adding new model
|
After Width: | Height: | Size: 96 KiB |
|
After Width: | Height: | Size: 202 KiB |
|
After Width: | Height: | Size: 210 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 8.6 KiB |
|
After Width: | Height: | Size: 29 KiB |
|
After Width: | Height: | Size: 29 KiB |
|
After Width: | Height: | Size: 29 KiB |
|
After Width: | Height: | Size: 29 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 45 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 8.8 KiB |
|
After Width: | Height: | Size: 46 KiB |
|
After Width: | Height: | Size: 47 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 48 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 9.1 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 49 KiB |
|
After Width: | Height: | Size: 62 KiB |
|
After Width: | Height: | Size: 62 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 9.3 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 63 KiB |
|
After Width: | Height: | Size: 70 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 71 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 69 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 9.5 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 76 KiB |
|
After Width: | Height: | Size: 76 KiB |
|
After Width: | Height: | Size: 72 KiB |
|
After Width: | Height: | Size: 9.7 KiB |
|
After Width: | Height: | Size: 10 KiB |
|
After Width: | Height: | Size: 28 KiB |
|
After Width: | Height: | Size: 29 KiB |
|
After Width: | Height: | Size: 142 KiB |
|
|
@ -0,0 +1,41 @@
|
|||
import math
|
||||
from decimal import Decimal
|
||||
from datetime import timedelta
|
||||
import numpy as np
|
||||
from typing import Dict, List
|
||||
|
||||
from cadCAD.configuration import append_configs
|
||||
from cadCAD.configuration.utils import bound_norm_random, ep_time_step, config_sim, access_block
|
||||
|
||||
from .genesis_states import genesis_states
|
||||
from .partial_state_update_block import partial_state_update_blocks
|
||||
from .model.sys_params import *
|
||||
|
||||
|
||||
sim_config = config_sim({
|
||||
'N': 1,
|
||||
'T': range(60), #day
|
||||
})
|
||||
|
||||
seeds = {
|
||||
'p': np.random.RandomState(1),
|
||||
}
|
||||
|
||||
|
||||
append_configs(
|
||||
sim_configs=sim_config,
|
||||
initial_state=genesis_states,
|
||||
seeds=seeds,
|
||||
partial_state_update_blocks=partial_state_update_blocks
|
||||
)
|
||||
|
||||
|
||||
|
||||
def get_configs():
|
||||
'''
|
||||
Function to extract the configuration information for display in a notebook.
|
||||
'''
|
||||
|
||||
sim_config,genesis_states,seeds,partial_state_update_blocks
|
||||
|
||||
return sim_config,genesis_states,seeds,partial_state_update_blocks
|
||||
|
|
@ -0,0 +1,12 @@
|
|||
from .model.conviction_helper_functions import *
|
||||
from .model.sys_params import *
|
||||
|
||||
genesis_states = {
|
||||
'network':initialize_network(initial_values['n'],initial_values['m'],
|
||||
initial_values['initial_funds'],
|
||||
initial_values['supply']),
|
||||
'funds':initial_values['initial_funds'],
|
||||
'sentiment': initial_values['initial_sentiment'],
|
||||
'supply': initial_values['supply']
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,605 @@
|
|||
import networkx as nx
|
||||
from scipy.stats import expon, gamma
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.colors as colors
|
||||
import matplotlib.cm as cmx
|
||||
import seaborn as sns
|
||||
from .sys_params import *
|
||||
|
||||
|
||||
|
||||
def trigger_threshold(requested, funds, supply, alpha):
|
||||
'''
|
||||
Function that determines threshold for proposals being accepted.
|
||||
'''
|
||||
share = requested/funds
|
||||
if share < sys_params['beta']:
|
||||
threshold = sys_params['rho']*supply/(sys_params['beta']-share)**2 * 1/(1-alpha)
|
||||
return threshold
|
||||
else:
|
||||
return np.inf
|
||||
|
||||
def initial_social_network(network, scale = 1, sigmas=3):
|
||||
'''
|
||||
Function to initialize network x social network edges
|
||||
'''
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
for i in participants:
|
||||
for j in participants:
|
||||
if not(j==i):
|
||||
influence_rv = expon.rvs(loc=0.0, scale=scale)
|
||||
if influence_rv > scale+sigmas*scale**2:
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['influence'] = influence_rv
|
||||
network.edges[(i,j)]['type'] = 'influence'
|
||||
return network
|
||||
|
||||
def initial_conflict_network(network, rate = .25):
|
||||
'''
|
||||
Definition:
|
||||
Function to initialize network x conflict edges
|
||||
'''
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
for i in proposals:
|
||||
for j in proposals:
|
||||
if not(j==i):
|
||||
conflict_rv = np.random.rand()
|
||||
if conflict_rv < rate :
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['conflict'] = 1-conflict_rv
|
||||
network.edges[(i,j)]['type'] = 'conflict'
|
||||
return network
|
||||
|
||||
def gen_new_participant(network, new_participant_holdings):
|
||||
'''
|
||||
Definition:
|
||||
Driving processes for the arrival of participants.
|
||||
|
||||
Parameters:
|
||||
network: networkx object
|
||||
new_participant_holdings: Tokens of new participants
|
||||
|
||||
Assumptions:
|
||||
Initialized network x object
|
||||
|
||||
Returns:
|
||||
Update network x object
|
||||
'''
|
||||
|
||||
i = len([node for node in network.nodes])
|
||||
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']="participant"
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
network.nodes[i]['holdings']=new_participant_holdings
|
||||
|
||||
for j in get_nodes_by_type(network, 'proposal'):
|
||||
network.add_edge(i, j)
|
||||
|
||||
a_rv = a_rv = np.random.uniform(-1,1,1)[0]
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
return network
|
||||
|
||||
|
||||
|
||||
|
||||
def gen_new_proposal(network, funds, supply, funds_requested):
|
||||
'''
|
||||
Definition:
|
||||
Driving processes for the arrival of proposals.
|
||||
|
||||
Parameters:
|
||||
network: networkx object
|
||||
funds:
|
||||
supply:
|
||||
|
||||
Assumptions:
|
||||
Initialized network x object
|
||||
|
||||
Returns:
|
||||
Update network x object
|
||||
'''
|
||||
j = len([node for node in network.nodes])
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
|
||||
network.nodes[j]['conviction']=0
|
||||
network.nodes[j]['status']='candidate'
|
||||
network.nodes[j]['age']=0
|
||||
|
||||
network.nodes[j]['funds_requested'] =funds_requested
|
||||
|
||||
network.nodes[j]['trigger']= trigger_threshold(funds_requested, funds, supply,sys_params['alpha'])
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposing_participant = np.random.choice(participants)
|
||||
|
||||
for i in participants:
|
||||
network.add_edge(i, j)
|
||||
if i==proposing_participant:
|
||||
network.edges[(i, j)]['affinity']=1
|
||||
else:
|
||||
a_rv = np.random.uniform(-1,1,1)[0]
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
return network
|
||||
|
||||
|
||||
def get_nodes_by_type(g, node_type_selection):
|
||||
'''
|
||||
Definition:
|
||||
Function to extract nodes based by named type
|
||||
|
||||
Parameters:
|
||||
g: network x object
|
||||
node_type_selection: node type
|
||||
|
||||
Assumptions:
|
||||
|
||||
Returns:
|
||||
List column of the desired information as:
|
||||
|
||||
Example:
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
'''
|
||||
return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection ]
|
||||
|
||||
def get_sentimental(sentiment, force, decay=.1):
|
||||
'''
|
||||
'''
|
||||
mu = decay
|
||||
sentiment = sentiment*(1-mu) + force*mu
|
||||
|
||||
if sentiment > 1:
|
||||
sentiment = 1
|
||||
elif sentiment < 0:
|
||||
sentiment = 0
|
||||
|
||||
return sentiment
|
||||
|
||||
def get_edges_by_type(g, edge_type_selection):
|
||||
'''
|
||||
Functions to extract edges based on type
|
||||
'''
|
||||
return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection ]
|
||||
|
||||
|
||||
def conviction_order(network, proposals):
|
||||
'''
|
||||
Function to sort conviction order
|
||||
'''
|
||||
ordered = sorted(proposals, key=lambda j:network.nodes[j]['conviction'] , reverse=True)
|
||||
|
||||
return ordered
|
||||
|
||||
|
||||
|
||||
def social_links(network, participant, scale = 1):
|
||||
'''
|
||||
'''
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
i = participant
|
||||
for j in participants:
|
||||
if not(j==i):
|
||||
influence_rv = expon.rvs(loc=0.0, scale=scale)
|
||||
if influence_rv > scale+scale**2:
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['influence'] = influence_rv
|
||||
network.edges[(i,j)]['type'] = 'influence'
|
||||
return network
|
||||
|
||||
|
||||
def conflict_links(network,proposal ,rate = .25):
|
||||
'''
|
||||
'''
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
i = proposal
|
||||
for j in proposals:
|
||||
if not(j==i):
|
||||
conflict_rv = np.random.rand()
|
||||
if conflict_rv < rate :
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['conflict'] = 1-conflict_rv
|
||||
network.edges[(i,j)]['type'] = 'conflict'
|
||||
return network
|
||||
|
||||
def social_affinity_booster(network, proposal, participant):
|
||||
'''
|
||||
'''
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
influencers = get_edges_by_type(network, 'influence')
|
||||
|
||||
j=proposal
|
||||
i=participant
|
||||
|
||||
i_tokens = network.nodes[i]['holdings']
|
||||
|
||||
influence = np.array([network.edges[(i,node)]['influence'] for node in participants if (i, node) in influencers ])
|
||||
tokens = np.array([network.edges[(node,j)]['tokens'] for node in participants if (i, node) in influencers ])
|
||||
|
||||
influence_sum = np.sum(influence)
|
||||
|
||||
if influence_sum>0:
|
||||
boosts = np.sum(tokens*influence)/(influence_sum*i_tokens)
|
||||
else:
|
||||
boosts = 0
|
||||
|
||||
return np.sum(boosts)
|
||||
|
||||
|
||||
def snap_plot(nets, size_scale = 1/10, dims = (30,30), savefigs=False):
|
||||
'''
|
||||
'''
|
||||
|
||||
last_net = nets[-1]
|
||||
|
||||
last_props=get_nodes_by_type(last_net, 'proposal')
|
||||
M = len(last_props)
|
||||
last_parts=get_nodes_by_type(last_net, 'participant')
|
||||
N = len(last_parts)
|
||||
pos = {}
|
||||
|
||||
for ind in range(N):
|
||||
i = last_parts[ind]
|
||||
pos[i] = np.array([0, 2*ind-N])
|
||||
|
||||
for ind in range(M):
|
||||
j = last_props[ind]
|
||||
pos[j] = np.array([1, 2*N/M *ind-N])
|
||||
|
||||
|
||||
if savefigs:
|
||||
counter = 0
|
||||
length = 10
|
||||
|
||||
for net in nets:
|
||||
edges = get_edges_by_type(net, 'support')
|
||||
max_tok = np.max([net.edges[e]['tokens'] for e in edges])
|
||||
|
||||
E = len(edges)
|
||||
|
||||
net_props = get_nodes_by_type(net, 'proposal')
|
||||
net_parts = get_nodes_by_type(net, 'participant')
|
||||
net_node_label ={}
|
||||
|
||||
num_nodes = len([node for node in net.nodes])
|
||||
|
||||
node_color = np.empty((num_nodes,4))
|
||||
node_size = np.empty(num_nodes)
|
||||
|
||||
edge_color = np.empty((E,4))
|
||||
cm = plt.get_cmap('Reds')
|
||||
|
||||
cNorm = colors.Normalize(vmin=0, vmax=max_tok)
|
||||
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
|
||||
|
||||
net_cand = [j for j in net_props if net.nodes[j]['status']=='candidate']
|
||||
|
||||
for j in net_props:
|
||||
node_size[j] = net.nodes[j]['funds_requested']*size_scale
|
||||
if net.nodes[j]['status']=="candidate":
|
||||
node_color[j] = colors.to_rgba('blue')
|
||||
trigger = net.nodes[j]['trigger']
|
||||
conviction = net.nodes[j]['conviction']
|
||||
percent_of_trigger = " "+str(int(100*conviction/trigger))+'%'
|
||||
net_node_label[j] = str(percent_of_trigger)
|
||||
elif net.nodes[j]['status']=="active":
|
||||
node_color[j] = colors.to_rgba('orange')
|
||||
net_node_label[j] = ''
|
||||
elif net.nodes[j]['status']=="completed":
|
||||
node_color[j] = colors.to_rgba('green')
|
||||
net_node_label[j] = ''
|
||||
elif net.nodes[j]['status']=="failed":
|
||||
node_color[j] = colors.to_rgba('gray')
|
||||
net_node_label[j] = ''
|
||||
elif net.nodes[j]['status']=="killed":
|
||||
node_color[j] = colors.to_rgba('black')
|
||||
net_node_label[j] = ''
|
||||
|
||||
for i in net_parts:
|
||||
node_size[i] = net.nodes[i]['holdings']*size_scale/10
|
||||
node_color[i] = colors.to_rgba('red')
|
||||
net_node_label[i] = ''
|
||||
|
||||
included_edges = []
|
||||
for ind in range(E):
|
||||
e = edges[ind]
|
||||
tokens = net.edges[e]['tokens']
|
||||
edge_color[ind] = scalarMap.to_rgba(tokens)
|
||||
if e[1] in net_cand:
|
||||
included_edges.append(e)
|
||||
|
||||
|
||||
iE = len(included_edges)
|
||||
included_edge_color = np.empty((iE,4))
|
||||
for ind in range(iE):
|
||||
e = included_edges[ind]
|
||||
tokens = net.edges[e]['tokens']
|
||||
included_edge_color[ind] = scalarMap.to_rgba(tokens)
|
||||
|
||||
# nx.draw(net,
|
||||
# pos=pos,
|
||||
# node_size = node_size,
|
||||
# node_color = node_color,
|
||||
# edge_color = included_edge_color,
|
||||
# edgelist=included_edges,
|
||||
# labels = net_node_label)
|
||||
# plt.title('Tokens Staked by Partipants to Proposals')
|
||||
|
||||
|
||||
else:
|
||||
plt.figure()
|
||||
nx.draw(net,
|
||||
pos=pos,
|
||||
node_size = node_size,
|
||||
node_color = node_color,
|
||||
edge_color = included_edge_color,
|
||||
edgelist=included_edges,
|
||||
labels = net_node_label)
|
||||
plt.title('Tokens Staked by Partipants to Proposals')
|
||||
plt.tight_layout()
|
||||
plt.axis('on')
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
if savefigs:
|
||||
#plt.savefig('images/' + unique_id+'_fig'+str(counter)+'.png')
|
||||
plt.savefig('images/snap/'+str(counter)+'.png',bbox_inches='tight')
|
||||
|
||||
counter = counter+1
|
||||
plt.show()
|
||||
|
||||
def pad(vec, length,fill=True):
|
||||
'''
|
||||
'''
|
||||
|
||||
if fill:
|
||||
padded = np.zeros(length,)
|
||||
else:
|
||||
padded = np.empty(length,)
|
||||
padded[:] = np.nan
|
||||
|
||||
for i in range(len(vec)):
|
||||
padded[i]= vec[i]
|
||||
|
||||
return padded
|
||||
|
||||
def make2D(key, data, fill=False):
|
||||
'''
|
||||
'''
|
||||
maxL = data[key].apply(len).max()
|
||||
newkey = 'padded_'+key
|
||||
data[newkey] = data[key].apply(lambda x: pad(x,maxL,fill))
|
||||
reshaped = np.array([a for a in data[newkey].values])
|
||||
|
||||
return reshaped
|
||||
|
||||
|
||||
|
||||
def affinities_plot(df, dims = (8.5, 11) ):
|
||||
'''
|
||||
'''
|
||||
last_net= df.network.values[-1]
|
||||
last_props=get_nodes_by_type(last_net, 'proposal')
|
||||
M = len(last_props)
|
||||
last_parts=get_nodes_by_type(last_net, 'participant')
|
||||
N = len(last_parts)
|
||||
|
||||
affinities = np.empty((N,M))
|
||||
for i_ind in range(N):
|
||||
for j_ind in range(M):
|
||||
i = last_parts[i_ind]
|
||||
j = last_props[j_ind]
|
||||
affinities[i_ind][j_ind] = last_net.edges[(i,j)]['affinity']
|
||||
|
||||
fig, ax = plt.subplots(figsize=dims)
|
||||
|
||||
sns.heatmap(affinities.T,
|
||||
xticklabels=last_parts,
|
||||
yticklabels=last_props,
|
||||
square=True,
|
||||
cbar=True,
|
||||
cmap = plt.cm.RdYlGn,
|
||||
ax=ax)
|
||||
|
||||
plt.title('affinities between participants and proposals')
|
||||
plt.ylabel('proposal_id')
|
||||
plt.xlabel('participant_id')
|
||||
|
||||
|
||||
|
||||
|
||||
def trigger_sweep(field, trigger_func,supply=10**9):
|
||||
'''
|
||||
'''
|
||||
xmax= sys_params['beta']
|
||||
|
||||
if field == 'effective_supply':
|
||||
share_of_funds = np.arange(.001,xmax,.001)
|
||||
total_supply = np.arange(0,supply*10, supply/100)
|
||||
demo_data_XY = np.outer(share_of_funds,total_supply)
|
||||
|
||||
demo_data_Z0=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z1=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z2=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z3=np.empty(demo_data_XY.shape)
|
||||
for sof_ind in range(len(share_of_funds)):
|
||||
sof = share_of_funds[sof_ind]
|
||||
for ts_ind in range(len(total_supply)):
|
||||
ts = total_supply[ts_ind]
|
||||
tc = ts /(1-sys_params['alpha'])
|
||||
trigger = trigger_func(sof, 1, ts,sys_params['alpha'])
|
||||
demo_data_Z0[sof_ind,ts_ind] = np.log10(trigger)
|
||||
demo_data_Z1[sof_ind,ts_ind] = trigger
|
||||
demo_data_Z2[sof_ind,ts_ind] = trigger/tc #share of maximum possible conviction
|
||||
demo_data_Z3[sof_ind,ts_ind] = np.log10(trigger/tc)
|
||||
return {'log10_trigger':demo_data_Z0,
|
||||
'trigger':demo_data_Z1,
|
||||
'share_of_max_conv': demo_data_Z2,
|
||||
'log10_share_of_max_conv':demo_data_Z3,
|
||||
'total_supply':total_supply,
|
||||
'share_of_funds':share_of_funds,
|
||||
'alpha':sys_params['alpha']}
|
||||
elif field == 'alpha':
|
||||
#note if alpha >.01 then this will give weird results max alpha will be >1
|
||||
alpha = np.arange(0,.5,.001)
|
||||
share_of_funds = np.arange(.001,xmax,.001)
|
||||
demo_data_XY = np.outer(share_of_funds,alpha)
|
||||
|
||||
demo_data_Z4=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z5=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z6=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z7=np.empty(demo_data_XY.shape)
|
||||
for sof_ind in range(len(share_of_funds)):
|
||||
sof = share_of_funds[sof_ind]
|
||||
for a_ind in range(len(alpha)):
|
||||
ts = supply
|
||||
a = alpha[a_ind]
|
||||
tc = ts /(1-a)
|
||||
trigger = trigger_func(sof, 1, ts, a)
|
||||
demo_data_Z4[sof_ind,a_ind] = np.log10(trigger)
|
||||
demo_data_Z5[sof_ind,a_ind] = trigger
|
||||
demo_data_Z6[sof_ind,a_ind] = trigger/tc #share of maximum possible conviction
|
||||
demo_data_Z7[sof_ind,a_ind] = np.log10(trigger/tc)
|
||||
|
||||
return {'log10_trigger':demo_data_Z4,
|
||||
'trigger':demo_data_Z5,
|
||||
'share_of_max_conv': demo_data_Z6,
|
||||
'log10_share_of_max_conv':demo_data_Z7,
|
||||
'alpha':alpha,
|
||||
'share_of_funds':share_of_funds,
|
||||
'supply':supply}
|
||||
|
||||
else:
|
||||
return "invalid field"
|
||||
|
||||
def trigger_plotter(share_of_funds,Z, color_label,y, ylabel,cmap='jet'):
|
||||
'''
|
||||
'''
|
||||
dims = (10, 5)
|
||||
fig, ax = plt.subplots(figsize=dims)
|
||||
|
||||
cf = plt.contourf(share_of_funds, y, Z.T, 100, cmap=cmap)
|
||||
cbar=plt.colorbar(cf)
|
||||
plt.axis([share_of_funds[0], share_of_funds[-1], y[0], y[-1]])
|
||||
#ax.set_xscale('log')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('Share of Funds Requested')
|
||||
plt.title('Trigger Function Map')
|
||||
|
||||
cbar.ax.set_ylabel(color_label)
|
||||
|
||||
def trigger_grid(supply_sweep, alpha_sweep):
|
||||
|
||||
fig, axs = plt.subplots(nrows=2, ncols=1,figsize=(20,20))
|
||||
axs = axs.flatten()
|
||||
|
||||
share_of_funds = alpha_sweep['share_of_funds']
|
||||
Z = alpha_sweep['log10_trigger']
|
||||
y = alpha_sweep['alpha']
|
||||
ylabel = 'alpha'
|
||||
supply = alpha_sweep['supply']
|
||||
|
||||
cp0=axs[0].contourf(share_of_funds, y, Z.T,100, cmap='jet', )
|
||||
axs[0].axis([share_of_funds[0], share_of_funds[-1], y[0], y[-1]])
|
||||
axs[0].set_ylabel(ylabel)
|
||||
axs[0].set_xlabel('Share of Funds Requested')
|
||||
axs[0].set_title('Trigger Function Map - Alpha sweep; Supply ='+str(supply))
|
||||
cb0=plt.colorbar(cp0, ax=axs[0])
|
||||
cb0.set_label('log10 of conviction to trigger')
|
||||
|
||||
|
||||
share_of_funds = supply_sweep['share_of_funds']
|
||||
Z = supply_sweep['log10_trigger']
|
||||
y = supply_sweep['total_supply']
|
||||
ylabel = 'Effective Supply'
|
||||
alpha = supply_sweep['alpha']
|
||||
|
||||
max_conv = y/(1-alpha)
|
||||
|
||||
cp1=axs[1].contourf(share_of_funds, y, Z.T,100, cmap='jet', )
|
||||
axs[1].axis([share_of_funds[0], share_of_funds[-1], y[0], y[-1]])
|
||||
axs[1].set_ylabel(ylabel)
|
||||
axs[1].set_xlabel('Share of Funds Requested')
|
||||
axs[1].set_title('Trigger Function Map - Supply sweep; alpha='+str(alpha))
|
||||
axs[1].set_label('log10 of conviction to trigger')
|
||||
cb1=plt.colorbar(cp1, ax=axs[1])
|
||||
cb1.set_label('log10 of conviction to trigger')
|
||||
|
||||
|
||||
def initialize_network(n,m, initial_funds, supply):
|
||||
'''
|
||||
Definition:
|
||||
Function to initialize network x object
|
||||
|
||||
Parameters:
|
||||
|
||||
Assumptions:
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
'''
|
||||
# initilize network x graph
|
||||
network = nx.DiGraph()
|
||||
# create participant nodes with type and token holding
|
||||
for i in range(n):
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']= "participant"
|
||||
|
||||
h_rv = expon.rvs(loc=0.0, scale= supply/n)
|
||||
network.nodes[i]['holdings'] = h_rv
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
initial_supply = np.sum([ network.nodes[i]['holdings'] for i in participants])
|
||||
|
||||
|
||||
# Generate initial proposals
|
||||
for ind in range(m):
|
||||
j = n+ind
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
network.nodes[j]['conviction'] = 0
|
||||
network.nodes[j]['status'] = 'candidate'
|
||||
network.nodes[j]['age'] = 0
|
||||
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=500)
|
||||
network.nodes[j]['funds_requested'] = r_rv
|
||||
|
||||
network.nodes[j]['trigger']= trigger_threshold(r_rv, initial_funds, initial_supply,sys_params['alpha'])
|
||||
|
||||
for i in range(n):
|
||||
network.add_edge(i, j)
|
||||
|
||||
rv = np.random.rand()
|
||||
a_rv = np.random.uniform(-1,1,1)[0]
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i, j)]['tokens'] = 0
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i, j)]['type'] = 'support'
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
|
||||
|
||||
network = initial_conflict_network(network, rate = .25)
|
||||
network = initial_social_network(network, scale = 1)
|
||||
|
||||
return network
|
||||
|
|
@ -0,0 +1,185 @@
|
|||
|
||||
import numpy as np
|
||||
from .conviction_helper_functions import *
|
||||
import networkx as nx
|
||||
from .sys_params import *
|
||||
|
||||
# hyperparameters
|
||||
mu = 0.01
|
||||
|
||||
# Phase 2
|
||||
# Behaviors
|
||||
def check_progress(params, step, sL, s):
|
||||
'''
|
||||
Driving processes: completion of previously funded proposals
|
||||
'''
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
completed = []
|
||||
failed = []
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'active':
|
||||
grant_size = network.nodes[j]['funds_requested']
|
||||
likelihood = 1.0/(sys_params['base_completion_rate']+np.log(grant_size))
|
||||
|
||||
failure_rate = 1.0/(sys_params['base_failure_rate']+np.log(grant_size))
|
||||
if np.random.rand() < likelihood:
|
||||
completed.append(j)
|
||||
elif np.random.rand() < failure_rate:
|
||||
failed.append(j)
|
||||
|
||||
return({'completed':completed, 'failed':failed})
|
||||
|
||||
|
||||
|
||||
# Mechanisms
|
||||
def complete_proposal(params, step, sL, s, _input):
|
||||
'''
|
||||
Book-keeping of failed and completed proposals. Update network object
|
||||
'''
|
||||
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
competitors = get_edges_by_type(network, 'conflict')
|
||||
|
||||
completed = _input['completed']
|
||||
for j in completed:
|
||||
network.nodes[j]['status']='completed'
|
||||
|
||||
for c in proposals:
|
||||
if (j,c) in competitors:
|
||||
conflict = network.edges[(j,c)]['conflict']
|
||||
for i in participants:
|
||||
network.edges[(i,c)]['affinity'] = network.edges[(i,c)]['affinity'] *(1-conflict)
|
||||
|
||||
for i in participants:
|
||||
force = network.edges[(i,j)]['affinity']
|
||||
sentiment = network.nodes[i]['sentiment']
|
||||
network.nodes[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
|
||||
|
||||
|
||||
|
||||
failed = _input['failed']
|
||||
for j in failed:
|
||||
network.nodes[j]['status']='failed'
|
||||
for i in participants:
|
||||
force = -network.edges[(i,j)]['affinity']
|
||||
sentiment = network.nodes[i]['sentiment']
|
||||
network.nodes[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_completion(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
completed = _input['completed']
|
||||
failed = _input['failed']
|
||||
sentiment = s['sentiment']
|
||||
|
||||
completed_count = len(completed)
|
||||
failed_count = len(failed)
|
||||
|
||||
if completed_count+failed_count>0:
|
||||
sentiment = get_sentimental(sentiment,completed_count-failed_count, .25)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, 0)
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
|
||||
# Phase 3
|
||||
# Behaviors
|
||||
def participants_decisions(params, step, sL, s):
|
||||
'''
|
||||
High sentiment, high affinity =>buy
|
||||
Low sentiment, low affinities => burn
|
||||
Assign tokens to top affinities
|
||||
'''
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
|
||||
|
||||
gain = .01
|
||||
delta_holdings={}
|
||||
proposals_supported ={}
|
||||
for i in participants:
|
||||
engagement_rate = .03*network.nodes[i]['sentiment']
|
||||
|
||||
#engagement_rate = .3*network.nodes[i]['sentiment']
|
||||
if np.random.rand()<engagement_rate:
|
||||
|
||||
force = network.nodes[i]['sentiment']-sys_params['sensitivity']
|
||||
delta_holdings[i] = network.nodes[i]['holdings']*gain*force
|
||||
|
||||
support = []
|
||||
for j in candidates:
|
||||
booster = social_affinity_booster(network, j, i)
|
||||
affinity = network.edges[(i, j)]['affinity']+booster
|
||||
cutoff = sys_params['sensitivity']*np.max([network.edges[(i,p)]['affinity'] for p in candidates])
|
||||
# range is [-1,1], where 0 is indifference, this determines min affinity supported
|
||||
# if no proposal meets this threshold participants may support a null proposal
|
||||
if cutoff <.3:
|
||||
cutoff = .3
|
||||
|
||||
if affinity > cutoff:
|
||||
support.append(j)
|
||||
|
||||
proposals_supported[i] = support
|
||||
else:
|
||||
delta_holdings[i] = 0
|
||||
proposals_supported[i] = [j for j in candidates if network.edges[(i,j)]['tokens']>0 ]
|
||||
|
||||
return({'delta_holdings':delta_holdings, 'proposals_supported':proposals_supported})
|
||||
|
||||
# Mechanisms
|
||||
def update_tokens(params, step, sL, s, _input):
|
||||
'''
|
||||
Description:
|
||||
Udate everyones holdings and their conviction for each proposal
|
||||
'''
|
||||
|
||||
network = s['network']
|
||||
delta_holdings = _input['delta_holdings']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
|
||||
proposals_supported = _input['proposals_supported']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
for i in participants:
|
||||
network.nodes[i]['holdings'] = network.nodes[i]['holdings']+delta_holdings[i]
|
||||
supported = proposals_supported[i]
|
||||
total_affinity = np.sum([ network.edges[(i, j)]['affinity'] for j in supported])
|
||||
for j in candidates:
|
||||
if j in supported:
|
||||
normalized_affinity = network.edges[(i, j)]['affinity']/total_affinity
|
||||
network.edges[(i, j)]['tokens'] = normalized_affinity*network.nodes[i]['holdings']
|
||||
else:
|
||||
network.edges[(i, j)]['tokens'] = 0
|
||||
|
||||
prior_conviction = network.edges[(i, j)]['conviction']
|
||||
current_tokens = network.edges[(i, j)]['tokens']
|
||||
network.edges[(i, j)]['conviction'] =current_tokens+sys_params['alpha']*prior_conviction
|
||||
|
||||
for j in candidates:
|
||||
network.nodes[j]['conviction'] = np.sum([ network.edges[(i, j)]['conviction'] for i in participants])
|
||||
total_tokens = np.sum([network.edges[(i, j)]['tokens'] for i in participants ])
|
||||
if total_tokens < sys_params['min_supp']:
|
||||
network.nodes[j]['status'] = 'killed'
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,132 @@
|
|||
import numpy as np
|
||||
from .conviction_helper_functions import *
|
||||
import networkx as nx
|
||||
from .sys_params import *
|
||||
|
||||
|
||||
# Behaviors
|
||||
def trigger_function(params, step, sL, s):
|
||||
'''
|
||||
This policy checks to see if each proposal passes or not.
|
||||
'''
|
||||
network = s['network']
|
||||
funds = s['funds']
|
||||
supply = s['supply']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
accepted = []
|
||||
triggers = {}
|
||||
funds_to_be_released = 0
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
age = network.nodes[j]['age']
|
||||
threshold = trigger_threshold(requested, funds, supply, sys_params['alpha'])
|
||||
if age > sys_params['tmin']:
|
||||
conviction = network.nodes[j]['conviction']
|
||||
if conviction >threshold:
|
||||
accepted.append(j)
|
||||
funds_to_be_released = funds_to_be_released + requested
|
||||
else:
|
||||
threshold = np.nan
|
||||
|
||||
triggers[j] = threshold
|
||||
|
||||
#catch over release and keep the highest conviction results
|
||||
if funds_to_be_released > funds:
|
||||
|
||||
ordered = conviction_order(network, accepted)
|
||||
accepted = []
|
||||
release = 0
|
||||
ind = 0
|
||||
while release + network.nodes[ordered[ind]]['funds_requested'] < funds:
|
||||
accepted.append(ordered[ind])
|
||||
release= network.nodes[ordered[ind]]['funds_requested']
|
||||
ind=ind+1
|
||||
|
||||
|
||||
return({'accepted':accepted, 'triggers':triggers})
|
||||
|
||||
# Mechanisms
|
||||
def decrement_funds(params, step, sL, s, _input):
|
||||
'''
|
||||
If a proposal passes, funds are decremented by the amount of the proposal
|
||||
'''
|
||||
|
||||
funds = s['funds']
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
|
||||
#decrement funds
|
||||
for j in accepted:
|
||||
funds = funds - network.nodes[j]['funds_requested']
|
||||
|
||||
key = 'funds'
|
||||
value = funds
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_release(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
accepted = _input['accepted']
|
||||
|
||||
proposals_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate'])
|
||||
|
||||
proposals_accepted = np.sum([network.nodes[j]['funds_requested'] for j in accepted])
|
||||
|
||||
sentiment = s['sentiment']
|
||||
force = len(accepted)
|
||||
if force>0:
|
||||
sentiment = get_sentimental(sentiment, force, .25)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, 0)
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_proposals(params, step, sL, s, _input):
|
||||
'''
|
||||
If proposal passes, its status is changed in the network object.
|
||||
'''
|
||||
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
triggers = _input['triggers']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposals')
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['trigger'] = triggers[j]
|
||||
|
||||
#bookkeeping conviction and participant sentiment
|
||||
for j in accepted:
|
||||
network.nodes[j]['status']='active'
|
||||
network.nodes[j]['conviction']=np.nan
|
||||
#change status to active
|
||||
for i in participants:
|
||||
|
||||
#operating on edge = (i,j)
|
||||
#reset tokens assigned to other candidates
|
||||
network.edges[(i,j)]['tokens']=0
|
||||
network.edges[(i,j)]['conviction'] = np.nan
|
||||
|
||||
#update participants sentiments (positive or negative)
|
||||
affinities = [network.edges[(i,p)]['affinity'] for p in proposals if not(p in accepted)]
|
||||
if len(affinities)>1:
|
||||
max_affinity = np.max(affinities)
|
||||
force = network.edges[(i,j)]['affinity']-sys_params['sensitivity']*max_affinity
|
||||
else:
|
||||
force = 0
|
||||
|
||||
#based on what their affinities to the accepted proposals
|
||||
network.nodes[i]['sentiment'] = get_sentimental(network.nodes[i]['sentiment'], force, False)
|
||||
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||