{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we are deriving what the alpha value in the @dev formula is based off of 1hive Sol [code](https://github.com/1Hive/conviction-voting-app/blob/bc81f4af266bab6bc4096a31966bd9fe8a89f4a2/contracts/ConvictionVoting.sol)\n", "\n", " /**\n", " * @dev Formula: ρ * supply / (1 - a) / (β - requestedAmount / total)**2\n", " * For the Solidity implementation we amplify ρ and β and simplify the formula:\n", " * weight = ρ * D\n", " * maxRatio = β * D\n", " * decay = a * D\n", " * threshold = weight * supply * D ** 2 * funds ** 2 / (D - decay) / (maxRatio * funds - requestedAmount * D) ** 2\n", " * @param _requestedAmount Requested amount of tokens on certain proposal\n", " * @return Threshold a proposal's conviction should surpass in order to be able to\n", " * executed it.\n", " */\n", " function calculateThreshold(uint256 _requestedAmount) public view returns (uint256 _threshold) {\n", " uint256 funds = vault.balance(requestToken);\n", " require(maxRatio.mul(funds) > _requestedAmount.mul(D), ERROR_AMOUNT_OVER_MAX_RATIO);\n", " uint256 supply = stakeToken.totalSupply();\n", " // denom = maxRatio * 2 ** 64 / D - requestedAmount * 2 ** 64 / funds\n", " uint256 denom = (maxRatio << 64).div(D).sub((_requestedAmount << 64).div(funds));\n", " // _threshold = (weight * 2 ** 128 / D) / (denom ** 2 / 2 ** 64) * supply * D / 2 ** 128\n", " _threshold = ((weight << 128).div(D).div(denom.mul(denom) >> 64)).mul(D).div(D.sub(decay)).mul(supply) >> 64;\n", " }" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.025" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "# Z original code without alpha\n", "def trigger_threshold_original(requested, funds, supply, beta, rho):\n", " '''\n", " Function that determines threshold for proposals being accepted. \n", " '''\n", " share = requested/funds\n", " if share < beta:\n", " return rho*supply/(beta-share)**2\n", " else: \n", " return np.inf\n", " \n", "#Our new code code\n", "def trigger_threshold(requested, funds, supply, beta, rho, alpha):\n", " '''\n", " Function that determines threshold for proposals being accepted. \n", " '''\n", " share = requested/funds\n", " if share < beta:\n", " threshold = rho*supply/(beta-share)**2 * 1/(1-alpha)\n", " return threshold #* (1-alpha)\n", " else: \n", " return np.inf\n", " \n", "# Assumed values\n", "funds = 4000\n", "requested = 100\n", "supply = 21706\n", "share = requested/funds\n", "share" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Sol values\n", "D = 10000000\n", "decay = 9999599\n", "maxRatio = 2000000\n", "weight = 20000" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Based on the above equations, we can see that $\\rho$ is equal to:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.002" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rho = weight / D\n", "rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can derive $\\beta$ is equal to be:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.2" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "beta = maxRatio/D\n", "beta" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1417.5346938775506" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "originalOutput = trigger_threshold_original(requested,funds,supply,beta,rho)\n", "originalOutput" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "sol code threshold:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "35349992.36602372" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solThreshold = weight * supply * D ** 2 * funds ** 2 / (D - decay) / (maxRatio * funds - requested * D) ** 2\n", "solThreshold" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our new code threshold to match 1hive dev formulata " ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'0.0000401'" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "alpha = 1- 0.9999599\n", "\"{:.7f}\".format(alpha)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1417.5915392982765" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "newThreshold = trigger_threshold(requested, funds, supply, beta, rho, alpha)\n", "newThreshold" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 2 }