYFH9RsKZhUTTcwHombKEvqlLmNJdzcKTv7fNplKoN+dMccTWQiEvpHxynzIlCFsneXHEsSqZRHLjWUUb3062aKMxY4XrKsd2NLPj1VpvVtY5BtR9sRBXHX2CGZ2HaZ71AVxJY1b7XgBygq3M7LD/9sOtfgZULPQSgwpUFXsbPMV9woqGMwsE375GGMywBDJWJZNI4iKyRFWPA4jIYsBqXZtxYaB7kKPb/Bwp8zPQff4CiznBVtaWP0x2qJ3qxZ9nZvsBpvTXjXzAk8Bgmrd/+ZvXnVkgeEpuWPn4fmVaALatfO8CQTN2JZNI/gKvdHwtXkfkQmyvEDOGqSonK7qoKG2i7nAH6oI44Et3iEff3yU1veMwq48+juukJTaXeo3MSO8oRD6xnSzypuhuWeOt25jTqXx5i0t/NjRPPXPeu1db62O8SabW1lsisgxYgZdIKm3FuxmrIuEYbz52hBMHO3AcAeX0XiFx90wSceIRZrXtpdhfxpT+Ovrz5tE85yZWHnsWR2Oj+A4mlkgabF/ptT6OzRPSYsoHqpQlLXCgRHnhljMLBM34lVStrUTisOkpZkzraQ2y4WfnWFh4Vk9WxmAP6/b9i1cLK3smtSV3kzHYybLqF2zuzzA5e4Hg7C7l/i0u4QwoXSNsu2ri7l8+GVnRRjPu9bQGqShtoqLMTzx64YWFTjzC1eXrSY8GqFz+ADPa9rGo7ne2udQwiPhgR6L1UTn/zALBZc1wcKHy0kcEtdpVE5IlEjNuBXoHefvJSk5WdIJ4328vuLBQlZXHnia//ySVKx5gWc2vSIuHRzTmiUiBTdcJz33UYSBbmNmj3FcaJ5LuDFkgaAlkIrtoIhGRt1T1josdM2YktdT2svHhw4T6o143lip6joWFp2SGu1h48g1mt+2hduFnWHhykyWRYRDxwSOfcnjnGofV9S7X18DhhcrLNzvW+phELlRGPgvIAYpEpJAzXykKgOLLvaCIrACeH3JoMfC/8Gp6fQs4VbDov6nqhsu9jpmYIuEYR8r8bH/lOAg4Duff6lZdpndWeOXduyoAaJpzM4U9VVYXaxh05cEP7vVRPVe4Z7u33sPby9wSyGRzoRbJnwHfxUsaeznzv6MP+P8v94Kqegy4FkBEfEAT8ArelOJ/VdV/udzXNhNXT1uQ/ZtOUrWzhVjERXwCruKeY4F5ZribOS3bKG7eRtZgD4MZ+ZycfwfxtExmt+wmJ9Q28m9ggjk210sioQx4cGOc33zAoXm6JZDJ6kJFG38E/EhE/oOq/jhF178DOK6q9WJTAM15nDjYzqZHjxCLxkHBlybvb4Woy/SuIxT7yyjqLEdQuqauoGHe7eT31TG/8V2b1jsMXOCta4VHP+kwvQ++shmeuMMhZPt5TGrJrCP5sYjcBJQMPV9VnxyG638FeHbI/e+IyB8Ce4D/rKrdw3ANM06dvWOhCLjue7uyMgZ7KW7ednpr20h6Hg3zPpbYXGq3bS51BSJp0Jdz5vbOFWeq76494bKiSXj4M9g6EIOoXnjao4g8BSwBDnCmNIqq6p9f0YVFMgA/sFpVW0VkFtCBNwnk74E5qvqNczzvQeBBgAULFtxQX19/JWGYMSjUH+Ho9maOlPrpbQ8hjqDnqI01s20vqyp/ic+N0DV1OZ1Fa8jvq2dGx0F8rrU+LteJWbDpWoey1UI4871JYtVJl3U1cHgBHFhq5UvGq5rv1bihupBvuF4vmem/64Cr9GIZ59LdCexT1VaAU38DiMjPgd+e60mquh5YD7Bu3Tqb/D+BqCoVpX7KXqgiHlPEkfN2Yy2pfY2FDZvoLVhE28zrmePfxrIaa31cjAKV82DTdQ4HFwtr67zaVkublW2rhE3XORwvFtKjyocqlcKAt2mUALkhZddyq75r3i+ZRFIOzAaah/naDzCkW0tE5qjqqWt8IXFdM0nEoy5bnq/iSJkfxyc4PnDjStwFceMsqf01RZ1ecQVfPEJmpJem2TchGmNZzcujHP3YEvXBM7c5+KfDrYe9kiSD6bBljfDmtQ6NM4TsQWVNnXJgsbDtKgfHVVxHmNuhfHmzV/+qdI3QnzM0aVgCMeeWTCIpAo6IyC7gdI0tVf3c5V5URHKAT+DNDDvln0TkWrwvTXVnPWYmsEg4xm/+7SAttb2Iw3uq86ZH+llT8QsKe2vomHYVri8TgN6CRcxq20NB/8nRCntM6sqDH37BR9U8obBf2f95h/ygEk73tptd3Kx89R2X5qnK9lUOrsBV9S5FfcLCdmXfYuWFW63+lbk0ySSSvxnui6pqEJh+1rGvD/d1zNinrrLp0SO01Pa+p8S7uDGKOg6x7PivSI8OcGzZl5nrLyUv4AdgZvv+0Qx7zIn6vMHwp253CGbCtzbG2bjOoajPJSsqzOpWZvfAzuXw9G3iVbJMOLLQWh3myiQza2vzSARiJqcdr9VSd6jj9I6FvliYhSd/T3HzNjKi/YSyiji2/Cssq3mZ9FhwtMMdc8Lp8NLNDu9c43VDFXcqXy5Vnrj91JRcLzEcLrEEYVInmRIp/Zypn5qBt+1uQFULUhmYmfiO7Wxh3+v1XneWq2QH21hb/jC5wVY6p6+mu3AFU7urWVX5SyuqeA4u8G+fc9i7VFhXraxqhPIFysN3WteUGVnJtEjyh94Xkc8DH0hZRGbCU1UObGpg+ys1p7uzpnVWsProY4DD0RVfpeTkGxR12nyLC3nuow57ljt89e04b1/jsHuFlScxo+OSq/+q6qsi8lepCMZMfNFInHeeqqR6d+vplsi0rqNcffhnBHNn0zT3FlZUP4/PjY52qGNOzIFwhnd7zzLh1Zscbj/gsmOFlScxoyuZrq17h9x18NaVWD+DuWR9nSE2/uwwHQ0DpxcZ5gRbWV3xCMHcWbQXXc3yquftO/VZzrdAcNVJl8E0OD7XfmJmdCXTIvnskNsxvKm596QkGjNhNR3r5vWflxMJxXDSvD1D0qJBrj78M9Tx0TT3FpZX2Q6FQw1kwY8/67B/qUNGVPlgpVIQgrgPfC6o47DhhtGO0pjkxkj+ZCQCMRNTp3+Aii1+yrc0IuLtPnUqiawtf5iscCeVK/6AlceetSQyxMkZ8M9f9NGZD/dviRPIknMsEDRmbEima2se8GPgZrwurTLgP6pqY4pjM+NYR2M/W56rormml1MTiFxVUMgd8HtJZLCb6qX3sfT4q1aZN6EvG969WnjxIw7ZEXjwDeWXtzn05VoCMWNXMl1bjwHPAPcn7n8tcewTqQrKjG/Vu1t568mjqKverCxXT4+qzWg/wKqjTxBPy6JyxR+w9PirZET7RzfgMaBtijcLa8cKIZYmrK5zuf648PCnhbjPkogZ25JJJDNU9bEh9x8Xke+mKiAzfg0Go+zZUMeBNxtwfIKqoqc2nlKXRXW/Y1H96/TlL6B11gdYeewZHI1f8DUng/KFwr9+3iGaBh87pMzsg20rJLHboDFjXzKJpENEvsaZAosPAJ2pC8mMJ6pK64k+KkqbqN7TRjzqnqNe1gCrjj1FUWc5zbM+iCs+ltW8NIpRjw1xgY3rhF/e7jC7G+7eDU/dJrZJlBl3kkkk3wAeAv4Vr4NiW+KYmcQioRjHdrZQUdpEZ1MAcQRUz5R9V2VK73Hm+suY0b4fwaV68eeZ2X6AKf11ox3+qOrIh7evdXj7aqGrQLih2mVul7D+U4CtSDfjUDKztk4Cl13p10w8bfV9bPzZYQa6B72S74npvODtXujEoyyvfo7ilh3EfFm0zP4Q4ZwiFjS8Q2akd5SjHx2uwP4lwqZrhf1LvNlrV59Q7tqj7FsMr33QEogZv5KZtfUE3iytnsT9QuAH59q90Ex8lTuaefeXleh59k7PGOxhbfl6pvTXUz//E/hiIWa37SEtHh6liEdfy1T4wb0+6mcJUwaUz+5UMmNC2VW2SZSZGJLp2rr6VBIBUNVuEbkuhTGZMWrPhjp2vlZ7eiDdHTJOnhnuZk7LNuY1bcFxoxxd8QcsOPkmuaG20Qt4DDiwSPjRPQ4C/PEml2PFsPFGIZpmCcRMHMkkEkdEClW1G0BEpiX5PDOBVO9pZedrtYhzZs8Q1GV61xGK/WUUdZYjKF2FK2ibeR3Lan416Voh3bnwzjXC4YVe9V0Vb1vbeZ3wqX3wxO1CNN0SiJl4kkkIPwC2ichLeIPtXwK+n9KozJjSVt/HW48fPV2pN2Owh+Lm7RQ3byVrsJtIej4N828nlpbNrNbdrDz23GiHPKI68uGJjzvsWeat+VjUrGRHQBQ+vl9Jc+EXnxQbSDcTVjKD7U+KyB7gdrwa1feq6pGUR2bGhNa6Pjb+7BCqSlaghcU1v6ao4zAOLl1Tl9Mw/2Pk99Uzt2kzPnfyrU4/Mt/b2jaaBp/aqxSEoWwVnJjjJY337j5ozMSUVBdVInFY8pgkIuEYVbtaOVLaRHuiUm9mrI/r9v0fHDdG47yPEs3IY1bLHpbV/Gq0wx0VMQd+f723te3MHvjcLnjydiGUaYnDTD6jNtYhInVAPxAHYqq6LjH+8jxQgldl+EunxmZM6nU2DXD43UaqdrUSHYyfntqrkUHW7PsJvvgg1cvuZ3nV5N0vpGUqvHmtw7tXC325wrXHXUpahfWfxnYlNJPWaA+af0xVO4bc/yvgLVX9x8TmWX8F/OXohDa5NFV18+v/cwDUG0gfurBw9dGnyB9ooHLFAyyrfnFSJBEF+rO99R8IVM4TNl0nHF7k4LjK9TXKVQ2wZwm8epMlEDO5jXYiOds9wG2J208A72KJJOV620O8/vBhRMBVvE/RcJDi1j3MbS4jf6CR2pK7KKl/g7T44GiHm3LBTHjobm8b26Gm9yn3bo0jOGxZLexZblvbGgOjm0gU+L2IKPCwqq4HZqlqM4CqNovIzFGMb1KIhGJs+MkhIuE4COT3naTYX8as1t2kuREGcoupXvwFZrQfIDs88Uus+afBP93no6UQ7t7pEk/zkkluWKkvUn79Iceq8RpzltFMJDerqj+RLDaJSGUyTxKRB4EHARYsWJDK+Ca8wVCM1x8+TFdLgHSNsHb/Q0ztPU7cSadtxnUM5M+lqO0QS2tfmRTfu/cuFf7tsw7pLnx7g8uzH3Xozj/1qLU+jDmfUUskqupP/N0mIq8AHwBaRWROojUyB3jfsuhEy2U9wLp162zv+MvU3RJgw08O0dseQgSuOvhzCvpOcHzR3aRHBpjdtps5rbtGO8wR4QKv3CS8cKvDwlb42GFY/2mHmK0+NyYpo5JIRCQXcFS1P3H7k8DfAa8BfwT8Y+LvX49GfBPdiUMdbHqkgnjMxfEJiypfYnrXEaqWfJGFDZvIjPSNdogj5uQMeO5Wbzzk5gqXnDA89vHxt3gwTZWPBkPcED4zhrU/K5NNuTmjGJWZLEarRTILeEW8X9Y04BlVfV1EdgMviMg3gZOc2ZXRDAN1lT0b69j1mxM4PgFRZp3cyoLGt2ksvpXZrbsmTRLZvlL43Y0OVfOE9JjylXfj7F/icGz12Ewgma7Lh0NhajIyaEw/82ub47p8o7ePe/sHmBF3CYsQBXzA1/v6+e7MIt6yZJIaqqwLD7IiEnnfQ3ERNubm0OvzjUJgI29UEomq1gLXnON4J3DHyEc08YUGIrzzVCUnDnYk6mXFWXRiA4vqN9JVuJL0SB8FAw2jHWbKxRx49BMOb17vMLtL+dIWl2AmbLhxbO6LvigS5f7+AT43EGCK6zIgwl/PmM67uTksiEb5UWsHi6NRtmVn8UR2DmvDIRbGYogqha7yv9s7+XpaGscyM0b7rYxrosoN4UFyE1t+LozGuK9/gEXR81dz+HggxJ/OnjHuWreXY6xN/zXDSFVprumlfEsTx/e14bqK4whEgqw9+vjpHQtVhOKWHaMdbkpEfNBa6N2OpsFjH/dxbL5w906Xrjx48RYZcwsJM1zlE8Eg9/UPsC48SBR4Oyeb6sxMPtc/wI/bOngpP5dPBoK4CP+raDrf7O3lv3R1ve+1eh2Hh1rb+e6sIsJnvc8Bx6E1bXx+BDiqFLounWd948+Pu8yMex/uilCfnkZ8GP59v9vdwzd6+99z7FBmBj8snEpJJMp0971bRs+OxflgOMxdgSC/y8u94uuPdePzf5G5qHjUZcvzVRwp85/evdDxQVZvM2vL15Mdbp/QOxY2TYNN1zlsXisEss98kGRGlG9tdNlwo9BUNLYSSEkkyn2J1keh69KYlsZPpxaQ4cLdgQCfCoYAOJGWxn39AarS03mxoID/2dlJ5nmmneS6LlkiPOdvfd9jLvCXM6bz+hj/oPOpkp5YKDvVdbmnP8C9/QMUx+Psz8zgxfw8mtPS+GL/AJ8IBt/zsziYmcF/mllE2xUkzM/2D/CN3n5eyctFgXRVoiKsiET5T909531eryP8RWc3pdnZ9Pmc8543EYjq+J34tG7dOt2zZ89ohzHmBHoGeX39YVpq+xAHEq1xpnccZvXRx3GdNGqWfIElta9NqB0Loz7YuUJ481qHIwsFX1y5oVpZ0Cn0J/ZBzw0rr98AwTGyL3q6KncEgtzfP8AHEq2PzTnZHMjK5sZggI+EBzlXL3t1ehpHMjL5XCBw0UnJ/QJv5uYx6Lz3zJuDIXJcl8/NKx57H3SqrI5EuL9vgDsDQXLO+pzamZVJXXo6Hw6FWRDzWiADImzIy2XA8ZGjLnmuyx2BIAHH4S9mTKfQdbm/b4CVkQg/nDaVV/Pz3vOaixKJ/O6BAN0+h5fy86hLT+dHre0czMqkzXG4K5HMkxUHXsnP42+Lpl3Rj+N8Tn35+OxAgN5EzL/Oy73o2EzN92rcUF1o2AZwLJFMIP1dYY5s9VO+uYnBYAxxwI26TO2pZm5zGbPa9tKfNw9/8YdZVv0Kjk6Mar3NhWfqX/XnCDN7lFsPu8R8QukaobNgbCSNoeZHvQ+Ae/oDTHddmtJ8/CYvlzSFuwcCzI7HL/4iw8AFfpXCD7pLleO63DUQ4L7+Aa6KRAmJ8EZuDgHHwVGIidDrc7hzYIAl0RhxoCIjnQPZ2WTF49wZCJI/5DMtCAz4fMxM/DybfT46fT7WRCI8XZDHjwqnclswxP39A9wYHiQGvJuTzZxYnNWJQfSGtDRey8vj3/ecv/VxPgMi5KnSkUjUPY6Pvy2axoGszPM+pzga44v9A3w6ECTn1LfAcxCF6a5LFNiSk82sWJw1kQhRoPciXwzmPxLWUF1o2L49WCKZAAaDUTY/W0XNnlZUQRxwHCGvs4aVx54mN9hKNC2b5lkfwtEYc/2lE2JpXXcu/OwzDvuXOvjiXv2rVY1C+QLlwBLBdcbWu0xT5WPBEPf3DfDhcJgY3gfA3qxsbggFuTUUHvG+5lMfdF+bM4uDF/hwuxKZrsunAkHuDATJcy/wwQgsjUTJVaU6PZ0NuTkUxePcFQgy9QLPuxgX2JmVxfacbK4OhfhoKExjWhqLYjGiQDrQmJbGb3JzyFC4KxBgVjxOTVoaJzMyOJiVxXe7urjcT90jGRnUZKQDcH04zKxYnP89vZAXC06vdsWXmL59f/8AN4XCKLAjO+t9Y0Bna0s8fvfAmZgbM9Lpdy4c7dcf6qK3LjxsvyCWSMa5ruYAG356iL720OmF1+pCsb+U5dUvMphZSNPcW8gONDOrff+4rZW1c7lQN0u4pcKluAuqir190IOZcNcuF3WELauFzikjmzx8qnwkFOKOQIiMxO9Sv+Pwu7xcDmRmgAjzEt8wv9A/wHTXpdnntT5AuCswwNzYyLQ+zicgQq/jsD+RSNrSfLySl8eJxIffxeS5LncPBLgmPPi+LyhpwIdDIQpcpSEtjYY03wW/xDSnpVGXkcEtgQDrBiMp/cLj9/k4mJVJRWYW64JBPhJOfSJ3gZPpaZREY2zLyqLb523DfEN4kFnxOG0+H6/l5RDD4a5AgPmx1PQaXP/wgLuvOW5dW2CJpL68kzd+Xk485iIC8ZiSGe5iUd0Gilu201m4kr6CEkrq30AYn//OcYGnbnfY8IEz37BWNCrHZ0PhANy3VXniDhnxMY9ZsRhf6A/wxf4BZsfj9DoOvYlvgUXxODmJb9XtPh83hcPEgbLsLHZnZ3NdKMStoTDJfUynXhzvG/mpn+CcWIx0YG9mJnuzMlHxCuMdyMxkW3aWN8tNlTWJMYxPJ8YwWnw+IueYIVWRmUFFZhYfDgb4cHjwsr/ZTyQn0tJwOFN0py49jZ3ZOVwdDnF7MJTy/xuWSIaYzImkrb6PX/3LPtRV0DiFbRXM9ZcxvasCgJPzPkZOsJ0ZXYdHOdLL1zbF67oqL3H41B6XgSxlIEdomyIUdylLWoQXbwYdoS4sR5WbQ2Hu7x/g1uD/be/O46Mo7weOf57Z3exu7oMcQBIIgdxAOIyCUNSKF0pRpCpWrFdBf7b+PKpUrVXrr7VVW0utiopa0GoVLwQLBeWWK9zkJAgkEAK5r91sdnee3x+7wQA5gARy+LxfL15kd2dnnpl5dr4zz2nHAGywWFjnayWtoYER3jtoHUmh0USw1PHTdf7j54dbaEyqqyWmi58+WuMQnvJ7AAdwyGQixuWin/eOuOmKc8hoYLmfLxfZG0hudGLz1mHs9zEzob6e6BbuoH11/YR6C8WjXgjqvDcfZik7VHx3pjo7kKjmvz1QfbWDr17bBW43MQdX0P/QKiyOKhw+ARTG/Bi30UzfIxt75Gi9EsgcIvjvSMGuOIHRDXf8V+eb4YKDkZ4fnaZL3Jpg65BzF0B8dMlQh+P4UI0jGxzHm5yWaxoLAgOoMxi4pq6OX1ecOvdaX7cDCew3Gfl5dU23efpojVlCZLMK/li3Gzee8v1GIRBS4hYCC5I7qmvJN5l4OSSYCJeLSfU2gurquy7xPZSflPidp0YV55oKJD2Mq9HNV6/uwl7tYPi2lwmu3kdlSCKHoi/Dv+YAMYdW9djWWA0meHWSxsZkjZBayeSNEpNbsHCcpzVWE10THAs5d+mIdrr429FSEpwnTuC1yWLmg6BAEhsauKW2ttW+G00EMKiNns/dnQEY2sLwHwVGIzYBD1RW9YpGG0rHqUDSQ9RXOcheX0z2umLqKh2k7nkLH2cteYk3E1P0DYP39ey5048GwwtTDRT1gZ+ucXMoTLA4Q5z3uT8usjfwwrEyNODFkGAGN3qCSYMmuKChgYdbePr4oRl8jiqAlZ5LBZJuTOqSwpwKstcWs39nKVJCQO1Bhu9fjC4MlPYZRmLeBz36rrCwD6zw9kDXvPOAfDxeo+w8t75CSmbU1PJQRRX7TSb+FRjArysqsaqyfUVplwok3VB9tYOcb4+Qva6Y2vIGjLqD/sXfEn14NUjJkb5jCaoqYGDh8q5O6mnTBewYJFiR/v3QJC4NSoMFRpckI1+SWCyYd6VGo6kTgoiUjHQ4mFZTR4TbzWJ/P5Z6R8G9ut7GpLp6jhoMLAz0J9vHh6fLKphUb+NrXytFRhO/La/o0QFaUc4n1Wqrm9BdbqoDfKsAACAASURBVAo+/5asVUUccUYghUZA7UFii74mrGw3FaEp1AQPIrg8l7DKnG7fnDe/H3w+RsPpvVU5FObp4xFYL0kplMfbPfYvA4cJ1qUKqvzP7tLto0uusNmYWG/D7M3P/Vwu4pwuajVBmWYgzuWiVggE4C8lB4xGwtxuAqSkXgisUvJ6cCDpDQ7GNvTMvjaKcrpUq61eRtd1tv7tS3bvcWE3hWB0BhBRsZU+ZbswN1ZTGZyAPfoSoo5uJqJsR1cn97R8PVzw1pUa/naI8A7lNaBUcs1WyXeRsDlR4OyE2QdNUnJvZTXTausI1nWKDQZKjZ7fxhGDp1NdjNPJVXX1ZPmYqDYYKDUY2Ovt8BbqdrHJYqZRCL729eOu6upz1gFMUXozFUi6UGNNPUuf+IwiZz/8HIcJtFUg3C4G7/sUk9MGQFD1d93+6aNJlR98NF5jxQiNoft1Eg8JvhjjadIrhWDb4LMPHvGNjcQ5Xay1WnBoGuEuF389VsZwRyMrfK3ssFjIsNnIcDSieZ9Kmj9ZpDY6gaZWWN83Vb3Qu8x4e8NZp01RfuhUIOkilXlFLPnzeqpN/QiuzMe3/ghJBR91dbLOmA7sGShYPkKQOcTTymrSZp2jQbBwfOfUMvykto7flldglp75Nf7j58uPbTb8dMnTYaHMqKnh8jMclVVRlM6jAkkX2L9kEys+PYpbBBJQs5/YohX08fZI784aTFDsHSRWCtg9UPB1usbREEGATXLlNkmgDVYOFRwN7XgQMUrJwxWV/Kymji0WM/k+PgxpdDK1to4So5G/hwXx6/IK1WtaUbqYCiTnka7rZP51EZl5fphdDjRpZ9ieN7vlnCAOI7i8VXHHguHrdI21qQK7+cQAkVQkuWK7zsFwWJEuOqXFVbR3GtMp3kEO3w/wp4/bza01nhnqjmkae01Gni4rV+M2KUo3cN4DiRAiBpgPROEpGXlDSvk3IcTTwD1AqXfRx6WUX53v9J0Ljspads9fSe7ueqqNkQTUHcBuCWX8t493q/oPt4Dt8Z5iqh3xJ05Ba3JJLsyVRFZDjacVLRaHZFecYMFlnXM5F1JyT1UN/1NVjQ6s9bWy2WplSk0tic16mUfoOpepOg1F6Ta64onEBTwspdwmhAgAtgohmjpE/FVK+WIXpOmcKF63h52f7uBgTQhuoz/WRjtBdXvxrT/CBdte6OrkHVcWAN8M1/hmuKAiUBBcJ7l6i0T3PpH4uMAtJGtTBTV+zZ84Oq+nha+u81xpORNtdr7y8+WgyYfJdbVcquo+FKXbO++BREp5BDji/btWCJED9D/f6ThXHNV17Jm/itydtVQZIxF6OIH1hbg0M2Hlu4k/sOS8P4UUh3pmEMyJFZw8vqiuQWE4ICDtgGRSpmRvFPx3pMBlPDdBozmrrnNVvY07qmuIdbr4W0gQF9vsXFNvOyfbUxSl83VpHYkQYiAwAtgEXAzcL4SYAWTieWrpMQMblWzIZscn2zlYFYzL6IvFWU9w7V7s5hAS8z/Ev774vKbHpcHmBMGKEYI9Az0zCCYdkvg4T1126AHwaxSsSREsuOzc9efu63RxfV0d8d7xq4xAhr0BfynZZzLxTJ8w7qusOm/TzCqK0jm6rGe7EMIfWA38n5TyUyFEJFCGp9vB74G+Uso7W/jeL4BfAMTGxo46ePDgeUz1iRpr6sl6bxU526qpNEYhdBcBtQfRNTMhFTnEH1iE1sacy+dCSfD385fX+An6VEsm7NbRz/MMghEuF9Nq647PGji40ck4b73GQaMR3ZuMHB8fcs1mxtXXe/qAnJfUKcoPW6+Y2EoIYQIWA8uklH9p4fOBwGIpZVpb6+mqIVJKNuey8+OtHKgM8jx92MsxN5Rjt4YzbM9cAuuKzmt6XJpnDo/lIwS74zQ0XTJinyS1UJAdI9k2uHPmL092NNLH7WaD1YLLWxFvkpKxdjtHjEbyfXwASG9w8NdjpYS4dZze5ao0ja/8fHFoBibW1xPqfeqwSImvar6rKOdVjx8iRQghgHlATvMgIoTo660/Abge2HO+09YW3eVm99vLyd5SQYUhCqGHE1BfiFszEVxVwJDvPj3vTx8V/rB0lMbKYYJqf0FYjeT69W5AsC61aeKnMw8gRikZ5nBg1j0X+GiXi6m19aR656Yo1zQ+C/DHKCU/qasnxDuz206zD9ssZn5WXcsRo5G/9wllam0Nwju01s9qavHppH1XFKX76Io6kouB24DdQoimwaMeB24RQqTjKdo6AMzsgrS16usn/01+VRRmp4ngmnzqfSNJKFhIYG3XFK3tGij46xQNmxnSv5OkFUJeP8mii7QW5/DQpKSfy3U8rFQaDMen+WzSt6n/Rl09ESfVUxSYTMwJCWJQo5O+bjd3VNcggVW+VnZbLIyyNzDA6eSO6lrWWyzsNpv5XVmZKqpSlB+Armi1tY6Wb5O7bZ+Rba8sIb8qiqCqvZgbKknJew9Nnt8KYR1AeKLskgsE71+q0b8cblkDizIE2+NB8x5WrVlRUR+3m+tr649PE9ukEVju58vHAf4E6jrTauu42FuHsd5q4X1rAIMcnicQpxDEOJ38srL6+IkrNmhssVjJaGg4PjyJDmSazZikzqzq7tfJUlGUc0P1bG/H/q+2sHGXCf/6IozOOtJy/3lOtnMozFNJvj5VEFEFP96hc1GuJDvW20FwkEA2q+e4IE8nvBqWXupmel09Uwo9vcBbs8li5osAf4J1CUj6utxMsNmZ5G1me8xg4J2gAJxC45q6esbbq9pMbz+3zk/qT5ynWwNGO9QQ7IryQ6MCSRsKV2xj+SdHMLsd2C2hZGx9vlPX7zTApkTB8hGePh4Gt6eS/HCY4PVJBuZeI5FCEFLnGcdK95YTBdkk3/XXGT+wij8dtuEC1lmtHDYZMZ5Ub+0UgkqDgavr6ri36sSnhFpgg8XMDouFQY2N3Fat6jAURTlzKpC0YtsrS9i0y4jJ7QQpGf/t7E5bd1MHwdVDBbW+gogqyY1r3TiNGmvSBJX+MKhYJ6JWMOSwpCBKsiL9+w6C0U43fztaSny9k38GBtCgGZhUV8sl9jPrBR4AjGlwMEZN5KQoSgeoQHKS0m172Tx/Ewca+uFfX0SDOYRxG37X4RZZLs0zodPydEGWt4PgyAJJ8mHYHSP55GKNOJeLn9XVc6jOyNIoX77rJ9iSIJlga+CJKjsGb+unS2x2BPB0n1BmVVXT36U68CmK0nVUIAFctgay319F9uZyyg19EXokwdX5GJ21Z1WcVe0LG5IE9RbP61pfwbqU7zsI3rDOja4J1qYJdg6BK2x2HiipY5TDgY6nruHR8krW+FoZ1eAg0u2mRtOweftkfGcysdjfj8fLK7GqPhiKonSxH3QgqfmumM1vrua7Y344Tf6YnRZv094o4vcvIqhmf7vrKAyHwnDPBd6teUbP3ZQoTmiC21T3MfyIjk8/O4XDPTMG3uloZHJRPcG6TpHRyKvBQVh1yYiGBhyaxo9sdnZYzCywBjG0wU6Ktx9HlNvFb8srztHoV4qiKGfmBxtIDvxnC8sXFtNo7EOgvRCzvRy/+sMk7f03Br3tebsdRtiQ7Kkk39v/xMu5v1Pnp9V13GSrJabRxQ5hYStWUn0bGBNrxwSegWDwDIO80tfKTu80sTOrqmne1bRM0xjgdDLOXtGZu64oitKpfpCBZMvLi9iSbcHH7cTqLCN+3+eEVBe0+73DUZLl6YJVyQZsFkGszcUjpbWMd9jRvCVMkS4XW8wWFvv7M6rBQbLDQYbeQJVb48NAf2yakVinp3LbheCCBgcTWxkqvY+uc8pwvYqiKN3MDyaQOCpr2fXPleTttlFtisC/vhC7JYzxm9qvSNc1yec3uvgw3opJSi6vtzHtSB3J9kYWB/qx0tePILfnKaZBWJhgt/OjSk/nPgewzmKm0mDgxtp6VaehKEqv84MIJFn/XMG6tQ5cRn+sThtB9Xux2EvJ2Pqndr9bH6jz+nTJphAr1x22M7zMiTNCssti4aDRyLV19fi3ERzMwDjVvFZRlF6sVwcS3eVm9dMfk10Wga+jCp+GCsJLdzLo4FctTi7lNEl2jnWyMsVAudnT+6/CZKDOoPE/2230tzRyXWANNOD5pyiKovTeQGIvq+arJ7+khH4EVRWgo3HBjpdaXLY0xs3qi3X+G+NDldGXaIeL+FpPUVWc7mZ4NoztX0OisfF87oKiKEqP0CsDybGt+Xz16k5sxkiCq/YSVr6LAYe+OWW5Ayku/n2JYGuQGaOUXFzuYGhBI5qvm9v9KvBpGrp2wPlNv6IoSk/SqwKJ2+Fk97tfs3GLG4EZ37piBn/3KYG1hScsJ5Gsv8LFqyMthLnc/DzHjqPKwNVhNYyIVGVWiqIoZ6JXBJLKnIPseH8D+45YcJgC8XWU4DaYGbXjZYzuEwODw6rz0Y06X0ZbuajSQVyWxv/0K8US1UWJVxRF6eF6dCBpqKjl45nvcYwooA8B9iJ87OVY64+SmrfghJ7fh4Y4WXmRYEU/H+yaxi0FdkJtOrP6l3dV8hVFUXqFHh1Iamqh0ulPcH0BNms4cQe/ok/59zP0Nlh1tl3sYmmKkVw/KxZd59ISB3H7BSl9bEwIqG9j7YqiKMrp6NGBxMddT0DNd6TlLDihCOtwvItVYyQr+pmpN/gQb3dyz247dXYDN4VWEd/P2YWpVhRF6V16dCA5GljO61e/hbgammbv1YFKowWzrnPJ0UYG7wffwEZu9avC4N+VqVUURemdenQgMesGBtSFENxYg6/r+/Gqoioltjoj00KrGNK35b4f+/S+fOC+jGLZh58Y1vNjbRtG0f7AVkV6OB+4L2Of7Mskwyau1LZgFm0P8niuvOm6hv+4M46/vsawibsM/0F0g2GB17tT+af7Ch42fkyidui0v7dVH8I81zVcoOVyg2EdQaKebD2WD92XoaHziPEj/MUPo2WdUxp4yTUNNxq/Nv4bH3HqvDN5ejR/dd3IL42fkaodbHVdDmlkqZ7B5+6LqZZ+AFhFIw8ZP2aUtves0rfaPYzX3NfRKE2nfDZQHOUm40oyRG63yI8dVaD341nXbdRJKwARooqnTPPpJ7r/gKqHZRj/dl1KkQznEdNH9BedXy8sZDcb+0kIcRXwN8AAvCWlbHVCkNABSXLY9F9zQEbxU8NKfmFYwmCt+IRldClYr6fylX4RdumZSLZYhrFZJmPERRD1lBNEBJXcZFjFTcaVRIuyU7b1nR7FM64ZrNGHIYAwaiglmDCqudGwhlsM3zBQO9qJR6JtH7km8KhrJiniAKHUUoUfe+QgJmkbeMH0Br7i/AzLkq3H8oV7LP1FOVMM6wjAzjz3NfzBNR0dDV8a+IvpNa4ybGl3XR+6LuG3rjsx4cKGBQsOBooScuUAzDTixEi8KOZN00sM1I6yS4/jS/cY4kQJkw3f4i8aaJAmlukXsEOP50rDFi5s4ULmkEbedl+NLw6mGNYRJGw4pYEV+ki+1kfikoaWE+iVqh1gqmEtoaIWtxSs0tNZpo8+fkHtI6r5lfFTAoXn5kaXgvfdP6YOK1MNa4kQVaekZ6l+ATv0wUzUtjJGy6acQO5rfIDNMhmAUSKf13xePuG7ZTKQnzh+z2HCseDgz6Y3mGzYQKkMZKF7Anl6DAAuDKzX06gkgGhRykBKACiQ/SgniGeN73CLcSWV0p9P3OPZo8cd38ZYLYtphtUnHEMpYa77Wv7supn+oowBnJjvJbBLDqIWPwaLQ6SJAwBo6Iwz7OEabRMW4aRemlnsHsNGPRnZwqQISVohNxrW0EfUtHk+2qJLwUY9mS/1MdilGYAAYeOXxs+IENXH9+dz/WKKZATXa2uJ0U78/VdKf6Y0Pku19CdNeKaW2CEHY6aR13xeJkPL46AewcfuCRyS4QAIJBlaLpMN3+InHDRIE0v1DNa4h6KjcbJB2hGmGVbTt43AVCctfOEeS6ae2OLxStMOcIM3X7qkxio9nX+5L2OVno4EzDjxxcGrPi9z35uZ+rYj7rYz+hnoVoFECGEA8oGJwCFgC3CLlDK7peXDBibLgJtfZBCHKSQSF0YyRA4ZWi4CcGBiqX4BhTKSAGyEiFoAfHEwUcvEhYEv3RcRJapAeO6GAS7RdjLd8DWXajswCp1v3Ok84LwfAzrTDV9jFG4WucYQImoxCTdb9QTcGLhY28MIsfeczBNiFQ1M0jYxQDtGpp7ALY1PMlrLJUTW8JUcC0CsKKFIRpAoipiobWtzff1EGdcaNhLgvdgdk8Esco+hWnrK/0zCxY+1bcfvcpsy5k49HgAdT4DeIYdgwI0bAxYcJItCtsshTNQyiRBVrNWHUigj+alhJZF4LoIx4hiTDBvx8wa7YhnK31038IH7Mi7WdnOBls9S12j6aDXYpJlLtB1U4c/X7hFUEIjwriNLxh3fth92xmu72aQnU0nA8fcHiWKmG75hqmENIaKOozKYWY0Psl16zrUFBxO0nWzVEygjmBBqCRC2Vo+bSxoopg8+OJmg7WSPHscRwgiknmBR592fMGJEKW+aXiJSVPKg815W6KMBMOLicm0bQ8RhAKrwY7F7zAlpjhNHaJA+VBDAk8b3WOj+EXkyhiBs/N70Nj/WtuHCwM8aH2e3jOMR40cscE/koIziApHLdjkYF0b6i1IM3uGjk8VBLjDsZb0rmTVyOG4MgE6cOMp+2ZfRIo9dMo5GfOhLGSbhxiFNHCWUaYZV/N74Dhbh5IAeyQuum1iiX8RV2ib6ikrecV8JJ+V6P2wMFfuxYaFK+oMAm7RQRhBB1DFWy2KtPpQ6fImgEos4seTAjcZhGY4JF1domQwSR9rMzy1pxMgy/QIOyCj8sRHq/f2XyFBCqGWuz19JEoU85fo5H7kvBUCg8yNtF9MN3/BjbRsSwe3Ox9iiJ/IH0zyecN5FIyasNBAkbJTJQEaIArbIJAy46SfKEUgapA/HCDmeLzfqyVQRQBjV+J30RK0jOCQj0NC5TNtOsig8ZV9KCGGJ+yJsWIikArM4sZ63tXzZhyqmGtZiFY186boQG1aOEUzw/Ovl1mL3qRHtLHW3QDIGeFpKeaX39W8ApJR/bGn5pkACEE4lSdohDsgIDje7Kxgh9jLRsJU8PYaNegq6N8OXEuz9MX2vP8cYpJWQo8dSRjB9KedCLYcv9LEkiSJuMa7i/5y34MDnhO/1pZzB2mH26X0pIawzD8lxTXcx47Td5Oix+As7Uwzr+Ztr6gnL9aEKNxrVtF4hJAGJhpUGJhs2UC39WKGPxIURzXvhadrecFHABVoeS9wXcYQwxPEjCANFCVO09dRgZbOeRICw853ejxsNq9muD2adHAZAvDjMQRmJjnZ82/7YmWxYz1EZykrvHdOdhqUU6X34r/y+uM5MI40Ykd70+NBIrCjFhJNJhk2UyiB26vH4CQfZeiwZWh6jDfl860rBjg81+JEtB+JDI1dpW9iop1CHlSeM77PYfREGoZOtD2C4to+LtSy2uBPYJeNbGInte0HUE6FVkaMPIFEUMsGwi13uOLbKRCRgwE09VpwYiRBVFMoIHjZ8xGY9CV0YyNIHUEkAeJe9VNtBhiGfb13J1GOhDituNO4yLuU5561U448fdvyxc5RQ+lJOrDjKJpnCc8Z5vOC6iWr8iecwdnyYaNhKhFbDUtdoSmUQADbM1LSSJ+I4QgMmLtV2EKOVsdw9kmIZhgT8aOA7+jNU7CNQ2Fmvp2HAzf2Gz9isJ7FBprVxpDy5LZwqDOhIIEpUYBVO8vRofqTtIk0rZKV7KN/Jfqd8M5B6IrVqdusDqcGvne2cSiAZLvZxpSGTvXp/vtVTj+fept9InDhCnoxlluELDuhR1AsreXoMxwghkgoGaUfYoKfytPFd5rhuoILAZlvQGSKKcWLkGm0jBiH5j/sC6qQVCYSLagKFnRw9hgwtl9GGvXzrSiZHnjpUhh8N9NfKydZjT9qGh5lGrta2kKQd4hv3MA7IUzu+efJlNTl6DImiiEsMu9jhHsRyOZpGmoofJXGihNp/ziSz2N1p97zdLZDcCFwlpbzb+/o24EIp5f3NlvkF8AsAjKZ0n7BYDZr/7iVWGoUmpABwSYN0YDqjnRRIgoRN6yOqMdMICEpkCOUyQD/5zutEJ277bDls9Zh9T/3hBGAnVNSgIanDygE9osX0CHSswqm1NDBlEw1JqKglANvxx+Qq6U81fse/5YuDPqL6+OXfgQ9lMginNwDrUkg7PrJ5Ggx4yvFPDtI+uIRJuARAo62O/n5u/LEf33al9KdMBslGjKdxriQ+uIRn2RO3LZDCdcI6POekj6gRQaIeicCGmYN6hN4ULA240ZDCeVrb/p6GjgH9lO+5bdXC6Bsoo0WZFiTqcWBivx4pm9J18vlplEZ58jo8+2eQJ55fSfBJ+bJA73dC/jbiEjqabKn4pC1G3OiIFotdzDhFnFYimoJBhQykpB6Jb8hZXzyMuJGcmk9aoqFjaSc/t6b137+kr6jUwkQNLgzs16OOLyeQmOxlWoyfE4v3OO/T+8oGfFpMgAmXcJ5yrr7Xcr5smUBiFY0t7muDNOmne7xaypfNuSoOae7Ghk4LJN2tsr2lHTvhYEgp3wDeOD/J6RpCiMz66srRXZ2Oc0UIkZlXLXv1/rlqSnvt/oFnH2VNea/dRyFEZnYvz6Odub5OKyPrJIeAmGavo4HiVpZVFEVRuoHuFki2AEOEEHFCCB/gZmBRF6dJURRFaUO3KtqSUrqEEPcDy/A0/31bSpnVxcnqCr266A61f71Bb99HtX9noFtVtiuKoig9T3cr2lIURVF6GBVIFEVRlA5RgaQLCSFihBArhRA5QogsIcQD3vdDhRDLhRB7vf+HdHVaO0IIYRBCbBdCLPa+jhNCbPLu37+9DSt6LCFEsBBioRAi13sux/SmcyiEeNCbP/cIIT4QQlh6+jkUQrwthDgmhNjT7L0Wz5nwmCOEKBBC7BJCjOy6lJ+eVvbvBW8e3SWE+EwIEdzss9949y9PCHHlmW5PBZKu5QIellImAxcB/yOESAFmA19LKYcAX3tf92QPADnNXv8J+Kt3/yqBu7okVZ3nb8BSKWUSMBzPvvaKcyiE6A/8ChgtpUzD0wjmZnr+OXwXuOqk91o7Z1cDQ7z/fgG8dp7S2BHvcur+LQfSpJTD8AxF9RsA7zXnZiDV+51XvcNVnTYVSLqQlPKIlHKb9+9aPBeg/sBPgH96F/snMKVrUthxQohoYBLwlve1AC4DFnoX6en7Fwj8CJgHIKVslFJW0YvOIZ7WnVYhhBHwBY7Qw8+hlHINcPIIia2ds58A86XHRiBYCNH3/KT07LS0f1LK/0opm4Yq34innx549u9DKaVDSrkfKAAyOAMqkHQTQoiBwAhgExAppTwCnmADRHRdyjrsZeBRoGmM/jCgqlmGPoQnePZUg4BS4B1v8d1bQgg/esk5lFIeBl4ECvEEkGpgK73rHDZp7Zz1B4qaLdcb9vdO4D/evzu8fyqQdANCCH/gE+B/pZRnP2Z2NyOEuBY4JqXc2vztFhbtyW3QjcBI4DUp5Qignh5ajNUSbz3BT4A4oB/gh6eo52Q9+Ry2p1flWSHEE3iK1d9vequFxc5w3DmlSwkhTHiCyPtSyk+9bx9tenT2/n+sq9LXQRcDk4UQB4AP8RSHvIynaKCpM2xPHwbnEHBISrnJ+3ohnsDSW87h5cB+KWWplNIJfAqMpXedwyatnbNeM3STEOJ24FrgVvl9J8IO758KJF3IW18wD8iRUv6l2UeLgNu9f98OfHG+09YZpJS/kVJGSykH4qnM+0ZKeSuwErjRu1iP3T8AKWUJUCSESPS+9WMgm15yDvEUaV0khPD15tem/es157CZ1s7ZImCGt/XWRUB1UxFYTyI8kwY+BkyWUjafdGcRcLMQwiyEiMPTqGDzGa1cSqn+ddE/YBzeCeWAHd5/1+CpR/ga2Ov9P7Sr09oJ+3oJsNj79yBvRi0APgbMXZ2+Du5bOpDpPY+fAyG96RwCzwC5wB5gAWDu6ecQ+ABPnY8Tzx35Xa2dMzxFP/8A9gG78bRg6/J9OIv9K8BTF9J0rXm92fJPePcvD7j6TLenhkhRFEVROkQVbSmKoigdogKJoiiK0iEqkCiKoigdogKJoiiK0iEqkCiKoigdogKJ8oPnHb33Pu/f/YQQC9v7Tge2lS6EuOZcrV9RuoIKJIoCwcB9AFLKYinlje0s3xHpePoKKUqvofqRKD94QogP8YwnlYenM1qylDJNCPFzPCPAGoA04CXAB7gNcADXSCkrhBDxeDqshQM24B4pZa4QYhrwO8CNZ7DDy/F0CrMCh4E/AouBvwND8Yzb9bSU8gvvtq/H0/kvDviXlPKZc3woFOWsGNtfRFF6vdl45mlI947CvLjZZ2l4RmW24AkCj0kpRwgh/grMwDN22BvALCnlXiHEhcCreMYVewq4Ukp5WAgRLKVsFEI8hadn9P0AQog/4Bk65k7vREObhRArvNvO8G7fBmwRQiyRUmaeywOhKGdDBRJFadtK6ZkrplYIUQ186X1/NzDMO3LzWOBjz1BUgOcpAmA98K4Q4iM8gx225Ao8A1s+4n1tAWK9fy+XUpYDCCE+xTOkjgokSrejAomitM3R7G+92Wsdz+9HwzM3R/rJX5RSzvI+oUwCdgghTlkGzzhOU6WUeSe86fneyeXOqhxa6ZZUZbuiQC0QcDZflJ75Y/Z760Oa5vce7v07Xkq5SUr5FFCGZ6juk7e1DPild2RdhBAjmn020TuPuBVPXc36s0mjopxrKpAoP3je4qP1Qog9wAtnsYpbgbuEEDuBLDwV9wAvCCF2e9e7BtiJZ/j1FCHEDiHETcDvAROwy7vc75utdx2e0XZ3AJ+o+hGlu1KtthSlG/K22jpeKa8o3Zl6IlEURVE6RD2RKIqiKB2inkgURVGUDlGBRFEUnXI1LgAAFKdJREFURekQFUgURVGUDlGBRFEURekQFUgURVGUDuk2Q6Rs3bo1wmg0voVnkDoV4BRFUboPHdjjcrnuHjVq1LGTP+w2gcRoNL4VFRWVHB4eXqlpmmqTrCiK0k3oui5KS0tTSkpK3gImn/x5d7rzTwsPD69RQURRFKV70TRNhoeHV+MpMTr18/OcnrZoKogoiqJ0T97rc4sxozsFEkVRFKUH6jZ1JCdLf/a/w6tszk5LX7CvybXjqSt2dtb6TsdDDz3Uz9/f3/3ss88e/d///d9+l1xySe2UKVNqmy+zePHigJdeeily5cqVBa2t59tvv7UWFRX53HTTTdXnPtVnpqyszPDWW2+Fzp49u/RcbWPch+OGVzuqOy0vBJmDXOtuXnde80Jrpk6dOvDaa6+tvuOOOypbW2bOnDlhkydPrhk4cKDzdNebl5fnc+211w7Zu3dvVuek9Mycj3wx7+E1wxvqXZ2WLyx+RtddL/2ozXzx3HPPRbz99tvhaWlptkWLFu0/+fM1a9b4vv3222Hvvvtu0Zw5c8IyMzP95s+fX3i6aejfv//QzMzMnL59+7rOZh866tlnn4148MEHywICAvQz+V63fSLpzCByLtZ3pl5++eXik4PI6crMzPRdsmRJUGenqTOUl5cb5s2bF3Eut9GZQeRcrO9ce++99/oUFhaaujodZ+J85IvODCKnu7558+aFf/XVV3tbCiIAP/rRj2zvvvtuUWem63yaO3duZF1d3RnHhW4bSLrCK6+8EpaQkJCSmJiYMmXKlLh//etfQcOGDUtKTk5OGTt2bEJRUZERPE8a06ZNG5iRkZEYHR099Lnnnjv+g3nssceiBg4cmDZ27NiEvXv3Nk25ytSpUwe+8847IQALFy4MjIuLSx01alTiwoULg5uWWblype+IESOSkpOTU0aMGJG0c+dOc0NDg/jjH//Y78svvwxJSkpKefPNN0Nqamq0adOmDUxLS0tOTk5Oee+994Jphcvl4he/+EV0QkJCSkJCQsr//d//RQB88cUXAcnJySkJCQkp06ZNG2i32wV47oiOHDliBM/dVUZGRmJb+/zwww9HFxUVmZOSklJmzpwZ3ZnnoyudnBfy8/N9xowZk5CQkJAyZsyYhL179/qA57zeeuutsRdeeGFCdHT00CVLlvhPmzZt4KBBg1KnTp06sGl9vr6+I+65557olJSU5DFjxiQUFxefctFau3at7wUXXJCYmpqaPG7cuCEHDx40vfPOOyF79uzxnTFjxqCkpKSUuro60dJyTd9PTExMSU9PT/rLX/7S5kVc5YszN3369NhDhw6ZJ0+ePPiJJ56IOvm3Cp4ShksvvXTwyd8tLi42XnnllfFpaWnJaWlpyf/973/9AEpKSgwXX3zxkOTk5JTp06cPaG8Q3ZPzJUBbebPpmgOePNiUxoyMjMSrrrpqUFxcXOrkyZPjdF3nueeeizh27JhpwoQJCRdeeGHCmRwbFUi8MjMzLS+++GLf1atX5+fl5WXPnTu3cOLEiXU7duzIzcnJyb7xxhsrnn322aim5QsKCiyrV6/O37JlS86LL77Yz+FwiLVr1/p+9tlnobt3785evHhxwc6dO/1O3o7NZhP333//wEWLFhVs2bIl79ixY8fvNIcPH96wefPm3JycnOzf/e53hx999NFoi8Uif/Ob3xRfd911lbm5udn33HNP5eOPP9730ksvrdmzZ0/O2rVr85588snompqaFs/lSy+9FH7w4EFzVlZWdn5+fvbdd99dbrPZxMyZM+P+/e9/78vPz892uVy88MIL4e0do5b2+aWXXjoUExPjyM3NzZ47d+6hsz3+3UlLeWHWrFmx06dPL8/Pz8++6aabyu+9996YpuWrq6uNGzZsyH/++eeLbrrppiG//vWvj+7duzcrNzfX+u2331oB7Ha7NnLkSFt2dnbOxRdfXDt79ux+zbfpcDjEr371q9gvvvhiX1ZWVs7tt99e9sgjj/S/4447KtPS0mzz58//Ljc3N9tkMtHScgB33XXXwL/85S+FO3bsyG1vH1W+OHP/+te/CiMiIpyrV6/Of/jhh4+d/Ftt67szZ86Meeihh47u2bMn57PPPts3a9asgQCzZ8/uN2bMmLqcnJzsyZMnVx05csSntXW0lC8B2sqbrcnJybH+4x//KCooKMgqLCw0L1++3P/JJ5881rR/mzZtyj+TY9OjHvHPpWXLlgVed911lU1lk5GRke7Nmzdbp0yZEl1aWmpqbGzUYmJijs/ffcUVV1RZrVZptVpdoaGhzkOHDhlXrlzpf80111Q1lS9eccUVVSdvZ8eOHZbo6GjH0KFDHQC33npr+VtvvRUOUFFRYbjpppviDhw4YBFCSKfTKVpK66pVqwKXLVsWPGfOnCjwXIQKCgp8Ro4c2XDyst98803grFmzSk0mT7yKjIx0b9iwwRodHe0YNmyYA+DnP/95+T/+8Y8I4JSORs21tM+nc2x7mpbywvbt2/3+85//7AO49957K5555pnjF45JkyZVaZrGyJEjbWFhYc6MjAw7QEJCgn3fvn3msWPH2jVN4+67764AuPPOO8tvuOGGE+5ad+3aZd67d6/1sssuSwDQdZ3w8PBT6kRaW668vNxQW1trmDRpUl3TNr755ptWi0NVvuiY0/2tNlm/fn3g3r17rU2v6+rqDJWVldrGjRsDPv300wKAm2++uXrmzJnu1tbRUr4EaCtvtmbo0KH18fHxToDU1FTbvn37Wg1gp6PXn/DTJaVECHHCc+X9998f+8ADD5Tceuut1YsXLw549tlnj99Fms3m48saDAZcLlfTnNvtbqu1ZR577LH+EyZMqF2+fPm+vLw8n8suuyyxtbQuXLiwYPjw4Y6WPm9vv9p6fDYYDFLXPfVsdrv9hKec1va5t2npmLXFYrFI8BwTHx+f49/TNK3VY3RyHpBSisGDB9vbe5pobbmysjLD6eS9ZutR+aIDTve32kRKSWZmZo6/v/8pB1nTTq9g6EzzpdFolG63Jy7puk7zYNfZ50wVbXldddVVNYsWLQotKSkxABw9etRQW1triI2NdQK8++67Ye2t47LLLqtbsmRJcF1dnaisrNSWL19+St1Fenp6w6FDh3yysrLMAB9++GFo02c1NTWG6OjoRoC5c+f2aXo/MDDQ3bwC7NJLL6156aWXIpt+2OvXrz9+p3Oyyy+/vOb1118Pdzo9N7dHjx41pKenNxw+fNhnz549ZoD58+eHjR8/vhYgOjq6cf369b4AH330UUhr620SFBTkrq+v71X5qKW8MGLEiPq33norBGDu3Lmho0ePrjuTdeq6TlN59bvvvhuWkZFxQsOLYcOGNVRUVBhXrFjhB56nzMzMTAuAv7+/u7q62tDWcn369HH7+/u7ly1b5u/dRihtUPmiY1r7rbZm3LhxNX/605+O11s1FXledNFFtW+//XYYwEcffRRYU1NjaG0dLeVLgNby5oABAxq3bt3qC/D+++8Hn06w8PPzc1dXV/eeyvZgX1OnNn9rb32jR49uePjhh4+MHz8+KTExMeW+++6LeeKJJ4pvueWW+FGjRiWGhYW1m55x48bZrr/++oq0tLTUa6+9Nj4jI+OUi42vr6/8+9//fvDaa68dPGrUqMSYmJjGps8ee+yxkqeffjp65MiRSU13EgBXX311bX5+vrWpsv35558vdrlcIikpKWXIkCGpTz75ZP/W0vTggw+WRkdHNyYlJaUmJiamzJs3L9TX11e+/vrrB6ZNmxafkJCQomkajzzySCnAU089Vfzoo4/Gjho1KtFgMLR79xMVFeUeNWpU3ZAhQ1LPVaVqkDmoU/NCe+trKS+89tprhQsWLOiTkJCQ8sEHH4S9+uqrZ9Qyx2q16llZWdbU1NTkNWvWBPzxj3880vxzi8UiP/zww32zZ8+OTkxMTElNTU1ZvXq1P8CMGTPKfvnLXw5ISkpKcblctLbcvHnzDvzqV7+KTU9PT7JarW2eu96QLyx+xk7NF2eyvtZ+q6154403irZt2+aXkJCQEh8fn/rKK6+EAzz//PPF69ev909JSUletmxZUN++fRtbW0dL+RKgtbz5y1/+svTbb78NGDp0aPLGjRv9rFZru016b7/99rKrr756yJlWtnebqXZ37tx5YPjw4WVdnQ5FORd8fX1H2Gy27V2dDkXpiJ07d/YZPnz4wJPf77ZPJIqiKErPoCrbe4lPPvkk8IknnjihCCEmJsaxfPnyfV2VJuV7XfU0ovJFz1NSUmK45JJLTqm8X7VqVV5UVFT75WhdQBVtKYqiKKdFFW0piqIo54QKJIqiKEqHqECiKIqidIgKJIqiKEqHdN9WW3+KG469ovPSZw118dj+TpmDYvHixQFms1mfOHFiPcCf//zncF9fX/3+++8v74z1n2snp7+7y79ozHB3VVWn5QVDcLArYeOGNvNCS/N5tDbXRPN5Z043DV3dr2T27NlRzz//fElXbV/pXbrvE0lnBpFOXt8333wTsHbtWv+m148++mhpTwkicGr6u7vODCIdWV9Pn2uiuTlz5vTt6jQovUf3DSRd4PLLL49PTU1NHjx4cOqLL77YBzxzh6SkpCQnJiamjBkzJiEvL89n/vz54a+//npkUlJSytKlS/0feuihfk899VTktm3bLEOHDk1uWl9eXp5PQkJCCrQ810Rr6dizZ4957NixCYmJiSkpKSnJWVlZZl3XmTlzZvSQIUNSExISUt58880QOHX+gxkzZsTOmTMnDDxzSDz44IP9UlJSkhMSElK2b99uaSn95+p49hbZ2dk+ycnJKb/97W8jW5prormsrCzz+PHjh6SmpiaPGjUqcfv27RaA3Nxcn/T09KS0tLTkBx54oF9b6wB48sknI5vmnbjvvvv6g2d8puHDhyclJCSkTJw4Mb60tNQAkJGRkbhmzRpfgCNHjhj79+8/FDwzK15xxRXx48ePHzJgwIC0WbNmRQPcd999/R0Oh5aUlJQyefLkuI4dHUVRgeQE77///oGsrKycHTt2ZM+dOzeyqKjIeP/99w/89NNP9+Xl5WV//vnn+xITExtnzJhROmvWrKO5ubnZV1111fHxtEaOHNngdDpFdna2D8D8+fNDp0yZUtnaXBOtpWP69Olxs2bNOpaXl5edmZmZGxsb65w/f37w7t27rTk5OVlff/11/lNPPRXdVjBq0qdPH1d2dnbOnXfeWfr8889HtpV+5VQ7d+40T506dfC8efP2X3jhhbb2lr/77rsHvPrqq4VZWVk5L7zwwqF77703FuC+++6Lvfvuu0v37NmTExUV1eaUuR999FHgkiVLQrZu3Zqbl5eX/bvf/a4E4Oc//3ncH/7wh0P5+fnZqamp9scee6zdgJSdne37+eeff5eTk5O1aNGikIKCAtOrr7562Gw267m5udmtzfSnKGdCBZJm/vSnP0UmJiamjBo1KrmkpMQ0Z86c8IyMjNqkpKRG+H78/7ZMmTKl4r333gsF+Oyzz0Juu+22iuZzSCQlJaW88MILfYuLi1sMApWVldrRo0d9ZsyYUQWeQR4DAgL0tWvXBvz0pz+tMBqNxMTEuC688MK6devW+baXnunTp1cCZGRk2IqKisztLa98r6KiwjhlypTBCxYs+G7s2LH29pavrq7Wtm/f7j9t2rT4pKSklPvuu29A08Rl27Zt87/nnnsqAGbOnNlmMejy5csDf/aznx2fNzsyMtJ98nwj99xzT/nGjRvbfZocN25cTVhYmNvX11cOHjy4Yd++fSoPKJ2u+1a2n2eLFy8OWL16dUBmZmZuQECAnpGRkZienm7Lz8+3nMl6brvttspp06YNuvnmmyuFEAwdOtSxefNm6+nMNQGtzwnR2vsmk+n4PBHgGVa8+edNc2UYjUb5Q5gnojMFBAS4+/bt27hq1Sr/0aNHnzJp2MncbjcBAQGu3Nzc7JY+1zTttIaR8M47cdrpbD7vhM1mO+GLzedHMRgM7U7ApChnQz2ReFVVVRmCgoLcAQEB+vbt2y07d+70czgc2qZNmwJyc3N94Pvx/wMCAty1tbUtzhuQmprq0DSNp556qt/1119fAW3PNXGy0NBQPSoqqnHBggXBAHa7XdTW1moTJkyoXbhwYajL5aK4uNi4efNm//Hjx9fHx8c7CgoKrHa7XZSXlxvWrVsX2N6+tpV+5Xsmk0kuXbp03wcffBD2+uuvtzm/B3jOXXR0dOPbb78dAp45SDZs2GAFGDlyZN2bb74ZCvDmm2+2ObfNVVddVbNgwYI+tbW1GnjyXVhYmDswMNDdVKc1b968sDFjxtSBZ+yszZs3+wG8//777c4VAp7gc/JNh6Kcre4bSKyhnTrXQHvrmzp1arXL5RIJCQkpjz/+eL/hw4fXR0REuObMmXPg+uuvH5yYmJhy/fXXD/IuW7VkyZLg1iqrb7jhhoovvvgi9LbbbquEtueaaMl77723/x//+EdEQkJCyujRo5OKioqMt912W1Vqaqo9OTk59ZJLLkl45plnDsXGxroGDx7svO666yqTk5NTb7zxxrjU1NR2y/HbS393YwgO7tS8cCbrCwwM1JctW1bwyiuvRFZVVbUbfD/44IPv3nnnnT6JiYkpQ4YMSf3kk0+CAV599dXCN954IyItLS25aZKq1tx44401V199dVV6enpyUlJSyu9///sogHfeeWf/Y489Fp2QkJCya9cu6/PPP18MMHv27KPz5s0LHzFiRFJZWdlplTLceuutpcnJyaqyXekUatBGRVEU5bSoQRsVRVGUc0JVtneh2267LXbLli0nFC3de++9Rx944IEe07lROXubN2+2zpgx44SiJR8fH33Xrl3tNspQlO5EBZIutGDBgsKuToPSdTIyMuyttfBSlJ6kOxVt6bquq1YkiqIo3ZD3+qy39Fl3CiR7SktLg1QwURRF6V50XRelpaVBwJ6WPu82RVsul+vukpKSt0pKStLoXgFOURTlh04H9rhcrrtb+rDbNP9VFEVReiZ1568oiqJ0iAokiqIoSoeoQKIoiqJ0iAokiqIoSoeoQKIoiqJ0yP8DTsUCoKu2cxEAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot(x='timestep',y=['candidate_count','active_count','completed_count', 'killed_count', 'failed_count'],\n", " kind='area')\n", "plt.title('Proposal Status')\n", "plt.ylabel('count of proposals')\n", "plt.legend(ncol = 3,loc='upper center', bbox_to_anchor=(0.5, -0.15))" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "" }, "metadata": {}, "execution_count": 27 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAFACAYAAABjinFuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXd8HdWZ//9+5qpLluQm27Ll3oDQDWQDSQgpkLLrbCqQRjYJ2/Lb5Jt8s0l29/sNS7JZspvyZUNCJ0AIGIcSwGAIzYXiCu6WZPXer3R1e5nn98eM5GsjW9e2rup5v173dWfOnDnzTLn3M+ec5zxHVBWDwWAwGEYTa6wNMBgMBsPUw4iPwWAwGEYdIz4Gg8FgGHWM+BgMBoNh1DHiYzAYDIZRx4iPwWAwGEYdIz6GlBGRTSLy9bG2YzwgIgdF5MoU89aJyIfSaMsJyxeR+0XkJyN0nMtF5IiI+EXkkyNRZlLZV4pI00iWOZlI9zM0FhjxGUXcByjk/njbReR3IlIw1naNBCJSLCL3iUibiPSLSKWIfD9pu4rI8lMob1wLnaqeo6qbzrScCfanezNwm6oWqOqfxtqYicIEu8ejhhGf0ecvVbUAuAi4BPi34zOIw0S7N78CCoCzgCLgr4DqMbXIMNIsAg6OtREnQ0Q8Y22DITUm2h/cpEFVm4GNwLtg8E3/P0TkdSAILBWRUhF5WkR6RKRKRL4xsL+I3CQij4nIo25N4y0ROT9p+1lumb1uE9FfJW37mIgccvdrFpH/7aZPF5ENItIpIl53eUGKp3QJ8LCqelXVVtVyVX3MLXeLm2evW+v7/MmOJSL/AbwXuM3Nf5uILHZrTxlJ5zFYOxKR5SKyWUT6RKRLRB4dykgReUBEvusuz3fL/IekMnpERNz1T4jIHvcaviEi5yWVM9gMIiK5brleETksIv88xJvuBSKyz7XvURHJEZF89xkodc/T795zS0R+ICLVItItIutFZEbSsb8kIvXutn9N4d7MEpEX3fu9WUQWueX8RkR+cdz1eUZEvj3EdasGlgLPuHZmy3FNQe4z+ZC7PHC/viIiDe49+dekvLniNAl6ReQQzvOTfLzvu89mv4hUiMgHhzoxt4zbReQ5EQkAH3Bt+7l73HYRuUNEcpP2+Z6ItIpIi4j8jSTVyuW4GreI3CAiryWtr3avZY9r1+eStr3jdzWK93jioarmM0ofoA74kLtchvMW+WN3fRPQAJwDZACZwGbgt0AOcAHQCXzQzX8TEAM+4+b930Ctu5wJVAH/AmQBVwH9wCp331bgve7ydOAid3km8GkgD5gG/BH4U5L9m4Cvn+Dc7nHP56vAiiG2K7A8af2UjgUsdsvIGCoP8AjwrzgvVDnAFSew82+AZ9zl63FqZ48mbXvKXb4I6AAuAzzAV9z7lz3EvbzFvVfTgQXAPqDpuPu+AygFZgCHgb9zt12ZnNdN+zawzS0rG7gTeMTddjbgB97nbvslEB+wZYjzvd+99wP5bwVec7ddCrQAlrs+C+fFZ85wz+8J1m8CHjruft0N5ALnAxHgrKRrttW9HmXAgYHrAKwCGoHSpLKWneT8+oDLk+79/wOedsueBjwD/Keb/xqgHeelLx94mKRnk3c+dzckXa98166v4vxGLwK6gHOG+V2l9R5P1M+YGzCVPu6P1Q/0AvU4wpLrbtsE3JyUtwxIANOS0v4TuN9dvgnYlrTNGnj43U8b7p+Ku/0R4CZ3uQH4W6BwGHsvALxJ68f8MI/Lm4sjdrtxRLEK+GjS9mPE51SPxfDi8yBwF7BgmHNa5l5/C7jDvQ4Df3oPAN9xl2/HfTFI2rcCeH/SvRwQnxrg6qR8X+ed4vPFpPX/Au5wl4f6YzqM+5Lhrs9zr2kG8H+BdUnb8oHoif6YcP6ck/MXuM9VWdKxPuwufxN4bpjn91TFZ0HS9h3AtUnX7JqkbTcm3YflOML/ISBzmPt5P/Bg0roAAZLECvgLoNZdvg+4JWnbSlIXn88DW487/p3Aj072u0r3PZ6oH9PsNvp8UlWLVXWRqv6DqoaStjUmLZcCParan5RWD8wfKr+q2kCTu18p0OimDbXvp4GPAfVuM8xfAIhInojc6Vb3fcAWoFhSaEdX1ZCq/lRVL8ap1awH/pjclJDMmRzrBPwzzh/PDnGaGf/mBHZW47wAXIAj0huAFhFZBbwfpwYDTv/Gd90mt14R6cV5ISgdothSjr13jUPkaUtaDuKIwIlYBDyZdNzDOIIx5/hjqWoA6D5JWcfYo6p+oIej5/EA8EV3+YvA74cp61Q50Xkff83qk2yswqkZ3AR0iMg6ERnqug+QXM5snNr07qTr97ybftLjpsAi4LLjnokvAHPd7UP+rk5S1kje4wmHEZ/xRXKI8RZghohMS0pbCDQnrZcNLIjjoLDA3a8FKJNjnRYG91XVnaq6FigB/oQjFADfxWnyuExVC3Gq/eD8qad+Eqo+4Kc4b2xLTpBtuGMdH2494H7nJaUN/OhR1TZV/YaqluK8ff5WTuxdtxmnuTJLnb63zcCXcZpK9rh5GoH/cF8UBj55qvrIEOW14lz7AcqGyHMihgor34hTa0w+do5rayvH3vc8HLE/Gcn5C3Cao1rcpIeAteL0F56F8zykSoAT3I8UOOY8cJ7PQVT1YVW9AudPWoGfnaSs5GvYBYRwmsIGrl2ROk4+wx6Xk59TI7D5uPtSoKp/79p8ot/VaNzjCYcRn3GKqjYCbwD/KU7n9HnA14A/JGW7WEQ+JU4n/Ldx2tS3AdtxfkT/LCKZ4oxH+UtgnYhkicgXRKRIVWOAD+eNC5z28RDQ69ZYfpSqvSLyf0TkErf8HOBbOM1bFW6WdpwO6wGGO9Yx+VW1E0c8vygiHrdmsyzp+J+Vo84RXpwffIKh2YzTxDTgCLEJ+P9wmlcG9rkb+DsRuUwc8kXk48e9DAywHvihOE4U892yU6UdmCkiRUlpdwD/IUcdA2aLyFp322PAJ0TkChHJwnF/Hu53/LGk/D8GtrvPF6raBOzEqfE8flxNfDj2ANe6z9gaHEFPleRrtgDn+gMgIqtE5CoRyQbCOM/Jie7lMbi1/buBX4lIiVvefBG5Oum4N4jI2e6f+vHP3R7gU27NfDnOb26ADcBK1xkg0/1cIo5zz8l+V6Nxjycck+6EJhnX4bSdtwBP4rQtv5i0/Smcdmgv8CXgU6oaU9UojqvzR3HeBH8LfFlVy939vgTUuc1df8fRZpf/h9N304UjYs+fgq0K/M7dtwX4MPBxt5kHnCaUB9xmhs+lcKxbgc+I4w31P27aN4Dv4TRBnIMjzgNcAmwXET9OZ/O3VLX2BLZuxhG/AfF5Dedtd2AdVd3lHu82nOtbhdP+PxQ34zR51gIv4fx5RE6Q9xjce/IIUONem1L33J8G/iwi/TjX5zI3/0HgH3E6yltd24YbQ/Iwzp9sD3AxTlNRMg8A53LqTW7/B+cFwAv8u3ucVPl3nCavWuDPxx07G8choQun2a4Epz8xVb6Pc7+2uc/4Szi1bFR1I86z94qb55Xj9v0VTv9KO851GXzZc5vAPwJci/OMt+HUyLLdLEP+rkbpHk84xO3QMkwwROQmnE7SLw6X1zC6iMjf43Ssv3+sbUkFEXkfTvPb4uP6CacEIqI4HppVY23LVMLUfAyGM0RE5okTesZyHRe+i1NTHfeISCZOE+k9U1F4DGOHER+D4czJwnG57cdpxnkKp6lzXCMiZ+H0y83DaYoyGEYN0+xmMBgMhlHH1HwMBoPBMOoY8TEYDAbDqJMxfJbTwx3rsQXHDTEDeExVfyQiS4B1OAPd3gK+pKpR16f/QRxX0G7g86pa55b1Qxx/+wTwT6r6gpt+DY7Logenw/SW4eyaNWuWLl68eCRP1WAwGCY9u3fv7lLV2cPnTI20iQ/OOIerVNXvetS8JiIbge8Av1LVdSJyB46o3O5+e1V1uYhci+M//3kRORvHr/4cnLATL4nISvcYv8EZT9IE7BSRp1X10MmMWrx4Mbt27Rr5szUYDIZJjIicSiiiYUlbs5s6DAwwHIi0rDgRlh9z0x8ABmZEXOuu427/oIiIm75OVSPuoMEqnGi8lwJVqlrjDqpc5+Y1GAwGwzgnrX0+bhiUPTgRal/ECV/fq6pxN0sTR4NdzscNpudu78OJZzSYftw+J0o3GAwGwzgnreKjqglVvQAn6OKlOIEL35HN/R4qeKWeRvo7EJEbRWSXiOzq7Owc3nCDwWAwpJVR8XZT1V6c4I3vxgmbP9DXNBCFGZyaSxmAu70IJxbVYPpx+5wofajj36Wqa1R1zezZI9ZfZjAYDIbTJG3i40ZpLXaXc3EmhjoMvMrR6LdfwRkNDk6Qva+4y58BXlFnBOzTOJFzs11PuRU4k1LtBFaIyBI38uu1bl6DwWAwjHPS6e02DyeKsQdH5Nar6gZx5mtfJyI/Ad4G7nXz3wv8XkSqcGo814IT4VVE1gOHcKaS/ceBsPci8k3gBRxX6/vcaLAGg8FgGOdMufA6a9asUeNqbTAYDKeGiOxW1TUjVV46az4Gg8FgmKAEfVF6O4L0d4fxe8MjXr4RH4PBYDBg20rIF6X+QDcV29toOdJ7zPbcrILCkTyeER+DwWCYYhzZ2c6BLU1EQwlikQSRYJxwMDY4WMXyCJbHGc1iJ5zE7MzcgpG0wYiPwWAwTBHUVnZsqGXXc3WIBWqDCCBgWYIIqB4VnHRixMdgMBimAP09Yd54vIqq3R2IJajtCIwqoKBDj9FPG0Z8DAaDYZISDcc5sKWZqt0ddNb3A04Nx7bH3svZiI/BYDBMMtRWKna08eYT1QR9UcRy+nBs1XEhPGDEx2AwGCY80XCczvp+Ohv76W7y01bro7c9iOURPBlCIj7ajWrDY8THYDAYJghqK962IB0NPvo6Q/i6QvQ0B+hu9jMQL0Aspx9nQHTGK0Z8DAaDYRyiqvi6QnQ1+elq9NPZ2E9bdR+RYHwwz4DQWBaICHZcUdvZNp6FB4z4GAwGw5iSSNh0NvTT0xIg0Bsh0BvB2xaks6GfWCQxmG+oGs2A0NgJOMGMMuMWIz4Gg8EwBjRXeNm1sY626j7iMXswXZJmKvNkComEgs2EqdGkihEfg8FgGGX2b2pi6/pKRJzxNp5Mi4QrQMmxnhOxySE0Q2HEx2AwGEaJRMJm66NHOLil+eh4G2VQeKYSRnwMBoNhFIiG4jx/134aD3sRi3Ez3masMOJjMBgMacbvjbDhN3vpbvY7gz1HIXbaeMeIj8FgMIwwiZjN609U0VHrIxKKE+iNkIjZjvBMEoeBM8WIj8FgMIwgsUiCjXfup/FQz2CaiDNNwWTxVBsJjPgYDAbDCBEJxnj2N/tore47pnlNdfK4SI8URnwMBoPhDImG4xzc2sKelxoI+aJYGROkeU0Vy46h4kEtz2CylYgyw1uO2HESnmwSnuwRP7QRH4PBYDgN1Fbaan1U7WqnYnsbkWB8MHr0uK7lqM3S2mdY0LwFTyKCoMStLPqKltFXtIzcUAezu/aSkYgcs1uGjKxeGPExGAyGU6RufxebH67A7404s39yNOxNYhwP2fHEw5x9+H5md++nc+Z5RHKKUbHIivrI97eytG4DcU8OHbMvJJQ3h/z+RkBQ8ZBZ9/iI2mLEx2AwGFJEVdn3ShOvP3YEscQJf+NGIRjPtZ2BZrQltRsoCLRQtfSTlHS+zezufYN5FKE/v5RQzixKOveQkQgfU4YmIvHjyz0TjPgYDAbDSQj5o/R1hvD3RKjf30X5tjZkIDpBYvj9x5K8QBuL6zcyq2sfGXaUaGY+5au/wJLaZ8mJeI/JKyjTAi1MC7SMim1GfAwGg+E42mr6qNjWRnOlF29b8JhtYjn9PeOZjFiQxfUbWdC8CdvKomPOGkK5s8nvb2Rl5aN47NhYm2jEx2AwGJKpebuTF+45gKo6c+VkOJ06g27T46xPR+wY0/qbKPTVMs3fSIG/mfxgO6IJWudeRjhnBgsbX36HA8FYkzbxEZEy4EFgLmADd6nqrSJyE/ANoNPN+i+q+py7zw+Br+FUZv9JVV9w068BbgU8wD2qeoubvgRYB8wA3gK+pKrRdJ2TwWCY3BzZ1c6L9x10ok0rjuiMh74cVbIjveQF28kLtZMX7CQn3EVuuJu8YAeWOt0xkaxC/PkL6C1eTjhvFgsaN5Eb7h5j44cmnTWfOPBdVX1LRKYBu0XkRXfbr1T158mZReRs4FrgHKAUeElEVrqbfwN8GGgCdorI06p6CPiZW9Y6EbkDR7huT+M5GQyGSUjQF+XA5iZ2PVd3tD9njDTHSsTIC7ZR4G9imr+JAn8zBYEmMuOhwTwJK4tQzkxCubPwFq8gnlVAZqSPgkArRb4aZnoPjY3xp0DaxEdVW4FWd7lfRA4D80+yy1pgnapGgFoRqQIudbdVqWoNgIisA9a65V0FXO/meQC4CSM+BoMhBWLRBC2VvRzZ1c6Rne3YCT0abXo0hEeV/GArxb1VFPVVkx9oJTvSS1Y8MJglYWXhLyilY9aFxLKnIXaCzJif7HAveeFOZvYcxBpv7YApMip9PiKyGLgQ2A5cDnxTRL4M7MKpHXlxhGlb0m5NHBWrxuPSLwNmAr2qGh8iv8FgMBxDLJKgo85Ha3UfLVW9tFT2kojbiAUooxpt2kpEOKv8IeZ0vgU4zWX9BWX0TysjkZFLPCObjFiI3FAXBYFmCn11yDBlTjTSLj4iUgA8DnxbVX0icjvwY5x3ix8DvwD+Boa8tgpYJ0g/Uf6hbLgRuBFg4cKFp3oKBoNhgpGI2bTV9tFc2UtnQz89LX58XUfHrYglTmiZTAt7YAbRURKe7HAP5x24iwJ/E3ULr0bsKNP6m5neewSPPXW6rNMqPiKSiSM8f1DVJwBUtT1p+93ABne1CShL2n0BMOBwPlR6F1AsIhlu7Sc5/zGo6l3AXQBr1qwZB72HBoNhJOlu8XNwSwv9PWH83jDe1iCJuCMqjmu0U7NBHAeCAVdpHeUZRKf56jhv/x147BiHV13Pkvrnx61DQLpJp7ebAPcCh1X1l0np89z+IIC/Bg64y08DD4vIL3EcDlYAO3BqOCtcz7ZmHKeE61VVReRV4DM4Hm9fAZ5K1/kYDIbxSeOhHjbeuZ94LAHqRJAWCzwZFom4PegaPdYTuM3q2sc5h+4jmlVIzbK1rDzyx3Hn/jyapLPmcznwJWC/iOxx0/4FuE5ELsBpIqsD/hZAVQ+KyHrgEI6n3D+qagJARL4JvIDjan2fqh50y/s+sE5EfgK8jSN2BoNhCqCqHH6jlU1/qEDEmTPHdoVGbUjYY9sRnxELkBvqJCMRptBXz9LaZ+ifVkZHyUWsLv8DMlbudOMEUZ1aF2DNmjW6a9eusTbDYDCcAkFflJ7WAH5vmP7uMB31/bTV9BH2xxxHgTF0jR6Kwr4azt//22Pco7tmnEModzZlzZvGzrAz4KrqqtbWWKx0pMozEQ4MBsO4RFVpq/Gx79VGqt/qOCaygFiCqg5Gkh5PTO85zHkH7iKSVUhD2YfIDnUj2OSGuies8KQDIz4Gg2HckYjbvHD3AWr3drmeaWBZyc1q4yiStNrkhTrJC7ZT4G9icf0LBPNKaJ13Gcur/jTlm9dOhBEfg8EwrkgkbP58z0Fq93ZhDUQbwHEkGDeoUuiro6RzNyUdb5MT7R3c1Fu0jJ7pq1he9eSkG5szkpyS+IjIdKBMVfcNm9lgMBhOEdtWXr7/MDV7Oo8RnvGE2HFWVT5Kadsb2OKhe8ZZtBReTkY8RGbUT36wnaV1z421meOeYcVHRDYBf+Xm3QN0ishmVf1Omm0zGAxThGg4zpGd7RzY3ExXk3/cCk9GzM+5B+5het8R6hdchWXHKOnax+zuA8PvbDiGVGo+RW5kgq8Dv1PVH4mIqfkYDIYRofqtDl5+4DCxSALLI6Ma5uZEiB2n0FdHcV8VxX3VZLheaznhHjJjASpWfI75zVspCLYOU5LhRKQiPhkiMg/4HPCvabbHYDBMIZKnMPB4hMQYiw5AVqSPC/b+elBY/HlziWQXA+CbVkbX7AtYVv0nsmL+sTRzwpOK+NyMM8DzNVXdKSJLgSPpNctgMEx2Kne08dLvDo35FAbJZIe9XLj3f8iO9HJk2afIC7RT6K9nhrdi0GvNNLGNDMOKj6r+Efhj0noN8Ol0GmUwGCY3h15vYdND5WMuPLnBDgr7GwAbFJbWbSAz5qdi5bWsPLKejER42DIMp8cJxUdEfs1JHglV/ae0WGQwGCY1e15q4PXHqsakbyc77KXIV0NxbxUzeg6RF+46ZnssI5fKFZ9j5ZFHp3TctdHgZDUfE4PGYDCMGJFgjN0b63n7xQZn0rY0C0922Etx7xGm+RvJD7SSH2gdHI+TsLLwFq+gbe6lZMRCZEd7AcEWD6sq1+GxY2m1zXAS8VHVB0bTEIPBMDnxtgXY83IjldvbiEftwSkORpLMqI85HbvJCfeQHemlwN9EfqgDgISVSTC3hN7i5YRzZwFKXqCd4r5qZvUcPHnBhrSRyjif2TjRo88GcgbSVfWqNNplMBgmOKrKwa0tvLa+crCWk45YbPn+Fs7f/1tyIl4SViaR7GKCuSV0llwEKPn+VvIDLczp2G1C3YwjUvF2+wPwKPBx4O9w5s3pTKdRBoNh4qK24u+N8OaT1RzZ2T44iZvaIx+Lbbq3nHMP3E3Ck8Xh1V9gTutOsmN9FPdVmVrNOCcV8ZmpqveKyLdUdTOwWUQ2p9swg8Ew/gn6orRV99Hd4sfbGqCnNUBvR4iEO0OoZZ25U0FWpI/S1jcoCDSTHfaSHenFY8cQTeBJRAjmzaF5/vtZVfEI1ki35xnSRiriM9Dz1ioiH8eZqnpB+kwyGAzjmZ6WAAe2NtN4qIfe9uBguliC2urOIupMeXAmwpMXaGVx/fOUdL6FqBLKnUU4ewbe6StAPKgICU8OtpXBiiOPmiCeE4xUxOcnIlIEfBf4NVAI/K+0WmUwGMYFiZhNX2eIYH+UQG+Eyh3tNBzsRpxZDrAynAU7oYPTHDiziJ5Zbaegv4EL9/wPgtI87woiOdOZ07GbIl+N8USbJKQyyHSDu9gHfCC95hgMhvFAb3uQg1ubOfxmK5FAfDDd8sjgRG4o2GmYTyff38yFe28jkZFD/aJrWFb9pBnsOQlJxdvtv4CfACHgeeB84Nuq+lCabTMYDKOEty3Ajmdq6esM0d8TJuyPgeMngCdT3JpNmsfmqFLUV825B+/BtjKoW3QNqyrXGQ+1SUoqzW4fUdV/FpG/BpqAzwKvAkZ8DIZJQEe9j2d+vZdoKI6dUERcl+iEogqJWHr//MWOU9r6BqUtrzEt0Ewkq5CapZ9gVcUjRngmMamIT6b7/THgEVXtETFdewbDREdtpbG8h+fvPEAiYTPQY686etNTe+Jhzj14NzO85fTnz6d66VqyQ92sqlhnPNcmOamIzzMiUo7T7PYP7qBT0wBrMExAouE4L/3uEK3VfYQDMdBjnQZGk8xoP+fvv52C/kYql3+G2R1vs7TmKeO1NkVIxeHgByLyM8CnqgkRCQBr02+awWAYSaLhOBtu20tbdR/gjMERy3Ea0FFu3coO93DB3tvIifRQseo6ltQ9S06kd3SNMIwpqTgcZAJfAt7nNrdtBu5Is10Gg2EEiUUTPPfbfbRW9znRpOOKJhQSo29LbrCdC/f+mox4mIpV17LiyONkxoPD72iYVKTS7HY7Tr/Pb931L7lpX0+XUQaDYWRQW6nZ28nODbV0NwcGhWesKPA3ccHe2wClcuVnWFm53kxdMEVJRXwuUdXzk9ZfEZG96TLIYDCcOeFAjOq3Otj3ShM9rY7oWBljJzzTfPUsaN5MScduYlkF1C75OKvLH8HS+PA7GyYlqYhPQkSWqWo1gDuN9hhU1g0Gw8mIhuPUH+imancHdfu6sBOK5ZG0RJJOlaxIL2eX/54Z3nLinmza5l5GOG+WicNmSEl8vge8KiI1OM6Yi4CvDreTiJQBDwJzARu4S1VvFZEZOFGyFwN1wOdU1StOh9KtOC7dQeAGVX3LLesrwL+5Rf9kYK4hEbkYuB/IBZ4DvqU62l2nBsPY4usK8frjVdTv7yYRtxFLQHVMazoA03sOc87h+/EkolQv+QRZkX7mduwgMx4aM5sM44dUvN1eFpEVwCoc8SlX1VQaaePAd1X1LRGZBuwWkReBG4CXVfUWEfkB8AOc+YI+CqxwP5fh9Ctd5orVj4A1OOGkdovI06rqdfPcCGzDEZ9rgI0pn73BMMGp2t3Bqw8dJh61UVuPqeXoaAmPKllRH/nBVvICbeSFOsgPtjPdW0Ewbw7VS69iefWTRnQMx5CKt1sO8A/AFTh//ltF5A5VPelYH1VtBVrd5X4ROQzMx3HTvtLN9gCwCUd81gIPujWXbSJSLCLz3LwvqmqPa8+LwDUisgkoVNU33fQHgU9ixMcwBVBVXlt/hH2vNh2dL2e0BoeqTYG/iem9lRT3VlHcV0NmPDC4Oe7JJphbQuOCKxG1WV3xsBm7Y3gHqTS7PQj040S0BrgO+D1OmJ2UEJHFwIXAdmCOK0yoaquIlLjZ5gONSbs1uWknS28aIt1gmPTUH+hm36tNzjidkRgcqjbT+hvwF5Shlmcw2UrEyA11kBXtJyvqcyZp6z5AdtQZKxTMmUXnzHcRyy4GlIyoj9xwD3mhTsqaNpnwOIYTkor4rDrO2+3VU/F2E5EC4HGcYKS+k4TmGWqDnkb6UDbciNM8x8KFC4cz2WAY19gJmzcer3LcpkdAeMSOcc7hByjpfJtQzkwaF3yA3qJlzG3fwby27ceMwYl7sumZfhb9hWVkhX0U+uuZ27HTOA8YTplUxOdtEXm3qm4DEJHLgNdTKdwdoPo48AdVfcJNbheReW6tZx7Q4aY3AWVJuy/AmbiuiaPNdAPpm9z0BUPkfweqehdwF8CaNWvMq5hhQnPo9Va8bUE8GRYneN9KGU88zLkH7mRGbyVNpe+lyFfLyqrHALDFQ9es8wjkl5IR68cTj5KRCDG9t5KSrj0jcCaGqUwq4nMZ8GURaXDXFwKHRWQ/oKp63lA7ud5r9wKHVfWXSZueBr4C3OJ+P5WU/k0NAOpHAAAgAElEQVQRWeces88VqBeAn4rIdDffR4AfugFO+0Xk3TjNeV/maNOgwTApiYbi7HimBssjJOKnV9uY2bWfIl8tWbF+ivpqyA12ULHis5Q1bSYv1IE/by6901cQ9+Qyr207JZ1vj/BZGAypic81p1n25TjREPaLyMBr0r/giM56Efka0MDRvqPncNysq3Bcrb8K4IrMj4Gdbr6bB5wPgL/nqKv1RoyzgWES098TZseGWkL9MTwZp9eFv6DpVVZWPYZiEc0qIJpVSMWq61hau2GwH6cg2EZBsG0kTTcY3oGkMixGRM4H3uuublXVCRvhYM2aNbpr166xNsNgGBZVpavRT/2BLmr2dNHZ0A+AWM5U1afK/OYtrDryKJ0zzyOcXUSxr5asaD+ZsX7TZ2MYlquqq1pbY7HSkSovFVfrbwHfAAb6bB4SkbtU1TRxGQxpwE7Y7Hu1iT0vNRDojQIglmB5nOmrT1UnrESUsqZNLKt9iq4Z5xD3ZFPWsjUNlhsMqZNKs9vXgMtUNQDgTq/wJqZ/xWAYcVqretn8SAXdzQHEOhoaR209ZdcCTzxEaevrLGx8meyoj86Z5xLLzKe0bVtabDcYToVUxEc4NpZbgqHdnA0Gw2li28rODbXseq7umCCgiVOs5YgdZ4a3nLntO5jVtQ+PHcNbvIK6Rdcwt20Hs7v3p+cEDIZTJBXx+R2wXUSedNc/iePFZjAYRoBwIMaL9x2k4WAPYp3G2B1VZvYcpKTjLWZ17yMzHiKWkUfbnMsI5c2mpGM3q46sT4/xBsNpkkpst1+6oWyuwKnxfFVVje+lwXCaqCoHt7bQXOkl4I3Q0xogGoqf1qDRjFiQ1RV/oKRrD7GMXLpmvItgQSn5/ibmdOw0c+UYxi0nFR8RsYB9qvou4K3RMclgmLyorWxdf4T9m5qOeq0JTt9O7NSEp7Cvhncduo+saB/Viz9OXqiT2V37yOjYOfzOBsMYc1LxUVVbRPaKyEJVbThZXoPBcHLshM0rD5ZTsb3tWHdp5ZSFJzvcw4V7/8cdp/MFltY8RXbUN/JGGwxpIpU+n3nAQRHZAQyGrlXVv0qbVQbDJCEeTdBwqIfmCi8Nh3robQ9iWYJtn1lYnKW1zyCqNJZ9kNXlD5kAnoYJRyri8+9pt8JgmGREQ3EObGlmz0sNhPpjDMTTHYkJ3qb1NzCvfQcNC65icd1zRngME5JUHA42i8hc4FKcKIY7VdXE3jAYkkgkbKp3d9BR309Pi5+2Wh+xcMIZHJokOGc8wZsqy6ufIJqZjwpkxfwjYL3BMPqkEuHg68D/BV7B8Xb7tYjcrKr3pds4g2Ei0FzpZcsjlfS0BkBA3Indjg4QHbljzew+wPTeI1Qt/SRL6jaMXMEGwyiTSrPb94ALVbUbQERmAm8ARnwMU5pwIMbW9ZVUbm8/ZmDoQLjEkZpVNCvSy+yufczu2ktxbyXB3BIK+hvw2PERKd9gGAtSEZ8mnJlMB+jn2JlFDYYpR+OhHl5+8BCBvujIzSaaRFakl/ktrzGr+wDT/M7PLZg7m6b5VxLNnsay6qdH9HgGw2iTivg040Q4eAqnz2ctsENEvgPOINQ02mcwjAsCfRFq93TS2xnC2xqk4WA3lkfweGTEajgAYidY0LyJJXXP4klE6StcTO3Ca8ASinsqWdC8yUSgNkwKUhGfavczwMDkb9NG3hyDYfzR1eTnmV/vIdgXHezTQUa+tpPvb+Gcw7+jINBC94yz6Zl5NvObtrCk4fkRPY7BMB5IxdvNuFobpiyN5T1svH0/ibh91IEgDZ7NJR27Oav8IeIZOZSvvI55rW+y4shjI38gg2GckErNx2CYUvR2BGkq99JU3kPt3i43hruSGMH+/cxoPwX+JrIjvRT5apnf+jp9hUvoKLmQlUfWY2li+EIMhgmMER/DlCcSitNa1UvjoR7qD3TT1xkCnAncVBWBEa3tFPVVc96+28lMOMdRhKZ5V+BJRFhR9cQwexsMk4MTio+I/ExVvy8in1XVP46mUQZDOkgkbKp2ttNa4yMRt0nEbLytAbqb/ai643NwoxAknAncgBGNHzCj5xDnHriLSHYx9fOuJi/QSkYizEzvYXLD3SN4JINhfHOyms/HROTfgB8CRnwME5ZEzObQ6y28/ed6+nsig6FuBkTFsgThqAPBmYa/eQdqkx9oZVb3AZbUPUsgby5tcy9lefWfTGgcw5TlZOLzPNAF5IuID6flWwe+VbVwFOwzGM4IX3eI5+88QGdDP5YleDIsEvFjXZVH2mttgKxILwsbX2Zu+47BMDjeohX0Fi9nefWTZjpgw5TmhOKjqt8DviciT6nq2lG0yWAYERoOdvPnew8SiySOxlc7w2jSJ6Kgv5GFjS8hKNHMAjLiYeZ07AJVumafh79gPhnRAMW+WpbUb0yLDQbDRCIVV+u1IjIHuMRN2q6qnek1y2A4M8rfbOXlBw9jWeKMyRnppjSXjFiQJXUbWNC8hXhGLrGMPLJifkQTtM59N+HcWcxv3kJJ5560HN9gmKikElj0s8DPgU0cDSz6PVU1gxAM45Iju9p5xRWedDWpgRPkc3XFH8iK9tMy73JimXmUtr5BNGsa0YwCZnftNVGnDYYTkIqr9b8Bl6hqB4CIzAZeAoz4GMYdtXs7efG+Q8gITNh2IjzxMMtqnmRBy2v48+dRs+QTLK5/YdBbLSvmJw/TOGAwnIxUxMcaEB6XbsBKkz0Gw2lTs6eTF+4+4LhM24oVj2J7skak7Nmde5jfvJncUBc5ES8ADfOvxJOIsLriYeM8YDCcIqmIz/Mi8gLwiLv+eeC59JlkMJw6FdvbePmBQ4g4A0MXNLzCspo/se/cv6dnxlmnX7AqZU0vs6L6SYK5s+krWkJX1nlEcmZQ2ryVvJCp4RgMp8OwNRjX6+1O4DzgfOAuVf3+cPuJyH0i0iEiB5LSbhKRZhHZ434+lrTthyJSJSIVInJ1Uvo1blqViPwgKX2JiGwXkSMi8qiIjMwrrmHCoLbS0xJg57O1vHS/Izy2rcxr2sqK6scRtVlR9UfEPr1QNVYixoqqx1lR/SQds86np3glczp2U9a0ieVVTxjhMRjOgJTC66jqE8Cpxv24H7gNePC49F+p6s+TE0TkbOBa4BygFHhJRFa6m38DfBhnXqGdIvK0qh4CfuaWtU5E7gC+Btx+ijYaJiB2wmbbUzUcer2FSMAJuCauc8Hctu2sqnyU7hlnI4kYM/qOMK/1DVrmv3f4glUpCDQzs/sQ073lFPlq8NgxGudfSW6okwWtr6f5zAyGqUPaYrup6hYRWZxi9rXAOlWNALUiUgVc6m6rUtUaABFZB6wVkcPAVcD1bp4HgJsw4jPpiQRjvHDPQRoP9SCSPFW1Mq/1TVZX/IHe4uUEc2ZS1rKVmCeXpXUbaJ+zhoQnh+K+Kgp9tVh23P3E8CQiZMTDFPdVkR3tA8CfN4/Wee8hnFNMScfbFPY3jPGZGwyTi7EILPpNEfkysAv4rqp6gfnAtqQ8TW4aHDtrahNwGTAT6FXV+BD534GI3AjcCLBw4cKROAfDGODrCvHMbXvpbQ9ieZyazsBEbguaXmVl1WP0FK8kkF9KWfMmACd4ZwLOqniIrIiPYl/NYHmKRcKTiW1lkfBk0le4BP+0Bc5g0L4q5jdvMeFvDIY0MdriczvwY5wwPT8GfgH8DQzpLKQM3Sc1EOJnqPQhUdW7gLsA1qxZY/5NJiC2rbxwz0F8naHB2UOtRJTC/npmd75NWfNmOmeeSywzf1B4Boh7cijp3EM4ezpVS9aSE+4iN9SFpQksjeNJRLESUWZ4yynpMoNBDQaAngKIeyAn6nxGmlQGmV6O06S1yM0/ENtt6akeTFXbk8q9G9jgrjYBZUlZFwAt7vJQ6V1AsYhkuLWf5PyGScjelxvpqPNheQSNRFh9ZD1z23diuZXf1jmXYSWilLZte8e+GYkwXTPPIW7lsLTuGTMNtWFKo8CzlwgvX2Bhu6/xRUE4q0E5q1FpnQFb32VRVXrcO/43RnaITSo1n3uB/wXsBs5ohisRmaeqre7qXwMDnnBPAw+LyC9xHA5WADtwhG6FiCwBmnGcEq5XVRWRV4HPAOuAr3B0em/DJKO3Pcj2p2oQS/AEeznvwF0U9dfRPO9yojnFZIW9FPdVkx9sP2EZs7oPjqLFBsP4JG7B3ddYvHq+xcomZbpfUaC7UHjqL4QnL3f0ZWGH8qnXbAJ5gi2gKPfnSuZI2pKK+PSp6ilHQhSRR4ArgVki0gT8CLhSRC7AEd864G8BVPWgiKwHDgFx4B9VnakcReSbwAuAB7hPVQf+Rb4PrBORnwBv44ikYZJhJ2xe+f1hVJW8YDvnv30rmbEgh1dez6LGF427s8GQAnELKufD+vd6OLRIWPumTW0JbF/tVmZUmdMD87w2Zd1QPl944nJhcP4RBP/vNTKSNomeYIpGEbnIXfwczh//E8DgwVX1rZE0ZLRYs2aN7tq1a6zNMAyBrytEd0uAUH+UQG+Etpo+Wqv6iEUSeCybi7f/J1nRfqqWrWVF1eNkxkNjbbLBMK5pnAWPXW6xZ6kQyhEyY8qXX1Gev1honnVqcTnKv1PeGuuOlY6UbSer+fziuPU1ScuK4+psMIwI9Qe72Xj7vkHvNTg6jbUn06Ks8lkKAi0cXnkdqyseNv02BsNJ8OfA+vda/PkiIScK765Q5vRCR6Hy6HsFf97YB4Q62Xw+HwAQkaUD42wGEJFTdjYwGE5Egys8OjhVoZM+MI11jreRxQ3P0z77Yha0bDXCYzAkEcmAmrlwZL5QM1domC20zHRrCHuVoqDw7CVCJEsY2lF4bEilz+cx4KLj0v4IXDzy5himEkFflPoDXWx+uAIFVPUdDvOeeJizyh8inpFHIH8Oczp3j4mtBsNoo0BvPkTcbv64BzqKhdYZ0Dpd6CyG9mKhvRgSHkdUZvUpizqU8+pgZr+w8WKhq2j8CE4yJxQfEVmNE+6mSEQ+lbSpEMhJt2GGyUc4EKO5wktjuZfmih56250+G8vjNK/l9zUyzd9EZsxPdqSXIl8tBf2NWNhUrPw8K448PsZnYDCMLFEPVJVCeZnQWeiIhAp0FUHtHKH/BM1jeWGlpBfKOpXza6AgKnTn2TSWCAcWCbtXjE/BSeZkNZ9VwCeAYuAvk9L7gW+k0yjD5MG2lYaD3Rzc0kz9gW5UHQcaBawMZ8FOKCXtuzjn8P2DEQUSVib9BWU0LfgAsex85jdtGRzTYzBMdGzgicuFJ99jEctwhKIooIhb8y8KwEVVyvSAEsmyUBQBPAnw5Spd06B9hlBfIqg1IDQTa6abk/X5PCUiG4Dvq+pPR9EmwyQgGo5z+PVW9r7SSH93GMvjTGedPLvowNTWJR27Oefw/fQVLcVbtIL8YCsZsSC54W4WNr08lqdhMIw44Uz4zScstq+2uKzcZlEndOcrtfOEkBubP5gNW84VNMnV+Sjjv1aTCift81HVhIh8GDDiY0gJX1eIA5ubObi1mWg44QwMdYN/gjNYzVlwxu3M6t7P0pqn6Stcgq9wEUsanh9D6w2G9NI9DX72GQ/1JXDdpgRvLbPYvnp8OQKMFqk4HLwhIrcBjwKBgcSJOs7HMPJEgjGaK3o5/EYLdQe6QUGsoxGnEzagSk64mxnecmZ4yynuPUJWzA+At2g5vsJFLGo0tRzD5KWuBG75rIdQNvzdRps/XmGNW2eA0SAV8XmP+31zUpoZ52Ogdl8Xu56tpbOhH1XHcUDclzi1ITPYRVnbNgp9dRT2N5IV6wcgnFVM94yzCefOxhMPMc1Xb4THMOlQHE+1cBZUzRN+/VcWOVH46kvKvR+2XNfnqcuw4jMw3sdgSMbXHeLFew8Sj9kg4LGEhNuXM81Xz8Kml5nd8TaCEsibQ/eMs4jkzABNUNhXT0nnW3hs40BgmJx0FDm1nKbZRwWmrFP50B6446OCbU1t4YHUoloX4cRle5+btBm4WVX70mmYYfyiqmx6qJx4zEYsxY6DJqLM7XyL+c1bKOqvI+7Jpmn++4ln5VPSsZu57TvN3DiGSUl/rjP9wMJOp+emeQb85DoPoSxY+6ZNPMPCUghnKL/7UHK8tKlNKs1u9+FEn/6cu/4l4HfAp064h2FSc/j1VhoPe8nUMPPqtjK9t5Ki3ioy7CjB3BKql3yCzKif0rY3yUiEx9pcg2HEiXngtbOFN84W9i92ajIzfcrFVcqbqwVL4YaXlXs+IkQHY0FPLFfodJOK+CxT1U8nrf+7iJgZt6YoPS0BXnvsCJYFF2z/BdMCLQRyS2ifcymhvFlM76lgae2zppZjmLSUL4A7P+qheZZQ0qt8dKcSy4KW6fDquUJRED79Btx5jQxGHjC8k1TEJyQiV6jqazA4uZwJJzyFUFUaD/ew/9Um6g50IwJlja8wLdBC+cprKW19k3ltb5iYa4ZJQzgTDi0UDi0UKhYIlg0z+5WEwJtnW8zqU27caLNtFWy85GgfTqFfKetQ7ro6efCnYShSEZ+/Bx5w+34E6MGZvM0wyYlFElRsa2XvK030tgcHvdny/M0srXqStpI1zG/eyrRA81ibajCMGJ2FcPP1HtqnC56EsrTN+eOrmC/4c+HqXTaWwt1DCIyvQHh7AoS2GQ+k4u22BzhfRArddV/arTKMGWF/jLoDXdTt66LhYA+xSALLc3SgqNgJzj70ILHMAkJ5s5nbYeZGMkwe2ood4Qlmw1dfTHBkrlBRJnQWQW4EZvlg+2qht8AIzJmSirdbNbAN2ApswZlt1DAJaTzUw/N3HyAaih+dS2dQdGLM7XiLBU2vMs3fxOGV17HqyPqxNtlgOG1soHYu1MwVVJyAnk+8xyLmgRteUu652iKaeVRkQjnQaEIqjxipNLudDVwGvBf4uRvteq+q/nVaLTOMGqrKvleaeP2xI4glWJ6j8dc8AS8LW15jfstrZMX6CeTNoXL5p1nQvAXLmencYBi3+HOgrkRomg3NM4Wo+48XzoSDiwRf/rE1mCK/8uVXlbuvkcGAn4b0kIr4JICY+20D7UBHOo0yjB5dTX52bqilZk8nYgm2rXhiIUp6DjG7cy+zu95GVOmecTY9M89mZtcBVlQ9YbzZDOMKBdqLobtQ6J4GdXOEg4uEujkMBufMCys5MSe/ZcO76pWyLqUn3xmnMxBh7a6rhbgRnrSTivj4gP3AL4G7VbU7vSYZRoPOhn52bKilbl8XYolT44n4OaviYWZ178NSm1hGHs3zriCSM53S1jeZdeSPY222wfAOOorg9o9ZHFx8dBxNZlxZ3qL85TbIUPDmKZ1F0FXkNLEBvLXMGadjGBtSEZ/rgCuAfwC+LiJvAFtU1QTjmoAEeiNse6qa8m1tWK7oqCp5/jbOO3AHOWEvTaXvI55VQIGvkXnt28lIRMbabMMUp342NJQ4tZreAqEgpMzuA18erH+vE0Hgs1sTBHItQplKMAuqSoXDC4eaksAwHkjF2+0p4Cm3r+ejwLeBfwZy02ybYYQ59FoLW9dXkojZiDgTvWHblHS8xerKR7CtTMpXXc/y6icHg4AaDGNF3IIdq4SNaywqFhwVj+yoM8HaAOfW2lxYI6y/wiKcPTWnJ5iIpOLt9jhwAVCF4/H2ZWB7mu0yjCDxaIIt6yo5/EarM1bHAxpNMKdjN4saXqAg2EZ/wQJaSt/D6oqHzYyhhjEnmAX/ca2HI/OFEq/y+c02fXnQW+DUfKKWMi2sFAahqxAe/KARnIlGKs1utwBvqRrXpomIryvExjv309XoRyzI6m+ntO1N5rVtIzvqw583j8rln6bYW8XKyvXmndEw5oQz4ZbPeaiZCze8aHNgEax/71ARA8zTOpFJpdlt52gYYhh56g928+K9B4mFYszp3M3C+peY5m9EseiecRYNM1YzvfswK6oeNz9jw7ggmgH//WmLivnw9ReUx64QvNPM0zkZSaXmY5ggqCrBvihdzX4aD/ew96VGsmM+Lt39C3LD3fgKF1G76KOAzdz2XczqOTjWJhsMgNN09tIFFq+cL/Tlww1/Vp54jxGeyUzaxEdE7gM+AXSo6rvctBk403EvBuqAz6mqV0QEuBX4GBAEbhiYpltEvgL8m1vsT1T1ATf9YuB+HMeH54BvqeqUHHyiqtTt62Lbn2roaR2c6Zzp3nLO238H7SUX05F5IbO797G4fqOp5RjGFRsuEX5/lQUC59coF9XAhkuF7ik8xfRUIBWHg8uBPaoaEJEvAhcBt6pq/TC73g/cBjyYlPYD4GVVvUVEfuCufx/Hi26F+7kMuB24zBWrHwFrcMaR7RaRp1XV6+a5ESf0z3PANcDGlM56kuCraaHu5X0cLk/QFcglKxGgxFtJkfcIs7r2kRXtp3rZJ5nbvoPC/oaxNtdgOAYF/nClxdN/YXFJpc2SNmHzu4T7PmxEZyqQSs3ndpzAoufjuFjfiyMo7z/ZTqq6RUQWH5e8FrjSXX4A2IQjPmuBB92ayzYRKRaReW7eF1W1B0BEXgSuEZFNQKGqvummPwh8kikgPhFvP7t+8wJHapVA5kwgi6xIH6vq/sS8tjewrUwC+aX0TD+LQGEZi2s3kBULDFuuwTCaJATu/KjFpvMtPvi2jbcA1r/PiM5UIhXxiauqishanBrPvW5T2OkwR1VbAVS1VURK3PT5QGNSviY37WTpTUOkT1ri4Qjb/vtpDtXnEMuYQUG4iWJ/JdHMAgr8TWRHevAWr0TUJj/YTqGvFmkba6sNhncS88Ctay12rLL45Bs25QuE8oVGeKYaqYhPv4j8EPgi8D4R8QCZw+xzqgz15OlppA9duMiNOE10LFy48HTsG1PiwTBPf/cxWrWUacF6Mq1e5rdsYX7r62NtmsFwSoQz4eeftti3xOK6VxO8cbZF/RwjPFORVMTn88D1wNdUtU1EFgL/fZrHaxeReW6tZx5HA5Q2AWVJ+RYALW76lcelb3LTFwyRf0hU9S7gLoA1a9ZMKKeEqD/EU999nA4ppai3kpLOPZQ1bx5rswyGUyIhsGuF8MTlFnUlcMOLCV64yKJ1phGeqUoq43zacIKKDqw3cKwTwanwNM4sqLe4308lpX9TRNbhOBz0uQL1AvBTEZnu5vsI8ENV7RGRfhF5N060hS8Dvz5Nm8YldjxB9Z/eYOfzjXg9cynqPcLCxleZ3b1vrE0zGI4hIdA+HRpnOZOuDRDLgGC2EMiBt5cJ3YXCTJ/yjedtHr/cMt5sU5wTio+I9HOSpixVLTxZwSLyCE6tZZaINOF4rd0CrBeRrwENwGfd7M/huFlX4bhaf9U9Ro+I/BgYGOh684DzAc703vfjuFpvZAI7G9i2TV9lE10H6vHWd9PbHqSxO4dwZjEZWkihr5Yl9c8zw1s+1qYaJik7Vgrr3mfxoT02H3lLybCd+VMOLBaOlEJfvtCXBzkxmNfjBPVsniUcKnO2xzKHFhJPQsmLwOJ25eM7lfL5cO/VFgmPEZ6pjgw3NEZEbgbagN/j9LV8AZimqv+VfvNGnjVr1uiuXWM79XOwtZu6l/bStK+NTq/QTyGJjKNxWsWOkx9owbLjiB3nXYd/R3bUzF5uSA8vnS/cfY1Ffhj8eUJpt/LucuX1s4X26UfnwikMQigL+twppMVWFnfAyiYlPyqEM5TefAi6s32KQiQTQtmOcPUUGsGZyJR/p7w11h0rHanyUunzuVpVL0tav11EtgMTUnxGk0Qkhq+mhf6mLnxNPbQc6qS9x8KXMQvEwkrMIC/cQUG8CRTiGTlYiTjT/PWUdO1lRm/lWJ+CYRIS9UB3IfTlwZ5lFk9cbnFejU1pD+xf7IS4eeJyi9WNykfetmmcCa0zhd485+1zWbNSHFAKws60BS9cLCAmmrTh1EhpJlMR+QKwDqcZ7jqcWU0NJyHU5ePR77/gjsUB8CD2TPLDbRTHq4hl5JEd9rKk8QWKfLVjaqth6tA8A26+3nNM2Jq/OGTjseH5Ne40BaqcV2PTl+9GHjiO3gIwQmM4U1IRn+txQt/ciiM+r7tphpOw6afPEMiYQ7G3koSVRcKTTXa4m6UNzxuxMYwJrdMd4bEt+PwWm/5cp6msaZZQWZYkJvL/s3fm8VVUd/9/f2funj0hQFjDFpIQdkRAwB2te7VWlKdat2p9rO1jn1Zb/dlqF2lrW7V20aq12qrtY9Ui1gUVBUFl33cEwhZC9uXuM+f3x9zEAAkECAkJ5/165ZV755458z1zzpzPnO17hFUDtbhoTiytme22HccDgaaVbHvzMz4P5pBetZncHW+TWbWxo03SnIKE3bCrW8Nn4feXGsRN+K+5iqculMSgvxYZTcfQGt9u2cCtOM5AG8MrpW46cWZ1XqJ1IT56tRivZRD2pGjh0bQrcQNW5wrzi4RFeUK0ySy05JDi+g8UT10geraZpsNpTbfbv3F2MH0PPdZzROb//HXq3T1ICRUzdvkjHW2OpgtT74X9aU4LpzpJWDpYWJwn1PuFpLBi8lpFRhCqExMpfVHFn6cJcZcWHk3H0xrxCSil7jnhlnQBNv5jHhvKs0mr3kLvPfMw9OavmhNEVRJ89xaT2sAXQhIIK0ZvVfTfDzuzFAsLhLC3qdBo0dGcPLRGfGaLyEVKqf+ccGs6MZUbivloTjX+aB0xM0DP0qUdbZKmC/PPKQZBL0z/yKYyWYgZNhG3sHywsGCYHsvRnPy0Rny+DfxQRCJADKdUqyN5ODiViAfD/OeRBdikYYvJpKUPdbRJmi5McTd4f6QwbZninTENu32aHW2WRnNUtGa2W0p7GNJZsG2bvQvWsu3DDezbHaEu6iZkpGC5epBa/TnD1z6t3zk1J5S/n2Pgj0JSRG8zrem8tGa229Tmjiul5rW9OScvVizOsifeZOUaRcSdCmThC+3HHasj2a5CiUnfXXPxRqs72lRNF2ZVrrB8kME1H1m8PvHQBaAaTWehNd1u3/OQrUYAACAASURBVGvy2QeMB5YC55wQi04yIpW1bH93GYve3UuNuztJkd1460uJetLov/M9eu77DNOOdbSZmi5M0AvLBjlTp5cPErKrFCXpEPHoVo+m89KabrdLm34Xkb6cAn7dFvzsFbZ8blPnygQx8NgeUqs/J71yE4O3v9HR5mm6OBXJsLDAmT69oa+zLietzpk+3bdc+Gszbm80ms5Ea1o+B7MLKGprQ04mFv/236zYmUlSZDfpdVuwTA+GFWHU6j9g2vGONk/ThQi7oTIZrISWVCUJ740WPhvqCE6f/YoLlyhSIrC5p2JekbS4fYFG05lozZjP7/hiXx8DGAWsPJFGdSRbXlvA4vUBUup24AvuY/iGv3a0SZouRtALT1xisLa/EPIeKiSBsGLaMkVaEBYPgf+MF5T2Gq3pYrSm5dN085s48JJSasEJsqdD2bd4I++/WYkvWk/Im85py7p876Kmnanxw8+mmxRnw5mrFYGowlCOGxwFmDZEDcXcEQcvENVouhaH28m0n1KqWCl1Srz6r/jTW3y2xAZlYxkmUz75YUebpOli7M2AX37FZH8a3Pq2zUtnGo0bsx2IHs/RdH0O1/J5HRgDICL/Ukpd1T4mnXgilbXsW7KJUGWQWDDM1iX72BXvRVJ4NzGXnwmLf6Y7ODRtwsbe8FGRwZpcoSRT8EcUt75t89x5BvV+Xco0py6HE5+mT8bAE21Ie1G+vZKn7/0MpOHt0gTVg/SqTbijVQxff0o09DRtTNyApYMFJZAaVAS9wuzxBuv6C76ooqBYMWm908X2zDRDd6lpTnkOJz6qhc+dG2WTXrUFy3Bjmx7EjiF2nMGfv0ZqbXFHW6dpQ4JeCERO/HXW9YVnLjDZmX2goGTUKqZ/aFGeInxa4Phd02g0DocTn5EiUoPTAvInPkMn9+0WiJQzZuVjHW2G5gTz6iThH1MMfvSiReHOE3ONOh/85XyD+UUG2dWKm9+1WNdHEAUpESHoVvzfFEPvnaM5FKW4oD7IRfVBQiLUGAaf+H3MTQp0tGXtRovio5Tqkp4KRW9z0OWZfZrw8plO8X3rNJPCnW2f56tyhT9cbFCdBJd/YlPvgWfPM1CG3sJA45Bi2YQMIS4HloPseJz7yys5Jxhij2liiZBhWVxdW8c1vXuyyePpIIvbl2NZZKrRnLTMGSU8f57J+I02u7JgyWChxg+poeOLtyIZlgwRSjKE3VmwfLBBr3LFV99R/GOKdvB50qAUabZNwFaEDCEkQpZlMygWIzcWY5XXy0qvBxoEQSm6WTYGCgXUGAYR4/hnG44KR/j9vlKKXW5u69mdGtOJ84xgiF/uL8Oj4PGMNPLDEU6LRKkyDDJsmwfKKvlaTvfEuq6ujRYfTZfh7THCsxeYjNpq443Cnm7OA//RcINLF9nHHO+iPOGPFzmz09xxRfcquGiRTdyEP31JvqjIOilZlsW0+iBFkQi/ycyg3Dz5Oj1cSmFBs5WyqRTXV9dyVW0dPSwLnzr8EPU6j5s3k5MYGI0xORSmh/VFy7jGEB7NSOeVlOTGa4lyhKm5fBalGBmJ0jseZ6HfR6VpMjEY4tHSMqpMg7xolD+XlHJrz2zODYZ4oKyCz91u/pmawp2VVaTbTrnMwNmvZmQkwuV19byeknyMd+rIGEpxY3UNU4Nhlvu8fOz3scLnPaSFdqIRdYSM6moUJSWp/+vbr6PN0LQxr00UXjrLZMxmm7R6Ye4o50HyRhXdauA3f7Za1QlW74VNvYVY4rVsxQDhvTEGA0oUZ6+GpQMVpelCaTon9ViOSymmBEMk2zZvJSc1ViyiFBfVBxkajZJp2fSKxxkdjuACbGCZz8utPbu3e0XUHKIU48MRLqur47z6EBERPvH7+MTvY7PHzR6XiwzL5idl5YyIRFnk87LN7SZkGHgUuFCIglrDwFCKblaMbpZND8tiQCxOjWHwqc9LscdNUuLdZGQ4TGE0ygqvh0/9PsaGI4yIRNjlcjE7OYl3kwL4bcXAWIzhkSjn1wfpmRAvC1jh9TIiEmGb280bKcncUlmFXymqTJPulsUnPh/rvV5urK5utjxWG4JCuKJPDm6lyLIstrjdR9caU4oM26bWMA7JxyzL4uHSciaGw2x1u+gfi+MCQiKs8HpZ7PcyKzmJfa5D2yUb7t6wN1Ye69V6Qw6PFh9Np6XeCxv7OH7Q5o40mLTORinFJ8OavLkrBSL89Pk4ebuhLBW25AhxE2ImRN0QcUPQK6zvK2zsA7Zx4AN70WKbWh/MLzq5Wzl+22ZsOMKZwRAX1gcb36rXe9z8uFsWcYEHyioYGYkSASpMk3LTZInPS51pMq2unrxYjOdTU/hVVkaHp+X3+/ZzWjhCnQhzkgKk2zbDwxG62Qe2YqsMgycy0rikto5R0SN7mFfASo+H/abB+EiENPvAOnCz20W2ZZNi22zyuFnl9VIQjTIiEj0gXBRY6PexwudjSDRKklL0icXZ6zJZ6/VyW5UjMLUiuIG3kgJ4bJuLg4fvA7Y4cGvAHS4X92VnsdLnPSRsimUzOBZlZDjKiEiEgbEYveIWfqUIi7DW42GN14MbRbe4xdhwhCSleCwjnQvq6uhmWWx3ewgbBv1jMYbEYuwzTW7I6cFu94ECpMXnONHi0zmwgZoAVKZAdUAax+6rA07LZFNvobi70w1jWopzVyj2p8LyIYe+IZqWYuR2SA4qPh4mh4hLA/1KFSO2KXwxoSRNoQTcFqzvK+zLPMlERylurK6lIBrFb9tk2DaFkShuICzChwE/67xeTg+GyI9GSbdtFE4r4E8ZaYwLhhgQt8iwLNJtu7Gyq0yMPfwqMx0bGBWJ0jMexwZshI8Cfp5LSzmhYxJe2+aJhPA8npFObjTKecEQKUoRAtZ5PexzuYgYJhGBMtPFLVVVR+xuOxoiwMd+H7nxOANjcQT43OVii9fDDreHJCtOlmUxKhI9oNvOBkpcJr3iB05yqRbY53KTFzuyOFaJ8H5yEjWGSYptMSUYItuyeDk1mWrDoH8sTv9YnD7xOGlNhHiXy8VGj5sy0yRkGPSMW/SJxciLRgkbQrlhstvt4r2kJP6novKAcxtsL3a56GZZVJkm1+d0Z3+TFlCXEB8R2Q7U4oh8XCk1TkQygX8AucB24KtKqUoREeAx4CIgCHxdKbUsEc8NwP2JaH/aGldAWnxOTkrT4OGvmuzJdL6rFgQCwB9RDN6jyN0HXkvYl6pY308oS2v+HFdcEXcJ3pjirJWKQFQoTVVYBijBaQW5oCpZKM7mpG7dNHB5bR0/Latgj2lSYxrUicEGr5tq00XfaJQzQmGyEpVLDFjv8bDJ46bc5eLr1dV4D/PYlxtG47l7TZPtiTfgFNumKBpjnt/HD7KzqDFNDKXItixKTfO4BMljK3xK4VGKB8vKmRwK83BWBjdV1ZBjndozVC1gk8dDQTSKBex1mRS73Ox1mdSaJjExSI/HyIvFKIhEaTpXTgG7TJMyl0k3yybLsggcoc4P47zU7XW5+HNaKkFDCBnCX+7b0WXEZ5xSqqzJsV8CFUqpmSJyL5ChlLpHRC4CvoUjPqcDjymlTk+I1RJgHM49XgqMVUpVHu7aWnxOPkrT4MczTEIemLrGEQoU+GIgIgRdFpHENgIuy2kRbeoj1AZaX9mN3Qz9S23eHS3UHcV5JyNZcYtZu/ew1e1mn2lyejiCXym8SrXZ5O55fh+7XS6GRmMMi0YaxarY5SInHqfMNNnjclEQjRJQijLTYIHfzzKfl2jCik0eN5u8h582LEpxZ2U1N1fXHNDV9MvMdK6tqaVv/NQWnqbscJlsdLvpZ1n0i8WPKCLHQwhABH+TayT9PrS/fn+0e1td42Sa7XY5cFbi81+BD4F7EsefV45Kfioi6SKSkwg7RylVASAic4ALgZfa12zN8VCSDj+51hGeG95XPH2B4+H5QI5/9tXSIbC0mS65zsgPyyvwKsVbySn8sLz8hFxjaijc7PF+8ThVIoQNwYXijeQkomIwIBZjajDE5XX1jWGjwPTePdncwroVv23z8P5yzg2GeDsQoMzlQoBK0+TqWi08B9M/btG/ne6JH6hBsTDgI4YQF0iz6tr0Gh0lPgp4V0QU8KRS6imgh1JqL4BSaq+INChsb6DpGvVdiWMtHdecxNT4YXWusLa/M8C/u5sQCCtufE/x52aFR9OIUlxSH2RaMMTv01P5ZuVhG/knjHSlSInFKTdNRkTqGltb9cAnPi81hoGp4PRwmF+UljO9V0+iB3WjFkUiPLS/goGxGL/NSOPs+iAXBoPtnhZNy6QqODf4xUuIaak23Umzo8TnDKXUnoTAzBGRDYcJ21xtpA5z/NAIRL4BfAOg1ymyerg9qUiGdf2E6iTnu8IZPylNo3HxpWE7vtZ29HC+B8KKvN2KcZsV/picmsKjFP7EX4VhNDvWZCrFiEiEs4MhzqsP0TceZ53HzaBojAz72NcuHS8m0P2gsZgkYGL4C2d6cWBILMZdlVU8kpg9lx2P8+3Kai6vq6fcMPhxt0z+u7K6cbqy5tShQ8RHKbUn8b9URF4DxgP7RCQn0erJAUoTwXcBfZuc3gfYkzh+1kHHP2zhek8BT4Ez5tN2KTl12ZXlLN5cMsRpvRyMO67IrIGsWoVhg21Aej2MWqhw28KObMWGvsKKQSdGcHJica6rqeWp9DRqzZOru61vLMbP95czLDE7DZyFj0+np/FewE+6bTMpFGZKMMQZoTDptk0MWOT38XpyMt0si+m1tR2ZhFbhwlm3ckNNLX6lKIhEKUwMmv81NQVBeKCsovEeaE4t2l18RCQJMJRStYnP04CHgFnADcDMxP9/J06ZBdwpIi/jTDioTgjUO8DPRaRhQcI04AftmJQuS9ALKwcIq3OFcDMNxZIMYUsvwbAVw3Yoxm9SCMKuTNW4ONMSKE8TtuYIEc8XCxxXDmwQmxPXysmOx3mmpJS+8ThVpskz6SePD9xz6oP8dH85tgj/TEnGFsGrYFIoyG9KyygzDTItGwOoMAzm+31s83joGY8xJRjmjBbGYk5W0mxFlWFwZW0dq70eXkhNocrl4r+qqg9Zr6M5teiIlk8P4DVnBjUu4EWl1Nsishj4p4jcDBQDVyfC/wdnptsWnKnWNwIopSpE5CfA4kS4hxomH2haT9Dr+EPb3EsIeaHO56yfsUxnLCalmfVwSWG4ep5N1C0sLBBWD2idoLSHv6pMy+LpklIyLYudLhdfrq3jmbSUjps+rRR943FOD0WYFApxfjDEOo+b11NSuLuisnFtig2s8ripNU3WezxERciPRDg3GCJQ37nHQtJsm4U+L/3icW6oqdXuVjWAXmR6ylIVgLfHGbw9Vgj6hJxyR2j8EUXvckgJC9u6K7b2Euxmaouq5PYRk6Mhw7J4qqSU/rE4P+mWyQP7y/EBX+/ZnaV+X/saoxRTQ2FurapmVGJl/H7T5K2kAMmWzZX19UeIQKM5uej729q9O6vtNlvnczJNtdYcJXEDPu/pfM7b07rwqwYIH4wUlg4WbAPGbVIM2wnzhkFxNoQ9wspBJ75rrK3pHo/zVEkpveMWP83K5J7yCnw4032/Wld/QsVHlOKKunq+UVUNQKVhkqRsBsbi7DFNnkhPw68UheEwX62ta9OV+BpNZ0WLTydhfyp8MNKgNgBhN1QmO25mGsZThm+zmTHXZsA+KE+F4mwhkhjJjbidMZzlg5xWTkpQccEyRVpQ+LBIWDy084hMc/SJxflzyT7SLZufdMvk++WVjf66BGecJSUz44RMPCiIRLmv3PGXtsrrocR0kWJbhDD5V0oKw8Jhbq+q1g+aRnMQ+pk4yanzwauTnO4x23C2hfbGIDnkeAPIqIfNPRWb+wj33uQiEFYEfYeKSUpQcdomRe8K2NFNMWeUEOukU5uz4hYjIxHGhJ2/gmiUOsPg4axMflhWQVKTloUbcCvFxfX1LPD7uKm6hpHhKG6lcKOY5/fzi6wMrCN0IaZaFt0sm8/dLhDBpRTfqKrm1qoaqg2DhzMzOLM+yLTEWpU4cFo40onajhpN+6LHfE5CFLA1x2npLCh0ZpxNXqPoWyF8kgdhj/NXlfSFDzRXTDF4r6JnFWTUCZYBFUkKZYAoJ/zq3C9aSicjF9TVkxtz1rEZKLIsm+6WRWaTNSBZlkWfxCrviMBaj5e1Xg9lpotvtuBcMiiCBQSUIi7wmc9HWARfYlzmvYCf73fvRiwhQJ5Eqykm0CtucX1NDVfU1hNQiu0uF+8mBZgYCjM8GmV2UoC9Lhc3VNegV5BpujJtPeajxacdiRuOqGzr6YgDQMgDO7sJO7O/WKRpC9T7HUeY4zcoBu0T/jMWSjNOXuE4Xr5ZWcUdVTUHHKsyDPabJmWmgZ1oQwQNYbvbDSL0jkYZHYke0fGk481ZeC05maBh8tWamkbHmftMgx6WzUKfj2U+L1NCIYZHojTtoIsBbyUHCBkmQyNRhkci1BkGj2ekc1VtLYWtcOOv0XR2tPgcJ+0pPmvHxFmZ5aLCa1CRApt7HdryEKXoVg399juzzVTi5+5VUO2HTwqPzoFmZ+T2ymr+u6qaWUlJxFH0ijutHx/QI27RzbKOeyHiXtMk2bZJaaa8lyW2ERBgncfDMp8Xn3LGi8Ii1BoGV9XWNrrOLzZNVvu8nBsM6ckDmlMGPdutk/B5UYyHpvlwKUitg/Q6mLxW0a0OypJsKlKcPWoMBRUpzoLOruRexky42s+yLHa5XFQntmZOsWzGh8MMicZIsy16xy3ODoaYlRQgzYpzZhP3LG3J4VpH3WybUsNgvt/PyGiUrx1hLUo/y6JfJ197o9F0NKec+NQHFGvHx3BHYcgKF3IChoQjfpvfXeCmTzzOK7tLuMvXg/Vpbj7PkcTamOP30nwy4LdtxoUjnB4Kc1o4TJbldGUZKDIs+4DCVWKaVJgGQ6OxxtTXiVBjGLyYkkyv2IkTntbQ3ba5Sq+90WjajVNOfEqSFQ+e6wfg3uQQYz5ue89S/7jaZq/bzb0LQ/h6KaZ6gnyWlN7m1zleRClyY3GGRaNERZjv9xFK7BWfatmMC4cb9wyxgUrToNw0SbFsLq2r54L6IMlKERFY6fWyxe1pHCupMYSwYeJTNmm2ImBb+G2b51NTCBkmudEIvSyLVNvmkvp6Um3dfaXRnEqccuLjjaQyfW2YeUNcvDXKZMzHxx5XKMmmsqdNebaiPuAcq0yF2b39TN8aYkh2PRGBy2rreDQjrXE2VUciSjE+HOHK2jqmJLYmbiAswgK/j1TbZnQ4ctjCERRhTlKA7W4PA6MRTgtHGH+ElosNnK6nH2s0Gk5B8QmpVKb5Msip2cNvu2Wwd0CYnG2tuw0KxeZRcVYNhaU5Lrb6m59cW1gfxVMljMsMgQK/sjm/Psh/kpOO2W5Riu6WRbJt41eK7nGLseEI48KOo8kn09P4IOBv1oeZoRTDI1HOCQY5P+GWv8YwmJMUYL/Ljd+2yY1FUSIMi0SpNQz+lppC0DDJjUUwEoPvCogaBpWmi4AVZ1owRJrd+q6qk8u3tEaj6UhOOfEBxSvWVH5Q/wy/z0zn/TMU/7XtyGftHhznrxcYrEj147EVI2uiTCoO4Y5AWAmmAS5xWhEB2+YbGV/sMBkS4ZqaOv6TnITPthkci2EmGhzJts2gWIwh0RhhEV5NSWa91wNKMTYc4ZL6egoiMQbEYodsmxsRWO3x0s2yeKy0jGVeL0t9XoZEowyOxfAnurJ8SpGkFHFgic/LP1OTGRSJckF98IAFmQ1x1hvC9TW1Wiw0Gs0J45Sbau3LGayG3vAzFnnv4P91S+OjZD9/+l0cX/DAqtYyFCUDLIoH2Kzpa/BeDy9pls11qyPU2ibnp1Qz2t069/Y2zlv/cq+HYZFos4sRy0yDZFvhU4rVHg/JymZALE6dCKu8Xna6XdSaJl4bXChQNqm2xZhwlB6WxTqPh5x4nDTbZrvbzRaPm0iiFWQh7HS7yYlHOSMUprfenlij0Rwleqr1cSIiVJPMXHsUX6tdxVupSSyaYjH1HUd89gyK8/F4xXt9PFS5nMkIKZbNlcVhPLtNrutZTpocnWAbQK0IHqX4Z2oy9YaLbnFnYWIssdK+XyxOj3iMYreXLMuiwjB5LSOFfrEo5wdDTAofXuiKolFiwGc+LzmWxXn1wVMvczUaTafhFKyfBA9R/mWdyVPRJQwNR/m/4W4WDbTYluRiv9uHSykml0UYujtCtW3S0xXj/EAt/XKOfSW7B0VAKWbU1B12wL23FcYGSk2Tuysrj+oabuCMDpyurNFoNK3lFBQfsDD50B5BjUri1upqHuyWRY3bZmxZjD7lUeqCJpdn1FCU1na7RnoVDEj4LTsSBug97TUaTZfmlBUfC5P5dhGXBD+jz+dl1CthjCuEKwk49klpGo1Go2kFp+yEJsFmhRoCwDBXmPHuEC69AEWj0WjahVNWfNxYrLX7d7QZGo1Gc0pyyopPFBfr7P6cYjPNNRqN5qTglBUfcKZc71TdO9oQjUajOeU4hcXHYZUa0NEmaDQazSnHKS0+gs1yldfRZmg0Gs0pxyktPs6kg47ZUluj0WhOZU5p8XEmHeTqSQeaTsnHVhHlKqWjzThuylUK/7KmEFenVnVkK6GiC+TfsXJKLjL9AqGGJIpVd/pLaZvH/qE1gs/sAspII6h8fNM1iyJje5tfR3Pq8ZE1ghti9zLJWMPf3T9vbieNNsFSgoWBR06Mx401dn9ui97NbrJZZQ7gQffzjb+ttgcQw2SMseWEXLsjqVYBvhX7FgvsIm4x3+Q7rlfxS7SjzWpXTnHxcVipBtGfthWfxfZQbox9Hxc2mdQQxsNn0QJmee+jl1S06bW6ApUqme/E7mCysYZbXf85pjhKVRq/jV/NFrsXpaQTUy4edj/NmeaqNra2bVCq2e2Xjki1CnBP7Fb8RFhoF/G+PYbzzGWtPn+3yiKDOgLSsh/AnXY2L1tn80/rTGoJMMVYzTRjCReai0mR0NEb3QxvWBP4Xuw20qnnLGMFf7UuZJDs5XrXHF6In8eD8esR4E/u33KuubxNrtla4srARk6I6G61c7g19l2KVXfOMNbwpHUZb9unc4/rJc4w1pAmQQAiysUW1Ztwwg++hzjDZDvGUTo2Plnp9FsqiMiFwGOACTytlJp5uPD+Xnmqx/W/bfxuYPN117s84Hr+MGc5bLN78qE9knwp5jRjIy6xmw1Xp3x8KToTBVxtfMTb9nhKVAZhPOTKPv7l+fFhH/wTxU47m6eti9iserPNzkEB17k+YIb5HllS2+72NFCpkrku+kPWq1wAvuf6B//t+vdRxTHHGsM9sW9Qj49RsoVsqWad6s9u1Y2/emYywdhwXDbusLuzRfXmHGP5AYKx1B5CrfLTXaroKZVkHnQf96tU9qt0CqS48bxPrAJ+GL+FGhWgyNjGcNnGta4P6C3ltIbvRm/jdXsyD7n/ysOx6WRJDXM832tVRbnAGsZNse/RX/bxgudhekgVAC/Fz2Zm/NrGii6CBwObqcZK0giyyM5nL1kMlD38zfPz43qBWm0P4FfxrzLPHskY2cQ0cym/jH+VLGqoIJWzjeW8Z49jqrGSXSqbnSqbp9y/5WxzRYtxbrVz2KT6cJ6xDPdxCEZMmbxkncNj8SuJ4uZi81O+bH7MeNlwQL4rBftJI5vqZl8giu3u3Bq7mxqVxARjHeOMjZSTxlq7PwvsItzEuc/9Ir+ITcdNDETYo7oh2AyVnQBsUb2JH9Q+GClbeND9V0YZW1udprgy2EcGe1UWu1Q2n9s92a564sLmf93/aDEvLSWYTYSurbdU6NTiIyImsAk4H9gFLAauVUqta+mcg8XHQ4zRxhb+4fkJABUqhVnWRF6zplCHj6Gyi1wpYZGdzxI1tPG8NOo421jBheZizjRWHtBkvjd2C/+wzmKm+2l+ELsFOzG05iVKDBfnGst40P3cYR/gsHKzVuWy3B7MFtWbrXYv9pPOZcZCbna9RZo4O4hayuk6bMBLDD+RQx6IudYovhO7gwjuRJr2sk9l8KkahpcoV5ofc735DgWGU/DjymBzk7cuN3HyZWej4NpK+MQupFh1J0fK6SXl9Jd9eKVl56lh5Wapncd8ezgVpDBStlJo7OC+2M1sUb34ies5fm9dTrHqwfddL3GH640W41IKtqmeLLGH8qE9iv/Yp1MgO/ia6z1+E/sKZaQBimyqqcfL792PU4efT+1CBMXXzDkMNXY1xhdVJjUkUaf8xHAxQPbiEhul4BVrKj+Kf50gPsbJRn7sfg43Fj+Lz2CePfIAu3IoZ6yxiVwpYYFdxAo1CIVBvhQzw3yPz1UOf7G+RD/ZxwjZyhbVmy2qNwEi/Mr9JBeYS7CV8KE9ks/sfHpKJX1lPxlSSxyTjXZfHojfyG3mG/zbmkQJGYDB/a4XuNl8i02qD4vtoSgEA5ssqeEsYyU+ifGpnc/Xo/eQIxXsUxlkSg3Pu2fyvDWN56wLGW+sZ5DsRQEpEsJPhNetMyhWPXATI1+K2ap6kS71/M39cwYaJVSrAKvsgZSoTPaThkK4zPiEvsb+Q/LrE7uQ56wLeNc+jTTquMl8i612L2apMxrDZVFNOWncYr7JNrsn76ux9KCCSlI4x1jOPpVBGWmMls1cYS5gmLGdJ+JX8KJ1LhYm+bKDme6nGyvnOuVDISQTOuSZUArKSWWXyma76sk2uyez7ElsUzmcJhvIlFrm20UE8TNaNvMT97MUGTsotrtzX/wm5tsj6EUZ55jLOd9YyiRjLW6x2GT35r+iPySKm9OMDSy186ggFYD+UsJI2coYcys/j11LFHfCGpsJsp4so5YyOxWfRBkke0mSCPvtFBQG1QRYbOdTThpXGvO5wvyY8cYGfHKot32lYJkawsvW2cy2JhDC1/ibgU0vKadcpeLC4iH3X7jCWIAI1Csvc+1RvG5N5kN7JKNk6G+S9AAAIABJREFUK//tep2zjJX0e1SLTyMiMhH4sVLqgsT3HwAopR5u6ZyDxQcUASKcbaxgl8pmnepPDBeFsp2eUsHnKocdqgcDpIRLjE8I4mWT6ouJYrk9iCpS8BNmgrGeflKKlxhPWZdwi/kmb9unseugRayp1FFDMuAUxHwpppYAFSqFEN6ERcIeldX41pNJDQNkLz6iLFDDSSbIheZiiu3urFW51OM/4Bpu4qRRR3/ZR76xEwObF6xpTgXoeo/fxy6nhExA6E8JvYxyltuDCeNlvKzHKzGW2UMOiTeNOs40VpIj5bxhTWIP3Q743UeE04yNTDDWo4BdKps9KotKlUIVyexT6UTx4CJOMiGqcAZbPUT5mftZfh67jkpSyaGMvXQjlXr6SSl9pZQeUklPqUAhLLOHsMweQjlpAKRTy1fMeVTYybyqpsIBm1YosqhpDJtECAuDMF6mGivpK/tZaQ9ig+p7wFtmKvVMMVZhYfK2PZ7xxnpyZR9zrLFUkYQAyYS41XyT7ao7NgYugTKVwnq7HyVkUSTbmGKsYj/prLIHskn1BWCG8R6mWLxgnY8AfSgFEYpVDy42PmG1Gkix6oGB3fji0pQC2UE+O3hNTQUghXoUQnep4nN1aN2QQpDzjKW8Y59GjpRztTmPx+JfxoVNEC8WJjeYb1NiZ/KOGn/I+QfnsYc4Lix6SgXrVT/UQTYKNmcaqzjbWEEID1UqmfftMWxWfUijjuvM94ng5kXrXMKJMt80vy41F7LR7td4v0AxUPYCjrgnSZhFdgFViefIxOKrxodExc08awRlpDJStrJbdWM/GYDz4teNaryJijqGi1KVTqTJ1o6CTYEUc605l3/HJ7KEfFKpo0CK2aT6UE0y04wlfGiPxMRmujmXDaofy+whhPCSTi3nmct4zxqDmzjfc/8f/y/2dUwsimQ7OVLOFtWHzap3E9FpHjdxYs2MiriIUyTbWa/6EcGDnzCDZQ8VKoVyUonhIkAEFxaVpBAgxEXGIrKNGuIY1Np+qlQSxfSgRGWQIfVsVb3oRRk1BKgjAEB3KjnTWMl8ewQlZFIk21j5h7u0+DQgIl8BLlRK3ZL4/jXgdKXUnQeF+wbwDQBx+8a6M3sf0F82yNhr+IgiKBRCjQpQTipB5bEF8BITQ5QElcduWrEZ2KRI2MiQWpIJoRAUTgin0k1utl/OS0yypEZSJIQbp6UggI2gEvErIISXOuUnhIewctsWBl7i0sOolFSCjWFLgkJq4IuHyMTGxMaFhaCwEQQoUZmUq2T7wMq54RyLTKkzukk1RiIlQbyE1BeVg18iBIigEARFGDcVKhXBaUH6JEqAL7oTnXvhVE02go0QwkuNClCvfMotcQkQwUuMPSrTtjAbz02VoNFDKnFjURGMkxUwG+8tiXgjuKlVAerwEVReu7mKusGSHKk0DGxqCRBWbpUu9dJNqpFEXBYGEdyOx3Nl4JFYY1oBdqpsalTAFhTZUm1kSQ0VKpX9KvWQ6wo2AYkaljJUGLdyrFYkScRIJUiFSlER3Ac8eFawWrolmdIr0fUWxcV+lU4cAw9xPIlyYiPEcFGpkg7Ix/5GqZFCMPFbMpFE5WagSJP6xvJZpZLYrbJsEASbXKPU8BFlm91ThfG0qjIQFP2NUiM5IeR1yk8QL/GEt/hkggd04yqgPGiTHnCzX6VRpZIOk1ctoXBjSRxDKQwMbFIlZGRKDTHlokRlqBguBYpsqTF6SGXjfYzhanweDOwmMTr3MqpchPEQwU1EuZvk2YFpzpZqI1uqAUWVSmavyrRtDEwsXKFyo3eS1Vhm6vCzw85u9llrC0wsUiVkpEsdSYRROBNDLIzEM+c89+UqlSqVdMCzdTCpEjR6SxkAcUyiuKlUydQqv62AdKk3ekol60vj8WjcOrxqHgWdfcJBczl7yAOklHoKeOrEm9MxiMiSPVXRcR1tx4lCRJbsqIp12fSBk8aSGtVl0ygiS4qrwl06feuru27+gZPGtoyvs0+s3wX0bfK9D7Cng2zRaDQaTSvp7OKzGBgiIgNExANMB2Z1sE0ajUajOQKduttNKRUXkTuBd3CmWj+rlFrbwWZ1BF22SzFBV08fdP006vR1fto0jZ16woFGo9FoOiedvdtNo9FoNJ0QLT4ajUajaXe0+HQyRKSviMwVkfUislZEvp04nikic0Rkc+J/RkfbejyIiCkiy0VkduL7ABH5LJG+fyQmmHRKRCRdRF4RkQ2JfJzYlfJPRP4nUTbXiMhLIuLr7PknIs+KSKmIrGlyrNk8E4fHRWSLiKwSkTEdZ3nraCF9v0qU0VUi8pqIpDf57QeJ9G0UkQuO5ZpafDofceC7SqkCYALw3yJSCNwLvK+UGgK8n/jemfk2sL7J918Av02krxK4uUOsahseA95WSuUDI3HS2SXyT0R6A3cB45RSRTgTgabT+fPvOeDCg461lGdfAoYk/r4B/LGdbDwenuPQ9M0BipRSI3DcmP0AIFHfTAeGJc75Q8LV2VGhxaeToZTaq5Ralvhci1Nx9QYuB/6aCPZX4IqOsfD4EZE+wMXA04nvApwDvJII0mnTJyKpwFTgGQClVFQpVUUXyj+cWbR+EXEBAWAvnTz/lFLzgIOdMbaUZ5cDzyuHT4F0EclpH0uPjebSp5R6VynV4KzxU5x1lOCk72WlVEQptQ3YAhzeL1MzaPHpxIhILjAa+AzooZTaC45AAd1bPvOk51Hg+9DoCyULqGryIOzCEdzOyEBgP/CXRLfi0yKSRBfJP6XUbuARoBhHdKqBpXSd/GtKS3nWG9jZJFxXSO9NwFuJz22SPi0+nRQRSQb+BXxHKVXT0fa0FSJyCVCqlFra9HAzQTvrGgEXMAb4o1JqNFBPJ+1ia47EuMflwACgF5CE0w11MJ01/1pDVyqviMh9ON39f2841Eywo06fFp9OiIi4cYTn70qpVxOH9zU07RP/235r1vbhDOAyEdkOvIzTXfMoTtdFw6LozuxGaRewSyn1WeL7Kzhi1FXy7zxgm1Jqv1IqBrwKTKLr5F9TWsqzLuP2S0RuAC4BZqgvFoW2Sfq0+HQyEuMfzwDrlVK/afLTLOCGxOcbgKPbje0kQSn1A6VUH6VULs6g5gdKqRnAXOAriWCdOX0lwE4Radgc6lxgHV0k/3C62yaISCBRVhvS1yXy7yBayrNZwPWJWW8TgOqG7rnORGKjznuAy5RSwSY/zQKmi4hXRAbgTKxYdNQXUErpv070B0zGaeKuAlYk/i7CGRd5H9ic+J/Z0ba2QVrPAmYnPg9MFPAtwP8B3o627zjSNQpYksjD14GMrpR/wIPABmAN8ALg7ez5B7yEM4YVw3nzv7mlPMPplvo9sBVYjTPzr8PTcAzp24IzttNQz/ypSfj7EunbCHzpWK6p3etoNBqNpt3R3W4ajUajaXe0+Gg0Go2m3dHio9FoNJp2R4uPRqPRaNodLT4ajUajaXe0+Gg0R0nCK/Udic+9ROSVI51zHNcaJSIXnaj4NZqOQouPRnP0pAN3ACil9iilvnKE8MfDKJx1XBpNl0Kv89FojhIReRnHf9lGnAWGBUqpIhH5Oo5nYxMoAn4NeICvARHgIqVUhYgMwlmEmA0EgVuVUhtE5GrgR4CF45DzPJyFfn5gN/AwMBv4HTAcx0/cj5VS/05c+8s4CzoHAC8qpR48wbdCozlmXEcOotFoDuJenH1ORiU8i89u8lsRjqdxH45w3KOUGi0ivwWux/FT9xRwu1Jqs4icDvwBx4fdA8AFSqndIpKulIqKyAM4K+TvBBCRn+O4HLopsbnXIhF5L3Ht8YnrB4HFIvKmUmrJibwRGs2xosVHo2lb5ipnn6VaEakG3kgcXw2MSHgjnwT8n+P6DHBaKwALgOdE5J84DjmbYxqO49X/TXz3Af0Sn+copcoBRORVHFdMWnw0JyVafDSatiXS5LPd5LuN87wZOHvbjDr4RKXU7YmW0MXAChE5JAyO37CrlFIbDzjonHdwH7ruU9ectOgJBxrN0VMLpBzLicrZe2lbYnyHhOfjkYnPg5RSnymlHgDKcNzWH3ytd4BvJTxGIyKjm/x2vohkiogfZ+xpwbHYqNG0B1p8NJqjJNG1tUBE1gC/OoYoZgA3i8hKYC3O5AWAX4nI6kS884CVOFsRFIrIChG5BvgJ4AZWJcL9pEm8H+N4kV4B/EuP92hOZvRsN42mC5CY7dY4MUGjOdnRLR+NRqPRtDu65aPRaDSadke3fDQajUbT7mjx0Wg0Gk27o8VHo9FoNO2OFh+NRqPRtDtafDQajUbT7nRa9zpLly7t7nK5nsZxpKhFVKPRaE4ebGBNPB6/ZezYsaXNBei04uNyuZ7u2bNnQXZ2dqVhGHq+uEaj0Zwk2LYt+/fvLywpKXkauKy5MJ25xVCUnZ1do4VHo9FoTi4Mw1DZ2dnVOD1TzYdpR3vaGkMLj0aj0ZycJOrnFjWmM4uPRqPRaDopnXbM52BGPfTuyKpgrM3Skx5wx1c8MG1lW8XXWu6+++5eycnJ1kMPPbTvO9/5Tq+zzjqr9oorrqhtGmb27Nkpv/71r3vMnTt3S0vxLFy40L9z507PNddcU30sdlx66aUDNm7c6J8xY0bZj370o2YHDFvL448/nrVkyZKk559/vvh44mktk1+ePLI6Ut1mZSHNmxb/ePrH7V4WWuKqq67KveSSS6pvvPHGypbCPP7441mXXXZZTW5ubqy18W7cuNFzySWXDNm8efPalsJ05nLxzHfnjQzXx9usXPiSXPGbfz31sOXipz/9afdnn302u6ioKDhr1qxtB/8+b968wLPPPpv13HPP7TyW+9G7d+/hS5YsWZ+TkxM/lusfDa0pH0dDlxGfthSeExHfsfDoo4/uOdZzlyxZEliyZEnSsYhPcXGxa+nSpcl79uxZfazX70jaUnhORHztwd/+9rduo0aNCh2N+ByJzl4u2lJ4WhvfM888k/3WW29tzs/Pjzb3+9SpU4NTp04NtqVdR3P9jkR3ux0nTzzxRFZeXl7h0KFDC6+44ooBL774YtqIESPyCwoKCidNmpS3c+dOFzgtmquvvjp3/PjxQ/v06TP8pz/9afeGOO65556eubm5RZMmTcrbvHlzw5bKXHXVVbl/+ctfMgBeeeWV1AEDBgwbO3bs0FdeeSW9IczcuXMDo0ePzi8oKCgcPXp0/sqVK73hcFgefvjhXm+88UZGfn5+4Z///OeMmpoa4+qrr84tKioqKCgoKPzb3/6WTgucd955eRUVFe78/PzCt99+O3n8+PFD582bFwDYu3evq3fv3sPBeXOdNm3aoClTpgzp379/0e23396nIY7HHnssKzc3t+i0004bunDhwuSG488++2zGkCFDhg0dOrRw3LhxQ9smF04ODi4LmzZt8kycODEvLy+vcOLEiXmbN2/2gJOvM2bM6Hf66afn9enTZ/ibb76ZfPXVV+cOHDhw2FVXXZXbEF8gEBh966239iksLCyYOHFi3p49ew6p7ObPnx847bTThg4bNqxg8uTJQ3bs2OH+y1/+krFmzZrA9ddfPzA/P7+wrq5OmgvXcP7QoUMLR40alf+b3/ym+8HxN0WXi6Pjuuuu67dr1y7vZZddNvi+++7refBzCk4vxtlnnz344HP37NnjuuCCCwYVFRUVFBUVFbz77rtJACUlJeYZZ5wxpKCgoPC6667rfzjH0E2v/+CDD3a/++67ez3wwAM9Gn4fMmTIsI0bN3o2btzoGThw4LDp06f3Hzx48LAzzjhjSF1dnUDL5WPJkiW+4cOHF+Tn5xfm5eUVrl692tucDYdDi89xsGTJEt8jjzyS89FHH23auHHjuieffLL4/PPPr1uxYsWG9evXr/vKV75S8dBDD/VsCL9lyxbfRx99tGnx4sXrH3nkkV6RSETmz58feO211zJXr169bvbs2VtWrlyZdPB1gsGg3HnnnbmzZs3asnjx4o2lpaXuht9GjhwZXrRo0Yb169ev+9GPfrT7+9//fh+fz6d+8IMf7Ln00ksrN2zYsO7WW2+t/OEPf5hz9tln16xZs2b9/PnzN95///19ampqms3/N954Y0vfvn0jGzZsWHfhhRfWHe4erFu3LvD6669/vn79+rWzZs3K2LJli3vHjh3umTNn9lq4cOGG+fPnb9q0aZO/IfzMmTNz3n333U0bN25c9/bbb7fYbdjZaK4s3H777f2uu+668k2bNq275ppryr/5zW/2bQhfXV3t+uSTTzbNnDlz5zXXXDPke9/73r7Nmzev3bBhg3/hwoV+gFAoZIwZMya4bt269WeccUbtvffe26vpNSORiNx11139/v3vf29du3bt+htuuKHsf//3f3vfeOONlUVFRcHnn3/+8w0bNqxzu900Fw7g5ptvzv3Nb35TvGLFig1HSqMuF0fHiy++WNy9e/fYRx99tOm73/1u6cHP6eHOve222/refffd+9asWbP+tdde23r77bfnAtx77729Jk6cWLd+/fp1l112WdXevXs9rbn+kbpIi4uLfXfddVfpli1b1qalpVnPP/98BrRcPn73u99l33HHHfs2bNiwbtWqVesHDBhw1C2rTtedcDLxzjvvpF566aWVDf2tPXr0sBYtWuS/4oor+uzfv98djUaNvn37RhrCT5s2rcrv9yu/3x/PzMyM7dq1yzV37tzkiy66qColJcVuCHPwdVasWOHr06dPZPjw4RGAGTNmlD/99NPZABUVFeY111wzYPv27T4RUbFYTJqz9cMPP0x955130h9//PGe4FRcW7Zs8YwZMyZ8PPdg8uTJNVlZWRbA4MGDw1u3bvWWlpa6JkyYUNurV684wJVXXlmxadMmH8C4cePqZsyYkXvVVVdVzpgxo8Uxi85Gc2Vh+fLlSW+99dZWgG9+85sVDz74YGOFc/HFF1cZhsGYMWOCWVlZsfHjx4cA8vLyQlu3bvVOmjQpZBgGt9xySwXATTfdVH7llVce8Ia8atUq7+bNm/3nnHNOHoBt22RnZx/SzdZSuPLycrO2tta8+OKL6xqu8cEHH6S1xf3Q5eJAWvucNrBgwYLUzZs3N4pzXV2dWVlZaXz66acpr7766haA6dOnV992221WW9jXu3fvyKRJk0IAo0ePDm7fvt17uPIxceLE+kceeSRn165dnunTp1c21E1Hgxaf40AphYgc0O698847+337298umTFjRvXs2bNTHnrooca3Va/X2xjWNE3i8bgAiBy2HHK4MPfcc0/vM888s3bOnDlbN27c6DnnnHOa7bJQSvHKK69sGTly5NEXEpdLWZZTxoPB4AGGeDyepmlqfKhasvfFF18s/uCDD5JmzZqVNmrUqGErVqxY27NnzzZ5gDqS5srC4fD5fAqcctD0HhqG0VguDubge6qUksGDB4eO1GppKVxZWZnZmrLXErpctJ7WPqcNKKVYsmTJ+uTk5EPKlGEcW4eVy+VStm03fo9EIo2ZcXB+hUIhI1Gmm43r9ttvr5gyZUr9a6+9lvalL30p7w9/+MP2yy67rLbZwC2gu92OgwsvvLBm1qxZmSUlJSbAvn37zNraWrNfv34xgOeeey7rSHGcc845dW+++WZ6XV2dVFZWGnPmzDlkLGbUqFHhXbt2edauXesFePnllzMbfqupqTH79OkTBXjyySe7NRxPTU216urqGvP37LPPrvn1r3/do6HwLViwoPGt6kj07ds3smjRoiSAv//97xlHCj916tT6Tz/9NKWkpMSMRCLy2muvNZ6zdu1a7znnnFP/6KOP7snIyIh//vnnLXYbdCaaKwujR4+uf/rppzMAnnzyycxx48YdtqvqYGzbpmHM77nnnssaP378AQ/3iBEjwhUVFa733nsvCZzKZMmSJT6A5ORkq7q62jxcuG7dulnJycnWO++8k5y4RiZHgS4Xrael57QlJk+eXPOLX/yicYyloSt2woQJtc8++2wWwD//+c/Umpoas7U25ObmRlasWJEE8PHHHwd279592HGaw5WPdevWeQoKCiL3339/6bRp06pWrFjR6vqkgS4jPukBd7NTDU9kfOPGjQt/97vf3TtlypT8oUOHFt5xxx1977vvvj3XXnvtoLFjxw7Nyso6YhyTJ08OfvnLX64oKioadskllwwaP378IRVUIBBQv/vd73Zccsklg8eOHTu0b9++jf2r99xzT8mPf/zjPmPGjMlveAsF+NKXvlS7adMmf8OEg5kzZ+6Jx+OSn59fOGTIkGH3339/79bei3vvvXffM888kz169Oj8srKyI7aW+/fvH7vnnnv2TJgwoWDy5Ml5I0aMaJzN8z//8z998vLyCocMGTJswoQJtRMmTAi11o7WkuZNa9Oy0Jr4misLf/zjH4tfeOGFbnl5eYUvvfRS1h/+8IedR3Ndv99vr1271j9s2LCCefPmpTz88MN7m/7u8/nUyy+/vPXee+/tM3To0MJhw4YVfvTRR8kA119/fdm3vvWt/vn5+YXxeJyWwj3zzDPb77rrrn6jRo3K9/v9R7Vou7OVC1+Sq03LxdHE19Jz2hJPPfXUzmXLliXl5eUVDho0aNgTTzyRDTBz5sw9CxYsSC4sLCx455130nJyclo91nL99ddXVlZWmvn5+YVPPPFEdv/+/Y/Y5d5S+XjhhRcy8/LyhuXn5xdu3rzZd9ttt5W31o4GOu022itXrtw+cuTIso62Q6M5UQQCgdHBYHB5R9uh0RwrK1eu7DZy5Mjc5n7rMi0fjUaj0XQe9ISDU5h//etfqffdd98BUz779u0bmTNnztaOsknzBR3V6tHlonNRUlJinnXWWYdMYPjwww83nsyTNnS3m0aj0WhOCLrbTaPRaDQnFVp8NBqNRtPuaPHRaDQaTbujxUej0Wg07U7Xme32iwEjCVW0XXr8mXHu2dZme7jMnj07xev12ueff349wC9/+cvsQCBg33nnnUe9OKs5li9f7rv22msHigivvPLK1mHDhh21G52mjB8/fugjjzyy80S6ez9RbJowcaT1/9u7+5Cm9j8O4J9Nnc2cT790N683H3d2do6HfIBZpn+UEUYSmolCzCKMUAyhpD+ChMSMyggkxFwPoA0RiwoSNEkMLDVL82md7Vf+7NYv1513TtTmw7Z7//Ae2Q2dmqZpn9efevj4HTvs4/e77/m+jcZluxccPDzMREuz3XthtqyTubJabDObFjqG+Z75OX78uN+TJ0/c4+Lihq9fv/5xoXVns5C8KISWav00n+VsPN+hXkNDg8jV1dXCNZ/Tp0/rl7N+dXW1x969e41Xr1795gyg9WI5G89S6n3vrBZbKpXKW6/Xv17sKQUIrRZcdlui3bt3B9M0LQsJCaGLioo2AUxn71AUJZNKpdT27dsJjUYjKC8v9y4tLRVzWShctkZ7e/sGhmFkXD2NRiMgCIICmD2rZbYxVFVVuZeVlYlVKtWmqKgoQqPRCCQSCc39Pi8vT3zy5ElfgOkZTWZm5q8Mw8gCAgJCa2trXQEARkdHeQkJCUEEQVD79u0LGh8f5wEAmM1mSE5ODpBIJDRBENS5c+fsZr6gmXOvqLNnz4pny2qx1dvb6xwbGyuhaVoWGRkp7ejo2AAAwLKsICwsjAwNDZXl5OT42quxa9euEJPJxA8PD5cplUpP2xwogOlZE8D0jEYul0vj4+ODAgMD6f379wdyZ/3NlRdVU1PjSpIkRZIkJZPJqKGhIfzMQMti/cx8VolKpeoXi8WW0dFRXnh4OJWammrMzs4OaGxsZEmSnPz8+bODWCy2pKen622XWh4/fuwGABARETE+NTXFU6vVAoqiJsvLy70SExOHuKyWmpqat76+vmalUumZm5v7a3V1df/XY0hNTR1ubW2dqa/RaOweymg2m3nd3d1vqqqq3PPz833j4+O1RUVFPkKh0KrVatWtra3CHTt2UAAAzc3NLgMDA07cctLg4OCCDzL8GXV2djqnpaUF37x5838Gg8GxqalJZO/6jIwM/7KysvcMw0w0NDRszMzM3NLS0qLNysrakpGRoc/Ozv7zwoUL3vZqNDQ0vHVxcQlnWVYNAFBbWztnLMKbN2+Er1+/7gsICJiKjIwk6+vrXWNjY8eys7MD6uvrNTRNTyQkJARx11+5cuWX4uLi93v27BkbHh7mu7i4WOeqjdBi4H8xS3Tx4kWxVCqlIiMjZTqdzqm4uNhbLpePcLG1YrF43ieMExMTDXfu3PECALh//76nQqEw2GawkCRJXb58efOnT59mnfksVkpKyhAAQHR09NjHjx8FAABNTU2uCoXiTwCAqKgoE0EQXwAASJKc+PDhg/Phw4d/u3v3rpunp+cP+8T0ajMYDI6JiYkhFRUVfVw2ij3Dw8P8jo4O15SUlGCSJKmsrCx/Liiwvb3d9dixYwYAgG85tHEuDMOMBQcHTzk4OABN01/evXsnsM2L4vP5cOjQoZm/t23bttHc3NzfCgoKfAYHBx2cnJblFkQIm89SPHr0SPT06VPRy5cvWY1Go5bJZKawsLAvi81IUSgUQw8ePPDs6upy5vF4wDDMBJfBwrKsmmVZtVarVT979uy/C6n3dW7H+Pj4v95nLkvG0dERLBbLzGBnG7e3t7elp6dHvXPnzpGSkhKftLS0gEW9uJ+ISCSybN68ebKxsdF1/qsBLBYLiEQiM/cesyyr7uvrm9mwwOfzv+n7G9ucHavVCrbBZYvNlCosLNTduHHjvclk4kdHR8u4ZUGElgqbzxIYjUYHd3d3i0gksnZ0dGzo7OzcODExwW9tbRWxLCsAmM51AZj+YBoZGZl1yYqm6Qk+nw95eXm+SUlJBgD7WS3z8fPzMxsMBkedTudgMpl4dXV186ZTxsTEjHKzr7a2tg1ardYFAGBgYMDRYrHAkSNHjAUFBf/v7u52WcgYfkZOTk5/1dbWvqusrPxPaWnpvNk4Xl5eVj8/v8lbt27WHg/bAAACJ0lEQVR5Akw3iubmZiEAQERExKhSqfQCAFAqlfPmQtny9/effPXqlQsAgEql8pgrnI5jLy+qt7fXWS6Xm86fP69jGGasp6cHmw9aFuun+Qi9ljWrYyH1kpOTh81mM48gCOrMmTO+W7duHfPx8TEXFxf3JyUlhUilUiopKSnon2uNNTU1HtyGg69rHThwwPDw4UMvhUIxBGA/q2U+zs7Of506dWpALpfL4uLiQkJCQubN7cjNzf1jbGzMgSAIqrCw8BeGYcYAAPr7+51iYmKkJElSR48eDczPz1/SNt6V4ODhsaz3wmLqubm5Wevq6t5eu3ZNbDQa5/1+rLKysu/27dubpFIpJZFI6Hv37nkAAJSUlPxeVlbmExoaKuNC4RbqxIkT+ufPn4sYhpG1tLRsFAqFdr+nsZcXdenSJR+JREJLpVJKKBRaDx48OLyYsSA0FzxYFCGE0HeBB4sihBD6oeBW6zVGoVBsaWtr+9fyW2Zm5uecnJxl2xGFfkwvXrwQpqenB9r+TCAQWLu6utjVGhNC3wqbzxpTUVHx+2qPAa0OuVxu4p7lQWitW8vLblar1bq4Pc0IIYRWxD+fz3NudlnLzadHr9e7YwNCCKEfi9Vq5en1encA6JnrmjW77GY2mzN0Ot0NnU4XCmu7iSKE0HpjBYAes9mcMdcFa3arNUIIobULZwwIIYRWHDYfhBBCKw6bD0IIoRWHzQchhNCKw+aDEEJoxf0NMxVV0HFpj+cAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot(x='timestep',y=['candidate_funds','active_funds','completed_funds', 'killed_funds', 'failed_funds'], kind='area')\n", "plt.title('Proposal Status weighted by funds requested')\n", "plt.ylabel('Funds worth of proposals')\n", "plt.legend(ncol = 3,loc='upper center', bbox_to_anchor=(0.5, -0.15))" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "nets = df.network.values" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAFBCAYAAAAG4LRKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXmYHFXV/79V1cv07JkkM9kTFglhCYsIGBQiIK+CgAQSCLskiKDyorIvPzWAAvIiGMDwIAior7ygD4giggoCRhAiCRATEBJDCHFmsmcmMz291P39UXWrblVXVVd1Vy81cz7PM8/MdFffutXT098+557zvRJjjIEgCIIgCMi1ngBBEARB1AskigRBEAShQ6JIEARBEDokigRBEAShQ6JIEARBEDokigRBEAShQ6I4DPnDH/6APffcs9bTCI0wr+eMM87ATTfd5HjfkiVLcOyxx4ZynkrzwAMP4MQTT6z1NAgPhtv/4UiBRLFOaW5uNr5kWUYqlTJ+/8UvflHr6RXlV7/6FWbOnInW1laMHTsWn/3sZ7FhwwYAwNVXX42FCxfWeIaV5fDDD0dDQwOam5sxduxYzJ07F729vSWN9c477yAWi1luW7BgAX7729+GMVVPynljL1cUlixZglgshubmZrS2tuLggw/GH/7wh5LHIwg/kCjWKf39/cbXlClT8Nvf/tb4/ayzzqr19DxZtWoVFi5ciLvvvhs7duzAmjVrcOGFF0KWR9bL7Sc/+Qn6+/uxevVqdHd348orrww8Ri6Xq8DMosPs2bPR39+Pbdu2Yf78+Zg7dy76+/sLjhvpzxMRHiPrXWoYMTg4iK9+9asYP348Jk2ahCuuuALZbNbx2B/84AeYOXMmuru7AQBPPPEEZs6cifb2dnz605/GqlWrjGPHjRuHH/7wh9hvv/3Q1taGs846C5lMBgDQ3d2Nz33uc2hvb8fo0aNx9NFHO57vjTfewN57740jjzwSkiShtbUV8+bNw4QJE/Dkk0/ijjvuwMMPP4zm5mYceuihAID77rsPe++9N1paWrDnnnviwQcfdL32INfz2muv4YADDkBLSwvOPvts41rcUFUVF110EVpbW7HPPvvgpZdeAgD87Gc/wxFHHGE59uabb8YZZ5zhOR4AjBkzBl/84hexcuVKY74HHHAAWltbMXXqVHzve98zjuVR4f3334/Jkyfj+OOPx5FHHol8Pm9kCpYvX25J9abTaUiShLvvvhvTpk3D2LFjcd1114GbVb3zzjuYPXs2Ojo6MHbsWJx33nno6+szzun2N9+yZQtOOeUUrF271jj3li1bsHTpUhx00EFobW3FuHHjcM011xRcs9tjg7xuRRRFwQUXXID+/n6sW7fOiEJvvPFGdHV14eKLLwYA3HPPPdhjjz0wevRozJkzBz09Pb6eo3w+j29/+9uYMmUKurq6cMEFFxjP0a5du3DGGWego6MD7e3tOOyww7Bt2zYAwV63N954I8aPH4/W1lbMmDEDL7/8ctHrJmoAI+qeqVOnsj/+8Y+W26644gr2qU99im3atIl1d3ezQw45hN10002MMcaeeeYZtsceezDGGLv22mvZoYceyrZs2cIYY+yVV15h48aNY8uWLWO5XI7dd9997GMf+xjLZrOMMca6urrYrFmzWHd3N+vt7WV77LEH++lPf8oYY+yyyy5jl156Kctms2xoaIi9+OKLjvNdvXo1SyQS7PLLL2cvvPAC6+/vt9x/1VVXsQULFlhu+81vfsPWrl3LVFVlf/zjH1lDQwNbuXJlWdczODjIxo8fz+655x6WyWTYz3/+c6YoCrvxxhsd5/3jH/+YKYpiHP/www+zUaNGsR07drD+/n7W0tLC1qxZYxw/Y8YM9rvf/c5xrMMOO4z97Gc/Y4wx1tPTw4444gi2cOFCxhhjf/rTn9jKlStZPp9n//jHP9ioUaPYM888Yzx3ANiCBQvYrl272MDAAFu9ejVTFKVgrscccwxjjLHBwUEGgB133HFs27ZtbO3atWy33XYzzr969Wr25z//mQ0NDbH//Oc/7LDDDmNXXXWVMZbX31x87jkHHngge+yxxxhjjO3cuZO9+uqrjs+B02O9XrdOfw9+jdlslt16662sra2N9ff3s2eeeYYpisJuuOEGNjQ0xAYGBtjTTz/Nurq62JtvvskGBwfZhRdeyI499lhfz9E999zD9t57b7Zu3Tq2Y8cOdsIJJxh/rzvvvJOdeuqpbGBggGWzWfbaa68Zr2m/r9sVK1aw3XbbjXV3dzNVVdmaNWvY2rVrHa+bqC0kihHASRQnTJjA/vznPxu/P/nkk2z69OmMMe2fcffdd2eXXHIJmz17Ntu5c6dx3Pnnn1/wJjRlyhTjja2rq4s9/vjjxn1f//rX2X//938zxrQ3tNNOO80iDG68/PLLbM6cOWz06NGsoaGBLViwgA0MDDDGnEXRzn/913+xJUuWlHU9zz77LJs2bZrlvoMOOshTFO3H77///oYAnH/++WzRokWMMcZef/11NnbsWOPDhJ3DDjuMNTY2sra2NjZx4kR27rnnGkJu56KLLmJXX301Y8wUxY8++si4368ovvDCC8b9//M//8OOP/54x/P98pe/ZIcffrjxu9ff3EnYPvGJT7CbbrqJbd682XF8jtNjvV63dn784x+zWCzG2tra2OjRo9msWbOMa3zmmWdYY2Mjy2QyxvFnnnkmu+GGG4zft23bxiRJYv/5z3+KPkezZs1iDzzwgHHfihUrWCqVYqqqsnvuuYcdeeSR7O233/a8XsYKX7f8+leuXMnGjRvHnn/+edfXDFEfUPo0gjDG0N3djalTpxq3TZ06FR999JHxe29vL37605/i+uuvR0tLi3H7Bx98gO9973tob283vjZt2mR57Lhx44yfGxsbjTWc6667DhMmTMBnPvMZ7Lnnnrjjjjtc5/ipT30Kv/71r7F582Y8//zzePbZZ3Hbbbe5Hv/UU0/h0EMPNVJUzz//PDZv3lzW9WzcuBGTJk2ynEd8zpxwOn7jxo0AgPPOO88ocvr5z3+O+fPnFxTAiNx3333Yvn07NmzYgIcffhgdHR0AgKVLl+Koo47C2LFj0dbWhoceeshyrbIsY8KECZ7zdGLy5MmO8964cSPmzp2LiRMnorW1FQsXLrScD3D/mzvx8MMP46233sJee+2Fww47DM8++6yv+fl53do56qijsH37dmzevBlLly7F7NmzLXOOx+PG7xs3brSM3d7ejtbWVsv4Xs+RfV6Dg4PYunUrFixYgKOOOgqnnXYaJk2ahGuvvRb5fB5A8dctZ99998Utt9yC6667Dp2dnTjrrLOM1C5RX5AoRhBJkjBu3Dh88MEHxm3r16/HxIkTjd+7urrw5JNP4swzz8Rrr71m3D558mQsWrQI27dvN74GBgYwZ86coudta2vDXXfdhQ8++AC//vWvcdNNN2Hp0qVFH/fJT34SJ598srGmJkmS5f5du3Zh7ty5uOGGG9Db24vt27fj6KOPNtZ7Sr2e8ePHGxWv4vPkhdPxXKCOOuoopNNpvPrqq3j00UdxzjnnFL12J+bNm4fTTz8dH374IXbs2IHzzz/fcq3258f+uxsffvih47yvuOIKNDU1YeXKldi5cyd+8pOfWM7nhdO5Z8yYgf/7v/9Db28vLr30UsyZM8dxrdbpOoq9boNgH3/ChAmWsXfs2IGdO3daxnd7juyPXb9+PVKpFDo6OpBMJrFo0SK88847eOmll/D444/j0Ucf9fW6FTnvvPPwt7/9DWvXrkU6ncb1119f0nUTlYVEMaLMnz8f3/3ud7Flyxb09vbi5ptvxtlnn2055rjjjsODDz6IE088EcuXLwcAfPnLX8bixYuxbNkyMMbQ39+Pp556CgMDA0XP+dRTT+Hf//43GGNoa2uDoihQFKXguBdeeAEPPvggNm3aBAD45z//iaeffhqHH344AE3g+DiAVjSUzWbR2dkJWZbx1FNP4S9/+UvBuEGv58gjj0Q6ncaSJUuQy+Xwy1/+Em+99ZbnNX744YfG8T//+c+xfv16HHfccQC0N+FzzjkHX/7yl9HR0YFDDjmk6HNmh89x9OjRaGhowN/+9jc8/vjjno/p7OxEPp8vKui33norduzYgXXr1uHuu+/G6aefDgDo6+sz2hrWr1/vGeHb6erqQm9vryVyfOSRR7BlyxYoioK2tjZIkuRYWez0WD+v21KZP38+7r//fqxcuRLpdBpXXXUVjj76aEsU7PYczZ8/H7fffjvWr1+Pvr4+XH/99TjzzDMhSRL+9Kc/YdWqVVBVFa2trYjFYlAUxffrFtAqsl988UUMDQ0hlUohlUo5/u8QtYdEMaIsWrQI++yzD/bdd18ceOCBOOKIIxxL/k844QQsWbIEn//85/HWW2/hiCOOwI9+9CNcdNFFaG9vx1577YX//d//9RWNrF69GrNnz0ZLSwuOPPJIXH755YbQiYwaNQq/+tWvsO+++6K5uRknnngizjrrLFx22WUAtAb6gYEBdHR0YNasWRgzZgxuv/12nHjiiRg9ejSefPJJHH/88Y5zCHI9qVQKTzzxBO69916MGjUKTz/9dNGG9yOPPBLLly9HR0cHbr75ZjzxxBNoa2sz7j/vvPPw9ttvlxwlSpKEJUuW4PLLL0dLSwtuu+02zJ071/Mxo0aNwpVXXomPf/zjaG9vx4oVKxyPO+GEE3DAAQfgkEMOwdy5cw2xWbRoEf7617+ira0Np5xyCk499VTf8z3ggANw0kknYerUqWhvb8fWrVvxu9/9DtOnT0dLSwuuueYaPPbYY45pZKfH+n3dlsIXvvAFXHPNNTjppJMwYcIEdHd342c/+5nlGLfn6OKLL8acOXMwa9Ys7LHHHujo6DA+PHz00Uc4+eST0dLSgv322w/HH3885s2bF+h1Ozg4iG9961sYM2YMxo8fj/7+fixatCiU6ybCRWJ+8ygEQaCvrw9dXV145513MGXKlFpPB4DWbpBKpfDhhx8WrIkSGvQcEX6hSJEgArB48WLMnj27bgSRIIhwcS+dIwjCwrhx49DY2Iinnnqq1lMhCKJCUPqUIAiCIHQofUoQBEEQOoHSp2PGjMG0adMqNBWCIAiCqAzr1q1zNFawE0gUp02bhmXLlpU8KYIgCIKoBX77iil9ShAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA6JIoEQRAEoUOiSBAEQRA60RXFTZuAuXOBWbOA556r9WwIgiCIYUCs1hMomfnzgZdeArJZ4JRTgPffB8aPr/WsCIIgiAgT3Ujx3Xc1QQQAWQbW/AsYGgCyQ0A+BzC1tvMjCIIgIkd0RfGyy4DGRqClBZg6Ffj4JwAlpolhNg0M9gEDO4H0LiAzCOQygJoHGKv1zAmCIIg6Jbrp0299C/j0p4GeHuDYY4FUyno/Y/pXXhPDfE6LIpkKSDIgK/qXDEgKIEnaF0EQBDFiia4oAsChh7rfZ4icDChx83bGNGFUdbHM5rTvgCaQXCy5cJJQEgRBjBiiLYqlIElaZCgr1tsNoVS1qFLNC1ElF0jFFEoSS4IgiGHHyBNFNyQZUGRA1EpLVKkC+YyWjmWsMKKkqJIgCCLykCh64RlVCinYfFb7LknWiFKWNdEksSQIgogEJIqlYESVwtNnRJW6WOYzQFbVbrNHlFwsCYIgiLqCRDEsLFGlrbCHR5RM1XoreVQpKYXFPRRVEgRB1IzohiuMAVdcARx3HLB+fa1n444kaRFlPAkkUkBDM5BqBZLNQCyh3Z/PacYDgzu1/krDhCCrCSn1VhIEQVSF6EaKq1cDixdrkdf/3A784DYzLVnv6UlevSrLKIgqLe0iWS0dC1gjSooqCYIgKkJ0RXG33bSvtWuBE78ASDDt3dQ8AEkQScUqlvUqJk6FPYwBYNZ2kQITApnaRQiCIEIguqKYSgGrVuntEbao0BAS1RRJLphcTESRFCOvehMUSQIgFWkXyVO7CEEQRAhEVxQBdxEThcSOWCVqCCZPUzLnyLIeRSVwu4hsjSjrPWomCIKoAdEWxVJwExPArBTlwiI620QlHeu7XUSIKqldhCAIAsBIFEUveKWoHcNcXDVF0i0dKwom6iQdW3K7iGK9pnq4FoIgiApCougHi7m47Smzp2ONYh89HeuYiq0TgeEfAgqiSh4x6+lXt91F+LUQBEEME0gUy8UzHSuuXaqAKgqM5JKKrbFgerWLGKlle7sImRAQBDE8IFGsJHx9z45lr0ddNLM5s3rUUhQjpGZrmY51Si3br8OtXYT7wdZjdS9BEIRAdEXxo4+AL35R+/7DHwKnn17rGfnHko613WdJx+Y9ei9tolkLsXG7jgITgow+f6FdhPasJAiiDomuKF5+ObB8OZDPA+eeC5x0IpBsiH404lUUY++9VAXTcdFLVRTNWjwfftpFPPesrIM0MkEQI5LoiqLYsC8ByKYB5PT0oySsz9laJ6L6Zuun91Jcw8wKvqmO6dgaRGie7SK0ZyVBELUnuqJ4++3AunXAhg1a+rS1Q7vdEAghDSm2TziJpiSkJaMomjwyg+KRjrW1ktSLFZ5rVEntIgRBVJ/oiuL48cDSpYW3GwLhgthzKH5lBeHkBS0WoeSCIZn3RwEv0alnKzzXdhFxvdWtXYRMCAiCKI3oimKpiMUhTljEQkxL5sz1O8A9NVvrKlG/hGmFV61orZgJgaVdhEfC1C5CEIR/Rp4oFsNLLDh20TB+ZlbhEIXSnq6t5zfmoFZ4te69LNoukndpFxF2GKn3vwlBEFWBRLEUvEQDsKVndaFUi6xryrLttjp9gw5ihefYe1klKzxLu4jXnpV6FSxQGFFSYQ9BjDhIFCuBWPjihNO6prGex8x1TafUbL2Kpm8rvHxtrfA820UEEwLXdhGKKgliOEOiWAv8rGsWLQaCe2q23tY13dYCAdvapR8rvAqJktEuIs6N2kUIYqQRXVHs6QEuuQTYuBH49reBz32u1jMKD7/FQDw1KxYD8bVNY13TKTVbR+uaYVvhhVlxGnjPSskaUZIJAUFEjuiK4qmngv3975ByObA5cyCtWgVMm1brWVUHoy0E/tY1VUE0xbSlZBNLe3q2HozJPa3wivVe2kQzrOvxvWel/rzTnpUEERmiK4qrV0PK5QAA6cE0Hp7xcfROmozWcV1o6RqLlq4utI7rQuu4TrR0dWq36z/Hk8kaT74KeDX0A87FQFExOQjSe+lphRdi72XJe1ZSuwhB1BPRFcVzzwXuvx9gDA3t7TjvtdfQN5BGX3cPdnb3YGd3L/p6erHu78vQ19OLnd096OvZhL6eXiSaGnWR1EWzsxOt4zqN21q6xqJ1XBeax46BEovuU+RJKcVA9gZ/IyrzsNWrJmVb4TkV/IQglkX3rPRoF5EV1NX6MEEMc6L7jn/HHcBnPgP09ECaMwep0aORAtD5sT08H6aqKga3bddFshc7u3XB7O5Bzzv/MgW1uwe7tm5DU8cotHR1okUXzdauTv33LlNIuzrR2DEKsjyMUmKBTA6Eqtm8QzGQU2q22sVAfq3w7NWnlbDC89qz0tIuIu5ZKYolRZUEUSmiK4qSBJx0UuCHybKMptEdaBrdgfH7zvA8Np/LYdfmLZbIc2d3D7Zv2IgP31hhEdCh/l1o7hxrpmu7TME0BFWPQhtaWyFF/Q2tmMkBY/p3u8lBzsHkwCk1W8V1Ta90rNv6ZSWs8Jzm4XfPSmoXIYhQiK4oVgElFjPErBjZoSH0926yCGhfdy96//U+3n95qZa61e9TczlDKLmAttjWP/nPicbGKlxpBeBvzH5NDgxHID8mB2LKtsJOOb56LytohedWcGSPKp3aRciEgCACQ6IYEvFkEqMmT8KoyZOKHju0a5eRuuVroH09m7Bh+VvY2aPd1tejCaySSAjrnZ1o7SyMPFvGdaGlcyxiiUQVrjREfBcD+d3xpIomB7W2wvPTLiJW5VqqcaldhCDcIFGsAcmmJiR33w1jdt/N8zjGGAZ37EBfd68hlnwNdO3Sv6Ovxywq6t+0Gam2Vj3S1CPPLrNoSIxMm8eMhqx47CRSL0R1x5OiVnjFei9tohlkjp7tIoIJQVaIKu07jJBQEiMYEsU6RpIkNLa3o7G9HV177+V5rKqq2LVlqyXy5AVEG9/+p6WoaHD7DjSPGW20qIgFRFYBHYvGUaPqd/0zajue+Oq99GOFFzDS81ozpT0rCcICieIwQZZltIwdg5axYzBh/309j81ns+jftLmggGjruvVY9/fXBUHtRWZwUF/ztBUQCa0rPL2bbG6u0tX6pFgxEFC4NlirHU8CWeF59V7qoulnXr7aRWjPSmJkEW1RHBwEtm0DJkyo9UwihRKPo23CeLRNGF/02Gw6XdC6srNnE7r/uRr/ev4vpqj+pweSJAnrnVr/p711hRcQxRsaqnClPvBaGwRs6dka7XgSyArP3nspO4imh5B5tYsU7FnJ20XIhIAYPkRbFBcuBJ54AujeACSTMFJd4lqR28+EL+INDeiYOgUdU6d4HscYw1B/vyXy7NOFdP3rb1jWRPt6NyHRmLJV2oqRp2Cg0Dm2tgYKpZgc+NnxJMx+x2pY4Tmtk/ras5KnX6ldhIgG0RbFSy4BDj4YaGoBGABuks0YABVQ+c/i7Xr/XFABJVH1RJIkNLS0oKGlpaiBAmMMA9u2WVpXduprob3/et8iqLu2bEXjqHZbAZGtdUWPQptGd1TfQMHPuqZTMZCTyUGYO55UwwrPIspeJgQZ2rOSiAzRFsUjjtC+guIklJafdUHlt/PHiKLqKqA+BXYEI0kSmjo60NTRgfH77O15rJrPo3/zloICoh0bu7Fh+ZuW1G56Zx9aOsdqKdyuTt3/ttPSusKFtGoGCn6Lgaq144nXOmtYVnh+20Voz0qiDom2KJaKIVIlPFYUSTdhtYsqswmsVwRa7Gdj/iMDWVG04p6uTkw8YH/PY3OZDPp6N1laV/p6erHpvTVY89e/CandXuQzGWulbWdh6woX1IoaKIivxVrveOLVN+rUexnUCs9vuwjtWUnUkJEpiuVQbrRXIKZOt4WV+nU5dpgSSyQwatJEjJo0seix3ECBR548ZbvxzZV457nnjd/7enohx+NoNSLNTr3/s9NaVKSndCtioOAlVoBzMVDYO54U7b30YYXn1Hvpp13Edc9KahchwodEsdqUE6UCAVO/KLzfMoeRm/oNYqCQ3rnTEnny9c51r7yGnUJRUf+mzUi2NFsKhawFRIKBwtgx4RkolFIMFNaOJ5Z1xSJWeJ69lw7rl47tImIKVmgXoT0riZAgUYwalUz9Oq2nOqZ++Xe/YhpdUZUkCam2NqTa2tA1/WOex6qqioGt2yytK3wt9D//XG0R1IFt29E0usMmoLbWFV1IyzZQ8LuuGfaOJ25RID+nmI5Vs/6s8LjoFW0XoT0ridIgURxJhJb6BdyjVYfUr9N6qqeYwv3+OkaWZTSPGY3mMaOB/fbxPDafyxkGCn1CFLr1gw/xwWvLLK0tmV0DFqHk65/GGqhgKJ9sbg4uoF7FN4DwYcpuclDGjidF07EBrfBkBZAcTAg820WEHUaosIfQIVEk/FO11K/LsZY5+IhQ6zhKVWIxtI0fh7bx44oeyw0UxPXPnd296F79Lt77y0uCsUIvAAiVtub6pxl56pW4XZ1IpFL+Jms8f1XY8cSSjnU5RxArPDlWpF3EZc9KahcZsURbFPv7gR07gInFCyuIOqDmqV+UIKa1F1W/BgoAdAOFHkulbV93D9YvW46+XtO+b2dPLxKplOB/qwuow/ZlLZ1jocTj3if2XQwkCFspO544WeEV9F76sMLjYilJwuMdNpkWTQioXWREEF1RZAzYZx+gpwd47g9Cv6Kw5gUIL16324lIEErqF+6iWnbqt9j91Xm9JZubMXbPZozds7iBwuD27ZYCIi6gvf963+JK1L95C1LtbZb1T56yFVtXWsZ1uRsoGKLpOiFrtFnKjif2FKplXJ9WeLICxOLa7faoktpFRgTRFUUASKe1F2I6rX26A2BZ8wKENzTb7Qa2NzT7bUCZt9vWUYjaENp6qlvql0cbLvcb566P1K8kSWgcNQqNo0Zh3Izpnseq+Tx2bdlqaV3hfrcbVrxl2f9zcMdONI8dY6m0tUeefC001dZmrn8GKgYSU7V+dzxRtOhQfB7dWkmcrPDkGBDjFa3MrIC1tIvI1oiS9qyMJNEVRUkCVq0Cenu1iDEIYjpNfNNyE9CC2/V/QNXreB8izK+j5NuLHGu5jyiLqKR+KyCqsqJoTkGdYzFx5n6exxoGCjb7vs1r/o21f3tVKCrahNzQkIt9X+FOLMmmJu16KrXjiRwDYvrzVZCOtVvh2Xov5YQ2N8OZKF9kz0pqF6lnoiuKADBmjPYVlFpEb74F148QlxENA8GEuGTRJgzqOvULh9tchNUHQQwUMgMDZtq2p9dYC9341j/x7p/+YolM5VjMXOPU1z+t9n2dhoF8PJl0fx5L2fFEiZm/A1bhNSJFQXS5uUA8DuP/wkgH056V9U60RTFKFIhIFShJiPXbxHRgkDEMKim4I0yIK576BYq6KFUg9ZtobMTo3aZh9G7TikyfId3XZ4k8+/Qe0HWvvm4UEO3s7kV/7yYkm5sModT2AC1sXWkd11VooOC0rllsxxNZAWR9DRKSNUJ1s8KLCWlcxjz2rBTEkqgaJIrDmWoLsZjq85NSLikt7XC7QSUF1xYxRUmIw079eroohZ/6lSQJqdZWpFpb0bnXnp7TVVUVg9u2W1pX+vRty7pXvWMR1F1bt6GpY5RNQK2tK7wftLFjlPb0FS0GAiyp2VjC+tzzx+fz5mNEYwJjzVKMQGEVSYoqKwqJIhEeln/SGggxrQ+HT72mfvmcbGIqQ0LTqDY0dbRrO7B4zJsbKIiVtzu7e7D9w4+wftkbxm19Pb0Y6t+F5s6x1g2zuwp++fP/AAAgAElEQVQ30W4ZNxYNTSlIdvF02vGEmxdIkvn6Eo8Xj5Wg3Z5TAUZ7VlYSEkUi2tD6sP/ba5GWrmjql99fWupXgYS2MaPQNrYD2G+GTWQB8TnLDg2ZxUPChtk97/wL77/0VyG12wumqtZKW+P7WLRPnID2SRPQ2jUGje1tiMUUa3+lsS7pYJ0nCq1xmwrkVSCXNa/ZSL+SCUEpkCgSRFBofbjw9kqtD9cs9QuIohqHhI7OUejo6gBgF1Cr2A7178LO3s26/61porDhjTex6pk/WvYAjTc0CBtla6LZuedu6Jg6BW3jO9E8pgOplmbEG5KQxOjZSJ9KKPh78ag0nzOvixf2KMIOI5SCdSS6orh5M/DNbwIffQRcdx1w9NG1nhFBVA5aH4a7gAa5XUzFwna8y3PgJ/Ur3JaMA2MnjMbYCaMB7OsagTIAg9t3oq93M3b29mJn9yb09W7C1g8/wgevL7cIav+mzUi1taJt4niM32c6uqZ/DGN2m4pRkyagpWssGtvb0NCUghKP6acRngNjbnrhD3/eAVgLewKaEHCx9cnDDz+M888/H/fffz8WLlwIAPjBD36Ahx9+GB988AHGjBmDSy65BFdccYXlcXfddRfuvPNO9Pb2YsqUKfjNb36DvfbaC2+++SbOPPNM9PT04LrrrsM3vvENAEA2m8WnPvUp/OpXv8LkyZN9z48TXVGcMwfs1VchZbNgr7yCnS/8BWzyZEiyDEmShO/6WoPuemHcrv/sdh9BjGhofdjn7fp6n1tBFj+VZIvaAUiMobG9FY1tLejacxocU7/6eKqqYteW7ejbtBk7ezZhZ88m7NjYjQ1vrtSiTl1A+3o3Q4nHMHH/fTB+3+no/NgeGD11sl5tOxqpliZIkgwGpjsPqZDyqlbUIyLLgBTTRFJxLuzJbtsEORaD0tyup3vd2bZtG77//e9j3333tT41jOGRRx7BzJkzsWbNGhx33HGYPHkyzjjjDADAT37yEzzwwAN4+umnMWPGDKxduxajRo0CAFxzzTW4/fbbMXPmTMycORPz58/HuHHjcMcdd+DUU08tSRD1vwuzvzpcOeSQQ7Bs2bKSThQ6o0YB27cDAAYlGT/vGI/34imAMTBVBbN8Z8bvYAyq/p3ZjuW3AfAWTb/CK3w374fHfaWNbR1H8pxD4WMR4Dr1+RedgziOeXyg56jEcxRcr+uHoKDn0P4WZf3tKnIOmT7ElUPZ68NBoucAQqwpqXA7M28SvzucK5/JoG/TFk0oe7doW5j1btK/b8bQrl1QFAWJphRau7rQtffHMH7vPdExZRIaO9qhxOJgYLYAQdKDXS31OtQ/gESDGVPlpRhijc1uzzK+8pWvYObMmXjsscdw9tlnG5GinUsvvRSMMSxevBiqqmLq1Kl46KGHcMwxxxQcO2PGDKxYsQLJZBKHH344fvSjH2HcuHE47bTTsHTpUsRtfr1+9Su6keKppwKPPgpks0i1teHCd9/WhDIE7GLpKKh+hddhHKZ/GhQfU4lzaMeh8DjxQ4DjY1H+OVyuKZ/N6nMIfg7v++3jOB/v9mFIVZmPOYjnKO1v53qOIq8Lr3MAMD50FIhlAOEt50Of9YMXAn1w8Cv+xT70uT0HYX6wdP/AFeAcsoxYXNGiLOFLjilQYjFIioJYTIGkKFBiCmRFgRxTIMuy/l37WVJkyIqs/a7IkGQZsqydo2nMaLR0joEkydrcADA9gmaGkAKZdBr9vZvR17sJ/379DfT1bsbAtu1Qs3lAltDQ3Ii2CePRMWWSJprtbVDiMUMQuWgqLId0z0dY8suJeOEF4MEHgdGjtdO89tprWLZsGe6991489thjnu+7L7/8Mi666CIAwIYNG7BhwwasXLkS559/PmKxGM4991x8+9vfhizL2G+//fDcc8/hoIMOwrp167DHHntgwYIFuO222woEMQjRFcX77gOOOkqzeZs/PzRBBPRILqxd0Qmiwtg/6Hh9CPIS9eLijoLjin2I8PpwEsaHP8cPNCWcw+061HweyOWKfmhyO4f/D33eH8yMcVTbdeqFQsXOIcky4ok4lHgcsUQcSiKOWCIBJZ5ALKn9rN2eQDyRQLwhiYbWFjQ0NwGKgl3btmPX9h3IpdPIDAyifcJ47HnEocbrDwASTY247jqGdFrCs88CZ54J5PN5XHLJJVi8eLGzUbzAd77zHaiqii996UsANFEEgOeeew5vv/02tm/fjuOOOw6TJk3ChRdeiNtvvx0XX3wxuru78cMf/hBLly5FS0sLdt99d5x88snYvn07vva1r2Hu3LmB/p+iK4qKApxzTq1nQRA1x0hz6W869HHOA2ZPYfLUpv5zwXFM+OZ0v58xxGM87nc6jwVxbTd4ylwTL1u6l4/DWKHJeT4HltN3FFGF4yVg6440JElCLptF77/WoHfNWkw/7EA88OMmvPz3BE46SRv23nvvxcyZM/HJT37Sc2533303HnnkEbz88stI6jZ9KX2/zyuvvBLt7e1ob2/HRRddhN///ve48MILMXXqVPz+978HAAwMDGDWrFl49tln8fWvfx2nn346TjjhBOy333445phj0NHR4ft5iq4oEgRRH7gKTUABCCQ0PsdwOsaCi9BY1vf4N7eKVfEYIRqSiwgX4+uEvLhGMsWq4Lmwr1kyMEtlKdPFLKd95bJALgOWHQIyQ0BmECyT1sROMrfKkhRF21cyngDiCUjxJBBPar8nWyApccc166S6Ga89+gTiqSRmfGI/jD/x85AkCWecm8AZ55rH/fnPf8aLL75oiNfWrVuxfPlyrFixAnfffTcA4MEHH8Qtt9yCl156CZMmTTIeO336dCQSCV9r5osWLcLChQvR1dWFt99+GzfddBPa2towadIkvP/++zj00EOLjsEhUSSIeiR0EXE5JqzzWHAQGlcR8RAa41cnoQkqVj5aMOww8TlixX+3mzE4CpxQnSpZW0SYYTCuiRrLZYBsBsimgaE0WGYQGBoA0gNAZlDzS1XiQIILWdIUtVhc/70BaGzVfk4kIcn8Ld/tb+ePls4x+MTxRwKNrZBi+vpdY1vBcQ899BDS6bTx+5w5c3DaaadhwYIFAIBf/OIXuPbaa/HCCy9g9913tzy2sbERp59+Om677TYcdNBB2LFjB+6///6Clo1Vq1bhL3/5C5YuXQoA2G233fD888+jra0N7733HqZMmRLo2kgUiZFDRYUmZLEqQApBAByERi5njBKEptI4CRez/e4lXH6ETBQzfhtk/bmUzIBPVYHckLYzRiatRWrZNJBJA9kh7XfxtnxOF7cGINEAKaH/zKO4VDOkeEITvJj2XbLPR4gkLddguS8E4klIrZ0A9L7HVKvjYe3t7ZbfE4kEWltb0damCej111+PLVu24BOf+IRxzNlnn40lS5YA0NKqX/7ylzFhwgS0t7fjwgsvxAUXXGAZ86tf/SruuusuKHodyPe//33Mnz8f119/Pa699lqMGzcu0KVFtyWDqA9qlRYrRawshCUAYYtVHQpNpXEUpADC5SRkjsIlCgiK/G6NcBljQC6jiZf+paUmTWHTRG7IFDkASDToIpeEZPzcoEdxCT2q00QPSsx0rVG55ZukpTvFORqRqX6MaEhgPCeCFZwkm48pl0SjvpWW/vzkcrr3av3v5DH8WzKGM/WUFismVhbCEAA/6zNBzmMTlpEiNJWmFOFyO4ZTVLj077L4u/1x8PU3ZqpqildmCCybtgheQSSXHdLEQBA2SRc3NDQCrR2QBcFDPA5Iii5ywtZTqmgMrguepTFe/67I5uP4/ov8/0HSnzZJBlie/2J7XvlwdkGU4P7/64YEJFJahGonNvwkJLpX1N8PfPGLwJo1wCOPAJ/+tPfx1aoWC0OsLASJVoRjAhcCBBErEprIIX648RIyv1EZAH8Rl5imFSIawDzG+LmMy8vpexIaUZwpbkbqUvgd+ayQqkxqIsdFrbkdiCchJ/TfeWQnK6a4Gd+5cAk/QzfolnKC6Ol2aor+9DE9yuMVn0y1iiSgHc9UQJW0MdW8fh+PHBnARJHjP+u/822oShVESQLiLmI4jImuKP7qV8ArrwADA8DXvwa88lf9jrCFxk9ajISGqAAWIStBuAoqFgH3CAxWIZPtt4UvZG4UpCqzabDMkGX9jYkCZ0lVJoUoThe0tmYzijMiuWRhVaNd6MTIbmgARkqSR3ai4MViZgqR/41YXhc9YaNiQyD1MZQYNHHk586b4ifr4idLmvixvHUO/G/A/+7cSs5+Tdqd8C2Ish4RyyOzuSe6orjfftofvKkJOPxwINmo3+EntUYQFcIuZEGFK2DFonmbm5DZRbD6mKnKIWsUZ4/kxOhOiZmiJqYqk41Ac4cZxekiCCXmXrovrrNxceI73YtCCBQKnmzbUULPVJqRIY/0ssI6oLDJsKwAUlw4vy6WeV0oxa2dJAWAbI6dzwkbCkP7WYwqLULHtMcWRImwCqcXI1wMOdEVxUMOAV5/HfjwQ+Cznx3xf0iiDMoVLi8h81z3slYsukdv9QXL52xRW5EoLp8FYrp42VOVTW1Ae6cgcnpRit//Z+O5F6I61RbtWQRPED1eMCKmLLmAiI/Nc9ETIjVDrPg4svBYPhcH8ZNlTXxkCKKa0x7HNwqWZS0yVCU9amS6yEL7rub1qBOwfPBnsL4GjddnkeeQxNBCdEURAPbdV/siRh41q1gUhcxL8KKBmaocsomaENmJUVxmCIBqjeKEdTm0jRFSlbylwCFV6W9yMCNuQfTsKU7AKnhceBwLWYSx7VGbcQ4VWtpSSHXKMa1KVJbN15iqp0fzWfNxRpSoAEpCe4c15p/XnmsugOKX4SaTETYH5uLIU6oKjPQ2U7XfLVlRcf1QxytKVOLa3ycClaPVJNqiSESLiFcsRgEtVTkkrMXZ2gQKWgmGNMtEsVWAR23JFNDcboviiqQqfU9U+Ls6RXaG4EmmuPF1OFmIzLw2yjXEKGfd3Z6foyBNGgPiYqrUIeoz0pei+MWBmL7+x8VPzQP5jJ7V5OIX147lY+SyZlpUUrSKUzUPY+2Qp1V52hSqNY3LmPO1W1ozHJ4XEkNPSBQJd4Z5xWIUsKYqh2xRm03gLKnKpCFkhsg1ttpSlXoqM+y0Gf97u0V2RpVmGYInnotHbMb6nnAOS2GLUBAjji2KH4/6HMUvpj1n/PXHxS+XNTfv5QIYS2jHcYFTdUE1BDKmfal5PX2a1z6cyDLAZMN71BLxsrzw+pcEURR/hn4/71MUVFFJaK8LicTQCxLF4cYIrViMAr5SlfYiFFU1qybtqcrWMYUFJ/EEpEq+6VnW23wInihAxjqcT8EzzmmL8MSoz6mwRY7rqUXJeg5L5OdD/PjzaER/qimAErRjuQDKslWYs3qUqOgCGFNMAc/ra4iKHiHGEqZnqdG6EdeFVBdGWQLyknYOfq0s7xwJcnjEGNO9TEkMfUGiWA/4XfcaQRWLUcBIVYpN4JYqSnsRypD2hiestxlRXEJIVYrtA2GkKn1fUADBk0Vx019HlkKWAHO2RJYOAmgIny6qRmGLy7n4deT1CKygF1CPyETxs6RL9bU/Yy1PMiO8eMIsSMnzSHHIbKNQYtpXLGGmXXMZbVwlZkaJBRFiTJuXqosjP1aFEGHy9KrlYq3pUpFYQhNE+h8OBIliqVDF4rCD5XPODeBuUVwuo73xCGtuEo/iGluBhJ6q5FFcJVKVvi9OFDw30WPWKC4MwXM7Pxcpp8IWUfh4r57TOfmYfM3QGDNfKH6xhLlGZzxWKG5xFMCkLoDCWmEuC6hp7Xc5Zh4nKabQ8XYPOWa2lvAUanbImmLljwEXzZggjPpxYgUrT41KvODHgVhC+6L3gZKItij+7W/A2rXAvHlAIlH8eKpYHDFoqcqsu5WXGMXxSM5IVdqjuAbNxssexVU6Ven/YgMKniB6lirNMjMDFtErVtgia2nOuJBS9RqXR13FxE/s+7PPK581xc9okOcCGBfSklxo9TSomrMdq68r8uKbrB4pyjFNyBIN2nuKmjOrTbngyXpaNJfVnwNdHPWtnqDEtWPzOS0SFSNEno7m6Vu74QeJYShEVxTffhs49ljt57+/AvzP7drPVLE4LGFMFdbibJGbm5WXrJhtAWIDuG7lZYocbwB33juupnimM5mQXqyw4NnnU7DGx3vnBJFyK2zxHJuVLn7i/PL5IgKoFKZMs1kzKhOjOSUFQDLXAzODZkqTR4KQzDVAIxrU+/+4q002bUaPPALMZczbeKGPLNzP8mbamLdh8OuU9Ag2kdLEtN5euxEluqLY36+9CDIZYOs2UMVitPBMVWYdBE5MVdq31km1AG1jIQtpSsSTkJQ6f3l7CZ6XcbQoeF7pxXLnZU9xulV0xm1rfL7GdxE/nkY1qjQTzuLHx+FtEvzL0ihvE0D+GGPNUI/GJJhClEiZa4bG3oZDpgjKugjyQhcukjwaVOLaOh7fvT6n73kox83UaDatH6uLnZoF8jwdGzOLa5SYNgZ/ztUcIDHzvS6eJDGsAHX+ruHBJz8JLF4MvPsucNVVekqDqAWMMe2fN+MjVclvd0tVxhuAlg6rV2U9pSr94iZ4FuNoZhU6Q2x4v5wtMxHm3HwVttjW94JGnOJ5ROFT9XaBAvGTzTd8p7HUvLcA2tcNAT36ypnpULEtQolrhtf8eGNNMG09Lp7U/ib8dZ4d0oVLjxQTKe3x/IMeF8hYwkyjZgdNoeMFNdmMZratxPU5ZrWfoQujYhNJntolMawo0RVFALjgglrPYFjCmKr9w3rsFWdvJYAsO0dxPFUppinjDeYGqVHEK7LjtwPOgmekEyskeJY52tf4hH6+UgpbPM+nFhc/Sbau3XnN3UkARQcYJwHk15vLmQLHoIuXblAgpk15NMdFkz8PsaRu1A2z6CWTFsQuDsgNpkhmBrTnzEilMjOC5OIrxzTR41GiHAOQt6ZP8zkzfSopWhSrxLSxmaqNLe5lSFSEaIsi4Qum5p33iXOL4niqUqya5GKWarZZeUUkVekHYw3aJbIrEDwxnSmso1Va8MT52gtb3Co6eWFLzGUtzvc53cSPmYIlil+x56GYANrbJuxz4QUpPBI0+vxc2i2MtKkogvq6oSSbKdOhAWs0mGyEua6YNT8IKjFt411DIAf12+OaePLokd8mKdpxyOtimdALgJgpjDxKzet/x2TKTJcTFWcYvJONLMxUpbuVV8F6nJp3LzgxUpVCFBdPQhpuFlBi8VVBZFdE8NyMo6s1bzfREys6Db9Mm1VZOecVRcoufvyccT2q8ZNWFccJLIDCfES7NWOdL2kVjgIR1It1+LpfImWmI3lxTD6nXx8XykYYUV82be5awdcNof8vDg0IQpgw1yzBTEs1cS2RN+sb1aZx85qUmFaJylRNiMv5AFNl0uk0Fi1ahLVr1+Kqq67CQQcdVOsplQSJYo1xTlXavCpFgcum9U/ipumyJEZtTW22gpOIpyr9IAqep48mrILnxzi6WvN3SnGGVdhS7Nx24eOVpKWKHyCMJ0aAzJ8AivPigubUQ+hk1ZbPC+4w0FOT+tqhLAtiKaRNudAlG02hzGeBoV2mUPExeGtHZhcASYsGk3qkmMvowseFUI8qkdUs1uIN1uIbSY8SjYb+LKBK2ngRzLxcfvnleOCBB5BOp/HMM89g48aNaGpqqvW0AhO9Z77OcU1VitvsiEUoTqlKLnKpZquV13BKVfrFt+BJpriV6qNZ6WsIZFWWCF7YUmwOlRA/QBBzNwGMmxWbRZvw8y5tEUrhOiRvYeDiBpjrc6LhNa9SzQ3pIgVbNAhT7HJZYe2QN+/zntd+aGuHcS1lCjhHinydkQs/NweXZNMQPJc11yf5nBLRFEPOW2+9hXQ6DQDIZrPYtGkTieJwg/F/JvtecW4FJ9m09knVkqoUC0745qjDPFXpF4tYOPXh8SpNyYzspDoTPPFaHJvX82aU6rgHX4jCx+fhJn6WVoUSxM8QL5sA8muTFT0iKjKuZQw9EgRMuzPeFmF/PO/34yLIYPb8Oa0fZofMhn0jGmwyxVXN6/+zuijxtKqsmNFkNg0jDZps0s6p6muHgB4pNsFo1AfTm+gbtcdnBoU2DT1NG9PFM5fRrjnZZLaBRJirr74ay5YtgyzLmDVrFqZOnVrrKZXEiBJFxpjgVem8V5y9lQCQTRETo7hEEmhsLdgcFbHE8E5V+sUiEkUET7aJW6nG0ZXG3l9XtLCF24uVWNFZdC5iitJJ/GTz/EGfRz8CKFaAehbTqNZiGItPqNAW4VZIYzfRlh1Sr/wDbD5rRo1cjPiasHGMvn4oSaao8eZ4XizDhZCvPaq8aV/VHsNda/J6BGnYuTEtKsxl9F0pUtrPuZzuNiObUWLD8BBDzvHHH4/33nsPPT09OOCAAyL7PhhdUVRVYO5csBUrgMd+AUybUrDjd0HbAM/li6nIhD1VKURxiYaRlar0iz0qchM/i5sKFwt7I3qd/eM4RnsOhS2G8IRU2FJsPqLwWTa0LVP8Cs4hiKyEEgSQWcXMqy2i4LGCeBop1JhZ/em0hpjLCdFgDIVVpzzFyrdiEtK5fGcLfr8heClTJHMZs02Cp1N59SmPCuNNejHOoPa4WMJcY8zDNAfPZoalGIpMnDgREydOrPU0yiK67/i9vWC/+Q3AGNgDPwb70nyrV2VzOySxlSAxwlOVfnEVPJv4RVHwOPaKTp5udCtsCWJVVvacioifnChPhB0F0KGIhUfrfsYzimGKtEW4PtZBBJ1SqExf2zOiQck8h1h5qgpiJhbKWMQuC2R0IRTHMIpwMtr4fL2fixxfK0zo1m65DJDdZa4z8pSspD+PeSFl2tBsrnMSdUt0RbGrC9JVVwFvvAHphluA8eNrPaP6p5jgVdtHs5K4tTF47sFXhQrUouIna2+oSpniV3AuUQAFkQ0qgHw817YIj7GcBFR0hXESQUuDvVs0KFSU2gtljNSparZBqHqPIBdCQKg2Va0p1VxGK6QxosJmPerTd8KIJYBYk1lwo8S0dLCq1yKQGEaO6IqiJAE331zrWdQPXut3fn00oyJ4gHk9Ye3BV4n5WRrd3cTP504Rvs/nJoAOPqB+xixoiwCsWyZ5zNsQtZxVBLl/qKOht2pGjnzdzykatAumuAYoutbwilI1Z11jBMx1wnwWlmpTsUiHR4WSbAqnJJv7FOYyQHbAbM3ga5KxuLYk4+fDBlFXRFcURxJugufpoykIXkyqTLFHpSmo6MxbBTBsq7KS58jnJDSmV0r8+DktFaYhCaDYFmH3CeVril4Rj0VE7SJoEzXPxwjRoLj2JoqcIZhx63ojP4aLJW97UBq1+8WKU94iIaZCh4S1wkSLNp4hkEIrRnZI+3sblaZ6RBlLkBhGHBLFWuO2ZufHOLpaPpqVJFBhiwzfe/BVap5Fxa/IOlop53WyQStHAAvG5alQCNWdPsYsiCQF6zQ3EQT8R4P8HF6FMsYxOfM4WRfCRKOZOs1lBJeZhJke5X3FlqhQ0W4fGjBTpPFm/Vi9FSOeBKSkGSnGdRGN4v8gYYFEsZJ4pTL57YCz4BmuJREWPI69sEUUl1oVtviaq138JFj29AtT/Pi5iwmgkxG2r7GFys4gbRH2+YmCZjHRTpjRmNt1iWlUbootihvH3pRvL5ThYxpRY9YUS57qNIQyo0eM+n18DVEUSR4VGrfzKlKh2pSnTeMNetp0SHs+SQyHHSSKpcCY/t0llVkgeILo1dJHs5KIa1p2AXQSvjCtykqeL7MKn5v4lSpExc7vJIB+bdCKXpsqtEXwsWPF2yJcx7H5h4om2o6PdYsGHc5tnIcLoeostIYzjS503EVGFEI1r/Uh8p3tYwkz5ckjPTEq5BWnRrTIi2wk3X5xUHvOCtKmSTMSJYYVJIp2eLrSLbLjPwMjR/AA83mp9B58lZi3Xfy4eFdD/PgcKiWAxvhCMQyP4IKObRdTLmZGFOYlgi7RoD3VWXC8rVDGLppiapQLnX1MVdUit1xG+12s+OStFAVRoaSNO7TLTJHyNUR+fCyh9RTydUUuhjESw+HMyBJFUfD8+mhKejFHPRhHV5qCwhZby0A9FLYUnbsP8TOqUivRbG+vAFXDF0DxHBafUB8RXMFYQq+gl3+o27X6jQb5+fi5clk4Fsrw48Q1Qm68LTa9G+Il9CLyylNAXxNMF0aF3Mc0N2SmSJWYEEXqxTMNzdo5MoPa93jSPT1MDCuiK4offggccwywcSNw773AOecABT6aRQSv3oyjq4FTYYv4s1NhS7l78IU+fxfx46JtbEZbocjPmItDCwRjggCGUBQkFrOoeT2FCbMtws0n1A03/1A/Yi1Gg3l9eyOvaJA/hkeD4tqf3dWFjy02zvNUpiiElvSpYq0sdYsKjYKaQVuKVLZFi0l9J4y8TQxpl/uRRHRFcfFiYM0a7Z/80kuB004GomAcXQ1cC1tswhf2HnxhIqZr7e0HjuInpKwrMRcxBcp3hGAw2xSK7QThFy5aTm0R3Gw7SCO4pTBGF203/1Cv+XBhM9oYPMTYXihjVIM2FP6NDCHMAvbKUNGhJq9HhYBeDdpgpkfVvOlgY4kKoYuoUEVqpE6zWtWoJOlpcz1aHNqlPY7EcMQSXVGcPh1oaACyWWD33YFU68h6ATtVSdZzYYsXliZ3Ln76uq0siDffzb2SPWB2ATSEGIXiVO5aacF5eOQWoC2iYEyhyrSYibbXnLiocXeYYmuKFucZl0IZ+7E5LoQOIitGfaInqdiYnx1yjgqNFgyeIk1o5wC027IZM8qWZO25GtqljRtvMGsDiBFJdEXxgguARAL44APgoouG34vYXthi7+Orxh58YRNU/Cq9TukmgBL0NcgARti+zscFS0iHGm0RJa418pSiHxNtN+zRIF+f9IoG7alUt0IZ8RxOxtsFRTVCm0WBVZtHVMgb8zMD1hSprGjnyws73BYAACAASURBVKatu1Nwh5rMoPZYcRxiRBNdUZQkfR0xwjgWtgiiAZhCUW+FLV64ih8TUrZK9cQPKCxQMQRQMiPAeMKcX5jns/iEChZppbwJWwpjeHpVb7Xwu75YajQonpsXwHilUpkqGHir7kU49rXEWMKaavWMCvk6o+BFKq4jDg1o9/OKVImnTvW+w6BrssSwJ7qiGBXshSF2AazmHnxh42g35iR+MQTe0LbceRUVwABG2H7P6eTuIp6v1J5De6uDUcXqs98QMCM1Lmp+okF+fqdCGbeNcfkappPxtqU30SaYMa+iGoeokKm6UDqkSFV9GyejnzCl3W6kVJXI73JPVA56VYRBIKsyvr5Tp+t7ThSIn76OyWosfnxujgIoClLIa5GebRFKsLYIp7GdRNDLRNt1HHFbJp/RICAIW7Z4oQw/l5vxdoFlm81lxsno262CFNBTpIIXKRdSPofskHYcb6EATDGUSQyJ4tCrwy/2ik4uEm6FLbW0KiuVehY/Pj9fAlhJ9xnu7ILS2yIcxw5gou2GscbHqz4Va/+eZ5WpsD7IIzyx3cFp3l7G2/axeU+h6DLj6FTjFBUKvYX2FKmRWtUjRouVm15UoyjukS1B2CBRFHFrY/Dcg68G4lAuXuJnXJscbpFJqXMUHWCqIYCAuR4qtkZYeg99+IT6uS67f2hQEXSLBmPx4pGqa6GMl5G3ranebrxtOVZPj4om3E69iV5RIVM1UbOnSHn6NJPWHqsIEaC4/jjMd7knKsPIEkXfVmWKtbClnis6vbBEVjy6dRO/Gka1bjZoogBWqhHfbm3G2yJkJZhPqK/xufOL7M8/1GssezTop9I0aKGM+BjReNteCCMea6wn5pzHLlZBCmj327drMvZA5OlTXjzD06eiSJIYEqUTbVHM5YB0GmhuNm8TKzrFFGcUrMpKxS5+BRva1on48bk6CaCYnq2UBylgPk/ijhGl+IS6jm8XQb3Ax+96ntN4YjQIZhZj+bEds0R3gom2VzrRIoQOxtsFxwp9h/x1Zp9b0ajQI0UKmBWm3IaN71nIVK2tIpelXe5rzdAW4JXzgV3/Bg68BZj4hVrPqCSiK4qMAfvvD6xdC7zwJ+Dgg10KW2QtyohSYYsbfsWvXq7XSwDDEqFi53dsiyhxzc7POfI5c72Rp1oDOdC4RYMOHqGuYzgUyhTzMnUSNy/7tgKXGQdB8hMVGmLplCIVhZJZ1yJVVaswJTGsH/5xGfCfZwGWBf46DzjlP0CirdazCky0RXHDBu0fobu3PqKgsCgqfjJC38297DkLvYm1EEDAVrTi0oYRxvnt/qGAP+HxmrcRWWbN8fxGg0DwQhl+XqNf0cV4u2CeWXeXGfE4r6iQz5cfY0+R8sdnh7RxxUpWVY8MefqUdrmvH9KbNEEE9A9mAwBIFKuHLAPLlwPr1mnG4LUWhVJwsmqzrKfVofgBzhWgFiPsKgkgT/O5tkWE1IdYjom269xVq4iJ/X++okFmFrPks3okVaRQpuBxLsbb9uPFaM8Q63ihEPqJCu2N9ilbYU0uY7Vh44JrWUtMkBjWIwfdAvz5NSC7E9jr60BqfK1nVBLRFUUA2HNP7ave8S1+VRCToPjaCSIEI+yi83BoiwBMX88wnUnEwptS/EPd5m+IoB5duvXzeY1hj+yCtFwUM952PN7FZUacU7Go0CtFCsDcD1GwYeMCLYoh7XJf34w6EDh1M6BmAKWh1rMpmWiLYr3hKX4SDD/NuhQ/ZhMeXqkKQQCruFYpGluL/YiKsFYXVkVwgYm2qp1HDuAfWjAmjwazpsDKJUSXjoUyMX8RpbhG6Ga8XXAuW3rU6Tx+okJ+frcUKb8/K1aSCuuCal7zK83ntecrkaqf/xXCHUmOtCACJIqlIQqIq/gJZff15q3oZoQNWNOP1epRrHRbhNP53Ey0y23Et0SDUon9h6pNCAOsV/ox3rbPWWy5sJtw24/1ExV6pkj182X5/TbBy+esu9w79UASRAUhUfTC7ltqaSKPgPgBtqId4Tok6POtsgDyOYkeoWG3Rbiez9aMH4YIekWDQfrkLGKWF1o4/LRdCGuLXsbblvMJkZ7ko+WiWFRYLEXqaMMWt4lh2hTKGIkhURtIFIFg4mc099fhP6wvI+wQd4IIOifXtoiQ5xOWf6jj2EK7RD4HowexFDcae6FMkHEsQpgv7kZjfwxTzXVFtwKbYlEhUDxFahdLu30bF0rGaGNfoi4YWaLoJX7ibu71Ln6ATwGsgOD4mVdBWwRg2TIp7DVJT//QEBxpCsYusf2inEIZ/ng/xtsFjyliwm2fn5+okKdIVVX7oJWyp1G5RZvuMGNvuSAxJOqU6IriqlXAwoXApk3AN78JXHyxeZ9o52b3zhTFz7APk+u7vNtVAKvgA1p0XkJbhJiaFNclw26qLhDenO2DQLkN+SFFg3yupRbKGI/3abwtPoa3N7iZcNuP9xMVFkuRAt7FM/y5yKa132mXe6IOiaYo5nLA7NnA5s3aP9rllwPTpgDHHG2umwHREz+gfgWQz01si1D16lSjXaFC83JyebH4h5a5/uSUbuXVpyU149sLZYTWFT9j2aM7L+NtEb4uaTHhdnF68RsVAv5SpFwM1bzeOiH0EYqRoSSRGBJ1TTRFcfNmoK9PjwgBZDLAG28Axx5b3d3cy8XNBq0eBBCobluE5bxiNarNP7ScvQot53CLBktMt7oWyvicq6vxto/dLuwp1WLVpn6jQnGzYHsVqeUYwYYtad8SShBDN9EliDoimqI4dizQ0QF0d2tvRokE8KkjtfRWveJHAGtZwVrQFsELYmKVaYtwPbcggjzCCmqi7XYOp2gwSATnOGddkHihTOBmfJ/G207XksuYkWixvQ/9RoWOKVIPc2+7DZvTGGEaKxBEhYmmKCoK8PLLwFe/CvT2At/4BnDUUbWelYmbAIo2aLVu4bC0ReTNlGRNjLpF/9ASTLRdz+MUDcZLF/iCQhkUj8y8xvBjvC1SYMKdKG7y7ScqBIqnSAFznZJv3Ou0LZQhhgrtck9Ekui+YnffHXjmmVrPwp8A1tq9xr5OafEJDTEl6UUxE+0w0rBiNCi2OZRq1M3HFNcHJcnd6aXovHwabxec34cJt/1cfqNCe4q0oaXweTJs2HTBdNssODsEy4a/BBFB6JUbBKcm+HoTQMBananm9XQkzLaIaqSzLIUxeVOgwm7LMMSWi5YcPHpznXuJhTKAtQJU3NDXax9D8bF2YfPTeuE3KixIf7oUK3HBNEy4nTxNh/TIMUYb+xLDAhJFN+phJwi/cGFwaotQEtoOG5Xea67AP5SVb6LteB4x6soJ0WCZa4/lFsoY4+SDGW87PraICTcnSFRojJ8xjbfdtn3ysmEDCnsQSQyJYQSJYoGPKRdACM38VdoJwu98LWLNtzKqcFuE0zzc/ENLNdF2wx4N8rRvWBZtpRbKGPMT1gj9GG/b58FFTTTh9hKZoFGhmtNEzEiROrRpFLNhA3QxdNnNgiCGCSNLFP0YYfPIqlo+oMUwIjAhHWq0RVQxWhX9Qy0iWIF0bKWiQfu4QQVMROwJZKz4Wl/BPITUpC+LtoBRod8UqZcNm3itfGsn2uWeGOYMX1H0I4DVNsIuhqtPqLAWV60+LyfT7jBMtN3gIsOFN6xz2dseeAVqKdGsk/F2kPmJ6Uuj/aJIQ36QqNB+Dq/52fcwdIpOSQyJEUi0RXHrVqCnB9h7b+c1QLsRtlSFtbUgONmVWRr3q7hmWUkTbdfziZFnSNEgH1u0RiulUMYYqwTjbafHW1xmfKRHg0aFflKkADxt2ByPoV3uCf/k83lks1k0NER3T8Voi+KnP615oL7+CrDvPlYxqbYRdjE82yKU6rRF2OdTYHQt7lxRgYjUaJfQhZdHg2GsQRqFMvrY5QhsKcbbBY/nrQ4+XGbExwWJCoOkSL1s2DgkhkSJvPjii/jud7+Ll156CQAwZswYfOMb38Cll16KVCpV49kFI9qiOHu2FmFN3R1ItdZ6NlbsPqG1aItwm4/dP7RSImiPBsFg+HiG4Vdq2ctQLc8LtRTjbfvj7U35fuYSNCoE/KdI7TZs8aTzfEQxjHMhroPlBCISLFmyBN/61rcwMDBg3NbT04Pvfve7+OUvf4mlS5eiqamphjMMhsQYNxAtziGHHIJly5ZVcj7RxdiRQ2iNMMzIFfNNrpoi6GaizQtkwo4CnM7Jo0ElXn406FYoo5RYcetmvB1kG6MCl5m4liItlqZ1igpjiSLtF7YUaczlPMVs2DjG9k95fWPfBIkhEYj3338fM2fOxODgoOP9DQ0NWLhwIRYvXlzlmRXiV7+iHSnWigKfUL0tQlYq7xPqa052E+145VKzlmhQFwa5jIjNbfwwCmX4eEZjfgDj7YIxeHo177/ytJSo0CKecI/2AFv/oJ6NcHKWyfM+RF0MixX7EIQLd911F3K5nOv96XQaP/3pT3HrrbeisbGxijMrHRJFPxgVoba2iFo28duFOZ8z07Nh+od6ndcSDQa0Pit2Dh4NcuEyClxK6Isr1Xi7YAxB0IKkgYOuFQL+U6ROxzoV8hjrimnt7xdvCOdDCzGief7555HNZj2PURQF77zzDg4++OAqzao8SBTtuLZFVLgIxQ/F/EMrVVlradQXjLDDigaBwkIZYw/BAMJln3OpxtuWeQV0mbGfP2hU6LeKFDDTn/m8e2GMxaGGOTflE0SJSD5eR4wxyPVU9V8EEsWCtgh7K0cNrdzsIshQnaZ9SzSopwgNt5qQokHAuj5YbqEMn7ej8XbA/jonE26/111KVBgoRepkw+ZScVpQZENiSITLCSecgPfeew+ZTMbzuBkzZlRpRuUzskTRaOgXUo4FbRE1bOWwp0Mr5R/qeG5hrY1HoUFbEfycQ9zFghfKlLMG62S87ccqzXFuPMXq04Tbfl1BokIgWIrUjw2bcVxOS5MCtMs9UVG++tWvehbRpFIpXHzxxUgm63ivWxvDWxSd2iIAU2hqvflpgYm2alaHhu0fWnBue0uDEA2GbuAtFuJI5e9iAQhpTSGdW0oUK4qZFHCtsdSoMEiK1GLDphTZBop2uSeqy5QpU/DQQw/hS1/6EtLpNFRVNe5ramrCIYccghtvvLGGMwxOdEWxpwe44ALgww+BW24Bjj/eKjKGqw33CdWLT2pp6eZlol2V7Zzs0aBUmT5Ft0KZoNGbnXKMty3zE1xqmBpsbqVGhUFSpIA/GzY+rkUMaZd7orrMmzcP06dPxy233ILf/va3yGaz2GOPPXDFFVfg7LPPRjwer/UUAxHdPsUTTwT+8AcglwNSKWDNO0Bbu9kWwZvka76voeAYY0RjVZqfVzTI9zYM7Vx66pe7wBjVmbHy0tFOxtul9CXaexKVuDaWb7u2gH2FxvxtKVLRb9fteNGGLZYs0ouoR5DxpHP7BUEQAEZCn+LGjZogAtobxFBe3wS11iLo4B9qVIdWY0snoV3C6OurUNWsuD7IfUHDcKux7G1YgvE2R1xvFF1m/PbllRMVBk2RFtiwubyWC9KptMs9QYRJdP+bbr0VOPlkLV06bx4wdVr1BdHTP7RaIug0hwq1abgWyoQguOUabzuNFcSE2/L4EtYKCx6H4ilSscrVy4ZNHDs7pGUayk1FEwThSHRF8dhjge5uYOdOYOLE6pzTaVcLiwl5tbZ1cosGK72bRYiFMnzscoy3i40VZI6lRoVAsCpSfi5xD0Ova2ZMOy5Lu9wTRDWIrigCQEuL9lUpvEy0w2xc9zsPMS3Lq1Qr0bRvsULjDjAexR6Bxy7DeNs+liFk+geUoGOVExUGSZECDjZsHqlPy7EkhgRRLaItimFT4B9qF8Fqbu1UxWhQPJ9YKBNWCtbNeLtUz00nE+54gAb9cqLCoClSQIgkM7p4eggcU7UUKW3sSxA1YWSLopeJdhib3Qadi7hex3sWS90c1w+VKpQBbNGm4BVa6nPq5DITNIVbalQI2FKkPrf+KrBh8zgX7XJPEHXByBJFu69ptUy0XefjFA2GtF7neD5ejcl79PQWh7DWQ8Mw3i4YzxbRBV1zLDcqDJwiFe3VPGzYOHYxpI19CaKmDH9RrJWJthMF0SAzewZLFQ7f5xT8QMM0CwjLeFukVBNu+7xKjQpLSZH6tWETr5F2uSeIuiPaopjLAZkMIO7T5WaiXStzb2M+PHqqgsWcV6FMWFs7hWG8bR+TR3OiCXdg/9ISo0KgtBQprw7NZfS+wSKPoV3uCaKuia4ofvQRcPDBwNatwI/vAc49p/om2k7Yd4c3osEKr1GKu1rwYpYwo+GwjLftY1pMuEtM5ZYbFQZNkQL+bdiM4/W9DPNFmvMJgqgp0RXFZ58F+vq0aPGuxcB551XeRNsN7sDCI9RqRIPieY1CGS6+IbaKhGW8XTBmxppuTaSCC2E5UWEpKVI+d9GGrZiA0i73BBEpoiuKxxyjeZ7mcsBXvqK9qVWLmkWDDoUylbBwC8t42zL3Ml1mjHHKiAqB0lOkXAwNcSsi4nYxjJEYEkQUiK4oTp2q+Z/u2gV0dFT+fAU7wyvV2d2i0oUyHCfj7bKF0MGEu1QP03KjwlJSpI7FM0Vs23iatJhtG0EQdUl0RREAkkntqxJY7M2EaDAWr3wTf6ULZTh24+2whNBejRrEhNs+VjlRYakpUrsNWzEBNkSXdrknRib5fB6///3v8eSTT2JgYAAHHnggvvSlL6Gzs7PWUwtMdLeOqgRi/6IYDSrxyq9VFhTK6HsQKvGQTb1F423VFPpy069OLjNKIvjcHXsTE8HmZ0+RxpL+hN5uwxYrsh1TwS73JIbEyOMf//gHTjjhBAwMDKCvrw8A0NDQAAC49NJLccstt0Cqg/+J4b91VBjYo0Ew3XmlSr6mroUyIUeiYRpvu46bLy+tG0ZUqOYFB5kALSJG8Uy2uA0bP5e4sW+8ofznkiAiyLvvvovPfOYzhhhy0mntg+Ldd98NALj11lurPrdSGVmiKNq62aPBalSuipv+5oRCmTAEyulcFiEsw3jbPq4YyclljFvuWiEfw54i9ZuqDWLDxs9l2eU+4FwJYphxzTXXoL+/3/X+gYEB/OhHP8I3v/lNdHV1VXFmpTP8RZGnuHgDPVDdaLCgUAaVs3JzM94O4zqdXGZK7YEsNyoEbH2CPqtI+bkNGzbmb73TEMO0vsZY4eIqgogAW7duxTPPPAM/K3APPPAArr322irMqnyGnyhaosGsufFvGP11QeYgrg9KQqN72OcP23i7YGybCXep1xBWVFhqitQe5cUSxdf/aJd7gnBl3bp1SCQSRqrUjXQ6jRUrVlRpVuUzPP7DnaLBsNbNfM/BpVCmUvsdhmm87Tp2iSbc9vHKjQrLSZFyF55sRvub+LZu08VQJjEkCCeSySRUVfV1bCqVqvBswiPa/+m/+Q3w8kvAov9n2ppVKxoEqlcoA1TGeFtEjOKkCuxuUcr6W6kp0oLH+tyk17LLvRLOpsoEMUzZe++90dDQ4LmmCAAtLS045ZRTqjSr8om2KE6ZAuy/P5BqrVI0WMVCGX4+UQh52i+svfYs7jiqmWIux8s0jKiw1BQpENyGjZ8zO0S73BNEABRFwWWXXYabb74Zg4ODrsc1NDTgC1/4QhVnVh7RFsWDDtK+Kond0i0s2zOv8zkZb4f1Ru3kMlOOTVxYUWFZKVKxeZ7vYejDS9XSl0hiSBBBufLKK/HHP/4Rr732WoEwSpKEpqYm/O53v0MsFh2pic5Mq4l9zY5v/lvJto1KGG9zRKEt12VGHLPcqBAoL0UadA9D43GqHhnSLvcEUQ7xeBzPPfccbrvtNtx5550YGhqCLMvIZDI49thjceutt2Kfffap9TQDQY42HP4GW2lHGREn4+1YIjzhdTLhjsXL3OqpTLcZyzhCijSW9P88223Y/Ea69l3ug5yTIAhPcrkcVq9ejaGhIUybNg1jxoyp9ZQskKONH+wm39XY6aISxtsiTu41YfiZhhEV2iO7oNGqPd3ptypUVfW9DPV1RtrlniBCJxaLYf/996/1NMpmZImiWCiTzwnenxVu5K+E8bZIQWWqUn7TflhrhUB5KVLAwYYtqH1bTnesITEkCMKb4S+KboUy8YYKb/nkYLwd+r6HDibc5a6PhRkVllNFan98PMA8RDGkXe4JggjA8BTFWhTK8PNWwnjb8RyZ8KLOMKPCslOkJdiwcfhehvm8Xr3qowKVIAhCILqimE4D3/0u8MEHwHXXAfvsY0aD+azgKJOsbJm9o/F2yOlYRxPukHa5CCMqBMpPkYpzkaRg12ff5b6cqlqCIEY00RXFG24A7r4bGBoCnnsWWPe+9qYeC8nuzItKGm+LOJlwl3ttYUeF5aRIgdJs2Dh8L0PemxgjMSQIojyiK4rvvadFiwCwfQcQSwH6xpYVwdV4O+Q3Yh4xiUU5YdiNhRkVlpsiBYTIMqNF9H4b52mXe4IgKkh0RfGGG4AXXgAGBoDLL6+MIFbSeNv1PNnwinLCjAqB8lOkQGFFaEOL/10uSAwJgqgw0RXFj38c2LxZixZbWsIbt9LG2yJcsMTzhLXTRZhRYdkp0hJt2PhjeZoUoF3uCYKoKNEVRQCIx7Wvcqm08bblXA4uM2F4boYdFYaRIi3Vhs3+WEkiMSQIoipEWxTLwdK/WAHjbfu57CbcYTXvhxkVAuGkSO02bEHE2S6G5Qg7QRBEQEaWKBrG2A7G25UQQnsatlwTbvvYYUaFBSnSEp4T+x6GQZ7XAiGt0C4kBEEQHowMUXQy3q5UI7/obQqEuwtD2FFhGClSoLQ9DMU5GGJIu9wTBFFbovvu8+qrwJ13Aps2AfPmARdcYF1ftIhTFfZANBr483rkFmJ6NMyoENAjOl1cZaX0/Q+5GKrchi2AtygXw+yQnqYlMSSIyLJjNfDuncBHv9OWiVr2AGZ8C5j0RUAOoe6jikTzXejRR4EFC4DBQe3N9dVXgccfB559VqtyrJTxtohFrHLhmHDbxw87KgwjRWq3YYsng10zY9pjs7SxL0EMC1bdDrz9/wA1C7CcdtuWzcCrFwBNi4Bj/wIkR9d0ikGIniiqKnDppVp/ImdgQBPGP/4B+Mxnwjfetp8/l7G6zITVrlGJqDCsFGk5NmwA7XJPEMORD/4PePvbQH6w8L5cP7DzXeD5/wI+93pk6gOiJ4rbtwM7dhTens0C/3wH+NwJ4Z/T0YS7Mdytn8KMCoFwUqSA1YaNV6MGSXOKu9yTGBLE8IExYMXVQH7A45gs0PcusOmvQOenqze3MoieKLa2au41mYz19mQSmD49vPM4ucyEueNFpaLCMFKkgNVYoBQxs+9yX4meT4Igase25cDQpuLH5XYB/7onMqIYvXepWAz4zneAxkbztmQSmDwZ+Pznyx9fzQOZNJDu0yIcWQFSLVp7QSwEWzHGtHHT/UBmQBMKPn6ptmU80kz3A5lBTVhTLeZ6ahDyOWBoAEjvAiBpG/MmG/2Po6raHNL92u8Nzfo8ovdSIwjCg4GPAMlPXMWAXesqPZvQiF6kCADf+AYwcSJw663Atm3AqacC11+vpfdKQexdZGr4vYuViAqBEFOkZdiwGXOhXe4JYkQRbwXAfB7bVtGphEk0RRHQ2jDmzSv98U4uM2EX6FRirTDMFGk5NmwcEkOCGJmM+aS/42ItwO7nVXYuIRJdUSwFw9FGMOEOy2VGPEclosKwqkj5WJaG+RLmJ4phnIt9NKrLCIIIASUBfOxrwLs/dK4+5cgJYPKp1ZtXmYwMUayUCbflHBWICoHwUqTGWCXasHF4j6KaLy3NShDE8GHmd4Atfwc2v+JQhSoDsSbgM38AlGQtZlcSw1cULS4zIZtwi+eoVFQoGgOUa1Rejg0bJ8/XHLkY0i73BDHikeOa6L33Y2D1bcDQFi37pOaAKXOB/f8f0LJnrWcZiOiK4j//CVx9tVZoc845wJe/rN3uZMIdlssMp1JRoWOKtMRIzNGGLWCK0xgjrUXb8Ybwn0uCIKKNHAOmfx3Y62vAwAZAHQJS47UoMYJEUxTXrwc++Umgv197416+HOjfCVzyFe3+SvTFVSoqBMJNkYpGA6XYsPExaJd7giCCIElA0+Raz6Jsolkm+NRTmoMN08uBBwaAe5doUVVDc3i2a0Bl+gr5uEZPYD8ApqVIG0oc15hnnyaIsaT2XMQSAX1Js8DQLq1Xk2+0HGQMgiCICBPNSDGRKBS9VED7MS8qGRWGmSIFbJ6iJe42wQU6m9Z+p13uCYIYoUQzUpw3Dxg1ShNHQBPE732v/HErFRUCutNLGhjs06KxRIMe1SZLrCTNa84xg30wosxkU0BfUsEJJzdkzikM5x6CIIgIEs1Isb0dePNNYMkSrdDmlFOAI44obaxKR4VhVpECZktEPq83y5dQ4CNGq5JEu9wTBEHoRFMUAWD0aOC660p/fKUqSPnYoaZIxT0M1dJbIgqa9kNMORMEQQwDRtY7YiWjQvz/9u4vNKr0jOP4byYzk3GSQNJq0dBd7IJ/VnRdq9A7bSlBQSrkZttFFLeFoKxE6EIueiF4040NXYXSi0VvFrqCCG5Uyl7YLhWkgoi06dZKiqxl1kiz0oaajHNm5mR68Z6TzERd4znvmcmZfD/ghTjn5fFmfrzvnPd5ZPctUr/esG3Y/HXqwpAp9wDwLMvjmzHqXaHtI1J/On2lNL+jC3K86f+/y455Ccdmk3MAaEGtG4pR7woX3gcMe0Qq2WnD5tdWcbzBwAz2BYDFar1QjHJXKD19RGpjsoaNNmzSgusZhCGAxrl7964ePHggx3HU09OjrVu3Klc79zYm4huK4+PS229LX31lZin+7KfR7gqjOCL1w7Aasrl2ddasw5R7AA1UKBR0/vx5nTx5Uvl8Xul0WpJUrVbluq4OHTqkwcFBrV+/vsmVLl6iWvXbwrzYjh07dOvWrSjrWbyNG00wVqvmzoXitwAAB0RJREFUnuK1P0pvbvO6r1jsZrPwiDRsdxdbL89I9cetqbQJVsIQQAPcvHlTe/bsUblc1vT09DM/k06n1dbWpoGBAZ06dUrJJn4/LTa/4rtTnJiYb/OWSkmT/zGdWGyI4oi07g3QpL0RUKk0g30BNNT169e1e/duFQoLx0XVK5fLKpfLOnv2rCYnJ3Xu3Dkllvh96Ph+kw4MSB0d5k93t7RzZ7j1bPcinVu3ppPNbMVch8h2Bltz1q2pL2HCMLOCQATQMPl8Xnv37n1hINYqFAq6fPmyfmmj81jE4vttOjIiffKJ9OGH0tiY1NUVbB1/B+fMmLZpyTbTJca/BhGUjTZstWs5Bak4M996LpMlDAE03OnTp1UsFl/6uUKhoOHh4UDPNlJ8j08TCamvL/jztW9q2joiley0YfP5swzdgPMQAcCiYrGoM2fOqFQqBV7jwoULOnDggMWq7Fp+Ww3/iPSJzSNSb+TSXCPxVLjdnFsxu0JnZn6tdJZABNBUo6OjoZ6fnp7WyMiIpWqiEd+d4suI4qJ97bp+Y+1UJly4upX6KxopptwDWDru3Lmjx48fh1rj3r17lqqJRmuHYlRHpLUdY5Ih2rD5a/nHpHNT7glDAEvP1NRU6DUcx7FQSXRaMxTdit2L9r6FbdjCrFutmrdRy05NGDLHEMDS1dPTE3qNbNbS1bmIxDcUKxXpo4+kyUlp/37plVdqjkhnw3WIWchWGzbpGVPuCUMA8bBlyxZ1dXWFOkLdsGGDxYrsi28ovvOOdPGiVCqZ6xl/vS2tWmXCsM3WgOCKOSIN24bNX6/298d01k6dANAg+/btC9WVpqurS0NDQxYrsi++b59euiQVCmbH6LrS2OfmODMVctfl31ssTptL96m0lO0yO7qgvxn661VK5o3Udgt1AkCDZTIZHTlyRO3t7YGeTyaT6u/vt1yVXfENxc2bTXs3yQTj65vCrVetml1c8fF8eGU7g/c6nQtDf70V3uV9whBAfB07dizQ9ItcLqcTJ04ok8lEUJU98Q3FS5ekt96Sdu2SRkel114Ltk5dGzY3XBs2aUG4lmvW46gUQPytXr1aV69eVWdn56KfyeVyOnjwoAYHByOszI74/qa4apX08cfBn3/q5RkLo6D8ht/JNhOGQVq6AcASt337dt24cUN9fX2amZl57os3/jHr0NCQjh8/vuSbgUtxDsUg5uYiOjWt00JOmKibct9mjkgZ7AugxW3evFn5fF5XrlzR8PCwxsbGlMlklEgk5Lqu0um0jh49qsOHD6u3t7fZ5S7a8ghF/xpExanpaBPygrx/TMqUewDLVCqVUn9/v/r7+zUxMaGHDx/KcRx1d3dr3bp1c0OH46S1Q3HuSLPktWGzcF2jtksOYQgAkqTe3t5Y7QifpzVDseoNCbbRhq12zXLNYN8wF/gBAEtSa4WizTZsz1qTMASAlhbfb/cvvpA2bZJ6eqSzZ+on0mc7pfZcyCHBszVran7KPYEIAC0rvt/w770n3b0rTU1J774rOaX5GYZhgmtuyv20eSvVD0Om3ANAy4vv8WkmY8LPdU1gZUIO4a29t8iUewBYluIbiqdOSQ8fSvm89MEHUtBxJP4sQ9c1/U1tTdYAAMROfENxzRrp2rXgzy+cch/23iIAIPbiG4pB+bMM/ZmLKcIQAGAsj1Bkyj0ARGu2Iv3vH5JblDq+I2VXNruiQFo7FBe2dyMMAcAu15H+/r40/htptmxefHSL0uofSlvfl3reaHaFL6U1Q9EPw3LR/J0p9wBgn1uU/rBLmvqb5D6p/7eJT6V//0n6wafSt3Y2pbwgWuvyXd2Ue8eEYbaTKfcAEIW//EL679jTgShJqkpuQbq2T6oUGl5aUPEOxVu3pIsXpVKpJgxL5s5iewdhCABRqTyR7p2RZotf/7mqK/3rfGNqsiC+ofjZZ9LOndLBg9JPfuyF4QoThvxuCADRevTnxXX6qkxL938XfT2WxPc3xdu3pUpFKpfNjjHb2eyKAGD5qBQkLXLzUZmOtBSb4rtT3L9fWrtWyuWkX400uxoAWF46XjXXMF4oKXWui7wcW+K7U1yzRhofb3YVALA8db8h5Xqlx//8+s+1rZA2HG1MTRbEd6cIAGieRELa9msTes+TbJe+sU365vcaV1dIhCIAIJhv/0j67mkTjMlM/b+lOqWeN6Xv/z5WLz7G9/gUANB86wak3j3S+G+lL0elWUfq2iBt/Lm0pi92s2gJRQBAOB2vSttOmj8xF68IBwAgQoQiAAAeQhEAAA+hCACAh1AEAMBDKAIA4CEUAQDwEIoAAHgIRQAAPIQiAAAeQhEAAA+hCACAh1AEAMBDKAIA4CEUAQDwEIoAAHgIRQAAPIQiAACeRLVarS72wytXrtTatWsjLAcAAPvu37+vR48evfBzLxWKAAC0Mo5PAQDwEIoAAHgIRQAAPIQiAAAeQhEAAA+hCACAh1AEAMBDKAIA4CEUAQDw/B9IxbzP7H1dUwAAAABJRU5ErkJggg==\n" }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAFBCAYAAAAG4LRKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXmYHFW5/7+9zpbJHrKRhUVIDLshQIAkLCISAQMmEhBBiHDB30WQXeB6CeAFF1RCLuGyKCqKgpdFMXIDBJBADFGWQBLABEhIzL5OZnq6u+r8/qg6VadOLV1bT3fNvJ/nmWdmeqpOnerp6e+87/m+70kxxhgIgiAIgkC61hMgCIIgiHqBRJEgCIIgdEgUCYIgCEKHRJEgCIIgdEgUCYIgCEKHRJEgCIIgdEgUuyF/+ctfsP/++9d6GrER5/2cc845uP322x1/Nm/ePJx88smxXKfaPPTQQzj99NNrPQ3Cg+72d9hTIFGsU3r16mV8pNNpNDU1Gd8/+uijtZ5eRZ544gkccsgh6N27NwYNGoTPf/7z+PTTTwEAN9xwA2bNmlXjGVaXo48+Go2NjejVqxcGDRqE6dOnY9OmTaHGWrlyJbLZrOWxiy++GH/84x/jmKonUd7Yo4rCvHnzkM1m0atXL/Tu3RtHHHEE/vKXv4QejyD8QKJYp7S1tRkfI0eOxB//+Efj+/POO6/W0/Nk+fLlmDVrFu69917s3LkTq1atwje/+U2k0z3r5fbggw+ira0NK1aswIYNG3DdddcFHqNcLldhZslhypQpaGtrw/bt2zFz5kxMnz4dbW1ttuN6+vNExEfPepfqRnR0dOBb3/oWhg4dir333hvXXnstSqWS47E//OEPccghh2DDhg0AgCeffBKHHHII+vbti+OPPx7Lly83jh0yZAh+8pOf4KCDDkKfPn1w3nnnoVgsAgA2bNiAU089FX379sWAAQNw4oknOl7vH//4B8aMGYNJkyYhlUqhd+/emDFjBoYNG4annnoKd999Nx555BH06tULEyZMAADcf//9GDNmDFpbW7H//vvj4Ycfdr33IPezZMkSHHrooWhtbcXXvvY1417cUFUVl156KXr37o3PfvazeOWVVwAAv/rVr3Dsscdajr3jjjtwzjnneI4HAAMHDsSXv/xlvPvuu8Z8Dz30UPTu3RujRo3C97//feNYHhU+8MADGDFiBE477TRMmjQJiqIYmYI333zTkuotFApIpVK49957MXr0aAwaNAg33XQTeLOqlStXYsqUKejfvz8GDRqECy64ALt37zau6fY737p1K6ZNm4bVq1cb1966dSsWLVqEww8/HL1798aQIUNw44032u7Z7dwgr1uRTCaDiy66CG1tbfj444+NKPS2227D4MGDcdlllwEA5s6di/322w8DBgzAWWedhY0bN/p6jhRFwfe+9z2MHDkSgwcPxkUXXWQ8R3v27ME555yD/v37o2/fvjjqqKOwfft2AMFet7fddhuGDh2K3r17Y+zYsfjrX/9a8b6JGsCIumfUqFFswYIFlseuvfZadtxxx7HNmzezDRs2sPHjx7Pbb7+dMcbY/Pnz2X777ccYY+y73/0umzBhAtu6dStjjLHXX3+dDRkyhC1dupSVy2V2//33s8985jOsVCoxxhgbPHgwmzhxItuwYQPbtGkT22+//djPf/5zxhhjV155JbviiitYqVRinZ2d7OWXX3ac74oVK1g+n2fXXHMNW7hwIWtra7P8/Prrr2cXX3yx5bGnn36arV69mqmqyhYsWMAaGxvZu+++G+l+Ojo62NChQ9ncuXNZsVhkv/71r1kmk2G33Xab47zvu+8+lslkjOMfeeQR1q9fP7Zz507W1tbGWltb2apVq4zjx44dy/70pz85jnXUUUexX/3qV4wxxjZu3MiOPfZYNmvWLMYYY88//zx79913maIo7O9//zvr168fmz9/vvHcAWAXX3wx27NnD2tvb2crVqxgmUzGNteTTjqJMcZYR0cHA8BOOeUUtn37drZ69Wq2zz77GNdfsWIFe+GFF1hnZyf717/+xY466ih2/fXXG2N5/c7F555z2GGHsd///veMMcZ27drFFi9e7PgcOJ3r9bp1+n3weyyVSuyuu+5iffr0YW1tbWz+/Pksk8mwW265hXV2drL29nb27LPPssGDB7O3336bdXR0sG9+85vs5JNP9vUczZ07l40ZM4Z9/PHHbOfOnWzq1KnG7+unP/0pO/vss1l7ezsrlUpsyZIlxmva7+v2rbfeYvvssw/bsGEDU1WVrVq1iq1evdrxvonaQqKYAJxEcdiwYeyFF14wvn/qqafYgQceyBjT/hj33Xdfdvnll7MpU6awXbt2GcddeOGFtjehkSNHGm9sgwcPZo8//rjxs3//939n3/72txlj2hvaV77yFYswuPHXv/6VnXXWWWzAgAGssbGRXXzxxay9vZ0x5iyKMl/4whfYvHnzIt3Pc889x0aPHm352eGHH+4pivLxBx98sCEAF154IZs9ezZjjLE33niDDRo0yPhnQuaoo45izc3NrE+fPmz48OHs61//uiHkMpdeeim74YYbGGOmKK5bt874uV9RXLhwofHzH//4x+y0005zvN5vf/tbdvTRRxvfe/3OnYTtyCOPZLfffjvbsmWL4/gcp3O9Xrcy9913H8tms6xPnz5swIABbOLEicY9zp8/nzU3N7NisWgcf+6557JbbrnF+H779u0slUqxf/3rXxWfo4kTJ7KHHnrI+Nlbb73FmpqamKqqbO7cuWzSpEls2bJlnvfLmP11y+//3XffZUOGDGEvvvii62uGqA8ofZpAGGPYsGEDRo0aZTw2atQorFu3zvh+06ZN+PnPf46bb74Zra2txuOffPIJvv/976Nv377Gx+bNmy3nDhkyxPi6ubnZWMO56aabMGzYMJxwwgnYf//9cffdd7vO8bjjjsMf/vAHbNmyBS+++CKee+45/OAHP3A9/plnnsGECROMFNWLL76ILVu2RLqf9evXY++997ZcR3zOnHA6fv369QCACy64wDA5/frXv8bMmTNtBhiR+++/Hzt27MCnn36KRx55BP379wcALFq0CJMnT8agQYPQp08f/OIXv7DcazqdxrBhwzzn6cSIESMc571+/XpMnz4dw4cPR+/evTFr1izL9QD337kTjzzyCN555x0ccMABOOqoo/Dcc8/5mp+f163M5MmTsWPHDmzZsgWLFi3ClClTLHPO5XLG9+vXr7eM3bdvX/Tu3dsyvtdzJM+ro6MD27Ztw8UXX4zJkyfjK1/5Cvbee29897vfhaIoACq/bjnjxo3DnXfeiZtuugl77bUXzjvvPCO1S9QXJIoJJJVKYciQIfjkk0+Mx9asWYPhw4cb3w8ePBhPPfUUzj33XCxZssR4fMSIEZg9ezZ27NhhfLS3t+Oss86qeN0+ffrgZz/7GT755BP84Q9/wO23345FixZVPO+YY47BmWeeaayppVIpy8/37NmD6dOn45ZbbsGmTZuwY8cOnHjiicZ6T9j7GTp0qOF4FZ8nL5yO5wI1efJkFAoFLF68GI899hjOP//8ivfuxIwZM/DVr34Va9euxc6dO3HhhRda7lV+fuTv3Vi7dq3jvK+99lq0tLTg3Xffxa5du/Dggw9arueF07XHjh2L3/3ud9i0aROuuOIKnHXWWY5rtU73Uel1GwR5/GHDhlnG3rlzJ3bt2mUZ3+05ks9ds2YNmpqa0L9/fzQ0NGD27NlYuXIlXnnlFTz++ON47LHHfL1uRS644AK89tprWL16NQqFAm6++eZQ901UFxLFhDJz5kzceuut2Lp1KzZt2oQ77rgDX/va1yzHnHLKKXj44Ydx+umn48033wQAXHLJJZgzZw6WLl0Kxhja2trwzDPPoL29veI1n3nmGXz00UdgjKFPnz7IZDLIZDK24xYuXIiHH34YmzdvBgC89957ePbZZ3H00UcD0ASOjwNopqFSqYS99toL6XQazzzzDF566SXbuEHvZ9KkSSgUCpg3bx7K5TJ++9vf4p133vG8x7Vr1xrH//rXv8aaNWtwyimnANDehM8//3xccskl6N+/P8aPH1/xOZPhcxwwYAAaGxvx2muv4fHHH/c8Z6+99oKiKBUF/a677sLOnTvx8ccf495778VXv/pVAMDu3buNsoY1a9Z4RvgygwcPxqZNmyyR4y9/+Uts3boVmUwGffr0QSqVcnQWO53r53UblpkzZ+KBBx7Au+++i0KhgOuvvx4nnniiJQp2e45mzpyJH/3oR1izZg12796Nm2++Geeeey5SqRSef/55LF++HKqqonfv3shms8hkMr5ft4DmyH755ZfR2dmJpqYmNDU1Of7tELWHRDGhzJ49G5/97Gcxbtw4HHbYYTj22GMdLf9Tp07FvHnz8MUvfhHvvPMOjj32WNxzzz249NJL0bdvXxxwwAH4zW9+4ysaWbFiBaZMmYLW1lZMmjQJ11xzjSF0Iv369cMTTzyBcePGoVevXjj99NNx3nnn4corrwSgFdC3t7ejf//+mDhxIgYOHIgf/ehHOP300zFgwAA89dRTOO200xznEOR+mpqa8OSTT+K///u/0a9fPzz77LMVC94nTZqEN998E/3798cdd9yBJ598En369DF+fsEFF2DZsmWho8RUKoV58+bhmmuuQWtrK37wgx9g+vTpnuf069cP1113HT73uc+hb9++eOuttxyPmzp1Kg499FCMHz8e06dPN8Rm9uzZePXVV9GnTx9MmzYNZ599tu/5HnrooTjjjDMwatQo9O3bF9u2bcOf/vQnHHjggWhtbcWNN96I3//+945pZKdz/b5uw/ClL30JN954I8444wwMGzYMGzZswK9+9SvLMW7P0WWXXYazzjoLEydOxH777Yf+/fsb/zysW7cOZ555JlpbW3HQQQfhtNNOw4wZMwK9bjs6OnD11Vdj4MCBGDp0KNra2jB79uxY7puIlxTzm0chCAK7d+/G4MGDsXLlSowcObLW0wGglRs0NTVh7dq1tjVRQoOeI8IvFCkSRADmzJmDKVOm1I0gEgQRL+7WOYIgLAwZMgTNzc145plnaj0VgiCqBKVPCYIgCEKH0qcEQRAEoRMofTpw4ECMHj26SlMhCIIgiOrw8ccfOzZWkAkkiqNHj8bSpUtDT4ogCIIgaoHfumJKnxIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCEDokiQRAEQeiQKBIEQRCETnJFcfNmYPp0YOJE4P/+r9azIQiCILoB2VpPIDQzZwKvvAKUSsC0acCHHwLDhtV6VgRBEESCSa4ovv++JogAkE4Dqz8A+rUCqRSQSusf+tdp/Wuk9M8EQRAEYSe56dMrrwSam4HWVmDUKODIY4CGZiDXAGSyQAoAU4FyEehsBzragI5dQMduoNCmPVYsAKVOoFwCVEU7nrFa3xlBEARRI5IbKV59NXD88cDGjcDJJwMNDfoPMu7nMGYKH1PND6UsCCJzjjb51+k0KOIkCILoniRXFAFgwoRgx6dSQMpDNAF34VTLgOpTOI3PJJwEQRBJItmiWA18C6comswUTsY08XQVTvkxEk6CIIh6gUQxDIaYeSzJugqnao1GXcWShJMgCKKrIVGsFpGEU3oMKdNBS8JJEARRNUgUa0lg4RTE0kk4uRHIa52TIAiCcIVEsd7xK5xgUmqWr3E6CKdYu0nCSRAEYZBcUWQMuO464O23gQcfBEaOrPWMagdvTJDxIZzcCMSFUi1bo1ASToIgejDJFcUVK4A5c7SuNj/+IfCDO7U3bONNXXhzFx/rqRgdfQCkXdy1voUT9tpNp5QtQRBEwkiuKO6zj/axejVw+plAJq+/YctmFeGNHnAWSotZRRRT9Kw396DCKbppeTkKT9cC9ghTjjyNaxIE0V1gjCGV4L/r5IpiUxOwfLn2Rpz20a2Oi6IR8chv7uJjqlVEIQmn52PJfTH4QhROZJwbCFmeay6avHOQk3A6dA0yos0e8JwSRDfgvvvuw3XXXYeOjg5MmjQJTzzxBPr371/raQUmuaIIBEuJ8uMqFeaLMAehND4UAGXrYxDNLC7p256Q0rU8137a7onlKIrQds9DOKnRO0HUDc899xyuueYatLe3AwAWLVqE6dOn44UXXqjxzIKTbFGsNhbR8iGmluhTiEIrpnSlN3fHlK6wTtddBMDoHhRHv1oSToKoFc8++6whiABQLBbx8ssvJzKVSqIYJ5bUog9cU7piLWIPT+lG7VdbokbvBFFtBgwYgFwuhxLfzg9AS0tL4gQRIFGsLXWT0nWIVJNEVOGs2K+WGr0ThBeXX3457rvvPmzbtg2lUgnNzc348Y9/XOtphYJEMWlUM6VriCi6X0rXt3B6NHq39aulRu8EAQCDBg3CsmXLcP/992Pbtm047bTTcPLJJ9d6WqEgUezu1Dql62Q0qtc0pTE/avROEEEZNGgQbr755lpPIzLJFcV164Avf1n7/JOfAF/9aq1n1D2IO6WrlmGLVJOc0g0snPI/FNTonSDqmeSK4jXXAG++CSgK8PWvA6dPBfJ5KRLhEVJCUnxJJXJKV7V+XSml68doxOdVC+IWTrl2k9ruEUTVSK4oigX7qZRm0VfS1jdcMP39lPEDTZGU03he38uPGV8ToaCUrn/h9Gz0zteHhfuifrUEEYnkiuKPfgR8/DHw6ada+rS1r/fxskjKtYJOb6pux3DcotIggmt8T7gSJaVrmIq8Uroqv5B3+tapHWA14depaqN3SUAJooeTXFEcOhRYtMj/8UGjEy9cBVb+Xn+zVaV0oTiGbX5OwhlUcAlfkZhIV6R0q/G7EV8fofrVUqN3ghBJrijWktgFFtY3LlfBVa0CaztPnp+fSLWS4PYQQqV0HQxEckpXjFQt1+nClK7l3gL2q6VG70QPg0Sx1sQpQJXSvq4CC+nngsD6XWf1JbjdiNDronWa0rWkqL0iTtiFkxq9E90IEsXuRDUE1i3ta/k+osDK31cS2LjusSux3FNcKV2p/KXaKV0/wsnn7dnoXZ8r9asl6hASRcIZ480ohjSxLLDGYw6Cy1OP8jE90UnclSldP7u5+E2NplIBhFMU0ACN3nnkScJJxAyJIlF94hRYwC6StXYS14vAxprSVYOldC3/ePhI6RrCWWF+bv1qVVE4nUST+tUS4UiuKG7cCFx+ObB+PfC97wGnnlrrGRFdRexGJyeBlb/vhk7isCld2c1qPOaW0pUiUD9GIz6vqP1qqdE7EZDkiuLZZwN/+xtQLmtfL1sG7DMatndKeqETXsQusLCKRndzEgcVD6eUrq0hfcSUbioFpD3eyioJJ/WrJQSSK4orVmiCCACZDPD+e8CQgbD8x24hJXwSXtiWF7n45uh0jM8xIl+HSCRxClDNncROAiuN4YdqpHTlSFW8N8f0rfB9Out8D67CSY3eexrJFcWvfx144AHthdraChw3BWhutR5jeUNgwifmfgyTjrccI46hmj9Xg4whHlNNARePIQFPHNUQWFlcAzuJ9e+1ifmLXn0Jrtt9x5XS9bHHqE0800Aqaz3O5gIO0+hd+EzUJckVxbvvBk44QVtbPOssTRhlXAWgDoldwMVj4hBw6RiDKkbPJODxIGY6oj4V9eAk9nos7eMGY03ppvVrSvORI09q9J4YkiuKqRRwxhm1nkV8kIALY+iPywIe9joWqhQ99xQBj1NgAbtI1spJnMpYxVW814opXYdI1TZ+WmvDl8rqgWpamLN+HjV6rwuSK4pE7UisgAP2KEU+Jmj0LLpSpfNiE3D9a6AK4htXpB+SoGuOXtTESSyKU8r5ObFF0gxQS9ZI1ZbSzcCoC+VjMBVgijBW8vrVfvDBB7j22mvx2muvQVEUHHnkkbjnnntw4IEHAgAee+wxfO9738OGDRvQ0NCAL37xi5gzZw569+4NALjyyivxyCOPYMyYMXjiiScwfPhwAMCjjz6KJUuW4Gc/+1nkOaYYs71ruDJ+/HgsXbo08kUJgnDAVcD1r23HxBGl+xzD6RgLXSW+cUT6PgjkJPaKcH0KLLNOVx9ECCbleYjjuqy9igIvC2XUfrWlotalKN8Y6LwlS5Zg2bJlmDZtGlpbWzF79mw8/vjjWLlyJQBg7dq1aGpqwsCBA9HW1oZLL70UAwYMwD333IMlS5bg6quvxvPPP4+bb74ZHR0duPfee7Fz505MmTIFL730Evr06eN6bb/6RZEiQdQLtjeXmCKoauBHwC3HBRBwBlReB6+mgIvH+BHftHmY0xh8DZHP3XhMmrNF7DwEV56D4/X0uRgirerjKdK5TDpfjDbT1q/F+yt1aJ87ikC+BchqUrJ9O7BtG7Dvvs5aOWHCBEyYMMH4/qqrrsLtt9+OrVu3YsCAARgxYoTl+Ewmg3/+858AgI8++gjHHXccGhoacNJJJ+Gee+4BANx000249tprPQUxCCSKBEEEJ0kCDgSMnsVj/IhvACNbGAHnn1Jpq+DJhzFmH8aIImVRdbqefoyiOvzMejHGGFJ8DsU9QBFYuqwXppyUgaIAX/uaVhxQiVdeeQVDhgzBgAEDjMdeffVVTJ06Fbt27UJzczOefPJJAMC4ceMwZ84cdHR04IUXXsC4ceOwdOlSvP/++7j33nsrX8wnJIoE0ZPwv1rCT/D1UIUfxDAXl2PjmEuU54RHk/whm1iFeE685mMML0Xg/Geel5P/awl6387ncYF86MEi9uxpAgA8/DDwP//jnVn99NNP8a1vfQt333235fHjjjsOO3fuxLp16/DAAw9g9OjRAICDDjoIZ599No4++miMGTMGc+fOxZlnnokHH3wQ99xzD5544gmMGDECc+fORd++FTad9yDZotjRocXrw4bVbg7d6U2mXuYR11y60+/G9eGwb2x+cXlXc32zCxAuBjaABJlLwLEDzSXIPPzUWjKrqIpCaosixWgw5fI47GnrKpJKaZHjkQdvwS+btfTnuHHeT+nmzZtxyimn4PLLL8fMmTMdjxk+fDhOPfVUnHPOOfjHP/4BQEu3XnXVVQCAuXPn4vjjj4eqqvif//kfvPnmm7jrrrtw55134s477wx9P8kWxVmzgCefBP61FsjnPQ6s8zcZz7/Har3JJPXNzmdBNz+/as9JvbzpVnsuPQSntTw/j4s/VwOOYSCtX8rmJOlLLSIUHmDCz2X3rAw39QR8nxP9mDwyFB9bu2w5Lpo1DvsfBnz0kdZ5043t27fjlFNOwRlnnIGbbrrJ87rlchmrVq2yPb5x40bcf//9WLx4Mf74xz/ikEMOQS6Xw5FHHhnZgZpsUbz8cuCII4DWSqFyPQkAQRCehBUoT+GKQaA8H08L/4QJxzImpDUd1hWdyjUsZRr8GuK4wjykL22IdZeVUrMCTD+eqQxquYz1Kz/Exg/+iXKphL3HjcWQMfsj19CAUqETmz/6BCMPGQc098GkScCkSe7j7tq1C1/4whdw7LHHOkZzjz76KI4//niMGDECa9aswU033YSTTjrJdtx3vvMd3HrrrWhubsY+++yDN954A21tbXjppZew7777+rpHN5Itisceq30QBFEd3MwncQuXm7syrEABQncb4Xi3MSzjONy/l3gZNYTC45b70a/rWeuYsj8vtmvqBf1OpiZm+8LDZONwmwCYooIxhuKePVj1t6VY8/Z7yDXkMfLQg7HvUUdg5KHjjONVVcWHry3BgBHDMWzsAUCjQ0cxB5588km88cYbeO+99/CLX/zCeHz58uUYOXIkli9fjuuvvx7bt29Hv379cNppp+G//uu/LGMsXLgQO3bswLRp0wBojtapU6dixIgROPDAA/HEE0/4mosbVKdIEEkiiOjEJVwGTmIUVrj8Ph4R13pDn19zZAFzEjWL6MJ+XbEnqyiixhi8dhAw06PC+XwbLAC2onwGGN12+M/5Dyxv8UbYClVvdr57yzYsf+FlrHnzXeQb8xg9/nAccPzRaOnfz/k5TWWAxhagc49Wq5hrBHIN3r+HOoDqFAmi2sQhOrEKlNvjPiKoimPUEE/xqvRzp2hN/lrqX+pYXM+v5SBsqiJcV2hH57RfI++dCmE8QN+NQ9+VQxZJ/n06Bctmy3DpVmMRS/N1o6oMjCnY/um/sOKFl/H+K68j39SI/Y4ejwOnHItjzv2K9+8hlQEamrR2dQDQ2Mv7+IRCokh0D6qSzuOf4xQo8fF08gQqDH7Fyxalic+9LGTyY/pz6Sd6k+cmC5wtsnMSOkG0LNtRSYJniJ0CSzNwSzu2lC40aet81DLMVm0w75OPzccybk94rgAwpkItK9jyyVqsXPgq3npmPrL5BnzmuKMw9oTjcOyFM5FO+zGupYCGZiDTM+SiZ9wl0bV06TqU8DiASAIFxLMO1d2odgpSFDU3QQvyPFvW+hRJ4CSx42NbojLezSVrF0DjfGGvRaORt7znov6R0UUTgJHi5GKpKHAUScY/mCmOXMD4z3lqlYsgoIvgJ1j58iIs+c0foCgKxkyeiLEnHIfLH38YuYaAac58M5DNBTsn4ZAo9gQStw6V0DRfPVNRvOD9c0ASKlm83EQNwjlxzd9F4CzzlcTMEDrpMeO+YL6WLRGeIHZ8TU9uwJ3OwpoWFURPLWsdYhgzhS2V0SPDjHYuF1SlpM8rI8wZmr+GqbrPhm9dlQaYAqVcxpZPPsX7Ly/Ca488hj3bd2DsCcdrIvj7B9EyYIAp/mIUW4lcI5DN98i/KRLFrobWoYgwVCUFKfyuoqQgI9+Tg7BZojl+D8KcRGFLS4+5zZc/HypPZ5Yl4ZN2neDRWzpjfs8DMzEtqpbM77mo8XOzWeF4ph9f1L5OZ8yxU7pYGmnTlC6c+mddGFVFwda16/H+K6/h9V8+ho0frMKYE4/H2BMmYdYjczFw9AjtHEMIhd+9H0HM5jVB7MF/v8kWxbY2YOdOQN8+JDBJXYdKAVbhIoGqeyptfY0kAAAgAElEQVSJWr2lIKPeayWBq2RIMVKX0qa+Fa/LoKVMpRSnIXop+w4R2awpYgAsaVJV365J4QIqpTvTaSCdB3Jpcw6qon0oRV0o+XEZPRWZFdKnJe2tIZ0xo8hUSj+/DBUpbF+/ER/89XUs/vXv8fGSf2C/YyZgzEmTcM7dt2P4uAORzujpTabPjZNKO4ijC+msZqJx23GjB5FcUWQM+OxngY0bgefmAxOPMR/XvvAQLocXiLFIDgQSKKBCFCU9ZhmHSBS+ozSXYwFJqGTxqhNRc0IWOEhiJ/6cz9WSpkwJUZEkgIHmIFxTjPDc1vPSQtRmK2MQRFQRo0Z9HVJMd2ay1mgRkvip+u4TXPwyWS3qMuaqAOWS9jWPEPmHoot4uQyWzmLXpi344NXFWPLY/+LDl17F4DGfwdgTJ+G067+NfY88FLnGRhibFItlGuJ9iZ+9okTZUUokWBQBoFDQXuTFovkfDqX5CDf8rp8FTUFavk57/7yeCLpOZ4vcXAwpQLh7tZlYJAEU5yCaWCrtRM/PN9KcipTuFFKkuawZrRlzUozIzXCRioKby8PYwYKp2nGlTrsAZqQIEQDSWezZ3YYPX/0b/vGHZ7BiwUI09m7F2JOmYOL5X8WF9/8YLX1a9fmlzEhU/kfbesMVvtfPbWgCMj3LROOH5IpiKgUsXw5s2qRFjET3pytTkE4RnXFuHSPfu9d6naMhRYhYnQQ+jnnJEZ4qzEfeBNey5uYxB0OQpBIILqbiumA6B+SEqJWfz89ROvUoUI96ufhlsnqRuh558UixpB9vCGVGiBIVLRJUi8bPOzuLWPX6Urz9x/lYuWAh9mzbjjEnTcbYkybjjP+4DgNHDNXOzehrinwNlK8x8vl6/j48osO8Lob1/lquEckVRQAYOFD7IJJDIKMI7I8BzoKVhBRkWGyGFAexE9OZjoaUlBltVDKkhJ2jGOk5pTgBQfCEKDOb0ssNKsxHFFRR9Pj44thiulMcl89TVQBWMsXPEv1lgFzOHIuXTvAUKI/U0rp7NJcDd4NCUbQosFQwxiojhU/eXIH3/rIAKxYsxPr3VmK/iRMw5uQTMOvRBzF83AFI86iVC59a1iLOtL7eqej3ms5okSxTtM/cVCOvBfKoUhRHMtH4ItmiSHQ9cuTlNwUpippnClIwEiUhBRkFP0aUIIXjYdbpQs3VJcVZycTid15i1CaLoMXkkvEeXzS9GE5RRZ8fT2lKUaNxThko83NhjQAz+vqboh9X1A01ukiybAPWr/gAKxYsxIrnF2LVq4u1dcGTT8CX7/gP7DvhcORyGT36y+pCyMwUbUZPtfJ0bUa/tlrWjuM6xyCIn+1JND+ns1p06KtQnyBR7GlUSkFWSkdyunMKMgqW56tSqQEcIjeXdbpqP2dylOfHxJLJSo8FmKMcScrpTnGdj5tWeKTrNpbCoz4uZmLalEd/0nqhuFbI55AWBbOJX0Q/Vo8C+dgZTXC2rd+Alc+/hBXPL8TK51/S1gVPPgHHXfx1XPTIPLT06aWbeZh2jmGy0cWXPwbowpg1f85Tp6m0Hi2mzTm5Pr8AmWjCQaKYRAKlIB0iOqDnpSCjEMaQAkHM/BSOd8U92BybwmPGeh7//XNh9rGe53VN7pA0IjUp3SmWK6Tzla9lmGakCNDiFNVLJOQ1Q25w4ULI55DJmuuF/PdiGGY6NLFNwYzqcg1o37UbH7z0iiaC4rrg50/EmbffjIEjhmvnKyUzJZprMKNLVU+NZnNmypULJSCkTrOaQYjpvx9W1n7O3ac2s43+GJloQkOiWAts4uX0WMQUZFoUsG6cggyLbZ2uwnpd1MLxqt8LFx+XFCdgFaEgJhY/13da57PV9FVId7qNqQoRII/QeJRmRJQp6VxmCqCRNhXWDPNNdkenUjJFyxBLLVosFYv4aPFSrHx+oXVd8PMnYtZjP8fwgz+LNBOiTqWkCRp3nColQGHaeNm8IMx8/nlN/BSmpUsZpNSpaoorXytkqlAiopNrJBNNREgUwxBLCjIFw1ZNKcj48ExXSo8BUjSnP79hCserfk+S2MkpTj5P2cSSi0msxes7Nbl2q+mrVAxu3JtijwBtZQ8Z598Fj+oUUQAhmGYaHdKmetmEKqQnjTXDJjCksG7Ze0ZK1LIu+F//iX2PPhK5XFY3xOgp1UwWyOq9RdUyUO7UnvdMzowSFT3Sy+S0e1LKmnknmzXXERV9Pqr+O+ZRIRdBPl/xf2R+DXpfiExyRXHLFuA73wHWrQNuugk48cRg5wdNQcpCCHhEYZSCjBVZ4IIWjnNjRZTC8Woii55TilOMuPg95KT0ZhzzsKQ7+focT3fqzyOfh1jT5+f6FgONEAECsBS98zSm2/qhsQbI6waZmdrka4+iqYRHamLa1HCOmoK5be2nzuuCsy7ARb9+AC19++oRX1krsSgrmhjlmwWh7YAphE1CBMq0UpAsF8JOMz0K3dWa4elSPse0diyP6lVVEHaYz1uumUw0MZJcUTzrLGDxYqBU0j4vexsYOQq+hQ6Ae5Qmi5rLsUR4HNfpfBhSqlU4Xk1sgucQ9TmaWCQRj3s+sug51vQ5rM/5Gp8LoBAB2soeuLnE5e+JjyF+2Iwwjda58XsrF3XxKmt/7pmM4MLURLB9xw588NKrzuuCd/wHBo4aaQqpUgIKbXo0mAPSTdq9lUtaxMnrGPPN5vXLRVPkDWGGNu90RhdLVf9d57TvDYONYgq3UaMoZZkaepGJpgokVxSXLdMEEQCyGWDlCmD4UFRMQfKvgfp780w68j8f9VI4Xk3EtUknx2alnRWqFbXKaUlRBC3pzjRca/r8Xqdi2UOF6M+Yr2oXQS6ibmNYhLPsaIrh55Q6O/HRa4ud1wV/9wsMP+QgpFMpMxrs2K1dK5PTxDSVNiO/YkEXwpyWMmWq1u6t1Cm0eIO2TljsEFKoQpSYzQHlshklZnJW5ylfU+R50lRau9+GJvOfQSJ2kiuKZ58NPPaYJowNjcAxxwENLbWeVffDjyGlYuF4nRhSwiCnFJ1cnIAQuQqmkrBCE3R+FoNLpRZmIdOt4n0bEaBb2UOFtUQxkuQpUNkII5dPiOfyCNDFFMNTiaqqYv27y7WU6IIXsWrR36zrgsdM0PYX5GuSxXYYtYOZrFnorpT0yLMkRKgN2lzKRTNSzOY1gZRFM50V1h316LZcBMqq9r1RnyiUYfANfVVmpk5zDfW/ndPKnwIbFwJHPww0DKj1bEKRXFG8/35g8mStzdvMmUC/frWeUbLwclrWW+F4NXEysYTdWaGqc3QwuPhtYRb4eoL4Wcoe9LUtt7IHz/H0sbgZBjCdlbkG8x6czlUk8ZRMMeJ5xrrgghex8oWXzXXBb16Iix59EC39+8NY/1PKWkoUzBS6tP6WqJT0cgyhdIILoVICOvfoYqw/riqa0DFVe27yzaaZJ53WSy9ULSrkcy+XtOiSl05wMUylzPtUy0CmAWhIiInm7ZsApQD86zlg9Lm1nk0okiuKmQxw/vm1nkV9YTGcyKLnsU5nWa8T1+kSKnQi8n1H3VmhqvNkdtFzqumLku60XZMLlhABimUPvH7QrXDeaUxLCrQsjCcV4TuNp6qmABqmmKz29y67SAFzXXDBi1j5/EvWdcHvfw8DR4/S56VHg517dKHTU7INzTDcnUoZ6GzXhSgrmGj09cDOTm0s/jigR4oFM2UKaGJXLmpCmG8yI0cjhar/PJPTXaolvYxCF2seWaYzQGNrskw0Rz8EbPorMPyMWs8kNMkVxZ6CoyHFZb2uXgvHq4mja1OM/LrYxOJnvnG0MAt8XUn8LMaXtBm9eAmW2724GmF8OEn5vCqYYjilzk58tPgNQwQd1wXTaXNuxYIpspmcdX2Q6ZEbd6ZyE02mGQDTfta5R3vOuMAhZa4TAno/Ud1RWiqY0WMmp0WBSkmPqhuFSDJnCmOWR4l6WUZZf000JtREM+oc7SPBkCjWAldDiks609OQksB1Or+Iz1M1dlao5rwr1vT5bGEW9toWsdIzA/Jef0GuWckII5laXMdwM8W4CKiqqljP6wXd1gUbG83xuTjxUga+NsjvVZWFUDfKZIS0qREt8tq/jJkKVRVTIHkqla8V5pvNNGoqpYkhN+Ck9DVHRXerZvMwSjGyOX0shUw0dQCJYpz4ETjHdTrhzbveCseriW09z8PEEnZnhWrOXW5hJs7dVtOXi1ekLe7SCmUPQWoJxbFFATPWFLmr08UII49jCGDZFFEHU4yIr3VBjqpoIsMjTVFgeaTFhUrR91M0fs6FUDfZ8DU9Hi0apRUdppEmzdOhQqSYbdCEr7NdT/Pqa4ylgpn2FcUwpZrp0zQ0YUyCiaaHQKJYCS+npSyAgD2a42+O9Vo4Xk1cTSzi2mYFE0utnye3dT5bC7M0QtX0+Z2DreidXz9jrjNWitRcx3cxwqQz5pu8mxFGHsfNFMNFyGFuvtcF+XPB6wbFBtvZvCZkfHwuSmW9b2g2Z0aM/OdFbqTRBS+vN/8ulwQDTl5LZUJ3mhY7jCbgZqTYqUePzXpqtWAeoxS173N5AGlTDHkKNZvX1zV7wPtBQuiZoiiuwXmVGsiGlCQWjlcTOcqr9s4KVb0PHnW5pTvTCNzCLNQ8uPAKEaAt+vNR9uB1Da91wCDrigFNMRzf64LGnHWTDP8QawfF/qVM1Uq0lBLAHaV5YZcIpuqp1RKAlHV/QbWsiZdSkuoS9SiSqdrxjb1MwWWqFiVm87pgtmvi2NCkG3A69OgvA5R4IX/e/LqxV7JMND2E5IpiWxvw5S8Dq1YBv/wlcNxxQE8rHK82jo5N4bFq7KxQTSyRHhcet3RniLRjoLkwqyg5Fr1HLK/gvyvXrZECRJe2sSRTDHdxOozjq16QrwuKz43RUk0RUq6NppBYjtOFjkdoxhqiohXLl7lQ5rV6Zl4cXy6aa34ZYa2Qd6RJZzTh4x1oeCkG73HKC/ZzeSDbrF2rqIthOqt9n9IjZW60aWxJpommh5BcUXziCeD114H2duDf/x/w2itAdyscryaWNTGXFCcgRMV1YmKphC3aUq0iHrWFWej5eJQ98DXHKGYbP0aYIOYaR1NMyreYBloXNK5XNlOjgLV2kF/Hkj7lQpjThI7Ph68F8jXErBQx8jVB/jN+rspLMnQzTaPeDMSSNtVLMSyRYoMuvEVBDHWzTa7RLNHINZqZEqJuSa4oHnSQ9gfS0gIcfQzQ1JtebCJO63lyirPaOytUC8d0p4rYW5gFnpdqCp9n2UMMQmy5TkgjjGXuDJYuMT5NMZxA64LiPRjRIK8dlASOz40fVy5pj3MxM1Kj+jHlktU5ys004hojj/4yWRhrhWXBIZpuElKtip42bdHmyzcY5v8UlDu1j2xeu2apU59fg5mSJRNNokiuKI4fD7zxBrB2LfD5z/e8F5yfovSu2FmhmnjV9BlZgBhamIWZlyUq48YbIfqLs9SCC5ZFbCGZWHwYYSxjuplisp6mGE7gdUHjPhQz0jNMMjlbZxqLyHEzTCZnTT0yZpZX8P0LuXNUjBjLRe34bE5bx+Np1WKHsIbYbE2RAvqaY5MZQXKxS6U0IVQVXVzz2vdcLBVdgLN5oKm1/v/OCAvJFUUAGDdO++iO2GrdHKK+JJhYKiGLutzCTOwwkw6wBhbb3ISI1Bb96fPy2usvzDU9C+L1qC1UiYVQGuHTFMMJvC4oXptHeW4mGcuxQmpU3AlDXEfkx5RLpljm9d0yjJ/ru2TIZhuLSHLHqR4tdrZrx+Ubtd+nUgI627SvDWeqIIbZBi0yZIq5xlgqaM8rmWgSS7JFManwOkW3CK9WOytUCzGVW6mFGW8r1tX36Fj2oK+rxlH24HZNfj2LWIUwwjiNazPF2HeO8MJxXfDzHuuC8rV5gbzYYNspeuQiqAgpVC5y/Bix1hApM+rj46mK5vbkQpnV+4/yqLBUMLdy4iLJVGu02NiiHV/SaxMzWS1Fy5hV/LINZiPwXAOQEtKm+WazEQCRSOi3Vw3kwm6vonRx/aurdlaoFrKpRBTBarYwCzxHLoBeZQ/Z4CnJiteN0Qgjj23UGYrri8GEVV4XbN++AweeNBljTz7BfV1QvD4XNl4Owdft5Oty0eTrfzztmZdSqKqqRXxOzlF+XR75cdMMT68a6Vfd8ZnNa31EeflFZ7sucnkg36r908BdqnwcxrQ1QS6G6Ua9SF9wm5Y6tfHJRNNtIFEMg2tRuvBYrXdWqBa2tK4gfIbJpUotzMLMtdplD67X5mt2ogBCWLeL4Db1MsVk81pK1IeYO64LHnsUxpx8gvu6oOX+ylKE51GawVRzfZA33BbX/2zHOThHeT2iUjajRrE7TSqlnVPscDDUwJo6zTWYXWuKelu4bA5o6qWPIYhhRu9b2rnHFMxSJ1BqJxNNN4RE0Qk/JhZ5Pa8WOytUi1q3MAszX9H5GWWvv7DXF12gshEmgFA5jy+YYowief+mGI7ruuDnT/ReF+T3yES3qFA7KEd45gXN1KjRZzTvIIQezlGjQ40q1BtCj/CkdcRy0VpOwfchLOnlEpmMKbCqord2U7SoL9+qPdbZIYih3pGmIIihUjK/JxNNt6RniqJTtGMrSncysYiRXzf4Y6iHFmaB5yyVPfD5WrrOVHGuvowwjeGv7brOmLUXpvvAc13wNw+hxWsfUtHUopYBXhzvZcyxCKGqR4QOaVQe7fKoUHaO8mN4jR8XO0vUqJprhbycgp/Pt4HiEWCjWIu4B0aNIW/ibaRTuRjqrd6MdUVFO49MNN2eZIvia68Bq1cDM2YAeX0vM6N9m1STJ6Y463FnhWpRLy3MQs1bMr1E3esv6hx4lGbU78VgvHEyxQBCvWGw8UOvC3LcagfFBtu2cxQz0uNlFk4RrLj26OQcFccrF62mGaPMQjLd8LpGYx2xrJdHcNHTXaNKSUt3AnrqNOcshmrZdJw2tujp1XYy0fQgkvsbXrYMOPlk7evFrwM/+oGwngfrmzsvSq/1zgrVxBLpqahpC7NA8+ap2gplD0H3+gszD6d6QNEIEzBKc72O2CVGLZvX4FFYgHuMtC4ozqdSg235HHHtT+4zKp+jKuYu807OUT4mFzqmmo24xVIMngYFzHIKLpQlvYiet2CT1xFTKU1801kXMdQjQS5+qZS+rkgmmp5GckWxrU1/4RaBHTvi6xRSzwRqYVYlA0kUHB2YvOxBFIYuqEU0UpRORhh/tXv+ruNgirGsNbqsx7kQaV1QvPdKDbYd70MovK8ohKrp/uTHOnWqEVOojmuJiilstr6mqtmlhrdgy2RNgS11mv/MZLJmStUorWg21xYZMyNWHqWSiaZHklxRPOYYYM4c4P33geuvh7GDddJxrelTpHRn2prurKfo11b2INyLU9lD1duvieuAfJ2OmSlKHoXGsU4kpkIjmGJEIq0LAtYUrbjLvFwY73SeEUWKfUYrOUyF9UQn0VRVsxE3361CrkvkQsjLKZpaTVONqmhRodGCTY8ouZOUCyg32yhlzRzDFD3q4+uIe2B0oUln9ebeHWSi6eEkVxQB4KKLaj2D8NRrC7OgVCx7qELRu9/5VMMII1/LZoph5s4RIdOtkdcF+dz8NNh2PE9Y9+NRpBzliceLxfdu9Yli3aDYiFtcpxQdpmI5BU+R8ugPkIrzhTIMMTXrJIZ8jVDVH0tnzXVEMtEQSLoo1jt+W5ilulg4wuBY9qCaglPtsgfPObkUxFerAw03oSg85RrOFMOJvC7I4fsb2moHXQRNvC8jjVk2/5Fx2+LIzTmadyi1sBhrMnbB9CqnALTnm68lptLmuqDRv7RTd5jmtRrDFBfDDkkMmbmpcE50nQrriGSiIUCiGJ0ktDALimvZA3fpVrnswXFOQkpWNMNY0rERt19yuqaTKcbnzhFuxLIuKM5PbrDtVTsonmspvk97p1P9OkcBM40qN+KWNw6Wd6cQjT2WtUTJYaoq1rZr3HCjlLX0pyiGYOa6I0/DMlVfWyQTTZwUCgXMnj0bq1evxvXXX4/DDz+81lMKBYmiX5LQwiwo8j3xCLAryx5c5yaWQuifAT01mQm3M0TFa8ZrihGJvC4ozlEUs1TKf/2ikeosuzfcljGco7xoPuccQRrRo0MjbouxxqWcQpxfiUeN0lpiuWTdjUKsSSyJTlG+5yHf41DvVAOYAkkmmti55ppr8NBDD6FQKGD+/PlYv349Wlpaaj2twJAoiiSphVlQZPGzGF/S5ht/NcseXOcmrwOWBWHOVm9ePN3oaIqJ5j6NZV3QmKcQDaoKPBtsy9gabvNUp0OEZ1zPyTnqYq4Ryy14xOeURnXancKSQi2Z64Wi4MlribzG0FEMdbMdPz6TNbeKKndqYssFstZ1uN2Qd955B4VCAQBQKpWwefNmEsVEELiFWR3V9PnBqeidR1li2UOtBL2iEaZKa6s2UwzfOSKaKYYT27ogn6tj7aBLg23b+aq14baRUnWpO+TXFI0wXtGnH9MMYE+B2iJHVd+RomivA5VrD8W1REMMmSmSgH4tvQyDd7BRSvp2Thn3NVIiFm644QYsXboU6XQaEydOxKhRAf7xqyO6ryi61vQpQL22MAuCpVONW9lDOt69/kLN0cMIE8Gc4uvaYuQpmmJiEN7Y1gWN+Yq1gyXzHwS3CM3pfKMcQnFvuG05h6diecrTQ3htqU+P9m3y7hQ8BWo8efqaoFIyd7UXU6ilgiaWmYzVAOMmhjzKTKXN4xXemYZMNF3Faaedhg8//BAbN27EoYceilRS3kslkvtKUVVg+nTg7beBp58EDjjAKoL13MIsKJbyDUFckDLFr9buVYsRRliTq6YRRr5+FUwxIrGtC/L5ujbY9khtijg23K4QTVrETTfYOKU8Ldfg2zfBXlNoHMejwkouU7EFmzCOWI4hO1/dxFAta3WJqZRZoM8dpbzkgqdaiS5h+PDhGD58eK2nEYnkiuKmTcDTT2tfP/kkcN21yUx3itiK3oUI1yYuNRZ3NyNMOqP9h18NI4x8fdEQE6MphhPruiBgCgMvmzAabAco6hfTqjzNGbT20I/T1CiTcDHN2I5zKKfgx4it1rJ5q1AZUSNv3C24VJ3E0JY+1d2jYGatIi+5SNrfP1EXJFcUBw/WOtn84x/Axd80G/8mhYpF79wZWAet2iqtA3aFQcfRFJPVBTielmyxrguK83ZqsF2pdpAjRpS84XY25++eZedoxsU5ajnepRG3ZU4Vyin4fRuRn0PfWIsYCjWGXGidxFBVgM6CUHLB1xLJREPER3JFMZUC7rij1rOojK2Ug4uK2Ku0yqnFMPNVys4C2BVpWtsc4jXFcGJfF+Rzd6odrLS+J48RpOG25Vyp1Zq83ZLTtWyNuN1KLjzKKSzH8BZsOXtTb6XsXGNYSQyLndrrgPcsBchEQ1SF5IpiPVLrvf4Cz9eHEaYrXKpVNsWIxLouKM7fqP/z2WDbaQwjNSqkVoPUH3pt0ut0LVHg3I6vVE5huX5Rj2SlNUrLeqJUY+gphqrQhUbfCFhMnwJkoiFih15NYXAqe5CL3g1jTx1EfxxVFkD9DdxoU9ZF0aoYTYmGnBhNMZzY1wX5/OUG20FqB8VxbELoM7Xq6Bz12O4JEEwzLo24LccKDlGvNUVeBiFu2eRUf5hK2XuZuomh0dhb6EJjRIwFMtEQVYVE0QtL2YNT0XsdlD24wTuMWNYBIZh18kA6uhnF31zcTDHhd45woyrrgoD5fPJokKc0g85fHIc33Har83M8N4BzlJ9jRJGKeS2v5t5iOUW+1f4aEdceeW9VR3NNp/Z3IdcfuoqhUI4hrg+KIkkmGqLKkChyHMseVO1nXb3XX1AqFsTr0VdXiLbhoK2uKYZTlXVB416EaNDSYNtn7aAxjtSajbs//ayDGeuLRTOazOYrb/lkmGF4iYTHmmalcgo+Jo8ejRZskqlFLMaXxbKiGHYKXWiEPqf8cTLREF1EzxNFW9mDU9F7puv2+guKrTNLDYwwTvNxM8UEFRAfVGVdkN+LnNbN5Pw12HYayxBCn31GRcQSCsDZ2GK7ptiIm1n3GnSbn1c5hXGcSws2Y64eNYb8H6RSp7MYlot2s4zb4wTRBXRvUfRV9lCn0R9QP0YYeU42U0yqqs9lVdYFxftxarAdJqJ16jOayfovxg/qHOXXrNSI23aNCuUU4nEl3oJNaLPG8aoxrCiGunNU7jhDJhqixiT3Fbd2LXDSScD69cDcucD5XxOiPq+yhzruaGOsvYkCCGH9rQZlG8YamNSlJpPVnLT5+Av0q7YuyDFKJnjtoOByDRqRyH1GjYbbPiPLoM5R8R7ERtxevU39lFOI47q1YONwJ6miWF2hxrU8xJBHnYzZ90YskYmGqD3JFcU5c4BVqzQh/Pa3gRnTdMGos7IHN8S2ZE5GmGxeS0F2tYB3oSmGU9V1QUByeYoNtiu4NV3H4xGdLqph6hAtqVWf54tGGK9G3OLxlcop+HGGkLkYbGzHNNjLLtzEEHDuQiM7TXMVTEME0QUkVxQPPBBobARKJWDffYGm3rWekTv1ZISR5yW6IY15VccUI1K1dUGOpcF2yNpBEcc+owFE1a3VWqXUqhzlpX3sluGnnIKPLYqmLGT8GDGlKR9TSQzdIkAy0RB1SnJF8aKLgHwe+OQT4NJLaz0bE3kdkLsvjZRjDdcwnUwxgFCnWL15VXVdEBDuzaHBdpDaQRGLEOp9Rv1u3yTOSXaOuplfLOeKphn4c5z6Kafg92Vs6eTQgk0cj9cYyjvUVxRDVRNDpWwtoyATDVHnJFcUUyng/PNrOwe5/MDJCBNTS7LQ8xMNMXzniC4wGFV9XRCQagcFl2aUNK8YzfE0a9DxLDtLMC2d77cO0VKQ7yOy9VNOweFuUydjjDgHtxpD/nMvMWSqvg9iyb7eKKZQyURD1Cn0qgyCUQrhZISpbrrR3/w8TDEx7RzhRtXXBc0LCWVwkcUAACAASURBVNFgiAbbMlH6jFrGCeEcNe5JFDa/Bfk+yiksx4prgU7rih41hnwcixg6RI6lTu18OR1KJhoiQZAouiGXHjgZYXhHm5rNUTDFGEXy1TXFiFR9XRCw1g7aGmyHFHnZeBNaCEM6Ry3n6ulOt0bclnN8llPw8b1asHHEGkOn6NGPGPJdKjJZqSxDjhrJREPUPySKgE8jTGNt3ayuRfu8Fq76adqqrwtyjHq/mEwyfEzHPqMhutOoZTMq9OscFecg7l7vdy9Efk62QipWbsHmlqa01Bg6dafxI4a66KYdCvbLRTLREImk54lipYL4einml00xShnGzhFVNsVwumRdELDea5QG207jimuEYp/RwEIYwjnK8bt7vXxNP+UU4vyMLZs8zDx86yZV0Q0wDjteVBJDvmVTKuPeyi2VJhMNkUi6tyiKLd1EM4xtF/s62MmioimmseolG122Lgi4pzCDuDtdx+WRHO8zmg33Bi0WyCPlbk5xm4fciNtPpOu3nEK8Bm/B5rYWKQtdNq9HyA6lF2UvMeSCl7JHoBYTTROZaIjEkuxXbrkMFApAr17a95ZSCP0zoPfhzJgdS+ohleNkirEU7nfNDhZdsi7IiavBtm3ciH1GRbiRh/cPDWricTLNBCnKr1ROAUhriy4t2MRxLX1LK9UhNtr/KXErvOfPV6mgvYbJRNOz6dwKvH4hsOcj4LA7geFfqvWMQpFcUWQMOPhgYPVq4MXngSMOhdHWLZ219gSthz9SVTXFz2aK6TrXapetCwLetYNBG2w7jW2sO0YUwijOUfF8Q0h91iIGKafgx4tRpNvaomyycRJNP2KoKlq3GaY6F+2XxE40rfXxd0bUjr9fCfzrOYCVgFdnANP+BeT71HpWgUm2KH76qfbGs2lTeEt+teZmM8Uwc+eILqxd7LJ1QY4YtallgO8gH4fwOzXczgZY2/MaK2jqVjbc+DUCOZZTeAiokfrUj895RJEWJ2jG2WTjVwx5CUW2QfsHUzbY8G2eyERDcAqbNUEE9H+G2wGQKHYd6TTw5pvAxx9rjcHrxhTDd45Al5piOF26Lmhe1Ll2MEyDbRm54bYRaYbpWeriHA0ylmMjbhcDjOU8Ydf7SuUUfK6VtmwyjpVqDF23gKokhi5daOTzyURDOHH4ncALS4DSLuCAfweahtZ6RqFIrigCwP77ax9djZspxmgr1tSl9Ytdui4I2E0yURtsyzj2GQ3QcNttrmGco3yMII245WuXhdKHSuf5acFmHCukX7061FQSQ7GeMJsHmqRUqMVEo68bEoRMv8OAs7cAahHIxPyPdxeSbFHsKuSm2TUyxXC6dF2QE3eDbRlHIYzgRDUiOl4G4XOne45NTH2s+Ynn2sopKgi6bW/CCrWIXjWGfA4VxdCjCw1AJhoiOKl0ogURIFF0xs0UE9faWEC6fF0QcK4djNpgW0aMNnnD7Uh9S52co0GL8+VG3AHKMIKUUwBSGYRHCzZ+LB+fKR7t2nyKobgu6NTFhkw0RA+FRNFmiikDDDUxxXBqsi4IWCPiuBpsy+NzNypvuJ3NRftHQ05thunuE6YRt9P1/ZRT8HOMkgp95wy3KMxWP+iytmirI3RznJbcd6ioJJYE0QPoeaIo9zQVTTE17GbT5euCHB4V22oHY3LzxtVwWx7TImIBt3TiBG3E7Xpuxt8/DmKfUS7ebkXuotEmlXK/v0Bi2OlceE8mGoIw6P6iaDHFSDtH1MAUw6nJuiAgrJVJDbbjqB20XUPsMxox6o7DOcrHkU0zfkXAVk7hox7R1oLNRwmGpcbQY4NgP2KolrVaQ7djyERDEBaSK4rLlwOzZgGbNwPf+Q5w2WXa4+LOETZTTIOWFq1BXVVN1gU5lo4v3CQTc2rYteF2hIgzDueoOI7YiDtIZBm0nIJf00irMh/bQemuU68aQ2PcCmIIeHeh4fdEJhqCsJFMUSyXgSlTgC1btD/6a64BRo0ATpgMc+eI2u5vWLN1QWMCQjQYV4NtGbnPqNhwO0r6TXaOZgI6R41xQjTi5oQppwCkFmweWzaJcxRTqp77IoopUBcxNLrQuOxdaHGc5oFGMtEQhEgyRXHLFmD3bu0PHACKReDNt4BTv1jTrjY1WxcEPGoHIzbYdrqOpX9pOh5HatRWa/L8xI4xgVq2hSinAKxrjE6b9DodbynBcEmpBhFDPl6uAcg6NPwmEw1BVCSZojhoENC/P7Bhg/YGms8Dxx3f5eaAmq0Lciy1g7z/ZwwNtm3XibHhtm3ckilgmQhO1DCNuEW4kAZt2cbFiK8xVmp7xp2kCm/Z5nK8bzEUIk2n8gk53UomGoLwJJmimMkAf/0r8K1vaX1Pr7oKmDy56pet6bogYC1psDXYDtH/s9K15D6jmWz068TlHOVjcSEzdq8PEAGFKacQz/PTgo0fz/uJGvWIbi3bfIqhpQuNy0a+qgIUO0wTTRxlNQTRzUmmKALAvvsC8+dX9RI1XxcEHGoHeYPtmGoHLdeS+owaDs8YdrQwjC7l4OUPtrGkRtxBn4sw5RSAtcdo2mPLJnGuthpDr3pEP2IoNP12S7vKPUzFht4EQXiSXFGsEjVdF+S4Ndiuxk4gxlpe2Wy4HbbPqGVcXp9YNMU8mw+fcuU9QY0NfwOYZvh8uECpqr9yCuPaQqeabL5yCtJvjaHTsZ5iKK4JujT9Fk00cg9TgiAq0uNFsebrgoB77WAc4uSEY5/RuJp5CyUUgPe+f5UI24jbMh+ncgof5Qe2FmxBOtV0Qtv812NdMogY8i40KYcuNOJ1yURDEJHpcaJY83VBjmWT3Co02JaxlGio8TpT43KOAg61iRn/QiaPEbScgp/rtwWbcY60dZPXtWxi6Lc432VvRLE4n0w0BBGZbi+KdbEuCAgmmSrXDoqI4mL0GY2xjykfWy1H75EapRG3OKcw5RSAVC9YIcpzOqdSZxy/YgjYu8y41iOSiYYg4qZbimJdrAsCkkmmDKPvZzVMMvx6cfcZlccXSzOipngN00yIRtwiYcopbOdWqBcUkWsMvcowAouhnq51M+WQiYYgqkqyRXHbNmDjRrQPHVr7dUGOGA1aGmzHXDtoXE8q2q+GEDo6RyOUZsi714dxooYtp3A812PLJhFbjaGHkSWIGPJyDVXfEspJ6MhEQyQARVFQKpXQ2BXZtyqRaFEsH300sh9+iJ81DUTLpOO6fl0QcG44nsnF22Db7Zq2PqMxCW/czlE+ZlTTDBC+nILPQWy27WdNlUezPILzqjEU79OXGEpRn9O4fLxigUw0RN3y8ssv49Zbb8Urr7wCABg4cCCuuuoqXHHFFWhqaqrx7IKRaFFMTZmCYmcnrlm0CLm99+66C7s12K5mr1XZgCL2GY0rArX0CmVaMXyUPqZRG3GL44QtpwCCt2AzrikX6HsYbpzE0HVbKLHw3iXqIxMNkRDmzZuHq6++Gu3t7cZjGzduxK233orf/va3WLRoEVpaWmo4w2CkGOMNRCszfvx4LF26tJrzqV9stYO6SSaTrd6bldxwm/cZjfOaTs7RTC6auDs14s7mgkfNYm1ikHIKQHKg6i3YsvnKQiq7TytForIY8h0p3I41UqA5c+9O233zpt6q8w4XBFEn/POf/8QhhxyCjo4Ox583NjZi1qxZmDNnThfPzI5f/Up0pFhVXBtsx1TP53XdavQZtV0jRueoOO9y0RwzbENvef/BINGqHOH5Xa8Ua/3SGe9IT75OxcjQZx0hmWiIhPGzn/0M5XLZ9eeFQgE///nPcdddd6G5ubkLZxYeEkURS4PtLqgdNK4r9xnNxN/P1G2T3qgCH7URtzi/sOUUACz7EfppwSaeJ9YYBu1W40cMy7rQem0LRSYaIoG8+OKLKJVKnsdkMhmsXLkSRxxxRBfNKho9WxS9GmxXq3ZQvLbccDuOPqPyNeLYpNdpXFsj7pBrXlHKKQBrC7Yg+y7aagwrrFFaOsukK4uhIZzpChsG62OmyURDJI+Uj79TxljXGR9joOeJoq3BNqpbO2i5ttRw29jhIuZ0rFjygFS4QngZm2kmwnMWpZzCmEtZi/BUsTwiSB/Tsr+tnmxi6CJw4ry4OcZLOLmj1K1bDUEkgKlTp+LDDz9EsVj0PG7s2LFdNKPo9Iy/xK5ssO16bbHPaBV6mtqcozHdn9g7NEwjbstYEcopAHuKtdKWTeJ5XAyZ4q8uMYgYAtYuNF7mGDLREN2Ib33rW54mmqamJlx22WVoaGjowllFo3uKomeD7SrVDopYhDDmPqMicfYctYwrGnEEs0sYgY1aTgGYLtRy0X8LNvnaxtZNFURUbsBdSQwNkVN0kXPbGkrVjiMTDdGNGDlyJH7xi1/gG9/4BgqFAlRVNX7W0tKC8ePH47bbbqvhDIOTnESvzMaNwNSpwCGHAH/+sx5FlIDOdqBjt9YXEtDeQJtatcL2bL56gsi7knTsBgptelqvQbh2gIbWXvBoqbBHuxbvgtLUaqbrQrdc0/tpduwWNq9tDSe0qi4Chd2aKHEDST7AWq1S1n6fhTYATFsvbGjxV3BfLmrnlQqmEHsJkXGOfu/5Zu16boKoKvrc9ugGnVaPTjQFoKNN+1lTq16KQYJIdA9mzJiB1157DTNmzEBLSwvy+TzGjh2LOXPmYMGCBcjn87WeYiCSW6d4+unAX/4ClMtAUxPwzxVA/4HmOl21F3bd+oxGrfFzu5ajczQGobU04ma6e9RHPZ/nPItmOUU2H8yAY9uyKUBUJXes8ZOelSPDXEOFyFAw6OTy2vw8t4bSTTTVNm4RBOFJ969TXL9eE0RA/28c2n/21UROy8bdZ9TxWjE7R42xY2jEbYwn73ARspdp0BZslnP13egzPlKe/JwgaVJLF5oKTcDJREMQiSW5f6133QWceaYWkcyYAYwcWZ3ruPUZrea+h3E7R53GTnGRjbLDheRGDZtmNbZsygYTEflcP+UYto2AK4mhILiVfhdkoiGIxJNcUTz5ZGDDBmDXLmD48HjHdm24XSW3Kjfm8BRmnNeKqxG3PF6pU5trtiF49OrUtSZoL1Nx6yY/54YSQ7ELjddeiUIUSSYagkg0yRVFAGht1T7iQO4zKjbcrkZvU6NmsWg6VKuy3RNfg4zofpXLKcJsbGupT2TB06xBawz5NYOKoZhWrbRxsBhFUicagkg8yRbFqMi7XfB1u2qZIuQuNnGXajit7UXe7iliOYUxL95kO8R6YdAaQ35eYDHUaw0rrQVSJxqC6Lb0PFHsiobb8vWcnKNxdbEx7icm0wwQbXcKyziKKYaZgFF3mBpDfl5QMTT2S2SVI2ClrJWtkImGILolPeMv2rXPaIwNt+XrVcs5ynFqxB1FaJ3KKcKkjuUWbEaD6wAt3MSG236jyqBiCEhdaCrsl0gmGoLoEXRfUZT7jFaj4baM4e7k+wgGaFDtB7lnaJRG3MaYMZRTiHOzbMobZJcLWdQCdK0JKoa80YJaoQsNQCYaguhhJFsUy2WgWAT4Pl2WtmeK0Nqtivsfyi3d4mq1xnHavT6OvQ/jKKcArFsvpQOImdP5maz/6DSUGEr7FXqJv81E48PUQxBE4kmuKK5bBxxxBLBtG/Dfc4HzzxUablehz6iIXOaQ4R1LYqxbdNq9Po4tn6KWUxjzE7ZsyoaIWMPUGPJ7EPco9FWoLxbeV9iv0GKiqeA+JQii25FcUXzuOWD3bi1avGcOcNE3qrv1k83QUoUm306NuOOIOsX1x0zIcgpjflILtqCiGqbGkF9bFEM/EaVl814f0R6ZaAiix5Pcv/qTTtJ6npbLwL/9mxYhxo0lzViOx9DiRFy718tzj6Ocgo9llFSkwrlR+VwUcf/DgP1Mg4ihpfC+wn0HWWMkCKJbk1xRHDVK63+6Zw/Qv3984xqNvotmN5uo9X6O15EacWciiJZIXOUUxlidQoQZdL1QLHfgkaVPsY8ihvycSqlP2UQT9z87BEEkjuSKIgA0NGgfcSCWUADB6+r8INcsxtVDNa5yCg7vtBM0xSnOx+ZE9SnMYcXQKONIVz6HTDQEESuKouDPf/4znnrqKbS3t+Owww7DN77xDey11161nlpgkrt1VBw4bdJbja2f5Ogtk4vH2i+XUwQRH9tYDi3Ygs4xbI0hP1cUQ25cqng9oQsNrx+sOL+C/2sQBOHJ3//+d0ydOhXt7e3YvXs3AKCxsREAcMUVV+DOO+9Eqg4yMN1/66iwWMwsegeYqCUOnteJqRG3OG5c5RR8vLBbNjmOETDNaln/8xkZAlLhvY9ien48QCYagoiJ999/HyeccIIhhpxCQftbu/feewEAd911V5fPLSw9I2fEmCaCne1Axy69jCAHNPUGGprjM1bwyMWye32Ddff6SPeg7yZf7NDGamrV5x9C0FVFn+cu7euGFn13+gDPBVO1Li8du4UxWvx3oCl16ueWtfP8CKKqaLvdF9tN85DXnFUF6BSOb2ghQSSImLjxxhvR1tbm+vP29nbcc8892LhxYxfOKhrdVxS5QHW26wKlOxGbWrU3xjg7k3DDBhesVEp7s25sCSYyThjitVsT83yjNnauIfg6GH9OCnu0D6SARl1Yg9YYFjuAjjYATJuP3zGiiGFnuyZwmaw2b6/fIdPnWNijN+2ucDxBEIHYtm0b5s+fDz8rcA899FAXzCgeute/zF3lHOXXirsRt2VsMfUa0ZkatQUbJ8zWTeIcxDSp36J4SxcaH6Uc4nXIREMQVePjjz9GPp83UqVuFAoFvPXWW100q+h0D1G0dH/RyxuqtQ9i3I24LWMLWyylI5ZTAOY/CCXegi1k0b6il1Woil664GPrJmMOIcUwSBcafh3qREMQXUZDQwNUVfV1bFNTU5VnEx/JFsWnnwb++gow+3vx9xwVcTLNxPWm61ROEXVssQVbJuR48pZK2byWIg0lhgHbuAXpQgOQiYYgasCYMWPQ2NjouaYIAK2trZg2bVoXzSo6yc4rjRwJHHywaWSJveVaWTLnxGSaAaR1yIImXlHG5sJdaNPW3dJp04gTZDyLoadgpm5zDf7dpMaaoaKvGfqYg3geU7VrVtrRhEw0BFEzMpkMrrzyyopRYGNjI770pS910ayik+x3kMMP1z7ipBqNuDlxl1PwMXnKFQhfqyiXZgRNtUaJDIOmPS2daKrQdo8gCF9cd911WLBgAZYsWYKOjg7Lz1KpFFpaWvCnP/0J2WxypCbZkWJc8JKNwh4tQmJME6uwLk/H8WMspwB0B2jBdHHy+YYpuC+J4zRr4wTpQBM2MizrkW25qF3XTyeaUqfueoWWWs01kiASRI3I5XL4v//7P3z3u9/FgAED0KtXL/Tu3RuNjY2YOnUq/va3v2HChAm1nmYgenZHG8dG3DE2g5Z3p8jmozcJkFuwZfMh061CtGXs0Rg0zaq3SgtyPl+rLPIuND4aJ1AnGoKoe8rlMlasWIHOzk6MHj0aAwcOrPWULFBHGzd41KaUhN3rY2jELY4fZzmFMaa8ZVMAB6iIKNRh+5qKYhjExBO0C418DploCKJuyWazOPjgg2s9jcj0jHcYp7W8uFu7xV1OwecdtQWbMb8INYbGXEKKYZitmWg7J4IgakD3FkWxETcv5I/LNANUp5wCkNKu2fAREv9noNQJMCVchBlJDMXCe59bM5GJhiCIGtL9RLFajbgt13DYnSLqm7cRzeob8UbdFNhIt7JwHWyiiKFN2HxsKEydaAiCqAOSK4qFAnDrrcAnnwDf/S4wdoy5+0U6E79pphrlFHxcsQVblA45UbZuEscILYYhCu8t2z+lqRMNQRA1JbmieMstwL33Ap2dwHPPAWtWA/mGeE0zgItoxZCCZcIaZJi6QHmOlhrDEGIdVQwt5/r8HVhMNE1koiEIouYk913oww+1aBEAdu4EMg2aISMu5HKKKKIljyu2YIuS2hV7m2Yy4dYeI4thiIJ9vtaolslEQxBEXZFcUbzlFmDhQqC9HbjmGqAxBkGsRjkFH1cta8KjKsI6W8hxVVUTMm7ECdvbNIoY8rrBVJAm33qjgCBrjQRBEF1IckXxc58DtmzRosXW1mhj2copIpQ+iMS1ZZMxT7GsIkSNIZ9TJDHk638p/5GpHFGSiYYgiDoluaIIALmc9hGGapVTALr7kotsJrohhztJFR5lhhCVKGLI52Cs//lMJZOJhiCIhJFsUQxDNcopOOJ6YTYfTQSMGsOC0MUmxDxFR2hoMdQ76QRpNi6LaCbkPy8EQRBdSM8QxWqVU/Cx42rBZhuPRdv1IooYih1lsg3+G42TiYYgiATTvUVR3lYp7m2gjJKKVPS6yDhqDPk4kcQwRBca47pkoiEIItkkVxQXLwZ++lNg82ZgxgzgoovM9cVqlVMAdudn1Po6S41hhPVHcR0zSK2g5Xz9vrJ5bWsrv2JoKcuIuU6UIIj6Z+cK4P2fAuv+pLXVbN0PGHs1sPeXgXSylk6SKYqPPQZcfDHQ0aG9KS9eDPz+98Bf/lyd3S9sLdhCOj8tY0oiFrZeMbIYhuhCw88jEw1BEMt/BCz7D0AtAaysPbZ1C7D4IqBlNnDyS0DDgJpOMQjJ+5deVYErrtDqE/lWkO3twN/+Bix8UUs7Nrbq0WFMmwN37tE3B85qEVS+KfzYqqqN1dEGgPnflNc2N77JcJv2dWMvfRyf8xI3B+bn55v8CaJS1p6TUkF7nkkQCaJn8snvgGXfA5QOUxA55TZg1/vAi18w36sTQPJEcccOrYONTKkEvLtCi3Yim2f0VGJhtx5B6e3jcg3Ragw727Wd5gEtIuOp0qBziyqG5aJ2b2pZEGUf56uqdg/FdrOxAblKCaJnwhjw1g2A0u5xTAnY/T6w+dWum1dEkpc+7d1b615TLFofb2gADjgg2tjGWmQxegs2jq3GMKQBJY40qWjkCdISzpJizWuROJloCKJns/1NoHNz5ePKe4AP5gJ7HV/9OcVA8iLFbBb4z/8EmpvNxxoagBEjgC9+Mfh4fG2ssEf7QEpLkYZJaVrGLGlRYbHdTLvmGsMZaHhkCBYuMuRzKRe16LSxl/9ONLYUa4h7IAii+9G+Dkj5+ceaAXs+rvZsYiN5kSIAXHUVMHw4cNddwPbtwNlnAzffrDlN/RJ3CzbXMUOmc8XIMKyxRyygzzX6L/GQ27nRmiFBEDK53gB8rhXm+lR1KnGSTFEEtDKMGTOCn2drwRZDuYZcsxhpG6gYxFBVtOiSKcEL6FVFMwIFaedGEETPY+Ax/o7LtgL7XlDducRI8tKnYeFGl47dMFyfjS3RC+55elEpC6nJMB1oHNKkQV2uhplnj77u2BqsE41xbi78fRAE0TPI5IHP/D8g0+R9XDoPjDi7a+YUA8mNFP1ga8EWccsmY1zZ9BJxT0SjaD5sZCg0FAhq5pFNNH6L9gmCIA75T2Dr34Atrzu4UNNAtgU44S/afrcJoXuKYtwt2Dii+EQt4I9DDOUxgmzJRJ1oCIKISjqnid6H9wErfgB0btU6c6llYOR04OD/AFr3r/UsA5FcUXzvPeCGGzSjzfnnA5dcYm6PZLR3i6npt2Ufw3y0/QBjEUNhG6igY/Ats4pkoiEIIgbSWeDAfwcO+H9A+6eA2gk0DdWixASSTFFcswY45higrU17k3/zTWD3TuDyf4unBRsgbN3UqRlWIu9+EZcYitFdiJ0vyERDEEQ1SKWAlhG1nkVkkpkve+YZrYON2OZt3v3RW7ABuvCUzNZu2ZxmWAnbzYaJbd0QzkAjdqFRxC40PgWRTDQEQRC+SGakmM/bRaUxQhQHxFtjCMQXGYr1gkG60PDzyURDEAThm2RGijNmAP36aeIIAE1NwPe/H24sLhy8z2m+URMwv6UMtvFiiAwBe9PthpZgbdnKRepEQxAEEZBkRop9+wJvvw3Mm6cZbaZNA449NtgYolklkwkehdnGiyEyBKQuNAGjVTLREARBRCKZoggAAwYAN90U/Dx5k+CowhGXGKqKJoZqiC40/PxiQZtPkJZuBEEQhEFyRTEolrKKuDYJDlkjaJmXqomhUtYiw3zA/qvy+WHTvgRBEEQPEEUegSlK9BpDwF7AH3Y8i6iGMMGQiYYgCCJ2uqcoOtYYRtwBIzYxFMUsxDiGS7ag1RlSJxqCIIjY6F6iaOl1yuLZDipOMYzaVk0pmSaaqMYggiCIGFm5ciXWrVuHzs5O9OvXD4ceeiiaxX1vE0Jy31U/+ACYORPYvFnbS/GiC81d5bMN0Y0mcYthuVMz9IQx9pCJhiCIOqS9vR2/+93vcNddd2Ht2rXI5XIAAMYYFEXBhRdeiCuuuAIHHHBAjWfqnxRjvC1MZcaPH4+lS5dWcz7+GTNGE0bGtDrFVxYCh38ueq9TWQxzDeHFkDcDSKX1qDXg/yB8Oyky0RAEUWcsWbIEp556KkqlEtra2hyPyeVyyGQyuOSSS/CTn/wE6Rou9fjVr+RGiuvXm23esllg09Zo6cQ4I0OxVjDfFEIMpYbfZKIhCKKOePXVV/GFL3wB7e3ydlFWSqUSSqUSHnzwQWzatAm/+c1vkKrz97LkOjQuuQRoadE++vYFjj8+3Diq3oGmoP+n06R3oAkjiLwLTbGgpTmDdKEBrD1OVdXshlPnLyKCIHoOa9euxdSpUysKokh7ezueeeYZfD9s57EuJLmi+MMfAk8+Cdx/P/DOO0Bra7Dz4xRDVdGabRfbtRRnYy8twgsiZkpJm0u5qJloGprJVUoQRN3x05/+FIVCIfB57e3tuPPOO0Od25UkN32aSgGf/3zw8yxp0oh1i2JDgFwDkA3hdCUTDUEQCaFQKOCBBx5AsVgMPcbjjz+O888/P8ZZxUvPCUUskWFKjwwbw3eh4VsxpdPaml/QraV44/DCHrNEI2h0SRAE0YU89dRTkc5va2vDD3/4w5hmUx2SGyn6Jc7IMI7WbmSiIQgioSxfvhy7d++ONMaqVatimk11jm6mYQAABaJJREFU6L6iGKsYSkIWem9E6kRDEERy2bFjR+QxOjs7Y5hJ9eh+ohi7GIpdaELuqKGUtVQpdaIhCCLB9OvXL/IYjY2NMcykeiT33blcBh55BNi0CTjvPGDvvc3dIuIQQx7VpUJ2oQHIREMQRLfi4IMPRmtra6QU6oEHHhjjjOInuaL4jW8A//u/QLGolWe8/Q9g8JAYxFDf5DdKVCeuPVInGoIguglnnHFGpK40ra2tuO6662KcUfwkd1Hr6aeB9nYtYlQUYNl74d2kPDLs3KMJYj5E4T0fp1QAOoTax6CuVIIgiDoln8/jsssuQ0NDQ6jz0+k0pk2bFvOs4iW5onjQQVp7N0ATxjFjw40jdqHhhfdBd723dKJRtHRr2EYABEEQdcy3v/3tULtfNDc349Zbb0U+n6/CrOIjue/aTz8NzJgBTJ4MPPUUsO++wc5XFV0MxS40IdKcSlnqRBNy/ZEgCCIBDBkyBAsWLECvXr18n9Pc3Iyvf/3ruOKKK6o4s3hI7prioEHAo48GP09VTUNO7v+3d/+gcZdxHMfflz9n86eQaBBzSIlDqJRQjRncoiIBF4XbCoWOkuEmCxkcsjYWbAVxsauLSxGCdJFiFrPEIhGxRKSRSIIQMGiT5pr73TncE5tLTZv7l/P3u/cLstzvl+M75cPz5Pt8nzouHy5G5e8pRqGJxoP3ktrDxMQEi4uLTE1Nsb29fWTjzf4268zMDLOzs//7YeAQ51CsVsXB+3Tth+YPN9HUGqqSFGNjY2Osra0xPz/P3Nwcy8vLpNNpUqkUURTR3d1NLpdjenqaTCbT6nKPLfmhWCqFEHtY/5VQFZNo6uhylaQE6OrqIpvNks1mWV9fZ2Njg3w+z8DAAKOjo/9eOhwnyQ3FgyHWWccEmYpJNHWcWZSkBMtkMrFaER4leaG43wlayNcfYvtnFsFJNJLUBpLzV/7wFJp6ukBtopGkthTff4rduwfnzsHgINz4vPJYRK2rw4PXOXV0wanTTqORpDYS31C8fBnu3oWtLcjloFCqbQoNPGrGcRKNJLW1+G6fptPlxpkoKneBdteworOJRpJ0QHxD8fp12NiAtTW4dg2qvY7EJhpJ0iHxTYLhYVhYqP73bKKRJB0hvqFYrYpJNGkn0UiSHpP8UNw/t7iXdxKNJDVLsQB//QzRLvS9BKeGWl1RTZIbijbRSFLzRXn46QqsfArFvfKiI9qFF96GV67A4PlWV1iVZIbifhNNqWQTjSQ1S7QL37wBWz9C9KDy2fot+ONbeOsWPD/ZkvJqkax9xP+6I9FAlKTm+OFD+HP58UAEoATRDiy8B4WdEy+tVvEOxaUluHkTHuYPTKLpdBKNJDVb4QH8egOKu09+rxTBb1+eTE0NEN9QvH0bJifh0iW4cKH8WU9/+ZiFYShJzbX53fGaFgv3YfWL5tfTIPHdW7xzBwoF2NuDpe8h3dPqiiSpfRR2gGMuQAr3m1pKI8V3pXjxIoyMQG8vXL3a6mokqb30nSkfw3iqDugfbXo5jRLfleLwMKystLoKSWpPA+ehNwN///Lk9zp74GzuZGpqgPiuFCVJrZNKwfjH5dA7Sscz8Ow4PPf6ydVVJ0NRklSbF9+F1z4pB2NHuvJZVz8Mvgpvfh2r5sf4bp9Kklpv9H3IvAMrn8HvX0ExD6fPwssfwPBU7MZqGoqSpPr0nYHxj8o/MRevCJckqYkMRUmSAkNRkqTAUJQkKTAUJUkKDEVJkgJDUZKkwFCUJCkwFCVJCgxFSZICQ1GSpMBQlCQpMBQlSQoMRUmSAkNRkqTAUJQkKTAUJUkKDEVJkoJUqVQqHffloaEhRkZGmliOJEmNt7q6yubm5lPfqyoUJUlKMrdPJUkKDEVJkgJDUZKkwFCUJCkwFCVJCgxFSZICQ1GSpMBQlCQpMBQlSQr+AR2cRBs00cRwAAAAAElFTkSuQmCC\n" }, "metadata": {} } ], "source": [ "K = 2\n", "N = 4\n", "\n", "snap_plot(nets[K:N], size_scale = 1/10,savefigs=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "\n", "We have created a simplified conviction voting model that illustrates the state objects, and provides descriptions of how the model fits together. In subsequent notebooks, we will expand the model to introduce additional complexity to more fit real world implementations. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 2 }